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Preface 
 

Perspective 
 

Lean thinking, as well as associated processes and tools, have involved into a ubiquitous 
perspective for improving systems particularly in the manufacturing arena.  With application 
experience has come an understanding of the boundaries of lean capabilities and the benefits of 
getting beyond these boundaries to further improve performance.  Discrete event simulation is 
recognized as one beyond-the-boundaries of lean technique.  Thus, the fundamental goal of this 
text is to show how discrete event simulation can be used in addition to lean thinking to achieve 
greater benefits in system improvement than with lean alone. 
 
Realizing this goal requires learning the problems that simulation solves as well as the methods 
required to solve them.  The problems that simulation solves are captured in a collection of case 
studies.  These studies serve as metaphors for industrial problems that are commonly addressed 
using lean and simulation.   
 
Learning simulation requires doing simulation.  Thus, a case problem is associated with each 
case study.  Each case problem is designed to be a challenging and less than straightforward 
extension of the case study. Thus, solving the case problem using simulation requires building on 
and extending the information and knowledge gleaned from the case study.  In addition, 
questions are provided with each case problem so that it may be discussed in a way similar to the 
traditional discussion of case problems used in business schools, for example. 
 
An understanding of simulation methods is prerequisite to the case studies.  A simulation project 
process, basic simulation modeling methods, and basic simulation experimental methods are 
presented in the first part of the text.  An overview of how a simulation model is executed on a 
computer is provided.  A discussion of how to select a probability distribution function to model a 
random quantity is included.  Exercises are included to provide practice in using the methods. 
 
In addition to simulation methods, simple (algebra-level) analytic models are presented.  These 
models are used in partnership with simulation models to better understand system behavior and 
help set the bounds on parameter values in simulation experiments. 
 
The second part of the text presents application studies concerning prototypical systems: a single 
workstation, serial lines, and job shops.  The goal of these studies is to illustrate and reinforce the 
use of the simulation project process as well as the basic modeling and experimental methods.  
The case problems in this part of the text are directly based on the case study and can be solved 
in a straightforward manor.  This provides students the opportunity to practice the basic methods 
of simulation before attempting more challenging problems. 
 
The remaining parts of the text present case studies in the areas of system organization for 
production, supply chain management, and material handling.  Thus, students are exposed to 
typical simulation applications and are challenged to perform case problems on their own.     
 
A typical simulation course will make use of one simulation environment and perhaps probability 
distribution function fitting software.  Thus, software tutorials are provided to assist students in 
learning to use the AutoMod simulation environment and probability distribution function fitting in 
JMP.   
 
The text attempts to make simulation accessible to as many students and other professionals as 
possible.  Experience seems to indicate that students learn new methods best when they are 
presented in the context of realistic applications that motivate interest and retention.  Only the 
most fundamental simulation statistical methods, as defined in Law (2007) are presented.  For 
example, the t-confidence interval is the primary technique employed for the statistical analysis of 
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simulation results.  References to more advanced simulation statistical analysis techniques are 
given as appropriate.  Only the most basic simulation modeling methods are presented, plus 
extensions as needed for each particular application study. 
 
The text is intended to help prepare those who read it to effectively perform simulation 
applications. 
 

Using the Text 
 
The text is designed to adapt to the needs of a wide range of introductory classes in simulation 
and production operations.  Chapters 1 - 5 provide the foundation in simulation methods that 
every student needs and that is pre-requisite for studying the remaining chapters.  Chapters 6, 7, 
and 8 cover basic ideas concerning how the simulation methods are used to analysis systems as 
well as how systems work.  I would suggest that these 8 chapters be a part of every class. 
 
A survey of simulation application areas can be accomplished by selecting chapters from parts III, 
IV, and V.  A focus on manufacturing systems is achieved by covering chapters 9, 10, 11, and 12.   
A course on material handling and logistics could include chapters 13 through 18. 
 
Compute-based activities that are a part of the problem sets can be used to help students better 
understand how systems operate and how simulation methods work.  The case problems can be 
discussed in class only or a student can perform a complete analysis of the problem using 
simulation. 
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Part I 
Introduction 

 
This book discusses how, in a practical way, to overcome the limitations of the lean approach to 
transforming manufacturing systems as well as related in-plant, plant-to-plant, and plant-to-
customer logistics.   The primary tools in this regard are algebra based mathematical models and 
computer-based systems simulation as well as the integration of these two.  Concepts, methods, 
and application studies related to designing and operating such systems are presented.  
Emphasis is on learning how to effectively make design, planning, and operations decisions by 
using a model based analysis and synthesis process. This process places equal emphasis on 
building models and performing analyses.  This first part of the book discusses this process as 
well as the methods required for performing each of its steps.  
 
The beyond lean approach is introduced in chapter 1 and illustrated with an industrial application.  
One proven process for performing a beyond lean study is presented.  Some principles that guide 
such studies are discussed.   
 
Methods are considered in chapters 2 through 5: model building, the computations needed to 
simulate a model and experimentation with models as well as modeling time delays and other 
random quantities.  The basic logic used in simulation models is discussed.  A process by which 
a distribution function can be selected to represent a random quantity, in the presence or 
absence of data, is given.  An overview of the internal operations of a simulation engine is 
presented. 
 
Chapter 2 describes the most basic ways in which systems are represented in simulation models.  
These basic ways provide a foundation for the models that are presented in the application study 
chapters.  The modeling of common system components: arrivals, operations, routing, batching, 
and inventories, is discussed.   
 
Chapter 3 presents a discussion of how to choose a distribution function to characterize the time 
between arrivals, processing times, and other system components that are modeled as random 
variables.  A computer based interactive procedure for fitting a distribution function to data is 
emphasized.  A discussion of selecting a distribution function in the absence of data is presented.   
 
Chapter 4 presents the design and analysis of simulation experiments. Model and experiment 
verification and validation are included.  An approach to specifying simulation experiments is 
discussed.  Methods, including statistical analyses, for examining simulation results are included.  
An overview of animation is given.     
 
Chapter 5 discusses the unseen work of a simulation engine in performing the computations 
necessary to simulate a model on a computer.  Topics include the following: random number 
stream generation, random sampling from probability distribution functions, performance measure 
computation, event and entity list management, and state event detection.  
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Chapter 1 
Beyond Lean: Process and Principles  

 
1.1 Introduction 
 
The application of lean concepts to the transformation of manufacturing and other systems has 
become ubiquitous and is still expanding (Learnsigma, 2007).  The use of lean concepts has 
yielded impressive results.  However, there seems to be a growing recognition of the limitations of 
lean and for a need to overcome them, that is to build upon lean successes or in other words to 
get beyond lean.

1
  Getting beyond lean is the subject of this book. 

 
Ferrin, Muller, and Muthler (2005) identify an important goal of any process improvement or 
transformation: find a correct, or at least a very good, solution that meets system design and 
operation requirements before implementation.  Lean seems to be unable to meet this goal.  As 
was pointed out by Marvel and Standridge (2009), a lean process does not typically validate the 
future state before implementation.  Thus, there is no guarantee that a lean transformation will 
meet measurable performance objectives. 
 
Marvel, Schaub & Weckman (2008) give one example of the consequences of not validating the 
future state before implementation in a case study concerning a tier-two automotive supplier.  
Due to poor performance of the system, a lean transformation was performed.  One of the 
important components of the system was containers used to ship product to a number of 
customers.  Each customer had a dedicated set of containers.  The number of containers needed 
in the future state was estimated using a tradition lean static (average value) analysis, without 
taking the variability of shipping time to and from customers nor the variability in the time 
containers spent a customers into account.  Thus, the number of containers in the future state 
was too low.  Upon implementation, this resulted in the production system being idled due to the 
lack of containers.  Thus, customer demand could not be met. 
 
Standridge and Marvel (2006) describe the lean transformation of a system consisting of three 
processes.  The second process, painting, was outsourced and performed in batches of 192 
parts.  Fearful of starving the third step in the process, the lean supply chain team deliberately 
over estimated the number of totes used to transport parts to and from the second step.  In this 
system, totes are expensive and have a large footprint.  Thus, the future state was systematically 
designed to be more expensive that necessary. 
 
It seems obvious that in both these examples, the lean transformation resulted in a future state 
that was less than lean because it was not validated before implementation.  Miller, Pawloski, and 
Standridge (2010) present a case study that further emphasizes this point and shows the benefits 
of such a validation.  Marvel and Standridge (2009) suggest a modification of the lean process 
that includes future state validation as well as proposing that discrete event computer simulation 
be the primary tool for such a transformation because this tool has the following capabilities. 
 

1. A simulation model can be analyzed using computer based experiments to assess future 
state performance under a variety of conditions. 

2. Time is included so that dynamic changes in system behavior can be represented and 
assessed. 

3. The behavior of individual entities such as parts, inventory levels, and material handling 
devices can be observed and inferences concerning their behavior made. 

4. The effects of variability, both structural and random, on system performance can be 
evaluated. 

5. The interaction effects among components can be implicitly or explicitly included.   
 

                                                           
1
 It is assumed that the reader has some familiarity with lean manufacturing / Toyota Production 

System concepts. 
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The discussion in this book focuses on how to build and use models to enhance lean 
transformations, that is to get beyond lean or to make lean more lean.  The modeling perspective 
used incorporates the steps required to operate the system and how these steps are connected 
to each other.  Models include the equipment and other resources needed to perform each step 
as well as the decision points and decision rules that govern how each step is accomplished and 
is connected to other steps.  These models can include the sequencing procedures, routing, and 
other logic that is needed for a system to effectively operate.   
 
Computer simulation models provide information about the temporal dynamics of systems that is 
available from no other source.  This information is necessary to determine whether a new or 
transformed system will perform as intended before it is put into everyday use.  Simulation leads 
to an understanding of why a system behaves as it does.  It helps in choosing from among 
alternative system designs and operating strategies.   
 
When a new system is designed or an existing system substantially changed, computer 
simulation models are used to generate information that aids in answering questions such as the 
following: 
 
1. Can the number of machines or workers performing each operation adequate or must the 

number be increased? 
2. Will throughput targets be reached that is will the required volume of output per unit time 

be achieved? 
3. Can routing schemes or production schedules be improved? 
4. Which sequencing scheme for inputs is best? 
5. What should be the work priorities of material handling devices? 
6. What decision rules work best? 
7. What tasks should be assigned to each worker? 
8. Why did the system behave that way? 
9. What would happen if we did “this” instead? 
 
1.2 An Industrial Application of Simulation 
 
In order to better understand what simulation is and what problems it can be used to address, 
consider the following industrial application, which can was used to validate the future state of a 
plant expansion (Standridge and Heltne, 2000).  A particular plant is concerned about the capital 
resources needed to load and ship rail cars in a timely fashion.  A major capital investment in the 
plant will be made but the chance for future major expansions is minimal.  Thus, all additional 
loading facilities, called load spots, needed for the foreseeable future must be built at the current 
time and must be justified based on product demand forecasts.   
 
Each product can be loaded only at specific load spots.  A load spot may be able to load more 
than one product.  However, it is not feasible to load all products on all load spots.  Cleverly 
assigning products to load spots may reduce the number of new load spots needed.  
Furthermore, maintenance of loading equipment is required.  Thus, a load spot is not available 
every day. 
 
The structure of the product storage and loading portion of the plant is shown in Figure 1-1.  
Products are stored in tanks with each tank dedicated to a particular product.  Tanks are 
connected with piping to one or more load spots that serve one or two rail lines for loading.  
These numerous connections are not shown.  
 
The primary measure of system performance is the percent of shipments made on time.  The 
number of late shipments and the number of days each is late are also of interest.  Shipping 
patterns are important so the number of pounds shipped each day for each product must be 
recorded.  The utilization of each load spot must be monitored. 
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The plant must lease rail cars to ship product to customers.  Different products may require 
different types of rail cars, so the size of multiple rail car fleets must be estimated.  In addition, the 
size of the plant rail yard must be determined as a function of the number of rail cars it must hold. 
 
The model must account for customer demand for each product.  Monthly demand ranges from 
80% to 120% of its expected value.  The expected demand for some products varies by month.  
In addition, each load spot must be defined by its capacity in rail cars loaded per day as well as 
the products it can load.  Rail car travel times to customers from the plant and from the customer 
to the plant as well as rail car residence time at the customer site must be considered.  Rail car 
maintenance specifications must be included. 
 
Model logic is as follows.  Each day the number of rail cars to ship is determined for each 
product.  A rail car of the proper type waiting at the plant is assigned to the shipment.  If no such 
rail car exists, the model simply creates a new one and the fleet size is increased by one.   
 
Product loading of each rail car is assigned to a load spot.  Load spots that can load the product 
are searched in order of least utilized first until an available load spot is assigned.  A load spot 
may have been previously assigned loading tasks up to its capacity or may be in maintenance 
and unavailable for loading.  Note that searching the load spots in this order tends to balance 
load spot utilization.  The car is loaded and waits for the daily outbound train to leave the plant.  
The rail car proceeds to the customer, remains at the customer site until it is unloaded, and then 
returns to the plant.  Maintenance is performed on the car if needed. 
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Analysts formulate alternatives by changing the assignment of products to load spots, the number 
of load spots available, and the demand for each product.  These alternatives are based, in part, 
on model results previously obtained. 
 
This example shows some of the primary benefits and unique features of simulation.  Unique 
system characteristics, such as the assignment of particular products to particular load spots, can 
be incorporated into models.  System specific logic for assigning a shipment to a load spot is 
used.  Various types of performance measures can be output from the model such as statistical 
summaries about on time shipping and time series of values about the amount of product 
shipped.  Statistics other than the average can be estimated.  For example, the size of the rail 
yard must accommodate the maximum number of rail cars that can be there not the average.  
Random and time varying quantities, such as product demand, can be easily incorporated into a 
model. 
 
1.3 The Process of Validating a Future State with Models 

 
The simulation process used throughout this book is presented in this section. 
 
Using simulation in designing or improving a system is itself a process.  We summarize these 
steps into five strategic process phases (Standridge and Brown-Standridge, 1994; Standridge, 
1998), which are similar to those in Banks, Carson, Nelson, and Nicol (2009).  The strategic 
phases and the tactics used in each are shown in Table 1-1. 
 
The first strategic phase in the simulation project process is the definition of the system design or 
improvement issues to be resolved and the characteristics of a solution to these issues.  This 
requires identification of the system objects and system outputs that are relevant to the problem 
as well as the users of the system outputs and their requirements.  Alternatives thought to result 
in system improvement are usually proposed.  The scope of the model is defined, including the 
specification of which elements of a system are included and which are excluded.  The quantities 
used to measure system performance are defined.  All assumptions on which the model is based 
are stated.  All of the above items should be recorded in a document.  The contents of such a 
document is often referred to as the conceptual model.  A team of simulation analysts, system 
experts, and managers performs this phase. 
 
The construction of models of the system under study is the focus of the second phase.  
Simulation models are constructed as described in the next chapter.  If necessary to aid in the 
construction of the simulation model, descriptive models such as flowcharts may be built. 
 
Gaining an understanding of a system requires gathering and studying data from the system if it 
exists or the design of the system if it is proposed.  Simulation model parameters are estimated 
using system data. 

 

The simulation model is implemented as a computer program.  Simulation software environments 

include model builders that provide the functionality and a user interface tailored to model building 

as well as automatically and transparently preparing the model for simulation. 
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Table 1-1:  Phases and Tactics of the Simulation Project Process 
 

Strategic Phase     Tactics 

1.  Define the Issues and 

Solution Objective 

1.  Identify the system outputs as well as the people who use 

them and their requirements. 

2.  Identify the systems that produce the outputs and individuals 

responsible for these systems.   

3.  Propose initial system alternatives that offer solution 

possibilities. 

4.  Identify all elements of the system that are to be included in 

the model. 

5.  State all modeling assumptions. 

6.  Specify system performance measures.      

2.  Build Models 1.  Construct and implement simulation models. 

2.  Acquire data from the system or its design and estimate 

model parameters.   

3.  Identify Root Causes and 

Assess Initial Alternatives 

1.  Verify the model 

2.  Validate the model. 

3.  Design and perform the simulation experiments.  

4.  Analyze and draw inferences from the simulation results 

about system design and improvement issues.   

5.  Examine previously collected system data to aid in inference 

drawing. 

4.  Review and Extend 

Previous Work 

1.  Meet with system experts and managers. 

2.  Modify the simulation model and experiment. 

3.  Make additional simulation runs, analyze the results and 

draw inferences. 

5.  Implement Solutions and 

Evaluate 

1.  Modify system designs or operations. 

2.  Monitor system performance. 

 
The third strategic phase involves identifying the system operating parameters, control strategies, 
and organizational structure that impact the issues and solution objectives identified in the first 
phase.  Cause and effect relationships between system components are uncovered.  The most 
basic and fundamental factors affecting the issues of interest, the root causes, are discovered.  
Possible solutions proposed during the first phases are tested using simulation experiments.  
Verification and validation are discussed in the next section as well as in Chapter 3. 
 

Information resulting from experimentation with the simulation model is essential to the 

understanding of a system.  Simulation experiments can be designed using standard design of 

experiments methods.  At the same time, as many simulation experiments can be conducted as 

computer time and the limits on project duration allows.  Thus, experiments can be replicated as 

needed for greater statistical precision, designed sequentially by basing future experiments on 

the results of preceding ones, and repeated to gather additional information needed for decision 

making. 

 

The fourth strategic phase begins with a review of the work accomplished in phases one through 

three.  This review is performed by a team of simulation analysts, system experts, and managers.  

The results of these meetings are often requests for additional alternatives to be evaluated, 

additional information to be extracted from simulation experiments, more detailed models of 

system alternatives, and even changes in system issues and solution objectives.  The extensions 

and embellishments defined in this phase are based on conclusions drawn from the system data, 

simulation model, and simulation experiment results.  The fourth stage relies on the ability to 

adapt simulation models during the course of a project and to design simulation experiments 
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sequentially.  Alternative solutions may be generated using formal ways for searching a solution 

space such as a response surface method.  In addition, system experts may suggest alternative 

strategies, for example alternative part routings based on the work-in-process inventory at 

workstations.  Performing additional experiments involves modifications to the simulation model 

as well as using new model parameter values. 

 

Physical experiments using the actual system or laboratory prototypes of the system may be 

performed to confirm the benefits of the selected system improvements. 

 

In the fifth phase, the selected improvements are implemented and the results monitored. 
 
The iterative nature of the simulation project process should be emphasized.  At every phase, 
new knowledge about the system and its behavior is gained.  This may lead to a need to modify 
the work performed at any preceding phase.  For example, the act of building a model, phase 2, 
may lead to a greater understanding of the interaction between system components as well as to 
redoing phase 1 to restate the solution objectives.  Analyzing the simulation results in phase 3 
may point out the need for more detailed information about the system.  This can lead to the 
inclusion of additional system components in the model as phase 2 is redone. 
 
Sargent (2009) states that model credibility has to do with creating the confidence managers 
and systems experts require in order to use a model and the information derived from that model 
for decision making.  Credibility should be created as part of the simulation process.  Managers 
and systems experts are included in the development of the conceptual model in the first strategic 
phase.  They review the results of the second and third phases including model verification and 
validation as well as suggesting model modifications and additional experimentation.  Simulation 
results must include quantities of interest to managers and systems experts as well as being 
reported in a format that they are able to review independently.  Simulation input values should 
be organized in a way, such as a spreadsheet, that they understand and can review.  Thus, 
managers and systems experts are an integral part of a simulation project and develop a sense of 
ownership in it.   
 
Performing the first and last steps in the improvement process requires knowledge of the context 
in which the system operates as well as considerable time, effort, and experience.  In this book, 
the first step will be given as part of the statement of the application studies and exercises and 
the last step assumed to be successful.  Emphasis is given to building models, conducting 
experiments, and using the results to help validate and improve the future state of a transformed 
or new system. 
 
1.4 Principles for Simulation Modeling and Experimentation 
 
Design (analysis and synthesis) applies the laws of basic science and mathematics.  Ideally, 
simulation models would be constructed and used for system design and improvement based on 
similar laws or principles.  The following are some general principles that have been found to be 
helpful in conceiving and performing simulation projects, though derivation from basic scientific 
laws or rigorous experimental testing is lacking for most of them. 
 
1. Simulation is both an art and a science (Shannon, 1975). 
 
One view of the process of building a simulation model and applying it to system design and 
improvement is given in Figure 1-2.   
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Figure 1-2:  Simulation for Systems Design and Improvement. 
 
A mathematical-logical form of an existing or proposed system, called a simulation model, is 
constructed (art).  Experiments are conducted with the model that generates numerical results 
(science).  The model and experimental results are interpreted to draw conclusions about the 
system (art).  The conclusions are implemented in the system (science and art). 
 
2. Computer simulation models conform both to system structure and to available 

system data (Pritsker, 1989). 
 
Simulation models emphasize the direct representation of the structure and logic of a system as 
opposed to abstracting the system into a strictly mathematical form. The availability of system 
descriptions and data influences the choice of simulation model parameters as well as which 
system objects and which of their attributes can be included in the model.  Thus, simulation 
models are analytically intractable, that is exact values of quantities that measure system 
performance cannot be derived from the model by mathematical analysis.  Instead, such 
inferencing is accomplished by experimental procedures that result in statistical estimates of 
values of interest.  Simulation experiments must be designed as would any laboratory or field 
experiment.  Proper statistical methods must be used in observing performance measure values 
and in interpreting experimental results. 
 
3. Simulation supports experimentation with systems at relatively low cost and at 

little risk. 
 
Computer simulation models can be implemented and experiments conducted at a fraction of the 
cost of the P-D-C-A cycle of lean used to improve the future state to reach operational 
performance objectives.  Simulation models are more flexible and adaptable to changing 
requirements than P-D-C-A.  Alternatives can be assessed without the fear that negative 
consequences will damage day-to-day operations.  Thus, a great variety of options can be 
considered at a small cost and with little risk. 
 
For example, suppose a lean team want to know if a new proposed layout for a manufacturing 
facility would increase the throughput and reduce the cycle time.  The existing layout could be 
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changed and the results measured, consistent with the lean approach.  Alternatively, simulation 
could be used to assess the impact of the proposed new layout. 
 
4. Simulation models adapt over the course of a project. 
 
As was discussed in the previous section, simulation projects can result in the iterative definition 
of models and experimentation with models.  Simulation languages and software environments 
are constructed to help models evolve as project requirements change and become more clearly 
defined over time. 
 
5. A simulation model should always have a well-defined purpose. 
 
A simulation model should be built to address a clearly specified set of system design and 
operation issues.  These issues help distinguish the significant system objects and relationships 
to include in the model from those that are secondary and thus may be eliminated or 
approximated.  This approach places bounds on what can be learned from the model.  Care 
should be taken not to use the model to extrapolate beyond the bounds. 
 
6. "Garbage in - garbage out" applies to models and their input parameter values 

(Sargent, 2009). 
 
A model must accurately represent a system and data used to estimate model input parameter 
values must by correctly collected and statistically analyzed.  This is illustrated in Figure 1-3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1-3:  Model Validation and Verification. 

 
There are two versions of a simulation model, the one specified "on paper" (the conceptual 
model) in the first strategic phase of the project process and the one implemented in the 
computer in the second strategic phase.  Verification is the process of making sure these two are 
equivalent.  Verification is aided, at least in part, by expressing the "on paper" model in a 
graphical drawing whose computer implementation is automatically performed.   
 
Validation involves compiling evidence that the model is an accurate representation of the system 
with respect to the solution objectives and thus results obtained from it can be used to make 
decisions about the system under study.  Validation has to do with comparing the system and the 
data extracted from it to the two simulation models and experimental results.  Conclusions drawn 
from invalid models could lead to system "improvements" that make system performance worse 
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instead of better.  This makes simulation and system designers who use it useless in the eyes of 
management. 
 
7. Variation matters. 
 
A story is told of a young university professor who was teaching an industrial short course on 
simulation.  He gave a lengthy and detailed explanation of a sophisticated technique for 
estimating the confidence interval of the mean.  At the next break, a veteran engineer took him 
aside and said "I appreciate your explanation, but when I design a system I pretty much know 
what the mean is.  It is the variation and extremes in system behavior that kill me." 
 
Variation has to do with the reality that no system does the same activity in exactly the same way 
or in the same amount of time always.  Of course, estimating the mean system behavior is not 
unimportant.  On the other hand, if every aspect of every system operation always worked exactly 
on the average, system design and improvement would be much easier tasks.  One of the 
deficiencies of lean is that such an assumption is often implicitly made. 
 
Variation may be represented by the second central moment of a statistical distribution, the 
variance.  For example, the times between arrivals to a fast food restaurant during the lunch hour 
could be exponentially distributed with mean 10 seconds and, therefore, variance 100 seconds.  
Variation may also arise from decision rules that change processing procedures based on what a 
system is currently doing or because of the characteristics of the unit being processed.  For 
instance, the processing time on a machine could be 2 minutes for parts of type A and 3 minutes 
for parts of type B. 
 
There are two kinds of variation in a system: special effect and common cause.  Special effect 
variation arises when something out of the ordinary happens, such as a machine breaks down or 
the raw material inventory becomes exhausted because of an unreliable supplier.  Simulation 
models can show the step by step details of how a system responds to a particular special effect.  
This helps managers respond to such occurrences effectively. 
 
Common cause variation is inherent to a normally operating system.  The time taken to perform 
operations, especially manual ones, is not always the same.  Inputs may not be constantly 
available or arrive at equally spaced intervals in time.  They may not all be identical and may 
require different processing based on particular characteristics.  Scheduled maintenance, 
machine set up tasks, and worker breaks may all contribute. Often, one objective of a simulation 
study is to find and assess ways of reducing this variation. 
 
Common cause variation is further classified in three ways.  Outer noise variation is due to 
external sources and factors beyond the control of the system.  A typical example is variation in 
the time between customer orders for the product produced by the system.  Variational noise is 
indigenous to the system such as the variation in the operation time for one process step.  Inner 
noise variation results from the physical deterioration of system resources.  Thus, maintenance 
and repair of equipment may be included in a model. 
 
8. Looking at all the simulated values of performance measures helps. 
 
Computer-based simulation experiments result in multiple observations of performance 
measures.  The variation in these observations reflects the common cause and special effect 
variation inherent in the system.  This variation is seen in graphs showing all observations of the 
performance measures as well as histograms and bar charts organizing the observations into 
categories.  Summary statistics, such as the minimum, maximum, and average, should be 
computed from the observations. Figure 1-4 shows three sample graphs.   
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Figure 1-4:  Example Graphs for Performance Measure Observations 
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The first shows how a special effect, machine failure, results in a build up of partially completed 
work.  After the machine is repaired, the build up declines.  The second shows the pattern of the 
number of busy machines at one system operation over time.  The high variability suggests a 
high level of common cause variation and that work load leveling strategies could be employed to 
reduce the number of machines assigned to the particular task.  The third graph shows the total 
system output, called throughput, over time.  Note that there is no increase in output during 
shutdown periods, but otherwise the throughput rate appears to be constant. 
 
Figure 1-5 shows a sample histogram and a sample bar chart.  The histogram shows the sample 
distribution of the number of discrete parts in a system that appears to be acceptably low most of 
the time.  The bar chart shows how these parts spend their time in the system.  Note that one-half 
of the time was spent in actual processing which is good for most manufacturing systems. 
 

 
 

 
Figure 1-5:  Example Histogram and Bar Charts for Performance Measure Observations 
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9. Simulation experimental results conform to unique system requirements for 
information. 

 
Using simulation, the analyst is free to define and compute any performance measure of interest, 
including those unique to a particular system.  Transient or time varying behavior can be 
observed by examining individual observations of these quantities.  Thus, simulation is uniquely 
able to generate information that leads to a thorough understanding of system design and 
operation. 
 
Though unique performance measures can be defined for each system, experience has shown 
that some categories of performance measures are commonly used: 
1. System outputs per time interval (throughput) or the time required to produce a certain 

amount of output (makespan). 
2. Waiting for system resources, both the number waiting and the waiting time. 
3. The amount of time, lead time, required to convert individual system inputs to system 

outputs. 
4. The utilization of system resources. 
5. Service level, the ability of the system to meet customer requirements. 
 
10. What goes into a model must come out or be consumed. 
 
Every unit entering a simulation model for processing should be accounted for either as exiting 
the model or assembled with other units or destroyed.  Accounting for every unit aids in 
verification. 
 
11. Results for analytic models should be employed. 
 
Analytic models can be used to enhance simulation modeling and experimentation.  Result of 
analytic models can be used to set lower and upper bounds on system operating parameters 
such as inventory levels.  Simulation experiments can be used to refine these estimates.  Analytic 
models and simulation models can compute the same quantities, supporting validation efforts. 
 
12. Simulation rests on the engineering heritage of problem solving. 
 
Simulation procedures are founded on the engineering viewpoint that solving the problem is of 
utmost importance.  Simulation was born of the necessity to extract information from models 
where analytic methods could not.  Simulation modeling, experimentation, and software 
environments have evolved since the 1950’s to meet expanding requirements for understanding 
complex systems. 
 
Simulation assists lean teams in building a consensus based on quantitative and objective 
information.  This helps avoid “design by argument”.  The simulation model becomes a valuable 
team member and is often the focus of team discussions. 
 
This principle is the summary of the rest.  Problem solving requires that models conform to 
system structure and data (2) as well as adapting as project requirements change (4).  Simulation 
enhances problem solving by minimizing the cost and risk of experimentation with systems (3).  
Information requirements for problem solving can be met (9).  Analytic methods can be employed 
where helpful (11). 
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1.5 Approach 

 
The fundamental premise of this book is that learning the problems that simulation solves, as well 
as well as the modeling and experimental methods needed to solve these problems, is 
fundamental to understanding and using this technique.   
 
Simulation models are built both from knowledge of basic simulation methods and by analogy to 
existing models.   Similarly, computer-based experiments are constructed using basic experiment 
design techniques and by analogy to previous experiments.  This premise is the foundation of this 
book.  First, simulation methods for model building, simulation experimentation, modeling time 
delays and other random quantities as well as the implementation of simulation experiments on a 
computer are presented in the remaining chapters in this part of the book. 
 
While each simulation model of each system can be unique, experience has shown that models 
have much in common.  These common elements and their incorporation into models are 
discussed in chapter 2.  These elementary models, as well as extensions, embellishments, and 
variations of them, are used in building the models employed in the application studies. 
 
Starting in the next part of the book, the simulation project process discussed in section 1.4 is 
used in application studies involving a wide range of systems.  Basic simulation modeling, 
experimentation, and system design principles presented in part 1 are illustrated in the application 
study.  Additional simulation modeling and experimental methods applicable to particular types of 
problems are introduced and illustrated.  Readers are asked to solve application problems based 
on the application studies and related simulation principles.   
 
1.6 Summary 
 
Simulation is a widely applicable modeling and analysis method that assists in understanding the 
design and operations of diverse kinds of systems. A simulation process directs the step by step 
activities that comprise a simulation project.  Basic methods, principles, and experience guide the 
development and application of simulation models and experiments.  
 
Questions for Discussion 
 
1. List ways of validating a simulation model. 
 
2. Why might building a model graphically be helpful? 
 
3. List the types of variation and tell why dealing with each is important in system design. 
 
4. Differentiate "art" and "science" with respect to simulation. 
 
5. What is the engineering heritage influence on the use of models? 
 
6. Why does variation matter? 
 
7. Why is the simulation project process iterative? 
 
8. How does the simulation project process foster interaction between system experts and 

simulation modelers? 
 
9. Why must simulation experiments be designed? 
 
10. Why does a simulation project require both a model and an experiment? 
 
11. List the steps in the simulation process. 
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12. List three ways in which the credibility of a simulation model could be established with 

managers and system experts. 
 
13. Distinguish between verification and validation. 
 
14. Make two lists, one of the simulation project process activities that managers and system 

experts participate in and one of those that they don’t. 
 
Active Learning Exercises. 
 
1. Create a paper clip assembly line.  A worker at the first station assembles two small 
paper clips.  A worker at the second station adds one larger paper clip.  One student feeds the 
first station with two paper clips at random intervals.  Another student observes the line to note 
the utilization of the stations, the number of assemblies in the inter-station buffer, and the number 
of completed assemblies.  Run the assembly line for 2 minutes.  Discuss how this exercise is like 
a simulation model and experiment. 
 
2. Have the students act out the operation of the drive through window of a fast food 
restaurant in the following steps. 
 
 a. Enter line of cars 
 b. Place order 
 c. Move to pay window 
 d. Pay for order 
 e. Move to pick-up window 
 f. Wait for order to be delivered 
 g. Depart 
 
Before beginning, define performance measures and designate students to keep track of them.  
Emphasize that the actions taken by the students are the ones performed by the computer during 
a simulation. 
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Chapter 2 
Simulation Model Building 

 
2.1 Introduction 
 
How simulation models are constructed is the subject of this chapter.  A simulation model 
consists of a description of a system and how it operates.  The model is expressed in the form of 
mathematical and logical relationships among the system components.  Model building is the act 
and art of representing a system with a model (principle 1) to address a well-defined purpose 
(principle 5).   
 
Since simulation models conform to system structure and available data (principle 2), model 
building involves some significant judgment and art.  Thus, learning to build simulation models 
includes learning typical ways system components are represented in models as well as how to 
adapt and embellish these modeling strategies to each system. 
 
Model building is greatly aided by using a simulation language that provides a set of standard, 
pre-defined modeling constructs.  These modeling constructs are combined to construct models.  
A simulation software environment provides the user interface and functionality for model 
construction. 
  
This chapter presents common system components: arrivals, operations, routing, batching, and 
inventories, as well as describing typical models of each component.  These models of 
components can be combined, extended and embellished to form models of entire systems.  
Elementary modeling constructs commonly found in simulation languages are presented.  The 
use of these constructs in modeling the common system components is illustrated.   
 
2.2 Elementary Modeling Constructs 
 
This section presents the model building perspective taken in this text.  Basic modeling constructs 
are presented.   
 
The operation of many systems can be effectively described by the sequence of steps taken to 
transform the inputs to the outputs as shown in a value stream map.  This will be our perspective 
for model building.  A sequence of steps specified in a model is called a process.  A model 
consists of one or more such processes. 
 
The modeling construct used to represent the part, customer, information, etc. that is transformed 
from an input to an output by the sequence of processing steps is an entity.  Each individual 
entity is tracked as it moves through the processing steps.  Processing can be unique for each 
entity with respect to such things as processing times and route through the steps.  Thus, it is 
essential to be able to differentiate among the entities.  This is accomplished by associating a 
unique set of quantities, called attributes, with each entity.  Typical attributes include time of 
arrival to the system and type of part, customer, or other information. 
 
Note that a value stream map shows in general how parts flow through a system.  This might be 
viewed as a “macro” or big picture view of how a system operates.  One characteristic of beyond 
lean is the use of models that give a more detailed or “micro” representation of a system.  This 
helps in gaining of understanding of how a future state will actually operate and aids in ensuring a 
successful transformation. 
 
Certain components of a system are required in performing a processing step on an entity.  
However, such a component may be scarce, that is of insufficient number to be available to every 
entity upon demand.  Such a component is called a resource.  Waiting or queuing by entities for 
a resource may be required.  Typical resources may be machines or workers.  Other system 
components, totes or WIP racks, may be scarce and modeled using resources. 
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A resource has at least two states, unique circumstances in which it can be.  One of these is 
busy, for example in use operating on an entity.  Another is idle, available for use.  Typical model 
logic requires an entity to wait for the resource (or resources) required for a particular processing 
step to be in the idle state before beginning that step.  When the processing step is begun, the 
resources enter the busy state.  As many resource states as necessary may be defined and used 
in a model.  Other common resource states are broken and under repair, off shift and unavailable, 
and in setup for a new part type. 
 
Consider a workstation consisting of two machines.  A basic modeling issue is: Should each 
machine be modeled using a distinct resource?  Often, it does not matter which of the two 
machines is used to process an entity and operating information such as utilization is not required 
for each machine.  In such a case, it is simpler to use a single resource to model the two 
machines.  However, an additional concept: number of units, is necessary to model two (or 
mores) machines with one resource.  There is one unit of the resource for each machine, two in 
this example.   
 
State variables, and their values, describe the conditions in a system at any particular time.  
State variables must be included in a simulation model and typically include the number of units 
of each resource in each possible resource state as well as the number of entities waiting for idle 
units of each resource, the number of entities that have completed processing, and inventory 
levels. 
 
Time is a significant part of simulation models of systems.  For example, when in simulated time 
each process step begins and ends for each entity processed by that step must be determined.  
Sequencing what happens to each entity correctly in time, and thus correctly with respect to what 
happens to all other entities, must be accomplished. 
 
In summary, modeling the behavior of a system over time requires specifying how the entities 
use the resources to perform the steps of a process as well as how the values of the entity 
attributes and of the state variables, including the state of the units of each resource, change.   
 
2.3 Models of System Components 
 
Typical system components include arrivals, operations, routing, batching, and inventories.  
Models of these components are presented in this section.  The models may be used directly, 
modified, extended, and combined to support the construction of new models of entire systems.  
 
2.3.1 Arrivals 
 
Consider a workstation with a single machine in a manufacturing facility as shown in Figure 2-1.  
One issue encountered when modeling the workstation is specifying at what simulated time each 
entity arrives.  This specification includes the following:  
 

 When the first entity arrives. 

 The time between arrivals of entities, which could be a constant or a random variable 
modeled with a probability distribution.  In a lean environment, the time between arrivals 
should equal the takt time as will be discussed in chapter 6. 

 How many entities arrive during the simulation, which could be infinite or have an upper 
limit. 

 
Suppose the first entity arrives at time 0, a common assumption in simulation modeling, and the 
time between arrivals is the same for all entities, a constant 10 seconds. Then the first arrival is at 
time 0, the second at time 10 seconds, the third at time 20 seconds, the fourth at time 30 
seconds, and so forth. 
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Suppose that time between arrivals varies.  This implies that the time between arrivals is 
described by some probability distribution whose mean is the average time between arrivals.  The 
variance of the distribution characterizes how much the individual times between arrivals differ 
from each other.  For example, suppose the time between arrivals is exponentially distributed with 
mean 10 seconds, implying a variance of 10*10 = 100 seconds

2
.  The first arrival is at time 0.  

The second arrival could be at time 25 seconds, the third at time 31 seconds, the fourth at time 
47 seconds, and so forth.  Thus, the arrival process is a source of outer noise. 
 
An example specification in pseudo-English follows. 
 

 
Define Arrivals:   // mean must equal takt time 
 Time of first arrival: 0 
 Time between arrivals: Exponentially distributed with a mean of 10 seconds 
    Exponential (6) seconds 
 Number of arrivals: Infinite  

 
2.3.2 Operations 
 
The next issue encountered when modeling the single machine workstation in Figure 2-1 is 
specifying how the entities are processed by the workstation.   Each entity must wait in the buffer 
(queue) preceding the machine.  When available, the machine processes the entity.  Then the 
entity departs the workstation. 
  
A workstation resource is defined with the name WS to have 1 unit with states BUSY and IDLE 
using the notation WS/1: States(BUSY, IDLE).  It is assumed that all units of a resource are 
initially IDLE.  The operation of the machine is modeled as follows.  Each entity waits for the 
single unit of the WS (workstation) resource to be available to operate on it that is the WS 
resource to be in the IDLE state.  At the time processing begins WS becomes BUSY.  After the 
operation time, the entity no longer needs WS, which becomes IDLE and available to operate on 
the next entity.   
 
This may be expressed with the following statements: 
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Define Resources: 
 WS/1 with states (Busy, Idle) 
 
Process Single Workstation 
Begin 
 Wait until WS/1 is Idle in Queue QWS // part waits for its turn on the machine 
 Make WS/1 Busy   // part starts turn on machine; machine is busy 
 Wait for OperationTime   // part is processed 
 Make WS/1 Idle    // part is finished; machine is idle 
End 

 
Note the pattern of resource state changes.  For every process step that makes a resource enter 
the busy state, there must be a corresponding step that makes the resource enter the idle state.  
However, there may be many process steps between these two corresponding steps.  Thus, 
many operations may be performed in sequence on an entity using the same resource. 
 
Note also the two types of wait statements that delay entity movement through a process.  Wait 
for means wait for a specified amount of simulation time to pass.  Wait unit means wait until a 
state variable value meets a specified logical condition.  This is a very powerful construct that 
also is consistent with ideas in event-based programming. 
 
Consider another variation on the single machine workstation operation that illustrates the use of 
conditional logic in a simulation model.  The machine requires a setup operation of 1.5 minutes 
duration whenever the Type of an entity differs from the Type of the preceding entity processed 
by the machine.  For example, the machine may require one set of operational parameter settings 
when operating on one type of part and a second set when operating on a second type of part.  
The model of this situation is as follows.   
 

Define Resources: 
 WS/1 with states (Busy, Idle, Setup) 
 
Define State Variables:  

LastType 
 
Define Entity Attributes: 
 Type 
 
Process Single Workstation with Setup 
Begin 
 Wait until WS/1 is Idle in Queue QWS // part waits for its turn on the machine 
 Make WS/1 Busy   // part starts turn on machine; machine is busy 

If LastType ! = Type then 
Begin 
 Make WS/1 Setup 

Wait for SetupTime 
 LastType = Type 
 Make WS/1 Busy 
End 

 Wait for OperationTime   // part is processed 
 Make WS/1 Idle    // part is finished; machine is idle 
End 

 
A state variable, LastType stores the type of the last entity operated upon by the resource WS.  
Notice the use of conditional logic.  Setup is performed depending on the sequence of entity 
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types.  Such logic is common in simulation models and makes most of them analytically 
intractable.  A new state, SETUP, is defined for WS.  This resource enters the SETUP state when 
the setup operation begins and returns to the BUSY state when the setup operation ends. 
 
Often a workstation is subject to interruptions.  In general, there are two types of interruptions: 
scheduled and unscheduled.  Scheduled interruptions occur at predefined points in time.  
Scheduled maintenance, work breaks during a shift, and shift changes are examples of 
scheduled interruptions.  The duration of a scheduled interruption is typically a constant amount 
of time.  Unscheduled interruptions occur randomly.  Breakdowns of equipment can be viewed as 
unscheduled interruptions.  An unscheduled interruption typically has a random duration.   
 
A generic model of interruptions is shown in Figure 2-2.  An interruption occurs after a certain 
amount of operating time that is either constant or random.  The duration of the interrupt is either 
constant or random.  After the end of the interruption, this cycle repeats. 
 
Note that the transition to the INTERRUPTED state is modeled as occurring from the IDLE state.  
Suppose the resource is in the BUSY state when the interruption occurs.  Typically, a simulation 
engine will assume that the resource finishes a processing step before entering the 
INTERRUPTED state.  However, the end time of the interruption will be the same that is the 
amount of time in the INTERRUPTED state will be reduced by the time spent after the 
interruption occurs in the BUSY state.  This approximation normally has little or no effect on the 
simulation results.  In many systems, interruptions are often only detected or acted upon at the 
end of an operation.  Using this approximation avoids having to include logic in the model as to 
what to do with the entity being processed when the interruption occurs.  On the other hand, such 
logic could be included in the model if required. 
 
This breakdown-repair process may be expressed in statements as follows: 
 

Define Resource: 
 WS/1: States(Busy, Idle, Unavailable) 
 
Process Breakdown—Repair 
Begin 

Do While 1=1     // Do forever 
Wait for TimeBetweenBreakdowns 
Wait until WS/1 is Idle 
Make WS/1 Unavailable 
Wait for RepairTime 
Make WS/1 Idle 

End Do 
End 

 
Consider an extension of the model of the single machine workstation with breakdowns (random 
interruptions) added.  This model combines the process model for the single workstation with the 
process model for breakdown and repair. The WS resource now has three states: BUSY 
operating on an entity, IDLE waiting for an entity, and UNAVAILABLE during a breakdown.  This 
illustrates how a model can consist of more than one process. 
 
This model illustrates one of the most powerful capabilities of simulation.  Two processes can 
change the state of the same resource but otherwise do not transfer information between each 
other.  Thus, processes can be built in parallel and changed independently of each other as well 
as added to the model or deleted from the model as necessary.  Thus, simulation models can be 
built, implemented, and evolved piece by piece. 
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2.3.3 Routing Entities 
 
In many systems, decisions must be made about the routing of entities from operation to 
operation.  This section discusses typical ways systems make such routing decisions as well as 
techniques for modeling them.  A distinct process for making the routing decision can be included 
in the model. 
 
Consider a system that processes multiple item types using several workstations.  Each 
workstation performs a unique function.  Each job type is operated on by a unique sequence of 
workstations called a route.  In a manufacturing environment, this style of organization is referred 
to as a job shop.  It could also represent the movement of customers through a cafeteria where 
different foods: hot meals, sandwiches, salads, desserts, and drinks are served at different 
stations.  Customers are free to visit the stations in any desired sequence. 
 
Each entity in the model of a job shop organization could have the following attributes: 
 
ArrivalTime: Time of arrival 
Type:  The type of job, which implies the route. 
Location: The current location on the route relative to the beginning of the route. 
 
In addition, the model needs to store the route for each type of job. 
 
Suppose there are four workstations and three job types in a system.  Figure 2-3 shows a 
possible set of routings in matrix form. 
 

Job Type First Operation Second Operation Third Operation Fourth Operation 

1 Workstation 1 Workstation 2 Workstation 3 Workstation 4 

2 Workstation 3 Workstation 4 None None 

3 Workstation 4 Workstation 2 Workstation 3 None 

 
Figure 2-3:  Example Routing Matrix for A Manufacturing Facility. 

 
A routing process is included in the simulation model to direct the entity to the workstation 
performing the next processing step.  The routing process requires zero simulation time. 
 

Define State Variable:  
Route(3, 4) 

 
Define Attribute: 
 Location 
 
Define Attribute: 
 Type 
 
Process Routing 
Begin 

Location += 1 
If Route(Type, Location) != None Then 
Begin 
 Send to Process Route(Type, Location) 
End 
Else Begin 
 Send to Process Depart 
End 

End  
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The value of the Location attribute is incremented by one.  The next workstation to process the 
entity is the one at matrix location (Type, Location).  If this matrix location has a value of None, 
then processing of the entity is complete.  Note again that the ability to compose a model of 
multiple processes is important. 
 
Alternatively, routes may be selected dynamically based on current conditions in a system as 
captured in the values of the state variables.  Such decision making may be included in a 
simulation model.  This is another unique and very powerful capability of simulation modeling. 
 
Consider a highly automated system in which parts wait in a central storage area for processing 
at any workstation.  A robot moves the parts between the central storage area and the 
workstations.  Alternatively if the following workstation is IDLE when an operation is completed, 
the robot moves the part directly to the next workstation instead of the storage area.  The routing 
process for this situation follows, where WSNext is the resource modeling the following 
workstation. 
_____________________________________________________________________________ 
Define Resource:   

WSNext/1:   States(Busy, Idle) 
Define State Variable:   

CentralStorage 
 
Process Conditional Routing 
Begin  

If WSNext/1 is Idle Then 
Begin 
 Send to Process ForWSnext 
End 
Else Begin 
 CentralStorage += 1 
End 

End  

 

2.3.4 Batching 
 
Many systems use a strategy of grouping items together and then processing all the items in the 
group jointly.  This strategy is called batching.  Batching may occur preceding a machine on the 
factory floor.  Parts of the same type are grouped and processed together in order to avoid 
frequent setup operations.  Other examples include:  

 Bags of product may be stacked on a pallet until its capacity is reached.  Then a forklift 
could be used to load the pallet on a truck for shipment.   

 All deposits and checks received by a bank during the day are sent together to a 
processing center where bank account records are updated overnight.   

 A tram operating from the parking lot in an amusement park to the entrance gate waits at 
the stop until a certain number of passengers have boarded. 

 
Batching is the opposite of the lean concept of one-piece flow or one part per batch.  There is a 
trade-off between batching and one-piece flow.  Batching minimizes set up times and can make 
individual machines more productive.  One-piece flow minimizes lead time, the time between 
starting production on a part and completing it, as well as in-process inventories. 
 
Batching may be modeled by creating one group entity consisting of multiple individual entities.  
The group entity can be operated upon and routed as would an individual entity.  Batching can be 
undone, that is the group can be broken up into the original individual entities. 
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Returning to the single server workstation example of Figure 2-2, suppose that completed parts 
are transported in groups of 20 from the output buffer to input buffer of a second workstation 
some distance away.  At the second workstation, items are processed individually.  In the 
simulation model of this situation, the first 19 entities, each modeling an item to be transported, 
must wait until the twentieth entity arrives.  Then the 20 entities are moved together as a group.  
Each group is referred to as a batch.  Upon arrival at the second workstation, each entity 
individually enters the workstation buffer.  The batching and un-batching extension to the single 
server workstation model is as follows. 
 
 

Define Resource:  WS/1: States(Busy, Idle) 
Define List:            OutputBuffer 
 
Process Single Workstation with Output Buffer 
Begin 

Wait until WS/1 is Idle 
Make WS/1 Busy 
Wait for Operation Time 
Make WS/1 Idle 
 
If Length (OutputBuffer) < 19 then 
Begin 
 Add to List(OutputBuffer) 
End 
Else Begin 
 Wait for Transportation Time 

  Send All Entities on List(OutputBuffer) to Process WS2 
 End 
End 

 
Consider the case where each of the types of items processed by the workstation must be 
transported separately.  In this situation, batching, transportation, and un-batching can be done 
as above except one batch is formed for each type of item. 
 
2.3.5 Inventories 
 
In many systems, items are produced and stored for subsequent use.  A collection of such stored 
items is called an inventory, for example televisions waiting in a store for purchase or hamburgers 
under the hot lamp at a fast food restaurant.  Customers desiring a particular item must wait until 
one is inventory.   
 
Inventory processes have to do with adding items to an inventory and removing items from an 
inventory.  The number of items in an inventory can be modeled using a state variable, for 
example INV_LEVEL.  Placing an item in inventory is modeled by adding one to the state 
variable:   INV_LEVEL += 1.  Modeling the removal of an item from an inventory requires two 
steps:   
 

1. Wait for an item to be in the inventory:  WAIT UNTIL INV_LEVEL > 0 
2. Subtract one from the number of items in the inventory:  INV_LEVEL -= 1 

 
2.4 Summary 
 
Simulation model construction approaches have been presented.  System components: arrivals, 
operations, routing, batching, and inventory management have been identified.  How each 
component is commonly represented in simulation models has been discussed and illustrated.   
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Problems   
 
1. Discuss why it is important to be able to employ previously developed models of system 
components in addition to the more basic modeling constructs provided by a simulation language 
in model building. 
 
2. Discuss the importance of allowing multiple, parallel processes in a model. 
 
(For each of the modeling problems that follow, use the pseudo-English code that has been 
presented in this chapter.) 
 
3. Develop a model of a single workstation whose processing time is a constant 8 minutes.  
The station processes two part types, each with an exponentially distributed interarrival time with 
mean 20 minutes.   
 
4. Embellish the model developed in 3 to include breakdowns.  The time between 
breakdowns in exponentially distributed with mean 2 days.  Repair time is uniformly distributed 
between 1 and 3 hours. 
 
5. Build a model of a two-station assembly line serving three types of parts.  The sequence 
of part types is random.  The part types are distributed as follows: part type 1, 30%; part type 2; 
50%, and part 3, 20%.  Inter-arrival time is a constant 5 minutes.  The first station requires a 
setup task of 1.5 minutes duration whenever the current part type is different from the preceding 
one.  The operation times are the same regardless of part type: station 1, 3 minutes and station 2, 
4 minutes. 
 
6. Embellish the model in problem 5 for the case where there are two stations that perform 
the second operation.  The part goes to the station with the fewer number of waiting parts. 
 
7. Embellish the model in problem 5 for the case where a robot loads and unloads the 
second station.  Loading and unloading each take 15 seconds. 
 
8. Combine problems 5, 6, and 7 in one model. 
 
9. Consider Bob’s Burger Barn.  Bob has a simple menu: burgers made Bob’s way, french 
fries (one size), and soft drinks (one size).  Customers place orders with one cashier who enters 
the order and collects the payment.  They then wait near the counter until the order is filled.  The 
time between customer arrivals during the lunch hour from 11:30 to 1:00 P.M. is exponentially 
distributed with mean 30 seconds.  It takes a uniformly distributed time between 10 seconds and 
40 seconds for order placement and payment at the cashier.  The time to fill an order after the 
payment is completed is normally distributed with mean 20 seconds and standard deviation 5 
seconds. 
 

a. Build a model of Bob’s Burger Barn. 
 

b. Embellish the model for the case where a customer will leave upon arrival if there 
are more than 7 customers waiting for the cashier. 

 
10. Consider the inside tellers at a bank.  There is one line for 3 tellers.  Customers arrive 
with an exponentially distributed time between arrivals with mean 1 minute.  There are three 
customer types: 1, 10%; 2, 20%; and 3, 70%.  The time to serve a customer depends on the type 
as follows: 1, 3 minutes; 2, 2 minutes; and 3; 30 seconds.  Build a model of the bank. 
 
11. Modify the model in problem 10 for the case where there is one line for each teller.  
Arriving customers choose the line with the fewest customers. 
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12. Develop a process model of the following situation.  Two types of parts are processed by 
a station.  A setup time of one minute is required if the next part processed is of a different type 
that the preceding part.  Processing time at the station is the same for both part types: 10 
minutes.  Type 1 parts arrive according to an exponential distribution with mean 20 minutes.  
Type 2 parts arrive at the constant rate of 2 per hour. 
 
13. Develop a process model of the following situation.  A train car is washed and dried in a 
rail yard between each use.  The same equipment provides for washing and drying one car at a 
time.  Washing takes 30 minutes and drying one hour.  Cars arrive at the constant rate of one 
each hour and three-quarters. 
 
14. Develop a model of a service station with 10 self-service pumps.  Each pump dispenses 
each of three grades of gasoline.  Customer service at the pump time is uniformly distributed 
between 30 seconds and two minutes.  One-third of the customers pay at the pump using a credit 
card.  The remainder must pay a single inside cashier which takes an additional 1 minute to 2 
minutes, uniformly distributed.  The time between arrivals of cars is exponentially distributed with 
mean 1 minute. 
 
15. Mike’s Market has three check out lanes each with its own waiting line.  One check out 
lane is for customers with 10 items or fewer.  The check out time is 10 seconds plus 2 seconds 
per item.  The number of items purchased is triangularly distributed with minimum 1, mode 10, 
and maximum 100.  The time between arrivals to the check-out lanes is exponentially distributed 
with mean 1 minute. 
 
16. Develop a more detailed model of Bob’s Burger Barn (discussed in problem 9).   Add an 
inventory for completed burgers and another inventory for completed bags of fries.  Filling an 
order is an assembly process that requires removing a burger from its inventory and a bag of fries 
from its inventory.  The burgers are completed at a constant rate of 2 per minute.  It takes three 
minutes to deep fry six bags of fries. 
 
17. Develop a model of the following inventory management situation.  A part completes 
processing on one production line every 2 minutes, exponentially distributed and is placed in an 
inventory.  A second production line removes a part from this inventory every two minutes. 
 
18. Visit a fast food restaurant in the university student union and note how it serves 
customers.  Specify a model of the customer service aspect of the restaurant using the 
component models in this chapter. 
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Chapter 3 
Modeling Random Quantities 

 
3.1 Introduction 
 
This chapter deals with how to select a probability distribution to represent a random quantity in a 
simulation model.  As seen in previous examples, random quantities are used to represent 
operation times, transportation times, and repair times well as the time between the arrival of 
entities and the time between equipment breakdowns.  The type of an entity could be a random 
quantity, as could the number of units demanded by each customer from a finished goods 
inventory. 
 
In determining the particular probability distribution function to use to model each random 
quantity, available data as well as the properties of the quantity being modeled must be taken into 
account.  Estimation of distribution function parameters must be performed. 
 
Frequently, data is not available.  Choosing a distribution function in the absence of data is 
discussed including which distributions are commonly used in this situation.  Software based 
procedures for choosing a distribution function when data is available, including fitting the data to 
a distribution function, are presented.  The probability distributions commonly employed in 
simulation models are described.   
 
3.2 Determining a Distribution in the Absence of Data 
 
Often, parameter values for probability distributions used to model random quantities must be 
determined in the absence of data.  There are many possible reasons for a lack of data.  The 
simulation study may involve a proposed system.  Thus, no data exists.  The time and cost 
required to obtain and analyze data may be beyond the scope of the study.  This could be 
especially true in the initial phase of a study where an initial model is to be built and initial 
alternatives analyzed in a short amount of time.  The study team may not have access to the 
information system where the data resides. 
 
The distribution functions commonly employed in the absence of data are presented.  An 
illustration of how to select a particular distribution to model a random quantity in this case is 
given. 
 
3.2.1 Distribution Functions Used in the Absence of Data 
 
Most often system designers or other experts have a good understanding of the “average” value.  
Often, what they mean by “average” is really the most likely value or mode.  In addition, they most 
often can supply reasonable estimates of the lower and upper bounds that is the minimum and 
maximum values.  Thus, distribution functions must be used that have a lower and upper bound 
and whose parameters can be determined using no more information than a lower bound, upper 
bound, and mode. 
 
First consider the distribution functions used to model operation times.  The uniform distribution 
requires only two parameters, the minimum and the maximum.  Only values in this range [min, 
max] are allowed.  All values between the minimum and the maximum are equally likely.  
Normally, more information is available about an operation time such as the mode.  However, if 
only the minimum and maximum are available the uniform distribution can be used.   
 
Figure 3-1 provides a summary of the uniform distribution. 
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Application: In the absence of data, the uniform distribution is used to model a 

random quantity when only the minimum and maximum can be 
estimated. 

 
Figure 3-1:  Summary of the Uniform Distribution 

 
If the mode is available as well, the triangular distribution can be used.  The minimum, maximum, 
and mode are the parameters of this distribution.  Note that the mode can be closer to the 
minimum than the maximum so that the distribution is skewed to the right.  Alternatively, the 
distribution can be skewed to the left so that the mode is closer to the maximum than the 
minimum.  The distribution can be symmetric with the mode equidistant from the minimum and 
the maximum.  These cases are illustrated in Figure 3-2 where a summary of the triangular 
distribution is given. 
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Density Function Illustrations 
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Application: In the absence of data, the triangular distribution is used to model a 

random quantity when the most likely value as well as the minimum and 
maximum can be estimated.  

 
Figure 3-2:  Summary of the Triangular Distribution 

 

 
The beta distribution provides another alternative for modeling an operation time in the absence 
of data.  The triangular distribution density function is composed of two straight lines.  The beta 
distribution density function is a smooth curve.  However, the beta distribution requires more 
information and computation to use than does the triangular distribution.  In addition, the beta 
distribution is defined on the range [0,1] but can be easily shifted and scaled to the range [min, 
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max] using min + (max-min)*X, where X is a beta distributed random variable in the range [0, 1].  
Thus, as did the uniform and triangular distributions, the beta distribution can be used for values 
in the range [min, max].   
 
Using the beta distribution requires values for both the mode and the mean.  Subjective estimates 
of both of these quantities can be obtained.  However, it is usually easier to obtain an estimate of 
the mode than the mean.  In this case, the mean can be estimated from the other three 
parameters using equation 3-1. 
 

3

maxmodemin
mean


         (3-1) 

 
Pritsker (1977) gives an alternative equation that is similar to equation 3-2 except the mode is 
multiplied by 4 and the denominator is therefore 6. 
 

The two parameters of the beta distribution are 1 and 2.  These are computed from the 
minimum, maximum, mode, and mean using equations 3-2 and 3-3. 
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Most often for operation times, 1 > 1 and 2 > 1.  Like the triangular distribution, the beta 

distribution can be skewed to the right 1 < 2, skewed to the right, 1 > 2, or symmetric, 1 = 2.  
A summary of these and other characteristics of the beta distribution is given in Figure 3-3.  
 
Next, consider modeling the time between entity arrivals.  In the absence of data, all that may be 
known is the average number of entities expected to arrive in a given time interval.  The following 
assumptions are usually reasonable when no data are available. 
 

1. The entities arrive one at a time. 
2. The mean time between arrivals is the same over all simulation time. 
3. The numbers of customers arriving in disjoint time intervals are independent. 

 
All of this leads to using the exponential distribution to model the times between arrivals.  The 
exponential has one parameter, its mean.  The variance is equal to the mean squared.  Thus, the 
mean is equal to the mean time between arrivals or the time interval of interest divided by an 
estimate of the number of arrivals in that interval. 
 
Using the exponential distribution in this case can be considered to be a conservative approach 
as discussed by Hopp and Spearman (2007).  These authors refer to a system with exponentially 
distributed times between arrivals and service times as the practical worst case system.  This 
term is used to express the belief that any system with worse performance is in critical need of 
improvement.  In the absence of data to the contrary, assuming that arrivals to a system under 
study are no worse than in the practical worse case seems safe. 
 
Figure 3-4 summarizes the exponential distribution. 
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   The denominator is the beta function. 
 
Distribution function: No closed form. 
 
Application: In the absence of data, the beta distribution is used to model a random 

quantity when the minimum, mode, and maximum can be estimated.  If 
available, an estimate of the mean can be used as well or the mean can 
be computed from the minimum, mode, and maximum.   

 
  Traditionally, the beta distribution has been used to model the time to 

complete a project task. 
 
 When data are available, the beta can be used to model the fraction, 0 to 

100%, of something that has a certain characteristic such as the fraction 
of scrap in a batch.   

 
Figure 3-3:  Summary of the Beta Distribution 
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Application: The exponential is used to model quantities with high variability such as 

entity inter-arrival times and the time between equipment failures as well 
as operation times with high variability. 

   
   In the absence of data, the exponential distribution is used to model a 

random quantity characterized only by the mean.   
   

Figure 3-4:  Summary of the Exponential Distribution 
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3.2.2 Selecting Probability Distributions in the Absence of Data – An Illustration 
 
Consider the operation time for a single workstation.  Suppose the estimates of a mode of 7 
seconds, a minimum of 5 seconds, and a maximum of 13 seconds were accepted by the project 
team.  Either of two distributions could be selected. 
 

1. A triangular with the given parameter values and having a squared coefficient of 
variation

1
 of 0.042. 

 

2. A beta distribution with parameter values 1 = 1.25 and 2 = 1.75 and a squared 

coefficient of variation of 0.061 where equations 3-3 and 3-4 were use to compute 1 

and 2.   
 
The mean of the beta distribution was estimated as the arithmetic average of the minimum, 
maximum, and mode.  Thus, the mean of the triangular distribution and of the beta distribution 
are the same. 
 
Note that the choice of distribution could significantly affect the simulation results since the 
squared coefficient of variation of the beta distribution is about 150% of that of the triangular 
distribution.  This means the average time in the buffer at workstation A will likely be longer if the 
beta distribution is used instead of the triangular.  This idea will be discussed further in Chapter 5. 
 
Figure 3-5 shows the density functions of these two distributions. 
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Figure 3-5:  Probability Density Functions of the Triangular (5, 7, 13) and Beta (1.25, 1.75) 

 
A word of caution is in order.  If there is no compelling reason to choose the triangular or the beta 
distribution then a conservative course of action would be to run the simulation first using one 
distribution and then the other.  If there is no significant difference in the simulation results or at 
least in the conclusions of the study, then no further action is needed.  If the difference in the 
results is significant, both operationally and statistically, further information and data about the 
random quantity being model should be collected and studied.   
 

                                                           
1
 The coefficient of variation is the standard deviation divided by the mean.  The smaller this 

quantity the better. 
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Furthermore, it was estimated that there would be 14400 arrivals per 40-hour week to the two 
workstations in a series system.  Thus, the average time between arrivals is 40 hours / 14400 
arrivals = 10 seconds.  The time between arrivals was modeled using an exponential distribution 
with mean 10 seconds. 
 
3.3 Fitting a Distribution Function to Data 
 
This section discusses the use of data in determining the distribution function to use to model a 
random quantity as well as values for the distribution parameters.  Some common difficulties in 
obtaining and using data are discussed.  The common distribution functions used in simulation 
models are given.  Law (2007) provide an in depth discussion of this topic, including additional 
distribution functions.  A software based procedure for using data in selecting a distribution 
function is presented. 
 
3.3.1 Some Common Data Problems 
 
It is easy to assume that data is plentiful and readily available in a corporate information system.  
However, this is often not the case.  Some problems with obtaining and using data are discussed. 
 
1. Data are available in the corporate information system but no one on the project team 

has permission to access the data. 
 
 Typically, this problem is resolved by obtaining the necessary permission.  However, it 

may not be possible to obtain this permission in a timely fashion.  In this, case the 
procedures for determining a distribution function in the absence of data should be used 
at least initially until data can be obtained. 

 
2. Data are available but must be transformed into values that measure the quantity of 

interest. 
  

For example, suppose the truck shipment time between a plant and a customer is of 
interest.  The company information system records the following clock times for each 
truck trip:  departure from the plant, arrival to the customer, departure from the customer, 
and arrival to the plant.  The following values can be computed straightforwardly from this 
information for each truck trip:  travel time from the plant to the customer, time delay at 
the customer, travel time from the customer to the plant. 
 
This example raises some other questions.  Is the there any reason to believe that the 
travel time from the plant to the customer is different from the travel time from the 
customer to the plant?  If not, the two sets of values could be combined and a single 
distribution could be determined from all the values.  If there is a known reason that the 
travel times are different, the two data sets must be analyzed separately.  Of course, a 
statistical analysis, such as the paired-t method discussed in chapter 4, could be used to 
assess whether any statistically significant difference in the mean travel times exists.   
 
What is the level of detail included in the model?  It may be necessary to include all three 
times listed in the previous paragraph in the model.  Alternatively, only the total round trip 
time, the difference between the departure from the plant and the arrival to the plant, 
could be included. 

 
3. All the needed data is available, but only from multiple sources.   
  

Each of the multiple sources may measure quantities in different ways or at different 
times.  Thus, data from different sources need to be made consistent with each other.  
This is discussed by Standridge, Pritkser, and Delcher (1978). 
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For example, the amount of sales of a chemical product is measured in pounds of 
product in the sales information system and in volume of product in the shipping 
information system.  The model must measure the amount of product in either pounds or 
volume.  Suppose pounds were chosen.  The data in the shipping information system 
could be used after dividing it by product density (pounds/gallon).  
 
Consider another example.  A sales forecast is used to establish the average volume of 
demand for a product used in a model.  The sales forecast for the product is a single 
value.  A distribution of product demand is needed.  A distribution is determined using 
historical sales data.  The sales forecast is used as the mean of a distribution instead of 
the mean computed from historical data.  This assumes that only the mean will change in 
the future.  The other distribution parameters such as the variance as well as the 
particular distribution family, normal for example, will remain the same. 

 
4. All data are “dirty”. 
 

It is tempting to assume that data from a computer information system can be used 
without further examination or processing.  This is often not the case.  Many data 
collection mechanisms do not take into account the anomalies that occur in day-to-day 
system operations. 
 
For example, an automated system records the volume of a liquid product produced each 
day.  This production volume is modeled as a single random quantity.  The recorded 
production volume for all days is greater than zero.  However, on a few days it is two 
orders of magnitude less than the rest of the days.  It was determined that these low 
volumes meant that the plant was down for the day.  Thus, the production volume was 
modeled by a distribution function for the days that the plant was operating and zero for 
the remaining days.  Each day in the simulation model, a random choice was made as to 
whether or not the plant was operating that day.  The probability the plant was operating 
was estimated from the data set as percent of days operating / total number of days. 

 
3.3.2 Distribution Functions Most Often Used in a Simulation Model 
 
In this section, the distribution functions most often used in simulation models are presented.  The 
typical use of each distribution is described.  A summary of each distribution is given. 
 
In section 3.2.1, distribution functions used in the absence of data were presented.  The uniform 
and triangular distributions are typically only used in this case.  The beta distribution is used as 
well.  The beta is also useful modeling project task times. 
 
In addition, the use of the exponential distribution to model the time between entity arrivals was 
discussed.  Again, the conditions for using the exponential distribution are:  there is one arrival at 
a time, the numbers of arrivals in disjoint time intervals are independent, and the average time 
until the next arrival doesn’t change over the simulation time period.  In some cases, the latter 
assumption is not true.  One way of handling this situation is illustrated in the application study 
concerning contact center management. 
 
If the system exerts some control over arrivals, this information may be incorporated in the 
simulation.  For example, arrivals of part blanks to a manufacturing system could occur each hour 
on the hour.  The time between arrivals would be a constant 1 hour.  Suppose that workers have 
noted that the blanks actually arrive anywhere between 5 minutes before and 5 minutes after the 
hour.  Thus, the arrival process could be modeled as with a constant time between arrivals of 1 
hour followed by a uniformly distributed delay of 0 to 10 minutes before processing begins. 
 
Often it is important to include the failure of equipment in a simulation model.  Models of the time 
till failure can be taken from reliability theory.  The exponential distribution may also be used to 
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model the time until the next equipment breakdown if the proper conditions are met:  there is one 
breakdown at a time (for each piece of equipment), the number of breakdowns in disjoint time 
intervals are independent, and the average time until the next breakdown doesn’t change over 
the simulation time period. 
 
Suppose either of the following is true: 
 
1. The time from now till failure does depend on how long the equipment has been 

functioning.   
2. Failure occurs when the first of many components or failure points fails. 
 
Under these conditions, the Weibull distribution is an appropriate model of the time between 
failures.  The Weibull is also used to model operation times.  A Weibull distribution has a lower 
bound of zero and extends to positive infinity.   
 

A Weibull distribution has two parameters: a shape parameter  > 0 and a scale parameter  > 0.  

Note that the exponential distribution is a special case of the Weibull distribution for = 1. A 
summary of the Weibull distribution is given in Figure 3-6. 
 
Suppose failure is due to a process of degradation and a mathematical requirement that the 
degradation at any point in time is a small random proportion of the degradation to that point in 
time is acceptable.  In this case the lognormal distribution is appropriate.  The lognormal has 
been successfully applied in modeling the time till failure in chemical processes and with some 
types of crack growth.  It is also useful in modeling operation times.   
 
The lognormal distribution can be thought of in the following way.  If the random variable X 
follows the lognormal distribution then the random variable ln X follows the normal distribution.  
The lognormal distribution parameters are the mean and standard deviation of the normal 
distribution results from this operation.  A lognormal distribution ranges from 0 to positive infinity.  
The lognormal distribution is summarized in Figure 3-7. 
 
Consider operation, inspection, repair and transportation times.  In modeling automated activities, 
these times may be constant.  A constant time also could be appropriate if a standard time were 
assigned to a task.  If human effort is involved, some variability usually should be included and 
thus a distribution function should be employed.   
 
The Weibull and lognormal are possibilities as mentioned above.  The gamma could be employed 

as well.  A gamma distribution has two parameters: a shape parameter  > 0 and a scale 

parameter  > 0.  It is one of the most general and flexible ways to model a time delay.  Note that 

the exponential distribution is a special case of the gamma distribution for = 1. 
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Density Function Illustrations 
 

Parameters:  Shape parameter, , and a scale parameter, .  
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Application: The Weibull distribution is used to model the time between equipment 

failures as well as operation times. 
   

Figure 3-6:  Summary of the Weibull Distribution. 
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Density Function Illustrations 

 
Figure 3-7:  Summary of the Lognormal Distribution. 
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Parameters: mean () and standard deviation () of the normal distribution that results 
from taking the natural logarithm of the lognormal distribution 
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Distribution function: No closed form 
 
 
Application: The lognormal distribution is used to model the time between equipment 

failures as well as operation times.  By the central limit theorems, the 
lognormal distribution can be used to model quantities that are the 
products of a large number of other quantities. 

   
Figure 3-7:  Summary of the Lognormal Distribution, concluded. 
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The gamma distribution is summarized in Figure 3-8. 
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Density Function Illustrations 
 

Parameters:  Shape parameter, , and a scale parameter, .  
 

Range:   [0, ) 
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Distribution function: No closed form, except when  is a positive integer. 
 
Application: The gamma distribution is the most flexible and general distribution for 

modeling operation times. 
 

Figure 3-8:  Summary of the Gamma Distribution 

 

 
It is often argued that the simulation experiment should include the possibility of long operation, 
inspection, and transportation times.  A single such time can have a noticeable effect on system 
operation since following entities wait for occupied resources.  In this case, a Weibull, lognormal, 
or gamma distribution can be used since each extends to positive infinity.   
 
A counter argument to the use of long delay times is that they represent special cause variation.  
Often special cause variation is not considered during the initial phases of system design and 
thus would not be included in the simulation experiment.  The design phase often considers only 
the nominal dynamics of the system. 
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Controls are often used during system operation to adjust to long delay times.  For example, a 
part requiring a long processing time may be out of specification and discarded after a pre-
specified amount of processing is performed.  Such controls can be included in simulation models 
if desired. 
 
The normal distribution, by virtue of central limit theorems (Law, 2007), is useful in representing 
quantities that are the sum of a large number (25 to 30 at least) of other quantities.  For example, 
a sales region consists of 100 convenience stores.  Demand for a particular product in that region 
is the sum of the demands at each store.  The regional demand is modeled as normally 
distributed.  This idea is illustrated in the application study on automated inventory management.   
 
A single operation can be used to model multiple tasks.  In this case, the operation time 
represents the sum of the times to perform each task.  If enough tasks are involved, the operation 
time can be modeled using the normal distribution.  
 

The parameters of a normal distribution function are the mean () and the standard deviation ().  
Figure 3-8 shows several normal distribution density functions and summarizes the normal 
distribution. 
 
Some quantities have to do with the number of something, such as the number of parts in a 
batch, the number of items a customer demands from inventory or the number of customers 
arriving between noon and 1:00 P.M.  Such quantities can be modeled using the Poisson 
distribution.   
 
Unlike the distributions previously discussed, the range of the Poisson distribution is only non-
negative integer values.  Thus, the Poisson is a discrete distribution.  The Poisson has only one 
parameter, the mean.   
 
Note that if the Poisson distribution is used to model the number of events in a time interval, such 
as the number of customers arriving between noon and 1:00 P.M., that the time between the 
events, arrivals, is exponentially distributed.  In addition, the normal distribution can be used as 
an approximation to the Poisson distribution.  The Poisson distribution is summarized in Figure 3-
9. 
 
Some quantities can take one of a small number of values, each with a given probability.  For 
example, a part is of type “1” with 70% probability and of type “2” with 30% probability.  In these 
cases, the probability mass function is simply enumerated, e.g. p1 = 0.70 and p2 = 0.30.  The 
enumerated probability mass function is summarized in Figure 3-10. 
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Density Function Illustrations 
 

Parameters: mean () and standard deviation ()  
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Distribution function: No closed form 
 
Application: By the central limit theorems, the normal distribution can be used to 

model quantities that are the sum of a large number of other quantities. 
   

Figure 3-8:  Summary of the Normal Distribution. 
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Density Function Illustration 
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Application: The Poisson distribution is used to model quantities that represent the 

number of things such as the number of items in a batch, the number of 
items demanded by a single customer, or the number of arrivals in a 
certain time period. 

   
Figure 3-9:  Summary of the Poisson Distribution 

 

 
  



 3-18 

 

1 2 3 4 5 6
0

0.2

0.4

0.5

0.05

p ll

61 ll 1  
 

Density Function Illustration 
 

Parameter:  set of value-probability pairs (x,, pi), number of pairs, n 
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Application: An enumerated probability mass function is used to model quantities that 

represent the number of things such as the number of items in a batch 
and the number of items demanded by a single customer where the 
probability of each number of items is known and the number of possible 
values is small. 

   
Figure 3-10:  Summary of the Enumerated Probability Mass Function 

 

 
Law and McComas (1996) estimate that “perhaps one third of all data sets are not well 
represented by a standard distribution.”  In this case, two options exist: 
 
1. Form an empirical distribution function from the data set. 
2. Fit a generalized functional form to the data set that has the capability of representing an 

unlimited number of shapes. 
 
The former can be accomplished by using the frequency histogram of a data set to model a 
random quantity.  The disadvantages of this approach are that the simulation considers only 
values within the range of the data set and in proportion to the cells that comprise the histogram. 
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One way to accomplish the latter is by fitting a Bezier function to the data set using an interactive 
Windows-based computer program as described by Flannigan Wagner and Wilson (1995, 1996). 
 
3.3.3 A Software Based Approach to Fitting a Data Set to a Distribution Function 
 
This section discusses the use of computer software in fitting a distribution function to data.  
Software should always be used for this purpose and several software packages support this 
task.  The following three activities need to be performed. 
 

1. Selecting the distribution family or families of interest. 
2. Estimating the parameters of particular distributions. 
3. Determining how well each distribution fits the data. 

 
The distribution functions discussed in the preceding sections, beta or normal for example, are 
called families.  An individual distribution is specified by estimating values for its parameters.  
There are two possibilities for selecting one or more distribution function families as candidates 
for modeling a random quantity. 
 
1. Make the selection based on the correspondence between the situation being modeled 

and the theoretical properties of the distribution family as presented in the previous 
sections.   

  
 For example, a large client buys a particular product from a supplier.  The client supplies 

numerous stores from each purchase.  The time between purchases is a random 
variable.  Based on the theoretical properties of the distributions previously discussed, 
the time between orders could be modeled as using an exponential distribution and the 
number of units of product purchased could be modeled using a normal distribution. 

 
2. Make the selection based on the correspondence between summary statistics and plots, 

such as a histogram, and particular density functions.  Software packages such as 
ExpertFit [Law and McComas 1996, 2001] automatically compute and compare, using a 
relative measure of fit, candidate probability distributions and their parameters.  In 
ExpertFit, the relative measure of fit is based on a proprietary algorithm that includes 
statistical methods and heuristics. 

 
For example, 100 observations of an operation time are collected.  A histogram is 
constructed of this data.  The mean and standard deviation are computed.  Figure 3-11 
shows the histogram on the same graph as a lognormal distribution and a gamma 
distribution whose mean and standard deviation were estimated from the data set.  Note 
that the gamma distribution (dashed line) seems to fit the data much better than the 
lognormal distribution (dotted line). 
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Figure 3-11:  Comparison of a Histogram with Gamma and Lognormal Density Functions 
 
For some distributions, the estimation of parameters values is straightforward.  For example, the 
parameters of the normal distribution are the mean and standard deviation that are estimated by 
the sample mean and sample standard deviation computed from the available data.  For other 
distributions, the estimation of parameters is complex and may require advanced statistical 
methods. For example, see the discussion of the estimation procedure for the gamma distribution 
parameters in Law (2007).  Fortunately, these methods are implemented in distribution function 
fitting software. 
 
The third activity is to assess how well each candidate distribution represents the data and then 
choose the distribution that provides the best fit.  This is called determining the “goodness-of-fit”.  
The modeler uses statistical tests assessing goodness of fit, relative and absolute heuristic 
measures of fit, and subjective judgment based on interactive graphical displays to select a 
distribution from among several candidates.   
 
Heuristic procedures include the following: 
 
1. Density/Histogram over plots – Plot the histogram of the data set and a candidate 

distribution function on the same graph as in Figure 3-11.  Visually check the 
correspondence of the density function to the histogram. 

 
2. Frequency comparisons – Compare the frequency histogram of the data with the 

probability computed from the candidate distribution of being in each cell of the 
histogram. 

 
 For example, Figure 3-12 shows a frequency comparison plot that displays the sample 

data set whose histogram is shown in Figure 3-11 as well as the lognormal distribution 
whose mean and standard deviation were estimated from the data set.  Differences 
between the lognormal distribution (solid bars) and the data set (non-solid bars) are 
easily seen. 
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Figure 3-12:  Frequency Comparison of a Data Set with a Lognormal Distribution 
 
 
3. Distribution function difference plots – Plot the difference of the cumulative candidate 

distribution and the fraction of data values that are less than x for each x-axis value in the 
plot.  The closer the plot tracks the 0 line on the vertical axis the better. 

 
For example, Figure 3-13 shows a distribution function difference plot comparing the 
sample data set whose histogram is displayed in Figure 3-11 to both the gamma and 
lognormal distributions whose mean and standard deviations were estimated from the 
data.  The gamma distribution (solid line) appears to fit the data set much more closely 
that the lognormal distribution (dotted line). 
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Figure 3-13:  Distribution Function Difference Plot Comparison of a Data Set with a Gamma 

and a Lognormal Distribution 
 
 
4. Probability plots – Use one of the many types of probability plots to compare the data set 

and the candidate distribution.  One such type is as follows.  Suppose there are n values 
in the data set.  The following points, n in number, are plotted: ( i / n th percent point of 
the candidate distribution, the i th smallest value in the data set).  These points when 
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plotted should follow a 45 degree line.  Any substantial deviation from this line indicates 
that the candidate distribution may not fit the data set. 

 
For example, Figure 3-14 shows a probability plot that compares the sample data set 
whose histogram is displayed in Figure 3-11 to both the gamma and lognormal 
distributions shown in the same figure.  Note that the gamma distribution (solid line) 
tracks the 45 degree line better than does the lognormal distribution (dotted line) and 
both deviate from the line more toward the right tail. 
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Figure 3-14:  Probability Plot Comparison of a Data Set with Gamma and Lognormal 
Distributions 

 
Statistical tests formally assess whether the data set that consists of independent samples is 
consistent with a candidate distribution.  These tests provide a systematic approach for detecting 
relatively large differences between a data set and a candidate distribution.  If no such differences 
are found, the best that can be said is that there is no evidence that the candidate distribution 
does not fit the data set.   
 
The behavior of these tests depends on the number of values in the data set.  For large values of 
n, the tests seem to always detect a significant difference between a candidate distribution and a 
data set.  For smaller values of n, the tests detect only gross differences.  This should be kept in 
mind when interpreting the results of the test. 
 
The following tests are common and are typically performed by distribution function fitting 
software. 
 
1. Chi-square test – formally compares a histogram of the data set with a candidate 

distribution as was done visually using a frequency comparison plot. 
 
2. Kolmogorov-Smironv (K-S) test – formally compares an empirical distribution function 

constructed from the data set with a candidate cumulative distribution, which is 
analogous to the distribution function difference plot. 

 
3. Anderson-Darling test – formally compares an empirical distribution function constructed 

from the data set with a candidate cumulative distribution function but is better at 
detecting differences in the tails of the distribution than the K-S test. 
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3.4 Summary 
 
This chapter discusses how to determine the distribution function to use in modeling a random 
quantity.  How this choice can affect the results of a simulation study has been illustrated.  Some 
issues with obtaining and using data have been discussed.  Selecting a distribution both using a 
data set and in the absence of data has been presented. 
 
Problems 
 
1. List the distributions that have a lower bound. 
 
2. List the distributions that have an upper bound. 
 
3. List the distributions that are continuous. 
 
4. List the distributions that are discrete. 
 
5. Suppose X is a random variable that follows a beta distribution with range [0,1].  A 

random variable, Y, is needed that follows a beta distribution with range [10, 100].  Give 
an equation for Y as a function of X. 

 
6. Suppose data are not available when a simulation project starts. 
 
 a. What three parameters are commonly estimated without data? 
 

b. An operation time is specified giving only two parameters: minimum and 
maximum.  However, it is to be modeled using a triangular distribution.  What 
would you do? 

 
7. Consider the following data set: 1, 2, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 17, 18, 18, 

18, 20, 20, 21, 21, 24, 27, 29, 30, 37, 40, 40.  What distribution family appears to fit the 
data best?  Use summary statistics and a histogram to assist you. 

 
8. Hypothesize one or more families of distributions for each of the following cases: 
 

a. Time between customers arriving at a fast food restaurant during the evening 
dinner hour. 

 b. The time till the next failure of a machine whose failure rate is constant. 
 c. The time till the next failure of a machine whose failure rate increases in time. 

d. The time to manually load a truck based on the operational design of a system.  
You ask the system designers for the minimum, average, and maximum times. 

 e. The time to perform a task with long task times possible. 
 f. The distribution of job types in a shop. 
 g. The number of items each customer demands. 
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9. What distribution function family appears to fit the following data set best?  Use summary 
statistics and a histogram to assist you.  Test your selection using the plots discussed in 
section 3.3.2. 

 

8.39 3.49 3.17 15.34 4.68 4.38 0.02 1.21 

3.56 0.50 4.38 2.53 20.61 2.78 2.66 32.88 

22.49 5.10 4.58 3.07 22.64 34.86 9.59 0.67 

12.24 3.25 34.07 5.43 14.72 5.84 15.37 21.20 

0.21 3.20 25.12 3.18 3.60 11.45 1.07 8.69 

0.46 9.16 10.71 3.75 1.54 0.65 3.68 10.46 

20.11 5.81 4.63 3.13 8.99 2.82 0.87 13.45 

10.10 12.57 22.67 3.55 5.68 29.07 0.62 25.23 

17.97 35.76 17.05 4.61 12.36 14.02 24.33 11.05 

1.10 4.56 9.51 7.31 23.33 5.81 3.48 3.23 

 
10. What distribution function family appears to fit the following data set best?  Use summary 

statistics and a histogram to assist you.  Test your selection using the plots discussed in 
section 3.3.2. 

 

2373 2361 2390 2377 2333 

2327 2380 2373 2360 2382 

 
11. Use the distribution function fitting software to solve problems 7, 9, and 10. 
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Chapter 4 
 

Conducting Simulation Experiments 
 

4.1 Introduction 
 
This chapter provides the information necessary to design, carry out, and analyze the results of a 
simulation experiment.  Experimentation with a simulation model, as opposed to an exact 
analytic solution obtained using mathematics, is required.  Principle 2 states that simulation 
models conform both to system structure and to available system data.  Conditional logic is 
employed.  Thus, these models usually cannot be solved by analytic methods.  Simulation 
experiments must be properly designed and conducted as would any field or laboratory 
experiment.  The design of simulation experiments leads to the benefits of simulation described 
by principle 3: lower cost and more flexibility than physical prototypes as well as less risk of 
negative consequence on day-to-day operations than direct experimentation with existing, 
operating systems as the plan-do-check-act (PDCA) cycle of lean would do. 
 
The design of a simulation experiment specifies how model processing generates the information 
needed to address the issues and to meet the solution objectives identified in the first phase of 
the simulation process.  An approach to the analysis of results is presented, including ways of 
examining simulation results to help understand system behavior as well as the use of statistical 
methods such as confidence interval estimation to help obtain evidence about performance, 
including the comparison of scenarios. 
 
Prerequisite issues to the design and analysis of any simulation experiment are discussed.  
These include verification and validation as well as the need to construct independent 
observations of simulation performance measures and to distinguish between probability and 
degree of confidence.  
 
Verification and validation are discussed first followed by a discussion of the need to construct 
independent observations of performance measures.  The design elements of simulation 
experiments are explained.  Finally, an approach to the analysis of terminating simulation results 
is given along with an explanation of how probability and degree of confidence are differentiated. 
 
The discussion in this chapter assumes some prior knowledge of data summarization, probability, 
and confidence interval estimation.   
 
4.2 Verification and Validation 
 
This section discusses the verification and validation of simulation models.  Verification and 
validation, first described in principle 6 of chapter 1, have to do with building a high level of 
confidence among the members of a project team that the model can fulfill is objectives.  
Verification and validation are an important part of the simulation process particularly with respect 
to increasing model credibility among managers and system experts. 
 
Verification has to do with developing confidence that the computer implementation of a model is 
in agreement with the conceptual model as discussed in chapter 1.  In other works, the computer 
implementation of the model agrees with the specifications given in the conceptual model.  
Verification includes debugging the computer implementation of the model. 
 
Validation has to do with developing confidence that the conceptual model and the implemented 
model represent the actual system with sufficient accuracy to support making decision about 
project issues and to meet the solution objectives.  In other works, the computer implementation 
of the model and the conceptual model faithfully represent the actual system. 
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As described by many authors (Balci, 1994; Balci, 1996; Banks, Carson, Nelson, and Nicol, 2009; 
Carson, 2002; Law, 2007; Sargent, 2009), verification and validation require gathering evidence 
that the model and its computer implementation accurately represent the system under study with 
respect to project issues and solution objectives.  Verification and validation are a matter of 
degree.  As more evidence is obtained, the greater the degree of confidence that the model is 
verified and valid increases.  It should be remember however that absolute confidence (100%) 
cannot be achieved.  There will always be some doubt as to whether a model is verified and 
validated.   
 
How to obtain verification and validation evidence and what evidence to obtain is case specific 
and requires knowledge of the problem and solution objectives.  Some generally applicable 
strategies are discussed and illustrated in the following sections.  The application studies, starting 
in chapter 6, provide additional examples.  Application problems in the same chapters give 
students the opportunity to practice verification and validation. 
 
Verification and validation strategies are presented separately for clarity of discussion.  However 
in practice, verification and validation tasks often are intermixed with little effort to distinguish 
verification from validation.  The focus of both verification and validation is on building confidence 
that the model can be used to meet the objectives of the project. 
 
A pre-requisite to a proper simulation experiment is verifying and validating the model. 
 
Throughout this chapter, including the discussion of verification and validation, illustrations and 
examples will make use of a model of two stations in a series with a large buffer between the 
stations as well as the industrial example presented in section 1.2.  A diagram of the former is 
shown in Figure 4-1.  A part enters the system, waits in the buffer of workstation A until the 
machine at this workstation is available.  After processing at workstation A, a part moves to 
workstation B where it waits in the buffer until the workstation B machine is available.  After 
processing at workstation B, a part leaves the system.  Note that because it is large, the buffer 
between the stations is not modeled. 
 

 
 
4.2.1 Verification Procedures 
 
Some generally applicable techniques for looking for verification evidence follow. 
 
1. What goes into a model must come out or be consumed. 
 
For example, in the two workstations in a series model, the following “entity balance” equation 
should hold: 
 
Number of entities entering the system =  the number of entities departing the system + 

the number of entities still in the system at the 
end of the simulation 
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The latter quantity consists of the number of entities in each workstation buffer (A and B) plus the 
number of entities being processed at workstations A and B.  If the entity balance equality is not 
true, there is likely an error in the model that should be found and corrected. 
 
The number of entities entering the system consists of the number of entities initially there at the 
beginning of the simulation plus the number of entities arriving during the simulation. 
 
For example, for one simulation of the two workstations in a series model, there were 14359 
entities arriving to the model of which 6 were there initially.  There were 14357 entities that 
departed and two entities in the system at the end of the simulation.  One of the two entities was 
in the workstation A operation and the other was in the workstation B operation. 
 
2. Compare the process steps of the computer model and the conceptual model. 
 
The process steps in the model implemented in the computer version of the model and the 
conceptual model should correspond and any differences should be corrected or justified.   
 
The process steps in the two workstations in a series model are as follows: 
 
1. Arrive to the system. 
2. Enter the input buffer of workstation A. 
3. Be transformed by the workstation A operation. 
4. Be moved to and enter the input buffer of workstation B. 
5. Be transformed by the workstation B operation. 
6. Depart the system. 
 
3. Check all model parameter values input to the model. 
 
The model implementation should include the checking required to assure that input parameter 
values are correctly input and used.   
 
For example in the industrial application discussed in section 1.2, customer demand volume is 
input.  The volume of product shipped is output.  Enough information is included in the reports 
generated by the model to easily determine if all of the input volume is shipped or is awaiting 
shipment at the end of the simulation. 
 
4. Check all entity creations. 
 
The time between arrivals is specified as part of the model.    The average number of arrivals can 
be computed given the ending time of the simulation.  In addition, the number of arrivals during 
the simulation run is usually automatically reported.  These two quantities can be compared to 
assure that entities are being created as was intended. 
 
For example, suppose model of the two stations in a series was simulated for 40 hours with an 
average time between arrivals of 10 seconds.  The expected number of arrivals would be 14400 
(= 40 hours / 10 seconds).  Suppose 20 independent simulations were made and the number of 
arrivals ranged from 14128 to 14722.  Since this range includes 14400, verification evidence 
would be obtained.  How to do the independent simulations is discussed in section 4.3 and 
following. 
 
Alternatively a confidence interval for the true mean number of arrivals could be computed.  If this 
confidence interval includes the expected number of arrivals verification evidence is obtained.  In 
the same example, the 95% confidence interval for the mean number of arrivals is 14319 to 
14457.  Again, verification evidence is obtained. 
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5. Check the results of all logical decisions. 
 
Sufficient checking should be built into the simulation model to assure that all logical decisions 
are correctly made that is all conditional logic is correctly implemented. 
 
For example in the industrial problem discussed in section 1.2, each product could be shipped 
from one of a specified set of loads spots.  Output reports showed the volume of shipments by 
product and load spot combination.  Thus, it could be easily seen if a product was shipped from 
the wrong load spot. 
 
6. Implement the simplest possible version of the model first and verify it.  Add 

additional capabilities to the model one at a time.  Perform verification after each 
capability is added. 

 
Verifying that any complex computer program was implemented as intended can be difficult.  
Implementing the smallest possible model helps simplify the verification task, and perhaps more 
importantly, results in a running model in relatively little time.  Verifying one capability added to an 
already verified model is relatively straightforward. 
 
For example, the model of the industrial problem presented in section 1.2, has been developed 
over a number of years with new capabilities added to support addressing new issues and 
solution objectives. 
 
7. For models developed by multiple individuals, used structured walk-throughs. 
 
Each individual implements an assigned portion of the model, or sub-model.  Each individual 
presents the implementation to all of the other team members.  The team as a whole must agree 
that the implementation faithfully represents the conceptual model. 
 
For example, one strategy is to build and implement an initial model as quickly as possible from 
the specifications in the conceptual model.  If the conceptual model is incomplete, assumptions 
are made to complete model construction and implementation.  The assumptions may be gross 
or inaccurate.  The entire team reviews the initial model, especially the assumptions, and 
compares it to the conceptual model.  The assumptions are corrected as necessary.  This may 
require team members to gather additional information about how certain aspects of the system 
under study work. 
 
8. Use the model builders available in most simulation environments. 
 
Model builders implement the standard modeling constructs available in a simulation language.  
They provide a standard structure for model building and help guard against model building errors 
such as inconsistent or incomplete specification of modeling constructs. 
 
9. Output and examine voluminous simulation results. 
 
Sufficient information should be output from the simulation to verify that the different components 
of the system are operating consistently with each other in the model. 
 
For example in the industrial problem of section 1.2, both the utilization of each load spot and 
summary statistics concerning the time to load each product are reported.  If the load spots 
assigned to a product have high utilization, the average product loading time should be relatively 
long. 
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10. Re-verify the model for each set of model parameter values tested. 
 
A model implementation can be verified only with respect to the particular set of model parameter 
values tested.  Each new set of parameter values requires re-verification.  However after many 
sets of parameter values have been tested, confidence is gained that the implementation is 
correct for all sets of parameter values in the same range.  
 
For example for the industrial problem of section 1.2, verification information is carefully 
examined after each simulation experiment. 
 
4.2.2 Validation Procedures 
 
Some generally applicable techniques for looking for validation evidence follow. 
 
1. Compare simulation model results to those obtained from analytic models. 
 
This is a restatement of principle 11 of chapter 1. For example, the mean number of busy units of 
a resource can be computed easily as discussed in chapter 6.   
 
In the two workstations in a series model, suppose the operation time at the second workstation 
is a constant 8.5 seconds and the mean time between arrivals is 10 seconds.  The percentage 
busy time for workstation B is equal to 8.5 / 10 seconds or 85%.  The simulation of the 
workstation provides data from which to estimate the percent busy time.  The range of 
workstation B utilization over multiple independent simulations is 83% to 87%.  A confidence 
interval for the true mean utilization could be computed as well.  The 95% confidence interval is 
84.4 to 85.4.  Thus, validation evidence is obtained.   
 
2. Use animation to view simulation model dynamics, especially those involving 

complex conditional logic. 
 
Reviewing all the implications of complex decisions using voluminous information in a static 
medium, such as a report, or even in an interactive debugger, is difficult and possibly 
overwhelming.  Animation serves to condense and simplify the viewing of such information. 
 
Consider the following illustration.  In the early 1980’s, a particular simulation company was 
developing its first commercial animator product.  Having completed the implementation and 
testing, the development team asked an application consultant for an industrial model to animate.  
The consultant supplied a model that included a complex control system for a robot. 
 
The developers completed the animation and presented it to the consultant.  The response of the 
consultant was that there must be something wrong with the new animation software as the robot 
could not engage in the sequence of behavior displayed.   
 
Try as they might, the development team could not find any software error in the animator.  To aid 
them, the team asked the consultant to simulate the model, printing out all of the information 
about the robot’s behavior.  The error was found not in the animator, but in the model.  The 
disallowed behavior pattern occurred in the simulation! 
 
This is not a criticism of the consultant.  Rather it points out how easy it was to see invalid 
behavior in an animation though it was infeasible to detect it through a careful examination of the 
model and output information. 
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3. Involve system experts and managers 
 
System experts should review the model, parameter values and simulation results for consistency 
with system designs and expectations.  Reports of simulation results should be presented in a 
format that is understandable to system experts without further explanation from the modelers.  
Animation can help in answering questions such as: How was the system represented in the 
model?  Inconsistencies and unmet expectations must be resolved as either evidence of an 
invalid model or unexpected, but valid, system behavior. 
 
For example the development process for the industrial model discussed in section 1.2 was as 
follows.  A first cut model was developed as quickly after the start of the project as possible.  It 
was clear during the development of this model that some components of the system had not 
been identified or had incomplete specifications that is the first draft conceptual model was 
incomplete.  The modelers made gross assumptions about how these components operated.  
The first cut model was reviewed by the entire project team including system experts and 
managers.  Based on this review, tasks for completing the conceptual model were assigned.  
When these tasked were completed, the conceptual model was updated and the implemented 
model was revised accordingly. 
 
4. If some quantities are estimated by system experts and managers, test their effect 

on system outputs. 
 
As discussed in chapter 3, there may be a lack of data available for estimating time delays or 
other quantities needed in a model.  This is common when the simulation model is being used to 
assist in the design of a new system.  For such quantities, it is essential to perform a sensitivity 
analysis.  This involves running the model with a variety of values of each estimated quantity and 
observing the effect on performance measures.  Estimated quantities that greatly effect system 
performance should be identified.  Further study may be necessary to obtain a more precise 
estimate of their value. 
 
For example, there was little data concerning shipping times, the time between when a product 
left the plant and when it arrived at a customer, for the industrial model discussed in section 1.2.  
These times were believed to be directly related to some of the key performance measures 
estimated by the model.  Thus, it was thought to be wise to refine them over time.  Initially, 
shipping times were specified as triangularly distributed with estimates of the minimum, 
maximum, and modal times for all products in general supplied by logistics experts.  Later 
additional data was available so that shipment times were available for each group of products.  
Still later, an analysis of data in the corporate information system was done to provide product 
specific shipping times.  The simulation model was modified to allow any of the three shipping 
time options to be used for any product. 
 
5. Carefully review a trace of a simulation run. 
 
A model specific report of the step-by-step actions taken during a run can be generated by the 
simulation in a format that can be read by system experts and managers.  A careful examination 
of such a report, though tedious, can help assure that the process steps included in the 
simulation model are complete and correctly interact with each other. 
 
For example, the sponsors of an industrial inventory management simulation required such a 
trace to assure that the model correctly captured the response of the actual system to certain 
disturbances.  The trace was carefully examined by the sponsors and other system experts to 
gain confidence that the model was valid. 
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6. Compare performance measure values to system data to see if any operationally 
significant differences can be observed. 

 
The same performance measures computed in the model may be estimated from data collected 
from an existing system.  Summary statistics, such as the average, computed from performance 
measure values may be compared by inspection to summary statistics computed from the data 
collected from an existing system.  If no operationally significant differences are observed, then 
validation evidence is obtained. 
 
Law (2007) discusses the difficulty of using statistical tests to compare performance measure 
values and real world data as well as making some recommendations in this regard. 

 

For example, in the industrial model of section 1.2, system experts believed that empty rail cars 

spent 6 to 7 days in the plant.  Simulation results estimated that empty rail cars spent an average 

of 6.6 days in the plant.  Thus, validation evidence was obtained. 
 
4.3 The Problem of Correlated Observations 
 

Most statistical analysis procedures require independent (and identically distributed) observations 

of performance measure values.  However, the observations in a simulation experiment are 

typically dependent (correlated).  This section illustrates why a simulation experiment generates 

correlated observations.  Approaches to dealing with this issue are presented later in this chapter. 

  

Consider the time the nth part arriving to workstation A in the two stations in a series model would 

spend at the workstation: 

 
Time at workstation An = Time in buffern + Operation timen 

 

The time in the buffer for the nth part is composed of the operation times for the parts that 

preceded it in processing while the nth part was in the buffer.  For example, suppose the fourth 

part to arrive does so while the second part to arrive is being processed.  So the time the fourth 

part spends in the buffer is equal to a portion of the operation time for the second part and the 

entire operation time for the third part: 

 
Time at workstation4 = f(operation time2, operation time3) + Operation time4 

 

Thus, the time spent at the workstation by the fourth part is correlated with the time spent by the 

second and the third parts. 

 
Rather than using correlated performance measure observations directly in statistical analysis 
computations, independent observations are constructed.  How to do this is discussed later in this 
chapter. 
 
The statistical analysis of simulation results is greatly aided by the construction of 
independent observations of the performance measures. 
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4.4 Common Design Elements 

 
The elements common to all simulation experiments are discussed in the following sections.  
These include model parameters and their values, performance measures, and random number 
streams.   
 
4.4.1 Model Parameters and Their Values 
 
Model parameters correspond to system control variables or operational rules whose values can 
be changed to meet the solution objectives defined in the first step of the simulation process.  
Values of model parameters can be quantitative such as the size of a buffer or qualitative such as 
which routing policy to use. 
 
Often in traditional experimental design and analysis, time and cost constraints result in the use 
of only two or three values of each model parameter.  Simulation affords the opportunity to test as 
many values as time and computing resources allow.  For example, various sizes of an inter-
station buffer could be simulated.  A very large size could represent an infinite buffer.  A buffer 
size of one or two would be minimal.  Intermediate buffer sizes such as five and ten could be 
evaluated. 
 
Which values are used may depend on the results of preceding simulations.  For example, results 
of the initial simulations may indicate that a buffer size in the range 10 to 20 is needed.  Additional 
simulations would be run with for buffer sizes between 10 and 20. 
 
Model parameters must be defined and their values specified. 
 
4.4.2 Performance Measures 
 
Performance measures are quantities used to evaluate system behavior.  They are defined in 
accordance with principle 9 of chapter 1: “Simulation experimental results conform to unique 
system requirements for information.”  Thus, each simulation experiment could have different 
performance measures.  
 
Possible performance measures for experiments with the two stations in a series model could be 
as follows:   
 
1. The number of items waiting in each buffer. 
2. The percentage of time each workstation is busy. 
3. The percentage of time each workstation is idle. 
4. The time an item spends in the system (lead time). 
5. The total number of items processed by the workstation. 
 
Note that state variable values are used as performance measures along with the time taken by 
entities in one, more than one, or all of the processing steps.  A count of the number of entities 
completing processing is desired as well.  These kinds of performance measures are typical of 
many simulation experiments. 
 
Performance measures must be defined, including how each is computed. 
 
4.4.3 Streams of Random Samples 
 
One purpose of a simulation experiment is comparing scenarios.  Suppose that no statistically 
significant difference between two scenarios is found.  This could occur because the scenarios do 
not cause distinct differences in system performance.  A second and undesirable possibility is 
that the variance of the observations made during the simulation is too high to permit true 
differences in system observations to be confirmed statistically. 
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Suppose we wished to assess a change in the operation of workstation A in the two stations in a 
series model where the range of the operation time is reduced to uniformly distributed between 7 
and 11 seconds from uniformly distributed between 5 and 13 seconds.  The same arrivals could 
be used in simulating both scenarios.  Thus, the comparison could be made with respect to the 
same set of entities processed by the workstation.  In general, this approach is referred to as the 
method of common random numbers since simulations of the two scenarios have the same 
pattern of arrivals in common.  Each time between arrivals was determined by taking a random 
sample from the exponential distribution modeling this quantity.  How this is done will be 
discussed in the next chapter. 
 
To better understand the effect of common random numbers, consider what happens when they 
are not used.  There would be a different set of arrivals in the simulation of the first scenario than 
in the simulation of the second scenario. Observed differences in performance measure values 
between the two scenarios could be due to the differences in the arrivals or true differences 
between the scenarios.  Thus, the variance associated with summary statistics of differences in 
values, such as the mean lead time, would likely be higher than if common random numbers were 
used.  This higher variance might result in a failure to detect a true difference between the 
scenarios with respect to a given performance measure such as lead time even if such a 
difference existed. 
 
The method of common random numbers requires distinct streams of samples for each quantity 
modeled by a probability distribution.  While this does not guarantee a reduction in the variance of 
the difference, experience has shown that a reduction often occurs.  In practice for most 
simulation languages, this means that the stream of samples associated with each quantity 
modeled by a probability distribution must be given a distinct name. 
 
Law (2007) more details concerning the common random number approach as well as other 
experiment design techniques to control the variance.  Banks, Carson, Nelson, and Nicol (2009) 
discuss these techniques as well.   
 
The quantities modeled by probability distributions in a model must be identified and 
uniquely named the method of common random numbers may be employed. 
 
4.5 Design Elements Specific to Terminating Simulation Experiments 
 
A terminating simulation experiment ends at a specified simulation time or event that is 
derived from the characteristics of the system under study and is stated as a part of the 
experiment design.  This is the distinguishing characteristic of such as an experiment.         
 
This section presents the design elements that are specific to terminating simulation experiments.   
These include setting initial conditions, specifying the number of replications of the experiment, 
and specifying the ending time or event of the simulation. 
 
4.5.1 Initial Conditions 
 
To begin a simulation, the initial values of the state variables and the initial location in the model 
of any entities, along with their attribute values, must be specified.  Together, these are called the 
initial conditions.   
 
In a terminating simulation, the initial conditions should be the same as conditions that occur in 
the actual system (Law, 2007).  The work of Wilson and Pritsker (1978) leads toward using the 
modal or, at least, frequently occurring conditions.  This must be done to ensure there is not a 
statistically significant greater portion of performance measure values in any given range 
gathered from the simulation than would occur in the actual system.  Thus, statistical bias is 
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collecting performance measure values that could not have occurred, or in greater (lesser) 
proportion in one range than could have occurred, in the actual system.   
 
Consider again the two work stations in a series model.  For example, suppose it is known that 
parts are almost always in the buffer of workstation A and of workstation B.  Thus possible initial 
conditions are: 
 
1. The workstation A resource is in the BUSY state processing one part. 
2. The workstation B resource is in the BUSY state processing one part. 
3. Two parts are in the buffer of workstation A. 
4. Two parts are in the buffer of workstation B. 
 
Note that the time spent at either workstation by a part will consist of the time spent in the input 
buffer plus the operation time.  If the simulation experiment begins with no parts in either input 
buffer, the time the first part spends at each workstation is equal to the operation time because 
the time spent in the input buffer will be zero.  The observed lead time for this part will be less 
than for any part processed by the actual system.   
 
Statistical bias is illustrated in Figure 4-2 that shows example histograms of part time in the 
system collected from the actual system and from a simulation.  The simulation has improper 
initial conditions of no parts at the workstation.  Some of the simulation observations are biased 
low.  Calculations of statistics based on statistically biased observations may also be biased and 
inaccurate conclusions about problem root causes or the performance of proposed solutions 
drawn.   
 
The initial conditions must be specified as a part of the experimental design and must be 
actual conditions that occur in the system. 
 

 
Figure 4-2:  Illustration of Statistical Bias 

 
4.5.2 Replicates 
 
This section discusses the idea of replication to construct independent observations of simulation 
performance measures.  Replicates of a simulation experiment differ from each other only in the 
sample values of the quantities modeled by probability distributions.  Replicates are treated as 
independent of each other since the sample values exhibit no statistical correlation. 
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Each replicate is one possibility of how the random behavior of the system actually occurred.  
Multiple possibilities for system behavior should be examined in detail to draw conclusions about 
the effectiveness of system scenarios in meeting solution objectives.  
 
Consider again the two work stations in a series model.  There is a stream of sample values for 
the time between arrivals and another stream for operation times at workstation A.  A replicate is 
defined by the particular samples taken in these two streams.  Examining system performance for 
other streams of the time between arrivals and of service times is necessary.   These other 
streams define additional replicates. 
 
Observations of the same performance measure from different replicates are statistically 
independent of each other.  In addition, performance measure observations from different 
replicates are identically distributed for the same reason.  Thus replication is one way of 
constructing independent observations for statistical analysis.  However, since performance 
measures may be arbitrarily defined, the underlying probability distribution of the performance 
measure observations cannot be determined in general. 
 
During each replicate, one or more observations of the values of a performance measure are 
made.  For example, the number of entities that complete processing in the two work stations in 
series model is incremented each time processing is finished, the lead time is recorded each time 
an entity completes processing, and the number of entities in either workstation buffer is updated 
each time an entity arrives at a workstation as well as each time an entity begins processing. 
 
For the reasons discussed in section 4.3, each replicate can produce only one independent 
sample, xi. This independent sample is often a statistic computed from the observations of a 
performance measure, usually the average, minimum, or maximum.  For example, one average 
of the number in the buffer at a workstation A is computed from all of observations made during 
one replicate.  This average is one independent sample of the average number in the buffer. 
 
Statistical summaries are estimated from the xi’s.  These summaries typically include the 
average, standard deviation, minimum, and maximum.  Confidence intervals are also of interest.   
 
In summary, each simulation experiment consists of n replicates.  Within each replicate and for 
each performance measure, one or more observations are made.  From the observations, one or 
more statistics are typically computed.  Each such statistic is the independent observation, x i, 
produced by the replicate. 
 
For example, a simulation experiment concerning the two work stations in a series model could 
consist of 20 replicates.  The number of entities in the workstation A buffer could be observed.  
Each time the number in the buffer changes an observation is made.  The average number in the 
buffer as well as the maximum number in the buffer is computed.  There are 20 independent 
observations of the average number in the buffer as well as 20 independent observations of the 
maximum number in the buffer. 
 
The number of replicates initially made is generally determined by experience and the total 
amount of real (“clock”) time needed to compute the simulation.  Most of the time, this number is 
in the range 10-30.  More replicates may be needed if the width of a confidence interval 
computed from the performance measure observations is considered to be too wide.  Confidence 
interval estimation is discussed later in this chapter. 
 
The number of replications of the simulation experiment must be specified. 
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4.5.3 Ending the Simulation 
 
This section discusses the time or condition that determines when to end a replicate.   
 
An ending time for a replicate arises naturally from an examination of most systems.  A 
manufacturer wants to know if its logistic equipment will suffice for the next budget period of one 
year.  So the end of the budget year becomes the simulation ending time.  A fast food restaurant 
does most of its business from 11:30 A.M to 12:30 P.M.  Thus the simulation ending time is one 
hour.  The experiment for a production facility model could cover the next planning period of three 
months.  After that time, new levels of demand may occur and perhaps new production strategies 
implemented.  The simulation experiment for a production facility could end when 100 parts are 
produced. 
  
4.5.4 Design Summary 
 
The specification of design elements for a terminating simulation experiment can be 
accomplished by completing the template shown in Table 4-1. 
 

Table 4-1:  Terminating Simulation Experiment Design 
 

Element of the Experiment Values for a Particular Experiment 

Model Parameters and Their Values  

Performance Measures  

Random Number Streams  

Initial Conditions  

Number of Replicates  

Simulation End Time / Event  

 
Consider a terminating simulation experiment for the two workstations in a series model.  The 
time between arrivals and the operation time at workstation A are modeled using probability 
distributions.  Performance measures include the number in the buffer at each workstation, the 
state of the each workstation (BUSY or IDLE), and entity lead time.  The model parameter is the 
machine used at workstation A, either the current machine with operation time uniformly 
distributed between 5 and 13 seconds or a new machine with operation time uniformly distributed 
between 7 and 11 seconds.  The initial conditions are two items in each buffer and both 
workstations busy.  Twenty replicates will be made for the planning horizon of one work week.  
The experimental design is shown in Table 4-2. 
 

Table 4-2:  Simulation Experiment Design for the Two Workstations in Series Model 
 

Element of the Experiment Values for a Particular Experiment 

Model Parameters and Their Values Workstation A Machine:  Current vs. New 

Performance Measures Number in the buffer at each workstation 
State of each workstation 
Lead Time  

Random Number Streams Time between arrivals 
Operation Time 

Initial Conditions Two entities in each buffer 
One entity in service at each workstation 
(State of each workstation resource is 
BUSY) 

Number of Replicates 20 

Simulation End Time / Event 1 week (40 hours) 
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4.6 Examining the Results for a Single Scenario 

 
This section presents a strategy for examining the simulation results of a single system scenario 
as defined by one set of model parameter values.  Results are examined to gain an 
understanding of system behavior.  Statistical evidence in the form of confidence intervals is used 
to confirm that what is observed is not just due to the random nature of the simulation model and 
experiment and thus provides a valid basis for understanding system behavior. 
 
Simulation results are displayed and examined using graphs and histograms as well as summary 
statistics such as the mean, standard deviation, minimum, and maximum.  Patterns of system 
behavior are identified if possible.  Animation is used to display the time dynamics of the 
simulation.  This is in accordance with principle 8: Looking at all the simulated values of 
performance measures helps. 
 
How the examination of simulation results is successfully accomplished is an art as stated in 
principle 1.  Thus, this topic will be further discussed and illustrated in the context of each 
application study. 
 
The discussion in this session is presented in the context of the two work stations in a series 
model. 
 
4.6.1 Graphs, Histograms, and Summary Statistics 
 
Observed values for each performance measure can be examined via plots, histograms, and 
summary statistics.  To illustrate, each of these will be shown for the number of entities in the 
buffer of workstation A in the two workstations in a series model. 
 
A plot of the observed values of the number in this buffer from replicate one of the simulation 
experiment defined in Table 4-2 is shown in Figure 4-3.  The x-axis is simulated time and the y-
axis is the number in the buffer of workstation A.  Note from the plot that most of the time the 
number in the buffer varies between 0 and 10.  However, there are several occasions that the 
number in the buffer exceeds 20.  This shows high variability at workstation A. 
 

 
 

Figure 4-3:  Plot of the Number of Entities in the Workstation A Buffer 
 
A histogram of the same observations is shown in Figure 4-4.  The percent of time that a certain 
number of entities is in the buffer is shown on the y-axis.  The number of entities is shown on the 
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x-axis.  Note that about 91% of the time there are 10 or less entities in the buffer of workstation A.  
However about 9% of the time there are more than 10 entities in the buffer. 
 
It would be wise to examine these same graphs from other replicates to see if the same pattern of 
behavior is observed.  If the software capability is available, a histogram combining the 
observations from all of the replicates would be of value. 
 

 
 

Figure 4-4:  Histogram of the Number of Entities in the Workstation A Buffer 
 
Summary statistics can be computed from the observations collected in each replicate.  However, 
these observations are likely not independent, so their standard deviation is not very useful.  The 
average, minimum, and maximum of the observations of the number in the buffer of workstation A 
from replicate 1 are given in Table 4-3.  The average number of entities is relatively low but the 
maximum again shows the high variability in the number in the buffer. 
 
Table 4-3:  Summary Statistics for the Number of Entities in the Buffer of Workstation A – 

Replicate 1 
 

Statistic Value 

Average   4.1 

Minimum   0 

Maximum 26 

 
As was previously discussed, one independent observation each of the average, minimum, and 
maximum is generated by each replicate.  Suppose the average and maximum number in the 
buffer of workstation A are of interest.  The average corresponds to the average work-in-process 
(WIP) at the workstation and the maximum to the buffer capacity needed at the workstation.  
Table 4-4 summarizes the results for 20 replicates.  The average ranges from 3.1 to 6.6 with an 
overall average of 4.4.  This shows that the average number in the buffer has little variability.  The 
maximum shows significant variability ranging from 21 to 43 with an average of 31. 
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Table 4-4:  Summary Statistics for the Number of Entities in the Buffer of Workstation A – 
Replicate 1 through 20 

 

Replicate Average Number in 
the Workstation A 

Buffer 

Maximum Number in 
the Workstation A 

Buffer 

1 4.1 28 

2 4.6 27 

3 4.1 30 

4 3.2 24 

5 3.8 24 

6 4.3 29 

7 4.0 25 

8 4.4 34 

9 4.3 40 

10 4.1 28 

11 4.1 26 

12 4.5 38 

13 4.5 31 

14 4.3 30 

15 4.8 37 

16 4.2 28 

17 5.2 40 

18 4.3 38 

19 4.3 26 

20 4.4 36 

Average 4.3 31.0 

Std. Dev. 0.39 5.4 

Minimum 3.2 24 

Maximum 5.2 40 

 
4.6.2 Confidence Intervals 
 
One purpose of a simulation experiment is to estimate the value of a parameter or characteristic 
of the system of interest such as the average or maximum number in the buffer of workstation A.  
The actual value of such a parameter or characteristic is most likely unknown.  Both a point 
estimator and an interval estimator are needed. The point estimator should be the center point of 
the interval.   
 
The average of the set of independent and identically distributed observations, one from each 
replicate, serves as a point estimator.   For example, the values in the “average” row of Table 4-4 
are point estimators, the first of the average WIP in the buffer of workstation A and the second of 
the needed buffer capacity.    
 
The confidence interval estimation procedures recommend by Law (2007) will be used to provide 
an interval estimator.  The t-confidence interval given by equation 4-1 is recommended. 
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nn
    (4-1) 

 

where tn is the 1-percentage point of the Student’s t distribution with n-1 degrees of 

freedom, n is the number of replicates, X is the average (the values on the “average” row of 
Table 4-4 for example), and s is the standard deviation (the values on the “std. dev.” row of Table 
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4-4 for example).  The  sign means approximately.  The symbol  represents the actual but 

unknown value of the system parameter or characteristic of interest. 
 
The result of the computations using equation 4-1 is the interval shown in equation 4-2: 
 

(lower bound    upper bound) with 1- confidence     (4-2) 
 
where  

lower bound = 
n

s
tX

n
*

1,2/1 



         (4-3) 

upper bound = 
n

s
tX

n
*

1,2/1 



       (4-4) 

 
Equations 4-1 and 4-2 show the need to distinguish between probability and confidence.  
Understanding this difference may require some reflection since in everyday, non-technical 
language the two ideas are often used interchangeably and both are expressed as a percentage.   
 
A probability statement concerns a random variable.  Equation 4-1 contains the random variables 

X and s  and thus is a valid probability statement.  The interpretation of equation 4-1 relies on 

the long run frequency interpretation of probability and is as follows:  If a very large number of 
confidence intervals are constructed using equation 4-1, the percentage of them that include the 

actual but unknown value of  is approximately 1-This percentage is called the coverage. 
 
The interval expressed in equation 4-2 contains two numeric values: lower bound and upper 

bound plus the constant  whose value is unknown.  Since there are no random variables in 
equation 4-2, it cannot be a probability statement.  Instead, equation 4-2 is interpreted as a 

statement of the degree of confidence (1-) that the interval contains the value of the system 

parameter or characteristic of interest.  Typical values for (1-) are 90%, 95%, and 99%.  A 

higher level of confidence implies more evidence that the interval contains the value of 
 
Some thoughts on how to interpret the level of confidence with respect to the kind of evidence 
provided is worthwhile.  Keller (2001) suggests the following, which will be used in this text. 
 

Table 4-5. Interpretation of Confidence Values 
   

Confidence (1-) Range Interpretation 

(1-)  99% Overwhelming evidence  

95%  (1-) > 99% Strong evidence 

90%  (1-) > 95% Weak evidence 

90% > (1-) No evidence 

 

Note that the higher the level of confidence the greater the value of 
1,2/1  n

t


 and thus the wider 

the confidence interval.  A narrow confidence interval is preferred so that the value of  is more 
precisely bounded.  However, it is clear that a high level of confidence must be balanced with the 
desire for a narrow confidence interval. 
 
Why equation 4-1 is approximate and not exact is worthy of discussion.  For equation 4-1 to be 
exact, the observations on which the confidence interval computations are based must come from 
a normal distribution as well as being independent and identically distributed.  As was previously 
discussed, the latter two conditions are met by the definition of a replicate while the first condition 
cannot be guaranteed since the performance measures in a simulation are arbitrarily defined.  
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Thus, equation 4-1 is approximate.  Approximate means that the coverage produced using 

equation 4-1 will likely be less than 1- 
 
Given that equation 4-2 provides only an approximate (not exact) level of confidence (not a 
probability), it is natural to ask why it should be used.  Law (2007) concludes that experience has 
shown that many real-world simulations produce observations of the type for which equation 4-1 

works well, that is the coverage produced using equation 4-1 is close enough to 1- to be useful 
in conducting simulation studies.  In the same way, Vardeman and Jobe (2001) state that 
confidence intervals in general have great practical use, even though no probability statement 
can be made as to whether a particular interval contains the actual value of the system 
characteristic or parameter of interest.  Since confidence intervals seem to work well in general 
and in simulation studies, they will be used throughout this text. 
 
As an example, Table 4-6 contains the 99% confidence intervals computed from equation 4-2 for 
the average and maximum number of entities in the buffer of workstation A based on the results 
shown in Table 4-4. 
 

Table 4-6:  99% Confidence Intervals for the Number of Entities in the Buffer of 
Workstation A Based on 20 Replicates 

 

 Average Number in 
the Workstation A 

Buffer 

Maximum Number in 
the Workstation A 

Buffer 

Average 4.3 31.0 

Std. Dev. 0.39 5.4 

99% CI – 
Lower Bound 4.0 27.5 

99% CI – 
Upper Bound 4.5 34.4 

 
The confidence interval for the average is small.  It would be safe to conclude that the average 
number in the buffer of workstation A was 4 (in whole numbers).  The confidence interval for the 
maximum number in the buffer ranges from 27 to 34 (in whole numbers).  If this range is deemed 
too wide to establish a buffer size additional replicates, say another 20, could be made. 
 
4.6.3 Animating Model Dynamics 
 
As discussed in chapter 1, simulation models and experiments capture the temporal dynamics of 
systems.  However, reports of models and experimental behavior are often confined to static 
mediums such as reports and presentations like those shown in the preceding sections.  The 
simulation process includes system experts and managers who may not be knowledgeable about 
modeling methods and may be skeptical that a computer model can represent the dynamics of a 
complex system.  In addition, complex systems may include complex decision rules.  All 
behavioral consequences resulting from these rules may be difficult to predict. 
 
Addressing these concerns involves answering the question: What system behavior was captured 
in the model?  One very effective way of meeting this requirement is seeing the behavior 
graphically.  This is accomplished using animation.   
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Typical ways of showing simulated behavior using animation follow: 
 
1. State of a resource with one unit: The resource is represented as a graphical object that 

physically resembles what the resource models.  For example, if the resource models a 
lathe, then the object looks like a lathe.  Each state of the resource corresponds to a 
different color.  For example, yellow corresponds to IDLE, green to BUSY, and red to 
BROKEN.  Color changes during the animation indicate changes in the state of the 
resource in the simulation. 

 
2. Entities:  An entity is represented in the frame as a graphical object that physically 

resembles what the entity models.  Different colors may be used to differentiate entities 
with different characteristics.  For example if there are two types of parts, graphical 
objects representing part type 1 may be blue and those representing part type 2 may be 
white. 

 
3. Number of entities in a buffer: A graphical object, which may be visually transparent, 

represents the buffer.  An entity graphical object is placed in the same location as the 
buffer graphical object whenever an entity joins the buffer in the simulation.  The buffer 
graphical object accommodates multiple entity graphical objects. 

 
4. Material transportation: Any movement, such as between workstations, of entities in the 

simulation can be shown on the animation.  The location of an entity graphical object can 
be changed at a rate proportional to the speed or time duration of the movement.  
Movement of material handling equipment can be shown in a similar fashion.  As for 
other resources, a piece of material handling equipment is represented by a graphical 
object that resembles that piece of equipment.  For example, a forklift is represented by a 
graphical object that looks like a forklift. 

 
An animation of the two-stations in a series system should be viewed at this time. 
 
4.7 Comparing Scenarios 

 
This section presents a strategy for determining if simulation results provide evidence that one 
scenario is better than another.  Often one scenario represents current system operations for an 
existing system or a baseline design for a proposed system.  Improvements to the current 
operations or to a baseline design are proposed.  Simulation results are used see if these 
improvements are significant or not.  In addition, it may be necessary to compare one proposed 
improvement to another.  This is an important part of step 3 Identify Root Causes and Assess 
Initial Scenarios as well as step 4 Review and Extend Previous Work of the simulation project 
process.  
 
Often, pair-wise comparisons are made.  This will be the scope of our discussion.  Law (2007) 
provides a summary of methods for ranking and selecting the best from among all of the 
scenarios that are considered.   
 
The job of comparing scenario A to scenario B is an effort to find evidence that scenario A is 
better than scenario B.  This evidence is found first by examining observations of performance 
measures to see if any operationally significant differences or unexpected differences can be 
seen.  If such differences are seen, an appropriate statistical analysis is done to confirm them.  
Confirm means to determine that the differences are not due to random variation in the simulation 
experiment. 
 
Many times a scenario is better with respect to one performance measure and the same or worse 
with respect to others.  Evaluating such tradeoffs between scenarios is a part of the art of 
simulation. 
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Each of the ways of comparing scenarios will be discussed in the context of the simulation 
experiment concerning the two stations in a series model.  This experiment is presented in Table 
4-2.  The primary performance measure of interest will be entity lead time. 
 
4.7.1 Comparison by Examination 
 
Some ways of comparing two scenarios by examination of performance measure observations 
follow. 
 
1. For each replicate (or at least several replicates), graph all observations of a 

performance measure. 
 
For example, the graph of the number in the buffer of workstation A for the scenario for the 
current machine in use at workstation A is shown in Figure 4-3.  This could be compared to the 
graph of the same quantity for the scenario where the new machine is used at workstation A.  If 
the latter graph consistently showed fewer entities in the buffer, then there would be evidence 
that that using the new machine at workstation A is an improvement: less WIP. 
 
Graphing lead time observations is not usually done since lead time is not a state variable and 
does not have a value at every moment in simulation time. 
 
2. For each replicate or over all replicates, compare the histograms of the 

observations of a performance measure. 
 
For example, histograms of lead time can be compared.  If the histogram for the new machine at 
workstation A scenario clearly shows a greater percentage of entities requiring less time on the 
line versus the current machine scenario, then there would be evidence that using the new 
machine at workstation A lowers cycle time. 
 
3. Compare the averages of the sample values, xi, gathered from the replicates.  Note 

whether the difference in the averages is operationally significant. 
 
For example, the average lead time for the current machine scenario is 62.7 seconds and for the 
new machine scenario is 58.5 seconds.  These values are for all replicates of the experiment.  
Thus, the new machine reduces cycle time by about 6%, which is operationally significant. 
 
4. Compare the range [minimum, maximum] of the sample values, xi.  Note whether 

the ranges overlap. 
 
For example, the range of cycle time averages over the replicates of the experiment for the 
current machine scenario is (52.5, 71.7) and for the new machine scenario is (48.8, 68.9).  The 
ranges overlap and thus provide no evidence that the new machine reduces cycle time verses the 
existing machine at workstation A. 
 
4.7.2 Comparison by Statistical Analysis 
 
This section discusses the use of confidence intervals to confirm that perceived differences in the 
simulation results for two scenarios are not just due to random variation in the experiment. 
 
Note that the experiment design assures that scenarios share random number streams in 
common.  Thus, the scenarios are not statistically independent.  Furthermore, the same number 
of replicates is made for each scenario.  Thus, an approach that compares the simulation results 
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on a replicate by replicate basis is required and helpful.  This approach is called the paired-t 
method.

1
 

  
Table 4-7 provides the organization to support the paired-t method.  Each row corresponds to a 
replicate.  The difference between the performance measure values for each replicate is shown in 

the fourth column.  These differences are independent observations.   A 1- confidence interval 
for the population mean of the difference in the fourth column is computed.  If this confidence 
interval does not contain zero, it will be concluded that there is a statistically significant difference 

between the scenarios with confidence 1-.  This confidence interval is constructed and 
interpreted using the same reasoning as was given in section 4.6.2. 
 
To illustrate, Table 4-8 compares, based on entity lead time, the use of the new machine at 
workstation A versus the current machine using the paired-t method.  A 99% confidence interval 
for the mean difference is constructed: (3.7, 4.7) with 99% confidence.  Thus, with 99% 
confidence the new machine at workstation A reduces mean cycle time in the range (3.7, 4.7) 
seconds.   
 
It is also helpful to examine the data in Table 4-8 on a replicate-by-replicate basis.  Notice that in 
all of the replicates, cycle time was less using the new machine at workstation A.  It should be 
noted however that it is still quite possible that in any particular 40 hour period, the two stations in 
a series line would perform better with respect to cycle time using the current machine at 
workstation A instead of the new machine.  The simulation results show that on the average over 
many 40 hour periods the line will perform better with respect to cycle time using the new 
machine at workstation A. 
 

Table 4-7:  Format of the Paired-t Method 
 

Replicate  Scenario 
A 

Scenario 
B 

Difference (Scenario A – Scenario 
B) 

1    

2    

3    

4    

. 

. 

. 
 

   

n    

Average    

Std. Dev.    

1- C. I.  
Lower Bound 

   

1- C.I.  
Upper Bound 

   

 

                                                           
1
 Law (2007) provides a more in depth discussion of the comparison of alternatives using 

confidence intervals, including the generation of confidence intervals when common random 
numbers are not used. 
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Table 4-8:  Comparison of Scenarios Using the Paired-t Method (1- = 99%) 
 
Replicate  Current Machine New Machine Difference  

(Current  – New) 

1 61.1 57.3 3.8 

2 66.0 62.2 3.9 

3 60.6 57.6 3.0 

4 52.5 48.8 3.7 

5 58.3 55.0 3.3 

6 63.4 59.3 4.0 

7 59.7 55.0 4.8 

8 63.9 59.2 4.7 

9 62.7 58.5 4.2 

10 61.1 56.7 4.4 

11 60.7 56.6 4.1 

12 65.2 59.8 5.4 

13 64.7 58.3 6.4 

14 63.6 59.5 4.1 

15 67.3 63.5 3.8 

16 61.7 57.2 4.5 

17 71.7 68.9 2.8 

18 63.3 59.0 4.3 

19 62.3 58.1 4.2 

20 64.6 59.9 4.7 

Average 62.7 58.5 4.2 

Std. Dev. 3.82 3.8 0.8 

99% C. I. Lower Bound 60.9 56.7 3.7 

99% C.I. Upper Bound 64.5 60.3 4.7 

 
 
4.7.2.1 A Word of Caution about Comparing Scenarios 
 
In comparing scenarios, many confidence intervals may be constructed.  For each pair of 
scenarios, several performance measures may be compared.  Many scenarios may be tested as 
well. 
 

The question arises as to the resulting  level for all confidence intervals together, overall.  This 

overall level is the probability that all confidence intervals simultaneously cover the actual 
difference in value between the scenarios of the system parameter or characteristic each 
estimates.  
 

A lower bound on overall is computed using the Bonferroni inequality where a total of k confidence 
intervals are conducted: 

P(all confidence intervals cover the actual value) >= 

k

j

j
1      (4-5) 

and thus: 






k

j

joverall

1

          (4-6) 

Suppose we compare two scenarios using two performance measures with  = 0.05.  A 
confidence interval of the difference between the scenarios is computed for each performance 
measure.  The lower bound on the probability that both confidence intervals cover the actual 

difference in the performance measures is given by equation 4-5:  overall <= 0.05 + 0.05 = 0.10. 
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Consider comparing two scenarios with respective to 10 performance measures.  Each 

confidence interval is computed using  = 0.05.  Then the probability all confidence intervals 
cover the actual difference in the performance measures might be as low as 0.05*10 = 0.50.  

That is the error associated with all our work would be 0.5.  Thus, when making many 

comparisons, a small value of j for each confidence interval is necessary.  For example with all 

j = 0.01, the overall error associated with ten comparisons is 0.1, which is acceptably low. 
 
Unfortunately if a large number of performance measures are used or many scenarios are 

compared, overall will always be large.  Thus, it is likely that for at least one confidence interval 
that the true difference between the performance measure values will not be covered.  So a 
difference between two scenarios will not be detected. 
 
4.8 Summary 
 
This chapter discusses the design and analysis of simulation experiments.  Elements are defined 
and organized into a design. A method to construct statistically independent observations to avoid 
correlation difficulties is described. 
 
The need to gather evidence that a model is valid and verified is presented.  Possible strategies 
in this regard are given.  Ways to compare scenarios, both through statistical analysis and the 
examination of data, are discussed. 
 
Problems (Similar problems are associated with each of the case studies for further practice). 
 
1. Suppose 4 scenarios were compared in a pair-wise fashion with respect to one 

performance measure.  How many comparisons are made?  If  = 0.01 is used for all 

comparisons, what is the upper bound on the for all the comparisons made?  What if  

= 0.05 is used?  Which of the two values for  should be used? 
 
2. Consider the following table of simulation results. 
 

Replicate Workstation % Busy Time –  
Scenario One  

Workstation % Busy Time –  
Scenario Two 

1 87 78 

2 80 72 

3 79 71 

4 80 72 

5 78 71 

 
a. Construct 95% confidence intervals for the workstation % busy time for each 

scenario.  
 

b. Construct a paired-t confidence interval,  = 0.05, to compare the percent busy 
time of a workstation for two scenarios.   
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3. Consider the following table of simulation results. 
 

Replicate Maximum Time –  
Scenario One  

Maximum Time –  
Scenario Two 

1 241.8 122.0 

2   61.1   62.6 

3 122.1   94.7 

4 111.6   73.1 

5 154.4 105.2 

 
a. Construct 95% confidence intervals for the maximum time for each scenario.  
 

b. Construct a paired-t confidence interval,  = 0.05, to compare the maximum time 
at the workstation for the two scenarios.   

 
c. Are the confidence intervals constructed in a. and b. approximate or exact?  

Defend your answer. 
 
4. Develop the design of a terminating simulation experiment for problem 2-10. 
 
5. Defend the use of approximate confidence intervals. 
 
6. Consider the simulation of a single workstation consisting of a single machine with an 

operation time uniformly distributed between 5 and 10 minutes.  The time between part 
arrivals is exponentially distributed with a mean of 9 minutes. 

 
 a. What verification evidence could be sought? 
 
 b. What validation evidence could be sought? 
 
7. Conduct a complete analysis of a simulation experiment regarding a single workstation 

with one machine based on the data that follow. The mean time between arrivals is 10 
minutes and the operation time is 8 minutes.  The simulation was run for 168 hours.  
Management wishes to achieve a production quota of 1000 items per 168 hours. 

 
a. Provide evidence for the verification and validation of the simulation based only 

on the data in the following table and the problem statement.  
 

Replicate Workstation 
% Busy 
Time 

Number of 
Entities 
Arriving 

Number of 
Entities 
Departing 

Number of 
Entities in 
Processing at 
the End of the 
Simulation 

Number of 
Entities in the 
Buffer at the 
End of the 
Simulation 

1 87 1044 1044 0 0 

2 80   961   960 1 0 

3 79   944   943 1 0 

4 80   965   959 1 5 

5 78   942   942 0 0 
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b. Compare the two scenarios using first the average number in the buffer and then 
the maximum as described below.  Use only the data that follows and items i-iv. 
i. Compute appropriate statistical summaries (average, standard deviation, 

minimum, maximum, range, and confidence intervals) and state any 
evidence found from this information. 

ii. Compute and display appropriate histograms and state any evidence 
seen in them.  

iii. In how many replicates is the new case better than the current 
operations?  What evidence does this information provide? 

iv. Perform the appropriate statistical analysis to compare the scenarios. 
 

 Number in Buffer 

Current Operations New Case 

Replicate Average Maximum Average Maximum 

1 12.8 28 4.3 15 

2 1.2 8 1.1 7 

3 4.3 16 2.6 16 

4 2.9 10 1.9 8 

5 3.6 17 2.1 12 

6 3.7 10 2.0 8 

7 2.1 12 1.2 7 

8 3.5 17 1.6 11 

9 2.7 13 1.4 9 

10 2.0 10 1.2 9 

11 1.4 8 1.3 10 

12 2.0 12 1.4 10 

13 1.4 7 1.4 9 

14 2.7 17 2.0 12 

15 1.7 16 1.2 9 

16 1.5 7 0.9 8 

17 5.2 26 4.2 17 

18 3.2 15 2.0 9 

19 3.1 14 2.0 9 

20 2.2 11 1.2 8 
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Chapter 5 
The Simulation Engine 

 
5.1 Introduction 
 
This chapter discusses the computations necessary to simulate a model on a computer.  These 
computational tasks are performed by software that can be referred to as a simulation engine.  
The engine produces performance measure values as output.  It does this transparently to the 
simulation user whose primary concern is performing the steps of the simulation process 
including model building and experiment design as well as the statistical analysis of performance 
measure values and drawing conclusions about system behavior.  Nevertheless, a basic 
understanding of how a simulation engine does its computation tasks is fundamental. 
 
All models are mapped, transparently to the modeler, into a set of events within the simulation 
engine.  The mapping may be complex and not straightforward.  An event is a point in simulation 
time when the value of one or more the state variables changes. In addition an event is used to 
specific when in simulated time, or under what conditions, other events, including itself, next 
occur.  
 
The basic operations that a simulation engine must perform are presented in the context of the 
two workstation example model that was presented in previous chapters.  Fundamentally, the 
engine must conduct the simulation step by step from start to finish.  This requires 
1. Sequencing the events. 
2. Processing each event. 
3. Organizing entities waiting for resources. 
4. Generating individual samples from probability distributions to obtain values for entity 

attributes and times between entity arrivals as well as operation and transportation times. 
A discussion of the events in the two workstation example will precede a discussion of each of 
the activities of the simulation engine. 
 
5.2 Events and Event Graphs 
 
Event graphs (Schruben, 1983; 1995) are a diagramming technique for showing the events 
comprising a model.  An event graph consists of nodes and arcs.  Nodes correspond to events.  
Arcs tell the relationships between events: the other events, including itself, that an event can 
cause to occur and the logical conditions that may restrict such occurrences. The logical 
conditions make use of the state variables.  An arc also tells the time from now when an event will 
take place.    
 
The event graph for the two station serial system is shown in Figure 5-1.  There are four state 
variables: the number in the buffer of each station and the state (busy, idle) of each station.  
Three events are associated with each station: Entity arrives, Start service, and End service. 
   
The entity arrives event associated with station A causes itself to occur again, that is the next 
entity to arrive, after a time interval specified by the time between arrivals.  The number in the 
buffer of workstation A is incremented by 1.   
 
The entity arrives event causes the start service event to begin processing the arriving entity 
immediately if the machine is IDLE.  The start service event decreases the number in the buffer of 
workstation A by 1 and makes the workstation BUSY. 
 
The end service event follows the start service event and occurs after a time interval that is the 
item processing time.  The end service event will initiate processing of the first entity waiting in 
the buffer if there is one by scheduling the start service event at the current time.  The end 
service event makes the workstation IDLE.  
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The time between arrivals to station A and the item processing time could be random variables. 
 
 

 
 

Figure 5-1:  Event Graph for Two Workstations in a Series Model 
 
5.3 Time Advance and Event Lists 
 
This section discusses how the simulation proceeds through time by scheduling event 
occurrences and processing each of them in turn.  In general, a model is simulated as a time 
ordered sequence of the occurrences of the events.  Event occurrences are processed one at a 
time.  Each event occurrence changes the value of one or more state variables and may 
schedule other events.  This simulation approach is illustrated by one possible simulation of the 
two workstations in sequence model. 
 
The event list is the time ordered list of all event occurrences scheduled at the current time and 
in the future.  The simulation proceeds by removing the first event occurrence on the list and 
processing it.  This processing may result in one or more event occurrences being added to the 
list to be processed at the current time or in the future.  Note that only one event occurrence at a 
time is removed from the list.  All others remain on the list.  After the processing of the event 
occurrence, the list will consist of the event occurrences already on the list when the first event 
occurrence was removed plus those added by processing this event occurrence. 
 
For the two workstation model, the simulation engine must deal with six events that change the 
values of the state variables.  Each of these events must be scheduled in time and processed.  
These events are the arrival of an entity (part) to each station as well as the start and end of 
processing. 
 
At any point in time, the event list could contain the following event occurrences at future points in 
time:   

 Entity arrives to workstation A event. 

 Entity ends service at workstation A event. 

 Entity ends service at workstation B event. 
 
Other events can occur only at the same point in time as another event. 

 The start of service at workstation A event that can occur either when a entity arrives to 
workstation A (arrives to workstation A event) or when a entity completes processing at 
workstation A (ends service at workstation A event). 
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 The entity arrives to workstation B event that occurs every time an entity ends service at 
workstation A event occurs.  (Recall there is no time delay for moving between 
workstations.) 

 The start of service at workstation B event that can occur either when a entity arrives to 
workstation B (arrives to workstation B event) or when an entity completes processing at 
workstation B (ends service at workstation B event). 

 
To illustrate, consider one possibility for the event list at the start of the simulation. 
 
Current Simulation Time: 0  
Next Simulation Time = Time of first event occurrence in list = 0.0 
Event Time of Occurrence Entity ID 

Entity Arrives to A 0.0 1 
 
The simulation will begin with the arrival of the first entity at time 0. 
 
Thus, the first task of the simulation engine is to process the Entity Arrives to A event at time 0.  
This task involves removing the Entity Arrives to A event from the list and performing the actions 
associated with the event: scheduling the next Entity Arrives to A event and scheduling the Entity 
Start Service event, if workstation A is idle (which it is initially).  After the entity arrives to A event 
is processed the event list is as follows, assuming the next arrival to workstation A is at time 5.0: 
 
Current Simulation Time: 0  
Next Simulation Time = Time of first event occurrence in list = 0.0 
Event Time of Occurrence Entity ID 

Start Service at A 0.0 1 
Entity Arrives to A 5.0 2 
 
Next, the simulation engine removes the Start Service at A event from the list.  The Entity Arrives 
to A event remains on the list.  Processing the event removed from the list results in scheduling 
the End Service at A event as shown in the following. 
 
Current Simulation Time: 0  
Next Simulation Time = Time of first event occurrence in list = 5.0 
Event Time of Occurrence Entity ID 

Entity Arrives to A 5.0 2 
End Service at A 8.0 1 
 
The entity with ID number 2 will arrive at time 5.0 and the End of Service at workstation A for the 
entity with ID number 1 will occur at time 8.0. 
 
The simulation engine advances time to the next event occurrence at time 5.0 and processes the 
Entity Arrives to A event for the entity with ID 2.  This means that the Entity Arrives to A event will 
be removed from the list and End Service at A event will remain on the list.   
 
At time 5.0, the workstation A resource is in the busy state.  Thus, the entity with ID 2 enters the 
queue for the workstation A resource.  No entry for this entity is placed on the event list.  In 
addition, processing this event causes the Entity Arrives to A event to be scheduled at time 32.5 
for the entity with ID 5.  This means that the next occurrence of the Entity Arrives to A event is 
placed on the event calendar at time 32.5.   
 
Thus, after processing the Entity Arrives at A event occurrence at time 5.0, the event list consists 
of the End Service at A event which was previously on the list plus the next Entity Arrives to A 
event that was newly placed on the list as shown in the following. 
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Current Simulation Time: 5.0  
Next Simulation Time = Time of first event occurrence in list = 8.0 
 Event Time of Occurrence Entity ID 

End Service at A   8.0 1 
Entity Arrives to A 32.5 3 
 
Next, the simulation engine advances time to the 8.0 to process the end of service at A event for 
entity 1.  The entity with ID number 1 will arrive at workstation B at time 8.0 since there is no 
movement delay.  The entity with ID number 2 will leave the queue of the workstation A resource 
and start processing using the workstation A resource that has just become idle.  Thus, the 
workstation A resource becomes busy. 
 
Thus after processing the End Service at A event, the Entity Arrives to A event remains on the list 
and the Entity Arrives to B event as well as the Start Service at A event are added. 
 

Current Simulation Time: 8.0  
Next Simulation Time = Time of first event occurrence in list = 8.0 
Event Time of Occurrence Entity ID 

Entity Arrives to B   8.0 1 
Start Service at A   8.0 2 
Entity Arrives to A 32.5 3 
 
Simulation engines typically use the strategy that all possible processing of one entity at the 
current simulation time will be done before any processing of any other entity.  Another way of 
saying this is that the entity will proceed as far as possible until obstructed by a time delay or by 
waiting for a currently unavailable resource.  This implies that new events at the current 
simulation time for this entity are placed first on the event list.  Thus in the above list, the entity 
arrives to B event for the entity with ID 1 at time 8.0 precedes the start service at A event for the 
entity with ID number 2. 
 
The remainder of the simulation is processed in a similar fashion. 
 
5.4 Simulating the Two Workstation Model 
 
This section discusses and illustrates the record of the time ordered sequence of events that are 
processed by a simulation engine for a particular model.  This record is called a trace and 
includes the changes in state variable values that occur as well as other relevant information such 
as entity attributes.  All simulation engines provide a trace that the modeler can examine to 
determine the step-by-step behavior of a simulation for verification and validation. 
 
Consider one possible simulation of the two workstations in sequence model.  Let’s follow the 
sequence of events processed in time order when only one entity moves through the two 
workstations, assuming that no other entities arrive in the meantime.     
 
The trace for the simulation with one entity is shown Table 5-1.  Only the new values of state 
variables whose values are changed by an event are shown.  At the start of the simulation there 
are no entities in the model, the buffers are empty and the workstation resources are in the IDLE 
state.  The entity with ID number 1 arrives at time 0 and enters the buffer of workstation A.  Since 
the workstation A resource is IDLE, the start service at A event occurs at time 0.  This event 
removes the entity from the buffer of workstation A and makes the workstation A resource BUSY.   
 

Table 5-1:  Simulation Trace for One Entity 
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Current 
Simulation 
Time 

Event Entity 
ID 

Number 
in Buffer 
– 
Station 
A 

State of 
Workstation 
A Resource 

Number 
in Buffer 
– 
Station 
B 

State of 
Workstation 
B Resource 

  0.0 Initial Conditions  0 IDLE 0 IDLE 

  0.0 Entity Arrives to 
A 

1 1    

  0.0 Start Service at A 1 0 BUSY   

  8.0 End Service at A 1  IDLE   

  8.0 Entity Arrives to 
B 

1   1  

  8.0 Start Service at B 1   0 BUSY 

16.5 End Service at B 1    IDLE 

 
The simulation engine must determine the duration of processing at workstation A for this 
particular entity.  This is done by computing a random sample from the processing time 
distribution: uniform (5,13).  Suppose the value turns out to be 8.0.  Thus, the end of service at A 
event is placed at time 8.0.  At this time, the workstation A resource becomes IDLE.   
 
The entity arrives at B event occurs at time 8.0 as well since there is no time delay for movement 
between the workstations.  The entity enters the buffer of workstation B.  Since the workstation B 
resource is IDLE, the start service at B event occurs at time 8.0.  The duration of processing at 
workstation B is a constant 8.5.  Thus, the end of service at B event is placed at time 16.5. 
 
Now, suppose a second entity arrives in the simulation at time 5.0.  This time is determined by 
computing a value from the time between arrivals distribution: exponential (10) when the entity 
arrives at A event is processed for entity 1 at time 0.  Suppose further that the simulation engine 
computes the service time at workstation A to be 7.0.  Table 5-2 shows the trace of the simulation 
for this situation. 
 
Note the events involving entity 2.  Since the workstation A resource is BUSY when entity 2 
arrives at time 5.0, it remains in the buffer of station A.  At time 8.0, all events concerning entity 1 
are processed first.  After these events are processed, the start service at A event is processed 
for entity 2.  Since the processing time is computed to be 7.0, the end of service at A event is 
placed at time 15.0. 
 
At time 15.0, the end of service at A event occurs for entity 2 as well as the entity arrives to B 
event.  Since workstation B resource is busy, entity 2 waits in the buffer of station B. 
 
At time 16.5, the end of service at B event occurs for entity 1.  Since the workstation B resource 
becomes IDLE, start of service at B event occurs for entity 2.  At time 25.0, entity 2 completes 
processing at workstation B. 
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Table 5-2:  Simulation Trace for Two Entities 
 

Current 
Simulation 
Time 

Event Entity 
ID 

Number 
in Buffer 
– 
Station 
A 

State of 
Workstation 
A Resource 

Number 
in Buffer 
– 
Station 
B 

State of 
Workstation 
B Resource 

  0.0 Initial Conditions -- 0 IDLE 0 IDLE 

  0.0 Entity Arrives to 
A 

1 1    

  0.0 Start Service at A 1 0 BUSY   

  5.0 Entity Arrives to 
A 

2 1    

  8.0 End Service at A 1  IDLE   

  8.0 Entity Arrives to 
B 

1   1  

  8.0 Start Service at B 1   0 BUSY 

  8.0 Start Service at A 2 0 BUSY   

15.0 End Service at A 2  IDLE   

15.0 Entity Arrives to 
B 

2   1  

16.5 End Service at B 1    IDLE 

16.5 Start Service at B 2   0 BUSY 

25.0 End Service at B 2    IDLE 

 
5.5 Organizing Entities Waiting for a Resource 

 
Notice from the discussion in section 5.2 that there is either zero or one event occurrence on the 
event list corresponding to each entity.  If there is no event occurrence, the entity is waiting 
usually for a resource to become available.  Multiple entities may be waiting for the same 
resource.  Thus, it is necessary to maintain lists of waiting entities as well as lists of event 
occurrences. 
 
Entities wait for a resource that is currently not in the idle state in an ordered list similar to the 
event list.  When a unit of the resource completes its current task or otherwise becomes idle, it 
will process the first entity in the list.  The list is sequenced either by order of entity entry in the list 
(first-in-first-out or last-in-first-out) or by an entity attribute value (high-value-first or low-value-
first). 
 
Suppose entities in the two workstation model have the following attributes: 
1. Time of arrival to the system 
2. Estimated processing time at workstation A 
 
Suppose that at a particular moment in simulation time there are three entities waiting for the 
workstation A resource.  The waiting entities are ordered first-in-first-out as follows. 
 
Entity Time of Arrival Estimated 

Processing Time 

101 100.0 15.0 
102 110.5   9.8 
103 120.5 21.0 
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Alternatively, suppose the entities were sorted by the lowest value of estimated processing time 
first as follows. 
 
Entity Time of Arrival Estimated 

Processing Time 

102 110.5   9.8 
101 100.0 15.0 
103 120.5 21.0 
 
Note that the sequence in which entities are processed at workstation A is the same as their 
order in the queue of workstation A. 
 
5.6 Random Sampling from Distribution Functions 
 
In chapter 2, entity attribute values and the time between entity arrivals as well as operation and 
transportation times were modeled using probability distributions.  Furthermore, values for these 
variables need to be assigned to each entity.  To accomplish this assignment, a random sample 
must be taken from the corresponding probability distribution.   This subject is worthy of a lengthy 
and thorough discussion such as that provided in Law (2007) as well as Carson, Banks, Nelson, 
and Nicol (2009).  Here one approach for taking random samples is presented to illustrate how 
this issue is addressed.   
 
Consider the time between entity arrivals in the two workstations in a series model: exponential 
(10) seconds, where 10 is the average time between arrivals, TBA.  This quantity follows the 
cumulative distribution function: 
 

y = F(x) = 1 - e - x / TBA = 1 - e - x / 10 
 
and therefore 
 
x = -TBA ln (1 - y) = -10 ln (1-y)        (5-1) 
 
In the same way, the service time at workstation A is uniformly distributed between a minimum 
and a maximum value (5 and 13 seconds) and therefore follows the cumulative distribution 
function: 
 
y = F(x) = (x-minimum) / (maximum – minimum) = ( x - 5 ) / ( 13 - 5 ) 
 
and therefore 
 
x = y * ( maximum - minimum )  + minimum = y * (13 – 5) + 5    (5-2) 
 
Notice that taking the inverse of the cumulative distribution reduces each case to the same 
problem, determining the value of y.  Thus, this approach for taking a random sample is called the 
inverse-transformation method.   
 
Figure 5-2 shows how this method works for the service time at workstation A.  Any value of y in 
the range 0-1 is equally likely.  (This is because y is a cumulative distribution.)  Good 
experimental procedure requires a random sample and so a random sample of y must be chosen.  
Once a random value is selected for y, the random sample of x is straightforward to compute.   
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The inverse-transformation method is summarized as follows: 
 
1. Determine the inverse of the cumulative distribution function, F

-1
(x). 

2. Each time a sample is needed: 
 a. Generate a random sample, r, uniformly distributed in the range 0 to 1. 
 b. x = F

-1
(r). 

 
Using the inverse-transformation method requires that the inverse of the cumulative distribution 
function exists.  This is true for the following distributions commonly used in simulation models: 
uniform, triangular, exponential, weibull, and any discrete distribution where the mass function is 
enumerated as well as a heuristic distribution in histogram form.   
 
As an example, consider the use of the inverse-transformation method with equation 5-2.  
Suppose r is selected to be 0.45.  Then x = -10 ln (1 – 0.43) = 5.62.  Next the inverse-
transformation method is applied to equation 5-5.  Suppose r is selected to be 0.88.  Then x = 
0.88 * ( 13 - 5 )  + 5 = 12.04. 
 
5.7 Pseudo-random Number Generation  
 
All of the random sampling strategies discussed in the previous section require a random sample 
uniformly distributed in the range (0,1).  Fortunately, there are several well known algorithms for 
generating such samples, called pseudo - random numbers.  These algorithms are 
deterministic.  However, the properties of the sequence of pseudo-random numbers make them 
look random.  These properties include the following: 
 
1. The numbers do not exhibit any statistical correlation with each other. 
2. The numbers appear to be uniformly distributed in the range (0,1). 
3. There are many, many (at least 1,000,000) numbers in sequence. 
4. All possible numbers in the sequence are generated before any number repeats. 
 
Because the pseudo-random number generation algorithms are deterministic, a sequence of 
numbers can be regenerated whenever necessary.  This is important in simulation both for 
debugging and experimentation using common random numbers.  Imagine the difficulty of 
removing a bug from a model if the results were randomly different each time the model was 
executed!   
 
A sequence of pseudo-random numbers is called a stream.  Having multiple streams of random 
numbers allows sampling from each particular probability distribution used in a model to be 
associated with a particular stream.  For example in the two stations in a series model, the time 
between arrivals and the operation time at station A would be assigned different streams.  This 
means for example that if the probability distribution modeling the operation time at station A were 
changed, the times between arrivals would remain the same. 
 
As in the previous section, one approach to pseudo-random number generation will be presented.  
Other approaches for generating pseudo-random numbers are given in Banks, Carson, Nelson, 
and Nicol (2009) as well as Law (2007).  Schmeiser (1980) provides a comprehensive survey. 
 

Perhaps the most common type of pseudo-random number generation algorithm, with respect to 
use in simulation languages, is the linear congruential generator (Lehmer, 1951).   The linear 
congruential generator (LCG) has the form: 
 
Zi = (a*Zi-1 + c) mod(m)         (5-3) 
 
ri = Zi / m          (5-4) 
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The Zi’s are a set of integers that range from 0 to m-1.  The integer Zi is a remainder and m is the 
divisor.  Other parameters of the generator are a multiplier a, an increment c, and the first integer 
Z0.  The pseudo-random number ri is obtained by dividing Zi by m.  Fortunately for our purposes, 
values for the parameters (a, c, m, and Z0) that result in the desirable properties listed above are 
used by commercial simulation languages.   
 
The generator is recursive that is Zi is a function of Zi-1.  Note that at most, m distinct Zi’s and thus 
ri’s (pseudo-random numbers) can be obtained.  Once Z0 is generated a second time, the entire 
sequence of Zi’s, and thus ri’s, will be repeated and in the same sequence as the first time.     
 
Consider the example LCG shown in Table 5-3.  The LCG parameter values are shown in the 
table.  Note that the Zi’

 
s range from 0-8.  All nine of the Zi’s are generated before any value 

repeats.  Thus, the ri’s appear to be as uniformly distributed in the range (0,1) as nine numbers 
can be.  The statistical correlation between the ri’s is low, 0.030.  Since the number of values 
generated is only 9, the value of m is too small for an effective LCG.  However, it suffices for an 
example. 
 

Table 5-3:  Example LCG 
 

  i Zi ri 

M 9 0 8 0.889 

A 4 1 1 0.111 

C 5 2 0 0.000 

  3 5 0.556 

  4 7 0.778 

  5 6 0.667 

  6 2 0.222 

  7 4 0.444 

  8 3 0.333 

  9 8 0.889 

  10 1 0.111 

  11 0 0.000 

  12 5 0.556 

 
5.8 Summary 
 
This chapter discusses the basic operations of a simulation engine.  While these operations are 
performed transparently to the modeler, an understanding of them helps clarify how simulation 
experiments work.  Events are organized and processed in time sequence.  Entities waiting for 
resources are sorted and maintained.  Random samples from distribution functions are generated 
and pseudo-random number streams are managed.   
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Problems 
 
1. State a procedure for generating a random sample from each of the following 
distributions using the inverse transformation method.  Use the procedure in section 5.6 as a 
guide. 
 

 a. Uniform distribution: 
minimummaximum
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 b. Exponential distribution: 
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 c. Weibull distribution: 
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 d. Triangular distribution:  
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 e. Discrete distribution: 
  F(x) = 0.1, x = 1 
         = 0.4, x = 2 
         = 0.6, x = 3 
         = 0.9, x = 4 
         = 1.0, x = 5 
  
2. Create a new trace based on the one shown in Table 5-2 by adding a entity with ID 

number 4 that arrives at time 2.0 with a processing time at workstation A of 6.4.   
 

3. Consider the properties of pseudo-random number generators presented in section 5-8.  
Does property four imply property two? 

 

4. Consider the two workstation in a series model and the last event list shown in section 5-
5.   

 
Current Simulation Time: 8.0  
Next Simulation Time = Time of first event occurrence in list = 8.0 

Event Time of Occurrence Entity ID 

Entity Arrives to B   8.0 1 
Start Service at A   8.0 2 
Entity Arrives to A 32.5 3 

 
Use the event graph shown in Figure 5-1 as well as the trace shown in Table 5-2 as a 
guide.   

   
a. Show the event list after the processing of the entity arrives to B event for the 

entity with ID number 1.  What single event occurrence was removed from the 
list?  What event occurrences remain on the list?  What event occurrences are 
added to the list? 

b. Show the event list after the first event on the list resulting from 2a is processed.  
What single event occurrence was removed from the list?  What event 
occurrences remain on the list?  What event occurrences are added to the list? 
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5. Implement a (bad) LCG generator in Excel with the following parameters: 
 
 a = 5; m = 16; c = 3; Z0 = 0. 
 
 Generate the first 20 samples from the generator.  Assess its behavior using the four 

properties in section 5.7. 
 
6. Compute the following table using a spreadsheet. 
 

a. Generate the two random number streams, corresponding to interarrival time and 
operation time at station A, for the first ten arriving entities in the two workstation in a 
series model.  Do this by using the random number generator built into your 
spreadsheet program.  In Excel, this would be accomplished by entering the function 
rand() into each cell of the Pseudo-random Number / Bet. Arrivals and the Pseudo-
random Number / Service Time columns. 

 
b. Use the inverse-transformation method to generate the time between arrivals and 

service time samples.  This means entering equation 5-1 into each cell in the Sample 
/ Bet. Arrivals column and entering equation 5-2 into each cell in the Sample / Service 
Time column.  The corresponding pseudo-random number in the columns should be 
referenced for each cell. 

 
Table for Problem 6 

 

Entity 
ID 

Pseudo-random Number Sample 

Bet. Arrivals Service Time Bet. Arrivals Service Time 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

 
7.  Considering only the first two entities from the data generated in the solution to number 6, 

create a trace similar to Table 5-2 for the two workstations in a series model. 
 



Part II 
Basic Organizations for Systems 

 
Traditionally, there have been two basic approaches to organizing systems.  A serial system 
processes one, or at most a few, types of customers, parts, or anything else.   Each item visits 
each of the workstations in a predefined sequence.  There are many contexts in which serial 
systems occur.  An assembly line may be used to manufacture an automobile.  Customers using 
a fast food restaurant drive through first order food via a microphone, drive to one window to pay, 
and then proceed to a second window where the food is delivered. Serial systems are discussed 
in chapter 7. 
 
A job shop processes many different types of jobs.  Each job type has a unique route through a 
set of workstations.  Like serial systems, job shops occur in a wide variety of contexts.  A job 
enters the shop and is routed through one or more of the stations of the shop for processing.  A 
customer enters the cafeteria and proceeds in whatever order seems to make sense to the 
customer through the stations where the various types of food can be acquired. 
  
A simulation based analysis of a job shop evolves through chapter 8 as well as chapter 10 in part 
III.  Chapter 8 discusses how the number of machines at each station in the job shop can be 
determined.  Chapter 10 examines the conversion of the job shop from a push to a pull operating 
strategy. 
 
Serial lines and job shops consist of multiple workstations.  Thus before studying these, a study 
of a single workstation is presented in Chapter 6.  Mathematical models as well as simulation 
models are employed. 
 
The terminating simulation experiment design is applied in all three application studies.  The 
iterative nature of the simulation process is demonstrated. 
 
The application studies in this part of the book are straightforward.  The applications problems 
follow directly from the corresponding application studies.  These provide basic practice in using 
the simulation process for problem solving including model building, experimentation and analysis 
as well as the use of simulation environment software.  The application studies and problems in 
the subsequent parts of the book are intended to be more challenging and to show the breadth of 
the use of simulation. 
 
The application study chapters are intended to be used in the following way.  Modeling and 
experimentation information needed to perform the application problem at the end of the chapter 
is introduced in and illustrated by the application study.  Thus, the application study is presented 
in a straightforward way.  Questions at the end of the chapter aid in the understanding of the 
application study.  Some questions require extensions of the model or the simulation experiment 
and are labeled as laboratory exercises. 
 
Additional questions at the end of the chapter concern the application problems.  These questions 
raise issues concerning modeling, experimentation, and the interpretation of results that must be 
resolved in completing the study.  The student may perform all of the simulation process steps, 
including model building, verification and validation, experimentation, analysis of simulation 
results, and conclusion drawing.  Alternatively, the questions may be used simply to discuss how 
the study should be performed. 
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Chapter 6 
 

The Workstation 
 
6.1 Introduction 
 
Previously, the effect on part lead time when the current machine at a workstation was replaced 
with a new machine with less variance in operating time was studied.  In this chapter, a more 
extensive study of a single workstation is performed using both analytic and simulation models in 
a complementary fashion.  The effects of operational detractors, batching with setup, machine 
downtime, and part reworking are analyzed.  Again, such a study can be done before a new 
machine is acquired to help validate the future state in a lean transformation.  The workstation 
operates on one independently identifiable part at a time.  The part resides in an input buffer 
while waiting for processing. 
 
6.2 Points Made in the Case Study 
 
This case shows how a new workstation, that is a part of a lean transformation, can be studied 
and its operation validated before implementation by using a combination of analytic and 
simulation models.   
 
The results of the analytic models are compared to the results of the simulation models to provide 
validation evidence for the simulation models. 
 
The use of models to quantify performance using both average and maximum values is shown. 
 
The average time between arrivals to a workstation should be equal to the takt time in order to 
produce the quantity of product demanded by a customer.  Variation could result in the time 
between arrivals being greater than the takt time for any particular part.  This could have a short 
term negative impact on the ability to meet customer demands. 
 
The average processing time at a workstation must be less than the takt time in order to produce 
the quantity of product demanded by a customer.  Variation could result in the processing time 
being greater than the takt time for some items.  This could have a short term negative impact on 
the ability to meet customer demands. 
 
The iterative nature of the simulation process is shown.  A review of the initial study of the 
workstation leads to a request to include the three detractors in the simulation study, both 
individually and in combination.  These detractors are batching with setup, breakdowns, and 
rejection and rework of a completed part. 
 
Statistical analysis is used to determine if the detractors have a significant effect on the lead time 
at the workstation when the detractors are present. 
 
6.3 The Case Study 
 
The case study shows the process of using simulation and analytic models together to address 
issues concerning a new workstation before acquisition and implementation. 
 
6.3.1 Define the Issues and Solution Objective 
 
A lean team has been studying the operation of a particular workstation.  A replacement machine 
with less variation in processing time, but the same average processing time, has been proposed 
as a part of a future state definition.  Management is requiring a study to determine the average 
and maximum lead times at the workstation if the replacement machine is acquired.   
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The workstation operates 168 hours per month.  Customer demand per month is 1680 parts or 10 
parts per hour, resulting in a takt time of 6 minutes.  The processing time for the new machine is 
triangularly distributed with a mean of 5 minutes, a minimum of 3 minutes and a maximum of 8 
minutes.  Thus, the mode is 4 minutes.  (See the discussion in chapter 3 for the computation of 
the mode.)  Inbound arrival of parts is not well controlled, which will be modeled using the 
practical worst case: Exponentially distributed with a mean equal to the takt time of 6 minutes. 
 
6.3.2 Build Models 
 
The model in pseudo-English is shown below.   
 

Define Arrivals:   // mean must equal takt time 
 Time of first arrival: 0 
 Time between arrivals: Exponentially distributed with a mean of 6 minutes 
    Exponential (6) minutes 
 Number of arrivals: Infinite // Note: The average number of arrivals is 1680 
 
Define Resources: 
 WS/1 with states (Busy, Idle) 
 
Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 
 
Process Workstation 
Begin 
 Set ArrivalTime = Clock   // record time part arrives on tag 
 Wait until WS/1 is Idle in Queue QWS // part waits for its turn on the machine 
 Make WS/1 Busy   // part starts turn on machine; machine is busy 
 Wait for Triangular (3, 4, 8) minutes // part is processed 
 Make WS/1 Idle    // part is finished; machine is idle 
 Tabulate (Clock-ArrivalTime) in LeadTime // keep track of part time on machine 
End 

 
The definitions tell about arrivals, the machine including its states, and the entity (part) attributes.  
The comments (denoted by //) describe the steps the part goes through for processing on the 
machine as well as recording the arrival time and tabulating its individual lead time just before 
departure. 
 
6.3.3 Identify Root Causes and Assess Initial Alternatives 
 
In this section, the simulation experimental design and results are presented.  First, an analytic 
model of the single work station is discussed in the next section. 
 
6.3.3.1 Analytic Model of a Single Workstation 
 

The time between arrivals is characterized by both a mean, Ta, and by a standard deviation, a 

and the processing time is characterized by both its mean CT and by its standard deviation, T.  

The coefficient of variation of the time between arrivals is ca = a / Ta.  The coefficient of variation 

of the processing time is cT = T / CT. 
 
The average number of parts in the buffer is WIPq and WIPq plus the utilization of the machine 
(equal the average number of parts in processing) is the WIP.   
 
The average time spent at the workstation can be broken into two parts: the average time in 
processing, CT, and the average time in the buffer, CTq. Their sum is the total is the lead time LT. 
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The relationship between WIP, lead time and throughput is known as Little’s Law. 
 
Work in process (WIP) = Throughput (TH) X Lead Time (LT)    (6-1) 

 
Examples: 
 
Number of parts at a workstation = Parts completed per hour at the work station X  

Total time at the workstation 
  
Number of customers at Burger King =  Customers served per hour at Burger King X 
     Time from entry to completion of service at BK 
 
Number of pallets on a holding conveyor = Pallets entering the main line conveyor per hour 

X 
Time till entry to the holding conveyor to entry to the main line conveyor 

 
Number of units in a transfer center =  Number of units entering the transfer center per hour X 
     Average processing time in the transfer center 
 
Number of students enrolled at GVSU = Number of students entering per year X 
     Average number of years enrolled at GVSU 
 
Here are some ideas that can be extracted from Little’s Law. 
 
1. In order for the WIP (a bad thing to have lots of) to decrease, either the throughput must 

decrease (for a constant lead time) or the cycle time must decrease for a constant 
throughput.  Since throughput often depends on requirements for finished goods and is 
the reciprocal of the takt time, decreasing lead time is most likely necessary to decrease 
WIP. 

 
2. Another way of writing Little’s Law is TH = WIP / LT.  This means that increasing 

throughput can be achieved by increasing WIP or decreasing LT.  However, increasing 
WIP (a bad thing to have lots of) may increase lead time.  Thus, increasing throughput 
most often requires decreasing lead time.  Note that the same throughput can be 
achieved with large WIP and large lead times or small WIP and small lead times. 

 
3. A third way of writing Little’s Law is LT = WIP / TH.  Decreasing LT can be achieved by 

decreasing WIP or increasing throughput if the WIP does not increase.   
 
Next we will consider all of the information that can be computed about the behavior of a single 
workstation that has one machine or one worker.  We will include means and variances in 
evaluating average behavior.  Notice that variation in measures of behavior is not, an often 
cannot, be determined analytically. 
 
Consider the workstation shown in Figure 6-1, with computed quantities shown in boldface.  
Quantities that are known are the time between arrivals (mean and variance) as well as the 
processing time (mean and variance).  Quantities that can be computed are: 
 
1. time in the input buffer of the station (CTq) 
2. lead time at the station (LT) 
3. average number of parts in the input buffer (WIPq)  
4. average number of parts at the station (WIP) 

5. utilization of the station, the percent of time the workstation is busy processing a part.   

6. time between departures (mean and standard deviation) (Td and d) 
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Figure 6-1:  Computation of Workstation Quantities 
 
 
Equation 6-2 is called the VUT equation, for Variance – Utilization – Time and is used to 
approximate the average cycle time in the queue.  This equation is presented and further 
discussed in Hopp and Spearman (2007). 
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The following insights can be gained by examining equation 6-2. 
 
1. The cycle time in the buffer depends on the variance of the time between arrivals and the 

variance of the processing time, expressed as the squared coefficient of variation.  As the 
variance of either increase, the average cycle time in the queue increases.  The 
coefficient of variation is the standard deviation / mean. 

2. The cycle time in the buffer increases in a highly non-linear fashion as the utilization 
increases.  The utilization term for a utilization of 90% is 9, for a utilization of 95% is 19, 
and for a utilization of 99% is 99. 

3. The only way to effectively run a workstation with high utilization is to eliminate the 
variation in the time between arrivals and the processing time. 

4. A utilization of 100% cannot be achieved unless the variance in both the processing time 
and the time between arrivals is zero. 

5. The mean and the standard deviation of the exponential distribution are equal.  Thus, the 
coefficient of variation for an exponential distribution is equal to 1.  Thus, the “good” 
range for the V term is 0 to 1. 

6. The distributions of the time between arrivals and the processing times are not required, 
only the mean and the standard deviation. 

 
Once the average cycle time in the buffer is determined, the average number in the buffer can be 
determined using Little’s Law: 
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The lead time at the station is simply the cycle time in the buffer plus the processing time: 
 

TCTLT
q
           (6-4) 

 



6-5 
 

The number at the station can be obtained from equation 6-4 using Little’s Law: 
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The mean of the time between departures should equal the mean of the time between arrivals.  
This is simply a law of the conservation of parts:  All entering parts must depart.  The 
conservation law applies between workstations as well:  The mean and variation of the time 
between departures from one workstation are the same as the mean and variation of the time 
between arrivals to the next work station. 
 
The squared coefficient of determination of the time between departures is given by equation 6-6: 
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cucuc          (6-6)  

 
The following insights can be gained by examining equation 6-6. 
 
1. The variation in the departures for a high utilization workstation depends mostly on the 

variation in the processing time.  Thus, a low variation processing time results in a low 
variation in the departures, which results in a low variation in the arrivals to the next 
workstation. 

2. A workstation with high utilization and low variation in processing time will, to a great 
extent, eliminate high variation in the time between arrivals. 

3. A workstation with high utilization and high variation in processing time will cause high 
variation in the time between arrivals to the next station.  Thus, the cycle time in the 
buffer at the next station will tend to be high. 

4. A workstation with low utilization will tend to result in the variation of the time between 
arrivals at the next workstation equaling the variation in the time between departures at 
the current workstation. 

 
The results from the analytic model of the workstation of interest are shown in Table 6-1.   
 

Table 6-1:  Analytic Model of Workstation – Results 
 

Inputs Average time between arrivals 6 

 Average processing time 5 

 Std. Dev. time between arrivals 6 

 Std. Dev. processing time 3 

Utilization Utilization 83.3% 

Average Times ca -- Time between arrivals 1 

 cT -- Processing time 0.6 

 Variance term 0.68 

 Utilization term 5.0 

 Average time in buffer 17.0 

 Average lead time 22.0 

Average Number of Parts Average number in the buffer  2.8 

 Average number at the station 3.7 

Departure Information Average time between departures 6 

 cd
2
 -- Time between departures 0.56 
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Note that the inputs to the analysis are the average and standard deviation of the time between 
arrivals as well as the average and standard deviation of the processing time.  The averages are 
typically obtained through value stream mapping.  The standard deviations must typically be 
obtained through additional data collection and analysis. 
 
6.3.3.2 Simulation Analysis of the Single Workstation 
 
Next, the design for the simulation experiment must be specified.  This design will make use of 
the results of the analytic model.   
 
The experimental design contains the elements discussed in chapter 4.  This is a terminating 
simulation of duration 168 hours, the monthly planning period.  There are two streams required, 
one for the time between arrivals and one for the processing time.  The initial conditions are set 
based the results of the analytic model: 2 parts in the buffer and thus one additional part on the 
machine.  Lead time is the primary performance measure of interest.   Some of the other 
quantities computed by the analytic model are also of interest: utilization of the machine and 
average number of parts in the buffer.  These will be used in obtaining validation evidence for the 
simulation model and experiment.  Twenty replications will be performed.  There are no model 
parameters in the first experiment. 
 
In summary, the experiment design is as follows: 
 

Table 6-2:  First Simulation Experiment Design for the Workstation. 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values None 

Random Number Streams 1.  Time between arrivals 
2.  Operation time 

Performance Measures 1.  Part lead time 
2.  Utilization of the machine 
3.  Number of parts waiting for the machine 
in the buffer 

Number of Replicates 20 

Initial Conditions 2 parts in the buffer implying one part on 
the machine 

Simulated Time Interval 
(Beginning time – ending time) 

0 – 168 hours 

 
Verification evidence is obtained using the balance equation: 
 
Number of entities entering =  

Number of entities leaving + Number of entities remaining at the end  
 
The number of entities entering the model is the sum of those arriving and the initial entities.  
Thus for the first replicate: 
 
1717 + 3 = 1719 + 1. 
 
Thus, validation evidence is obtained. 
 
Table 6-3 shows the simulation results.  These results are consistent with the results from the 
analytic model.  The 99% confidence intervals for the utilization, the average number of parts 
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waiting at the station, and the average lead time all contain the corresponding values resulting 
from the analytic model.  Thus, model validation evidence is obtained. 
 

Table 6-3: Simulation Results for Base Experiment 
 

 
 
Replicate 

Average 
Number 
at Station 

Average 
Lead 
Time 

Max 
Lead 
Time 

Utilization 

1 3.20 18.80 74.70 0.86 

2 2.99 18.11 79.15 0.83 

3 3.40 20.36 83.38 0.83 

4 3.70 21.15 61.29 0.88 

5 2.28 14.13 54.11 0.80 

6 2.76 16.79 61.17 0.82 

7 3.39 20.17 75.93 0.84 

8 2.57 15.66 60.89 0.82 

9 3.17 18.52 79.15 0.86 

10 3.36 20.34 97.58 0.83 

11 2.92 16.99 60.50 0.86 

12 4.51 26.07 104.61 0.87 

13 3.11 18.97 81.80 0.82 

14 2.63 16.46 67.19 0.80 

15 3.23 18.89 75.20 0.86 

16 2.75 16.62 90.52 0.82 

17 2.56 15.49 62.29 0.83 

18 2.53 15.66 68.35 0.80 

19 5.52 31.55 138.89 0.88 

20 4.45 25.75 129.22 0.87 

Average 3.25 19.32 80.30 0.84 

Std. Dev. 0.79 4.24 22.63 0.02 

99% CI 
Lower Bound 

2.74 16.61 65.82 0.82 

99% CI 
Upper Bound 

3.76 22.03 94.77 0.85 

 
6.3.4 Review and Extend Previous Work 
 
Management reviewed the simulation model and experiment, concluding that the model was a 
validated as a tool for assessing the future state before implementation.   
 
The lead time results from the models were of concern with respect to how the workstation would 
operate.  The average lead time was about four times the processing time.  The average 
maximum lead time estimated by the simulation model was about 16 times the processing time.  
These high values are entirely due to the variation in the arrival of inbound parts or orders 
(expressed by modeling the time between arrivals as exponentially distributed) as well as the 
variation in processing time as seen in the coefficient of variation of 0.60.  Thus, reducing this 
variation by identifying and addressing root causes seems fundamental to making the workstation 
operation leaner. 
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At the review meeting, a request was made to assess the effects of three detractors on 
workstation performance.  The assessment of each was to be made independently of the others. 
 
The nature of these detractors is discussed in the following section. 
 
6.3.4.1 Detractors to Workstation Performance 
 

The first detractor is breakdowns.  Breakdowns reduce the amount of available production time.  
A period of operation for a single machine ends in a breakdown.  The length of this period is 
highly variable.  Some time is needed to repair the machine, which could vary by the type of 
breakdown.  This breakdown-repair cycle repeats as shown in Figure 6-2. 
 

 
 

Figure 6-2:  Operation and Repair Cycle 
 
Let TB denote the average time between the end of a repair and the next breakdown and TR 
denote the average repair time.  Then the quantity TB + TR is the length in time of the breakdown-
repair cycle.  The availability is defined as the percent of time the machine is not broken and is 
computed as follows. 
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The following should be noted concerning availability: 
 

1. The time to complete all work (operations on parts) is reduced to A% of the original time. 
2. The lead time for parts waiting for the workstation while it is being repaired will be much 

longer than for parts that don’t wait for a repair.  Thus, the average, maximum, and 
standard deviation of the lead time will increase. 

 
In this case, the machine breaks down on the average once per week (40 hours) and takes 
between 30 minutes and 2 hours to repair.  Since the time between breakdowns is highly 
variable, it is modeled as exponentially distributed with a mean of 40 hours.  The time to repair is 
modeled as uniformly distributed between 30 minutes and 2 hours (120 minutes). 
 
The second detractor is defective parts.  Either additional parts need to be made or the defective 
parts need to be reworked to meet the demand.  This increases the amount of work that needs to 
be done to produce the number of parts needed to meet the demand.  If additional parts need to 
be made or the average rework time is the same as the average production time, the number of 
parts that need to be made is given by equation 6-8 where p is the percent of parts that are 
defective. 
 
DNew = DOld / (1-p)         (6-8) 
 



6-9 
 

The following should be noted concerning defective parts. 
 

1. The increase in work will increase the utilization of the workstation, which in turn 
increases the lead time as shown in the VUT equation (6-2). 

2. Effectively, there are more arrivals to the workstation which decreases the time between 
arrivals to TBA * (1-p). 

 
In the case, let p = 5%. 
 
The final detractor is setup and the resulting batching of parts.  The setup and batching process is 
as follows.  As they arrive, parts are gathered into a group called a batch until the number of parts 
in the group equals the predetermined batch size (b).  The newly formed batch enters the buffer 
of the machine to wait processing.  Processing the batch means performing a setup operation on 
the machine and then processing all items in the batch. 
 
The following should be noted concerning setup and batching. 
 

1. Waiting for a batch to form will increase the average, maximum, and standard deviation 
of lead time. 

2. The following must be true:  b*takt time >= setup time + b * operation time 
3. The minimum feasible batch size may be greater than one, given the preceding item in 

the list. 
 
This leads to the following question:  What is the smallest value of the batch size such that the 
utilization, which now includes the setup time, is as close as possible to a given value?  
Decreasing the batch size increases the number of setups and thus the amount of time spent 
doing setup work, which is not productive.  However, decreasing the batch size decreases the 
work in process and finished goods inventories and supports a more flexible production schedule.  
These goals are consistent with achieving a lean production environment. 
 
The utilization should be computed as shown in equation 6-9.   
 

 = (setup time + b * CT) / (b * Ta)       (6-9) 
 
Then the smallest batch size for a given value of the utilization is given by equation 6-9a. 
 
                 ⁄             (6-9a) 
 
This problem also can be formulated and solved using a spreadsheet to facilitate evaluating 
alternative values of the batch size.  These alternatives could include complying with constraints 
such as the batch size must be a multiple of 10.  The evaluation is done by computing the 
utilization and number of batches as a function of the selected batch size. 
 
The target utilization is entered.  The absolute deviation between the actual utilization and the 
target is minimized.  In other words, the batch size n is changed until the actual utilization is as 
close as possible to the target.  This may be done manually or with one of the spreadsheet tools: 
solver and goal seek.  Note: if goal seek is used, start with a very small batch size. 
 
In this case, the target utilization is set to 95% and the setup time is 30 minutes.  Table 6-4 shows 
the how a batch size of 42 was determined.  Note the value of the batch size computed using 
equation 6-9a is 42.9. 
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Table 6-4:  Result of Finding a Target Batch Size 
 

Inputs Target Utilization   95% 

 Average Time Between Arrivals     6 

 CT     5 

 Setup Time    30 

 Demand 1680 

Result Batch size (b)    42 

Computations Numerator  240 

 Denominator  252 

 Utilization 95.2% 

 Deviation   0.2% 

 Number of Batches    40 

 
6.4 The Case Study for Detractors 
 
The simulation process is restarted to analyze the effect on lead time of each detractor 
separately. 
 
6.4.1 Define the Issues and Solution Objective 
 
The effect of random downtimes on part lead time for parts processed by the workstation is to be 
assessed.  As discussed in the previous section, the time between breakdowns is modeled as 
exponentially distributed with a mean of 40 hours and the time to repair is modeled as uniformly 
distributed between 30 and 120 minutes. 
 
The effect of defective parts on part lead time at the workstation is to be assessed.  Five percent 
of completed parts are found to be effective and must be reworked.  The time for reworking is the 
same as the original processing time. 
 
The effect of setup and batching on part lead time at the workstation is to be assessed.  For a 
target utilization of 95%, the batch size was determined to be 42 parts. 
 
6.4.2 Build Models 
 
The modeling of random downtimes was discussed in chapter 2 and will not be repeated here. To 
summarize, recall a distinct process is created which models an ongoing cycle of breakdowns 
and repairs.  After the time between breakdowns, the resource representing the workstation 
enters the broken state from the idle state.  After the time for repair, the resource enters the idle 
state to be ready to process another part. 
 
The model in section 6.3.2 is modified as follows to include defective parts.   After a part has 
completed processing, it is identified as needing rework with probability 5%.  If rework is needed, 
the part is sent back to start the workstation process over again.  Parts now arrive to Process 
Arrive where the arrival time is set.  This avoids resetting the arrival time for defective parts. 
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// Workstation model with defective parts 
 
Define Arrivals:   // mean must equal takt time 
 Time of first arrival: 0 
 Time between arrivals: Exponentially distributed with a mean of 6 minutes 
    Exponential (6) minutes 
 Number of arrivals: Infinite // Note: The average number of arrivals is 1680 
 
Define Resources: 
 WS/1 with states (Busy, Idle) 
 
Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 
 
Define State Variable 
 PercentDefective = 0.05  // Percent of defective parts 
 
Process Arrive 
Begin 
 Set ArrivalTime = Clock   // record time part arrives on tag 
 Send to Process Workstation  // start processing 
End 
 
Process Workstation 
Begin 
 Wait until WS/1 is Idle in Queue QWS // part waits for its turn on the machine 
 Make WS/1 Busy   // part starts turn on machine; machine is busy 
 Wait for Triangular (3, 4, 8) minutes // part is processed 
 Make WS/1 Idle    // part is finished; machine is idle 
 If (Uniform(0,1) < 0.05) then 
  Send to Process Workstation  // part is defective rework 
 Tabulate (Clock-ArrivalTime) in LeadTime // keep track of part time on machine 
End 

 
The model in section 6.3.2 is modified as follows to include batching and setup.  Entities in the 
workstation process now represent batches.  Thus, an entity is not sent from the arrival process 
to the workstation process until a batch is formed.  In the arrival process, the first 41 entities in the 
batch wait on a list.  The 42

nd
 entity is sent to the workstation process.  The time delay in the 

workstation process is now the setup time plus 42 different samples of the processing time.  After 
the batch is processed, all 42 entities go to the depart process so that each lead time can be 
recorded. 
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// Workstation model with batching and setup 
 
Define Arrivals:   // mean must equal takt time 
 Time of first arrival: 0 
 Time between arrivals: Exponentially distributed with a mean of 6 minutes 
    Exponential (6) minutes 
 Number of arrivals: Infinite // Note: The average number of arrivals is 1680 
 
Define Resources: 
 WS/1 with states (Busy, Idle) 
 
Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 
 
Define State Variable 
 BatchSize = 42  // Percent of defective parts 
 SetupTime = 30  // Setup time 
 Processed  // Number of parts processed 
 
Define List 
 BatchList  // List of parts waiting for batching 
 
Process Arrive 
Begin 
 Set ArrivalTime = Clock    // record time part arrives on tag 
 If TotalArrivals(Arrive) %  BatchSize ! = 0 then  
  Add entity to list BatchList  // stop entity processing for now 
 Send to Process Workstation   // start processing 
End 
 
Process Workstation 
// An entity in this process represents a batch 
Begin 
 Wait until WS/1 is Idle in Queue QWS // batch waits for its turn on the machine 
 Make WS/1 Busy   // part starts turn on machine; machine is busy 
 Wait for SetupTime   // Setup machine 
   
 // Processing time for batch as sum of processing times for each part 
 Processed = 0 
 do while Processed < Batchsize 
 Begin 

Wait for Triangular (3, 4, 8) minutes // part is processed 
Processed++ 

 End 
 

Make WS/1 Idle    // part is finished; machine is idle 
 // Send all entities in batch to record lead time 

Send Batchsize – 1 from BatchList to Process Depart   
 Send to Process Depart 
End 
 
Process Depart 
 Tabulate (Clock-ArrivalTime) in LeadTime // keep track of part time on machine 
End 
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6.4.3 Assessment of the Impact of the Detractors on Part Lead Time 
 
The experimental design shown in Table 6-2 can be used with additions as follows: 
 

1. For the case of breakdowns, add two random streams: one for the time between 
breakdowns and the other for the time till repair. 

2. For the case of defective parts, add a random stream for determining whether or 
not parts are defective. 

3. For setup and batching, no additions are needed. 
 
Table 6-5 shows the simulation results assessing the effect on lead time of breakdowns. 
 

Table 6-5: Simulation Results for Breakdown Experiment 
 

Replicate Average 
Number at 
Station 

Average 
Lead 
Time 

Maximum 
Lead 
Time 

Utilization 

1 4.33 25.41 94.28 0.86 

2 5.28 32.03 186.20 0.83 

3 3.49 20.90 83.38 0.83 

4 8.48 48.58 270.39 0.87 

5 3.91 24.29 138.08 0.80 

6 3.67 22.36 116.80 0.82 

7 3.89 23.15 141.18 0.84 

8 3.51 21.39 121.25 0.82 

9 6.07 35.46 124.02 0.86 

10 5.40 32.74 164.23 0.83 

11 4.30 25.06 149.75 0.86 

12 14.79 85.83 264.19 0.86 

13 3.57 21.78 91.78 0.82 

14 4.52 28.31 134.16 0.80 

15 4.14 24.25 148.00 0.86 

16 2.76 16.71 90.52 0.82 

17 7.06 42.84 213.73 0.83 

18 3.41 21.14 128.25 0.80 

19 10.59 60.52 218.28 0.88 

20 7.17 41.47 221.30 0.86 

Average 5.52 32.71 154.99 0.84 

Std. Dev. 2.94 16.68 56.37 0.02 

Lower 
Bound 3.64 22.04 118.93 0.82 

Upper 
Bound 7.40 43.38 191.05 0.85 

 
Note that there is an operational significant increase in the average number at the station, the 
average lead time, and the maximum lead time versus the base experiment.  Notice the increase 
in the standard deviation of these quantities as well.   
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This statistical significance of this difference is confirmed for the average lead time using the 
paired-t test shown in Table 6-6. 
 

Table 6-6:  Paired-t test for Difference in Average Lead Time 
 

 Average Lead Time 

Replicate Base  Breakdowns Increase 

1 18.80 25.41 6.62 

2 18.11 32.03 13.92 

3 20.36 20.90 0.54 

4 21.15 48.58 27.42 

5 14.13 24.29 10.15 

6 16.79 22.36 5.56 

7 20.17 23.15 2.98 

8 15.66 21.39 5.73 

9 18.52 35.46 16.94 

10 20.34 32.74 12.40 

11 16.99 25.06 8.07 

12 26.07 85.83 59.76 

13 18.97 21.78 2.81 

14 16.46 28.31 11.85 

15 18.89 24.25 5.36 

16 16.62 16.71 0.09 

17 15.49 42.84 27.36 

18 15.66 21.14 5.48 

19 31.55 60.52 28.97 

20 25.75 41.47 15.71 

Average 19.32 32.71 13.39 

Std. Dev. 4.24 16.68 13.96 

Lower Bound 16.61 22.04 4.46 

Upper Bound 22.03 43.38 22.31 

 
The application of the paired-t test to the other simulation results is left as an exercise for the 
reader. 
 
Table 6-7 shows the simulation results for the case of defective parts. 
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Table 6-7:  Simulation Results for Defects Experiment 
 

Replicate Average  
Number at 
Station 

Average 
Lead 
Time 

Max 
Lead 
Time 

Utilization 

1 4.42 25.96 92.01 0.90 

2 3.93 23.78 109.29 0.86 

3 4.95 29.68 115.86 0.89 

4 6.25 35.80 116.02 0.92 

5 2.76 17.08 57.05 0.83 

6 3.71 22.61 89.94 0.87 

7 4.34 25.81 86.87 0.88 

8 3.23 19.67 69.43 0.86 

9 4.56 26.64 96.35 0.90 

10 4.46 27.02 105.34 0.87 

11 3.51 20.49 70.55 0.89 

12 6.45 37.28 151.03 0.91 

13 4.59 27.99 120.01 0.87 

14 3.77 23.62 110.85 0.84 

15 5.55 32.52 97.14 0.91 

16 3.44 20.82 109.64 0.87 

17 4.22 25.56 107.08 0.87 

18 3.08 19.13 74.60 0.84 

19 9.26 52.91 210.05 0.92 

20 7.47 43.21 202.32 0.91 

Average 4.70 27.88 109.57 0.88 

Std. Dev. 1.61 8.83 39.26 0.03 

Lower Bound 3.67 22.23 84.46 0.86 

Upper Bound 5.73 33.53 134.69 0.90 

  
The average and maximum lead times have increased noticeably.  The utilization has increased 
as would be expected as has the average number at the station.  Recall from the VUT equation 
that average time in the buffer increases in a highly non-linear fashion as the utilization increases. 
 
Table 6-8 shows the simulation results for the case of setting up the machine and batching parts. 
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Table 6-8:  Simulation Results for the Batching and Setup Experiment 
 

Replicate Average 
Number at 
Station 

Average 
Lead 
Time 

Max 
Lead 
Time 

Utilization 

1 1.07 385.04 569.01 0.95 

2 1.04 396.15 600.01 0.92 

3 1.02 387.67 574.46 0.92 

4 1.34 447.70 725.87 0.96 

5 0.92 372.75 576.90 0.89 

6 1.02 388.70 601.50 0.92 

7 1.07 394.96 584.17 0.94 

8 0.99 380.84 570.58 0.92 

9 1.07 388.28 610.56 0.96 

10 1.05 396.50 587.92 0.92 

11 1.19 416.94 610.85 0.95 

12 1.29 443.08 720.79 0.96 

13 1.01 387.51 609.96 0.90 

14 0.96 385.28 576.22 0.89 

15 1.22 429.32 685.80 0.95 

16 0.98 380.15 591.23 0.92 

17 0.99 385.66 581.59 0.92 

18 0.98 391.68 586.99 0.89 

19 1.86 579.34 950.53 0.97 

20 1.24 425.28 696.60 0.97 

Average 1.12 408.14 630.58 0.93 

Std. Dev. 0.21 45.65 90.67 0.03 

Lower Bound 0.98 378.94 572.58 0.91 

Upper Bound 1.25 437.35 688.58 0.95 

 
The following effects of setup and batching can be noted in table 6-8.   
 

1. The average number at the station now represents batches instead of individual parts.  
The average value of 1.12 indicates that on the average a new batch forms in a shorter 
time than it takes to process the preceding batch.   

2. The average and maximum lead times of a part increase greatly versus the case with no 
detractors reflecting the time to form a batch and setup time. 

3. The utilization is consistent with that specified to find the best batch size, 95%. 
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6.5 Summary 
 
This chapter discusses a beyond lean analysis of the operation of a single workstation, both with 
and without operations detractors: breakdowns, part reworking, as well as setup and batching.  
An analytic model is used to compute the workstation utilization as well as the average time and 
number of parts in the buffer of the workstation for the case of no detractors.  This model provides 
validation evidence for a simulation model of the workstation which estimates the same quantities 
plus the maximum lead time.  The different replications of the simulation experiment show a wide 
range of different system behavior possibilities and the corresponding performance measure 
values.  Details of system behavior could be extracted from the simulation as well. 
 
Simulation models and experiments were conducted individually for each detractor.  Results were 
compared to the no detractors case.  An analytic model was used to set the best batch size given 
a utilization of 95%. 
 
Problems 
 

1. Perform a complete comparison of the breakdowns case to the no detractors case using 
paired-t statistical tests. 

2. Perform a complete comparison of the part reworking case to the no detractors case 
using paired-t statistical tests. 

3. Perform a complete comparison of the setup and batching case to the no detractors case 
using paired-t statistical tests. 

4. Find the best batch size for a target utilization of 95% for a workstation with average time 
between arrivals of 10 minutes, cycle time of 9 minutes, and setup time of 1 hour.  
Production is 1000 parts. 

5. Based on the simulation results that follow, provide validation evidence for a model of a 
single workstation with utilization of 80% 
 

Replicate Utilization 

  1 80.2% 

  2 79.5% 

  3 80.4% 

  4 80.6% 

  5 79.2% 

 
6. Based on the simulation results that follow, provide verification evidence for a model of a 

single workstation. 
 
Initial items:       10 
Items remaining at the end of the simulation:   15 
Arriving items:     150 
Departing items:    145  
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7. Consider a single server workstation for which the average time between arrivals is 10 

minutes and the average processing time is 9 minutes.  Suppose a group modeling the 
workstation is trying to determine the distributions for the time between arrivals and the 
processing time in absence of data.  Use the VUT equation to determine the average 
waiting time in the queue for the following possibilities. 

 

 Time Between Arrivals Processing Time 

a. Exponential Exponential 

b. Constant Exponential 

c. Exponential Uniform (6, 12) 

d. Constant Uniform (6, 12) 

e. Exponential Triangular (6, 9, 12) 

g. Constant Triangular (6, 9, 12) 

h. Exponential Triangular (6, 7, 14) 

i. Constant Triangular (6, 7, 14) 

 
Case Problem 
 
A new workstation is being designed and a complete analysis is needed as described in this 
chapter.  The workstation operates 168 hours per month.  Parts are modeled as arriving 
according to an exponential distribution with mean 10 minutes.  Processing time is uniformly 
distributed between 6 and 9 minutes. 
 
Detractors are as follows. 
 
Breakdowns:    The average time between breakdowns is 40 hours.  Repair time is 
uniformly distributed between 30 and 150 minutes. 
 
Defective parts:  Five percent of parts are defective and require rework. 
 
Setup and batching:   The setup time is 45 minutes.  A utilization of 95% is targeted.  The best 
batch size should be determined. 
 
First perform a complete study of the new workstation with no detractors.  Use an analytic model 
as well as a simulation model and experiment.  Part lead time is the primary performance 
measure.  Verification and validation evidence for the simulation model must be obtained. 
 
Second, use a simulation model and experiment to assess the joint effect of all three detractors.  
Verification and validation evidence should be obtained. 
 
How to do this case study will be described in tutorial style for the simulation environment that 
you are using in a separate document. 
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Chapter 7 

 

Serial Lines 
 
7.1 Introduction 
 
A workstation performs one, or one set of, operations on an item.  Multiple workstations are 
required to perform all operations necessary to produce a finished product or perform a required 
service.  Suppose one, or at most a few, types of items need to be processed and that this can be 
accomplished by processing all items in the same sequence.  In this case, a set of single 
workstations organized into a serial line is appropriate, possibly with a material handling device 
moving items between the workstations. 
 
In Figure 7-1, a material handling device such as a conveyor lies between seven workstations that 
comprise a serial line.  Items enter at the far left and depart at the far right.  Each workstation in 
left to right sequence performs particular operations on the item.  A finished product leaves the 
system after completing the operation at the right most workstation.  
 
 

 
 

Figure 7-1:  Typical Serial Line 
 
An assembly line is one kind of serial system that typically employ human workers.  A transfer line 
is another type of serial system whose workstations consist of automatic machines with a 
common control system. 
 
In a lean system, the work to be done in processing an item would be balanced between the 
workstations.  The the average operating time at each workstation should be as close to the same 
as possible.  However, it is possible that these average times vary or due to random variation the 
processing time for an individual part varies between the workstations and the operation time for 
different parts vary at any particular workstation.   
 
Thus when a workstation completes its operation on an item, the following workstation may still be 
processing another item.  By placing the completed item in a buffer between the stations, the 
preceding workstation may begin processing another item.  If the buffer is full, the preceding 
station has no where to place the completed item and cannot begin working on another.  In this 
case, the workstation is in the BLOCKED state.  Time in the BLOCKED state is unproductive and 
may increase lead time.  Preventing blocking requires buffer space that may be scarce (or a 
reduction in variability).  Thus, minimizing lead time and minimizing buffer between workstations 
space trade off against each other. 
 
7.2 Points Made in the Case Study 
 
This application study shows how the trade-off between competing factors such as minimizing 
lead time and minimizing buffer space can be assessed using simulation.   
 
Generally accepted analytic and experimental results are applied in the design of a first simulation 
experiment.  Justification for using equally sized buffers is based on these results.  Performance 
measure values from this first experiment are used in designing additional experiments.   
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Sometimes a statistically significant improvement in system performance is not operationally 
meaningful.  Doubling the buffer size leads to a small reduction in lead time.  Though statistically 
significant, the amount of the increase is not operationally meaningful. 
 
The benefit of evolving new models from existing models is shown.  Models of serial systems are 
evolved from the model of the single workstation presented in chapter 6.   
 
7.3 The Case Study 
 
In this application study, we consider a serial line where it is essential to minimize buffer space 
between workstations without compromising lead time. 
 
7.3.1 Define the Issues and Solution Objective 
 
A new three workstation serial line process is being designed for an electronics assembly 
manufacturing system.  The line produces one type of circuit card with some small design 
differences between cards allowed.  The line must meet a lead time requirement that is yet 
undetermined.  Circuit cards are batched into relatively large trays for processing before entering 
the line.   
 
Only a small amount of space is available in the plant for the new line, so inter-station buffer 
space must be kept to a minimum.  A general storage area with sufficient space can be used for 
circuit card trays prior to processing at the first workstation.  Engineers are worried that the small 
inter-station buffer space will result in severe blocking that will prevent the lead time target from 
being reached.  The objective is to determine the relationship between buffer size and lead time 
noting the amount of blocking that occurs.  This knowledge will aid management in determining 
the final amount of buffer space to allocate.  Management demands that production requirements 
be met weekly.  Overtime will be allowed if necessary.   
 
The layout of the line is shown in Figure 7-2.  A single circuit card is used to represent a tray.  All 
cards in the tray are processed simultaneously by each machine.  Three circuit card trays are 
shown waiting in the general storage area for the solder deposition station, which is busy.  The 
component placement station is idle and its buffer is empty.  The solder reflow station is busy with 
one circuit card tray waiting.   
 
The time between the arrival of circuit card trays to the first workstation is exponentially distributed 
with mean 3.0 minutes.  The processing time distribution is the same at each workstation: 

uniformly distributed between 0.7 and 4.7 minutes.1  This indicates that the line is balanced, as it 
should be. 
 
 

                                                           
1 Alternatively, some simulation languages such as Automod express the uniform distribution as 
mean and half range instead of minimum and maximum.  Thus, a uniform distribution between 
0.7 and 4.7 can be equivalently expressed as 2.7 ± 2.0. 
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7.3.2 Build Models 
 
The model of the serial system includes the arrival process for circuit cards, operations at the 
three stations, and tray movement into and out of the two inter-station buffers. 
  
There are four entity attributes.  One entity attribute is arrival time to the system, ArrivalTime.  The 
other three entity attributes store the operation times for that particular entity at each station.   
 
Assigning all operating times when the entity arrives assures that the first entity has the first 
operating time sample at each station, the second the second and so forth.  This assignment is 
the best way to ensure that the use of common random numbers is most effective in reducing the 
variation between system alternative scenarios, which aids in finding statistical differences 
between the cases.  In general, the nth arriving entity may not be the nth entity processed at a 
particular station.  In the serial line model, this will be the case since entities can’t “pass” each 
other between stations. 
 
The processing of a circuit card tray at the deposition station is done in the following way.  A 
circuit card tray uses the station when the latter becomes idle.  The operation is performed.  The 
circuit card tray then must find a place in the inter-station buffer before leaving the deposition 
station.   Thus, the deposition station enters the blocked state until the circuit card tray that has 
just been processed enters the inter-station buffer.  Then the station enters the idle state.  This 
logic is repeated for the placement station.  The tray departs the line following processing at the 
reflow station. 
 
The pseudo-English for the model follows.  Note that there is one process for arriving entities, one 
for departing entities and one for each of the three workstations. 
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// Serial Line Model  
 
Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: Exponentially distributed with a mean of 3 minutes 
    Exponential (3) minutes 
 Number of arrivals: Infinite  
 
Define Resources: 
 WS_Deposition/1 with states (Busy, Idle, Blocked) 
 WS_Placement/1 with states (Busy, Idle, Blocked) 
 WS_Reflow/1   with states (Busy, Idle) 
 WS_BufferDP/?  with states (Busy, Idle) 
 WS_BufferPR/?  with states (Busy, Idle) 
 
Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 
 OpTimeDes  // operation time at deposition station 
 OpTimePlace  // operation time at placement station 
 OpTimeReflow  // operation time at reflow station 
 
Process Arrive 
Begin 
 Set ArrivalTime = Clock    // record time part arrives on tag 

 Set OpTimeDes  = uniform(0.7, 4.7)2 // set operations times at each station 
 Set OpTimePlace    = uniform(0.7, 4.7) 
 Set OpTimeReflow  = uniform(0.7, 4.7) 

Send to Process Deposition   // start processing 
End 
 
Process Deposition 
// Deposition Station 
Begin 
 Wait until WS_Deposition/1 is Idle in Queue Q_Deposition  // wait its turn on the machine 
 Make WS_Depostion/1 Busy  // tray starts turn on machine; machine is busy 

Wait for OpTimeDes minutes  // tray is processed 
Make WS_Deposition/1 Blocked  // tray is finished; machine is Blocked 
 
Wait until WS_BufferDP/1 is Idle  // wait for interstation buffer space 
Make WS_Deposition/1 Idle  // free deposition machine 

 Send to Process Placement  // Send to placement machine 
End 
 
Process Placement 
// Placement Station 
Begin 
 Wait until WS_Placement/1 is Idle  // wait its turn on the machine 
 Make WS_BufferDP/1  Idle  // leave interstation buffer 
 Make WS_Placement/1 Busy  // tray starts turn on machine; machine is busy 

Wait for OpTimePlace minutes  // tray is processed 
Make WS_Placement/1 Blocked  // tray is finished; machine is Blocked 
Wait until WS_BufferPR/1 is Idle  // wait for interstation buffer space 
Make WS_Placement/1 Idle  // free placement machine 

                                                           
2 In Automod this would be written using the midpoint, half-range style: uniform 2.7, 2.0 
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 Send to Process Reflow   // Send to reflow machine 
End 
Process Reflow 
// Reflow Station 
Begin 
 Wait until WS_Reflow1 is Idle   // wait its turn on the machine 
 Make WS_BufferPR/1  Idle  // leave interstation buffer 
 Make WS_Reflow/1 Busy  // tray starts turn on machine; machine is busy 

Wait for OpTimeReflow minutes  // tray is processed 
Make WS_Reflow/1 Idle   // free placement machine 

 Send to Process Depart   // Send to reflow machine 
End 
 
Process Depart 
 Tabulate (Clock-ArrivalTime) in LeadTime // keep track of part time on machine 
End 

 
7.3.3 Identify Root Causes and Assess Initial Alternatives 
 
The experiment design is summarized in Table 7-1. 
 

Table 7-1:  Simulation Experiment Design for the Serial System 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Size of each buffer -- (1, 2, 4, 8, 16) 

Performance Measures3 1.  Lead Time 
2.  Percent blocked time depostion station 
3.  Percent blocked time placement station 

Random Number Streams 1.  Time between arrivals 
2.  Operation time deposition station 
3.  Operation time placement station 
4.  Operation time reflow station 

Initial Conditions 1 circuit card tray in each inter-station buffer with the 
following station busy 

Number of Replicates 20 

Simulation End Time 2400 minutes (one week) 

 
Since management assesses production weekly, a terminating experiment with a simulation time 
interval of one week was chosen.  The size of each of the two buffers is of interest.  Note that the 
workstations in this study have the same operation time distribution, indicating that the line is 
balanced as it should be.  Analytic and empirical research have shown that for serial systems 
whose workstations have the same operation time distribution that buffers of equal size are 
preferred (Askin and Standridge, 1993; Conway et al., 1988).  
 
There was some debate as to whether throughput, WIP, or lead time should be the primary 
performance measure.  Since all circuit card trays that arrive also depart eventually the throughput 
rate in-bound to the system is the same as the throughput rate out-bound from the system, at 
least in the long term.  Note that by Little’s Law, the ratio of the WIP to the lead time (LT) is equal 
to the (known) throughput rate.  Thus, either the total WIP, including that preceding the first 
workstation, or the lead time could be measured.   
 

                                                           

3 The problems at the end of the chapter reference the performance measures not discussed in 
the text. 
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The lead time is easy to observe since computing it only requires recording the time of arrivals as 
a entity attribute.  Thus, the lead time can be computed when a entity leaves the system.  
Computing the WIP requires counting the number of entities within the line.  This also is 
straightforward.  We will choose to compute the lead time for this study.  
  
Buffer size is the model parameter of interest.  The relationship between buffer size and lead time 
is needed.  Thus, various values of buffer size will be simulated and the lead time observed.  
Average lead time is one performance measure statistic of interest along with the percent blocked 
time of each station.   
 
There are four random variables in the model, the time between arrivals and three operation 
times, with one stream for each.  The simulated time interval is the same as the management 
review period for production, one week.  Twenty replicates will be made.  Since the utilization of 
the stations is high, a busy station with one circuit card tray in the preceding inter-station buffer 
seems like a typical system state.  Thus, the initial conditions were determined.   
 
Verification and validation evidence were obtained from a simulation experiment with the inter-
station buffer size set to the maximum value in the experiment, 16.  Results show almost no 
blocking in this case.  Verification evidence consists of balancing the number of arrivals with the 
number of departures and the number remaining in the simulation at the end of the run for one 
replicate.  These values are shown in Table 7-2. 
 

Table 7-2:  Verification Evidence for Replicate 1 
 

 Circuit Trays 

Arriving 

Circuit Trays Departing or  

Remaining at the end 

of the Simulation 

Initial conditions        6  

Arrival process 794  

Completed processing  785 

In buffers       12 

In processing                 3 

Total 800 800 

 
Validation evidence is obtained by comparing the percent busy time of the deposition station as 
estimated from the simulation results with the expected value computed as follows.  The average 
operation time is (0.7 + 4.7)/2 = 2.7 minutes.  The average time between arrivals is 3 minutes.  
Thus, the expected percent busy time is 2.7 / 3.0 = 90%.  The approximate 99% confidence 
interval for the true percent busy time computed from the simulation results is 86.7 % - 91.7%.  
Since this interval contains the analytical determined busy time value, validation evidence is 
obtained.   
 
Since the other stations can be blocked, their percent busy time is not as straightforward to 
compute analytically.  Thus, validation evidence with regard to the deposition and placement 
stations is more difficult to obtain. 
 
Simulation results for the various values of inter-station buffer capacity will be compared and 
differences noted.  Statistical analysis will be performed to confirm differences that affect what 
buffer capacity is chosen.  Table 7-3 shows the average lead time for each buffer capacity for 
each replicate as well as summary statistics. 
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Table 7-3:  Average Lead Time Summary (minutes) 

 

 Buffer Capacity 

Replicate 1 2 4 8 16 

1 75.4 46.3 36.6 33.9 33.2 

2 121.3 65.7 40.9 38.2 38.1 

3 97.7 66.8 48.6 39.6 39.4 

4 41.5 29.9 25.1 25.0 25.0 

5 45.8 27.5 23.6 23.5 23.5 

6 93.7 45.8 28.9 27.9 27.9 

7 47.1 35.6 29.1 28.2 28.2 

8 36.5 24.6 21.8 21.7 21.7 

9 45.2 28.5 25.3 25.0 25.0 

10 52.1 26.7 23.6 23.1 23.1 

11 137.2 87.4 57.6 48.8 48.8 

12 102.6 44.9 36.1 34.1 34.1 

13 70.6 41.3 28.8 26.9 26.9 

14 44.7 33.9 26.9 25.5 25.5 

15 97.4 54.6 35.0 30.9 30.4 

16 46.9 29.9 27.1 26.4 26.4 

17 39.1 31.6 28.5 27.2 27.2 

18 95.9 69.7 51.6 43.4 43.4 

19 28.7 23.5 21.9 21.9 21.9 

20 80.2 44.5 35.0 34.0 34.0 

Average 70.0 42.9 32.6 30.3 30.2 

Std. Dev. 31.5 17.7 10.2 7.5 7.5 

99% CI 
Lower Bound 

49.8 31.6 26.1 25.5 25.4 

99% CI 
Upper Bound 

90.2 54.3 39.1 35.1 35.0 

 
Figure 7-3 shows a graph of the average time in the system versus the buffer capacity.  From 
Table 7-3 and Figure 7-3 it is easily seen that the average time in the system decreases 
significantly when the buffer capacity is increased from 1 to 2 as well as from 2 to 4.  Smaller 
decreases are seen when the buffer capacity is increased further.  The statistical significance of 
these latter differences will be determined. 
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Figure 7-3:  Average Time in the System versus Buffer Capacity 
 
The minimum possible average time in the system is the sum of the average processing times at 
each station 2.7 + 2.7 + 2.7 = 8.1 minutes.  Note that for buffer sizes of 4, 8, and 16, the average 
time in the system is 4 to 5 times the minimum average cycle time.  This is due to the high degree 
of variability in the system: exponential arrival times and uniformly distributed service times with a 
wide range as well as the high utilization of the work stations.  This result is consistent with the 
VUT equation that shows that the lead time increases as the variability of the time between 
arrivals, the variability of the service time, and the utilization increase. 
 
The paired-t method is used to compute approximate 99% confidence intervals for the average 
difference in lead time for selected buffer sizes.  These results along with the approximate 99% 
confidence intervals for the average lead time for each buffer size are shown in Table 7-4.  Note 
that average lead time reduction using 16 buffers instead of 8, is not statistically significant since 
the approximate 99% confidence interval for the difference in average lead time contains 0.   
 
Table 7-5 summarizes the percent blocked time for the deposition station as well as the 
differences in percent block time including paired-t confidence intervals for the mean difference 
for neighboring values of buffer sizes of interest.  
 
The percentage of time that the deposition station is blocked decreases as the buffer size 
increases as would be expected.  The paired-t confidence interval for the difference in percentage 
of blocked time for 16 buffers versus 8 buffers does not contain 0.  Thus, the reduction in percent 
blocked time due to the larger buffer size is not statistically significant.  Further note that the 99% 
confidence intervals for the percent of time blocked for the case of 8 and 16 buffers both contain 
0.  Thus, the percent of blocked time for these cases is not significantly different from zero. 
 



 7-9 

Table 7-4: Paired t Test for Average Lead Time (minutes) 

 

 Buffer Capacity 

Replicate 4 8 Diff 4 - 8 16 Diff 8 -16 

1 36.6 33.9 2.7 33.2 0.7 

2 40.9 38.2 2.7 38.1 0.1 

3 48.6 39.6 9.0 39.4 0.3 

4 25.1 25.0 0.2 25.0 0.0 

5 23.6 23.5 0.1 23.5 0.0 

6 28.9 27.9 0.9 27.9 0.0 

7 29.1 28.2 0.9 28.2 0.0 

8 21.8 21.7 0.1 21.7 0.0 

9 25.3 25.0 0.4 25.0 0.0 

10 23.6 23.1 0.5 23.1 0.0 

11 57.6 48.8 8.9 48.8 0.0 

12 36.1 34.1 2.0 34.1 0.0 

13 28.8 26.9 1.9 26.9 0.0 

14 26.9 25.5 1.4 25.5 0.0 

15 35.0 30.9 4.1 30.4 0.5 

16 27.1 26.4 0.7 26.4 0.0 

17 28.5 27.2 1.3 27.2 0.0 

18 51.6 43.4 8.2 43.4 0.0 

19 21.9 21.9 0.0 21.9 0.0 

20 35.0 34.0 1.0 34.0 0.0 

Average 32.6 30.3 2.34 30.2 0.08 

Std. Dev. 10.2 7.5 2.92 7.5 0.19 

99% CI 
Lower Bound 

26.1 25.5 0.47 25.4 -0.04 

99% CI 
Upper Bound 

39.1 35.1 4.21 35.0 0.21 
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Table 7-5:  Paired-t Confidence Intervals for Deposition Percent Blocked Time 
 

 Buffer Capacity 

Replicate 4 8 Diff 4 - 8 16 Diff 8 -16 

1 2.51% 1.11% 1.41% 0.00% 1.11% 

2 1.57% 0.00% 1.57% 0.00% 0.00% 

3 1.12% 0.29% 0.83% 0.00% 0.29% 

4 0.84% 0.00% 0.84% 0.00% 0.00% 

5 0.53% 0.00% 0.53% 0.00% 0.00% 

6 1.48% 0.11% 1.37% 0.00% 0.11% 

7 2.19% 0.00% 2.19% 0.00% 0.00% 

8 0.69% 0.00% 0.69% 0.00% 0.00% 

9 0.66% 0.10% 0.56% 0.00% 0.10% 

10 0.49% 0.00% 0.49% 0.00% 0.00% 

11 3.62% 1.65% 1.96% 0.20% 1.45% 

12 0.90% 0.00% 0.90% 0.00% 0.00% 

13 0.61% 0.00% 0.61% 0.00% 0.00% 

14 1.33% 0.12% 1.21% 0.00% 0.12% 

15 1.46% 0.12% 1.33% 0.00% 0.12% 

16 1.30% 0.29% 1.01% 0.00% 0.29% 

17 0.69% 0.16% 0.53% 0.00% 0.16% 

18 2.74% 1.26% 1.47% 0.17% 1.09% 

19 0.66% 0.10% 0.57% 0.00% 0.10% 

20 2.35% 0.42% 1.92% 0.00% 0.42% 

Average 1.39% 0.29% 1.10% 0.02% 0.27% 

Std. Dev. 0.87% 0.48% 0.53% 0.06% 0.43% 

99% CI Lower 
Bound 

 -0.02% 0.76% -0.02% -0.01% 

99% CI Upper 
Bound 

 0.59% 1.44% 0.06% 0.54% 

 
 
7.3.4 Review and Extend Previous Work 
 
System experts reviewed the results developed in the previous section.  They concluded that a 
buffer size of four should be used in the system.  The small, approximately 10%, decrease in 
average lead time obtained with a buffer size of 8 did not justify the extra space.  The difference 
was statistically significant in the simulation experiment.  The average percent blocked time for 
the deposition station is about 1.4% percent for a buffer size of 4. 
 
It was noted that for some replicates the average lead time was near an hour.  This was of some 
concern. 
 
7.3.5 Implement the Selected Solution and Evaluate 
 
The system was implemented with 4 buffers.  Average lead will be monitored.  Causes of long 
average lead time will be identified and corrected. 
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7.5 Summary 
 
The model of a serial line is evolved from the model of a single workstation.  Analytic results are 
employed in designing simulation experiments.  Simulation results help in selecting the 
interstation buffer sizes to use in the serial system and thus help ensure that the system is as lean 
as possible upon implementation. 

 

Problems 
 
1. Based on the simulation experiment results that follow for one replicate of the simulation 

in section 7.3.1 with a buffer size of 4, verify that the number of entities entering the 
system are all accounted for at the end of the simulation. 

 
Number of entities created through the arrival process:    807  
Number of entities created through initial conditioins:               6 
Number of entities completing processing at the solder deposition station:  808 
Number of entities completing processing at the component placement station: 804 
Number of entities completing processing at the solder reflow station:  799 
Number of entities waiting for the deposition station resource  

  at the end of the simulation:          2 
State of the deposition station resource at the end of the simulation:  Busy 
Number of entities waiting for the placement station resource  

  at the end of the simulation:          5 
State of the placement station resource at the end of the simulation:  Busy 
Number of entities waiting for the reflow station resource  

  at the end of the simulation:          4 
State of the reflow station resource at the end of the simulation:   Busy 

 
2. Based on the simulation results presented in this chapter, provide an argument for using 

8 buffers instead of 4. Without simulation would a lean team have been more inclined to 
use a larger buffer size due to a lack of information? 

 
3. Complete the following table of the percentage blocked times for the placement station for 

the simulation in section 7.3.  What statistically significant results are obtained?  How do 
these compare to the lead time and percent blocked time for the deposition station 
results? 

Percent Blocked Time the Placement Station 

  

Buffer Size 

Replication 4 8 8-4 16 16-8 

  1 2.78 1.32  0.00  

  2 1.85 0.19  0.00  

  3 1.90 0.00  0.00  

  4 2.12 0.52  0.00  

  5 1.28 0.00  0.00  

  6 1.48 0.09  0.00  

  7 1.88 0.40  0.00  

  8 1.57 0.14  0.00  

  9 1.01 0.00  0.00  

10 2.29 0.00  0.00  

Average      

Std. Dev.      

99% CI Lower Bound      

99% CI Upper Bound      
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4. Develop and compute the results from an analytic model of the serial line using the 

equations in chapter 6.  Note that the equation for cd
2
 gives the squared co-efficient of 

variation of the time between arrivals to the next workstation.  Assume no blocking of 
workstations. 

 
5. Develop and implement in a simulation environment a model of a the system described in 

the manufacturing case problem below but assuming that the system will have all the 
space that is needed between stations.  This means that modeling the interstation buffers 
is not necessary.  Note that a single workstation is simply a serial line with one station.  
Verify the model.   

 
6. Develop a model of a fast food restaurant that works as follows.  The time between 

customer arrivals is exponentially distributed with mean 0.5 minutes.  If the line is longer 
than 20, an arriving customer goes somewhere else to eat.  A customer places an order 
and pays the cashier.  The time to order and pay is uniformly distributed between 0.25 
and 0.45 minutes.  Next the customer waits for the food gatherer to prepare the order.  
This time is exponentially distributed with mean 0.4 minutes.  There is space for only two 
people who have ordered and paid to wait for the food gatherer.  Finally, the customer 
waits for the drink dispensing machine.  The time to get a drink is 0.4 minutes.  Develop a 
process model of this situation. 

 
7. Design and perform an experiment to determine if reallocating the 8 total buffer spaces so 

that more were in front of the reflow station and less were in front of the placement station 
would decrease part time in the system. 

 

Case Problems 

 
Manufacturing  
A new serial system consists of three workstations in the following sequence: mill, deburr, and 
wash.  There are buffers between the mill and the deburr stations and between the deburr and the 
wash stations.  It is assumed that sufficient storage exists preceding the mill station.  In addition, 
the wash station jams frequently and must be fixed.  The line will serve two part types.  The 
production requirements change from week to week.  The data below reflect a typical week.  You 
have been assigned the task of finding the minimum buffer space that doesn't significantly effect 
lead time.   
 
Relevant data are as follows with all times in minutes: 
 
Time between arrivals - Part type 1: Exponentially distributed with mean 2.0 
     Part type 2: Exponentially distributed with mean 3.0 
 
Time at the mill station - Part type 1: 0.9 
   Part type 2: 1.4 
 
Time at the deburr station -  Uniform (0.9, 1.3) for each part type 
 
Time at wash station -   1.0 for each part type 
 
Time between wash station jams - Exponentially distributed with mean 30.0 
Time to fix a wash station jam -  Exponentially distributed with mean   3.0 
 
Embellishment:  In the meeting to review your work, it is suggested that the two buffers may be of 
different sizes but the total amount of buffer space used should not increase.  Perform the 
appropriate simulation experiment. 
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Case Problem Issues 
1. Discuss how arrivals to the system will be modeled. 
 
2. Discuss how verification evidence will be obtained. 
 
3. Discuss how validation evidence can be obtained.   
 a. Compute the expected number of arrivals of each type. 
 b. Compute the expected number of arrivals per hour of both types together. 
 c. Compute the utilization of each workstation. 

 
4. List the important performance measures. 
 
5. What initial conditions should be used? 
 
6. For the simulation language that you are using, discuss how to implement the initial 

conditions. 

 
7. List the buffer sizes to consider in the simulation experiment and tell why these sizes were 

chosen. 
 
8. (Embellishment)  Discuss whether it is better to have more buffer space between the mill 

and the deburr station to avoid blocking at the front of the line or to have buffer space 
between the deburr and the wash stations to avoid blocking at the deburr station when the 
wash station jams. 

 
Terminating experiment:  Use an end time of 168 hours. 
 
Service System  

 
Consider the design of the drive through service area of a fast food restaurant.  There are three 
stations:  place order, pay cashier, and pick up food.  There is sufficient space for cars preceding 
the place order station.  Your job is to determine the amount of space between the place order 
and pay cashier stations as well as the pay cashier and pick up food stations in terms of the 
number of cars.  Serving the maximum number of customers possible during the lunch period, 
11:00 A.M. to 1:00 P.M., is management’s objective.  Thus, minimal customer lead time must be 
achieved.  Based on previous experience, customers are classified into types, depending on the 
size of their order. 
 
Relevant data are as follows with all times in minutes: 
 
Time between arrivals --  Customer type 1: Exponentially distributed with mean 1.0 
     Customer type 2: Exponentially distributed with mean 1.5 
 
Time at the order station -- Customer type 1: Exponentially distributed with mean 0.45 
    Customer type 2: Exponentially distributed with mean 0.70 
 
Time at the pay station - Uniform (0.45, 0.65) for each customer type 
 
Time at pickup station -- 0.5 for each customer type 
 
Embellishment:  In the meeting to review your work, it is suggested that the two buffers may be of 
different sizes but the total amount of buffer space used cannot increase due to physical 
constraints.  Perform the appropriate simulation experiments. 
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Case Problem Issues 
 
1. Discuss how arrivals to the system will be modeled. 
 
2. Discuss how verification evidence will be obtained. 
 
3. Discuss how validation evidence can be obtained.   
 a. Compute the expected number of arrivals of each type. 
 b. Compute the expected number of arrivals per hour of both types together. 
 c. Compute the utilization of each workstation. 

 
4. List the important performance measures. 
 
5. What initial conditions should be used? 
 
6. For the simulation language that you are using, discuss how to implement the initial 

conditions. 

 
7. List the buffer sizes to consider in the simulation experiment and tell why these sizes were 

chosen. 
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Chapter 8 

 

Job Shops  
 
8.1 Introduction 
 
In this chapter, we consider another possible configuration of workstations called a job shop.  A 
serial system processes one or at most a few types of parts that visit all of the system's 
workstations in sequence.  Thus, serial systems are organized around required production 
operations.  A job shop serves a wide variety of parts or jobs.  Each type of job may use a 
different subset of the workstations and visit those stations in a unique sequence.  Taken all 
together, the movement of jobs of all types between workstations appears to be random.  
Workstations are designed around common operations.  For example, all of the milling machines 
may be gathered together at one workstation. 
 
Several unique aspects of job shops must be taken into account.  When a part using a machine is 
of a different type than its predecessor, the machine may require a setup task to change its 
operating parameter values or tooling.  Different jobs may require significantly different amounts 
of processing time at a workstation.  The routing of each type of job through the shop must be 
specified.  
 
8.2 Points Made in the Case Study 
 
This case study illustrates principle 2 of chapter 1.  Modeler defined performance measures are 
extracted from standard simulation results to help assess system behavior.  In this case, the 
performance measure of interest is the service level to customers, the percent of jobs completed 
on time.  The shop has defined on time as a lead time of 8 hours or less. 
 
This case study illustrates how analytic computations, such as those defined in principle 11 of 
chapter 1, can be used to set simulation experiment parameter values.  The average number of 
busy machines of each type is determined using Little’s law.  Cycle time is a function of machine 
utilization, as seen in the VUT equation.  Thus, increasing the number of machines of each type 
would lower utilization and reduce cycle time.  Therefore additional machines may be necessary 
to achieve an acceptable service level. 
 
The experimental design is sequential.  The results of initial simulations are used to set the 
parameter values for subsequent simulations.  Additional machines are added at the bottleneck 
station identified by initial simulations.  Subsequent simulations are run to assess the effect on the 
service level of the additional machines. 
 
The model adapts to the information that is available about the shop in accordance with principle  
2 of chapter 1.  Jobs are classified into three types with the arrival rate and distribution known for 
each type only.  Each job within a type will be modeled as having the same route through the 
shop.  Processing times are known only by station, independent of job type.  Thus, processing 
times are modeled as random variables with a large variance. 
 
Simulation results illustrate how relieving one bottleneck in a system can create and expose other 
bottlenecks in the system.  As the number of machines of one type is increased, another type of 
machine becomes the bottleneck. 
 
The job shop model includes several components.  The arrival process for each of the three job 
types is modeled in the same manor.  The operation process for each workstation is modeled in 
the same way.  Routing of jobs is included. 
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8.3 The Case Study 
 
This case study deals with determining the number of machines needed at each workstation to 
meet a particular level of demand with a satisfactory service level.  The average number of busy 
machines can be determines using Little’s law.  However, due to waiting time for busy machines, 
lead time may exceed management’s target.  In other words, the service level is too low.  
Additional machines at a station reduce utilization and thus reduce lead time. 
 
8.3.1 Define the Issues and Solution Objective 
 
A job shop consists of four workstations each having one kind of machine: lathe, planer, shaper, 
and polisher as shown in Figure 8-1.  There is one route through the job shop for each of the 
three job types.  Machines may be either in a busy or idle state. 
 

 
 
Management desires that each job spends less than 8 hours in the shop.  The service level is the 
percent of jobs that meet this target.  The objective is to find the minimum number of machines, 
and thus capital equipment cost, that allows the shop to reach a high, but yet unspecified service 
level.  Management reviews shop performance each month.   
 
The shop processes three types of jobs that have the following routes through the shop: 
 
Type 1: lathe, shaper, polisher 
Type 2: planer, polisher 
Type 3: planer, shaper, lathe, polisher 
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Each type of job has its own arrival process, that is its own distribution of time between arrivals.  
Job processing time data was not available by job type.  Thus, a single distribution is used to 
model operation time at a station.  Setup issues can be ignored for now. 
 
Relevant data are as follows.  The time between arrivals for each job type is exponentially 
distributed.  The mean time between arrivals for job type 1 is 2.0 hours, for type 2 jobs 2.0 hours, 
and for type 3 jobs 0.95 hours.  Processing times are triangularly distributed with the following 
parameters (minimum, mode, maximum), given in hours. 
 
Planer:  (1.0,  1.2,  2.4) 
Shaper:  (0.75,  1.0,  2.0) 
Lathe:  (0.40,  0.80,  1.25) 
Polisher: (0.5,  0.75,  1.5) 
 
8.3.2 Build Models 
 
The model of the job shop uses the following logic: 
 
1. A job arrives as modeled in the arrival process. 
2. The job is routed according to the routing process. 

A. If the job needs more operations, it is sent to the station corresponding to its next 
operation. 

B. If the job has completed all operations, its lead time is computed and the service 
level for this job recorded. Then the job leaves the shop.  Note that the service 
level is either 100 for acceptable (less than 8 hours) or 0 for not acceptable 
(greater than 8 hours). 

3. The job is processed at the selected workstation as modeled by an operation process. 
4. The job returns to step 2. 
 
Job routing corresponds to the routing matrix shown in Figure 8-2, with Depart indicating that the 
end of the route has been reached. 
 

Job Type First Operation Second 

Operation 

Third 

Operation 

Fourth 

Operation 

Last  

 

1   Lathe   Shaper   Polisher   Depart  

2   Planer   Polisher   Depart   

3   Planer   Shaper   Lathe   Polisher Depart 

 

Figure 8-2. Job Shop Routing Matrix. 
 
Enitities represent jobs and have the following attributes: 

JobType =  type of job 
   ArriveTime =  simulation time of arrival 
 Location = location of a job relative to the start of its route: 1st..4th 
   OpTimei =  operation time at the ith station on the route of a job: i = 1..4 
 Routei = station at the ith location on the route of a job 
 ArriveStation = time of arrival to a station, used in computing the waiting time at a station 
 
There is an arrival process for each job type.  The arrival processes for the job types are similar.  
All of the attributes are assigned including each operation time.  The operation time is assigned to 
assure that the ith arriving job (entity) will be assigned the ith sample from each random number 
stream for each alternative tested.  This is the best implementation of the common random 
numbers method discussed in chapter 4.  The values assigned to the Route attribute are the 
names of the stations that comprise the route in the order visited.  The last station is called Depart 
to indicate that the entity has completed processing.  Whatever performance measure 
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observations are needed are made in the Depart process.  At the end of the arrival process, the 
entity is sent to the routing process. 
 
The routing process is as follows.  The Location relative to the start of the route is incremented by 
1.  The entity is sent to the process whose name is given by RouteLocation.  The routing process 
requires zero simulation time. 
 
The process as each station is like that of the single workstation discussed in chapter 6.  An 
arriving entity waits for the planer resource.  The operation is performed and the resource is made 
idle.  The entity is sent to the routing process. 
 
Upon departure from the shop (Process Depart), the lead time is computed.  Thus, the service 
level can be computed and collected.   
 
The pseudo-English form of the model including the arrival process for type 1 jobs, the operation 
process for the planer, the routing process and the depart process follows. 
 

Define Arrivals:    
 Type1 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 2 hours 
     Number of arrivals: Infinite  
 
 Type2 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 2 hours 
     Number of arrivals: Infinite  
 
 Type3 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 0.95 hours 
     Number of arrivals: Infinite  
 
Define Resources: 
 Lathe/?      with states (Busy, Idle) 
 Planer/?     with states (Busy, Idle) 
 Polisher/?  with states (Busy, Idle) 
 Shaper/?  with states (Busy, Idle) 
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Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 

JobType   // type of job 
 Location  // location of a job relative to the start of its route: 1..4 
   OpTime(4)   // operation time at the ith station on the route of a job 
 Route(5)  // station at the ith location on the route of a job 
 ArriveStation  // time of arrival to a station, used in computing the waiting time  
 
Process ArriveType1 
Begin 

Set ArrivalTime = Clock   // record time job arrives on tag 
 Set Location     = 0   // job at start of route 
 Set JobType    = 1 
 
 // Set route and processing times 
     Set Route(1) to Lathe         
 Set OpTime(1) to triangular 0.40, 0.80, 1.25 hr 
       

Set Route(2) to Shaper     
 Set OpTime(2) to triangular 0.75, 1.00, 2.00 hr 
 
     Set Route(3) to Polisher 
 Set OpTime(3) to triangular 0.50, 0.75, 1.50 hr 
 

Set Route(4) to End 
     Send to P_Route 
End 
 
Process Planer 
Begin 
 Set ArriveStation = Clock   // record time job arrives at station 
 Wait until Planer/1 is Idle in Queue QPlaner // job waits for its turn on the machine 
 Make Planer/1 Busy    // job starts on machine; machine is busy 
 Tabulate (Clock-ArriveStation) in WaitTimePlaner// keep track of job waiting time 
  

Wait for OpTime(Location) hours  // job is processed 
 Make Planer/1 Idle    // job is finished; machine is idle 
 Send to P_Route 
End 
 
Process Route 
Begin 
 Location++     // Increment location on route 
 Send to Route(Location)    // Send to next station or depart 
End 
 
Process Depart 
Begin 

//Lead time in hours by job type and for all job types 
 if type = Job1 then tabulate (Clock-ArrivalTime) in LeadTime(1)   
 if type = Job2 then tabulate (Clock-ArrivalTime) in LeadTime(2)   
 if type = Job3 then tabulate (Clock-ArrivalTime) in LeadTime(3)   
  tabulate ((Clock-ArrivalTime) in LeadTimeAll     
   if ((Clock-ArrivalTime) <= 8 tabulate 100 in Service  // Service level recorded 
        else tabulate 0 in Service 
End 
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8.3.3 Identify Root Causes and Assess Initial Alternatives 
 
Management reviews the system monthly.  Thus, a terminating experiment with an ending time of 
one month was chosen.  Furthermore, management is interested in the percent of jobs that spend 
less than 8 hours in the shop, the service level, as well as job waiting time at each station.  These 
quantities are the performance measures of interest.   
 
There are seven random number streams, one for the arrival process for each of three types of 
jobs and one for each of four operation times.   Twenty replicates will be made.  The initial 
conditions reflect a typical state of the shop:  two jobs of each type at each station. 
 
The model parameters are the number of machines at each station.  The expected number of 
busy machines at each station will be used as the parameter value for the first simulation.  
Management is able to provide more machines at workstations where the maximum waiting time 
is excessive in order to meet the service level target. 
 
Table 8-1 summarizes the simulation experiment. 
 

Table 8-1:  Simulation Experiment Design for the Job Shop 

 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Number of machines at each station:   
1.  Average number busy as shown in Table 8-2 
following 

Performance Measures 1.  Percent of jobs whose cycle time is less than 8 
hours (Service Level) 
2.  Waiting time at each station 

Random Number Streams 1.  Time between arrivals - job type 1 
2.  Time between arrivals - job type 2 
3.  Time between arrivals - job type 3 
4.  Operation time station 1 
5.  Operation time station 2 
6.  Operation time station 3 
7.  Operation time station 4 

Initial Conditions 2 parts of each type that can be at a station in the 
buffer of each station 

Number of Replicates 20 

Simulation End Time 184 hours (one month) 

 
The expected number of machines needed by each part type at each station is computed as 
shown in Table 8-2.   

1. The mean service time is the mean of the triangular distribution of the service time at 
each station.  This quantity is the arithmetic average of the minimum, mode, and 
maximum.   

2. The expected number of machines is the quotient of the mean operation time divided by 
the mean time between arrivals (Little’s Law).   

3. The total expected number of machines at a station is the sum over the three part types.  
This value is rounded to the next higher whole number to yield the number of machines at 
each station. 

4. Raw processing time is the sum of the mean processing times at each station on the 
route of a job.   
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Table 8-2:  Expected Number of Machines Needed at Each Workstation 

 

  Planer Shaper Lathe Polisher Raw 

Processing 

Time 
           

Job Type 1      

Mean Time Between 
Arrivals  
(TBA = 1/TH)  

  2 2 2   

Mean Operation 
Time (CT) 

  1.25 0.82 0.92 2.99 

Expected Number of 
Machines  
(= CT / TBA)  

  0.63 0.41 0.46   

Job Type 2           

Mean Time Between 
Arrivals (TBA)   

2     2   

Mean Operation 
Time (CT) 

1.53     0.92 2.45 

Expected Number of 
Machines  
(= CT / TBA)  

0.77     0.46   

Job Type 3           

Mean Time Between 
Arrivals (TBA)   

0.95 0.95 0.95 0.95   

Mean Operation 
Time (CT) 

1.53 1.25 0.82 0.92 4.52 

Expected Number of 
Machines  
(= ST / TBA)  

1.61 1.32 0.86 0.97   

            

Total Expected 
Number of Machines  

2.38 1.94 1.27 1.89   

Number of Machines 
to Use  

3 2 2 2   

 
The mean raw processing time for the job types are 1.45 hours, 2.99 hours, and 4.52 hours.  
Thus, a cycle time in the shop criteria of one day (8 hours) represents approximate 2 to 5 times 
the raw processing time which seems reasonable. 

 
Table 8-3 gives the service level for the shop and the maximum waiting time at each station.  
Notice that the service level is highly variable, ranging from 19.8% to 97.3%.  Maximum waiting 
times are much larger for the shaper than any of the other three machines.  The maximum waiting 
times at the polisher and the planer are also long. 
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Table 8-3:  Simulation Results - Expected Number of Machines Case. 
 

Replicate Service 

Level  

Maximum 

Waiting Time 

at the Lathe 

(Hours) 

Maximum 

Waiting Time 

at the Planer 

(Hours) 

Maximum 

Waiting Time 

at the Polisher 

(Hours) 

Maximum 

Waiting Time 

at the Shaper 

(Hours) 

  1 21.2 1.1 4.4 4.6 23.0 

  2 42.7 1.6 3.3 4.0 10.7 

  3 22.8 1.2 8.6 9.8 17.1 

  4 40.1 1.4 5.1 3.4 11.2 

  5 97.3 1.0 2.6 3.4 2.8 

  6 73.4 0.8 5.0 4.4 4.4 

  7 62.4 2.2 2.9 2.8 13.9 

  8 74.0 1.5 3.9 4.0 9.1 

  9 24.7 2.2 4.1 4.9 14.0 

10 37.6 1.3 4.8 3.3 13.0 

11 57.8 1.5 3.6 3.4 7.8 

12 19.8 1.1 8.8 9.2 13.3 

13 38.0 1.1 7.0 3.7 10.0 

14 70.8 1.0 3.1 4.2 9.0 

15 36.9 1.1 4.1 6.5 11.5 

16 76.2 1.1 3.1 3.5 8.3 

17 59.3 1.0 3.0 6.0 7.9 

18 60.6 1.5 5.3 4.5 6.3 

19 31.1 1.4 3.8 9.1 7.0 

20 24.4 1.1 5.3 4.5 16.8 

Average 48.6 1.3 4.6 5.0 10.9 

Std. Dev. 22.5 0.4 1.8 2.1 4.7 

99% CI Lower Bound 34.2 0.1 0.4 0.5 1.1 

99% CI Upper Bound 62.9 2.9 2.9 2.9 2.9 

 
8.3.4 Review and Extend Previous Work 
 
System experts reviewed the results developed in the previous section.  The average service level 
of 48.6% was thought to be too low.  A service level of at least 95% is needed.  A machine will be 
added to the the shaper station to reduce the maximum waiting time.  Additional machines will be 
added one at a time to the station with the greatest maximum waiting time until the 95% service 
level is achieved. 
 
8.4 The Case Study with Additional Machines 
 
The need to add one or more machines causes a re-start of the simulation process at the third  
step, Identify Root Causes and Assess Initial Alternatives. 
 
8.4.1 Identify Root Causes and Assess Initial Alternatives 
 
The simulation experiment uses the same design as in Table 8-1.  However, the number of 
machines at the shaper station is increased by one.  Table 8-4 shows the results.  The average 
service level of 56.4% is less than the required 95%.  The maximum waiting time at the polisher is 
much higher than at any of the other stations.  Thus, an additional polisher will be added. 
 



8-9 

Table 8-4:  Simulation Results –Additional Shaper Case 
 

Replicate Service 

Level  

Maximum 

Waiting Time 

at the Lathe 

(Hours) 

Maximum 

Waiting Time 

at the Planer 

(Hours) 

Maximum 

Waiting Time 

at the Polisher 

(Hours) 

Maximum 

Waiting Time 

at the Shaper 

(Hours) 

  1 17.6 1.9 4.4 10.2 1.5 

  2 65.6 1.7 3.3 7.3 1.4 

  3 22.1 1.9 8.6 20.3 1.2 

  4 56.7 1.1 5.1 7.5 1.3 

  5 98.0 1.2 2.6 3.8 1.0 

  6 81.1 1.2 5.0 5.1 1.1 

  7 72.1 1.7 2.9 6.7 1.9 

  8 76.7 1.9 3.9 7.2 1.2 

  9 1.3 1.3 4.1 13.6 1.4 

10 39.1 1.2 4.8 8.6 1.8 

11 78.6 1.7 3.6 5.9 1.1 

12 47.5 1.1 8.8 7.7 1.1 

13 61.7 1.3 7.0 7.0 1.9 

14 78.4 1.3 3.1 5.9 1.8 

15 43.8 1.5 4.1 12.3 2.0 

16 83.2 1.6 3.1 6.7 1.6 

17 81.7 1.7 3.0 7.0 1.2 

18 67.6 2.0 5.3 7.8 1.4 

19 43.5 1.4 3.8 10.5 1.6 

20 12.1 1.6 5.3 13.8 1.8 

Average 56.4 1.5 4.6 8.7 1.5 

Std. Dev. 27.1 0.3 1.8 3.8 0.3 

99% CI Lower Bound 39.1 1.3 3.5 6.3 1.3 

99% CI Upper Bound 73.8 1.7 5.7 11.2 1.7 

 
The simulation results for the case of an additional polisher and shaper are shown in Table 8-5.  
The average service level, 95.1%, now exceeds 95%.  The approximate 99% confidence interval 
for the service level is 91.1% to 99.2%.  Thus with approximately 99% confidence, it can be 
concluded that the true service level is in a range that includes 95%.   
 
In two of the replicates the service level was less than 80%.  In these replicates, the maximum 
waiting time at the planer exceeded 8 hours.  In addition, the average maximum waiting time at 
the planer was 4.6 hours. 
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Table 8-5:  Simulation Results –Additional Shaper and Polisher Case 
 

Replicate Service 

Level  

Maximum 

Waiting Time 

at the Lathe 

(Hours) 

Maximum 

Waiting Time 

at the Planer 

(Hours) 

Maximum 

Waiting Time 

at the Polisher 

(Hours) 

Maximum 

Waiting Time 

at the Shaper 

(Hours) 

  1 95.6 1.9 4.4 2.0 1.5 

  2 98.9 1.7 3.3 1.5 1.4 

  3 79.4 1.9 8.6 1.4 1.2 

  4 96.0 1.1 5.1 1.3 1.3 

  5 99.0 1.2 2.6 1.7 1.0 

  6 96.6 1.2 5.0 1.5 1.1 

  7 99.2 1.7 2.9 1.5 1.9 

  8 97.5 1.9 3.9 1.4 1.2 

  9 96.3 1.3 4.1 1.8 1.4 

10 94.5 1.2 4.8 1.6 1.8 

11 98.7 1.7 3.6 1.3 1.1 

12 76.5 1.1 8.8 1.6 1.1 

13 92.0 1.3 7.0 1.6 1.9 

14 99.2 1.3 3.1 2.0 1.8 

15 98.4 1.5 4.1 1.6 2.0 

16 99.2 1.6 3.1 1.7 1.6 

17 99.4 1.7 3.0 1.4 1.2 

18 93.5 2.0 5.3 1.9 1.4 

19 99.2 1.4 3.8 1.4 1.6 

20 93.9 1.6 5.3 1.3 1.8 

Average 95.1 1.5 4.6 1.6 1.5 

Std. Dev. 6.3 0.3 1.8 0.2 0.3 

99% CI Lower Bound 91.1 1.3 3.5 1.4 1.3 

99% CI Upper Bound 99.2 1.7 5.7 1.7 1.7 

 
8.4.2 Review and Extend Previous Work 
 
Management was pleased that the addition of two machines was sufficient to meet the service 
level requirement.  It was decided that the job shop would have the following configuration of 
machines: 
 
Lathes   -- 2 
Planers  -- 3 
Polishers -- 3 
Shapers -- 3 
 
In addition, the congestion, in terms of work in process, at the planer station would be monitored.  
Action would be taken to help avoid excessive waiting time at this station, which now appears to 
be the bottleneck. 
 
8.4.3 Implement the Selected Solution and Evaluate 
 
The job shop was implemented with the number of machines decided upon at the management 
review meeting.  A monitoring system for work in process at the planer station was put in place. 
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8.5 Summary 
 
Modeling the flow of multiple job types in a job shop has been presented.  Each type of job has a 
unique route through the workstations. 
 
Simulation experiments are used to set the number of machines at each workstation in order to 
meet a service level criteria.  Little’s law is applied to determine the average number of busy 
machines at each station.  These values are used as the initial number of machines at each 
station in the simulation.  After each experiment, the bottleneck station is identified.  The next 
experiment involves increasing the number of machines at this station by one.  The series of 
experiments ends when the service level criteria is met. 
 
Simulation results show how the bottleneck station changes as the result of adding capital 
equipment. 
 

Problems 
 
1. Based on the simulation experiment results that follow for a job shop similar to the one 
discussed in this chapter, give verification evidence. 
Arrivals: 
 Type 1  --  581 
 Type 2  --  373 
 Type 3  --  482 
Number completing operations 
 Lathe  -- 1063    
 Shaper  -- 1065 
 Polisher -- 1426 
 Planer  --   859 
Number waiting for operations at the end of the simulation 
 Lathe  --      0 

Shaper  --      0 
 Polisher --      5 
 Planer  --      0 
State of resource at the end of the simulation 
 Lathe  --  2 busy 
 Shaper  --  6 busy 
 Polisher --  8 busy 
 Planer  --  7 busy 
Total number of jobs completed --1426 
 
2. Suppose the situation in the job shop is changed as follows.  The time between arrivals 

jobs is 0.25 hours.  Two thirds of the jobs are of job type 1 and one-third are of job type 3.  
Develop an analytic estimate of the required number of each type of machine. 

 
3. Develop a process model of the following small job shop.  The shop processes two types 

of jobs in equal numbers.  The time between job arrival is exponentially distributed with a 
mean of 3 hours.  The first type of job visits stations 1 and 2.  The second type of job 
visits stations 2, 1, and 3.  Processing times are constant and as follows: 

 

Job Type First Station Time Second Station Time Third Station Time 

1 2.0 1.2  

2 0.8 1.7 2.6 

 
4. Model the serial line discussed in the application study of Chapter 7 using the job shop 

model developed in this chapter. 
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5. List systems with job shop organizations that you deal with in the course of your everyday 
life.  Develop a single list for the entire class. 

 
6. Provide validation evidence based on the outputs presented in this chapter. 

 
7. Add an additional planer as well as a shaper and a polisher to the job shop in the case 

study in this chaper.  Is the improvement due to the additional shaper worthwhile? 
 
8. The lower limit of the approximate 99% confidence interval for the service level in Table 

8-5 is less than the required average service level of 99%.  As an alternative, estimate 
and interpret the approximate 90% confidence interval. 

 
9. Re-run the simulation experiment with the following performance measure added:  lead 

time for entities who lead time exceed the service level target cycle time.  Interpret your 
results. 

 

Case Problem 

 
Management wishes to move the job shop toward a lean system in which there would be three 
workcells, one for each job type.  Due to current budget constraints, no more machines than were 
found necessary in the case study above can be used, a total of 11.  As a first step toward lean in 
the short term, the following options are to be evaluated with respect to service level and total 
number of machines. 
 

1. A serial line to produce type 3 jobs and smaller job shop to produce type 1 and 2 jobs with 
10 total machines. 

2. A serial line to produce type 3 jobs and smaller job shop to produce type 1 and 2 jobs with 
11 total machines. 

3. Three serial lines, one for each type of job, with 11 total machines. 
 
Build the simulation models and conduct the simulation experiments to evaluate the above 
options. 
 
Case Problem Issues 
 
1. Suppose each type of job is run on its own dedicated serial line (#3 above).  How many 

machines of each kind are needed for each type of job? 
 

2. Can this analysis be done using the model developed in this chapter?  If so, tell how. 
 

3. For item 1 above, how would the 10 total machines be allocated by machine type and location 
(serial line for jobs of type 3 and job shop for jobs of type 1 and 2)?  

 
4. For item 2 above, how would the 11 total machines be allocated by machine type and location 

(serial line for jobs of type 3 and job shop for jobs of type 1 and 2)?  
 



 

 

Part III 
Lean and Beyond Manufacturing 

 
The application studies in part three illustrate sophisticated strategies for operating systems, typically 
manufacturing systems, to effectively meet customer requirements in a timely fashion while concurrently 
meeting operations requirements such as keeping inventory levels low and utilization of equipment and 
workers high.  These strategies incorporate both lean techniques as well as beyond lean modeling and 
analysis. 
 
Before presenting the application studies in chapters 10, 11, and 12, inventory control and organization 
strategies are presented in chapter 9.  These include both traditional and lean strategies. 
 
Chapter 10 deals with flowing the product at the pull of the customer as implemented in the pull approach.  
How to concurrently model the flow of both products and information is discussed.  Establishing inventory 
levels as a part of controlling pull manufacturing operations is illustrated. 
 
Chapter 11 discusses the cellular manufacturing approach to facility layout.  A typical manufacturing cell 
involving semi-automated machines is studied.  The assignment of workers to machines is of interest 
along with a detailed assessment of the movement of workers within the cell. 
 
Chapter 12 shows how flexible machines could be used together for production.  Flexible machines are 
programmable and thus can perform multiple operations on multiple types of parts.  Alternative 
assignments of operations and part types to machines are compared.  The importance of simulating 
complex, deterministic systems is discussed. 
 
The application studies in this and the remaining parts of the book are more challenging than those in the 
previous part.  They are designed to be metaphors for actual or typical problems that can be addressed 
using simulation.  The applications problems make use of the modeling and experimentation techniques 
from the corresponding application studies but vary significantly from them.  Thus some reflection is 
required in accomplishing modeling, experimentation, and analysis.  Questions associated with 
application problems provide guidance in accomplishing these activities.  
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Chapter 9 

 
Inventory Organization and Control 

 
9.1 Introduction 
 
Even before a full conversion to lean manufacturing, a facility can be converted to a pull production 
strategy.  Such a conversion is the subject of chapter 10.  An understanding of the nature of inventories is 
pre-requisite for a conversion to pull.  Thus, the organization and control of inventories is the subject of 
this chapter.  Traditional inventory models are presented first.  Next the lean idea of the control of 
inventories using kanbans is described.  Finally, a generalization of the kanban approach called constant 
work in process (CONWIP) is discussed.  In addition, a basic simulation model for inventories is shown.  
 
9.2 Traditional Inventory Models 
 
9.2.1 Trading off Number of Setups (Orders) for Inventory 
 
Consider the following situation, commonly called the economic order quantity problem.  A product is 
produced (or purchased) to inventory periodically.  Demand for the product is satisfied from inventory and 
is deterministic and constant in time.  How many units of the product should be produced (or purchased) 
at a time to minimize the annual cost, assuming that all demand must be satisfied on time?  This number 
of units is called the batch size. 
 
The analysis might proceed upon the following lines. 
 
1. What costs are relevant?   

a. The production (or purchase) cost of each unit of the product is sunk, that is the same no 
matter how many are made at once.  

b. There is a fixed cost per production run (or purchase) no matter how many are made.  
c. There is a cost of holding a unit of product in inventory until it is sold, expressed in $/year.  

Holding a unit in inventory is analogous to borrowing money.  An expense is incurred to 
produce the product.  This expense cannot be repaid until the product is sold.  There is an 
“interest charge” on the expense until it is repaid.  This is the same as the holding cost.  
Thus, the annual holding cost per unit is often calculated as the company minimum attractive 
rate of return times the cost of one unit of the product. 

 
2. What assumptions are made? 

a. Production is instantaneous.  This may or may not be a bad assumption.  If product is 
removed from inventory once per day and the inventory can be replenished by a scheduled 
production run of length one day every week or two, this assumption is fine.  If production 
runs cannot be precisely scheduled in time due to capacity constraints or competition for 
production resources with other products or production runs take multiple days, this 
assumption may make the results obtained from the model questionable. 

b. Upon completion of production, the product can be placed in inventory for immediate delivery 
to customers. 

c. Each production run incurs the same fixed setup cost, regardless of size or competing 
activities in the production facility. 

d. There is no competition among products for production resources.  If the production facility 
has sufficient capacity this may be a reasonable assumption.  If not, production may not 
occur exactly at the time needed. 

 
The definitions of all symbols used in the economic order quantity (EOQ) model are given in Table 9-1. 
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Table 9-1:  Definition of Symbols for the Economic Order Quantity Model 

 

Term Definition 

Annual demand rate (D) Units demanded per year 

Unit production cost (c) Production cost per unit 

Fixed cost per batch (A) Cost of setting up to produce or purchase one batch 

Inventory cost per unit per year (h) h = i * c where i is the corporate interest rate 

Batch size (Q) Optimal value computed using the inventory model 

Orders per year (F) D/Q 

Time between orders 1/F = Q/D 

Cost per year Run (order) setup cost + inventory cost =  
A * F + h * Q/2 

 
The cost components of the model are the annual inventory cost and the annual cost of setting up 
production runs.  The annual inventory cost is the average number of units in inventory times the 
inventory cost per unit per year.  Since demand is constant, inventory declines at a constant rate from its 
maximum level, the batch size Q, to 0.  Thus, the average inventory level is simply Q/2.  This idea is 
shown in Figure 9-1. 
 

 
 
The number of production runs (orders) per year is the demand divided by the batch size.  Thus the total 
cost per year is given by equation 9-1. 
 

 
Q

D
A

Q
hQY *

2
*            (9-1) 

 
Finding the optimal value of Q is accomplished by taking the derivative with respect to Q, setting it equal 
to 0 and solving for Q.  This yields equation 9-2. 
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        (9-2) 

 
Notice that the optimal batch size Q depends on the square root of the ratio of the fixed cost per batch, A, 
to the inventory holding cost, h.  Thus, the cost of a batch trades off with the inventory holding cost in 
determining the batch size.   
 
Other quantities of interest are the number of orders per year (F) and the time between orders (T). 
 

**
/ QDF            (9-3) 
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          (9-4) 

 
It is important to note that: 
 
Mathematical models help reveal tradeoffs between competing system components or parameters and 
help resolve them. 
 
Even if values are not available for all model parameters, mathematical models are valuable because 
they give insight into the nature of tradeoffs.  For example in equation 9- 2, as the holding cost increases 
the batch size decreases and more orders are made per year.  This makes sense, since an increase in 
inventory cost per unit should lead to a smaller average inventory.   
 
As the fixed cost per batch increases, batch size increases and fewer orders are made per year.  This 
makes sense since an increase in the cost fixed cost per batch results in fewer batches. 
 
Suppose cost information is unknown and cannot be determined.  What can be done in this application?  
One approach is to construct a graph of the average inventory level versus the number of production runs 
(orders) per year.  An example graph is shown in Figure 9-2.  The optimal tradeoff point is in the “elbow” 
of the curve.  To the right of the elbow, increasing the number of production runs (orders) does little to 
lower the average inventory.  To the left of the elbow, increasing the average inventory does little to 
reduce the number of production runs (orders).   
 
In Figure 9-2, an average inventory of about 20 to 40 units leads to about 40 to 75 production runs a year.  
This suggests that optimal batch size can be changed within a reasonably wide range without changing 
the optimal cost very much.  This can be very important as batch sizes may be for practical purposes 
restricted to a certain set of values, such as multiples of 12, as order placement could be restricted to 
weekly or monthly. 
 
Example.  Perform an inventory versus batch size analysis on the following situation.  Demand for 
medical racks is 4000 racks per year.  The production cost of a single rack is $250 with a production run 
setup cost of $500.  The rate of return used by the company is 20%.  Production runs can be made once 
per week, once every two weeks, or once every four weeks. 
 
The optimal batch size (number of units per production run) is given by equation 9-2: 
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Figure 9- 2:  Inventory versus Production Run Tradeoff Graph 

The number of production runs per year and the time between production runs is given by equations 9-3 
and 4: 
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The optimal cost is given by equation 9-1: 
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Applying the constraint on the time between production runs yields the following. 
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Note that when the optimal value of Q is used the inventory cost and the setup cost of production runs are 
approximately equal.  When the constrained value is used, the inventory cost increases since batch sizes 
are larger but the setup cost decreases since fewer production runs are made.  The total cost is about the 
same. 
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9.2.2 Trading Off Customer Service Level for Inventory 
 
Ideally, no inventory would be necessary.  Goods would be produced to customer order and delivered to 
the customer in a timely fashion.  However, this is not always possible.  Wendy’s can cook your 
hamburger to order but a Christmas tree cannot be grown to the exact size required while the customer 
waits on the lot.  In addition, how many items customers demand and when these demands will occur is 
not known in advance and is subject variation 
 
Keeping inventory helps satisfy customer demand on-time in light of the conditions described in the 
preceding paragraph.  The service level is defined as the percent of the customer demand that is met on 
time. 
 
Consider the problem of deciding how many Christmas trees to purchase for a Christmas tree lot.  Only 
one order can be placed. The trees may be delivered before the lot opens for business.  How many 
Christmas trees should be ordered if demand is a normally distributed random variable with known mean 
and standard deviation?   
 
There is a trade-off between: 
 
1. Having unsold trees that are not even good for firewood. 
2. Having no trees to sell to a customer who would have bought a tree at a profit for the lot. 
 
Relevant quantities are defined in Table 9-2. 
 

Table 9-2;  Definition of Symbols for Service Level – Inventory Trade-off Models 
 

Term Definition 

cs Cost of a stock out, for example not having a Christmas tree when a customer wants 
one. 

co Cost of an overage, for example having left over Christmas trees 

SL Service level 

Q Batch size or number of units to order 

 Mean demand 

 Standard deviation of demand 

zp Percent point of the standard normal distribution: P(Z  zp) = p.  In Excel this is given by 
NORMSINV(p)  

 
Then it can be shown that the following equation holds: 
 

soos

s

cccc

c
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/1

1





          (9-5) 

 
This equation states that the cost-optimal service level depends on the ratio of the cost of a stock out and 
the cost of an overage.   
 
In the Christmas tree example, the cost of an overage is the cost of a Christmas tree.  The cost of a stock 
out is the profit made on selling a tree.  Suppose the cost of Christmas tree to the lot is $15 and the tree 
is sold for $50 (there’s the Christmas spirit for you).  This implies that the cost of a stock out is $50 - $15 = 
$35.  The cost-optimal service level is given by equation 9-5. 
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If demand is normally distributed, the optimal number of units to order is given by the general equation: 
 

SL
zQ *

*
            (9-6) 

 
Thus, the optimal number of Christmas trees to purchase if demand is normally distributed with mean 100 
and standard deviation 20 is 
 

111524.0*20100*20100
70.0

*
 zQ  

 
There are numerous similar situations to which the same logic can be applied.  For example, consider a 
store that sells a particular popular electronics product.  The product is re-supplied via a delivery truck 
periodically.  
 
In this application, the overage cost is equal to the inventory holding cost that can be computed from the 
cost of the product and the company interest rate as was done in the EOQ model.  The shortage cost 
could be computed as the unit profit on the sale of the product.   
 
However, the manager of the store feels that if the product is out of stock, the customer may go 
elsewhere for all their shopping needs and never come back.  Thus, a pre-specified service level, usually 
in the range 90% to 99% is required.  What is the implied shortage cost?  This is given in general terms 
by equation 9- 7. 
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*           (9-7) 

 
Notice that this is equation is highly non-linear with respect to the service level.   
 
Suppose deliveries are made weekly, the overage cost (inventory holding cost) is $1/per week, and that a 
manager specifies the service level to be 90%.  What is the implied cost of a stock out?  From equation 9-
7, this cost is computed as follows: 
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Note that if the service level is 99%, the cost of a stock out is $99. 
 
9.3 Inventory Models for Lean Manufacturing 
 

In a lean manufacturing setting, the service level is most often an operating parameter specified by 
management.  Inventory is kept to co-ordinate production and shipping, to guard against variation in 
demand, and to guard against variation in production.  The latter could be due to variation in supplier 
shipping times, variation in production times, production downtimes and any other cause that makes the 
completion of production on time uncertain.   
 
A very important idea is that the target inventory level needed to achieve a specified service level is a 
function of the variance in the process that adds items to the inventory, production, as well as the process 
the removes items from the inventory, customer demand.  If there is no variation in these processes, then 
there is no need for inventory.  Furthermore, the less the variation, the less inventory is needed.  Variation 
could be random, such as the number of units demanded per day by customers, or structural: product A 
is produced on Monday and Wednesday and product B is produced on Tuesday and Thursday but there 
is customer demand for each product each day. 
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We will confine our discussion to the following situation of interest.  Product is shipped to the customer 
early in the morning from inventory and is replaced by a production run during the day.  Note that if the 
production run completes before the next shipment time, production can be considered to be 
instantaneous.  In other words, as long as the production run is completed before the next shipment, how 
long before is not relevant. 
 
Suppose demand is constant and production is completely reliable. If demand is 100 units per day, then 
100 units reside in the inventory until a shipment is made.  Then the inventory is zero.  The production run 
is for 100 units, which are placed in the inventory upon completion.  This cycle is completed every day. 
 
The following discussion considers how to establish the target inventory level to meet a pre-established 
service level when demand is random, when production is unreliable, and when both are true.   
 
9.3.1 Random Demand – Normally Distributed 
 
In lean manufacturing, a buffer inventory is established to protect against random variation in customer 

demand.  Suppose daily demand is normally distributed with a mean of  units and a standard deviation 

of  units.  Production capacity is such that the inventory can be reliably replaced each day.  
Management specifies a service level of SL.   
 
Consider equation 9-8, 
 

P(X  x) ≤ SL           (9-8) 
 
This equation says that the probability that the random variable, X, daily demand, is less than the target 
inventory, the constant x, must be SL.  Solving for the target inventory, x, yields equation 9-9. 
 

x =  +  * zSL           (9-9)  
 

Exercise. 
 
Customer demand is normally distributed with a mean of 100 units per day and a standard deviation of 10 
units.  Production is completely reliable and replaces inventory every day.  Determine the target inventory 
for service levels of 90%, 95%, 99% and 99.9%. 
 

 
Suppose production is reliable but can occur only every other day.  The two-day demand follows a normal 

distribution with a mean of 2 *  units and a standard deviation of 2 *  units.  The target inventory level 
is still SL.   
 
Consider the probability of sufficient inventory on the first of the two days.  Since the amount of inventory 
is sufficient for two days, we will assume that the probability of having enough units in inventory on the 
first day to meet customer demand is very close to 1.   
 
Thus, the probability of sufficient inventory on the second day need only be enough such that the average 
of this quantity for the first day and the second day is SL.  Thus, the probability of sufficient inventory on 
the second day is SL2 = 1 – [(1 - SL) * 2]. 
 
This means that the target inventory for replenishment every two days is given by equation 9-10. 
 

x2 = 2 *  + 2 * zSL2          (9-10)  
 
This approach can be generalized to n days between production, so long as n is small, a week or less.  
This condition will be met in lean production situations. 
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Exercise. 
 
Customer demand is normally distributed with a mean of 100 units per day and a standard deviation of 10 
units.  Production is completely reliable and replaces inventory every two days.  Determine the target 
inventory for service levels of 90%, 95%, 99% and 99.9%. 
 

 
9.3.2 Random Demand – Discrete Distributed 
 
In many lean manufacturing situations, customer demand per day is distributed among a relative small 
numbers of batches of units.  For example, a batch of units might be a pallet or a tote.   
 
This situation can be modeled using a discrete distribution.  The general form of a discrete distribution for 
this situation is: 
 

 pi  = 1            (9-11) 
 
where i is the number of batches demanded and pi is the probability of the customer demand being 
exactly i batches. The value of i ranges from 1 to n, the maximum customer demand.  If n is small 
enough, then a target inventory of n batches is not unreasonable and the service level would be 1. 
 
Suppose a target inventory of n batches is too large.  Then the target inventory, x, is the smallest value of 
x for which equation 9-12 is true. 
 

SLp

x

i

i


 1

           (9-12) 

 

Exercise 
 
Daily customer demand is expressed in batches as follows:   
 
(4, 20%), (5, 40%), (6, 30%), (7, 10%).   
 
Production is completely reliable and replaces inventory every day.  Determine the target inventory for 
service levels of 90%, 95%, 99% and 99.9%. 

 
Suppose production is reliable but can occur only every other day.  The two-day demand distribution is 
determined by convolving the one-day demand distribution with itself.  Convolving has to do with 
considering all possible combinations of the demand on day one and the demand on day two.  Demand 
amounts are added and probabilities are multiplied.  This is shown in Table 9-3 for the example in the 
preceding box. 
 
Table 9-4 adds together the probabilities for the same values of the two-day demand (day one + day two 

demand).  For example, the probability that the two day demand is exactly 9 batches is 16%, (8% + 8%)  
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Table 9-3:  Possible Combinations of the Demand on Day One and Day Two 

Day One Demand Day Two Demand Day One + Day Two Demand 

Demand Probability Demand Probability Demand Probability 

4 20% 4 20% 8 4% 

5 40% 4 20% 9 8% 

6 30% 4 20% 10 6% 

7 10% 4 20% 11 2% 

4 20% 5 40% 9 8% 

5 40% 5 40% 10 16% 

6 30% 5 40% 11 12% 

7 10% 5 40% 12 4% 

4 20% 6 30% 10 6% 

5 40% 6 30% 11 12% 

6 30% 6 30% 12 9% 

7 10% 6 30% 13 3% 

4 20% 7 10% 11 2% 

5 40% 7 10% 12 4% 

6 30% 7 10% 13 3% 

7 10% 7 10% 14 1% 

 

. 
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Table 9-4:  Two-Day Demand Distribution 
 

Demand Probability 

8 4% 

9 16% 

10 28% 

11 28% 

12 17% 

13 6% 

14 1% 

 

Exercise 
 
Daily customer demand is expressed in batches as follows:   
 
(4, 20%), (5, 40%), (6, 30%), (7, 10%).   
 
Production is completely reliable and replaces inventory every two days.  Determine the target inventory 
for service levels of 90%, 95%, 99% and 99.9%. 

 
9.3.3 Unreliable Production – Discrete Distributed 
 
Suppose production is not reliable.  That is the number of days to replace inventory is a discrete random 
variable.  Further suppose that demand is a constant value.   
 
Let qj be the probability of taking exact j days to replace inventory.  Then the number of days, d, of 
inventory that should be kept is the smallest value of d that makes equation 9-13 true. 
 

SLq

d

j

j


 1

           (9-13) 

 

Exercise 
 
Daily customer demand is a constant 10 batches.   
 
The number of days to replenish the inventory is distributed as follows: 
(1, 75%), (2, 15%), (3, 7%), (4, 3%).   
 
Determine the target inventory for service levels of 90%, 95%, 99% and 99.9%. 

 
9.3.4 Unreliable Production and Random Demand – Both Discrete Distributed 
 

Now consider the application where production is unreliable and demand is random.  Both the number of 
days in which the inventory is re-supplied and the customer demand are discrete random variables.  Note 
that the question of interest is:  What is the distribution of the demand in the time taken to replenish the 
inventory? 
 
Consider the simplest application:  Production will take either one or two days to replenish the inventory.  
Thus, it is appropriate to use the one day demand for setting the inventory level with probability q1 and it 
is appropriate to use the two day demand for setting the inventory level with probability q2.  This means 
that the combined distribution of the demand and the number of days to replenish the inventory must be 
computed. 
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This will be illustrated with a numeric example.  Suppose customer demand expressed in batches is:  (1, 
40%), (2, 30%), (3, 20%), (4, 10%).  Inventory can be replaced in either one day with probability 60% or 
two days with probability 40%. 
 

1. Compute the two day demand distribution. 
 

Units Probability 

2 16.00% 

3 24.00% 

4 25.00% 

5 20.00% 

6 10.00% 

7 4.00% 

8 1.00% 

 100.00% 

 
2. Compute the one and two day conditional distributions.  The condition is that the inventory is 

replaced in that number of days.  The demand distribution is multiplied by the probability that the 
inventory is replaced in that number of days. 

 

One day Demand 

Units Probability Condition Conditional 
Probability 

1 40% 60% 24.0% 

2 30% 60% 18.0% 

3 20% 60% 12.0% 

4 10% 60% 6.0% 

 100%  60.0% 

 

Two Day Demand 

Units Probability Condition Conditional 
Probability 

2 16% 40% 6.4% 

3 24% 40% 9.6% 

4 25% 40% 10.0% 

5 20% 40% 8.0% 

6 10% 40% 4.0% 

7 4% 40% 1.6% 

8 1% 40% 0.4% 

 100%  40.0% 
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3. Combine the two conditional distributions into a single distribution.  Add the conditional 
probabilities for all entries with the same number of units. 

 

Combined Distribution 

Units Probability 

1 24.0% 

2 24.4% 

3 21.6% 

4 16.0% 

5 8.0% 

6 4.0% 

7 1.6% 

8 0.4% 

 100.0% 

 
Note that for a customer service level of 98%, six units would be kept in inventory. 

 
 

Exercise 
 
Daily customer demand is expressed in batches as follows:   
 
(4, 20%), (5, 40%), (6, 30%), (7, 10%).   
 
Production is completely not reliable is distributed as follows: (1, 80%), (2, 20%). 
 
Determine the target inventory for service levels of 90%, 95%, 99% and 99.9%. 

 
 
9.3.5 Production Quantities 
 
Replacing inventory means that the production volume each day is the same random variable as 
customer demand.  Thus, the quantity to produce varies from day to day (or every other day to every 
other day).  This can cause capacity and scheduling issues. 
 
9.3.6 Demand in Fixed Time Period 
 
Suppose the number of units (batches) demanded in fixed period of time, T, is of interest.  Suppose the 
time between demands is exponentially distributed.  It follows mathematically that the number of 
demands in a period of time T is Poisson distributed: 
 

integer negative-non a is 
x!

x
meane

xp

xmean

;
*

)(



       (9-14) 

 
where x is the number of units demanded and mean is the average number units demanded in time T.  
Often the mean must be computed by multiplying two quantities: 
 

1. The average number of units demanded per hour. 
2. The number of hours in T. 

 
The Excel function Poisson can be used to compute probabilities using equation 9-14. 
 
Poisson(x, mean, FALSE). 
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A product has a mean demand of 1.5 units per hour.  Suppose production is constant with a takt time of 
40 minutes (= 60 minutes / 1.5 units).  What is the distribution of the demand in the takt time? 

 

Demand per 
hour 

1.5  

Hours in T 0.666667  

Mean demand in 
T 

1  

   

X Probability Cumulative 

0 0.368 0.368 

1 0.368 0.736 

2 0.184 0.920 

3 0.061 0.981 

4 0.015 0.996 

5 0.003 0.999 

6 0.001 1.000 

 
How many units are needed in inventory for a 95% service level the takt time that is such that the 
probability of running out of inventory before a unit is replaced is 5%? 
 
9.3.7 Simulation Model of an Inventory Situation 
 
Consider a simulation model and experiment to validate the 95% service level in the previous example.  
Production produces an item to inventory at a constant rate of 1.5 units per hour, one unit every 40 
minutes.  Since the demand is Poisson distributed it follows that the time between demands is 
exponentially distributed with a mean equal to the takt time of 40 minutes. 
 
The model is as follows.  There is one process for demands that take items from the inventory and one 
process for adding items back to the inventory.   
 
The initial conditions for any simulation experiment involving inventory must include the initial inventory 
level which is set to the target inventory value.  Determining the target inventory value was discussed in 
the previous sections in this chapter.  Each simulation language has its own requirements for setting the 
initial value of state variables such inventory levels. 
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Inventory demand and replenishment model 
 
Define Arrivals:    
 Demand Process 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 40 minutes 
     Number of arrivals: Infinite  
 
 Replenishment process 
  Time of first arrival: 0 
  Time between arrivals: Constant 40 minutes 
     Number of arrivals: Infinite  
 
Define Attributes: 
 ArrivalTime   // Time of demand 
 
Define State Variables: 
 CurrentInventory=3  // Number of items inventory with an initial value of three 
 
Demand Process 
Begin 
 ArrivalTime = Clock 
 Wait until CurrentInventory > 0 // Wait for an item in inventory 
 CurrentInventory--  // Remove one item from inventory 
 // Record Service Level 
 if ArrivalTime = Clock then  tabulate 100 in ServiceLevel 
 else    tabulate     0 in ServiceLevel 
End 
  
Replenishment Process 
Begin 
 CurrentInventory++  // Add item to inventory 
End 
____________________________________________________________________________________ 
 

9.4 Introduction to Pull Inventory Management 
 
The inventor of just-in-time manufacturing, Taiichi Ohno, defined the term pull as follows: 
 

Manufacturers and workplaces can no longer base production on desktop 

planning alone and then distribute, or push, them onto the market.  It 

has become a matter of course for customers or users, each with a 

different value system, to stand in the frontline of the marketplace 

and, so to speak, pull the goods they need, in the amount and at the 

time they need them. 

 

A supermarket (grocery store) has long been a realization of a pull system.  Consider a shelf filled with 
cans of green beans.  As customers purchase cans of green beans, less cans remain on the shelf.  The 
staff of the grocery store restocks the shelf whenever too few cans remain.  New cans are taken from 
boxes of cans in the store room.  Whenever the number of boxes of cans in the store room becomes too 
few, additional boxes are ordered from the supplier of green beans. 
 
Note than in this pull system, shelves are restocked and consequently new cases of green beans are 
ordered depending on the number of cans on the shelves.  The number of cans on the shelves depends 
on current customer demand for green beans. 
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The alternative to a pull system, which is no longer commonly used, is a push system.  In a push system 
supermarket, the manager would forecast customer demand for green beans for the next time period, say 
a month.  The forecasted number of green beans would be ordered from the supplier.  The allocated shelf 
space would be stocked with cans of green beans.  If actual customer demand was less than the 
forecasted demand, the manager would need to have a sale to try to sell the excess cans of green beans.  
If the actual demand was greater than the forecasted demand, the manager would somehow need to 
acquire more green beans. 
 
This illustration points out one fundamental breakthrough of lean manufacturing: inventory levels, both 
work-in-process (WIP) and finished goods, are controlled characteristics of how a production system 
operates instead of a result of how it operates as in a push system.     
 
9.4.1 Kanban Systems:  One Implementation of the Pull Philosophy 
 
The most common implementation of the pull philosophy is kanban systems.  The Japanese word kanban 
is usually translated into English as card.  A kanban or card is attached to each part or batch of parts 
(tote, WIP rack, shelf, etc.).  To understand the significance of such cards, consider a single workstation 
followed by a finished goods inventory and proceeded by a raw materials inventory as shown in Figure 9-
3.  The following items shown in Figure 9-3 are specific to kanban systems. 
 

1. A move kanban shown as a half-moon shaped card attached to the items in the raw material 
inventory. 

2. A production kanban shown as diamond shaped card attached to the items in the finished 
goods inventory. 

3. Stockpoints: locations where kanbans are stored after removal from an item. 
 
The dynamics of this kanban system are as follows.   
 

1. A customer demand causes an item to be removed from the finished goods inventory.  The 
item is given to the customer and the diamond shaped kanban attached to the item is placed 
in the stockpoint near the finished goods inventory. 

2. Periodically, the diamond shaped kanbans are collected from the stockpoint and moved to 
the workstation.  The workstation must produce exactly one item for each diamond shaped 
kanban it receives.  Thus, the finished goods inventory is replenished.  Note only the 
inventory removed by customers is replaced. 

3. In order to produce a finished goods item, the workstation must use a raw material item.  The 
workstation receives a raw material item by taking a half-moon shaped kanban to the raw 
material inventory. 

 
Note the following characteristics of a kanban system. 
 

1. The amount of inventory in a kanban system is proportional to the number of kanbans in the 
system. 

2. Kanban cards and parts flow in oppose directions.  Kanbans flow from right to left and parts 
flow from left to right. 

3. The amount of finished goods inventory required depends on the time the workstation takes 
to produce a part and customer demand.  A lower bound on the finished goods inventory can 
be set given a customer service level, the expected time for the workstation to produce a 
part, and the probability distribution used to model customer demand. 
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Kanban systems can be implemented in a variety of ways.  As a second illustration, consider a modified 
version of the single workstation kanban system.  Suppose only one kanban type is used and information 
is passed electronically.  Such a system is shown in Figure 9-4 and operates as follows: 
 

1. A customer demands an item from the finished goods inventory.  The kanban is removed 
from the item and sent to the workstation immediately. 

2. The workstation takes the kanban to the raw material inventory to retrieve an item.  The 
kanban is attached to the item.   

3. The workstation processes the raw material into the finished good.   
4. The item with the kanban attached is taken to the finished goods inventory. 

 
The number of kanbans can be set using standard methods for establishing inventory levels that have 
been previously discussed.  Try the following problems. 
 

1. Demand for finished goods is Poisson distributed at the rate of 10 per hour.  Once an 
item has been removed from finished goods inventory, the system takes on the average 
30 minutes to replace it.  How much finished goods inventory should be maintained for a 
99% service level? 

 
2. Suppose for problem 1, the time in minutes to replace the inventory is distributed as 

follows:  (30, 60%; 40, 30%; 50, 10%).  How much inventory should be kept in this 
application? 

 
3. Suppose for problem 1, all inventory is kept in containers of size 4 parts.  There is one 

kanban per container.  How many kanbans are needed for this situation?  
 
Simulation of a kanban system is discussed in the next chapter. 
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9.4.2 CONWIP Systems:  A Second Implementation of the Pull Philosophy 
 

One simple way to control the maximum allowable WIP in a production area is to specify its maximum 
value.  This can be accomplished by using a near constant work-in-process system, or CONWIP system.  
A production area could be a single station, a set of stations, an entire serial line, an entire job shop, or an 
entire work cell.   
 
Figure 9.5 shows a small CONWIP system with maximum number of jobs in the production area equal to 
2.  The rectangle encloses the production system that is under the CONWIP control.  Two jobs are in 
processing, one at each workstation.  Thus, the third job cannot enter the production system due to the 
CONWIP control limit of 2 jobs on the production line even though there is space for the job in the buffer 
of the first workstation.  This job should be waiting in an electronic queue of orders as opposed to 
occupying physical space outside of the CONWIP area. 
 

 
Figure 9-5:  CONWIP System Illustration 
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The following are some important characteristics or traits of a CONWIP system. 
 

1. The CONWIP limit is the only parameter of a CONWIP system. 
a. This parameter must be greater than or equal to the number of workstations in the 

production area.  If not, at least one of the workstations will always be starved. 
b. The ideal CONWIP limit is the smallest value that does not constrain throughput. 
c. In a multiple product production area, each job, regardless of type, counts toward the 

capacity imposed by the single CONWIP limit. 
 

2. A CONWIP system controls the maximum WIP in a production area. 
a. The maximum amount of waiting space before any work station is equal to the 

CONWIP limit or less.  It is possible, but unlikely, that all jobs are at the same station 
at the same time.  Thus, buffer sizes before workstations are usually not a constraint 
on system operation. 

b. If defective parts are detected at the last station on a production line, the CONWIP 
limit is the upper bound on the number of defective parts produced. 

c. A smaller footprint is needed for WIP storage. 
   
3. Jobs waiting to enter a production area are organized on an electronic or paper list.  No parts 

are waiting.   
a. The list can be re-ordered as needed so that the highest priority jobs are always at 

the head of the list.  For example, if an important customer asks for a rush job it can 
always be put at the head of the list.  The most number of jobs preceding the highest 
priority job is given by the CONWIP limit. 

b. If the mix of jobs changes, the CONWIP system dynamically adapts to the mix since 
the system has only one parameter. 

c. Recall Little’s Law: WIP = LT * TH.  In CONWIP system, WIP is almost constant.  
Thus, the lead time to produce is easy to predict given a throughput (demand) rate.  
With the WIP level controlled, the variability in the cycle time is reduced. 

 
4. For a given value of throughput, the average and maximum WIP level in a CONWIP system 

is less than in a non-CONWIP (push) system. 
 

5. In a CONWIP system, machines with excess capacity will be idle a noticeable amount of the 
time, which makes some managers very nervous and makes balancing the work between 
stations more important. 

 
6. Some CONWIP systems arise naturally as result of the material handling devices employed.  

For example, the amount of WIP may be limited by the number racks or totes available in the 
production area. 

 
A simulation model of a CONWIP control would include two processes: one for entering the CONWIP 
area and one for departing the CONWIP area as shown in the following. 
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CONWIP Processes 
 
Define State Variables: 
 CONWIPLimit   // Number of items allowed in CONWIP area 
 CONWIPCurrent  // Number of items currently in CONWIP area 
 
EnterCONWIPArea Process 
Begin 
 Wait until CONWIPCurrent < CONWIPLimit // Wait for a space in the CONWIP area 
 CONWIPCurrent++    // Add 1 to number in CONWIP area 
End 
  
Leave CONWIPArea Process 
Begin 
 CONWIPCurrent--  // Give back space in CONWIP Area 
End 
____________________________________________________________________________________ 
 
Consider the average lead time of jobs in a production area with M workstations.  Each workstation has 
process time tj.  Then the average total processing time is given by summing the average processing 
times for all work stations yielding the raw processing time, equation 9-15. 
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Suppose the following: 

1. The CONWIP limit is set at N  M.   
2. The production area is balanced, that is the processing time at each station is about the 

same.   
3. Processing times are near constant.   

 
Then the following are true: 

1. On the average at each workstation, a job will wait for 
M

MN 
 other jobs.  M jobs are in 

processing, one at each station.  Thus N-M jobs must be waiting for processing.  It is equally 
likely that a job will be at any station.  Thus, the average number of jobs waiting at any station 
is given by the above quantity. 

2. The average waiting time at any particular station is:  
j
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3. The total lead time at each station is:  
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Suppose instead that processing times are random and exponentially distributed.  This is for practical 
purposes the practical worst case processing time since cT = 1. 
 
Then the following are true: 

1. On the average at each workstation, a job will wait for 
M

N 1
 other jobs.  The other N -1 jobs 

are each equally likely to be at any workstation. 
 

2. The average waiting time at each station is: 
j

t
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3. The total lead time at each station is: 
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9.4.3 POLCA: An Extension to CONWIP 
 

Suri (2010) proposes the Paired-cell Overlapping Loops of Cards with Authorization (POLCA) approach 
to control the maximum allowable WIP for jobs processed by any pair of Quick Response Manufacturing 
(QRM) cells.  POLCA can be viewed as an extension of CONWIP and is illustrated in Figure 9.6. 
 
 

 
 

Figure 9-6:  POLCA Illustration 
 
In Figure 9-6, there are two types of jobs: 1) those that are processed by QRM Cell A and QRM Cell B (A-
B jobs) as well as 2) those that are processed by QRM Cell A and QRM Cell C (A-C jobs).  The WIP for 
each type of job is controlled separately.  There is one maximum WIP value for A-B jobs and a second 
maximum WIP value for A-C jobs.  Thus, there are A-B cards in the system and A-C cards in the system. 
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To start processing a job, two criteria must be met. 
 

1. There is a card available for that job type, i.e. an A-B card for an A-B job, similar to CONWIP. 
2. The current date is at or after the projected start date for the job.  The start date is computed as 

the delivery date minus the allowed time to complete the job.   
 
The card is released for reuse when the job is completed in the second of the pair of cells.  That is an A-B 

card must be acquired before the job starts processing in QRM cell A and is released upon completion of 

processing in QRM cell B.  

The time allowed to complete the job could be determined by expert opinion, experience, the VUT 

equation or simulation. 

Suri suggests estimating the number of POLCA cards needed using Little’s Law. 
 
WIP = LT * TH 
 
WIP = # of POLCA cards 
LT = Lead time in the first QRM cell + Lead time in the second QRM Cell 
TH = Demand rate for jobs for example the number of jobs required per week. 
For example, if the average lead time in QRM cell A is 30 minutes, the average lead time in QRM cell B is 
25 minutes, the demand per day is 30 units, and the working day is 16 hours then the number of A-B 
POLCA cards needed is  as follows: 
 
LT = (30 + 25)/60 = 0.92 hours 
TH = 30/16 = 1.875 units per hour 
Number of A-B POLCA cards = LT * TH = 2 
 
The following are some important characteristics or traits of a POLCA system. 
 

7. The POLCA limits are the only parameters of a POLCA system. 
a. If each of the QRM cells in a pair has only one POLCA card type, then POLCA is just 

like CONWIP. 
b. The ideal POLCA limits are the smallest values that do not constrain throughput, 

which may be greater than the limit estimated using Little’s Law. 
c. In a multiple product QRM cell pair, each job, regardless of type, counts toward the 

capacity imposed by the single POLCA limit for that pair of cells.  For example, there 
is one limit on the number of A-B POLCA cards regardless of the number of job types 
flowing from QRM cell A to QRM cell B. 

 
8. A POLCA system controls the maximum WIP in a production area. 
   
9. Jobs waiting to enter a production area are organized on an electronic or paper list.  No parts 

are waiting.   
a. The list can be re-ordered as needed so that the highest priority jobs are always at 

the head of the list.  For example, if an important customer asks for a rush job it can 
always be put at the head of the list.  The most number of jobs preceding the highest 
priority job is given by the sum of the POLCA limits. 

b. If the mix of jobs changes for any cell pair, the POLCA system dynamically adapts to 
the mix since there is only one parameter for the cell pair. 

 
10. In a POLCA system, machines with excess capacity will be idle a noticeable amount of the 

time, which makes some managers very nervous and makes balancing the work between 
stations more important. 
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A simulation model of a POLCA control would include two processes: one for entering the first POLCA 
cell and one for departing the second POLCA cell.  Note this is similar to the simulation model for a 
CONWIP system except there must be one variable for the POLCA limit for each cell pair.  In the 
following example there are two cell pairs:  A-B and A-C. 
 

POLCA Processes 
 
Define Attributes 
 JobType   // Type of job: either A-B or A-C 
 
Define State Variables: 
 POLCALimitAB   // Number of items allowed in  QRM Cells A-B Processing 
 POLCACurrentAB  // Number of items currently in QRM Cells A-B Processing 
 POLCALimitAC   // Number of items allowed in  QRM Cells A-C Processing 
 POLCACurrentAC  // Number of items currently in QRM Cells A-C Processing 
 
EnterPOLCAPair Process 
Begin 
 If JobType = AB 
 Begin 

Wait until POLCACurrentAB < POLCALimitAB // Wait for a space in the QRM Cell Pair 
  POLCACurrentAB++    // Add 1 to number in QRM Cell Pair 

End 
 If JobType = AC 
 Begin 

Wait until POLCACurrentAC < POLCALimitAC // Wait for a space in the QRM Cell Pair 
  POLCACurrentAC++    // Add 1 to number in QRM Cell Pair 

End 
End 
  
Leave CONWIPArea Process 
Begin 
 If JobType = AB POLCACurrentAB--   // Give back space in QRM Cell Pair 
 If JobType = AC POLCACurrentAC--   // Give back space in QRM Cell Pair 
End 
____________________________________________________________________________________ 
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Problems 

1. If you were assigned problem 5 in chapter 7 then do the following. 
 

a. Add two inventories to the model one for each part type.  Arrivals represent demands 
for one part from a finished goods inventory.  One completion of production a part is 
added to the inventory. 

b. Add a CONWIP control to the model.  The control is around the three workstations. 
 
2. Suppose that demand for a product is forecast to be 1,000 units for the year.  Units may be 

obtained from another plant only on Fridays.  Create a graph of the average inventory level (Q/2) 
versus the number of orders per year to determine the optimal value of Q. 

 
3. Suppose the programs for a Lions home game cost $2.00 to print and sell for $5.00.  Program 

demand is normally distributed with a mean of 30,000 and a standard deviation of 2000. 
 
 a. Based on the shortage cost and the overage cost, how many programs should be 

printed? 
 b. Suppose the service level for program sales is 95%.   
  i. How many programs should be printed? 
  ii. What is the implied shortage cost? 
 c. Construct a graph showing the number of programs printed and the implied shortage cost 

for service levels from 90% to 99% in increments of 1%. 
 
4. Suppose the Tigers print programs for a series at a time.  A three game weekend series with the 

Yankees is expected to draw 50,000 fans per game.  For each game, the demand for the 
programs is normally distributed with a mean of 30,000 and a standard deviation of 3,000.  How 
many programs should be printed for the weekend series for a service level of 99%?  Note:  You 
must determine the three day demand distribution first. 

 
5. Daily demand in pallets for a particular product made for a particular customer is distributed as 

follows: 
 
 (5, 75%), (6, 18%), (7, 7%) 
 

a. How many pallets should be kept in inventory for a 90% service level?  For a 95% service 
level?  

b. Compute the 2-day distribution of demand. 

 c. Suppose the inventory can only be re-supplied every 2-days.  How many pallets should 
be kept in inventory for each of the following service levels: 90%, 95%, 99%, and 99.5%? 

 
 d. Suppose the inventory replenishment is unreliable.  The replenishment occurs in one day 

75% of the time and in 2 days 25% of the time.  How many pallets should be kept in 
inventory for each of the following service levels: 90% and 99%? 

 
6. The inventory for a part is replaced every 4 hours.  Demand for the part is at the rate of 0.5 parts 

per hour.  How much inventory should be kept for a 99% service level?  Assume that demand is 
Poisson distributed. 

 
7. Consider a CONWIP system with 3 workstations.  The line is nearly balanced with constant 

processing times as follows (2.9, 3.2, 3.0) minutes. 
a. Derive an equation for the throughput rate given the equation for average part time in the 

system and Little’s Law. 
b. Construct a graph showing the cycle time as a function of the CONWIP limit N. 
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c. Construct a graph showing the throughput rate as a function of the CONWIP limit. 
d. Based on the graphs, select a CONWIP limit. 

 
8. Consider a CONWIP system with 3 workstations.  The line is nearly balanced with exponentially 

distributed processing times with means as follows (2.9, 3.2, 3.0) minutes. 
a. Derive an equation for the throughput rate given the equation for average part time in the 

system and Little’s Law. 
b. Construct a graph showing the cycle time as a function of the CONWIP limit N. 
c. Construct a graph showing the throughput rate as a function of the CONWIP limit. 
d. Based on the graphs, select a CONWIP limit. 

 
9. Consider a Kanban system with a finished goods inventory.  Inventory is stored in containers of 

size 6 items.  Customer demand is Poisson distributed with a rate of 10 per hour.  Replacement 
time is uniformly distributed between 2 and 4 hours.  Construct a curve showing the number of 
kanbans required for a 95% service level.  (Hint:  Consider replacement times of 2 hours, 2.25 
hours, 2.50 hours, …, 4 hours). 

 
10. Estimate the number of POLCA cards needed using Little’s Law for the following pair of 

workstations. 
 
Demand:  100 pieces per 8 hour day, which is constant. 
 
QRM Cell A with one workstation:  Processing time is 4 minutes, exponentially distributed. 
 
QRM Cell B with one workstation:  Processing time is constant, 4 minutes.  
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Chapter 10 

 
Inventory Control using Kanbans 

 
10.1 Introduction 
 
Inventory contol using kanbans was introduced in Chapter 9.  Here, the discussion is extended to 
include simulation modeling and experimentation of inventory control using kanbans in order to 
establish target inventory levels.  The inventory level is determined by the number of finished 
goods inventory tags and the number of work-in-process tags allowed. The minimum number of 
tags needed is proportional to the maximum number of items in the inventories (Mittal and Wang, 
1992).  Having too few tags causes an interruption in production flow which can lead to unmet 
demand.  Having too many tags causes excess inventory and increases associated costs. 
 
10.2 Points Made in the Case Study 
 
Previously, a process model has represented the physical movement of items through a system.  
In this application study, the model must represent both the flow of control information that 
specifies where and when to route items as well as the movement of those items through a 
system. 
 
Often, models evolve from previously existing models.  The model of the job shop with a push 
system orientation presented in chapter 8 is evolved into a model of the job shop with a pull 
orientation, including  inventory management. 
 
There is a trade-off between maximizing the service level to customers and minimizing the 
inventory on hand.  The service level is the percent of demands that are met on time.  A series of 
simulation experiments can be run varying the number of kanbans, and thus inventory capacity, 
of each type of product to help quantify this trade-off. 
 
In push systems, inventory level is a consequence of how the system operates and can be a 
simulation experiment performance measure.  In a pull system, the inventory level is a model 
parameter whose value is to be set through simulation experiments. 
 
A high service level to customers may be achieved even though work-in-process inventory is not 
always available when a workstation is directed to perform its operation.  In other words, a 
workstation may be starved.  Thus, a high service level to each workstation may not be 
necessary. 
 
Previous information about how a system operates, or should operate, can be combined with 
simulation results to draw conclusions.  This technique is known as the use of prior information.  
In this case, the expected mix of item types demanded is known and is used in conjunction with 
performance measure estimates to set the number of kanbans.  In addition, the number of 
kanbans for an item type could be the same in all inventories to minimize the number of inventory 
parameters.  This number will be based on the number needed to provide the required customer 
service level in the finished goods inventory. 
 
10.3 The Case Study 
 
The job shop described in chapter 8 is being converted to a pull inventory control strategy as an 
intermediate step toward a full lean transformation.  The shop consists of four workstations:  
lathe, planer, shaper, and polisher.  The number of machines at each station was determined in 
chapter 8: 3 planers, 3 shapers, 2 lathes and 3 polishers. The time between demands for each 
item type is exponentially distributed.  The mean time between demands for item type 1 is 2.0 
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hours, for type 2 items 2.0 hours, and for type 3 items 0.95 hours.   The items have the following 
routes through the shop: 
 
Type 1: lathe, shaper, polisher 
Type 2: planer, polisher 
Type 3: planer, shaper, lathe, polisher 
 
There is a supermarket following each workstation to hold the items produced by that station.  
Figure 10-1 shows the job shop configuration plus supermarkets, with job types in each 
supermarket identified.  No routing information is shown.  Improvements will be made at each 
station such that the processing times will be virtually constant and the same regardless of item 
type.  
 
Planer:  1.533 hours 
Shaper:  1.250 hours 
Lathe:  0.8167 hours 
Polisher: 0.9167 hours 
 
Management anticipates changes in demand each month.  The simulation model will be used as 
a tool to determine the number of kanbans to use in each month.   
 

 
 
10.3.1 Define the Issues and Solution Objective 
 
Management wishes to achieve a 99% service level provided to customers.  The service level is 
defined as the percent of customer demands that can be statisfied from the finished goods 
inventories at the time the demand is made.  At the same time, management wishes to minimize 
the amount of finished goods and in process inventory to control costs. 
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Thus initially, management wishes to determine the minimum number of kanbans for each item 
type associated with each inventory.  The minimum number of kanbans establishes the maximum 
number of items of each type in each inventory.  
 
10.3.2 Build Models 
 
The process of the flow of control information through the job shop will be the perspective for 
model building.  Note that the flow of control information from workstation to workstation follows 
the route for processing an item type in reverse order. For example, the route for type 1 items is 
lathe, shaper, polisher but the flow of control information is polisher, shaper, lathe.   
 
The control information must include the name of the supermarket into which an item is placed 
upon completion at a workstation with the number of items of each type in the supermarket 
tracked. In addition, the control information should include the name of the inventory from which 
an item is taken for processing at a workstation.  Supermarket / inventory names are constructed 
as follows.  For the finished goods inventories, the name is INV_FINISHED_ItemType = 
INV_FINISHED_1 if ItemType = 1 and so forth.  For the work in process inventories the name is 
INV_Station_ItemType, for example INV_SHAPER_1 for type one 1 items that have been 
completed by the shaper.  Thus, the polisher places type 1 items in the inventory 
INV_FINISHED_1 and removes items from INV_SHAPER_1 since the shaper was the preceding 
station to the polisher on the production route of a type 1 item.  Table 10-1 summarizes the 
supermarkets / inventories associated with each item type at each workstation.  In the model, a 
distinct state variable models each of the inventories.  
 

Table 10-1:  Inventory Names by Item Type and Station 
 

Supermarket / 
Inventory 

Item Type Output from Station Input to Station or Customer 

INV_FINISHED_1 1 Polisher Customer 

INV_FINISHED_2 2 Polisher Customer 

INV_FINISHED_3 3 Polisher Customer 

INV_SHAPER_1 1 Shaper Polisher 

INV_LATHE_1 1 Lathe Shaper 

INV_PLANER_2 2 Planer Polisher 

INV_LATHE_3 3 Lathe Polisher 

INV_SHAPER_3 3 Shaper Lathe 

INV_PLANER_3 3 Planer Shaper 

 
The transmission of control information via a kanban is initiated when a finished item is removed 
from an inventory.  The station preceding the FGI, in this case the polisher for all item types, is 
instructed to complete an item to replace the one removed from the FGI.  The polisher station 
removes a partially completed item from an inventory, for example INV_SHAPER_1 for item type 
1, for processing.  The item completed by the polisher is placed in the appropriate FGI.  The 
removal of a partially completed item from INV_SHAPER_1 is followed immediately by 
processing at the shaper to complete a replacement item.  This processing at the polisher and 
shaper can occur concurrently.  Information flow and processing continues in this fashion until all 
inventories for the particular type of item have been replenished. 
 
Each entity has the following attributes: 

ArriveTime: time of arrival of a demand for a job in inventory 
JobType: type of job  
Location: location of the production control information (kanban) relative to the 

start of the route of a job: 1..4 
 Routei:  station at the ith location on the route of a job 
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P_Invi: the name of the inventory from which a partially completed item is 
removed for processing at the ith location on the route of a job 

F_Invi: the name of the inventory into which the item completed at the 
workstation is placed at the ith location on the route of a job 

 
The arrival process for type one jobs is shown below.  Arrivals represent a demand for a finished 
item that subsequent triggers the production process to replace the item removed from inventory 
to satisfy the demand.   
 
The entity attributes are assigned values.  Notice that the value of location is set initially to one 
greater than the ending position on the route.  Thus, production is triggered at the last station on 
the route, which triggers production on the second last station on the route, and so forth. 
 
The arrival process model includes removing an item from a FGI.  Thus arriving entites wait for a 
finished item to be in inventory, remove an item when one is available, and update the number of 
finished items in the inventory.   
 
 

Define Arrivals:    
 Type1 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 2 hours 
     Number of arrivals: Infinite  
 
 Type2 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 2 hours 
     Number of arrivals: Infinite  
 
 Type3 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 0.95 hours 
     Number of arrivals: Infinite  
 
Define Resources: 
 Lathe/2      with states (Busy, Idle) 
 Planer/3     with states (Busy, Idle) 
 Polisher/3  with states (Busy, Idle) 
 Shaper/3  with states (Busy, Idle) 
 
Define Entity Attributes: 
 ArrivalTime  // part tagged with its arrival time; each part has its own tag 

JobType   // type of job 
 Location  // location of a job relative to the start of its route: 1..4 
 Route(5)  // station at the ith location on the route of a job 
 ArriveStation  // time of arrival to a station, used in computing the waiting time  

F_Inv(4) // the name of the inventory into which a completed item is 
placed // at the ith location on the route 

P_Inv(4) // the name of the inventory from which an item to be completed 
// is taken at the ith location on the route 
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Process ArriveType1 
Begin 

Set ArrivalTime = Clock  // record time job arrives on tag 
 Set JobType = 1   // type of job 
 Set Location = 4   // job at start of route 
  
 // Set route 
     Set Route(1) to P_Lathe         

Set Route(2) to P_Shaper     
 Set Route(3) to P_Polisher 
  
 // Set following inventories 
 Set F_Inv(1) to I1Lathe 
 Set F_Inv(2) to I1Shaper 
 Set F_Inv(3) to I1Final 
 
 // Set preceding inventories 
 Set P_Inv(1) to NULL   // NULL is a constant indicating no inventory 
 Set P_Inv(2) to I1Lathe 
 Set P_Inv(3) to I1Shaper 
 
 // Get and update inventory 
 Wait until I1Final > 0 
 Set I1Final -- 
 
 // Record service level 
 If (Clock > ArrivalTime) then 
 Begin 
 // Arrival waited for inventory 
  tabulate 0 in ServiceLevel1 
  tabulate 0 in ServiceLevelAll 
 End 
 Else 
 Begin 
 // Arrival immediately acquired inventory 
  tabulate 100 in ServiceLevel1 
  tabulate 100 in ServiceLevelAll 
 End 
 
     Send to P_Router 
End 

 
The process at a station includes requesting and receiving items in inventory from preceding 
stations, processing a item, and placing completed items in inventory at the station.  All stations 
follow this pattern but differ somewhat from each other. 
 
As shown in Figure 10-1, no operations precede the planer station for any item type. Thus 
information triggering additional production at other stations is unnecessary.  Upon completion of 
the planer operation, a job is added to the inventory whose name is the value of entity attribute 
F_INV[Location], for example INV_PLANER_1.   
 
The process model of the shaper station is like the process model of the planer station with the 
retrieval of partially completed items from preceding workstations added.  As soon as a partially 
completed item is retrieved, the routing process is invoked to begin generating the replacement 
for the item removed from inventory. 
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The lathe station model is similar to the shaper station model, except that it is the first station on 
the route for items of type 1.  The polisher station model is similar to the shaper station model.  
Developing the process models of the lathe and polisher stations is left as an exercise for the 
reader.  The shaper and planer station models are shown below. 
 

Process Shaper 
// Shaper Station 
Begin 

// Acquire Preceeding Inventory 
Wait until P_Inv(Location) > 0 in Q_Shaper 
Set P_Inv(Location) -- 
Clone to P_Router 

 
// Process item on Shaper 
Wait until Shaper is Idle in Q_Shaper 
Make Shaper Busy 
Wait for 1.25 hours 
Make Shaper Idle 
Set F_Inv(Location)++ 

End 
 
Process Planer 
// Planer Station 
Begin 

// Acquire Preceeding Inventory 
If P_Inv(Location) != NULL) then 
Begin 

Wait until P_Inv(Location) > 0 in Q_Planer 
P_Inv(Location) -- 
Clone to P_Router 

 End 
 

// Process item on Planer 
Wait until Planer is Idle in Q_Planer 
Make Planer Busy 
Wait for 0.9167 hours 
Make Planer Idle 
Set F_Inv(Location)++ 

End 

 
The routing process is shown below.  The attribute Location is updated by subtracting one from 
the current value.  If the control information has been processed by the first workstation on a 
route, Location is equal to zero and nothing else needs to be done.  Otherwise, the control 
information is sent to the preceding workstation on the route. 
 

Process Router 
Begin 
 Location - - 
 If Location > 0 then send to Route(Location) 
End 

 
Note the evolution of the model presented in chapter 8 into the model presented in this chapter.  
The routing process has been modified to send control information through a series of 
workstations in the reverse order of item movement for processing.  This is how the model of the 
push system orientation was modified to represent a pull system orientation.   



 10-7 

 
Arrivals are interpreted as demands for an item from a finished goods inventory instead of a new 
item to process.  Processing of a new item is triggered via the routing process when a demand is 
satisfied from the inventory. 
 
Inventory management is added to the model for FGI’s for each type of item as well as 
inventories of partially completed items.   
 
10.3.3 Identify Root Causes and Assess Initial Alternatives 
 
The design of the simulation experiment is summarized in Table 10-2.  Management has 
indicated that demand is expected to change monthly.  Thus, a terminating experiment with a 
time interval of one month is employed.  There are three random number streams, one for the 
arrival process of each item type.  Twenty replicates are made.  Since stations are busy only in 
response to a demand, all stations idle is a reasonable state for the system and thus appropriate 
for initial conditions. 
 

Table 10-2:  Simulation Experiment Design for the Just-in-Time Job Shop 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Initial number of items of each type in each inventory 
1. Infinite 
2. Number needed to provide a 99% service level 

for the average time to replace an item in the 
finished goods inventory 

Performance Measures 1. Number of items of each type in each buffer 
2. Customer service level 

Random Number Streams Three, one for the arrival process of each item type. 

Initial Conditions Idle stations 

Number of Replicates 20 

Simulation End Time 184 hours (one month) 

 
The experimental strategy is to determine a lower and an upper bound on the inventory level and 
thus the number of kanbans.  First, the minimum inventory level needed for a 100% service level 
will be determined.  This is the maximum inventory level that would ever be used that is the upper 
bound.  The lower bound is the number of items in finished goods inventory needed to achieve a 
99% service level for the average time to replace an item taken from the finished goods inventory.     
The service level in this case will likely be less than 99% since the time to replace some units will 
be greater than this average.   
 
Prior information is information known before the simulation results are generated that is used 
along with these results to reach a conclusion.  In this case, the following prior information is 
available. 
 

1. For each item type, the number of kanbans associated with each inventory (finished 
goods and work in process at each station) should be the same by management policy. 

2. All inventories for an item type should be the same as the finished goods inventory level.  
3. The finished goods inventory level for a product relative to the other products should be 

proportional to the arrival rate of the demand for that product relative to the arrival rate of 
the demand for all products together, at least approximately. 

 
The first piece of prior information makes the kanban control system simpler to operate since the 
number of kanbans depends only on the product, not the workstation as well.  The second point 
recognizes that the service level depends on the availability of items in a finished goods inventory 
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when a customer demand occurs.  The service level does not depend on the availability of 
partially completed items in other inventories when requested by a workstation for further 
processing.   
 
The third point recognizes that the number of kanbans should be balanced between products with 
respect to customer demand.  Table 10-3 show the computations necessary to determine the 
percent of the customer demand that is for each product.  The demand per hour is the reciprocal 
of the time between demands.  The sum of the demand per hour for each item is the total 
demand per hour.  Thus, the percent of the demand for each item is determined as the demand 
per hour for that item divided by the total. 
 

Table 10-3:  Percent of Demand from Each Product 
 

Item Time Between Demands Demand per hour % of Demand 

1 2.00 0.50 24% 

2 2.00 0.50 24% 

3 0.95 1.05 52% 

Total 0.49 2.05 100% 

 
The upper bound on the number of kanbans associated with each inventory, equal to the number 
of items in each inventory in this case, is estimated as follows.  The initial number of items in an 
inventory is set to infinite.  In other words, the state variable modeling the inventory is initially set 
to a very large number.  Thus, there will be no waiting for a needed item because it is not in 
inventory.  The inventory level will be observed over time.  The minimum inventory level observed 
in the simulation represents the number of units that were never used and thus are not needed.   
 
Setting the inventory level as discussed in the previous paragraph implies that the service level 
would be 100% since by design there is always inventory to meet a customer demand.  
 
The simulation results for the infinite inventory case are shown in Table 10-4.  These results can 
be interpreted using the prior information discussed above.  In this way, the number of kanbans in 
each inventory for each item is the same as the finished goods inventory for that item.  Thus, the 
upper bound on the number of items need in each inventory is 4 for item type 1, 4 for item type 2 
and 6 for item type 3.  Thus, a total of 44 items are needed in inventory. 
 
Note that the percent of the total finished goods inventory for each item is near the percent 
demand shown in Table 10-3: Type 1, 29% from the simulation versus 24% of the demand; Type 
2, 29% versus 24% and Type 3, 44% versus 52%.  Further, the percent of the total for type 1 and 
type 2 are equal to each other as in Table 10-3.  Thus, validation evidence is obtained. 
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Table 10-4:  Maximum Inventory Values from the Pull Job Shop Simulation 
 

Replicate FGI 
Type 1 

Lathe 
Type 1 

Shaper 
Type 1 

FGI 
Type 2 

Planer  
Type 2 

FGI 
 Type 3 

Lathe  
Type 3 

Planer 
Type 3 

Shaper 
Type 3 

1 4 3 4 4 4 7 6 5 7 

2 4 5 4 4 3 5 5 5 6 

3 4 4 5 5 5 9 9 9 10 

4 3 4 4 4 4 5 6 5 7 

5 4 4 4 4 4 4 4 4 5 

6 3 3 4 6 6 5 5 5 6 

7 4 4 5 3 3 6 6 5 6 

8 5 4 5 4 4 6 6 5 7 

9 4 4 4 4 4 5 6 5 6 

10 4 4 4 4 4 6 6 6 7 

11 3 3 3 4 4 5 5 5 7 

12 3 3 4 5 5 12 13 11 14 

13 3 3 4 4 4 6 5 5 6 

14 3 3 4 4 4 4 5 4 5 

15 4 3 4 4 4 7 7 5 7 

16 3 3 4 4 4 5 5 5 6 

17 3 3 4 4 4 5 5 5 6 

18 5 5 6 4 4 5 4 5 6 

19 4 4 4 4 4 6 6 6 7 

20 3 4 4 4 4 7 6 6 7 

Average 3.7 3.7 4.2 4.2 4.1 6.0 6.0 5.6 6.9 

Std. Dev.  0.671 0.671 0.616 0.587 0.641 1.835 1.974 1.638 1.971 

99% CI 
Lower 
Bound 3.2 3.2 3.8 3.8 3.7 4.8 4.7 4.5 5.6 

99% CI 
Upper 
Bound 4.1 4.1 4.6 4.5 4.5 7.2 7.3 6.6 8.2 

Proposed 
Initial 
Capacity 4 4 4 4 4 6 6 6 6 

% of Total 
FGI  29%   29%  44%    

 
Alternatively, the number of items in inventory, and hence the number of kanbans, will be 
estimated as the number required to provide a 99% service level for the average time needed to 
replace a product taken from inventory.  In other words, for the average time interval from when a 
product is taken by a customer from finished goods inventory till it is replaced in the finished 
goods inventory by the production system, the customer service level should be at least 99%.  
See Askin and Goldberg (2002) for a discussion of this strategy. 
 
The average time interval to replace a product is the sum of two terms:  the amount of time 
waiting for the polisher and the polisher processing time.  The former can be determined using 
the VUT equation and adjusted here for multiple machines (m=3) as shown in equation 10-1. 
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The V term will be 0.5.  The processing time at the polisher is a constant yielding zero for the 
coefficient of variation.  The time between demands is exponentially distributed and thus has a 
coefficient of variation of 1.  The utilization of the polisher is the processing time (0.9167 hours) 
divided by the number of machines at the polisher station (3) times the total number of units 
demanded per hour as shown in Table 10-3.  Thus, the utilization of the polisher is 91.3%.   
 
Using these values in equation 10-1 yields 0.1747 hours for the average waiting time before 
processing at the polisher.  The average processing time at the polisher is 0.9167 hours.  Thus, 
the average time for the polisher to complete one item is 1.0913 hours.    
 
The finished goods inventory needed for each product must make the following probability 
statement true: 
 

P(demand in 1.0913 hours  finished good inventory level)  99%. 
 
Since the time between demands for units is exponentially distributed, the number of units 
demanded in any fixed period of time is poisson distributed with mean equal to the average 
number of units demand in 1.0913 hours.  The mean is computed as 1.0913 hours times the 
average number of units demand per hour shown in Table 10-3.   
 
Table 10-5 shows the number of items in finished goods inventory needed to achieve at least a 
99% service level for 1.0913 hours. 

 
Table 10-5:  Finished Goods Inventory Levels for the Average Time to Replace a Unit 

 

Item 

Expected 
Demand in 

1.0913 Hours 
Inventory 

Level Service Level 

Percent of 
Total 

Inventory 

1 0.55 3 99.8% 30% 

2 0.55 3 99.8% 30% 

3 1.15 4 99.4% 40% 

Total  10  100% 

 
Note that the percent of total inventory for each product corresponds reasonably well to that given 
in Table 10-2, given the small number of units in inventory.  Thus, validation evidence is obtained.   
 
The lower bound on the total number of units in inventory is 31 which is 13 units less than the 
upper bound of 44. 
 
Simulation results shown in Table 10-6 show the service level for each product and overall 
obtained when the inventory levels shown in Table 10-5 are used. 
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Table 10-6:  Service Level Simulation Results for Finished Goods Inventory Levels (3, 3, 4) 
 

Replicate Type 1 Type 2 Type 3 Overall 

1 98.1 98.8 97.2 97.8 

2 97.8 97.6 98.9 98.4 

3 96.7 92.6 89.9 92.2 

4 100.0 100.0 95.9 97.9 

5 98.6 98.8 100.0 99.3 

6 100.0 94.1 98.9 97.8 

7 96.8 100.0 96.7 97.4 

8 97.6 94.4 95.0 95.5 

9 98.9 99.0 96.7 97.8 

10 97.6 98.9 94.4 96.2 

11 100.0 96.9 97.5 97.9 

12 100.0 93.2 86.1 91.1 

13 100.0 98.8 96.4 97.8 

14 100.0 98.8 100.0 99.7 

15 98.9 93.9 96.1 96.3 

16 100.0 98.9 98.5 99.0 

17 100.0 98.7 98.4 98.8 

18 96.8 98.9 98.9 98.4 

19 98.0 98.9 96.3 97.4 

20 100.0 95.7 95.8 96.7 

Average 98.8 97.3 96.4 97.2 

Std. Dev.  1.26 2.41 3.32 2.17 

99% CI Lower 
Bound 98.0 95.8 94.3 95.8 

99% CI Upper 
Bound 99.6 98.9 98.5 98.6 

 
The service levels are all less than the required 99% through the approximate 99% confidence 
interval for the service level of type 1 items contains 99%.  Note in addition that the range of 
service levels across the replicates is small. 
 
10.3.4 Review and Extend Previous Work 
 
Management was pleased with the above results.  It was thought, however, that the service level 
obtained when using the upper bound inventory values should be determined by simulation and 
compared to the service level obtained when using the lower bound values.  This was done and 
the results are shown in Table 10-7. 





  

Table 10-7:  Comparison of Service Level for Two Inventory Capacities 
 

 Type 1 Type 2 Type 3 Overall 

Replicate (3,3,4) (4,4,6) difference (3,3,4) (4,4,6) difference (3,3,4) (4,4,6) difference (3,3,4) (4,4,6) difference 

1 98.1 100.0 1.9 98.8 100.0 1.2 97.2 99.5 2.4 97.8 99.8 2.0 

2 97.8 100.0 2.2 97.6 100.0 2.4 98.9 100.0 1.1 98.4 100.0 1.6 

3 96.7 100.0 3.3 92.6 96.7 4.1 89.9 93.8 3.8 92.2 96.0 3.8 

4 100.0 100.0 0.0 100.0 100.0 0.0 95.9 100.0 4.1 97.9 100.0 2.1 

5 98.6 100.0 1.4 98.8 100.0 1.2 100.0 100.0 0.0 99.3 100.0 0.7 

6 100.0 100.0 0.0 94.1 98.0 3.9 98.9 100.0 1.1 97.8 99.5 1.6 

7 96.8 100.0 3.2 100.0 100.0 0.0 96.7 100.0 3.3 97.4 100.0 2.6 

8 97.6 98.8 1.2 94.4 100.0 5.6 95.0 100.0 5.0 95.5 99.7 4.3 

9 98.9 100.0 1.1 99.0 100.0 1.0 96.7 100.0 3.3 97.8 100.0 2.2 

10 97.6 100.0 2.4 98.9 100.0 1.1 94.4 100.0 5.6 96.2 100.0 3.8 

11 100.0 100.0 0.0 96.9 100.0 3.1 97.5 100.0 2.5 97.9 100.0 2.1 

12 100.0 100.0 0.0 93.2 99.0 5.8 86.1 90.6 4.5 91.1 94.9 3.8 

13 100.0 100.0 0.0 98.8 100.0 1.3 96.4 100.0 3.6 97.8 100.0 2.2 

14 100.0 100.0 0.0 98.8 100.0 1.2 100.0 100.0 0.0 99.7 100.0 0.3 

15 98.9 100.0 1.1 93.9 100.0 6.1 96.1 99.5 3.4 96.3 99.7 3.4 

16 100.0 100.0 0.0 98.9 100.0 1.1 98.5 100.0 1.5 99.0 100.0 1.0 

17 100.0 100.0 0.0 98.7 100.0 1.3 98.4 100.0 1.6 98.8 100.0 1.2 

18 96.8 97.9 1.1 98.9 100.0 1.1 98.9 100.0 1.1 98.4 99.5 1.1 

19 98.0 100.0 2.0 98.9 100.0 1.1 96.3 100.0 3.7 97.4 100.0 2.6 

20 100.0 100.0 0.0 95.7 100.0 4.3 95.8 99.5 3.7 96.7 99.7 3.0 

Average 98.8 99.8 1.0 97.3 99.7 2.3 96.4 99.1 2.8 97.2 99.4 2.3 

Std. Dev. 1.26 0.53 1.14 2.41 0.85 1.95 3.32 2.45 1.61 2.17 1.39 1.14 

99% CI Lower 
Bound 98.0 99.5 0.3 95.8 99.1 1.1 94.3 97.6 1.7 95.8 98.5 1.5 

99% CI Upper 
Bound 99.6 100.2 1.8 98.9 100.2 3.6 98.5 100.7 3.8 98.6 100.3 3.0 

 



  

 
The following can be noted from Table 10-7. 
 
1 For the upper bound inventory values, (4, 4, 6), the approximate 99% service level 

confidence intervals include 99%. 
2. The approximate 99% confidence intervals of the difference in service level do not 

contain zero.  Thus, it can be concluded with 99% confidence that the service level 
provided by the lower bound on inventory values is less than that provided by the upper 
bound inventory values.   

3. The approximate 99% confidence intervals of the difference in service level are relatively 
narrow. 

 
Based on these results, management decided that an acceptable service level would be achieved 
by using a target inventory of 4 units for jobs of type 1 and 2 as well as 6 units for jobs of type 3. 
 
10.3.5 Implement the Selected Solution and Evaluate 
 
The selected inventory levels were implemented and the results monitored. 
 
10.4 Summary 
 
This chapter emphasizes how simulation is used to evaluate the operating strategies for systems.  
In addition, simulation is helpful in setting the parameters of such operating strategies.  The use 
of simulation in modeling a pull production strategy is shown.  The evolution of previously existing 
models is illustrated. 
 
Problems 
 
1. Develop the process model for the lathe station. 
 
2. Develop the process model for the polisher station. 
 
3. Develop a process model of a single workstation producing one item type that uses a pull 

production strategy. 
 
4. Find verification evidence for the model discussed in this chapter. 
 
5. Provide additional validation evidence for the model discussed in this chapter. 
 
6. Compare the routing process used in the model in this chapter to that used in chapter 8. 
 
7. Compare the process at each workstation used in the model in this chapter to that in the 

model in chapter 8. 
 
8. Provide a justification for using different inventory levels at different stations and the FGI 

for the same product. 
 
9. Find an inventory level between the lower and upper inventory sizes that provides a 99% 

service level.  How much inventory is required? 
 
10. Conduct additional simulation experiments using the model developed in this chapter to 

determine the product inventory levels that yield a 95% service level. 
 
11. For one customer demand, augment the model to produce a trace of the movement of 

the entities through the model. 
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Case Problem -- CONWIP 
 
Convert the assembly line presented in the chapter 7 application problem to a CONWIP 
production strategy.  The assembly line was described as follows. 
 
A new serial system consists of three workstations in the following sequence: mill, deburr, and 
wash.  There are buffers between the mill and the deburr stations and between the deburr and 
the wash stations.  It is assumed that sufficient storage exists preceding the mill station.  In 
addition, the wash station jams frequently and must be fixed.  The line will serve two part types.  
The production requirements change from week to week.  The data below reflect a typical week 
with all times in minutes.  
 
Time between arrivals -   Part type 1: Exponentially distributed with mean 2.0 
       Part type 2: Exponentially distributed with mean 3.0 
 
Time at the mill station -   Part type 1: 0.9 
     Part type 2: 1.4 
 
Time at the deburr station -  Uniform (0.9, 1.3) for each part type 
 
Time at wash station -   1.0 for each part type 
 
Time between wash station jams - Exponentially distributed with mean 30.0 
Time to fix a wash station jam -  Exponentially distributed with mean   3.0 
 
Arrivals represent demands for completed products.  Demands are satisfied from finished goods 
inventory.  Each demand creates a new order for the production of a product of the same type 
after it is satisfied.  The completed product is place in the finished goods inventory. 
 
Three quantities must be determined through simulation experimentation:   

1. The CONWIP level, that is the maximum number of parts allowed on the line 
concurrently. 

2. The target FGI level for part type 1. 
3. The target FGI level for part type 2. 

 
Two approaches to setting these values could be taken.  Choose either one you wish. 
 

1. Approach one.   
a. Set the FGI inventory level for each product as described in this chapter. Set 

the CONWIP level to infinite (a very high number). Use an infinite (again a 
very high number) FGI inventory level to determine the minimum number of 
units needed for a 100% service level.   

b. Determine the inventory level needed for a 99% service level during the 
average replacement time analytically.  The average replacement time is the 
same for each part type.  Determine the average lead time using the VUT 
equation for each station.  Sum the results.  Remember that ca at a following 
station is equal to cd at the preceding station.  Hints:  1) The VUT equation 
assumes that there is only one part type processed at a station.  Thus, the 
processing time to use a the mill station is the weighted average processing 
time for the two part types.  The weight is the percent of the total parts 
processed that each part type is of the total:  60% part type 1 and 40% part 
type 2.  The formulas for the average and the variance for this situation are 
given in the discussion of discrete distributions in chapter 3.  2)  The formula 
for the variance of a uniform distribution is given in chapter 3.  3)  Ignore the 
downtime at the was station for this analysis. 
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c. Assess the service level for the inventory level midway between the lower 
and upper bound.  

d. Pick the lowest level of inventory of three that you have tested that yields 
close to a 99% service level.  Note average and maximum WIP on the serial 
line for this value.   

e. Set the CONWIP level to the lowest value that doesn’t negatively impact the 
service level.  The minimum feasible CONWIP level is 3.  Try values of 3, 4, 
5, … until one is found that does not impact the service level.  Confirm your 
choice with a paired-t analysis.   

f. Compare the maximum WIP before the CONWIP level was establish to the 
CONWIP level you selected.   

 
2. Approach two:   

a. Find the minimum CONWIP level that maximizes throughput.  Set the two 
FGI levels to infinite (a very high number) so that the service level is 100%.  
The minimum feasible CONWIP level is 3.  Try values of 3, 4, 5, … until one 
is found such that the throughput is no longer increasing.  Confirm your 
choice with a paired-t analysis.  

b. Compare the maximum WIP in the serial line without the CONWIP control to 
the CONWIP level you select.  The former could be determined by setting the 
CONWIP level to a large number.   

c. Estimate the finished goods inventory level need to satisfy customer 
demands using the approach described in this chapter and after the 
CONWIP level has been established.  Use an infinite (again a very high 
number) FGI inventory level to determine the minimum number of units 
needed for a 100% service level.   

d. Determine the inventory level needed for a 99% service level during the 
average replacement time analytically.  The average replacement time is the 
same for each part type: the average lead time at station j is given by the 
following equation discussed in Chapter 9 where M = 3 stations and N is the 

CONWIP level you selected:  
jj

CTCT
M

N








  1
 

e. Assess the service level for the inventory level midway between the lower 
and upper bound and pick the lowest level that yields close to a 99% service 
level. 

 
Terminating Experiment: Use a simulation time interval of 184 hours. 
 
Application Problem Issues 
 
1. How should the CONWIP control be modeled? 
 
2. What should the ratio of the two FGI levels be if prior information is used? 
 
3. Should the mean or maximum WIP level on the serial line with no CONWIP control be 

compared to the CONWIP level? 
 
4. Given the CONWIP control, is it necessary to model the finite buffer space between the 

stations on the serial line?  Why or why not? 
 
5. How will verification and validation evidence be obtained? 
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Case Problem -- POLCA 
 
Convert the assembly line presented in the chapter 7 application problem to a set of QRM Cell 
pairs as follows. 
 
A QRM analysis determined that there will be three QRM cells processing two part types. 
 

A. Mill and deburr serving both part type 1 and part type 2 
B. Wash station 1 serving part type 1 
C. Wash station 2 serving part type 2 

 
The wash stations jam frequently and must be fixed.   
 
Time between wash station jams - Exponentially distributed with mean 30.0 
Time to fix a wash station jam -  Exponentially distributed with mean   3.0 
 
Production requirements change from week to week.  The data below reflect a typical week with 
all times in minutes.  
 
Time between arrivals -   Part type 1: Exponentially distributed with mean 2.0 
       Part type 2: Exponentially distributed with mean 3.0 
 
Time at the mill station -   Part type 1: 0.9 
     Part type 2: 1.4 
 
Time at the deburr station -  Uniform (0.9, 1.3) for each part type 
 
Time at wash station 1 for part type 1- 1.7 
 
Time at wash station 2 for part type 2 - 2.5 
 
Arrivals represent demands for completed products.  Demands are satisfied from finished goods 
inventory.  Each demand creates a new order for the production of a product of the same type 
after it is satisfied.  The completed product is place in the finished goods inventory. 
 
Three quantities must be determined through simulation experimentation:   

4. The number of POLCA cards of each type (A-B and B-C). 
5. The target FGI level for part type 1. 
6. The target FGI level for part type 2. 

 
Approach 

3. Determine an upper bound on the needed inventory for each part type as follows. Set 
the POLCA cards levels to infinite (a very high number). Use an infinite (again a very 
high number) FGI inventory level to determine the minimum number of units needed 
for a 100% service level.   

4. Determine a lower bound on the needed inventory for each part type as follows. 
Determine the inventory level needed for a 99% service level during the average 
replacement time analytically.  Determine the average replacement time separately 
for each part type.  Remember however that the average time in QRM Cell A will be 
the same for each part type when determine using the VUT equation as described in 
items a, b, and, c.  Remember that ca at a following station is equal to cd at the 
preceding station.     

a. The VUT equation assumes that there is only one part type processed at a 
station.  Thus, the processing time to use at the mill station is the weighted 
average processing time for the two part types.  The weight is the percent of 
the total parts processed that each part type is of the total:  60% part type 1 
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and 40% part type 2.  The formulas for the average and the variance for this 
situation are given in the discussion of discrete distributions in chapter 3.   

b. The formula for the variance of a uniform distribution is given in chapter 3.   
c. Ignore the downtime at the wash stations for this analysis. 

5. Assess the service level for the inventory level midway between the lower and upper 
bounds.  

6. Pick the lowest level of inventory of three that you have tested that yields close to a 
99% service level.   

7. Set the POLCA levels to the lowest values that don’t negatively impact the service 
level.  Confirm your choice with a paired-t analysis.   
 

Terminating Experiment: Use a simulation time interval of 184 hours. 
 
Application Problem Issues 
 
1. How should the POLCA control be modeled? 
 
2. What should the ratio of the two FGI levels be if prior information is used? 
 
3. What should the ratio of the number of A-B POLCA cards to the number of A-C POLCA 

cards be if prior information is used? 
 
4. Given the POLCA control, is it necessary to model the finite buffer space between the 

stations on the serial line?  Why or why not? 
 
5. How will verification and validation evidence be obtained? 
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Chapter 11 

 

Cellular Manufacturing 
 
11.1 Introduction 
 
Cellular manufacturing systems provide an alternative organization to serial lines and job shops 
for producing products.  Manufacturing is reorganized into cells that provide the operational 
benefits of a serial line.  Each cell performs all of the processing needed on one, or at most a few, 
similar part types.  Each part is processed in the same sequence through a series of machines or 
manual operations.  Cellular manufacturing is effective whenever production volumes are 
sufficiently high to justify dedicated equipment and only a short series of production steps are 
required. 
 
For example, the job shop discussed in chapters 8 and 10 could be reorganized into 3 cells, one 
for each of the three part types.  Each cell would behave like the serial line discussed in chapter 7.  
Each cell would have a sufficient number of each kind of machine to process the type of part for 
which it was responsible. 
 
Notice that the cellular manufacturing approach eliminates, or at least reduces, the need for 
setups, since only one part or a small number of similar parts are processed in a particular cell. 
 
Cellular manufacturing seeks to minimize the movement distance of parts within a cell.  In 
addition, each worker in a cell may support multiple operations at several workstations.  Thus, 
each workstation and its machines must be placed in close proximity with all other workstations.  
A straight line layout results in the first workstation being too distant from the last workstation.  
Alternative, a U-shaped layout is often used to meet the workstations close together requirement.  
This is illustrated in Figure 11-1.   
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Some companies, such as Innotech, organize all production into cells.  Each cell is operated by its 
workers as an independent business.  The businesses share some common resources such as 
shipping docks and material handling equipment.  Rubich and Watson (1998) give some 
advantages of this approach. 
 

 Improved communication and teamwork – operators are close enough to talk and help 
each other if necessary. 

 An understanding of the entire manufacturing process from raw material to finished product 

 An opportunity to meet and discuss issues with customers if any customer concerns 
develop 

 An environment where cell operators have a greater sense of control in how their business 
(cell) is run 

 Responsibility and ownership for producing high quality products on time 

 Higher job satisfaction through increased job responsibility and variety 
 
Another goal of cellular manufacturing is to minimize the work-in-process inventory.  This is 
accomplished using the principle of one piece flow that seeks to move individual parts through a 
work cell as quickly as possible.  A worker seeks to keep one piece or part moving through the 
entire cell.  This is the opposite approach to processing multiple parts (a batch) at one workstation 
and then moving the entire batch to the next workstation for processing.  In other words, one 
piece flow uses a batch size of one.   
 
One piece flow can be used to minimize WIP which results in shorter lead time according to 
Little’s Law.  Required manufacturing space is reduced through better layouts and WIP reduction, 
which also simplifies material handling. 
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One piece flow works as shown for two stations in Figure 11-2.  Initially, the diamond part has 
completed processing at WS1 and the circle part is waiting in the buffer.  The worker arrives to 
WS1.  First the worker removes the diamond part from the machine.  Next the worker initiates the 
circle part on the machine.  Finally, the worker moves the diamond part to WS2 and then initiates 
that part on the machine. 
 
Cellular manufacturing employs a pull strategy.  The number of parts the cell must produce per 
day (or week or month) is established based on the known or forecasted demand for parts.  The 
number of available work hours is set.  Then the takt time is computed using equation 11-1. 
 

day per demand

day per hourswork  available
  takt time                 (11-1) 

 
The takt time is the maximum time between parts completed by the work cell if demand is to be 
met.  It is also in a sense the mimimum time.  If the cell completes parts faster than the takt time, 
too many parts are made.   
 
The time between completion of parts at the slowest workstation in the cell should not exceed the 
takt time.  This means that the operation time at that workstation should be less than the takt time.  
Furthermore, one piece flow is assisted greatly by making the operation time at each workstation 
as close to the same as possible. 
 
This application study presents the use of simulation in determining the staffing for a 
manufacturing cell.  Alternative assignments of workers to machines in the cell are considered.  
The effect of variation on cell operations is assessed.  The use of simulation to evaluate and 
enhance the original cell staffing plan developed using standard cellular manufacturing 
computations is shown. 
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11.2 Points Made in the Case Study 
 
Some benefits of using simulation to enhance lean manufacturing techniques are illustrated.  The 
effect of random variation in raw material (part) arrival times as well as worker walking times is 
taken into account.  Performance of the cell, in terms of the maximum work-in-process and 
throughput, is predicted.  The simulation model and experiment are used to validate the cell 
design generated by traditional cellular manufacturing computations.  Operating rules to co-
ordinate part arrivals and the movement of the cell operators are tested. 
 
The movement of both a part through the operations of the cell and a worker from workstation to 
workstation within a cell must be included in the model.  The movement of workers is used as the 
perspective for model building.  The number of parts in each area of each cell is counted.  Part 
movement results in changes in the counts.  The average part cycle time in the cell can be 
estimated from the average number of parts in the cell using Little’s Law.  This approach is based 
on a technique developed by Hyden, Roeder and Schruben (2001). 
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Random variation in worker walking time may be significant since waiting while a worker walks 
between machines may cause a delay in the start of an operation.  Such delays could effectively 
reduce the capacity of the cell.  Thus, the cell could fail to meet its throughput target.   
 
The work done at a workstation must be modeled as multiple tasks: initiating an operation, the 
operation itself, and removing the part from the machine after the operation is completed.  
Different resource combinations, machines and workers, are required for each task.  Thus, the 
joint allocation of machine and worker resources must be accomplished. 
 
More than one worker is required to staff the cell.  The effectiveness of alternate assigments of 
workers to workstations can be determined using simulation experiments. 
 
A trace of worker activities can be generated to aid in model validation.  The trace is used to 
provide evidence that the worker moves through the cell as was intended. 
 

11.3 The Case Study1 
 
This application study has to do with validating the design of a new manufacturing cell particularly 
with respect to staffing requirements as well as work in process inventory levels and throughput.  
An initial value for the number of workers required as well as an initial assignment of workers to 
workstations can be determined by standard, straightforward cellular manufacturing computations.   
 
A simulation study is required to validate that the number of workers and their assignment to 
workstations determined by the cellular manufacturing analysis will allow the cell to meet its 
throughput requirements.  The effect on throughput as well as WIP due to other assignments and 
numbers of workers can be evaluated.   
 
Factors not included in the initial calculations can be taken into account in the simulation model.  
Task and walking times as well as the time between arrivals of parts may be random variables.  
Cell operating rules for co-ordination between the activities of multiple workers as well as part 
arrivals to the cell is necessary. 
 
11.3.1  Define the Issues and Solution Objective 
 
A new manufacturing cell is being implemented.  The design of the cell is shown in Figure 11-3. 
The cell consists of seven workstations each with one machine as well as a raw material inventory 
of parts to process.  A completed finished goods inventory is included.   
 
The work area at each work station is shown by a heavy dot.  The worker walking path in the cell 
is shown by a line.  Note that a worker may walk directly between workstation M2 and workstation 
M6.  The worker who is responsible for a machine also walks the part from the immediately 
preceding workstation or inventory.  The worker responsible for workstation M7 also walks a 
completed part to the finished goods inventory. 
 
Table 11-1 provides basic data concerning the operation at each workstation.  All times are in 
seconds.  Manual times represent the constant standard times.   

                                                           
1 Professor Jon Marvel defined this application problem as well as providing other invaluable 
assistance.  Mr. Joel Oostdyk implemented a prototype model.  Ms. Michelle Vette provided some 
excellent insight for improving the application problem. 
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Table 11-1: Workstation Processing Information (Times in Seconds) 

 

 

Workstation / Task Name 

 

Workstation 

/ Task ID 

Initiation 

Time 

(Manual) 

Operation 

Time 

(Automated) 

Removal 

Time 

(Manual) 

Total 

Time 

Pick Up Raw Material RM 4    4 

Turn Outer Diameter M1 4 23 3 30 

Bore Inner Diameter M2 5 41 4 50 

Face Ends M3 4 32 4 40 

Grind Outer Diameter M4 3 29 3 35 

Grind Outer Diameter M5 3 29 3 35 

Inspect M6 14   14 

Drill M7 3 24 3 30 

Place in Finished Goods Inv. FG 5    5 

Total  45 168 20   233 

 
 

 
 

The cell is responsible for producing 1000 units of one part each day.  The cell will operate for two 
shifts of 460 minutes each.  Thus the takt time is computed using equation 11-1 to be: 
 

seconds 2.55minutes 920.0
1000

2460

day per demand

day per work time available
  takt time 

X
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The number of workers needed in the cell can be determined as follows.  Notice that the total 
manual operation time, the time a worker is required, is shown in Table 11-1 to be 65 ( = 45 + 20) 
seconds.  This total time divided by the takt time (65 / 55.2) is between 1 and 2.  Thus, a minimum 
of two workers is required.  
 
In addition, worker walking time must be taken into account.  It is highly desirable to have workers 
walk a circular route.  Walking time plus manual task time for the route must be less than the takt 
time.  Any assignment should seek to balance the manual operation plus walking time among the 
workers.  Workers walk on the average of 2 feet per second.  
 
Table 11-2 shows the walking distance between adjacent workstations. 

 

Table 11-2: Walking Distances Between Workstations 
 

Workstation / Task ID Workstation / Task ID Walking Distance (feet) 

RM M1 7 

M1 M2 7 

M2 M3 7 

M2 M6 8 

M3 M4 8 

M4 M5 8 

M5 M6 7 

M6 M7 7 

M7 FG 10 

 
One possible assignment using two workers is the following (Assignment A): 
 
Worker 1:  RM, M1, M2, M7, FG  

(Task time, 31 seconds; walking time, 21.5 seconds; total time, 52.5 seconds) 
 
Worker 2:  M3, M4, M5, M6 

(Task time, 34 seconds; walking time, 19 seconds; total time, 53 seconds) 
 
The standard work cell design procedures did not take into account the following factors that may 
proof to be significant in the operation of the cell: 
 

1. Walking times are modeled as triangularly distributed random variables with the minimum 
equal to 75% of the mean and the maximum equal to 125% of the mean.  Based on the 
VUT equation, this could add to the cycle time and WIP in the cell.  Thus, the effect of 
random walking times needs to assessed. 

2. There is concern as to whether a constant time between arrivals of parts from another 
area of the plant can be achieved.  The practical worst case assumptions (Hopp and 
Spearman, 2007) lead to modeling the time between arrivals as exponentially distributed 
with mean equal to the takt time.  Again by the VUT equation, considering the time 
between arrivals to be a random variable could add to the cycle time and WIP in the cell.  
Thus, the performance of the cell for the case of a constant interarrival time for parts must 
be compared to the case of an exponentially distributed interarrival time. 

3. The following operational rule will be employed.  Worker 1 will wait at the raw material 
station and worker two will wait at station M2 until a part is available to walk to the next 
station. 

 
The simulation study must show that the above assignment is feasible, given the three operational 
factors.  Furthermore, the utilization of workers in the proposed assignment scheme is very high, 
95% for worker 1 and 96% for worker 2.  It is possible that it is not feasible to effectively co-
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ordinate the tasks of both workers and the operations of the machines.  Thus as alternative 
assignment was proposed (Assignment B).  
 
Worker 1: RM, M1, M2 (Total time, 41 seconds) 
 
Worker 2: M3, M4, M5 (Total time, 43 seconds) 
 
Worker 3: M6, M7, FG (Total time, 42 seconds) 
 
Each worker has several tasks.  Each task must be performed in sequence as the worker walks 
around the cell.  For example, worker 1 in assignment A has the following sequence of tasks: 
 

1. Wait for part at RM 
2. Process part at RM 
3. Move part from RM to M1  
4. Unload previous part from M1 
5. Initiate part on M1 
6. Move unloaded part from M1 to M2 
7. Remove part from M2 
8. Initiate part unloaded from M1 on M2 
9. Walk without a part to M6 
10. Wait for an inspected part 
11. Walk with an inspected part from M6 to M7 
12. Remove part from M7 
13. Initiate inspected part on M7 
14. Walk with part removed from M7 to FG 
15. Process part at FG 
16. Walk with no part to RM 

 
The following priorities are of fundamental importance in achieving one piece flow and not loosing 
machine capacity.  These are reflected in the worker task sequence. 
 
1. After removing a part from a machine, a worker will start another part on the same machine if 

one is available before performing any other task.   
2. After walking a part from a preceding workstation or inventory and upon arriving at the next 

workstation, the worker will initiate the operation on a part, if the machine is available. 
 
From the point of view of a part, the work cell will operate in the following way.  Parts arrive to the 
raw material inventory from another area of the plant.  The average time between arrivals is equal 
to the takt time. 
 
Parts move through the same processing steps at each workstation except M6:  initiation on the 
machine by a worker, automated processing by the machine, and removal from the machine by a 
worker.  Processing at M6 is consists of one manual inspection step.   
 
Workers move parts between machines as well as from the raw materials inventory to the first 
workstation and from the last workstation to the finished good inventory.  Part processing and 
movement is constrained by the availability of workers and machines.   
 
11.3.2  Build Models 
 
The model will be built from the perspective of worker movement.  A worker walks between 
stations in a prescribed route and performs one or two tasks at each station.  Parts reside in 
inventories.  A typical station has the following inventories:  waiting for initiation on a machine, 
waiting for unloading from a machine, and waiting to be walked to the next station.  A worker 
action changes the number of parts in one of the inventories. 
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The model consists of four processes: 
 

1. Arrival of parts to the raw material inventory. 
2. Worker 1 
3. Worker 2 
4. Automated processing on a machine which does not require worker assistance. 

 
The following inventories exist in the model. 
 

1. Workstations M1 – M5 and M7:  waiting for initiation on a machine (WaitInitialize), waiting 
for unloading from a machine (WaitUnload), and waiting to be walked to the next station 
(WaitWalk). 

2. Workstation M6:  waiting to be walked to the next station (WaitWalk). 
3. Raw materials: (RMInv) 
4. Finished goods: (FGInv) 

 
Entities in the arrival of parts process and the automated processing process represent parts.  For 
the latter process, entity attributes are: 
 

1. ID:  ID number of the workstation station where automated processing occurs:  1, 2, 3, 4, 
5, or 7. 

2. OpTime:  Processing time at the workstation. 
 
The worker is the only entity in the worker process.  This entity has one attribute: 
 

1. WithPart:  1, if the worker has a part when walking between workstations and zero 
otherwise. 

 
The following variables are used in the model. 
 

1. WIPCell:     The total number of parts in the work cell 
2. WalkTime (9, 9):   Average walking time between each pair of stations, FG (8), and 

RM(9). 
 
The part arrival process follows. A part arrives and the RM inventory is increased by 1 as well as 
the total WIP in the cell.   
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Define Arrivals:    
 Parts 
  Time of first arrival: 0 
  Time between arrivals: Exponentially distributed with a mean of 55.2 seconds 
     Number of arrivals: Infinite  
 
Define Resources: 
 M(7)/1       with states (Busy, Idle)  // Workstation resources 
  
Define Entity Attributes: 
 WorkstationID  // ID number (1, …, 7) of workstation to process a part   

OperationTime  // Time to process a part at a workstation 
WithPart    // The number of parts carried by a worker from station to station (0, 1) 

 
Define State Variables 

WIPCell    // The amount of work-in-process in the cell 
RMInv    // Raw material inventory 
FGInv     // Finished goods inventory 
WaitInitialze(7)  // Number of items waiting for initialization at a workstation 
WaitUnload(7)  // Number of items waiting unloading at a workstation 
WaitWalk(7)   // Number of items wating to be walked to the next workstation 
WalkTime (9, 9)  // Inter-station walk times 

 
Process PartArrival 
Begin 
 WIPCell ++ 
 RMInv ++ 
End 

 
The automated processing process is exactly the same as the single worker station process 
discussed previously.  Upon the completion of processing, the number of parts waiting to unload 
is increased by one. 
 

Process AutomatedMachine 
Begin 
 WaitUntil M(WorkstationID)/1 is Idle in Queue QM(WorkstationID) 
 Make M(WorkstationID)/1 Busy 
 Wait for OperationTime 
 Make M(WorkstationID)/1 Idle 
      WaitUnload(WorkstationID) ++ 
End 

 
The process for Worker 1 starting at RM through arrival at workstation M2 follows.  Note that the 
worker waits at RM for a part to carry to workstation M1.  Otherwise, the worker will carry a part 
between workstations, unload a part or initialization a part only if a part is available.  Each 
inventory is updated as the worker acts. 
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Process Worker1 
Begin 
 // From raw material inventory to M1 
 Wait until RMInv > 0 // Wait for the next part 
 Wait for 4 seconds  // Processing at raw material inventory 
 RMInv –     // Update raw material inventory 
 WithPart = 1    // Worker carrying one part 
 Wait for triangular WalkTime(9,1)*75%, WalkTime(9,1), WalkTime(9,1)*125%  // To M1 
 WaitInitialize (1) ++  // Add to initialize inventory at M1 
 
 // Processing at M1 
 If WaitUnload(1) > 0 then 
 Begin 
  // Unload Part at M1 

Wait until M(1)/1 is Idle in Queue QM(1)  
  Make M(1)/1 Busy 
  Wait for 3 seconds 
  Make M(1)/1 Idle 

WaitUnload(1)-- 
  WaitWalk(1)++ 

End 
 
If WaitInitialize(1) > 0 then 
Begin 
 // Initialize Part at M1 

Wait until M(1)/1 is Idle in Queue QM(1)  
  Make M(1)/1 Busy 
  Wait for 4 seconds 
  Make M(1)/1 Idle 

WaitInitialize(1)— 
 

  // Process part in parallel with worker walking 
  ID = 1 

OperationTime = 23 
Clone to AutomatedMachine 

End 
 
If WaitWalk(1) > 0 then 
Begin 
// Walk with part 
 WaitWalk(1) – 
 WithPart = 1 
End 
Else WaitPart = 0  // No part 
 
Wait for triangular WalkTime(1,2)*75%, WalkTime(1,2), WalkTime(1,2)*125%  // To M2 
WaitInitialize(2) ++  // Arrive at M2 and Update Inventory 
End 
 

 
11.3.3  Identify Root Causes and Assess Initial Alternatives 
 
Experimentation with the model is used to address the issues previously raised with respect to 
performance of the cell. 
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1. The effect of random walking times. 
2. The effect of random times between arrivals. 
3. The number of workers used in the cell: 2 or 3. 
4. The effect of operational rules for workers.  

 
The amount of work in process in the cell should be very low.  Thus, the total WIP in the cell will 
be used as a performance measure.  The WIP at RM is also of interest.  In addition, a trace 
showing the time sequence of worker movements and activities is desired for both model and cell 
design validation. 
 
The design of the simulation experiment is shown in Table 11-3.  Since the cell is assigned a 
certain volume of work each day, a terminating experiment of duration one work day (920 
minutes) is used.  Twenty replicates are used.  Random number streams are needed for worker 
walking time as well as the time between arrivals. 

 

Table 11-3: Simulation Experiment Design for the Manufacturing Cell 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values 1.  Time between arrivals (random or constant) 
2.  Number of workers (2 or 3) 

Performance Measures 1.  WIP in the cell 
2.  WIP at RM 

Random Number Streams 1.  Worker walking time 
2.  Time between arrivals 

Initial Conditions One part at each station 

Number of Replicates 20 

Simulation End Time 920 minutes (one day) 

 
Initial conditions of that reflect the principle of one piece flow are appropriate.  Thus, there is one 
part at each station initially.  At all stations except M6, the part is placed in the WaitUnload 
inventory.  At station M6, the part is placed in the WaitWalk inventory.   
 
Simulation results for the cases when 2 workers are used are shown in Table 11-4.   
 
The cell performs very well when the time between arrivals is constant.  The maximum number of 
parts in the cell is 9, one more than the number of stations plus the raw material inventory.  At 
most 1 part is in the raw material inventory.  However, when the time between arrivals is 
exponentially distributed, large maximum WIP sizes are seen both in the cell in general and in the 
raw material inventory.  Note, however, that the difference between the maximum WIP in the cell 
and the maximum WIP in the raw material inventory for each replicate is either 7 or 8.  Thus, WIP 
is properly restricted to the raw material inventory. 
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Table 11-4:  Work in Process in the Cell and in RM – Two Workers Cases 

 

 Maximum WIP in Cell Maximum WIP in RM 

 

 

 

Replicate 

Constant 

Time 

between 

Arrivals 

Random 

Time 

between 

Arrivals 

 

 

 

Difference 

 

Constant 

Time between 

Arrivals 

Random 

Time 

between 

Arrivals 

 

 

 

Difference 

1  9 52 43 1 44 43 

  2 9 65 56 1 58 57 

  3  9 89 80 1 81 80 

  4 9 51 42 1 43 42 

  5 9 30 21 1 22 21 

  6 9 37 28 1 29 28 

  7 9 75 66 1 67 66 

  8 9 39 30 1 31 30 

  9 9 31 22 1 23 22 

10 9 47 38 1 39 38 

11 9 51 42 1 44 43 

12 9 62 53 1 54 53 

13 9 72 63 1 64 63 

14 9 48 39 1 40 39 

15 9 22 13 1 14 13 

16 9 37 28 1 29 28 

17 9 31 22 1 23 22 

18 9 25 16 1 17 16 

19 9 79 70 1 71 70 

20 9 31 22 1 23 22 

Average 9 48.7 39.7 1 40.8 39.8 

Std. Dev.  0 19.4 19.4 0 19.5 19.5 

99% CI 

Lower 

Bound 9 36.3 27.3 1 28.3 27.3 

99% CI 

Upper 

Bound 9 61.1 52.1 1 53.3 52.3 

 
Table 11-5 contains a portion of the trace for worker 1 for one replicate of the constant time 
between arrivals case.  The trace shows the actions the worker takes from processing a part at 
RM to processing the next part at RM.  The time between starting the processing of a part at RM 
and return was 52.06 seconds, only slightly less than the expected time of 55.2 seconds.  Thus, 
there is some evidence that the worker can perform all assigned tasks in less than the takt time.  
The trace shows that worker performs all assigned tasks in the required sequence.  Thus, model 
and system design validation evidence is obtained. 
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Table 11-5:  Worker 1 Action Trace 

 
Simulation Time Worker Workstation Action 

55.20 Worker1  RM  Start 

59.20 Worker1  RM  End 

62.64 Worker1  M1  Arrive 

62.64 Worker1  M1  Unload Start 

65.64 Worker1  M1  Unload End 

65.64 Worker1  M1  Initialize Start 

69.64 Worker1  M1  Initialize End 

73.46 Worker1  M2  Arrive 

73.46 Worker1  M2  Unload Start 

77.46 Worker1  M2  Unload End 

77.46 Worker1  M2  Initialize Start 

82.46 Worker1  M2  Initialize End 

85.98 Worker1  M6  Arrive 

89.86 Worker1  M7  Arrive 

89.86 Worker1  M7  Unload Start 

92.86 Worker1  M7  Unload End 

92.86 Worker1  M7  Initialize Start 

97.86 Worker1  M7  Initialize End 

103.13 Worker1  FG  Arrive 

108.13 Worker1  FG  End 

110.26 Worker1  RM  Arrive 

110.40 Worker1  RM  Start 

 
The same results for the case where three workers are used are shown in Table 11-6 along with a 
comparison to the two workers case.  For the random time between arrivals case, the average 
maximum WIP in the cell is 32.0 when three workers are used.  This is notably less than the 
average when two workers are used: 48.7.  Similarly, the average maximum WIP at RM is less 
when three workers are used: 22.0 versus 40.8.  The reductions in WIP in the cell and at station 
RM due to using three workers instead of two are statistically significant at an approximate 99% 
confidence level.  The approximate 99% confidence intervals of the difference do not contain 
zero. 
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Table 11-6:  Work in Process in the Cell and in RM – Three Workers Case with Comparison 

to the Two Workers Case for Random Times Between Arrivals 
 

 Maximum WIP in Cell Maximum WIP at RM 

 

Replicate 

Two 

Workers 

Three 

Workers 

 

Difference 

Two  

Workers 

Three 

Workers 

 

Difference 

1  52 37 15 44 27 17 

  2 65 32 33 58 22 36 

  3  89 49 40 81 39 42 

  4 51 31 20 43 21 22 

  5 30 24 6 22 14 8 

  6 37 35 2 29 25 4 

  7 75 48 27 67 38 29 

  8 39 28 11 31 18 13 

  9 31 24 7 23 14 9 

10 47 25 22 39 15 24 

11 51 28 23 44 18 26 

12 62 37 25 54 27 27 

13 72 38 34 64 28 36 

14 48 32 16 40 22 18 

15 22 22 0 14 12 2 

16 37 31 6 29 21 8 

17 31 26 5 23 16 7 

18 25 25 0 17 15 2 

19 79 39 40 71 29 42 

20 31 28 3 23 18 5 

Average 48.7 32.0 16.8 40.8 22.0 18.9 

Std. Dev.  19.4 7.6 13.3 19.5 7.6 13.4 

99% CI 

Lower 

Bound 36.3 27.1 8.2 28.3 17.1 10.3 

99% CI 

Upper 

Bound 61.1 36.8 25.3 53.3 26.8 27.4 

 
 11.3.4  Review and Extend Previous Work 
 
Management was pleased with the results of the simulation experiments.  The cell appears to 
work as designed using standard cellular manufacturing calculations when the time between 
arrivals is constant.   
 
Exponentially distributed times between arrivals result in large maximum WIP levels. Controls 
placed on cell operations, in particular requiring a worker to wait at RM for a part, resulted in the 
all of the excess WIP residing in the RM.  Thus, the cell appears to be capable of operating 
effectively even in the presence of random variation in part arrival.   
 
11.3.5  Implement the Selected Solution and Evaluate 
 
It was decided to implement the cell with two workers.  If the high utilization of the two workers 
constrained the actual operation of the cell, a third worker could be added. 
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11.4 Summary 
 
Manufacturing work cells can be designed using standard calculations.  Simulation can be used to 
validate that the designed cell will operate as intended, in part using a trace of worker actions.  
The effect of random behavior, such as random times between arrivals and random walking 
times, can be assessed.  WIP levels can be estimated.  The use of alternative numbers of 
workers can be evaluated. 

 

Problems 
 
1. Compare the cellular manufacturing organization presented in this chapter with the serial line 

discussed in chapter 7. 
 
2. Write down the task sequence for Worker 2 for worker assignment A. 
 
3. Model using pseudo – code part of the process for Worker 2 from picking up a part at 

workstation M2 through arriving at workstation M4, for worker assignment A. 
 
4. For the case of two workers and random time between arrivals, estimate the average cycle 

time for a part to traverse the cell using Little’s Law.  The cycle time is the time between 
entering the raw material inventory and entering the FGI.  Suppose the average WIP in the cell 
is 30.8 with a 95% confidence interval for the mean: (22.6, 38.9).   

 
5. Does the work cell behave like a CONWIP system?  Why or why not? 
 
6. An extremely long time between arrivals, say triple the mean, is possible when using the 

exponential distribution to model this quantity.  What is the potential effect of such long times 
between arrivals on the capacity of the cell? 

 
7. Consider the probability distribution of the time worker two takes to complete all tasks once.  

Assume walking times are normally distributed with same mean and variance as the 
triangularly distributed times.  The mean and variance of a triangular distribution are computed 
as follows: 

 

 Mean: 3

max mode min 

  
 

 Variance: 18

max*modemax*minmode*minmaxmodemin
222



 
 
 

a. The time for worker two to complete all tasks once is normally distributed.  
Compute the mean and standard deviation of this distribution.  Assume that the 
minimum is 75% of the mean and the maximum is 125% of the mean as stated 
on page 11-5.  Thus, the distribution is symmetric implying mean = mode. 

 
b. What is the probability that the time to complete all tasks once is greater than the 

takt time? 
 
8. Perform a gross capacity analysis for each station in the cell.  This means computing the 

maximum number of parts each station can produce in one work day. 
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9. Print out a trace of the events effecting worker 2 in task assignment A.  Does this provide 

validation evidence? 
 
10. Add an additional performance measure to the model:  The percent of times a worker 

traverses an assigned route in more than the takt time.  Rerun the model to estimate this 
performance measure. 

 
11. Model the time between arrivals as gamma distributed with mean 55.2 seconds and standard 

deviation 27.6 seconds.  Compare the maximum WIP in the cell to the values in Table 11-4. 
 

Case Problem2 
 
An injector is produced in two steps:  assembly and calibration.  This study will focus on the 
calibration area only.  The assembly area can produce a batch of 24 parts in 82 minutes.  Each 
batch is placed on a WIP cart.  A batch is only produced if a WIP cart is available.  Injectors must 
be cured for 24 hours after assembly before they can enter the calibration area.  
 
To control work in process, the number of WIP carts is limited to the fewest number need to avoid 
constraining throughput. Only one WIP cart can be in the calibration area at a time. 
 
The calibration area consists of four workstations that can be labeled W1, W2, W3, and W4.  
Each workstation processes one injector at a time.  A worker is not needed for automated 
operations and thus is free to due other tasks. 
 
At workstation W1, the worker initiates the injector in 25 seconds.  The workstation performs an 
automated test in 10 seconds.  Finally, the worker removes the part in 5 seconds.  A manual 
operation is performed at workstation W2.  The operation time is triangularly distributed with 
minimum 4.0 minutes, mode 5.0 minutes, and maximum 7.8 minutes.  At workstation W3, the 
worker initiates the part in 5 seconds.  An automated operation is performed in 4.1 minutes.  The 
worker removes the part in 2 seconds.  Workstation W4 is a packing operation performed by the 
worker in 5 seconds. 
 
The calibration area is served by one worker.  Worker walking times between stations are as 
follows: 
 

Station W1 W2 W3 W4 

W1 0 3 7 10 

W2  0 4 7 

W3   0 3 

W4    0 

 
Determine the number of WIP carts required.    Generate a trace of worker tasks to validate the 
model. 
 
Case Problem Issues 
 
1. How should the WIP carts be modeled? 
 
2. How should the constraint on the number of WIP carts in the calibration area be modeled? 
 
3. How should the injector curing requirement be modeled? 

                                                           
2  This application problem is derived from the capstone masters degree project performed by 
Carrie Grimard. 
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4. Write down the sequence of tasks for the calibration area worker. 
 
5. Discuss how the number of WIP carts can effect cycle time. 
 
6. Beside throughput, are any other performance measures important?  If so, what are they? 
 
7. An entity moving through the assembly area represents a WIP cart while an entity moving 

through the calibration area represents an individual injector.  How is the conversion from WIP 
cart to injector accomplished? 

 
8. Specify the experimental strategy for determining the number of WIP carts. 
 
9. Discuss how to obtain verification and validation evidence. 
 
10. Determine how to model arrivals to the assembly process. 
 
11. Determine how to model batch processing times in the assembly area.  Note that the batch  

processing times are the sum of 24 individual processing time.  Should this sum be explicitly 
computed?  Can the central limit theorem be applied? 

 
12. Compute the expected number of WIP carts needed to maximize throughput. 
 
13. What are the initial conditions for the experiment? 
 
Terminating Experiment:  The simulation time interval is 5 days (120 hours of work time). 
 
 
 



12-1 

Chapter 12 

 

Flexible Manufacturing Systems 
 
12.1 Introduction 
 
Consider a manufacturing facility that is required to produce multiple part types.  Demand is 
insufficient to warrant a dedicated work cell for any part type.  However, demand for all part types 
together is sufficient to potentially justify automating the production process. 
 
What is needed in this case is a flexible manufacturing system (FMS).  Such a system operates 
efficiently and cost effectively regardless of the mix of part types produced.  It is comprised of 
flexible machines that perform a range of operations on a variety of parts with only minor setup 
required when switching between part types.  Such machines must be programmable or computer 
numerically controlled (CNC).  They must be capable of storing, automatically setting up (loading), 
and using a variety of tools.  A new part type could be introduced without significant additional 
capital investment, at least if it was sufficiently similar to existing part types. 
 
An FMS requires automated material handling capabilities to move parts between machines as 
well as into and out of the system.  An FMS must be highly automated and thus requires co-
ordinated, computer based control. 
 
The initial capital cost of an FMS is high relative to a work cell dedicated to a single part.  This 
investment is worthwhile if the FMS can effectively produce a mix of part types more economically 
than can a set of dedicated work cells, one per type of part.  A flexible manufacturing system 
could have as many as 20 machines.  A system consisting of one or two flexible machines is 
called a cell. 
 
An FMS operates in a similar manner to a work cell.  A part arrives to a single load-unload station 
where it is attached to a fixture that is mounted on a pallet.  More than one part could be attached 
to the fixture.  Parts need not be batched by type upon arrival since machines are able to adapt to 
processing different part types with relatively little setup time.  Measuring the WIP is important 
since the WIP level is proportional to the number of pallets and fixtures needed. 
 
Since machines are flexible, more than one machine can perform each operation the part 
requires.  Thus, breakdowns do not hamper the operation of an FMS to the same degree as for a 
dedicated work cell.   
 
One aspect of the design of an FMS is the scheduling of parts on specific machines.  In this case 
study, the assignment of parts to machines using an optimization algorithm is compared with the 
use of a heuristic dynamic scheduling rule.  The performance measure of interest is the total time 
to produce a given number of parts. 
 
12.2 Points Made in the Case Study 
 
This FMS case study shows how optimization models and simulation models can be used 
together to address system design and operation issues.  An optimization model is used to assign 
parts, and consequently the tools need to operate on the parts, to machines.  A simulation model 
is used to assess how well the system operates using this assignment. 
 
In modeling an FMS system, each machine and each tool is modeled as a resource.  In addition, 
the model must keep track of which tool is on which machine.  Thus, complex logic for assigning 
resources representing machines and tools to work on parts represented by entities is required.  
How to choose between alternative resources must be specified.  Here, a choice between 
machines to perform the same operation must be made. 
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The simulation model must include the concurrent use of two resources, one a machine and 
another a tool.  Furthermore, a selection among available machines must be made.  Such logic 
may be coded in a high level programming language, such as C, and referenced from the 
simulation model. 
 
Complex system control logic may be included in a simulation model.  In this FMS model, a part 
waits to begin an operation until the required tool and any of the machines that can operate on it 
are available.  A list of such waiting parts must be maintained.  When tool and machines 
resources enter the free state, the model must search the entire list of waiting parts until one that 
can be processed by the newly freed resources is found.  It is possible that no such part will be 
found.  If the simulation engine does not examine each entity waiting for a resource, then logic to 
search the entire list of waiting transactions must be specified by the modeler. 
 
Previously, arrivals in a model represented a single entity entering a system.  In this case study, 
parts arrive to the FMS in a batch.  Thus, an entity arrival in the model represents a batch of parts.  
An arriving entity is cloned to create one entity for each part. 
 
A system may be sufficiently complex that simulation is necessary for analysis, design, and 
understanding even if no quantities are modeled using probability distributions.  This is due to the 
structural variability in the system.  Pritsker (1989) estimated that about one-third of all simulation 
projects employ deterministic models.  In this case study, the assignment of tools and part 
operations to machines over time is sufficiently complex that an intuitive understand of system 
dynamics is not possible.  Simulation is necessary to assess the affect of proposed assignments 
on system operations. 
 
The length of the simulation run need not be specified as a constant time but could be specified 
as a condition to be met.  In this case, the ending simulation time is the makespan of a production 
run, a performance measure of interest. 
 
12.3 The Case Study 
 
A flexible manufacturing cell consists of three types of flexible machines.  Each type of machine 
performs a different set of operations.  The cell must process three part types.  Each operation 
required by a part type uses one particular tool and can be performed on any of multiple machine 
types.  Not all machine types can perform all operations on all part types.  Operation times vary by 
machine type.  A tool is loaded on one of the machines at a time and may be moved between 
machines as needed.   
 
Figure 12-1 shows the system completely idle before a production run is made.  Tool bins hold the 
tools currently assigned to each machine.  The state of each machine, in terms of the type of part 
being processed, is shown.  The system contains two type A machines, two type B machines, and 
one type C machine. 

 
Production of 240 parts in one day is of interest.  Parts arrive in batches of 24 every 75 minutes 
starting at the beginning of the day.  The mix of part types in each batch is the same: 4 of type 1; 
10 of type 2; and 10 of type.   
 



12-3 

 

Figure 12-1:  Flexible Manufacturing System

Type A Machine                  Type B Machine               Type C Machine

Machine Busy Part  1 Machine Idle

Machine Busy Part 2 Machine Busy Part  3

Tool

Bin

A B C

Part Buffer
A B

 
Management wishes to minimize the makespan for the 240 parts as well as in-process inventory.   
Recall that the in-process inventory level is proportional to the number of fixtures and pallets the 
FMS requires.  The lead time for parts in the FMS is of interest.  The utilization of each machine is 
important. 
 
Part and tool movement between machines requires 30 seconds.  Machine setup time is minimal 
and can be ignored. 
 
Table 12-1 presents the operation time data. 

 

Table 12-1:  Operation Times for the FMS System 
 

   Operation Time (Min)  

Part 

Type 

Parts to 

Produce / Day 

Operation 

ID 

Machine 

Type A 

Machine 

Type B 

Machine 

Type C 

Tool 

1   40 1 12 11 10 A 

  2 13 15  B 

  3 14 14  C 

       

2 100 1 2 4  A 

  2 2 6 6 C 

       

3 100 1 4   D 

  2 5  8 E 

  3   4 F 

 
12.3.1  Define the Issues and Solution Objective 
 
The method for assigning a part operation, as well as the tool required by that operation to a 
machine, must be determined.  Two schemes are proposed. 
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1. Assign the part operation and tool to the IDLE machine with the shortest processing time 
for that operation at the time the part is ready to begin the operation.  (Dynamic 
Scheduling). 

2. Assign each part operation to one and only one machine type using the machine loading 
heuristic in Askin and Standridge (1993), pp. 144-153. 

 
Regardless of the scheme used, movement of parts and tools between machines will be 
minimized.  The subsequent operation on a part will be performed on the same machine as the 
current operation if subsequent operation is allowed on that machine and the required tool is 
already loaded on the machine.  Whether the same machine can perform the subsequent 
operation will be determined when the current operation is completed. 
 
Note that the first scheme uses any machine that can perform the operation on a part.  It selects 
between IDLE machines based on operation time, smallest time first.  It seeks to avoid part 
waiting and to minimize the waiting time for each operation. 
 
The second scheme seeks to balance the work load among the machines.  It will make a part wait 
for its assigned machine type even if a machine of another type is IDLE and could process the 
part. 
 
The priority order of machines for each operation on each part type using the dynamic scheduling 
approach with the machine having the shortest processing time given priority is shown in Table 

12-2, which directly results from the data in Table 12-1. 

 

Table 12-2:  Machine Priority -- Shortest Processing Time First Scheme 
 

Part Type Operation ID First Priority Second Priority Third Priority 

1 1 C B A 

 2 A B  

 3 B A  

     

2 1 A B  

 2 A C B 

     

3 1 A   

 2 A C  

 3 C   

 
The machine loading heuristic of scheme 2 seeks to equalize the workload between machine 
types.  Results of applying the optimization algorithm to assign operations to machine types are 

given in Table 12-3. 
 

Table 12-3:  Machine Priority -- Equalize Workload Among Machine Types Scheme 
 

Part Type Operation ID First Priority Second Priority Third Priority 

1 1 C   

 2 B   

 3 B   

     

2 1 A   

 2 A   

     

3 1 A   

 2 A   

 3 C   
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Note the difference between the two schemes.  The first priority machine type for each is the 
same, except for operation 2 on part type 1.  In the first scheme, a part proceeds to a second or 
third priority machine if the first priority machine is busy.  In the second scheme, a part simply 
waits if the first priority machine is busy. 
 
12.3.2  Build Models 
 
The model includes arrivals of batches of parts as well as decomposing the batches into individual 
parts.  Thus, arriving entities represent batches of parts and subsequent entities represent parts.   
The part entities have the following attributes: 
 
ArrivalTime = Time of arrival to the FMS 
PartType =  Part type 
Machine =  Machine used in current operation 
Tool =    Tool used in current operation 
OpTime =  Operation time for current operation = f(machine used) 
CurrentOp =  ID number of the current operation (1, 2, 3) 
 
The model of an operation on a part requires two resources, one representing a machine and the 
other a tool.  Movement between machines must be included in the model both for parts and 
tools.  An procedure to select the machine to perform an operation on a part is included as well as 
a second procedure to determine whether the machine on which a part currently resides can 
perform the next operation.   
 
Each tool resource has an attribute: ToolLocation = The machine on which it currently resides. 
 
The pseudo code for the arrival process follows. A batch of 24 parts arrives every 75 minutes.  
Ten batches arrive in total.  Each batch is separated into component parts: 4 of type 1, 10 of type 
2, and 10 of type 3.  Each part is sent to a process that models the first operation that is 
performed on it.   
 

Define Arrivals:    
 Batches 
  Time of first arrival:       0 
  Time between arrivals:  75 minutes 
  Number of arrivals:   10  
 
Define Resources: 
 // Flexible Machine Resources 
 MachA_1/1  with states (Busy, Idle) 
 MachA_2/1  with states (Busy, Idle) 
 MachB_1/1  with states (Busy, Idle) 
 MachB_2/1  with states (Busy, Idle) 
 MachC_1/1  with states (Busy, Idle) 
 
 // Tool Resources 
 ToolA/1   with states (Busy, Idle) 
 ToolB/1   with states (Busy, Idle) 
 ToolC/1   with states (Busy, Idle) 
 ToolD/1   with states (Busy, Idle) 
 ToolE/1   with states (Busy, Idle) 
 ToolF/1   with states (Busy, Idle) 
 



12-6 

Define StateVariables: 
 WIPCount  // Number of parts in FMS 
 ToolLocation(5) // Tool location 
 
Define Lists: 
 OpOneList 
 OpTwoList 
 OpThreeList 
 
Define Entity Attributes: 
 ArrivalTime   // Time of arrival to the FMS 

PartType   //  Part type 
Machine    //  Machine used in current operation 
Tool     //  Tool used in current operation 
OpTime   //  Operation time for current operation = f(machine used) 
CurrentOp  //  ID number of the current operation (1, 2, 3) 

 
Process BatchArrival 
Begin 

ArrivalTime = Clock // arrival of a batch of 24 parts 
CurrentOp  =  1 
PartType = 1    // type 1 parts  
Clone 4 OpFirst 
PartType = 2    // type 2 parts 
Clone 10 OpFirst 
PartType = 3    // type 3 parts 
Clone 10 OpFirst 

End 

 
Each part requires either two or three operations.  The processes for each of the operations are 
similar but not identical.  Each includes two essential steps:  the transportation of the part and tool 
to the machine, if required, followed by the actual operation on the part.  Two resources, a 
machine and a tool, are required.  Which machine is determined by the machine assignment 
scheme employed.     
 
At the beginning of the model of the first operation, the machine selection procedure is used to 
determine if the required tool is available.  If so, the procedure determines if any machine is 
available to process the part and if so which one should be employed.  The machine selection 
procedure is as follows: 
 

MACHINE SELECTION PROCEDURE (OPERATION_NUMBER, PART_TYPE) 

{ 

IF THE REQUIRED TOOL RESOURCE FOR THE PART_TYPE FOR 

OPERATION_NUMBER IS IN THE IDLE STATE 

   { 

    FOR EACH MACHINE TYPE IN PRIORITY ORDER 

    { 

     IF ANY MACHINE OF THAT TYPE IS IN THE IDLE STATE 

     { 

      Machine = RESOURCE ID OF SELECTED MACHINE 

      Tool    = RESOURCE ID NUMBER OF REQUIRED TOOL 

      OpTime  = OPERATION TIME FOR PART FOR OPERATION_NUMBER 

      RETURN 

     } 

    } 

   } 

} 
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If the required tool is not free or no machine is available to perform the operation, the part entity 
must wait in a buffer.  There is one buffer in the model for each of the three operations.  When a 
tool or machine resource becomes free, the model will search each buffer to find a part to 
process. 
 
If the required tool and a machine are available to process the part, the tool and machine 
resources enter the busy state.  Part entity attributes are assigned the name of the tool and 
machine as well as the process time for the operation on the selected machine.  A time delay to 
move the tool and or part to the selected machine is incurred.  The tool attribute recording its 
location (ToolLocation) is assigned the name of the selected machine.  The operation is 
performed on the part.  When the operation is completed, the tool resource enters the IDLE state.  
The lists of part entities waiting for operations 1, 2 or 3 are searched and the processing of 
another part is begun if possible. 
 
The pseudo code modeling the first operation follows. 
 

Process OpFirst 
Begin 
 WIPCount ++   // Add one to number of parts in FMS 
 MachineSelection (CurrentOp, PartType) 
 If Machine is Null then Add entity to list Op1List 
 Else 
  Begin 
   // Perform first operation 
   Get Tool 
   Get Machine 
   ToolLocation (Tool) = Machine 
   Wait for 30 seconds  // Tool and part movement 
   Wait for OpTime       //  Perform operation 
               Free Tool 
   SearchforNextPart   // Procedure to search all lists for next part to use tool 
  End 
 Send to OpSecond 
End 

 
The model of the second operation begins by determining if the part can remain on the same 
machine using the subsequent machine procedure.  This will be the case if the machine is able to 
perform the operation and the tool required for that operation is available.     
 
If the part cannot remain on the machine used for the first operation, the resource modeling this 
machine enters the idle state.  The lists of part entities waiting for operations 1, 2 or 3 are 
searched and the processing of another part is begun if possible.  The machine selection 
procedure is used to attempt to find a machine to process the part entity completing the first 
operation in the same way as was done for the first operation. 
 

If the second operation can be performed on the same machine as the first, the tool resource for 
this operation enters the busy state, the operation is performed, and the tool resource enters the 
idle state.  The lists of part entities waiting for operations 1, 2 or 3 are searched and the 
processing of another part is begun if possible.  Type 2 parts do not require a third operation.  
Thus, at the end of the second operation, the machine resource processing a type 2 part enters 
the idle state and the search of the lists of waiting parts is conducted.  The pseudo code for the 
second operation follows.  The model of the third operation is similar to the model of the second 
operation. 
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SUBSEQUENT MACHINE PROCEDURE (OPERATION_NUMBER, PART_TYPE,           

CURRENT_MACHINE) 

{ 

IF THE REQUIRED TOOL RESOURCE FOR OPERATION_NUMBER ON THIS PART IS 

IN THE IDLE STATE 

  { 

IF THE REQUIRED TOOL RESOURCE FOR OPERATION_NUMBER ON PART_TYPE 

IS LOADED ON CURRENT_MACHINE AND CURRENT_MACHINE CAN PERFORM 

OPERATION_NUMBER ON THIS PART_TYPE 

   { 

    THE REQUIRED TOOL RESOURCE ENTERS THE BUSY STATE 

    Tool = RESOURCE ID NUMBER OF REQUIRED TOOL 

    OpTime = OPERATION TIME FOR PART_TYPE FOR OPERATION_NUMBER 

   } 

  } 

}  

 

Process OpSecond 
Begin 
 CurrentOp = 2 

SubsequentMachine (CurrentOp, PartType, Machine) 
 If Tool is Null then 
 Begin 
  // Move to another machine 
  Free Machine 
  SearchforNextPart   // Procedure to search all lists for next machine to use tool 
  MachineSelection (CurrentOp, PartType)     // Find another machine  
  If Machine is Null then Add entity to list Op2List 

 Else 
  Begin 
   // Perform second operation on another machine 
   Get Tool 
   Get Machine 
   ToolLocation (Tool) = Machine 
   Wait for 30 seconds  // Tool and part movement 
   Wait for OpTime       //  Perform operation 
              Free Tool 
   SearchforNextPart   // Procedure to search all lists for next part to use tool 
  End 

 End  
 Else 
  Begin 
   // Perform second operation on current machine 
   Get Tool 
   Wait for OpTime       //  Perform operation 
              Free Tool 
   SearchforNextPart   // Procedure to search all lists for next part to use tool 
  End 
 Send to OpThird 
End 

 
12.3.3  Identify Root Causes and Assess Initial Alternatives 
 
The simulation experiment will determine both the makespan for 240 parts as well as the number 
of pallets and fixtures required.  The latter can be accomplished by measuring the number of 
parts in the FMS as was previously discussed. 
 



12-9 

The design of the simulation experiment is summarized in Table 12-4.  We are interested in the 
time to produce 240 parts.  Thus, a terminating experiment with initial conditions of no parts in the 
system is appropriate.  Since no quanities are modeled using probability distributions, no random 
number streams are needed and one replicate is sufficient.  The two schemes for assigning parts 
to machines identified above are to be simulated.  Performance measures have to do with the 
time to complete production on 240 parts, the lead time for parts, the number of parts in the FMS 
(WIP), and the utilization of the machines. 
 

Results are shown in Table 12-5. 
 

Table 12-4:  Simulation Experiment Design for FMS Machine Loading 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Machine load scheme used: 
1.  Available machine with the shortest processing 
time 
2.  Machine loading heuristic from Askin and 
Standridge 

Performance Measures 1.  Time to produce 240 parts 
2.  Number of parts in the FMS (WIP) 
3.  Part Lead Time 
4.  Machine Utilization 

Random Number Streams None 

Initial Conditions Empty buffers and idle stations 

Number of Replicates 1 

Simulation End Time  Time to produce 240 parts 

 

 

Table 12-5:  Simulation Results for FMS Machine Loading 
 

 Loading Scheme 

Performance Measure Shortest Processing Time 

First 

Balance Machine Type 

Workloads 

Makespan (Minutes) 1099 900 

WIP – 
     Average 
     Maximum 

 
30.8 
 63     

 
46.2 

86 

Lead Time (Minutes) – 
     Average 
     Standard deviation 

 
141 
114 

 
173 
74 

Machine Utilization – 
     Type A 
     Type B 
     Type C 

 
69.5% 
72.5% 
70.0% 

 
82.8% 
67.5% 
96.0% 

 
The makespan for the balance machine type workloads approach is 199 minutes less than for the 
shortest processing time first approach.  The former approach results in higher utilizations for 
machine types A and C as well as a lower utilization for machine type B.  Recall that operations 
were assigned to machine types A and C instead machine type B since the operation times for 
machine type B most often were higher than for the other two types. 
 
Recall from the VUT equation that increasing the utilzation results in a longer lead time at a 
station.  Thus, it could be expected that the balance machine type workloads approach would 
have a longer lead time than the shortest processing time first approach.  In addition, Little’s Law 
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indicates that the WIP is proportional to the lead time and thus could also be larger.  However, the 
balance machine type workloads scheme reduces the standard deviation of the lead time. 
 
The maximum number of parts in the FMS is higher under the balance machine type workloads 
approach.  This means that more fixtures and pallets are required using this approach. 
 
12.3.4  Review and Extend Previous Work 
 
Management accepted the simulation results presented in the previous section and decided to 
use the balance machine type workloads scheme.  This decision was primarily based on the need 
to mimimize makespan.  The cost of additional fixtures and pallets will be bourn to support this 
approach. 
 
12.3.5  Implement the Selected Solution and Evaluate 
 
During system operation, the time to produce a required batch of parts and the number of parts in 
the FMS will be monitored. 
 
12.4 Summary 
 
This case study shows how ad hoc operating rules, such as use the idle machine with the shortest 
processing time, are often inferior to operation rules developed using formal models.  Simulation 
is used to test alternative rules and quantify the difference in their effects.  Because systems are 
complex, simulation is needed even when such system operating models are deterministic.  
Complexity arises from the concurrent use of multiple resources such as tools and machines as 
well as the ability of resources such as machines to serve multiple tasks.  The need for the model 
to organize and manage entities waiting for such resources instead of relying on the simulation 
engine to do so transparently to the model has been demonstrated. 

 

Problems 
 
1. Provide validation evidence for the FMS machine loading simulation based on the tool 

and machine utilization.  Compute the expected utilization of each tool and machine type. 
Compare these results to the simulation results for the balance machine type workloads 
case.  The machine utilization is shown in Table 12-5. 

 
Tool Utilization 

A  74.2% 
B  68.9% 
C  93.8% 
D  50.5% 
E  59.8% 
F  49.5% 

 
2. Tell why the standard deviation of the time parts spend in the FMS (lead time) is greater 

than 0 since there are no random variables in the model. 
 
3. Is it proper to compute a t-confidence interval for the mean part lead time?  Why or why 

not? 
 
4. Defend the use of the shortest processing time first loading scheme based on the 

simulation results shown in Table 12-5. 
 
5. List service systems that you have encountered that have the flexibility characteristics of 

the manufacturing system discussed in this chapter.  
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6. Compare the model of the FMS to the model of the serial system discussed in chapter 7. 
 
7. Write the model of third operation on a part in pseudo-code. 
 
8. The model in this case study assumes that tools and parts can be moved concurrently to 

a machine.  Modify the process model so that first the part is moved then the tool.  
Movements occur only if the part or tool is not resident on the selected machine. 

 
9. Resimulate the model with all parts available for processing at time 0 and compare the 

results to those in Table 12-5. 
 
10. Simulate the following improved version of the shortest processing time first rule and 

compare the results with those in Table 12-5.  Don’t allow operation 1 on machine type A. 
 
11. Assess the effect of operation clustering on machine loading.  Operations are assigned to 

specific machines, not just machine types.  All part type 2 operations are assigned to one 
type A machine along with the first operation for part type 3.  The second operation for 
part type 3 is assigned to the other A machine.  The third operation for part type 3 is 
assigned to the type C machine.  The first operation for part type 1 is assigned to the type 
C machine, the second to one type B machine, and the third to the other type C machine.   

 
12. Develop and test heuristics that embellish the operation clustering based assignment 

given in the previous problem.  For example, allow the least utilized machine to be a 
second priority for the most utilized machine if feasible. 

 
13. Management will purchase one more tool of any of the six tool types if that will help 

shorten makespan.  Which tool should be purchased?  Evaluate your choice using the 
simulation model developed in this chapter. 

 
14. Test the idea that a part should stay on the same machine as long as it is feasible for that 

machine to perform the next operation on the part.  In this case, the required tool is 
moved to that machine as soon as it is idle. 

 

Case Problem 
 
A flexible manufacturing facility must produce 1680 parts of one type per 80-hour lead (Wortman 
and Wilson, 1984; Kleijnen and Standridge, 1988).  The part flow through the facility is follows. 
1. Parts arrive to the facility from a lathe at a constant rate of 21 per hour. 
2. Parts require three operations in the following sequence: Op10, Op20, and Op30. 
3. A part is washed before and after each operation. 
 
Each operation is performed either by a fixed machine or a flexible machine.  A fixed machine can 
perform one and only one of three operations but a flexible machine can perform any of the three 
operations.  Parts are moved between machines and the wash station by a single automated 
guided vehicle (AGV).  The AGV system transports parts with little or no human assistance.  The 
vehicle picks up loads at designated pick-up points and transports them to designated drop-off 
points.  Each pick-up and drop-off point is associated with a machine or work station.  A central 
computer assigns material movement tasks to the AGV and monitors the vehicle position.  The 
AGV moves in one direction on a fixed track around the center of the system. 
 
Operation processing times are 14.0, 5.0, and 8.0 minutes respectively for Op10, Op20, and 
Op30.  Washing time is 18 seconds. 
 
AGV travel time is 20 seconds around the entire loop.  The following table shows AGV travel time 
between each pair of workstations. 
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 Wash Station OP 10 OP 20 OP 30 Flexibile 

Wash Station 0 5 9 15 11 

OP10 5 0 4 10 6 

OP20 9 4 0 15 11 

OP30 15 10 15 0 16 

Flexible 11 6 11 16 0 

 
Figure 12-2 gives an overview of the system at the beginning of the production period with all 
machines idle and no parts in the system.  Part movement by the AGV is indicated.  The particular 
operation performed by each machine is displayed. 
 

Figure 12-2:  Overview of the Flexible Manufacturing System: (4,2,2,1) Configuration.
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Operation 30 Machines
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Operation 20

Machines
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Op. 10               Op. 20

Op. 30               Idle

The objective is to find the minimum cost combination of fixed machines (Op10, Op20, or Op30 
only) and flexible machines (all three operations) that meets the throughput requirement.  Flexible 
machines cost more than fixed machines.  Thus, all possible work should be done by fixed 
machines.  Flexible machines are employed to avoid buying an excessive number of fixed 
machines.  In addition, management is also interested in minimizing lead time for a part.  Thus, 
management will consider a configuration of machines that includes flexible machines and 
increases cost in order to reduce lead time as long as the total number of machines does not 
exceed the total number of fixed machines required to do the work by more than one. 
 
The following operating rule is employed for each operation to select between fixed and flexible 
machines.  A part will use a fixed machine if it is available.  If not, it will use a flexible machine if 
one is available.  If neither a fixed machine nor a flexible machine is available, the part will use the 
first machine of either type, fixed or flexible, that becomes available. 
 
One possibility that should be considered is using the minimum number of fixed machines needed 
to process all parts in a timely fashion with no flexible machines utilized.     
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Assess the structural variability seen in this system.  Generate a trace of all system activities.  Use 
the trace to identify the structural variability. 
 
Case Problem Issues 
 
1. What performance measure are important in this problem? 
 
2. How will the AGV system be modeled? 
 
3. Describe how to model the choice between a fixed and a flexible machine for an 

operation in the simulation language you are using.   
 
4. When does a part entity acquire and free a machine resource relative to acquiring and 

freeing the AGV resource? 
 
5. How can the effect on system operations of part waiting for the AGV be determined. 
 
6. How many fixed machines of each type are needed if no flexible machines are used? 
 
7. Construct an alternative to the machine configuration in number 6 as follows. Replace 

one fixed machine of each type with a sufficient number of flexible machines.  Determine 
the number of flexible machines in this case. 

 
8. Why tell why all parts do not have the same time in the system. 

 
 



Part IV 

Supply Chain Logistics 
 
Previous parts of this book discussed fundamental organizations of systems and strategies for 
operating those systems.  This part deals with supply chain management which is defined by 
Hopp and Spearman (2007) to be: The overall system wide co-ordination of inventory stocks and 
flows to ensure the purpose of inventories is met with minimal dollar investment.   
 
A publication from Jones-Lang-LaSalle (2008) defines the lean supply chain as “a set of 
organizations directly linked by upstream and downstream flows of products, services, finances 
and information that collaboratively work to reduce cost and waste by efficiently and effectively 
pulling what is required to meet the needs of the individual customer.”  The focus of part IV is on 
lean supply chain logistics that is the flow of product between organizations to minimize inventory 
and the cost of movement, particularly transportation equipment such as trucks and rail cars.  A 
key element of lean supply chain logistics is demand management: Providing products and 
services when requested (pulled) by the customer.  Thus, movement of product is a function of 
customer demand.   
 
The use of modeling and analysis in achieving lean supply chain logistics with proper demand 
management is discussed. Ideally, there would be zero inventory.  Product would be 
instantaneously delivered to customers who would immediately consume it upon arrival.  There 
would be no in process inventory except for items currently being operated upon. 
 
However, inventory must be kept to deal with variation, both random and structural (generated by 
design), in demand, production, and delivery.  All inventory raises costs without adding value to a 
product.  Thus, the management of inventory involves trading off lower costs with having enough 
product, raw material, and partially finished goods to meet customer demands and keep 
operations working. 
 
Chapter 13 discusses the management of a retail store inventory by a supplier.  Detailed 
operations are not included.  Only daily demand and production volumes are modeled.  Inventory 
levels as well as production schedules are determined.  Analytic computations aid in setting 
inventory levels. 
 
Chapter 14 discusses the logistics of moving goods and maintaining a fleet of trucks to do so.  
The use of simulation in determining the number of trucks required to meet customer service level 
expections is shown.  This is known as fleet sizing.   
 
Chapter 15 discusses maintaining inventory at multiple locations in a complex supply chain.  Rail 
movements between locations are described.  Time varying expected demand for product is 
included.  Building inventory in advance for periods when the expected demand exceeds 
production capacity is described.  The use of customer services levels as the primary driver of 
supply chain logistics is discussed. 
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Chapter 13 

 

Automated Inventory Management 
 
13.1 Introduction 
 
An inventory is a collection of parts or finished products that are waiting for use or shipment.  
Inventories increase costs by requiring storage space that could otherwise be productively used or 
simply not constructed.  The cost of producing or purchasing what is stored cannot be recovered 
until the final product is delivered.  Thus, minimizing inventories is important.  On the other hand, 
not having a part or finished product when needed may lead to a stoppage of production or a 
dissatisfied customer who takes business elsewhere, thus decreasing revenue.  Thus, having 
enough inventory is essential. 
 
Lean demand management requires that manufacturers work with suppliers so that raw material 
or purchased parts are delivered precisely when needed.  Manufacturers co-operate with large 
volume retailers to manage their inventories and ship product when sales records indicate that 
current inventory levels are low.  Information gathered from scanning product bar codes at 
customer checkout can be aggregated and transferred electronically to the manufacturer nightly to 
enable this procedure. 
 
This case study deals with an automated inventory system for a single product.   The retail seller 
electronically collects information at the point of sale and transmits total daily sales to the supplier.  
The supplier must organize production and delivery to the seller such that the seller’s inventory is 
not excessive and sales are not lost due to a lack of inventory. 
 
13.2 Points Made in the Case Study 
 
The automatic inventory system in this case study illustrates a fundamental consideration of 
demand and inventory management: the cost of holding inventory trades off with the need to meet 
customer demands. 
 
Entities sometimes do not represent physical entities.  In this case, a entity represents control 
information flowing within the inventory system. 
 
A system can respond to changes in state variable values.  The inventory system responds to 
changes in the amount of inventory on hand.  When critical values are reached, state events, in 
the form of arriving entities, occur and initiate appropriate responses.  The ability to model the 
dynamic response of a system to state variable values changes is a unique simulation capability. 
 

A Monte Carlo simulation is usually defined as taking samples of one or more random variables, 
manipulating the samples, and gleaning information from the results in a situation where time 
plays no substantive role.  This simulation experiment has these Monte Carlo characteristics.  
However, multiple points in time, each separated by one day, are considered.  Changes in state 
variable values from day to day, determined by the random samples, are significant components 
of the simulation. 
 
In previous case studies, detailed operations effecting individual entities are modeled.  In this 
system, the aggregate affect of production and sales on inventory management are described.  
Statistical distributions are used to quantify this aggregate behavior.  Manipulations of these 
distributions based on principles of probability and statistics assist in determining system and 
model parameter values. 
 
The model used in this case study illustrates a simulation capability of fundamental importance.  
The model consists of three processes.  Each process changes the values of the same state 
variables.  The processes independently determine what actions to take based on the current 
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state variable values.  However, no information is explicitly transmitted between the processes.  
The simulation engine transparently performs all co-ordination tasks. 
 
13.3 The Case Study 
 
A large manufacturer of office supplies (pens, pencils, tape, etc.) sells in large volume to a 
discount office supply retailer.  In order to retain this customer, the manufacturer must manage 
the customer's inventory and automatically generate shipments of products when necessary.  
Missing any shipment due to a lack of available product results in a large financial penalty.  
However, management wishes to minimize the amount of inventory on hand to keep storage 
space costs and investment in unsold product low.  In addition, it is in the best interest of the 
manufacturer if the retailer does not lose any sales due to a lack of product on hand.  At the same 
time, the manufacturer cannot expect the retailer to keep excessive inventory. 
 
13.3.1 Define the Issues and Solution Objective 
 
We will consider only one product.  Others can be assessed in a similar manner.  Sales data 
supplied by the customer can be analyzed and the daily sales volume characterized by a 
statistical distribution.  The sales data concerns one region with 37 stores.  Thus, this data is a 
sum of 37 values.  As was discussed in Chapter 5, the normal distribution may provide a good fit 
to such data.  Using software for fitting data to distributions, it was found that a normal distribution 
with mean 180 cartons and standard deviation 30 cartons fits the actual daily regional sales data. 
 
The manufacturer and the retailer have agreed that one shipment every three days on the 
average is acceptable.  The distribution of three days sales can be determined using probability 
theory as follows.  The distribution of the sum of three normally distributed random variables is 
also normally distributed with the mean equal to the sum of the three means and variance equal to 
the sum of the three variances.  (Standard deviations don’t add.)  Thus, three days sales is 
normally distributed with mean 540 cartons and standard deviation 52 cartons.  The 99% percent 
point of a normal distribution with mean 540 and standard deviation 52 is approximately 660.  
Thus, the amount of inventory needed to meet three days of sales with probability 99% is 660 
cartons.  
 
The reorder point, the inventory level that triggers a shipment from the manufacturer, must be set.  
Since shipments take one day, it is tempting to set the reorder point to the amount of inventory to 
meet one day’s demand with probability of 99%, approximately 250 cartons.  However, consider 
the consequences if the inventory at the end of a day is 300 cartons.  No shipment is sent.  The 
next day suppose the demand is 120 cartons leaving 180 cartons in inventory and triggering a 
shipment.  The probability of the following day’s demand exceeding 180 cartons is 50%.  Thus, 
sales could be lost while the shipment is being processed. 
 
The reorder point will be set at the amount of inventory to meet two days demand with probability 
of 99%.  Two days demand is normally distributed with mean 360 and standard deviation 42.  
Thus the reorder point is set to be 460 cartons. 
 
The nominal maximum production level for the product is 240 cartons per day.  Actual data shows 
the production level to be uniformly distributed between 220 and 235 due to units that fail to pass 
inspection and random equipment failures.   
 
There is no production on any day if inventory at the manufacturer is sufficiently high to meet the 
next shipment.  A range for this inventory level, called the production cut-off point, can be 
computed as follows. The target number of units in inventory at the retailer after a shipment is 
received is 660.  An order, which takes one day to receive, is placed when there are 460 cartons 
in inventory.  The average number of sales in one day is 180 cartons.  Thus, the average 
shipment has (660 - 460) + 180 = 380 cartons.  The maximum shipment to the retailer is 660 
cartons. 
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There are two important parameters of the inventory system: 
 
1. The number of cartons in the inventory of the retailer, the reorder point, that triggers a 

new shipment from the manufacturer, currently proposed to be 460 cartons. 
 
2. The number of cartons in inventory at the manufacturer that allows the following day’s 

production to be canceled, the production cut-off point, currently proposed to be in the 
range 380 to 660 cartons. 

 
Figure 13-1 summarizes the inventory system.  Inventory is generated by production at the 
manufacturer and moved to the retailer as needed.  Inventory levels, product movement, and 
production status are shown.  Note again how this system is driven by dynamic decisions based 
on the values of state variables. 
 

Figure 13-1:  Automated Inventory Management System
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13.3.2 Build Models 
 
The model consists of three parallel processes: 
 
1. Production at the manufacturer. 
2. Sales at the retailer. 
3. Shipments from the manufacturer to the retailer. 
 
The first two processes schedule entity arrivals every day.  The latter processes event triggered 
arrivals that occur when the retailers inventory drops below 460 cartons. 
First the variables used throughout the model will be defined. 
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Define Variables 
 ProductionInv   // Amount of inventory at the manufacturing plant 
 RetailInv   // Amount of inventory at the retail plant 
 Cutoff    // Production cut off level 
 DailyProd   // Daily production at the manufacturing facility 
 Sold    // Daily sales 
 Demand   // Daily demand 
 Reorder   // Reorder Point 
 Ordered   // Order volume from retailer 
 Shipped   // Number of units shipped from the manufacturing 

 
Consider production at the manufacturer.  A entity arrives once per day to control the production 
of new units.  If the number of units in inventory is less than the production cut-off point, new units 
are made and added to the inventory.  The model of this process follows. 
 
 

Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: 1 day 
 Number of arrivals: Infinite  
 
Process Manufacture 
Begin 
 If ProductionInv > CutOff then  
 Begin // No need for production today 
  Tabulate 0 in Production 
 End 
 Else  
 Begin // Produce today  
  Tabulate  100 in T_Production 
  Set           DailyProd = uniform 220, 235  
  Increment ProductionInv by DailyProd 
 end 
End 

 
Next consider the process for sales at the retailer.  One entity representing sales information is 
created each day.  The number of units demanded may exceed those available in inventory.  This 
is an undesirable situation.  The number of units demanded beyond those that are available in 
inventory represents lost sales.  The model of the sales process follows. 
 
Final consider the order process. A state event occurs when the number of units in the retail 
inventory becomes less than 460.  The time till delivery is one day.  The ordering process follows. 
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Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: 1 day 
 Number of arrivals: Infinite  
 
Process Sales 
Begin 
 Set Demand = normal 180, 30 
 If  RetailInv  > Demand then 
 Begin // Sufficient Inventory to meet demand 
  Tabulate 100 in DailySales 
  Set Sold = Demand 
 End 
 Else 
 Begin  // Insufficient Inventory to meet demand 
  Tabulate   0 in DailySales 
  Set  Sold = RetailInv  
 End 
  
 Decrement RetailInv current by Sold 
End 

 
 

Define Arrivals:    
 When RetailInv becomes less than Reorder 
 Number of arrivals: Infinite  
 
Process Ship 
Begin 
 Set Ordered = min (660, 660 - RetailInv + 180) 
   

If   Ordered  > ProductionInv then 
    Begin // Insufficient inventory for today's order 
    Tabulate 0 in Shipments 
    Set  Shipped = ProductionInv  
    End 
   

Else 
Begin  // Sufficient Inventory 

    Tabulate 100 in Shipments 
    Set Shipped = Ordered 
   End 
   
   // Make shipment  
  Decrement ProductionInv by Shipped 
   Wait for 24 hr 
   Increment RetailInv by Shipped 
End 

 
13.3.3 Identify Root Causes and Assess Initial Alternatives 
 
Table 13-1 gives the experiment design for the inventory system simulation.   
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Table 13-1:  Simulation Experiment Design for the Inventory System 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values 1.  Re-order point for retailers inventory, 460 units 
2.  Production cancellation point based on 
manufacturer’s inventory (380, 660) units 
 

Performance Measures 1.  Number of days with lost sales 
2.  Amount of inventory at the retailer 
3.  Number of days with no production 
4.  Amount of inventory at the manufacturer 
5.  Number of shipments 
6.  Number of shipments with insufficient units 
 

Random Number Streams 1.  Number of units manufactured 
2.  Number of units demanded 
 

Initial Conditions 1.  Inventory at the retailer – average of the reorder 
point and the maximum desirable inventory, 560 units 
2.  Inventory at the manufacturer -- Mid-point of the 
product cancellation range, 520 units 
 

Number of Replicates 20 

Simulation End Time 365 days (one year) 

 
Management felt that demand data would be valid for no more than one year.  Thus, a terminating 
experiment with a time period of one year was used.  The number of units demanded each day 
and the number of units produced each day that production occurs are modeled as random 
variables.  Thus, two random number streams are needed.  Twenty replicates will be performed.   
 
The initial inventory at the manufacturer and at the retailer must be set.  Management believed 
that typical conditions are as follows.  The number of units at the retailer should most often be 
between the re-order point and the intended maximum inventory level or 460 - 660.  The average 
of these values, 560, will be used for the initial conditions.  A typical number of units at the 
manufacturer should be within the range of the cut-off level for production, 380 - 660 units.  The 
mid-point of the range, 520, is used. 
  
As discussed previously, model parameters are the re-order point for the retailers inventory, 
whose value in the first experiment will be 460 units, and the production cancellation point.  The 
values used for this latter quantity are the average shipment size, 380 units, and the maximum 
shipment size, 660 units.   
 
There are several performance measures.  The number of days with lost sales measures how 
well the inventory management system helps the retailer meet demand for the product.  In 
addition, the inventory level at the retailer is of concern.  At the manufacturer, the number of days 
without production and the inventory level are of interest.  Finally, the total number of shipments 
from the manufacturer to the retailer, as well as the number of shipments with less than the 
requested number of units, should be estimated.  The latter results from a lack of inventory at the 
manufacturer. 
 
The inventory level at the retailer must be examined.  Figures 13-2 and 13-3 show the inventory 
level at the retailer over time from the first replicate for each value of the cut-off point.  In both 
graphs, the majority of the values are between 100 and 500 cartons. 
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Figure 13-2:  Inventory at Retailer – Production Cut-off Point of 660 
 

 
 

Figure 13-3:  Inventory at Retailer – Production Cut-off Point of 380 
 
Figures 13-4 and 13-5 show the inventory levels at the manufacturer for each value of the 
production cut-off point.  The higher cut-off value, 660, results in an inventory between 400 and 
800 cartons most of the time.  The lower value, 380, results in an inventory between 200 and 500 
cartons most of the time. 
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Figure 13-4:  Inventory at Manufacturer – Production Cut-off Point of 660 
 

 
 

Figure 13-5:  Inventory at Manufacturer – Production Cut-off Point of 380 
 
There were only 4 days of lost sales over all 20 replicates when the cut-off point was 660 and 3 
days when the cut-off point was 380.  This indicates that the reorder point was set correctly, or at 
least not too low.   
 
Table 13-2 summarizes the other performance measure values resulting from the simulation 
experiment.  
 
The number of days with no production is approximately the same for both values of the 
production cut-off point.  The number of days per year without production is about 78 or 1.5 days 
per week.  Thus, 5.5 days of production per week should be sufficient.   
 
When the higher production cut-off point is used, all shipments contain the number of units 
requested by the retailer.  When the lower cut-off point is used, slightly less than half of the 
shipments have an insufficient number of units, that is fewer units than requested by the retailer.  
The lower cut-off value leads to an average of 10.4 additional shipments per year.   



 13-9 

Table 13-2:  Results of the Inventory System Experiment 
 

 Days with No  

Production 

# of Insufficient 

 Shipments 

Total # of  

Shipments 

Replicate Cut-
off 

Point 
660 

Cut- 
off 

Point 
380 

Difference Cut-
off 

Point 
660 

Cut- 
off  

Point  
380 

Difference Cut- 
off  

Point 
660 

Cut- 
off 

Point 
380 

Difference 

1  80 81 1 0 73 73 133 143 10 

  2 75 76 1 0 66 66 137 147 10 

  3  74 75 1 0 76 76 136 146 10 

  4 79 80 1 0 64 64 135 145 10 

  5 79 80 1 0 79 79 132 144 12 

  6 73 74 1 0 78 78 136 146 10 

  7 76 77 1 0 65 65 133 145 12 

  8 76 77 1 0 57 57 136 146 10 

  9 76 77 1 0 60 60 135 146 11 

10 78 79 1 0 79 79 134 144 10 

11 75 77 2 0 68 68 134 147 13 

12 72 74 2 0 60 60 138 148 10 

13 74 75 1 0 55 55 135 147 12 

14 78 79 1 0 67 67 136 145 9 

15 72 74 2 0 74 74 137 148 11 

16 74 75 1 0 71 71 138 146 8 

17 78 79 1 0 73 73 134 146 12 

18 81 82 1 0 72 72 135 144 9 

19 72 73 1 0 61 61 137 148 11 

20 77 78 1 0 76 76 137 145 8 

Average 75.9 77.1 1.2 0 68.7 68.7 135.4 145.8 10.4 

Std. Dev.  2.7 2.6 0.4 0 7.5 7.5 1.7 1.4 1.4 

99% CI 

Lower 

Bound 74.2 75.4 0.9 0 63.9 63.9 134.3 144.9 9.5 

99% CI 

Upper 

Bound 77.7 78.8 1.4 0 73.5 73.5 136.5 146.7 11.3 

 
13.3.4 Review and Extend Previous Work 
 
Management felt that the foremost objective is to satisfy the retailer.  The automated inventory 
management system appears to meet the objective.  The retailer is able to meet all customer 
demand without carrying excessive inventory.  Most of the time, the inventory is less than three 
days average demand for the product. 
 
The higher value for the cut-off point is preferred.  This results in no shipments with less units than 
the retailer demanded as well as fewer total shipments.  Management is willing to accept a larger 
inventory at the manufacturer to better satisfy the customer. 
 
Management noted that the variance between replicates is small.  This small variance should 
make the automated inventory system easier to operate and control. 
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Production of the product 5.5 days a week will be scheduled. 
 
13.3.5 Implement the Selected Solution and Evaluate 
 
The automated inventory system will be installed and will operate with a reorder point of 460 units 
and a production cut-off point of 660 units.  The retailer was assured by the simulation results of 
the ability to meet customer demand completely and consistently as well as holding a relatively 
low inventory.  System performance will be monitored using the measures defined for the 
simulation experiment. 

  
13.4 Summary 
 
This chapter illustrates how dynamic decision making based on state variables may be 
incorporated into models.  System details are not modeled directly.  Aggregate behavior is 
modeled using statistical distributions.  Graphs show the dynamics of inventory levels.  System 
behavior due to alternative values of inventory system parameters is assessed. 
 

Problems 

 
1. Provide verification evidence for the inventory system experiment based on the following 

results. 
 
Number of days processed:    365 
Number of days without production:     77 
Number of days with production:    288 
Number of shipments:     145 
Number of shipments of sufficient quantity:      78 
Number of shipments of insufficient quantity:      67 
 
2. Provide validation evidence for the inventory system experiment based on the simulation 

results presented in this case study. 
 
3. One possibility that could arise during the simulation experiment is the following.  

Suppose a shipment of insufficient units failed to bring the inventory at the retailer above 
the reorder point.  What would be the consequences for the simulation experiment?  
What conclusions could be drawn about operating the system with the particular reorder 
and cut-off point values? 

 
4. Discuss management’s decision to use the higher cut-off point value.  Defend using the 

lower value since the customer can still meet all demand. 
 
5. Include detection and response of the condition described in problem 3 in the model and 

resimulate the using the lower value of the cut-off point. 
 
6. Find a cut-off point value between 380 and 660 that improves system operation.  Use a 

reorder point of 460 units. 
 
7. Find a reorder point lower than 460 units that either improves system operation or makes 

it no worse. 
 
8. Print out a trace of the inventory at the retailer.  For each day, include the inventory at the 

start of the day, the deliveries, the demand, and the inventory at the end of the day. 

 
9. Modify the model so that product occurs Monday through Friday at the current rate and 

Saturday at half the current rate.  This implements the conclusion of the analysis that 5.5 
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days per week production on the average is sufficient.  At the same time, customer 
demand at the retailer occurs 7 days per week.  Would you expect more or less inventory 
to be needed at the retailer?  Defend your expectation. 

 

Case Problem 

 
A product inventory changes daily due to customer demand that withdraws from it and production 
that replenishes it on the days when it is operating.  Customer demands and production are 
random variables.  Production is subject to down times of random frequency and duration.  
Customers due not backorder.  Thus, any customer demand that cannot be met results in a lost 
sale. 
 
Periodically, an analyst can review the inventory and make adjustments by purchasing or selling 
product on the spot market.  The time between these reviews is called the review period.  At each 
review, the analyst can do the following: 

 
a. If the current inventory is less than the safety stock, buy a quantity of product 

equal to (safety stock – current inventory) on the spot market. 
b. If the current inventory is greater than the maximum inventory, sell a quantity of 

product equal to (current inventory – maximum inventory) on the spot market. 
 
The safety stock level is an operating parameter of the inventory system set such that the 
probability of meeting all customer demand between periodic reviews is at least a specified value, 
typically 90%, 95%, or 99%.  This probability is called the effective service level. 
 
The maximum inventory level is less that the physical limit on inventory storage, called the 
capacity, to avoid having no place to store items. 
 
Figure 13-6 summarizes the inventory control system.  Note the following definitions and notation. 
 

0 Inventory

Safety Stock

Target 

Inventory

Maximum

Inventory

Capacity

Reject Orders

Buy Inventory

No Action

No Action

Sell Inventory

Shut Down

sd*zL

sd*zL

sd*z(1-Lshut)

Figure 13-6:  Inventory Management System Summary 
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Target inventory – The desired inventory to avoid purchases and sales on the spot 
market, in the range [safety stock, maximum inventory]. 

 
Delta inventory – The change in inventory each day due to production (+) and demand    
(-). 
 
Nominal service level – The probability that the inventory will be greater than the safety 
stock at the time of a review given that it was equal to the target at the time of the last 
review.  As well, the probability that the inventory will be greater than zero at the time of a 
review given that it was equal to the safety stock at the time of the last review. 
 
d = number of days in the review period 
 

d = the mean of the delta inventory distribution for a review period of d days 
 

sd
2
 = the variance of the delta inventory distribution for a review period of d days 

 

p = the mean of the conditional daily production distribution (given that production is greater than 
zero). 
 

sp
2
 = the variance of the daily production distribution 

 

c = the mean of the daily customer demand distribution 
 

sc
2
 = the variance of the daily customer demand 

 
A = the percent of days that production occurs (the availability of production) 
 
L = the nominal service level as a percent 
 
Leff = the effective service level 
 

)1(1
eff

LL   

 
Lshut = the probability of exceeding the capacity during the next review period given that the 
inventory level is equal to the maximum inventory at the current review 
 
zL = The L% point of the standard normal distribution 
 
The average demand is equal to the average production over a long period of time such as a 

year.   This means that c = p * A.  In other words, the expected production each day (including 
an allowance for down time) is equal to the expected daily demand. 
 
Ignoring down times, the delta inventory can be viewed approximately normally distributed with 
parameters: 
 

0
d

  

 

   




d

i

cpcpd
d

0

22222
* sssss   
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The problem is to determine the review period, safety stock, maximum inventory, and target 
inventory given an effective service level.  Performance measures should include the service level 
as well as the number of purchases and sales made to the spot market by the analyst. 
 
Consider the following specifications. 
 
Capacity:       10,000. 
Distribution of customer demand:    Normal (1000,   250). 
Distribution of production when production occurs:  Normal(1000/A, 300). 
A=Availability:       30/(30+1.92) 
Review period:        7, 10, or 14 days. 
Effective service level:      0.95 or 0.99. 
 
First, determine the required quantities assuming that there is no production downtime.  Use 
analytic models to compute the safety stock, target inventory, and maximum inventory for each 
review period.  Use simulation to validate the analytic computations.  Make adjustments to the 
analytically computed quantities if necessary.  Validate your final recommendation using 
simulation.  Validate means to show that the required effective service level is met. 
 
Next, consider production downtime.  Establish and validate quantities for the safety stock, target 
inventory, and maximum inventory using simulation.  The average time between periods of no 
production is 30 days.   The average length of each period of no production is 1.92 days.  The 
distribution of the period of no production follows. 
 
Distribution of the Length of Periods of No Production 
 

Days 
Down 

Percent 

1 50% 

2 25% 

3 13% 

4 7% 

5 5% 

Total 100% 

 
Case Problem Issues 
 
1. Identify the processes that are needed in the model. 
 
2. Specify all of the combination of the values of the parameters that should be simulated. 
 
3. Compute the safety stock, target inventory level, and maximum inventory level for each 

parameter value combination using a spreadsheet. 
 
4. Specify the initial conditions for the simulation. 
 
5. In addition to service level, define the performance measures. 
 
6. Determine how production downtime should be modeled. 
 
7. Discuss how verification and validation evidence will be obtained. 
 
The time period of interest is one year. 
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Chapter 14 

 

Logistics 
 
14.1 Introduction 
 
Logistics has to do with the procurement, storage, transportation, and delivery of goods or people.  
A logistics system deals with the way finished products move from producer to customer or raw 
material moves from a supplier to the producer.  Logistics systems must be responsive to 
customer requirements for short lead times.   That is the amount of time between the placement 
of an order and its delivery should be minimized.  Using excessive amounts of inventory or capital 
equipment to accomplish this objective increases costs and thus is inconsistent with lean 
principals. 
 
Movement of goods may involve truck, rail, water, and air transportation.  Facilities for loading and 
receiving products by each mode of transporation employed are necessary.  Evaluating trade-offs 
between using various transporation modes can be a part of a simulation study. 
 
Inspection and repair of transportation equipment is important.  Inspection is often required after 
each round trip to a customer and returning to the shipping site.  Inspection delays and 
subsequent repair times if necessary must be included in a simulation model. 
 
Determining how many trucks, rail cars, or aircraft are needed must be accomplished.  This is 
known as fleet sizing.  Fleet size estimates are often made using simple algebra based on the 
expected round trip time to a customer, including inspection and repair as well as the number of 
round trips needed per planning period.  This result is the lower bound on the fleet size.  
Simulation allows the effects of variability on meeting customer requirements for timely deliveries 
to be considered when sizing a fleet so that a more precise esitimate is obtained.  Variability 
sources include transportation times and customer demands. 
 
Staffing plans for logistics systems are necessary.  A lack of staff may prove to be a constraint on 
the number of loads shipped.  Staff may work only certain shifts during the day and only certain 
days of the week.  Such scheduling may result in structural variability that causes the need for 
additional inventory or capital equipment. 
 
Logistics systems add no value to products.  Thus, their cost needs to be minimized.  On the 
other hand, they are critical to making sure customers are satisfied by receiving products on time. 
 
A simple logistic system is shown in Figure 14-1.  A factory creates product which is stored in an 
inventory.  Customer demands result in shipments via truck to the customer site.  After the 
shipment is unloaded into the customer’s inventory, the truck returns to the factory for inspection 
and repair as well as to await its next shipment. 
 
This chapter discusses a basic and straightforward logistic system with an emphasis on fleet 
sizing.  A more complex logistic system as required in a supply chain is discussed in the next 
chapter. 
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Figure 14-1:  Simple Logistics System 
 
14.2 Points Made in the Case Study 
 
Arrivals represent daily shipping demand.  There is one arrival per day at the beginning of the day.   
The number of shipments per day is modeled as a random variable. 
 
Trucks used in shipping are modeled with a single resource.  Each unit of the resource represents 
a truck.  The number of trucks (resource units) required can be determined dynamically in the 
model during execution.  An additional truck (resource unit) is created whenever needed to make 
a shipment,  subject to an upper limit.  Thus, the number of trucks needed to meet a performance 
level can be determined.   
 
A sequence of experiments can be used to determine the relationship between the maximum 
number of trucks (resource units) available and system performance.  The values of the number 
of trucks depend on the results of previous simulation experiments.  After the number of trucks is 
established, the number of workers is set in the same way. 
 
Simulation experiments can be run to determine the affect of structural variability on system 
performance.  Various staff schedules with regard to shifts worked per day and days worked per 
week can be tested to determine their relationship to system performance and to estimate the 
number of workers required.  This is left as an exercise for the reader. 
 
14.3 The Case Study 
 
Resource requirements in a logistics system include capital expenditures for transportation 
mechanisms such as trucks and operating costs such as personnel salaries.  Minimizing capital 
and operating expenditures while providing the level of service demanded by customers is a 
fundamental issue. 
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14.3.1 Define the Issues and Solution Objective 
 
A new logistics system is being designed to deliver truck loads of finished product over a large 
area from a main terminal supporting a manufacturing plant.  The logistics system works in a 
similar way to the one shown in Figure 14-1.  Truck loads are shipped seven days per week every 
day of the year.  For the next year, the daily shipping volume is estimated as follows: a minimum 
of 20, a mode of 35 and a maximum of 65.  Thus, the average daily shipping volume is 40 loads 

per day 
 









 


3

653520
.  This means that there are 14600 loads shipped per year on the 

average. 
 
A truck waits at the terminal until it is loaded.  Loading time is uniformly distributed between 2 and 
4 hours.  A sufficient number of workers are available for loading.  The truck will make all of its 
deliveries and then return to the terminal.  The time from the terminal to the customer site, in 
either direction, is triangularly distributed with a minimum of 4 hours, a mode of 12 hours and a 
maximum of 30 hours.  The time at the customer site is triangularly distributed with a minumum of 
2 hours, a mode of 4 hours, and a maximum of 8 hours.    
 
Upon its return to the terminal, the truck must be inspected by a worker.  Inspection time is 
uniformly distributed between 1 and 2 hours.  Approximately 90% of the trucks pass inspection or 
require only minor adjustments and are then ready for another load.  The other 10% require 
significant maintenance that is performed by the same worker.  Repair time is triangularly 
distributed with a minimum of 4 hours, a mode of 8 hours and a maximum of 12 hours.  Workers 
are available 16 hours per day. 
 
Management does not want to significantly constrain the number of loads delivered each year.  At 
the same time the number of trucks and number of workers needs to be minimized for cost 
reasons.  Management has determined that differences of more than 1% in the number of round 
trips completed are operationally significant.  This difference can affect company profitability.  
Difference of less than 1%, even if statistically significant, are considered to be operationally 
unimportant.   
 
The objective is to determine the number of trucks and workers required for the effective 
operation of the product delivery system.  Effective operation requires minimizing costs without 
significantly reducing the number of loads delivered. 
 
14.3.2 Build Models 
 
The expected number of trucks and workers needed can be estimated using simple algebra.  This 
is a lower bound on the actual number of trucks and workers needed  Simulation is used to 
determine if additional trucks and workers are needed to meet the delivery criteria established by 
management. 
 
The expected time for a truck to complete the delivery process and be ready to begin another 
delivery is shown in Table 14-1. 
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Table 14-1:  Expected Time to Complete Delivery Process 

 

 

Expected Time 

(Hours) 

Load Truck 3.0 

Travel to Customer 15.3 

At Customer 4.7 

Travel to Terminal 15.3 

Inspection 1.5 

Repair  0.8 

Total 40.6 

 
There are approximately 8760 hours in a year.  Thus, a truck could be expected to make 215 
deliveries per year ( = 8760 / 40.6).  Thus, the number of trucks required to make 14600 deliveries 
is 68 ( = 14600 / 215). 
 
The expected number of workers needed can be determined in the same way.  A worker is 
required for inspection and repair with an expected time of 2.3 hours per delivery.  Thus, a single 
worker who works 16 hours per day could inspect and repair on the average of 2539 trucks per 
year.  Thus, 6 workers on each shift ( = 14600 / 2539) are needed.  
 
The model of the logistics system can be divided into the following processes.  
1. Daily generation of loads. 
2. Truck loading and round trip to the customer site. 
3. Truck inspection and repair. 
4. Worker shift changes. 
 
The first process Daily Loads operates as follows.  The number of loads per day is generated as a 
sample from a triangular distribution with the appropriate minimum, mode, and maximum: 20, 35, 
65.  While the daily number of loads is an integer, it is also sufficiently large to model as a 
continuous random variable.   
 
In order to avoid “loosing” fractional loads, the fractional part of the sample for one day is added to 
the number of loads for the next day.  For example, suppose the value for the number of loads is 
30.6.  Then, 30 loads are created today and 0.6 is added to the number of loads for the following 
day.  Suppose the value for the number of loads on the following day is 40.7.  Next, 0.6 is added.  
Thus, 41 loads are created and 0.3 is added to the number of loads for the next day. 
 
In this process, the variable LoadsWaiting contains the quantity described above and the variable 
NLoads contains the integer portion of LoadsWaiting.  NLoads loads are sent to the second 
process, RoundTrip, each day.  
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Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: 1 day 
 Number of arrivals: Infinite  
 
Define Variables 
 LoadsWaiting  // Number of loads to ship 
 NLoads: Integer  // Integer number of loads to ship 
 
Process Daily 
Begin 
 Set LoadsWaiting += Triag 20, 35, 65 
 Set NLoads = LoadsWaiting 
 Set LoadsWaiting -= NLoads 
 Clone NLoads to RoundTrip 
End 

 
The process model for truck loading and load delivery, RoundTrip, consists of four time delays, 
one each for truck loading, movement to the customer site, time at the customer site, and return 
to the terminal.  Then the truck goes to the inspection process.  Preceding the time delays, each 
load acquires a truck.   
 
Preceding truck acquisition, the model determines whether an additional unit of the truck resource 
should be created.  If the number of truck resource units is less than a specified limit, contained in 
the variable MaxTrucks, and there are no free units of the truck resource, then a new unit is 
created.  Thus, the load would not wait for a truck.  Else, the load must wait for a truck to return 
from a delivery as well as being inspected and repaired. 
 

Define Variables 
 MaxTrucks  // Maximun number of trucks 
 
Define Resources 
 Truck   // Trucks 
 
Process RoundTrip 
Begin 
 If Truck/1 is Idle is FALSE then 
 Begin 
 // Add another truck if possible 
  If Truck Units < MaxTruck then  

Increment Truck Units by 1 
 End 
 Wait Until Truck/1 is Idle in QTruck 
 Make Truck/1 Busy 
 Wait for  uniform  2,  4 hours  //Loading Time 
 Wait for  triangular 4, 12, 30 hours //To Customer 
 Wait for  triangular 2,  4,  8 hours //At Customer 
 Wait for  triangular 4, 12, 30 hours //From Customer 
 Send to Inspect 
End 

 
Similar logic is used to model the worker resource in the truck inspection and repair process, 
Inspect.  After an entity acquires the worker resource, there is time delay for inspection.  Ten 
percent of the entities also require a time delay for repair. 
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Define Variables 
 MaxWorkers  // Maximun number of workers 
 
Define Resources 
 Worker   // Inspection and repair workers 
 
Process RoundTrip 
Begin 
 If Worker/1 is Idle is FALSE then 
 Begin 
 // Add another worker if possible 
  If Worker Units < MaxWorker then  

Increment Worker Units by 1 
 End 
 Wait Until Worker/1 is Idle in QWorker 
 Make Worker/1 Busy 
 Wait for uniform  3,  1 hr   //Inspection 
 If uniform 0, 1 < 10% then 
  Wait for triangular 4, 8, 12 //Repair 
 Make Worker/1 Idle 
 Make Truck/1   Idle 
End 

 
The worker shift process is as was discussed in chapter 2.  All units of the worker resource are 
put into the off-shift state after 16 hours of work and returned to the idle state after 8 hours.   
 
Notice that this results in an approximation in the model.  If a worker is inspecting or repairing a 
truck at the beginning of the off shift period, the inspection or repair will continue until completed.  
This worker will again be available for work at the beginning of the on-shift period.  Thus, the 
number of workers required could be underestimated.  
 
14.3.3 Identify Root Causes and Assess Initial Alternatives 
 
The experimental strategy to determine the number of trucks and workers is as follows.  First the 
number of trucks will be determined.  After the number of trucks is established, the number of 
workers will be determined for that number of trucks. 
 
The minimum number of trucks is the expected number, 68, as determined in the previous 
section.  The maximum number will be determined through simulation by not constraining the 
number of units of the truck resource used, that is requiring that no load ever waits for a truck.  
Various values of the number of trucks between the minimum and the maximum will be simulated.  
 
The number of workers is not constrained so that no returning truck waits for a worker. 
 
For each of these values, 20 replicates will be made and the average number of completed round 
trips over the replicates computed.  A graph showing the average number of completed trips 
versus the number of trucks can be constructed.  Thus, the number of trucks to use is 
determined. 
 
The experimental design for determining the number of trucks is shown in Table 14-2.   
 
A terminating experiment of duration 1 year (8760 hours), the planning period for the logistics 
system is used.  There is one random number stream for each time delay modeled as a random 
variable as well as a random number stream for determining the daily number of loads.  An 
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additional random number stream is needed to model the random choice as to whether a truck 
passes inspection.   
 
The primary system performance measure is the number of round trips completed.  The utilization 
of trucks and workers are of interest.  The experiment will begin with all trucks at the terminal 
waiting to make a trip. 

 

Table 14-2:  Simulation Experiment Design for Determining the Number of Trucks 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values 1.  Number of trucks – Various values between the 
minimum needed and the maximum used. 

Performance Measures 1.  Number of round trips completed 
2.  Utilization of trucks 
3.  Utilization of workers 

Random Number Streams 1.  Number of pallets each day 
2.  Truck loading time 
3.  Travel time to customer 
4.  Time at customer site 
5.  Travel time from customer to terminal 
6.  Time to inspect returning truck 
7.  Decision:  Did truck pass inspection? 
8.  Time to repair truck 

Initial Conditions Empty buffers and idle resources 

Number of Replicates 20 

Simulation End Time 1 year 

 
First the simulation is run with 68 trucks and then with maximum number of trucks used as 
determined by the simulation to be 144 with an approximate 99% confidence interval of (141.3, 
146.3).   
 
The maximum number of trucks case results in an average of 662 more round trip completions 
per year.  This is an increase of 4.8% over case where 68 trucks are used.  Furthermore, this 
difference is statistically significant as seen by the approximate 99% confidence interval for the 
difference.   
 
Thus, it can be concluded that more than 68 trucks are needed and that the number of trucks 
needed is between 68 and 144.   
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Table 14-3:  Number of Round Trips – Average Trucks and Maximum Trucks 

 

Replicate Maximum 

Trucks 

Average 

Trucks 

Difference 

  1 14738 13863 875 

  2 14374 13850 524 

  3 14697 13839 858 

  4 14564 13800 764 

  5 14345 13853 492 

  6 14527 13823 704 

  7 14278 13804 474 

  8 14421 13877 544 

  9 14638 13825 813 

10 14357 13854 503 

11 14611 13858 753 

12 14791 13828 963 

13 14507 13755 752 

14 14477 13754 723 

15 14442 13872 570 

16 14447 13868 579 

17 14397 13810 587 

18 14308 13839 469 

19 14501 13820 681 

20 14469 13860 609 

Average 14494.5 13832.6 661.9 

Std. Dev. 142.7 35.0 147.5 

99% CI Lower Bound 14403.2 13810.2 567.5 

99% CI Upper Bound 14585.7 13855.0 756.2 

 
Furthermore simulation experiments are run with 68, 70, 75, …, 140, and 144 trucks.  Results are 
shown in the following graph, Figure 14-3. 

 

 
 

Figure 14-3:  Round Trips versus Number of Trucks 
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It appears from the graph that the number of roundtrips increases significantly up to 75 trucks.  
The difference in round trips when 80 trucks are used instead of 75 is only 14 on the average and 
thus is not operationally significant.  Thus, 75 trucks will be used if there is a statistically and 
operationally significant difference in the number of roundtrips versus when 70 trucks are used.  
The simulation results are summarized in Table 14-4. 
 

Table 14-4:  Number of Round Trips – 75 Trucks versus 70 Trucks 

 

Replicate 75 Trucks 70 Trucks Difference  

(75 vs 70 

Trucks) 

  1 14268 14715 447 

  2 14197 14351 154 

  3 14238 14669 431 

  4 14198 14558 360 

  5 14235 14341 106 

  6 14222 14527 305 

  7 14104 14273 169 

  8 14258 14385 127 

  9 14208 14601 393 

10 14169 14320 151 

11 14226 14604 378 

12 14212 14704 492 

13 14123 14497 374 

14 14174 14477 303 

15 14276 14433 157 

16 14262 14439 177 

17 14189 14397 208 

18 14231 14307 76 

19 14191 14486 295 

20 14239 14435 196 

Average 14211.0 14476.0 265.0 

Std. Dev. 45.1 132.9 127.4 

99% CI Lower Bound 14182.1 14390.9 183.5 

99% CI Upper Bound 14239.9 14561.0 346.4 

 
On the average, the number of roundtrips increases by 265, 1.9%, when 75 trucks are used 
versus 70 trucks.  Thus, the difference is operationally significant since it is greater than 1%.  The 
approximate 99% confidence interval for the difference is (183.5, 346.4).  Thus, the difference is 
statistically significant. 
 
Thus 75 trucks should be used.  For this case, the truck utilization is 94.9% with an approximate 
99% confidence interval of (94.1%, 95.3%).  Utilization includes time spent in inspection and 
repair. 
 
Given that 75 trucks should be used, the number of workers must be determined.  The average 
maximum number of workers determined by the simulation experiments using 75 trucks is 30.  
This is the maximum number of workers that could be needed.  The average number of workers 
computed with algebra was 6.  The actual number of workers needed is somewhere between 
these two values.  The simulation experiment to determine the number of workers is the same as 
that shown in Table 14-2 except that the model parameter is the number of workers instead of the 
number of trucks.  Conducting this experiment is left as an exercise for the reader. 
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14.3.4 Review and Extend Previous Work 
 
Management was pleased with the results as presented above and 75 trucks will be acquired.   
 
14.3.5 Implement the Selected Solution and Evaluate 
 
The number of completed roundtrips will be monitored.  Additional trucks can be obtained and 
workers can be hired if needed. 
 
14.4 Summary 
 
This case study emphasizes a sequentially designed simulation experiment to determine the level 
of resources needed to operate a truck based logistics system.  Minimizing the cost of the system 
in terms of trucks and workers trades off with the need to meet delivery targets.  The idea of a 
level of indifference is employed.  Alternatives may statistically differ significantly, but the 
difference may not be large enough, greater than the level of indifference, to impact system 
operations. 
 

Problems 
 
1. Validate the computation of the expected time a truck spends in repair per roundtrip. 
 
2. Tell what the entity in each of the processes in the model discussed in this chapter 

represents. 
 
3. Give verification evidence based on the information resulting from one replicate of the 

simulation experiment as follows: 
 

Number of truck round trips started:      14335 
Number of truck round trips completed:      14203 
Number of truck round trips on going at the end of the simulation:               104 
Number of trucks waiting or in inspection and repair at the end of the simulation:       28 

 
4. Compare the modeling and experimental issues of the logistics system discussed in this 

chapter to those concerning the serial line discussed in chapter 7. 
 
5. Tour the operation of the local office of an overnight delivery service.  Write down a 

process model of their logistics system for organizing and delivering in bound packages. 

 
6. Modify the model presented in this chapter so that no worker inspects or repairs a truck 

during the off-shift period.  Assess the effect of making the model more precise on the 
number of workers required. 

 
7. Suppose that workers were available 24 hours per day but the total number of hours 

worked per day could not increase.  That is, there would be 2/3rds of the number of 
workers determine above would work each shift.  Use the model developed in this chapter 
to determine if the number of trucks needed could be lowered. 

 
8. Modify the model and simulation experiment to estimate the needed capacity of the 

parking area for trucks at the terminal.  Include trucks that are in inspection or repair. 

 
9. Modify the model and simulation experiment to give a profile of truck location.  Estimate 

the average number of trucks in each possible location:  in route to the customer, at the 
customer, in route to the terminal, in inspection, in repair, and waiting for a load. 
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10. Conduct a simulation experiment to determine the number of workers needed. 
 

Case Study 

 
A new logistics system is being designed to transport one product from a factory to a terminal by 
rail.  A simulation study is needed to estimate the following: 
 
 1. The rail fleet size. 
 2. The size of the rail yard at the factory. 
 3. The size of the rail yard at the terminal. 
 4. The size of the inventory needed at the terminal. 
 
Customer demand is satisfied each day from the terminal.  Demand is normally distributed with a 
mean of 1000 units and a standard deviation of 200 units.  Production at the factory is sufficient to 
meet demand on a daily basis.  Policy is to ship an average of 1000 units each day from the 
factory to the terminal.  Each rail car holds 150 units.  Partial rail car loads are not shipped but 
included with the demand for the the next day.   
 
The customer service level provided at the terminal should be at least 99%.  The time period of 
interest is one year. 
 
Transportation time from the factory to the terminal is triangularly distributed with a minimum of 3 
days, a mode of 7 days, and a maximum of 14 days.  At the terminal, a car must wait for a single 
unload point to unload.  Unloading takes one hour.  Upon return to the plant, a rail car is 
inspected.  Inspections take 2 hours.  Maintence is required for 3% of returning cars.  
Maintenance requires 4 days. 
 
Embellishment:  All cars leaving the factory in a day join a single train leaving at 4:00 A.M. the 
next morning and have the same transportation time to the terminal.  A single train containing all 
empty cars leaves the terminal at 4:00 A.M. each morning.   
 
Case Study Issues. 
 
1. What initial conditions concerning the arrival of trains to the terminal should be used? 
 
2. What target inventory level should be used? 
 
3. How is the policy to ship 1000 units each day from the factory implemented if rail cars 

hold 150 units? 
 
4. Embellishment: How is the requirement that all rail cars leaving the factory or terminal join 

a single train with a single transporation time to the other site modeled? 
 
5. How is the unloading constraint for rail cars modeled? 
 
6. In what order should the system parameters listed above be determined by the simulation 

experiments? 
 
7. What is the primary performance measure for the simulation experiments?  
 
8. How will verification and validation evidence be obtained? 
 
9. How is the size of a rail yard modeled? 
 
10. How is the size of the rail fleet modeled? 
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11. Computed the expected fleet size and use the result in providing validation evidence. 
 
12. Define the processes that comprise the model. 
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Chapter 15 
 

Integrated Supply Chains 
 
15.1 Introduction 
 
A supply chain integrates the efforts of geographically dispersed production and distribution 
facilities that acquire raw material, make intermediate or finished products, and deliver finished 
products to customers.  Transportation links provide for product and raw material movement 
between facilities.  Integration is accomplished by information technology that shares production, 
inventory, and customer demand data among the facilities. 
 
Integration implies that the operation of each facility affects the operation of all other facilities.  
The volume of production at a facility is determined by the need for its products at subsequent 
facilities in the supply chain.  The fundamental purpose of the supply chain is to meet customer 
demand for finished products.  Thus, customer demand drives all of the work of the supply chain. 
 
A simple two facility supply chain is shown in Figure 15-1.  At the right side of the figure, customer 
demand is satisfied from finished goods inventory at facility B.  Facility B production levels are set 
so that the finished goods inventory is replenished.  Facility B production requires an intermediate 
product made by facility A that is stored in an inventory at facility B.  Facility A ships the 
intermediate product to facility B so that just enough inventory is available to meet production 
requirements at facility B.  Shipments are made from an inventory at facility A that is replenished 
by production at facility A.  Thus, customer demand indirectly drives production at facility A.  
Facility A needs to be constantly knowledgable about customer demand, production levels, and 
inventory levels at facility B to set its own production levels. 
 
Many supply chains are much more complicated than the one shown in Figure 15-1.  There are 
multiple kinds of facilities: some for production only and some for movement or transfer of 
materials like the facilities that will be discussed in a later chapter.  More than one finished 
product may be delivered to customers.  Facilities may supply products to and receive many 
products from many other facilities.  More than one mode of transporation may be involved.  The 
expected demand of a customer for a product may vary over time, that is be subject to seasonal 
variations. 
 
Modeling an integrated supply chain involves modeling the flow of information from the end of the 
supply chain where product is delivered to customers to the beginning of the supply chain where 
the first intermediate product is produced from raw materials.  The flow of product between 
facilities must be modeled as well as inventory management and production.  Understanding and 
modeling of customer demand is essential. 
 
This case study shows the simulation approach to evaluating integrated supply chain 
performance and how all aspects of a supply chain are integrated into one model.  It is based in 
part on the work described in Standridge and Heltne [2000].  
 
15.2 Points Made in the Case Study 
 
In previous chapters, emphasis has been placed on one aspect of the operation of a system.  
Modeling an integrated supply chain requires integrating many components in one model: 
shipments, inventory management, customer demand, production, and information flow.  
Simulation has a unique ability to provide such integration.  A model integrating these 
components is illustrated in this case study. 
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Expected customer demand can vary by month or season of the year.  At some times, demand 
may be far less than production capacity and at some time more.  Thus, creating inventory to 
buffer against demand seasonality is necessary.  One approach to doing this is illustrated in this 
case study. 
 
The effect of the operations of one facility on the decisions made by another facility must be 
modeled.  In this study, equations are used to compute production levels at precedessor plants in 
a supply chain based on inventory levels at the successor plant, customer demands, and the 
amount of product in route between the two plants. 
 
The model of a complex system can be implemented using multiple processes.  The processes 
share resources and variables to interact with each other.  In this application, nine processes are 
used to model the supply chain.  Variables and resources modeling inventory levels at plant and 
in route between plants as well as rail fleets are shared between them. 
 
Decisions made within a model may be a function of time.  In this application, inventory may be 
produced in the months prior to peak demand and used only at the time of peak demand. 
 
Supply chain performance is best measured by the service level provide to the customers of retail 
products.  The occasional lack of intermediate inventory for production is acceptable if the 
customer service level is still satisfactory. 
 
Initial conditions in a supply chain model must include shipments between facilities.  In this case, 
trains are scheduled to arrive at each of the production facilities each day before the expected 
arrival time of the first train generated by the simulation experiment as a part of the initial 
conditions. 
   
15.3 The Case Study 
 
A company owns three plants.  Two of the plants, Baker and Chauncey, produce retail products 
for delivery to customers.  A third plant, Able, produces two intermediate products for delivery to 
the Baker and Chauncey plants.  This supply chain is pictured in Figure 15-2.   
 
Product is shipped from the Able plant by rail.  There is a separate rail fleet for Able to Baker 
shipments and for Able to Chauncey shipments. 
 
Customer demand for the retail product made by the Baker plant is triangularly distributed with a 
minimum of 15 rail cars, a mode of 20 rail cars, and a maximum of 40 rail cars per day.  Thus, the 
average daily demand is 25 rail cars.   
 
Customer demand for the retail product made by the Chauncey plant is seasonal.  The average 
daily demand varies by month of the year as shown in Table 15-1.  This data is valid for the next 
year. 
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Table 15-1:  Average Demand for the Chauncey Plant Retail Product by Month 
 

Month Average Daily Demand 
(Rail Cars)  

January   17 

February   18 

March   18 

April   22 

May   23 

June   24 

July   22 

August   21 

September   21 

October   18 

November   18 

December   18 

  
The average of the average daily demands is 20 rail cars.  The minimum demand is 70% of the 
average and the maximum is 130% of the average. 
 
Daily customer demand can include a fractional number of rail cars.  However, only full rail cars 
are shipped with the fractional demand carried over until the next day. 
 
Production capacity at the Able plant is not an issue as sufficient quantities of each intermediate 
product can be made each day.  Production capacity at the Baker and Chauncey plants is 
constrained.  The Baker plant can produce only 35 rail cars per day.  The Chauncey plant can 
produce 27 cars per day.   
 
Production levels are determined daily.  Production at the Baker and Chauncey plants can be 
viewed as occurring in batches equal to one rail car.  A rail car of intermediate product sent from 
the Able plant is required before a batch can be produced.  Production of a batch can be modeled 
as taking 24 hours / daily plant capacity. 
 
Each day at 4:00 A.M. rail cars leave Able plant for the other two plants.  There is one train to 
each plant.  All rail cars sent to a plant travel on the same train.  Arriving cars at Baker and 
Chauncey plants are moved into the plant railyard at 12:00 P.M for use the next day.  Empty cars 
leave these plants for return to Able plant at 4:00 A.M.  Travel time between Able plant and Baker 
plant is triangularly distributed with a mean of 7 days, a minimum of 3 days and a maximum of 10 
days.  Travel time between Able plant and Chauncey plant is triangulary distributed with a mode 
of 10 days, a minimum of 7 days and a maximum of 20 days.  Rail car maintenance will not be 
modeled.   
 
Rather than construct inventory facilities at the Baker and Chauncey plants, intermediate product 
remains in rail cars until needed.  One rail car at a time is unloaded in preparation for the start of 
the next batch.  Retail product is loaded directly into rail cars for shipment to customers. 
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15.3.1 Define the Issues and Solution Objective 
 
The objective of the simulation study is to establish values for the operating parameters of the 
supply chain for the next year, January through December.  These include: 
 

1. The number of cars in each rail fleet: Able plant to Baker plant as well as Able 
plant to Chauncey plant. 

2. The capacity of each inventory: Each of the two intermediate products at Able 
plant as well as the intermediate and retail product inventories at Baker and 
Chauncey plants. 

3. The target retail inventories at Baker and Chauncey plants. 
 
The primary measure of performance is the service level to customers at Baker and Chauncey 
plants, defined as the number of days when customer demand was met from existing inventory. 
 
15.3.2 Build Models 
 
The first step in analyzing the supply chain is to set initial target retail inventory levels.  One way 
to do this is as follows, remembering that the simulation experiments can be used to find better 
values for the target inventory level if necessary. 
 
Consider the target retail inventory level at Baker plant.  Suppose there was no variation in 
customer demand or transportation times.  The target inventory level would be equal to one day’s 
demand.  Product to meet customer demand would be removed from the retail inventory.  The 
day’s production would be used to replenish the inventory to meet the next day’s demand. 
 
Because of variation, additional inventory is needed to meet customer demands to a specified 
service level.  Suppose a 95% service level is desired.  Then the target inventory can be set such 
that the probability that customer demand is less than the target is 95%.   For Baker plant this is 
35 rail cars.   
 
For Chauncey plant, the target will vary by month as shown in Table 15-2.  Note that the target 
inventory levels are at or above plant capacity in 4 of 12 months.  This may reduce customer 
service levels below 95%. 
 

Table 15-2:  Target Retail Inventory Levels by Month 
 

Month Target Inventory Level 
(Rail Cars)  

January 21 

February 22 

March 22 

April 27 

May 28 

June 29 

July 27 

August 26 

September 26 

October 22 

November 22 

December 22 
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In addition, the average customer demand at Chauncey plant exceeds the plant capacity in May 
and June.  Thus, management has decided to increase daily production by one rail car per day in 
January, February, and March to prepare for May and June demand.  This inventory will be set 
aside for use starting in April. 
 
It seems prudent to set each of the intermediate product target inventory levels to the same value 
as the corresponding retail level, at least initially. 
 
Production levels at all three plants are set using the following relationship: 
 
 Production = Target Inventory – (Current Inventory + Amount in production) (15-1) 
 
In other words, enough units of a product are sent into production so that the sum of these units, 
the current inventory and the number of units still in production from previous days is equal to the 
target inventory. 
 
Capacity constraints are applied at Baker and Chauncey plants.  In the number of units sent into 
production is greater than the daily capacity, some of the units will be produced on subsequent 
days. 
 
The extra production amount is added at the Chauncey plant as well to help meet customer 
demand in the months where the target inventory is greater than or equal to the plant capacity.  
This implies the need for additional intermediate inventory that must be shipped from Able plant. 
 
Shipping volumes are set using the following relationship: 
 
 Shipping = (Target Inventory – Current Inventory) +  

     (Expected customer demand in expected transportation time –  
      Amount in route)        (15-2) 

 
In addition, the extra production amount is added for shipping between Able and Chauncey 
plants. 
 
The model consists of nine processes as defined in Table 15-3 
 

Table 15-3:  Model Process Definitions 
 

Process Name Description 

Able Daily operation decisions at Able Plant 

Baker Daily operation decisions at Baker Plant, including customer service 

Chauncey Daily operation decisions at Chauncey Plant, including customer service 

BakerMake Production at Baker Plant 

ChaunceyMake Production at Chauncey Plant 

Move2Baker Train shipment from Able Plant to Baker Plant 

Move2Chauncey Train shipment from Able Plant to Chauncey Plant 

Move2AbleBaker Train shipment from Baker Plant to Able Plant 

Move2AbleChauncey Train shipment from Chauncey Plant to Able Plant 
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Important variables in the model are shown in Table 15-4. 
 

Table 15-4:  Model Variable Definitions 
 

Variable Name Description 

Avg2* Average transporation time from Able plant to * plant (days) 

AvgRetail* Average daily customer demand 

Capacity* Plant capacity 

Cars2Cust* Number of rail cars demanded by customers currently 

Cars2* Number of rail cars to be shipped from Able plant currently 

InRoute* Number of rail cars currently in route from Able plant  

ProductionAdd Number of additional rail cars of retail product to produce daily at Chauncey 
plant to meet peak demand.  The amount varies by month. 

TargetInvRetail* Target retail (customer) inventory 

TargetInvInt* Target intermediate inventory 

TargetInvIntAble* Target intermediate inventory at Able plant 

*toAble Number of rail cars currently in route to Able plant 

 
* = a plant name (Baker, Chauncey) 
 
The Able process is given in the following pseudo-code.  This process models the initiation of the 
shipment of railcars to Baker plant and Chauncey plant as well as the production of intermediate 
product at Able plant.  Entities in this process represent trains and have one attribute:   
 
CarsinTrain: The number of cars in a train 
 
The two intermediate product inventories, one for Baker plant (IntInvAbleBaker) and the other for 
Chauncey plant (IntInvAbleChauncey), are modeled as resources.  The units of each resource 
correspond to rail cars.  The initial number of units of each inventory resource is equal to the 
target value for that inventory.  The same strategy is used to model the retail inventories at Baker 
(RetailInvBaker) and Chauncey (RetailInvChauncey) plants. 
 
The two rail fleets are modeled as variables: FleetBaker and FleetChaucey.  The model is 
allowed to create as many rail cars in each fleet as needed.  Thus, an estimate of the size of each 
fleet is obtained.  The initial size of each rail fleet is zero. 
 
First consider the shipment of rail cars to Baker plant.  The number of cars that need to be 
shipped is incremented using equation 15-2.  Suppose the inventory of intermediate product for 
Baker plant has at least as many cars as the number that need to be shipped.  Then all cars that 
need to be shipped are shipped, the number remaining to be shipped is zero, and the inventory is 
reduced by the number of cars shipped. 
 
Suppose more cars need to be shipped than are in inventory.  Then the train consists of the cars 
that are in that are inventory.  The number remaining to be shipped is reduce by the number in 
inventory and the number in inventory is set to zero. 
 
In either case, a clone (copy) of the train entity is sent to process Move2Baker. 
 
The modeling logic for a shipment to the Chauncey plant is identical except for the consequences 
of the expected customer demand varying month to month.  All target inventory values for the 
intermediate product also vary by month. 
 
  



15-9 

Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: 1 day 
 Number of arrivals: Infinite  
 
Define Attributes 

CarsinTrain  // Rail cars in a train 
 
Define Variables 

AddInv   // Number of additional rail cars needed 
 
Avg2Baker  // Average number of transit days to Baker 

 AvgRetailBaker  // Average daily customer demand at Baker 
Cars2Baker  // Current number of rail cars to ship from Able to Baker 
Cars2CustBaker // Current demand in rail cars at Baker 
InRouteBaker  // Current number of rail cars in route between Able and Baker 

 TargetIntInvAbleBaker // Target intermediate inventory at Able for Baker 
TargetIntInvBaker // Target intermediate inventory at Baker 

 
 Avg2Chauncey  // Average number of transit days to Chauncey 
 AvgRetailChauncey // Average daily customer demand at Chauncey 

Cars2Chauncey  // Current number of rail cars to ship from Able to Chauncey 
Cars2CustChauncey // Current demand in rail cars at Chauncey 
InRouteChauncey // Current number of rail cars in route -- Able and Chauncey 

 TargetIntInvAbleChaunceyBaker // Target intermediate inventory at Able for 
Chauncey 

TargetIntInvChauncey // Target intermediate inventory at Chauncey 
 
Define Resouces 
 FleetBaker  // Number of rail cars in the Able to Baker fleet 
 FleetChauncey  // Number of rail cars in the Able to Chauncey fleet 

IntInvBaker  // Number of rail cars in intermediate inventory at Baker  
IntInvChauncey  // Number of rail cars in intermediate inventory at Chauncey  

 IntInvAbleBaker  // Number of rail cars in intermediate inventory at Able for Baker 
IntInvAbleChauncey // Number of rail cars intermediate inventory Able for Chauncey 

 ProductionChauncey // Production facility at Chauncey 
RetailInvChauncey // Number of rail cars in finished goods inventory at Chauncey 

 SavedInvChauncey // Number of rail cars in build ahead inventory at Chauncey 
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Process AblePlant 
Begin 
 Cars2Baker += TargetInvIntBaker - #IntInvBaker/IDLE +  

(Avg2Baker*AvgRetailBaker-InRouteBaker) 
 If Cars2Baker <= #IntInvAbleBaker/IDLE then 
 Begin 
  CarsinTrain = Cars2Baker 
  Reduce #IntInvBaker/IDLE by CarsinTrain 
  Cars2Baker = 0 
 End 
 Else 
 Begin 
  CarsinTrain = #IntInvBaker/IDLE 
  Reduce #IntInvBaker/IDLE by CarsinTrain 
  Cars2Baker -= CarsinTrain 
 
 End  
 Clone to Move2Baker 
  

Cars2Chauncey += TargetInvIntChauncey - #IntInvChauncey/IDLE +  
     (Avg2Chauncey*AvgRetailChauncey-InRouteChauncey) 

 If Cars2Chauncey <= #IntInvAbleChauncey/IDLE then 
 Begin 
  CarsinTrain = Cars2Chauncey 
  Reduce #IntInvChauncey/IDLE by CarsinTrain 
  Cars2Chauncey = 0 
 End 
 Else 
 Begin 
  CarsinTrain = #IntInvChauncey/IDLE 
  Reduce #IntInvChauncey/IDLE by CarsinTrain 
  Cars2Chauncey -= CarsinTrain 
 End  
 Clone to Move2Chauncey 
  
 Wait until Midnight 
 AddInv = TargetIntInvBaker - #IntInvAbleBaker/Idle 
 If (#FleetBaker/IDLE < AddInv) Then  

increase #FleetBaker/IDLE by (AddInv - #FleetBaker/IDLE) 
 Make FleetBaker/AddInv BUSY 
 Reduce #IntInvAbleBaker/IDLE by AddInv 
 
 AddInv = TargetIntInvChauncey(Month) - #IntInvAbleChauncey/Idle 
 If (#FleetChauncey/IDLE < AddInv) Then  

increase #FleetChauncey/IDLE by (AddInv - #FleetChauncey/IDLE) 
 Make FleetChauncey/AddInv BUSY 
 Reduce #IntInvAbleChauncey/IDLE by AddInv 
 
End 
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After the train shipments are initiated, time is delayed until midnight when the inventories are 
updated.  Since there is no constraint on production at Able plant, each inventory is simply reset 
to the target value.  In addition, each unit in inventory is stored in a rail car.  If there are 
insufficient idle rail cars at Able plant, additional units of each fleet resource are created. 
 
The remaining discussion of the model will focus on the Chauncey plant.  Baker plant operates in 
an identical way except that time varying average demand is not a factor. 
 
The process Move2Chauncey is shown in the following pseudo-code.  The number of rail cars in 
route to Chauncey is incremented by the number of cars in the train, CarsinTrain.  The time delay 
for movement from Able to Chauncey is determined as a sample from the triangular distribution 
with minimum 7, mode 10, and maximum 20 days.  All trains arrive at midnight.  The number of 
cars in the intermediate product inventory at the Chauncey plant is recorded by increasing the 
number of idle units of the resource IntInvChauncey.  The arriving cars are subtracted from the 
number of cars in route to the Chauncey plant. 
 

Process Move2Chauncey 
Begin 
 InRouteChauncey +- CarsinTrain 
 Wait for Triangualar 7, 10, 20 days // Train from Able to Chauncey 
 Wait until Midnight 
 Increase #InvIntChauncey by CarsinTrain 
 InRouteChauncey -= CarsinTrain  
End 

 
Next consider the daily operations at the Chauncey plant.  This involves determining the number 
of rail cars of product demanded by customers, the number of cars that can be shipped from 
inventory to meet this demand and the number of rail cars of the retail product to produce to 
replenish the inventory.  Additional cars of retail product may need to be produced and saved to 
meet peak demand.  Such cars already in inventory may or may not be available to meet current 
demand. 
 
The process begins by adding the customer demand for the current day to the currently unfilled 
customer demand (the variable Cars2Cust).  The demand is a sample from a triangular 
distribution whose mode depends on the month of the year, whose minimum is 70% of the mode 
and whose maximum is 130% of the mode and can result in a fractional number of rail cars.  Only 
whole rail car loads are shipped so fractional demand, as well as unmet demand, is carried 
forward to the next day. 
 
If the number of rail cars in the regular inventory is sufficient to meet the customer demand, then 
the inventory is reduced by the number of rail cars demanded and the remaining customer 
demand is reduced by the same quantity.  If the demand is greater than the number of rail cars in 
regular inventory, the entire inventory is used to partially meet the demand.  The inventory and 
demand variables are updated accordingly.  If the month is April through December, the saved 
inventory can used to meet the remaining demand, partially or completely. 
 
Service level observations are recorded.  If all demand is met, the service level for the day is 100.  
Otherwise, the service level is zero. 
 
The regular inventory is replenished to the target level by creating an order to produce more rail 
cars of retail product.  The number of rail cars to produce is given by equation 15-1.  The number 
of rail car loads in production is incremented by the right hand side of the same equation. 
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The saved inventory is built up each day by the number cars depends on the month of the year 
and is specified in the variable ProductionAdd(Month).  Thus, an order for ProductionAdd(Month) 
additional rail cars is created. 
 
Each order entity corresponds to a single rail car’s volume of production and has one attribute. 
 
IsSaved: Whether or not the rail car is a part of the saved inventory (1 Yes; 0 No or regular 

inventory.) 
 
The Chauncey plant process is given in the following pseudo-code. 
 

Define Attributes 
 IsSaved // Is rail car part of saved inventory 
 
Define Variables 
 WholeCars // Integer portion of demand in rail cars 
 OrderSize // How much to produce in rail cars 
 
Process ChaunceyPlant 
Begin 
 Cars2CustChauncey += triangular 70%*Mode(Month), Mode(Month), 

130%Mode(Month) 
 WholeCars  = Integer(Cars2CustChauncey) 
 If WholeCars <= #RetailInvChauncey/IDLE Then 
 Begin // Enough Inventory to Meet Demand 
  Reduce #RetailInvChauncey/IDLE by WholeCars 
  Cars2CustChauncey -= WholeCars 
  Tabulate 100 in ServiceLevel 
 End  
 Else 
 Begin // Not enough inventory to meet demand 
  Whole Cars -= #RetailInvChauncey/Idle 
  Cars2CustChauncey -= WholeCars 
  Reduce #RetailInvChauncey/IDLE by WholeCars 
  If (Month is not April through December) Then tabulate 0 in ServiceLevel 
  Else 
  Begin //Try to use pre-made cars in inventory 
   If (WholeCars <= #SavedInvChauncey/IDLE) Then 
   Begin // Enough pre-made cars to meet demand 
    Reduce #SavedInvChauncey/IDLE by WholeCars 
    Cars2CustChauncey -= WholeCars 
    Tabulate 100 in ServiceLevel 
   End 
   Else 
   Begin // Not enough pre-made cars to meet demand 
    WholeCars -= #SavedInvChauncey/IDLE 
    Cars2Cust Chauncey = -= #SavedInvChauncey/IDLE 
    Reduce #SavedInvChauncey/IDLE by WholeCars 
    Tabulate 0 in ServiceLevel 
   End 
  End 
 End 
 OrderSize = TargetInvRetailChauncey - #InvRetailChauncey/IDLE  
 RetailProdChauncey += Ordersize 
 IsSaveInv = 0 
 Clone OrderSize to MakeChauncey 
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 IsSaveInv = 1 
 Clone AddProduction(Month) to MakeChauncey 
End 
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Chauncey plant production is modeled by process MakeChauncey, which is shown in the 
following pseudocode.  Each entity represents an order to produce one rail car.  The entity waits 
for one rail car sized unit of the intermediate product inventory.  After the intermediate inventory is 
obtained, the entity waits for its turn in the Chauncey production facility.  The production time is 
1440 minutes (in a day) / 27 ( the daily production capacity).  Thus, the number of units made per 
day is limited to the capacity.  The newly made unit is added to the appropriate inventory (regular 
or saved).  The rail car containing the intermediate product is sent to wait for the next train to Able 
plant by adding one to the count of the number of rail cars on the train. 
 

Process MakeChauncey 
Begin 
 Wait until IntInvChauncey/1 to be IDLE 
 Make IntInvChauncey/1 Busy 
 Wait until ProductionChauncey/1 is IDLE 
 Make ProductionChauncey/1 Busy 
 Wait for 1440/27 minutes 
 Make ProductionChauncey/1 IDLE 
 Reduce #IntInvChauncey/Busy by 1 
 If IsSavedInv = 0 then  

Begin 
Increase #RetailInvChauncey/IDLE by 1 
RetailProdChauncey -=1 

 End 
 Else Increase #SavedInvChauncey/IDLE by 1 
 Chauncey2Able +=1 
End 

 
The movement of empty cars from Chauncey plant to Able plant is modeled by process 
MoveChauncey2Able as shown in the following pseudocode.  The number of cars in the train is 
the number cars containing intermediate inventory that was consumed since the last train 
departed.  The trip is made and the train arrives at midnight to Able plant.  One unit of the 
FleetChauncey resource is freed for each car in the train. 
 

Define Arrivals:    
 Time of first arrival: 0 
 Time between arrivals: 1 day 
 Number of arrivals: Infinite  
 
Process Move2AbleChauncey 
Begin 
 CarsinTrain = Chauncey2Able 
 Chauncey2Able = 0 
 Wait for 7, 10, 20 days 
 Wait until Midnight 
 Make FleetChauncey/CarsinTrain IDLE   
End 

 
It is important to note when and how each process is initiated.  An entity is sent to each of the 
plant processes: Able, Baker, and Chauncey once each day at midnight.  An entity is sent to each 
process that moves trains to Able plant: Move2AbleBaker and Move2AbleChauncey at the time of 
daily train departure, 4 A.M.   The MakeBaker and MakeChauncey processes are initiated by the 
Baker and Chauncey plant processes respectively after the number units to make to replenish the 
inventory has been determined.  The Move2Baker and Move2Chauncey processes are initiated 
by the Able plant process after the number of rail cars to ship to each has been determined. 
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15.3.3 Identify Root Causes and Assess Initial Alternatives 
 
The design of the initial simulation experiment is shown in Table 15-5.  Since the customer 
demand data is valid for one year, a terminating experiment of length one year is used.   
 
Model parameters are the inventory target levels.  Establishing inventory target levels is a primary 
objective of the simulation study.  This will done by setting the target levels in the manor 
previously described and detemining the resulting system performance.  The performance in 
measured by the customer service level at Baker and Chauncey plants as well as the size of 
each fleet.  In addition, the waiting time of orders for intermediate product at Baker and Chauncey 
plants so production can begin will be measured.  Excessive waiting time could lower customer 
service levels.  Only the waiting time for orders that had to wait is recorded. 
 
There are four random streams, two for transportation times to and from Able plant and two for 
customer demand at Baker and Chauncey plants.  Twenty replicates will be made. 
 
Ideally, the level of each inventory at the end of each day should be the target value.  Thus, the 
target value is used for the initial inventory level. 
 
Trains arrive to Baker and Chauncey plant daily on the average.  However, the first shipments 
from Able plant will not arrive to Baker and Chauncey plants until day 7 and 10 on the average.  
Thus, shipments must be scheduled to arrive to Baker and Chauncey plants on the preceding 
days as part of the initial conditions.  Shipment size is the average number of rail cars arriving to 
the plant per day.  This is equal to the average customer demand at that plant. 
 

Table 15-5:  Simulation Experiment Design for the Supply Chain 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values 1.  Retail inventory target levels set to the 95% point 
of the customer demand distribution 
2.  Intermediate inventory target levels at Baker and 
Chauncey plants initially set to the same value as 
corresponding retail inventory target level 
3.  Intermediate inventory target levels at Able plant 
initially set to the same value as the corresponding 
inventory at Baker or Chauncey plant 

Performance Measures 1.  Service level to customers at Baker plant 
2.  Service level to customers at Chauncey plant 
3.  Fleet size: Able to Baker  
4.  Fleet size: Able to Chauncey 
5.  Order waiting time for intermediate inventory at 
Baker plant 
6.  Order waiting time for intermediate inventory at 
Chauncey plant 

Random Number Streams 1.  Transportation time between Able plant and Baker 
plant 
2.  Transportation time between Able plant and   
Chauncey plant 
3.  Customer demand at Baker plant 
4.  Customer demand at Chauncey plant 

Initial Conditions 1.  All inventory levels set equal to their target 
2. Intermediate inventory arrivals to Baker and 
Chauncey plants as discussed in the text 

Number of Replicates 20 
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Simulated End Time 1 year 

 
Simulation results are shown in Table 15-6. 

 
Table 15-6:  Simulation Results for the Initial Experiment 

 

 Fleet Size 
(Rail Cars) 

Service Level Wait for Inventory 
(Hours) 

Replicate Baker Chauncey Baker Chauncey Baker Chauncey 

  1 501 666 43 5 31 33 
  2 500 722 55 18 29 35 
  3 502 671 49 7 30 36 
  4 468 724 68 26 30 33 
  5 467 700 85 72 26 35 
  6 501 704 61 33 29 31 
  7 500 684 48 9 34 36 
  8 502 719 54 44 31 34 
  9 494 724 39 6 32 33 
10 495 698 43 21 30 35 
11 486 732 61 39 28 33 
12 484 709 60 28 28 32 
13 481 749 64 7 29 32 
14 489 675 68 51 28 32 
15 534 717 61 39 31 32 
16 472 722 28 24 33 34 
17 501 737 54 9 32 37 
18 489 717 44 38 33 32 
19 488 736 52 26 30 33 
20 476 695 51 18 32 33 

Average 492 710 54 26 30 33 
Std. Dev. 15 23 13 18 2 2 
99% CI Lower 
Bound 482 695 46 15 29 32 
99% CI Upper 
Bound 501 725 62 37 32 34 
 
Service level values are unexceptably low.  Order waiting time for intermediate inventory 
averages greater than one day at each plant.  An average of 1339 orders per replicate waited for 
intermediate inventory at the Baker plant with an approximate 99% CI of (1152, 1526) while an 
average of 1094 orders per replicate waited for intermediate inventory at the Chauncey plant with 
an approximiate 99% CI of (949, 1238). 

 
These results lead to a second alternative.  The target intermediate inventory at Baker plant is 
increased by the expected customer demand in one day as the waiting time for intermediate 
inventory averages about 1.25 days.  Similarly, the target inventory at Chauncey plant is 
increased by the expected customer demand in two days as the waiting time for intermediate 
inventory is about 1.4 days.  Otherwise the simulation experiment is the same as shown in Table 
15-5.  Results are shown in Table 15-7. 
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Table 15-7:  Simulation Results with Higher Intermediate Inventory Targets 
 

 Fleet Size 
(Rail Cars) 

Service Level Wait for Inventory 
(Hours) 

Replicate Baker Chauncey Baker Chauncey Baker Chauncey 

  1 520 770 93 97 24 30 

  2 483 795 97 96 24 47 

  3 501 771 93 90 24 33 

  4 492 763 93 99 24 26 

  5 516 778 91 94 25 27 

  6 499 744 93 95 30 25 

  7 502 750 95 97 24 26 

  8 532 819 91 91 25 30 

  9 499 801 94 100 24 48 

10 494 846 96 97 25 39 

11 516 782 90 93 25 29 

12 504 784 95 97 24 28 

13 497 813 94 96 29 34 

14 499 774 92 99 27 36 

15 505 799 97 93 26 28 

16 487 773 95 96 24 41 

17 492 748 96 96 28 32 

18 524 808 93 96 25 33 

19 511 808 94 95 25 25 

20 502 779 93 95 25 32 

Average 504 785 94 96 25 32 

Std. Dev. 13 26 2 3 2 7 

99% CI Lower 
Bound 496 769 92 94 24 28 

99% CI Upper 
Bound 512 802 95 97 26 37 

 
Results show that the approximate 99% confidence intervals for the service level at both the 
Baker plant and the Chauncey plant contain the target service level of 95%.  The fleet size 
required for the Chauncey plant is 785 cars and the fleet size required for Baker plant is 504 cars.  
An average of 122 orders per replicate waited for intermediate inventory at the Baker plant with 
an approximate 99% confidence interval of (83, 161) while an average of 124 orders per replicate 
waited for intermediate inventory at the Chauncey plant with an approximate 95% confidence 
interval of (100, 148).  Note that number of orders waiting at each plant has dropped by about an 
order of magnitude.  
 
Since service levels are acceptable for this alternative, inventory capacity can be examined.  The 
retail inventories at Baker and Chauncey plant can by design not exceed the target.  The same is 
true for the intermediate inventories at Able plant.  Thus, only the inventory capacities to be set 
are the intermediate inventories at Baker and Chauncey plant.  The approximate 99% confidence 
interval for the maximum number of rail cars in the intermediate inventory at Baker plant is (135, 
145) with an average of 140.  The approximate 99% confidence interval for the same quantity at 
Chauncey plant is (155, 170) with an average of 162. 
 
15.3.4 Review and Extend Previous Work 
 
Management was willing to except a slightly less than 95% service level at Baker plant.  Fleet 
sizes of 504 for Able to Baker and 785 for Able to Chauncey will be used.  The number of orders 
waiting for intermediate inventory as well as the average waiting time were felt to be acceptable. 
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The target inventory levels are as follows.  Note that target inventory values associated with 
Chauncey plant vary by month. 
 
Retail inventories:  35 at Baker plant, the 95% point of the demand distribution  

as shown in Table 15-2 at Chauncey plant. 
Intermediate inventories: 60 (35 + 25 = the expected demand in one day) at Baker plant 

and for the Baker plant intermediate inventory at Able plant 
 35 + 2 * the monthly value shown in Table 15-1 for the Chauncey 

plant 
 
Inventory capacities were set as follows. 
 
Customer inventories:  Same as target inventories. 
Intermediate inventories: Able plant – Same as target inventories. 
    Baker plant – Same as the average maximum of 140 rail cars 

Chauncey plant – Same as the average maximum of 162 rail 
cars 

 
15.3.5 Implement the Selected Solution and Evaluate 
 
The supply chain will be operated with the above parameters.  Service level performance will be 
monitored. 
 
15.4 Summary 
 
This chapter discusses the use of simulation to analyze complex systems in general and supply 
chains in particular.  Some components of such systems have time varying characteristics such 
as the expected customer demand for products.  The behavior of one component may depend on 
the behavior of other components.  Customer demand at one facility is a factor in determining 
shipping quantities at another facility. 
 
Models can be constructed by viewing the complex system as a set of semi-independent 
processes that share information using modeling constructs such a variables and resources.  
Simulation experiments include initial conditions that specify time dynamic behavior such as the 
arrival of shipments over time at a facility.  A variety of simulation results can be collected and the 
behavior of many of aspects of such a system can be assessed. 
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Problems 
 
1. Distinguish the integrated supply chain approach from the automated inventory 

management approach discussed in chapter 13. 
 
2. Compare the flow of information in an integrated supply chain to the flow of work in a 

kanban system such as the one discussed in chapter 10. 
 
3. What other factors should be taken into account in setting the initial target inventory 

levels for the intermediate products at each plant in addition to the variation in customer 
demand? 

 
4. What information would be lost if two models were used instead of the one model in this 

chapter?  One model would represent the supply chain between Able plant and Baker 
plant and the other between Able plant and Chauncey plant. 

 
5. State the model for each of the following processes: 
 
 a. Baker 
 b. BakerMake 
 c. Move2Baker 
 d. Move2AbleBaker 
 
6. Instead of scheduling daily train arrivals at Baker and Chauncey plants as a part of the 

initial conditions, discuss the effects of simply increasing the initial inventory at each plant 
by an amount equal to the total volume arriving due to the initially scheduled shipments. 

 
7. Why is the fleet size larger for Chauncey plant than Baker plant when the customer 

demand is smaller? 
 
8. Modify the model discussed in this chapter to determine how many rail cars would be 

saved if there was only one rail fleet used to ship product from the Able plant. 
 
9. Evaluate the policy of shipping an amount equal to the expected customer demand from 

Able plant to each of the other two plants each week.  For Chauncey plant this means the 
expected time of train arrival should be used in determining which expected demand to 
use. 

 
10. Modify the model in this chapter to estimate the rail yard size needed at Able plant. 
 
11. Suppose that the capacity of Able plant is 62 rail cars per day in sum total over all 

products produced.  Analyze the supply chain for this case.  Generate additional 
inventory needed to support Chauncey plant ahead of time if needed. 

 
12. Analyze the supply chain for the following case:  Allow the saved inventory at Chauncey 

to be used to meet demand during the first three months of the year.  Replace all saved 
inventory that is used in this way.   

 
13. Modify the model so that the size of each rail fleet can be constrained to a pre-specified 

upper limit.  Find the smallest rail fleet size that results in an acceptable service level. 
 
14. Currently the model described in this chapter assumes that customers will accept 

backorders and late deliverys.  Modify the model so that demand which can not be met 
on time results in lost sales.  Conduct simulation experiments to estimate the volume of 
lost sales and reset the operating parameter values of the supply chain to minimize lost 
sales. 
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15. Modify the model described in this chapter so that fractional demand is met if inventory is 

available. 
 
16. Rerun the simulation model to collect verification and validation evidence.  This evidence 

could include: 
a. One table for each inventory.  The rows of the table correspond to days.  There is 

one column for each of the following:  Level at the beginning of the day, 
additions, removals, and level at the end of the day. 

b. The number of orders at each plant that way for intermediate inventory. 
c. Month by month service levels at Chauncey plant 

 
Case Problem 
 
A company supplies a customer product for which daily demand, expressed in truck loads, is 
normally distributed with a mean of 10 and a standard deviation of 2.  Production capacity is 14 
truck loads per day.  Delivery time is equally distributed between one day and two days that is it 
takes either one or two days for the truck to travel to the customer, deliver the load, and return to 
the company site. 
 
There is one truck load of raw material per truck load of final product. Raw material is obtained 
from a supplier.  Travel time from the company site for each truck is as follows:  one day to the 
supplier, one day (80%) or two days (20%) at the supplier, and one day to return to the company 
site.  .     
 
The same truck fleet is used for both product delivery and raw material acquisition.   
 
Determine the size of the truck fleet.  In addition, determine the target inventory level for raw 
material and the inventory target level for the consumer product needed for a 95% service level 
for delivery to customers. 
 
Generate a trace of the dynamics of each the two inventories that shows the following information 
by day. 
 

 Simulated day 

 Inventory level at start of day 

 Inventory consumed during the day 

 Inventory added during the day 

 Inventory level at the end of the day 
 
The time period of interest is one year (365 days). 
 
Case Problem Issues 
 
1. Compare this problem to the case problem in chapter 14. 

 
2. How could a lower bound on the truck fleet size be computed? 
 
 



Part V 
Material Handling 

 
In previous chapters, entity movement between stations was not included in models and 
movement times were implicitly assumed to be negligible.  However, these assumptions are not 
always satisfactory.  Material movement or handling may be a signicant component of a 
manufacturing system.  Note that such movement and the devices required to perform it do not 
add value to a service or product. Thus material handling is inconsistent with the lean philosophy, 
increasing both capital equipment cost and lead time.  Efficient and cost effective material 
handling is essential to successful operations. 
 
It has been claimed that the most effective tool for evaluating the performance of material 
handling system designs is simulation.  Alternative strategies can be evaluated.  Competing 
equipment can be compared.  The ability of a particular design to meet performance criteria such 
as a throughput target can be assessed. 
 
Chapter 16 discusses transfer hubs.  Such hubs are an integral part of the operations of shipping 
companies that transport packages.  A hub provides for the sorting and routing of voluminous 
packages within a short time frame.   This is most often accomplished using a series of conveyor 
systems.  A transfer hub routes the in bound packages to their final destination or another hub. 
 
Chapter 17 deals with issues concerning automated guide vehicles (AGV’s).  An AGV system is 
used to move loads of parts along predetermined paths between workstations without manual 
operation.  Simulation is used to confirm the operational effectiveness of an AGV system that has 
been designed by other means. 
 
Chapter 18 discusses the use of an automated storage and retrieval system (AS/RS) to manage 
inventory.  An AS/RS system provides for the high-speed storage and movement of part and 
other materials.  The computer system that is part of an AS/RS provides for real time inventory 
management.  Simulation is used to evaluate alternative AS/RS storage configurations. 

http://creativecommons.org/licenses/by-nc-sa/3.0/
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Chapter 161 
 

Transfer Hubs 
 
16.1 Introduction 
 
Companies such as FedEx and United Parcel Service specialize in the delivery of packages often 
when time is critical.  The network of trucks and airplanes employed by such a company 
transports millions of packages to both business and personal customers each year. 
 
The ground based shipping methods employed by these companies typically rely on a network of 
terminals and hubs to move packages throughout the country.  Vans are used to pick up 
packages from customers and deliver them to a small terminal.  If a package needs to be sent 
outside of the terminal’s delivery area, it is loaded onto a tractor-trailer truck and sent to a hub. 
 
Most hubs are located in major cities with hundreds of the smaller terminals located in smaller 
cities.  Tractor-trailers containing packages to be shipped a great distance across the country can 
be loaded onto railcars to reduce cost.  When the tractor-trailer arrives at a hub, the packages it 
contains are sorted by destination.  Outbound packages can be loaded into vans for local delivery 
or sent to other hubs throughout the network.   
 
At the heart of the hub is the material handling system usually a conveyor system.  The conveyor 
system is used to unload, sort and transport packages throughout the hub.  Hub facilities may be 
of enormous size, some containing 8 miles of conveyor.  The hub material handling system is 
built up in phases.  Each phase typically adds a copy of the original system as well as expanding 
it.  Phased development reduces the financial risk associated with installing the complete system 
before the demand to support it exists. 
 
The material handling structure employed by a typical hub is shown in Figure 16-1.  A truck 
arrives to one of many docks that comprise the unload area.  A large conveyor is extended into 
the truck.  A worker manually unloads each truck and places the packages it contains on the 
conveyor.   
 
A set of conveyors, usually four in number, used in truck unloading is called a bank.  Typically, 
each pair of unload banks feeds a primary sorter, which processes packages from multiple 
unloading doors at once.  A variety of logic is used to merge packages on to a single conveyor 
before reaching the primary sorter. 
 
Each of the primary sorters routes packages to one of many secondary sorters.  A secondary 
sorter routes each package to a particular lane and hence to an outbound truck.  A worker 
removes each package from a lane and places it in the proper truck.  A lane corresponds to a 
particular zip code or truck destination.  A typical secondary sorter supports 20 lanes. 
 

                                                           
1 Mr. Joel Oostdyk assisted with the development of this application study. 
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16.2 Points Made in the Case Study 
 
This case study deals with modeling issues concerning conveyors.  A conveyor is viewed as 
consisting of multiple segments.  Certain segments, such as the exit points for work stations, are 
key.  Key segments are modeled as resources with the number of units equal to the capacity of 
the segment.  When all resource units are busy, the key segment is full and other items “back up” 
along preceding segments of the conveyor.  The non-key segments are modeled as time delays 
only. 
 
Key segments and operations are modeled similarly.  A scarce system object is modeled as a 
resource constraining the movement of an entity.  An entity uses this object for a length of time 
and then releases it for use by other entities. 
 
Package travel time on a conveyor is determined from specifications of the speed of the conveyor 
and the distance the package must travel. 
 
Many simulation languages have special modeling constructs for representing conveyor systems 
in a model.  These constructs contain the logic for modeling key and other segments.  Thus, this 
logic can be included in a model transparently to its developer. 
 
In some cases, an operation may be performed by any of several workers or machines.  In the 
model, this implies a choice between resources.  The logic for making this choice must be 
specified. 
 
Multiple individually distinguishable resources may be identified by the same name.  The 
individual resources each have a unique ID number or index.  For example a model could 
represent 10 workers with the resource WORKER and worker 7 could be referenced by 
WORKER(7). 
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Ergonomic considerations can be included in a model.  In this case, worker walking time as well 
as allowances for rest and other personal time are taken into account. 
 
Performance measures can be computed from other performance measures.  In this case, the 
average utilization for a group of workers is computed from the utilization of each individual 
worker. 
 
16.3 The Case Study 
 
The following case study is a subset of one described by Warber and Standridge (2002).  A 
package sorting hub is entering an expansion phase.  The number of unloading banks, primary 
sorters and secondary sorters is increasing to support processing an increased volume of 
packages.  Secondary sorter operations are of particular interest.   
 
16.3.1 Define the Issues and Solution Objective 
 
The level of staffing is a significant cost component for a transfer hub.  Thus, the number of 
workers assigned to loading out bound trucks is at issue.  Management believes that a worker 
can support more than one secondary sorter lane at a time.  For example, a worker supporting 
two lanes would wait until a package arrives to one of the two lanes, walk to that lane, place the 
package on the truck, and return to look for the next arriving package on either lane.  Note that in 
addition to the time to load a package into a truck, the walking time to a lane must be taken into 
account. 
 
The number of workers to assign to the secondary sorter must be determined.  The number of 
workers should be minimized to reduce costs.  At the same time, loading delays are detrimental 
to hub operations.  Thus, the time to load a package should be minimized.  These two operating 
criteria are in conflict and a suitable balance between the two must be found. 
 
A simulation study will be done to determine the number of workers to assign per secondary 
sorter.  Trucks containing packages arrive to the terminal between 4:00 P.M. and 8:00 P.M. each 
day.  It is estimated that on the average 8000 of these packages will be processed by the 
secondary sorter of interest.  Since many packages are also sent to other secondary sorters, the 
time between arrivals the secondary sorter of interest is considered to be an exponentially 
distributed random variable with mean 4 hours / 8000 packages or 1.8 seconds. 
 
The secondary sorter serves 20 loading lanes each leading to a loading dock.  A package is 
equally likely to be routed to any of the loading lanes.  The distance between loading lanes is 10 
feet measured from the center point of one loading lane to the center point of the next.  A detailed 
drawing of the secondary sorter of interest is given in Figure 16-2.    
 
The distance from the secondary sorter to a loading door is 37 feet.  The total length of the 
secondary sorter conveyor is 250 feet.  Conveyor speed is 1 foot per second. 
 
Loading time consists of two components:  the time for a worker to remove a package from the 
end of the loading lane and place it properly in the a truck and the time for the worker to walk to a 
loading lane.  The former can be modeled as a random variable since the location of a particular 
package in a truck depends on the packages currently in the truck.  Experience has found the 
loading time to be highly variable with a mean of 8 seconds.  Thus, loading time is considered to 
be exponentially distributed. 
 
The time for a worker to walk to a loading lane depends on how many lanes the worker serves.  If 
the worker serves two lanes and waits half way between them for an arriving package,  the 
walking distance is five feet.  Assuming the average walking speed is 2 miles per hour, the 
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average walking time is about 1.7 seconds.   This time is about 21% of the average time to place 
a package on a truck and thus is a significant factor in determining system performance.   

 
 
 
16.3.2 Build Models 
 
The model of the secondary sorter operations must take into account the following system 
components. 
 

1. Arrival of packages to the secondary sorter between 4 P.M. and 8 P.M. with an 
exponentially distributed time between arrivals with a mean of 8 seconds. 

2. Package movement along the secondary sorter conveyor until the lane corresponding to 
the loading door is reached. 

3. Package movement to the end of the lane. 
4. Loading of the package on the truck. 
5. Worker assignment to lanes including walking time to a lane. 

 
Arriving entities model packages and have the following attributes. 
 

1. Lane:   Loading lane assignment, 1, 2, …, 20. 
2. TimeArriveLane: Time of arrival to the end of a lane. 
3. LaneWorker:  ID of the particular worker resource assigned to lane Lane. 

 
The latter attribute allows the time a package waited for a worker for loading to be collected. 
 
Model logic is shown in the following pseudocode.  Packages arrive according to an exponential 
distribution with mean 1.8 seconds.  The lane from which the package will be loaded is computed 
as a sample from a uniform distribution between 1 and 21.  Thus, each of the lanes 1 through 20 
is equally likely.  The package moves on the secondary sorter conveyor at the rate of 1 foot per 
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second to the selected lane.  Then the package moves down the lane to its end at the same rate.  
The arrival time at the end of the lane is noted.  The package waits at the end of the lane for the 
worker serving that lane.  The waiting time is collected.  The worker walks to the lane in 1.7 
seconds and then loads the package in an exponentially distributed time with a mean of 8 
seconds.  After this task, the worker becomes IDLE again. 
 

Define Arrivals 
 Time of first arrival: 0 
 Time between arrivals: Exponential 1.8 seconds 
 Number of arrivals: Infinite  
 
Define Attributes 

Lane   // Loading lane assignment, 1, 2, …, 20. 
TimeArriveLane  // Time of arrival to the end of a lane. 
LaneWorker  // ID of the particular worker resource assigned to lane Lane. 

 
Define Resources 
 Worker(2)  // Lane workers 
 
Process SecondarySorter 
Begin 
 Lane = Integer (Uniform 1, 21)   // Select Lane 
 Wait for (1 sec * distance to lane in feet)  // Move to lane 
 Wait for (1 sec * length of lane conveyor in feet) // Move to load area 
 TimeArriveLane = Clock 
 LaneWorker = (Lane+1)/2   // Select lane worker 
 Wait until Worker(LaneWorker)/1 is IDLE 
 Make Worker(LaneWorker)/1 BUSY 
 Tabulate (Clock-LaneArrivalTime) in WaitforWorker 
 Wait for 1.7 seconds    // Worker walks to lane 
 Wait for Exponential 8 seconds   // Worker loads truck 
 Make Worker(LaneWorker)/1 IDLE 
End 

 
Model logic for a conveyor deserves more detailed discussion.  Consider a lane conveyor.  The 
conveyor is divided into segments.  Each segment can contain one package so each segment is 
the size of a package.  The segment at the end of the lane is called a key segment.  The key 
segment is modeled as a resource so that only one package can occupy the key segment at a 
time.  Packages waiting for the key segment to become idle occupy the segments physically 
preceding the key segment.  If enough packages are waiting, the lane could become full and 
block the secondary sorter conveyor.   
 
When modeling a conveyor, the size of entities traveling on the conveyor and the key segments 
must be specified along with the conveyor speed.  The use of the non-key segments as queuing 
space for a key segment must be included in the model.  Figure 16-3 summarizes these ideas.  
An entity moves on the lane until it reaches the non-key segment closest to the key segment that 
is not occupied by another entity.  Each entity waits to enter the key segment.  As an entity 
departs the key segment, all remaining waiting entities move one non-key segment closer to the 
key segment. 
 
Fortunately, the above logic is included in the modeling constructs of many simulation languages.  
Thus, the modeler is required only to specify the conveyor parameters, for example package size, 
conveyor speed, conveyor length, and key segment location. 
 



 16-6 
 

 
 
 



 16-7 
 

16.3.3 Identify Root Causes and Assess Initial Alternatives 
 
Management desires that the workers be kept as busy as possible.  On the other hand, 
ergonomic considerations require worker rest and personal time to be about 20% of the work 
period.  Thus, an average worker utilization of 80% is sought and this quantity is one performance 
measure.  The time a package waits for a worker before loading is also of interest. 
 
One model parameter will be varied, the number of lanes server by a worker, either 2 or 3.  Note 
that worker walking time to a lane will increase when 3 lanes are served.  The worker will stand at 
the middle lane of the three being served.  The walking distance to the middle lane is therefore 
neglibile.  The walking distance to each of the other two lanes is 10 feet.  Thus, the average 
walking distance increases from 5 feet to 6.67 feet and the average walking time increases from 
1.7 seconds to 2.3 seconds.  Having each worker serve 3 lanes instead of 2 reduces the number 
of workers from ten to seven.  Six of the seven workers serve 3 lanes and the seventh server the 
remaining two lanes. 
 
Since trucks arrive with packages between 4 P.M. and 8 P.M. each day, a terminating simulation 
experiment of duration 4 hours is employed.  Twenty replicates will be made.  Since there are no 
packages at the secondary sorter at 4 P.M., the initial conditions are all lanes empty and all 
workers idle. 
 
There are three random number streams used in the model, one for package arrivals, one for 
lane assignments, and one for package loading time onto trucks. 
 
The experiment is summarized in Table 16-1. 
 

Table 16-1:  Simulation Experiment Design for the Secondary Sorter 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Number of lanes served by one worker (2 or 3) 

Performance Measures 1.  Average utilization over all workers 
2.  Waiting time for a worker 

Random Number Streams 1.  Time between arrivals 
2.  Lane assignment for a package (1-20) 
3.  Loading time 

Initial Conditions Empty and idle 

Number of Replicates 20 

Simulation End Time 4 hours 

 
Simulation results for the cases where a worker serves 2 and 3 lanes are shown in Table 16-2.  
Average worker utilization is the average utilization of all workers in the first case and of only 
those workers serving 3 lanes in the second case. 
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Table 16-2:  Average Worker Utilization and Package Waiting Time for a Worker at the 
Secondary Sorter 
 

 Worker Serves Two Lanes Worker Serves Three Lanes 

Replicate Average Package 
Waiting Time (sec) 

Average Worker 
Utilization 

Average Package 
Waiting Time (sec) 

Average Worker 
Utilization 

1  3.1 0.533 10.7 0.843 

  2 2.8 0.520 9.8 0.832 

  3  2.9 0.529 10.3 0.839 

  4 2.9 0.535 10.8 0.845 

  5 2.8 0.529 10.4 0.845 

  6 2.9 0.528 10.4 0.842 

  7 2.9 0.527 10.4 0.837 

  8 3.0 0.527 10.1 0.839 

  9 3.0 0.535 10.3 0.844 

10 3.1 0.538 10.6 0.855 

11 3.0 0.530 10.2 0.841 

12 2.9 0.527 9.9 0.835 

13 3.1 0.533 10.4 0.844 

14 3.2 0.546 11.3 0.870 

15 2.9 0.537 10.8 0.853 

16 2.9 0.530 10.3 0.843 

17 2.9 0.536 10.7 0.852 

18 3.1 0.536 11.4 0.858 

19 2.9 0.534 10.7 0.849 

20 3.0 0.526 10.3 0.836 

Average 3.0 0.532 10.5 0.845 

Std. Dev.  0.096 0.00560 0.398 0.00903 

99% CI Lower 
Bound 2.9 0.528 10.2 0.839 

99% CI Upper 
Bound 3.0 0.535 10.7 0.851 

 
Note that in neither case does the approximate 99% confidence interval contain the target 
utilization of 80%.  Package average waiting time increases by about 3.5 times when a worker 
serves three lanes instead of 2. 
 
16.3.4 Review and Extend Previous Work 
 
Management was disappointed that neither assigning 2 or 3 lanes to a worker produced the 
desired utilization of 80%.  The slightly higher utilization of 84.5% on the average was deemed 
unacceptable since upper bound of the 99% confidence interval was 85.1%.  A worker utilization 
of 53.2% was deemed too low and thus too costly. 
 
The following alternative was proposed.  Each worker would serve 2 lanes alone plus sharing the 
responsibility for a third lane with another worker.  This would increase the number of workers 
from seven serving 3 lanes each to eight serving 2.5 lanes each.  Thus, the simulation project 
process was restarted at the Build Models step. 
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16.4.1 Build Models 
 
The average walking time when a worker serves two lanes and shares responsibility for a third 
lane was computed as follows.  A worker stands in the same position as when serving 2 lanes.  
Thus, the average walking time is 1.7 seconds for 80% of the package loading operations.  For 
the other 20% of the package loads, the walking distance is 15 feet, which requires 5.1 seconds 
on the average.  Thus, two walking times must be included in the model. 
 
A new version of the model was created to model two workers sharing responsibility for every 
third lane.  The shared lanes are 3, 8, 13, and 18.  No changes to model logic are required for 
non-shared lanes.  For shared lanes, the changes to model logic are as follows. 
 

1. Wait for either lane worker to perform the loading operation, whichever one becomes 
IDLE first. 

2. Use the walking time to a shared lane, 5.1 seconds. 
3. Free whichever worker performed the loading operation. 

 
16.4.2 Identify Root Causes and Assess Initial Alternatives 
 
The experiment is the same as the one define in Table 16-1 except for the performance 
measures.  Waiting time for each of two types of packages is required:  those using lanes served 
by one worker alone and those using lanes servered by two workers. 
 
Simulation results comparing the two cases are shown in Table 16-3. 
 
In the shared lanes scenario, all workers serve the same number of lanes, 2.5.  The average 
worker utilization is 66.4%, less than the desired 80% target but more than in the case where 
each worker serves only two lanes.  Average package waiting time is about half of that in the 
workers serve 3 lanes case.  Average package waiting time is less on the shared lanes than on 
the lanes that do not share a worker. 
 
16.4.3 Implement the Selected Solution and Evaluate 
 
Management was disappointed that the target worker utilization of 80% could not be achieved but 
satisfied with the using eight workers instead of the ten required by the case in which a worker 
servers two lanes only.  Average package waiting time was deemed satisfactory. 
 
16.5 Summary 
 
This chapter discusses the modeling and analysis of a package transfer hub.  Specifically 
techniques for modeling conveyor systems have been presented.  The choice between 
alternative resources for performing an operation has been illustrated.  Ergonomic considerations 
have been included in the model.  The number of workers to serve a loading operation was 
determined. 
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Table 16-3. Average Worker Utilization and Package Waiting Time for a Worker at the 
Secondary Sorter – Shared Lanes Case 
 

  
Worker Serves Three Lanes 

 
Worker Serves Two Lanes Plus a Shared Lane 

 
 
 
 

Replicate 

 
 

Average 
Package 

Waiting Time 

 
 

Average 
Worker 

Utilization 

Average 
Package 

Waiting Time  
Non-Shared 

Lanes  

 
Average 
Package 

Waiting Time  
Shared Lanes  

 
 

Average 
Worker 

Utilization 

1  10.7 0.843 5.3 5.0 0.664 

  2 9.8 0.832 4.9 4.2 0.650 

  3  10.3 0.839 5.1 3.8 0.661 

  4 10.8 0.845 5.2 4.5 0.669 

  5 10.4 0.845 5.3 4.4 0.661 

  6 10.4 0.842 5.3 4.4 0.660 

  7 10.4 0.837 5.1 4.1 0.659 

  8 10.1 0.839 5.2 4.3 0.659 

  9 10.3 0.844 5.2 4.1 0.669 

10 10.6 0.855 5.2 4.2 0.671 

11 10.2 0.841 5.2 4.2 0.663 

12 9.9 0.835 5.2 4.2 0.658 

13 10.4 0.844 5.4 4.5 0.666 

14 11.3 0.870 5.7 4.8 0.683 

15 10.8 0.853 5.5 4.3 0.670 

16 10.3 0.843 5.5 4.7 0.662 

17 10.7 0.852 5.2 4.1 0.670 

18 11.4 0.858 5.7 4.7 0.670 

19 10.7 0.849 5.2 4.2 0.667 

20 10.3 0.836 5.2 4.2 0.657 

Average 10.5 0.845 5.3 4.3 0.664 

Std. Dev.  0.398 0.00903 0.193 0.284 0.00702 

99% CI Lower 
Bound 10.2 0.839 5.1 4.2 0.660 

99% CI Upper 
Bound 10.7 0.851 5.4 4.5 0.669 

 
Problems 
 
1. Explain how sampling from the continuous uniform distribution with minimum 1 and 

maximum 21 gives equal probability to the integers 1 through 20 and no probability to the 
integer 21 when samples from truncated to integer values. 

 
2. Why is the time between the arrival of a package to the secondary sorter and completion 

of loading on a truck not a good performance measure?  Supply an improved definition 
for this performance measure.  

 
3. Develop a model for a lane served by either of two workers.   
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4. Perform a formal statistical analysis using paired confidence intervals and the data in 
Table 16-3 to confirm that package waiting time is less in the workers share lanes case 
than in the case where a worker serves 3 lanes.   

 
a. Compare average package waiting time with each worker serving 3 lanes (2

nd
 

column) with the average waiting time for lanes served by only one worker, the 
non-shared lanes (4

th
 column). 

 
b. Compare average package waiting time in the shared lines (5

th
 column) and the 

non-shared lanes (4
th
 column). 

 
5. Explain why the average waiting time for packages for a shared lane served by two 

workers (5
th
 column) is less than for lanes served by one worker (4

th
 column) as seen in 

Table 16-3. 
 
6. Perform a formal statistical analysis using paired confidence intervals and the data in 

Tables 16-2 and 16-3 to compare the average package waiting time between the worker 
serves two lanes scenario (2

nd
 column) and the shared lanes scenario (5

th
 column). 

 
7. Explain why average package waiting time increases in a non-linear fashion as the 

utilization of the workers increases. 
 
8. Go to a manufacturing lab, transfer hub, or a local manufacturing plant to observe a 

conveyor system in operation.  List the number of different conveyor types found. 
 
9. Embellish the model to make package loading time a function of how many packages are 

on a truck.  Assume 8 seconds is the mean time to load the package in the center of the 
truck and each truck holds 200 packages. The mean loading time varies linearly from 12 
seconds for a completely empty truck to 4 seconds for the last package on a truck.  After 
the 200

th
 package is loaded on a truck, the fully loaded truck swaps positions with an 

empty truck in 3 minutes.  No package loading can occur during this time.  Determine the 
number of workers needed under these conditions. 

 
10. Suppose that packages are not uniformly distributed across final destinations but the 

distribution by destination is shown in the following table.  Use simulation to assign the 
package destinations to lanes as well as workers to lanes.  The destinations may be 
assigned to lanes in any way that is helpful. 

 

Package  
Destination 

Percent of 
Packages 

Package  
Destination 

Percent of 
Packages 

1 0.48% 11 5.24% 

2 0.95% 12 5.71% 

3 1.43% 13 6.19% 

4 1.90% 14 6.67% 

5 2.38% 15 7.14% 

6 2.86% 16 7.62% 

7 3.33% 17 8.10% 

8 3.81% 18 8.57% 

9 4.29% 19 9.05% 

10 4.76% 20 9.52% 
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Case Study 
 
Some packages that pass through a primary sorter cannot be routed to a secondary sorter for a 
variety of reasons and must be manually processed.  Suppose such packages are routed to a 
circular conveyor as shown in Figure 16-4.  Packages proceed around the conveyor to a 
workstation.  There is no package waiting area or buffer at a workstation.  If a package arrives to 
a station that is processing another package, it stays on the conveyor to the next station.  If the 
package is not processed by the last station, it recirculates to the first station. 
 

 
The purpose of the simulation study is to specify the parameters of the manual system to 
minimize package lead time.  There may be either 1, 2, 3, or 4 workstatons employed.  In 
addition, waiting areas for up to three packages may be placed in any fashion among the 
workstations.  Cost considerations make more buffer spaces and fewer workstations the 
preferred design.  Determine the number of workstations, the number of buffer spaces, and the 
location of the buffer spaces. 
 
Relevant information is as follows: 
 
 Time between package arrivals:  Exponentially distributed with mean 1.6 minutes. 
 Package processing time:  Exponentially distributed with mean 4.0 minutes. 
 

Conveyor Segments (Assuming a Four Workstation Configuration). 
 

Conveyor Segment Conveyor 
Distance (Feet) 

Arrival Point to First Work Station Exit 18 

Station Exit Segment   2 

Inter-Station Segment (to Exit Segment) 13 

Last Station to Arrival Point (4 stations case) 45 

 
Assume that conveyor speed is 0.25 feet / second and that packages are 2 feet in length.  The 
time period of interest is 40 hours. 
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Case Problem Issues 
 
1. Count the number of possible alternatives.  Is it reasonable to simulate all of these? 
 
2. Which alternatives should be simulated to make sure the best or at least a good 

alternative is identified? 
 
3. What performance measures in addition to package lead time are of interest? 
 
4. What operating rules could be added to the system to guard against excessive lead times 

for individual packages? 
 
5. What is the minimum number of workstations required by the system? 
 
6. Discuss how verification and validation evidence can be obtained. 
 
7. What is the purpose of having buffer space in front of workstation? 
 
8. How is the arrival of a package to a workstation modeled if: 
 

a. There is no buffer space at the workstation. 
 
b. There is at least one buffer space at the workstation. 

 
9. What is your initial guess as to the best placement for the buffer spaces?  Does the 
simulation study confirm your guess? 
 
10. Tell how to compute the lead time for a package as a function of the number times it 

travels completely around the conveyor within the simulation. 
 

11. What is the radius of the conveyor:  radius = circumference / 2 ? 
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Chapter 17 
 

Automated Guided Vehicle Systems 
 
17.1 Introduction 
 
An automated guided vehicle (AGV) system can transport material between a finite number of 
pre-defined locations at work stations with little or no human assistance.  Barrett Electronics 
Corporation invented the world’s first AGV for industrial applications in 1954.  In the United States 
there have been over 3,000 AGV systems installed during the last 50 years. These systems 
range from one vehicle to well over 100 vehicles. 
 

An AGV system consists of vehicles that move along predetermined paths to move loads 
between workstations and storage areas.  Vehicles operate without the need for an onboard 
operator or driver, pick up loads at designated pick-up points and transport them to designated 
drop-off points.  Each workstation has a pick-up point and a drop-off point.  These two points can 
be the same. 

There are several major categories of vehicles: 

1. Tow Type vehicles that pull carts, trailers, dollies and the like.  
2. Self-contained Unit Load Type vehicles that carry products on their built-in load decks.  
3. Fork Type vehicles that utilize a fork/mast lift mechanism for interfacing with loads at 

various elevations.  
4. Smaller Commercial/Office Type vehicles that have capacities of less than 500 pounds.  
5. Heavy Carrier Type vehicles designed to transport large or very heavy loads such as 

dies, rolls, coils, ingots weighing in excess of 250,000 pounds. 

Vehicles move between work stations by traversing control segments.  Each control segment is 
relatively short.  The intersection point between control segments is a control point.  Pickup and 
dropoff points are control points as well.   
 
Vehicles in most existing systems follow an inductive guide path consisting of a wire embedded in 
the floor carrying alternating current that induces a magnetic field detected by antenna mounted 
on the bottom of the vehicles.  Other control mechanisms include surface mounted magnetic or 
optical strips as well as inertial or laser guidance.  Vehicles have controllers that respond to 
instructions and ensure safety. 

AGV systems must be able to perform routing, traffic control and communications functions.  
Routing is the method by which an AGV determines how to go from its current location to a 
designated destination. Different approaches to routing logic can be implemented such as 
shortest time, shortest distance and fixed pattern.  Traffic control assures that AGVs do not 
collide with each other.  Either fixed or variable distances between vehicles can be used.  

Communication is needed between vehicles, between a vehicle and a central device or for local 
interfaces.  The communication mechanism provides the means by which vehicles are informed 
of routing and traffic control decisions. 
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A simple AGV system is shown in Figure 17-1.  There are four control segments that form a loop 
in the shape a rectangle with rounded corners.  Rounded corners allow the AGV to continue at 
full speed instead of stopping to make a 90 degree turn as would be the case if square corners 
were used.  There are four stations each with its own control point indicating the place where 
loads are picked up or dropped off.  AGV’s move in only one direction, clockwise, around the 
loop.   
 
Requests come to move loads from one workstation to another.  In response, an idle AGV moves 
from the parking area to the pickup point of the workstation where the load currently resides.  The 
AGV moves from this pickup point to the drop off point of the destination workstation.  After 
unloading, the AGV remains idle at the dropoff point. 
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17.2 Points Made in the Case Study 
 
Simulation can be used to assess the operational behavior of a system designed by other means.  
In this case, the AGV system is designed using standard, analytic methods.  Simulation is used to 
assess the behavior of the system as designed relative to operational performance criteria as well 
as to determine the number of vehicles the system needs. 
 
The structure of a system can be described using data inputs to a model.  This allows changes in 
system structure to be assessed without changing the model.  In this case, the control segments 
and control points are defined by input data.  This data input most often takes the form of a 
graphical drawing. 
 
The models originally developed for operations can be directly applied to material handling 
situations as well.  This illustrates how models developed for one domain may be directly applied 
to another domain where system components behavior and interact in an analogous way.  In an 
AGV system, the control points constrain the movement of the vehicles to assure that there are 
no collisions at interactions.  Thus, control points can be modeled as a single machine station 
where the processing time is the time to traverse the control point. 
 
Increasing the number of resources that can perform an activity, such as the number of machines 
at a workstation, normally lessens entity waiting time for that activity.  Thus, it might be assumed 
that increasing the number of vehicles in an AGV system would increase the responsiveness to 
movement requests.  This might not be the case since the contention between the AGV’s for 
control segments, intersections, and control points will increase. 
 

17.3 The Case Study1 
 
The case study has to do with confirming the operational effectiveness of the design of a new 
AGV system as well as determining the number of vehicles needed.  Load movement requests 
can be modeled as having a constant time between arrivals.  However, the orgin and destination 
points are stochastic.  That is not all requests for material movement can be predetermined.  The 
discussion and examples of AGV systems in Askin and Standridge (1993) form the basis for this 
case study. 
 
17.3.1 Define the Issues and Solution Objective 
 
The design of a new AGV system to serve nine workstations as shown in Figure 17-2.  Each 
shorter edge corresponds to 50 feet and each longer edge to 100 feet.  AGV's move in one 
direction only on each bold edge as indicated by the arrows.  There is no AGV movement on 
dashed edges.  The letters in the center of a square are the work station ID's.  The numbers near 
the edges are the control segment ID's.  Idle AGV’s wait where at the dropoff point of their last 
load. 
 
The pickup and dropoff points for each workstation are indicated using the letters P and D 
respectively.  Note that stations 5 and 6 share these points. 
 
Table 17-1 gives the average number of material moves between workstations per 16 hour day.  
This information forms the distribution of pickup point to dropoff point AGV movements.  Each 
individual movement can be determined as a random sample from this distribution.  The time 
between material moves is a constant 90 seconds (57600 seconds per day / 640 moves).  
 
A material move requires an AGV to move from it current location to the pickup point and then 
from the pickup point to the dropoff point.  Each AGV moves at the rate of 5 feet per second and 
takes 30 seconds for each drop-off and each pick-up.   

                                                           
1 Todd Frazee assisted with the development of this case study. 
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The design shown in Figure 17-2 was developed using analytic methods.  The following principles 
were applied. 
 
1. Vehicles move in only one direction on path.   
2. The dropoff point for a station should precede the pickup point with respect to vehicle 

movement. 
3. Dropoff and pickup points should be placed on control segments with low utilization to 

avoid other vehicles waiting for dropoffs and pickups to be completed. 
4. Movement of empty vehicles should be minimized.  Thus after a dropoff is completed, the 

vehicle should wait on the same control segment for a possible pickup on that segment.   
 
Other analytic methods were used to estimate that 2 AGV’s would be needed in the system.  
These analytic methods were used to compute each of the five components of total vehicle 
utilization time:  loaded travel time, travel time while empty, blocked time, load time, and unload 
time.   These computations are based on knowledge of the number of loads to be moved 
between each pair of workstations (the information shown in Table 17-1) as well as AGV travel 
speeds and the shortest path between each pair of workstations.   
 
Loaded travel time, load time, and unload time are straightforward to compute.  A lower bound on 
travel time while empty can be computed using an optimization algorithm.  Blocked time was 
assumed to be zero for this system since the number of AGV’s need was only 2. 
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Table 17-1:  Average Number of Material Moves between Work Stations 
 

From Work 
Station 

To Work 
Station 

Average Number  
of Moves 

A B   40 

A C   25 

A D   30 

A E   10 

A F   10 

A G   20 

A H     5 

A I   10 

B C   40 

B E   30 

B G   10 

B H   10 

C G   50 

C I   10 

D B     5 

D C   10 

D F   10 

E D 100 

F D   60 

G F   40 

G I   40 

H D   10 

H F     5 

I E   60 

Total  640 

 
Management wishes to confirm the operationally effectiveness of AGV system as designed.  The 
primary performance criteria is time between the request for a load to be moved and the 
completion of the move.  Both the maximum and average time are interest.  Assessing the 
number of AGV’s needed is also important since blocked time was ignored and only a lower 
bound on travel time while empty was obtained.  There is concern that 2 AGV’s are not sufficient. 
 
17.3.2 Build Models 
 
It is helpful to take a generic perspective to modeling AGV systems.  The control segments and 
control points that comprise the paths taken by the vehicles between workstations can be data 
input, expressed most often as a graphical drawing.  In this case, the graphical drawing used for 
input this information is the one in Figure 17-2.  Other inputs include where vehicles park when 
they become idle and vehicle speed.  Vehicles can be viewed as resources.  This generic view is 
implemented in some simulation environments. 
 
In addition, a process model describing the movement of loads through the AGV system, perhaps 
including processing at workstations, is needed.  A request to move a load is the entity flowing 
through the process.  The following are the major steps in the process model. 
 
1. Arrival of a request for an AGV to move a load from one workstation to another. 
2. Waiting for an idle AGV. 
3. Selection of the idle AGV nearest to the pickup point for the load. 
4. Movement of that AGV from where it is parked to the pickup point. 
5. Movement of the same AGV from the pickup point to the dropoff point. 
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Attributes of the entity are the following: 
 
FromStation The station where the load is to be picked up. 
ToStation The station where the load is to be dropped off. 
ArriveTime Simulation time that the request for load movement is made. 
 
Analytic algorithms for determining the shortest path from one workstation to another are known 
and can be implemented within a simulation environment that supports modeling AGV systems.  
In most cases, the number of feasible paths between any pair of workstation should be few in 
number.  Otherwise, the system would be too complex to operate.  For example, consider the 
number of paths from workstation A in Figure 17-2 to each of the other eight workstations.  There 
is only one path to workstations B, C, E, F, and G.  There are two paths to the other workstations: 
D, H, and I.  However, one of the two paths is obviously shorter. 
 
One issue that is unique to modeling AGV systems is contention among the vehicles for the same 
control segment or control point.  All vehicles travel at the same speed so one cannot overtake 
another as long as both are moving in the same direction.  Contention occurs when one vehicle is 
stopped at a pickup or dropoff point and another vehicle needs to pass through such a point 
enroute somewhere else.  In this case, the second vehicle needs to stop to wait for the first 
vehicle to leave the pickup or dropoff point.   
 
In addition, contention can occur when two vehicles coming from opposite directions arrive at the 
same intersection at the same time.  One vehicle needs to stop or slow down to let the other 
vehicle pass.  There are two such intersections in the AGV system shown in Figure 17-2.  One is 
at the right side of the boundary between workstations G and I.  The other is at the center of the 
upper boundary of workstation H where the path dividing workstations E and F ends. 
 
One system performance criterion is the time between the request for moving a load and 
completion of the move.  Thus, it may seen desirable to have as many AGV’s in the system as 
possible to minimize this time.  This strategy is similar to increasing the number of machines at a 
workstation to minimize cycle time at the station that was employed in previous chapters.  
However, increasing the number of AGV’s also increases the contention for control points and 
control segments.  Thus, such increases may be counter productive and must be tested using 
simulation. 
 
The modeling logic described above follows in pseudo English.  AGV’s are modeled as resources 
as are pickup and dropoff points.  Each AGV has an attribute, CurrentLoc, giving its current 
location.  Resources are also used to model intersections where vehicles can enter from more 
than one direction.   
 
Travel along a path is comprised of a series of steps as modeled by Process MoveOnPath with 
parameters FromLoc and ToLoc.  Each step represents travel between the current AGV location 
and the next pickup point, dropoff point, or intersection on the path.  Each of these is modeled as 
resource that must be acquired to traverse that part of the path and freed after such movement is 
accomplished.   
 
The next pickup point, dropoff point, or intersection and the distance to it are exacted from the 
data input describing the AGV system that was given as a graphical drawing.  In this case, travel 
time can be modeled as distance traveled * AGV speed.  It is possible to include acceleration and 
deacceleration if desired.  When the destination control point is reached, travel ends.  Otherwise 
travel to the next pickup point, dropoff point, or intersection commences. 
 
The process AGV System makes use of the process MoveOnPath.  Arrivals to the process are 
requests for load movement that occur every 90 seconds in this case.  Entity attributes are 
assigned:  the workstation where the load currently resides, the workstation to which the load 
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must be transported, and the simulation time the request arrives.  The idle AGV closest to the 
workstation station where the load currently resides is chosen.  If there are no idle AGV’s the 
movement request must wait.  The AGV moves empty workstation to the where the load is 
residing, picks of the load, moves to the destination station, and drops off the load.  The AGV 
become IDLE and the current location of the AGV is recorded. 
 

 
Define Resources 
 AGV/2    // Two AGV’s 
 ControlPointIntersection (n)/1 // Control Points and Path Intersections 
 
Define Attributes 
 FromStation   // The station where the load is to be picked up. 

ToStation   // The station where the load is to be dropped off. 
ArriveTime   // Time the request for load movement is made. 

 
Define Variables 
 StartTrip (NStations)  // Distribution of trip starting point stations 
 EndTrip  (NStations, NStations) //  Distribution of trip end point stations by starting station 
 CurrentLoc(2)   // Current location of an AGV 
 
Process AGV_System 
Define Arrivals 
 Time of first arrival: 0 
 Time between arrivals: 90 seconds 
 Number of arrivals: Infinite  
Begin 
 Set TimeArrive = Clock 
 FromStation = Sample (StartTrip) 
 EndStation = Sample(EndTrip(FromStation)) 
 Wait until AGV is IDLE in WaitforAGV   // IDLE AGV closest to From Station is chosen 
 Make AGV Busy 
 Send to MoveOnPath (CurrentLoc, FromStation) with return 
 Wait for 30 seconds    // Pick up load 
 Send to MoveOnPath (FromStation, ToStation) with return 
 Wait for 30 seconds    // Drop off load 
 Make AGV IDLE 
 CurrentLoc (AGV) = ToStation 
 Tabulate Clock – TimeArrive in CompleteMovementTime 
End 
 
Process MoveOnPath (FromLoc, ToLoc) 
Begin 
 While CurrentLoc(AGV) != ToLoc 
 Begin 

CurrentLoc (AGV) = FromLoc 
 Wait for Distance*AGVSpeed to  

Next Control Point or Intersection from CurrentLoc 
 CurrentLoc (AGV) = Next Control Point or Intersection 
 Wait until ControlPointIntersection (CurrentLoc(AGV)) is IDLE 
 Make ControlPointIntersection (CurrentLoc(AGV)) BUSY 
 Wait for Distance through Control Point or Intersection * AGVSpeed 
 Make ControlPointIntersection (CurrentLoc(AGV)) IDLE 

 End 
End 
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_____________________________________________________________________________
_ 
17.3.3 Identify Root Causes and Assess Initial Alternatives 
 
The simulation experiment can be described as follows.  The system operates for one 16 hour 
day.  Thus, a terminating simulation of length one day is appropriate.  The proper initial conditions 
are all AGV’s idle since no load movement requests occur before the work day begins.  Their 
initial location is randomly assigned.  There is one random number stream to aid in selecting the 
pair of workstations for pickup and dropoff.  Twenty replicates are made.   
 
Management wishes to minimize the time to complete a movement request.  Thus, performance 
measures include this quantity as well as the utilization of AGV’s and AGV capacity lost to 
contention for control segments and control points.  AGV congestion will be measured as the 
average number of AGV’s waiting due to contention for control points and intersections. 
 
The number of AGV’s required must be determined, either the 2 previously recommend or 3 to 
improve the time to complete a movement request.  The model parameter is the number of AGV’s 
to employ.  Table 17-2 summarizes the experimental design. 
 

Table 17-2:  Simulation Experiment Design for the AGV System 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values 1.  Number of AGV’s (2 or 3) 

Performance Measures 1.  Time to complete a move request 
2.  AGV utilization 
3.  AGV congestion 

Random Number Streams 1.  From-to pair of workstations 

Initial Conditions AGV’s randomly assigned to control points 

Number of Replicates 20 

Simulated End Time 57600 seconds (one day) 

 
Tables 17-3 through 17-5 give the simulation results for the above experiment, including a 
comparison between system operations when 2 and 3 AGV’s are used. 
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Table 17-3:  Simulation Results for Two AGV’s 
 

 AGV’s Time to Complete a Move (min) 

Replicate  
Idle Percent 

Percent 
Congested 

 
Maximum 

 
Average 

  1 0.7% 2.6% 80.9 8.7 

  2 1.4% 2.0% 60.8 5.9 

  3 0.5% 2.1% 114.6 15.5 

  4 0.4% 2.6% 92.3 11.5 

  5 1.6% 2.2% 99.1 9.8 

  6 1.4% 2.2% 71.0 6.8 

  7 1.3% 2.5% 88.8 9.0 

  8 0.6% 2.2% 100.6 10.0 

  9 1.2% 2.3% 75.9 8.4 

10 0.4% 2.0% 120.2 14.4 

11 2.8% 2.5% 43.9 5.1 

12 0.5% 2.0% 105.5 13.0 

13 0.4% 2.3% 94.9 11.3 

14 1.9% 1.9% 45.4 5.5 

15 1.9% 2.6% 60.7 6.0 

16 2.5% 2.5% 24.9 4.4 

17 1.2% 2.1% 125.3 14.3 

18 1.2% 2.2% 52.1 5.8 

19 0.9% 2.3% 93.2 12.9 

20 0.4% 2.2% 79.7 10.4 

Average 1.2% 2.3% 81.5 9.4 

Std. Dev. 0.7% 0.2% 27.2 3.4 

99% CI Lower Bound 0.7% 2.1% 64.1 7.2 

99% CI Upper Bound 1.6% 2.4% 98.9 11.6 

 
The following can be noted from Table 17-3 when 2 AGV’s are used.   
 
 1. The AGV’s are almost always busy. 
 2. There is very little congestion. 

3. The average time to complete a move is 9.4 minutes with an approximate 99% 
confidence interval for the true average of (7.2, 11.6) minutes. 

4. The maximum time to complete a move is over an hour with an approximate 99% 
confidence interval of (64.1, 98.9) minutes. 

 
Thus it can be concluded from Table 17-3 that using only 2 AGV’s is ineffective since the average 
time and maximum times to complete a move are too high.  This is not unexpected since the 
AGV’s are almost always busy.  On the other hand, there is very little contention. 
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Table 17-4:  Simulation Results for Three AGV’s 
 

 AGV’s Time to Complete a Move (min) 

Replicate Idle Percent Percent 
Congested 

Maximum Average 

  1 21.3% 12.8% 7.8 3.1 

  2 21.0% 12.0% 7.5 3.1 

  3 22.8% 11.7% 9.0 3.0 

  4 21.5% 11.5% 12.0 3.1 

  5 21.3% 12.1% 8.5 3.1 

  6 21.1% 12.0% 9.9 3.1 

  7 20.8% 11.8% 8.1 3.1 

  8 21.5% 11.5% 9.3 3.1 

  9 21.3% 12.0% 9.3 3.1 

10 22.1% 11.5% 9.0 3.1 

11 20.7% 12.6% 9.1 3.1 

12 22.1% 10.9% 8.2 3.1 

13 21.2% 12.0% 8.8 3.1 

14 20.5% 12.6% 8.5 3.1 

15 22.3% 11.4% 9.5 3.1 

16 22.9% 11.8% 8.5 3.0 

17 21.4% 11.8% 9.2 3.1 

18 21.4% 12.0% 10.5 3.1 

19 21.2% 11.8% 9.3 3.1 

20 23.0% 10.5% 8.4 3.0 

Average 21.6% 11.8% 9.0 3.1 

Std. Dev. 0.7% 0.5% 1.0 0.04 

99% CI Lower Bound 21.1% 11.5% 8.4 3.1 

99% CI Upper Bound 22.0% 12.2% 9.7 3.1 

 
The following can be noted from Table 17-4 when 3 AGV’s are used. 
 
 1. AGV utilization is near 80%. 

2. Significant congestion occurs since about 1/3 of the available time of 1 AGV is 
lost (11.8 % * 3 AGV’s = 1/3 of 1 AGV). 

3. The average time to move a load is about 3 minutes. 
4. The maximum time to move a load is about (8.4, 9.7) minutes with approximately 

99% confidence. 
 
Thus it can be concluded from Table 17-4 that using 3 AGV’s allows movement to occur in a 
sufficiently small amount of time.  AGV utilization is neither too high or too low.  However, 
contention among the three AGV’s is significant. 
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Table 17-5:  Comparison of Simulation Results for Two and Three AGV’s 
 

 AGV’s (3-2) Time to Complete a Move (min) 
(2-3) 

Replicate Idle Percent Percent 
Congested 

Maximum Average 

  1 20.6% 10.2% 73.1 5.6 

  2 19.6% 10.0% 53.3 2.8 

  3 22.3% 9.6% 105.6 12.5 

  4 21.1% 8.9% 80.3 8.4 

  5 19.7% 9.9% 90.6 6.7 

  6 19.7% 9.8% 61.2 3.7 

  7 19.5% 9.3% 80.7 5.8 

  8 20.9% 9.3% 91.3 6.9 

  9 20.1% 9.7% 66.6 5.3 

10 21.7% 9.5% 111.2 11.4 

11 17.9% 10.1% 34.8 2.0 

12 21.6% 8.9% 97.3 9.9 

13 20.8% 9.7% 86.2 8.1 

14 18.6% 10.7% 36.9 2.4 

15 20.4% 8.8% 51.3 2.9 

16 20.4% 9.3% 16.4 1.4 

17 20.2% 9.7% 116.2 11.1 

18 20.2% 9.8% 41.6 2.7 

19 20.3% 9.5% 83.9 9.8 

20 22.6% 8.3% 71.4 7.4 

Average 20.4% 9.6% 72.5 6.3 

Std. Dev. 1.1% 0.5% 27.2 3.4 

99% CI Lower Bound 19.7% 9.2% 55.1 4.1 

99% CI Upper Bound 21.1% 9.9% 89.9 8.5 

 
Table 17-5 shows that the difference between using 2 AGV’s and 3 AGV’s is statistically 
significant with approximately 99% confidence for all performance measures.  AGV utilization is 
lowered when 3 AGV’s are used as well as the average and maximum time to move a load.  
Congestion increases as well. 
 
17.3.4 Review and Extend Previous Work 
 
Management was pleased with the results of the simulation experiment.  It was decided that three 
AGV’s should be used. 
 
The amount of contention between the three AGV’s was of concern.  It was felt that if load 
volumes increased and the addition of a fourth AGV was necessary that contention might cause 
the AGV system to take too long to respond to and complete transportation requests.   
 
Thus, a redesign of the AGV system was proposed.  The pickup and dropoff points for each 
workstation would be located within the station.  Workstations E and F would have distinct pickup 
and dropoff points. 
 
17.4 Assessment of Alternative Pickup and Dropoff Points 
 
The impact of alternative pickup and dropoff points was assessed as follows. 
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17.4.1 Identify Root Causes and Assess Initial Alternatives 
 
The assessment of the new AGV system design can be done in the following way.  Note from 
Figure 17-2 that there are two types of workstations.  The pickup and dropoff points for 
workstations B, C, D, E, and F are located near each other.  The pickup and dropoff points for 
workstations G, H, and I are separate.  Workstation A has only a pickup point. 
 
Figure 17-3 shows the redesign of the pickup and dropoff points for workstations B, C, D, E, and 
F.  Figure 17-4 shows the redesign for the remaining stations.  Note that the AGV’s have a 
greater distance to travel to both pickup and dropoff a load since a loop of about 15 feet must be 
traversed into each workstation. 
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A new simulation experiment can be executed.  The design is the same as shown in Table 17-2 
except that the operation of the modified AGV layout with three AGV’s only will be assessed.  
Note that the model does not need to be modified since the AGV layout is input data expressed 
as a graphical drawing.  Simulation results for this experiment are shown in Table 17-6. 
 
The following can be noted from Table 17-6. 
 
 1. AGV utilization is near 72%. 

2. Only a little congestion occurs since about 13% of the available time of 1 AGV is 
lost. 

3. The average time to move a load is about 3 minutes. 
4. The maximum time to move a load is about (10.3, 28.1) minutes with 

approximately 99% confidence.  The average maximum is 19.2 minutes.  The 
range of the maximum times across the replicates is (5.3, 56.8) minutes. 
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Table 17-6:  Simulation Results for Three AGV’s with Dropoff and Pickup Points within 
Each Workstation 

 

 AGV’s Time to Complete a Move (min) 

Replicate Idle Percent Percent 
Congested 

Maximum Average 

  1 26.4% 4.9% 3.3 38.3 

  2 27.6% 3.9% 2.8 10.0 

  3 28.1% 4.4% 2.8 12.2 

  4 28.6% 4.5% 2.9 33.2 

  5 27.9% 4.5% 2.8 5.3 

  6 28.4% 3.6% 2.8 12.5 

  7 28.6% 3.5% 2.7 5.3 

  8 28.2% 4.0% 2.9 23.3 

  9 28.6% 4.1% 2.9 32.9 

10 28.3% 3.6% 2.8 16.3 

11 28.3% 4.3% 2.9 22.4 

12 26.6% 3.9% 3.2 32.5 

13 27.3% 4.9% 3.5 56.8 

14 28.4% 4.2% 2.8 11.5 

15 28.4% 4.8% 2.8 18.6 

16 28.4% 4.2% 2.7 7.5 

17 28.3% 5.8% 2.9 25.5 

18 28.5% 3.9% 2.7 7.8 

19 27.6% 3.7% 2.8 5.4 

20 27.8% 4.4% 2.8 6.8 

Average 28.0% 4.3% 2.9 19.2 

Std. Dev. 0.6% 0.6% 0.2 13.9 

99% CI Lower Bound 27.6% 3.9% 2.8 10.3 

99% CI Upper Bound 28.4% 4.6% 3.0 28.1 

 
Table 17-7 contains a comparison of AGV system operations using the initial system design and 
the new system design each employing 3 AGV’s. 
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Table 17-7.  Comparison of Simulation Results for the Original and Modified System 
Designs 

 

 AGV’s (New-Original) Time to Complete a Move (min) 
(New-Original) 

Replicate Idle Percent Percent 
Congested 

Maximum Average 

  1 5.1% -7.9% -4.5 35.2 

  2 6.6% -8.1% -4.8 6.9 

  3 5.3% -7.3% -6.3 9.2 

  4 7.1% -7.0% -9.1 30.1 

  5 6.6% -7.6% -5.8 2.2 

  6 7.3% -8.4% -7.1 9.4 

  7 7.8% -8.3% -5.4 2.2 

  8 6.7% -7.5% -6.4 20.2 

  9 7.3% -7.9% -6.4 29.8 

10 6.2% -7.9% -6.2 13.2 

11 7.6% -8.3% -6.2 19.2 

12 4.5% -7.0% -5.1 29.4 

13 6.1% -7.1% -5.3 53.7 

14 7.9% -8.4% -5.7 8.3 

15 6.1% -6.6% -6.7 15.5 

16 5.5% -7.6% -5.8 4.5 

17 6.9% -6.0% -6.2 22.3 

18 7.1% -8.1% -7.8 4.7 

19 6.4% -8.1% -6.5 2.3 

20 4.8% -6.1% -5.6 3.8 

Average 6.4% -7.6% -6.1 16.1 

Std. Dev. 1.0% 0.7% 1.0 13.8 

99% CI Lower Bound 5.8% -8.0% -6.8 7.2 

99% CI Upper Bound 7.1% -7.1% -5.5 25.0 

 
The following can be noted from Table 17-7. 
 

1. AGV utilization increases as the average congestion increases for the new 
system configuration versus the original configuration.  These difference are both 
significant with approximately 99% confidence.  Note that both differences are 
small. 

2. There is little difference in the average time to move a load between the two 
designs, though the difference is statistically significant. 

3. The difference in the maximum time to move a load is operationally and 
statisically significant. The approximate 99% confidence interval is wide.  The 
maximum difference is at least 29 minutes in 5 of 20 replicates.   

 
17.4.2 Review and Extend Previous Work 
 
Management rejected the new AGV system design.  It was recognized that this design is more 
complex than the orginal which will require a more complex control system.  AGV utilization and 
congestion as well as the average load delivery time were about the same for either design.  The 
possible increase in maximum delivery time was of concern.   
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17.4.3 Implement the Selected Solution and Evaluate 
 
The original system configuration with three AGV’s will be implemented and the maximum time to 
move a load monitored. 
 
17.5 Summary 
 
The modeling and analysis of an AGV system design has been discussed in this chapter.  The 
use of the graphical representation of the pathways traveled by the AGV’s as data input to a 
simulation model has been presented.  The conflict between improving response time to load 
movement requests and congestion by increasing the number of AGV’s in the system has been 
examined.  The need to confirm designs developed using analytic methods through simulation 
has been illustrated. 
 
Problems 
 
1. Compare and contrast the approach to modeling conveyors discussed in chapter 16 with 

the approach to modeling AGV systems presented in this chapter. 
 
2. Tell why bi-directional AGV movement on a path is not desirable. 
 
3. Tell why the dropoff point for a workstation should preceed the pickup point. 
 
4. Visit a manufacturing facility and observe the automated material handling equipment 

that is in use. 
 
5. Make a list of the automated material handling equipment you have observed in the 

service systems you encounter regularly. 
 
6. List the advantages and disadvantages of adding additional AGV’s to a system. 
 
7. List the advantages and disadvantages of having distinct pickup and dropoff points at 

each workstation versus having a single pickup-dropoff point. 
 
8. Consider the following modification to the original configuration with pickup and dropoff 

points on the main AGV path.  All AGV’s return to a parking area where maintenance and 
recharging is performed immediately after completing the movement of a load.  Assess 
this design. 

 
9. Consider the following modification to the new system configuration with pickup and 

dropoff points within each department.  The pickup and dropoff points for each station are 
the same.  Assess this design. 

 
10. Reassess each design proposed in this chapter for the case where the time between 

request to move loads is exponentially distributed with mean 90 seconds. 
 
11. Generate a customized trace of events and state variable values for the new design to 

determine why the maximum time to move a load sometimes becomes large. 
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Case Problem 
 
Consider the following manufacturing system described in Askin and Standridge (1993) and 
shown in Figure 17-5.  There are five departments.  Material movement between departments is 
performed using an AGV system.   
 

 
 
Material flow volumes between departments per eight hour day are shown in the following table. 
 

Material Flow Volumes Between Departments per 8 Hour Day 
 

From/To 1 2 3 4 5 Total 
From 

1  10 25   35 

2   10  25 35 

3 15   10  25 

4  40   20 60 

5 24 10  50  84 

 
Note that each department uses the same point for dropoffs and pickups.  AGV travel time is 3 
feet/second.  Assume that the sequence of interdepartmental moves is essentially random but 
that the time between move requests can be modeled as a constant value. 
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Each department is 30 feet by 30 feet in size except department 1 which is 30 feet by 60 feet.  
Pickup and dropoff times are 15 seconds. 
 
The problem is to determine the routes taken by AGV’s between each pair of stations.  In 
addition, the number of AGV’s required in this system as well as the effectiveness of the system 
as measured by the time from the request to move a load until load movement is completed must 
be determined.  Both the average and maximum times are of interest. 
 
If the AGV system as designed proves ineffective, it may be improved by moving pickup and 
dropoff points.  The redesign could include having separate pickup and dropoff point.  A new AGV 
path could be defined as well. 
 
The simulation study should answer the following questions: 

1. Is one AGV sufficient for the current demand or are two AGV’s necessary? 
2. If demand increases uniformly across all stations by 20%, what adjustments to the 

system are necessary? 
 
Case Problem Issues 
 
1. Can the same model developed in this chapter be used as is or slightly modified to apply 

to the case problem?  What would the modifications be? 
 
2. What alternative AGV paths should be considered? 
 
3. For each department, what pickup and dropoff point locations should be considered? 
 
4. Are there any other performance measures besides load movement time and AGV 

utilization that could be important? 
 
5. How will verification and validation evidence be obtained? 
 
6. What is the expected number of AGV’s required? 
 
7. How will the arrival of load movement requests be modeled? 
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Chapter 18 
 

Automated Storage and Retrieval 
 
18.1 Introduction 
 
Much of the time that material is in a plant, it is being moved or stored.  In this chapter, the 
dynamics of how an automated storage and retrieval system (AS/RS) organizes and maintains an 
inventory are examined.  An AS/RS system provides the following benefits: space efficient 
storage of materials, high speed controlled transportation of materials, and real-time inventory 
control.  Thus an AS/RS system helps reduce inventory, labor, floor space, and material control 
costs. 
 
A typical AS/RS system has several components as is shown in Figure 18-1.  A storage / retrieval 
(S/R) machine places pallets (or another standard carrier) having one or more standard sizes in a 
high rise rack system.  A rack consists of a matrix of storage locations.  Racks are separated by 
aisles.  There is one S/R machine per aisle.  An S/R machine moves in the horizontal direction on 
a track located in the floor of an aisle and rises vertically via an imbedded mechanism.  Typically, 
vertical speed is about 1/3 of horizontal speed. 
 

 
Items to be stored arrive to a pick point.  Retrieved items are transported by a the S/R machine to 
a drop point. 
 
A computer-based control system is an important part of an AS/RS system.  The computer keeps 
track of the exact location of all items in the racks.  The control system directs the movement of 
the S/R machine by providing timely instructions concerning what items to retrieve or store in the 
racks.  These instructions are in response to external requests for storage and retrieval. 
 
The computer-based control system can be tested using simulation.  Alternative rack sizes can 
be assessed.  Various storage and retrieval strategies can be compared.  In this way, movement 
of the S/R machine when it is empty, as well as the capital investment in racks, can be minimized. 
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18.2 Points Made in the Case Study 
 
The control algorithm for an automated system, such as an AS/RS, can be included in a 
simulation model.  The control algorithm may be coded in a general purpose programming 
language and interfaced within the model. 
 
A simulation model can consist of multiple processes.  These processes can share the same 
resources.  In this application, an S/R machine, represented by a resource, is used by both an 
inventory storage process and by an inventory retrieval process. 
 
A resource may have multiple BUSY states.  Each BUSY state indicates that the resource is 
occupied in a unique way.  In this application, each rack space is either empty or full of a 
particular type of item.  BUSY states correspond to item types. 
 
Sometimes it is necessary to select a resource to employ from a set of resources with similar or 
identical characteristics.  A criteria for making the selection must be specified.  The set of 
resources cannot be modeled as units of a single resource since the state of each individual 
resource must be tracked.  In this application, the state of each individual rack storage space is 
important.  The model must use the AS/RS control logic to select from among the storage spaces 
in the IDLE state when a carrier is stored.  In the same way, the model must select from among 
items of the same type when a retrieval is required. 
 
18.3 The Case Study 
 
A particular manufacturing plant assembles finished goods from subassemblies that are produced 
in another area of the plant or delivered to the plant from external suppliers. A subassembly 
consists of component parts that have been joined together.  Subassemblies arrive to the area 
preceding the final assembly operation as completed or as delivered. 
 
Thus, a buffer before final assembly is required.  The buffer is implemented using an AS/RS 
system.  The storage area consists of two rectangular racks of bins with an aisle between them.  
Each bin holds one subassembly, which may be of one of four types.  Subassemblies are 
delivered to a pick point where they are picked up one at a time by the S/R machine and placed 
in the nearest, with respect to S/R machine movement time, available bin.   
 
The final assembly process requests subassemblies one at time.  Each request specifies a 
particular type of subassembly.  The S/R machine retrieves the nearest, with respect to its 
movement time, subassembly of the requested type and places it at the drop point.  The 
subassembly is subsequently moved from the drop point to the final assembly area. 
 
To minimize unproductive movements, the S/R machine remains at the bin in which it last placed 
a subassembly or at the drop point when it completes a task and becomes idle.   
 
Subassemblies arrive from 6:00 A.M. to 2:00 P.M. each day.  The final assembly process 
operates from 8:00 A.M. to 4:00 P.M. each day or until all of the subassemblies in the AS/RS 
have been consumed. 
 
18.3.1 Define the Issues and Solution Objective 
 
A fundamental issue in the AS/RS control algorithm is into what free bin to store a subassembly 
and from what occupied bin to retrieve a subassembly.  The algorithm to select a bin is an 
intrinsic component of the operation of the AS/RS system and must be included in the simulation 
model.  Each bin is in one of nine states: 
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1. Idle 
2-5. Occupied with a subassembly of type one, two , three, or four 
6-9. Occupied with a subassembly of type one, two, three, or four that is committed to the final 

assembly process   
 
The selected bin is the one in the specified state that requires the least travel time for the S/R 
machine.  The idle S/R machine waits at the pick point or at the last bin in which a subassembly 
was stored.   
 
The S/R machine moves 6 feet per second horizontally and 2 foot per second vertically.  Each bin 
is 1 foot square including the rack structure.  Thus, the time to reach any bin is the sum of the 
number of bins traversed horizontally * 1/6 second per bin and the number traversed vertically * 
1/2 second per bin.  This sum is illustrated for a rack 8 bins high and 7 bins long in Figure 18-2 
assuming the S/R machine starts at the pick point which is to the left of the bin structure on the 
floor level. 
 
The search for a bin is performed by the AS/RS control software.  Bins are searched in order of 
the movement time values shown in Figure 18-2, least to greatest until a bin in the state desired 
is located.   Among bins with the same value, those closer to the floor are preferred. 
 
The same search strategy can be applied if the S/R machine is waiting at a particular bin.  The 
control algorithm searches in four directions, one at a time.  These directions are: 
 
 1. Right and up from the current location, as shown in Figure 18-2. 
 2. Right and down from the current location. 
 3. Left and up from the current location. 
 4. Left and down from the current location. 
 
After all the searches have been completed, the storage location nearest the S/R machine with 
respect to movement time is chosen. 
 
The search strategy is worthy of discussion.  Consider the movement time of 7/6

th
  second.  This 

is the movement time to the seventh bin in the first row, the fourth bin in the second row, and the 
first bin in the third row.  Thus, the bin search order for the time 7/6

th
 second is as listed 

previously.   
 
Consider searching up and right from the current SR machine location in general.  Bins are 
examined in order of movement time, least to greatest, until a bin in the desired state is found.  
Bins with equal movement times are searched as follows.  The search begins at the bin to the 
right of the current location and procedes to the bin in the next higher row and three columns 
preceding (since the vertical movement time is three times the horizontal movement time).  This 
part of the search stops when either a bin in the desired state is found or the next bin to be 
examined would be to the left of the current location of the SR machine or the next bin to be 
examined does not exist. 
 
It takes the S/R machine 6 seconds to store or retrieve a subassembly from a bin.  The time 
between requests to store a subassembly is 20 seconds, exponentially distributed, as is the time 
between requests to retrieve a subassembly. 
 
Two configurations of the AS/RS system have been proposed.  In the first, each rack has 180 
bins, 10 bins high and 18 bins long.  In the other, each rack has 225 bins, 9 bins high and 25  
bins long.  Thus, extra storage space requires more floor space.  The problem is to select 
between these two alternatives. 
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Figure 18-2:  S/R Machine Movement Time (Seconds) 
 

18.3.2 Build Models 
 
The two operations performed by the AS/RS system are modeled as two separate processes.  
The first operation stores a subassembly in a bin.  The second retrieves a subassembly from a 
bin. 
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Entities represent subassemblies to be stored or retreived and have five attributes: 
 
Type =  Type of subassembly: 1, 2, 3, 4. 
ArriveTime = Time of arrival to the AS/RS system. 
Rack =  Rack in which to store the subassembly: 1 or 2. 
Row =  Horizontal position of the bin in which to store the subassembly. 
Column = Vertical position of the bin in which to store the subassembly. 
 
A state variable is used to track the state of each bin:: idle, filled with a subassembly of a 
particular type, or filled with a subassembly of a particular type that is committed to the second 
manufacturing process.  In addition, there is a state variable for each subassembly type modeling 
the number of units of that type in the racks. 
 
A resource represents the S/R machine.  The resource modeling the S/R machine has two 
attributes indicating its Row and Column location in the rack structure.   
 
The storage of an arriving subassembly is handled as follows.  The subassembly waits at the pick 
point until at least one bin is idle.  Which particular idle bin to use is determined by the AS/RS 
control algorithm which is implemented in the model.  Information identifying the location of the 
bin is recorded in the attributes (Rack, Row, Column) of the subassembly entity. 
 
The subassembly continues to wait until the S/R machine is idle.  The S/R machine moves from 
its current location to the pick point.  The S/R machine picks up the subassembly, moves to the 
selected idle bin, and stores the subassembly in that bin.  The S/R machine waits at that bin for 
its next assignment. 
 
Finally, the state of the system updated.  The state of the bin is changed to the type of 
subassembly stored in the bin.  The location of the S/R machine is recorded in its Row and 
Column attributes.  The number of subassemblies of the type just stored is incremented by one. 
 
The process of retrieving a subassembly from a bin is similar to the storage process just 
described. The request for a subassembly of a particular type waits until there is a subassembly 
of that type in the AS/RS.  The AS/RS system control algorithm selects the bin closest to the 
current location of the S/R machine containing a subassembly of the desired type.  The S/R 
machines moves to that bin, retrieves the subassembly and procedes to the drop point.  The S/R 
machine becomes idle and remains at the drop point. 
 
Again, the state of the system is updated.  The state of the bin from which the subassembly was 
retrieved is changed to idle.  The number of subassemblies of the type just retrieved is 
decremented by one.  The location of the SR machine is recorded. 
 
When it becomes idle, the SR machine resource may need to choose between two jobs:  storing 
a subassembly or retrieving a previously stored one.  Management decided that it was most 
important to keep the second manufacturing process working.  Thus, priority is given to requests 
to retrieve previously stored subassemblies. 
 
The AS/RS control algorithm is shown in Figures 18-3 a, b, and c.   
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function SearchOne 

/* routine to search in a given direction for a bin in a given state 

   inputs: 

     RowDir      = Row Direction (1 or -1) 

     ColDir      = Column Direction (1 or -1) 

     RowStart    = Row Location of First Cell 

     ColStart    = Column Location of First Cell 

     ColDiff     = Number of columns to move before moving rows 

     RowMax      = Number of Rows in a Rack 

     ColMax      = Number of Columns in a Rack 

     Rack        = Rack ID number (1 or 2) 

     TargetState = Required State of Location 

     LocState    = State of each rack 

   outputs: 

     Row = Row of required bin 

     Col = Column of required bin  */ 

/* Search Equivalent Bins */ 

    Row = 0 

    Col = 0 

    RowIndex = RowStart 

    ColIndex = ColStart 

    RowBase  = RowStart 

    ColBase  = ColStart 

/* Stay within the boundaries of a rack */ 

   while RowIndex <= RowMax and RowIndex > 0 do   

   begin 

      while ColIndex <= ColMax and ColIndex > 0 do 

      begin 

/* Stay within the boundaries of the search direction from the  

   starting point */ 

       while (RowIndex <= RowMax and RowIndex > 0)   and  

              (ColIndex <= ColMax and ColIndex > 0)   and 

              ((RowIndex >= RowStart and RowDir > 0)   or 

               (RowIndex <= RowStart and RowDir < 0)) and  

              ((ColIndex >= ColStart and ColDir > 0)   or 

               (ColIndex <= ColStart and ColDir < 0))  do 

       begin 

          if(LocState(Rack,RowIndex,ColIndex) = TargetState) then 

           begin 

               /* Bin in desired state found.  Set attributes */ 

               Row = RowIndex 

              Col = ColIndex 

              return  

             end 

               /* Go to next bin having same movement time */ 

            RowIndex = RowIndex + RowDir 

           ColIndex = ColIndex - ColDir*ColDiff 

       end 

   /* Go to bin with next smallest movement time in the initial row */ 

          RowIndex = RowBase 

          ColBase  = ColBase + ColDir 

          ColIndex = ColBase 

      end 

  /* Go to bin in the next row with the next smallest movement time */ 

      RowBase  = RowBase + RowDir 

      RowIndex = RowBase  

      ColBase  = ColStart + ColDir*ColDiff 

      ColIndex = ColBase 

   end 

end 

Figure 18-3a:  Control Algorithm Function for Searching in One Direction 
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begin S_SearchRack 

/* routine to search for a storage state in a given state in a given 

direction in each of two racks 

   inputs: 

     RowDir      = Row Direction (1 or -1) 

     ColDir      = Column Direction (1 or -1) 

     RowStart    = Row Location of First Cell 

     ColStart    = Column Location of First Cell 

     ColDiff     = Number of columns to move before moving rows 

     RowMax      = Number of Rows in a Rack 

     ColMax      = Number of Columns in a Rack 

     TargetState = Required State of Location 

     LocState    = State of each rack 

   outputs: 

     RackA = Rack ID of the required bin 

     Row   = Row of required bin 

     Col   = Column of required bin  */ 

/* Search the first rack */ 

     Rack  = 1 

     RackA = 1 

     call S_SearchOne 

     RowTemp = Row 

     ColTemp = Col 

/* Seach the second rack */ 

     Rack  = 2 

     RackA = 2 

     call S_SearchOne 

/* See if the location in the first rack is closer than the one in the 

second rack */ 

/* return second rack info if no bin was found in the first rack */ 

     if(RowTemp = 0 or ColTemp = 0) then return 

/* return first rack info if no bin was found in the second rack */  

     if(Row     = 0 or Col     = 0) then  

     begin 

      Row   = RowTemp 

      Col   = ColTemp 

      RackA = 1 

      return 

     end 

/* bin found in both racks; return info for bin with shorter movement 

time */ 

     if(abs(RowTemp-RowStart)*RowSpeed+abs(ColTemp-ColStart)*ColSpeed< 

        abs(Row    -RowStart)*RowSpeed+abs(Col    -ColStart)*ColSpeed) 

     then 

     begin 

/* movement to rack one bin is shorter */ 

      Row   = RowTemp 

      Col   = ColTemp 

      RackA = 1 

      return 

     end 

end 

 
Figure 18-3b:  Control Algorithm Function for Determining the Shortest Move Time Among 

Two Racks 
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The control algorithm is implemented as three functions.  The first searches from the current 
location of the SR machine given by RowStart and ColStart in any of the four directions given 
above as specified by RowDir and ColDir.  Each of these two variables takes on the values –1 or 
+1 to define the search direction.  The dimensions of a rack are specified in the variables 
RowMax and ColMax.  Which of the two racks to search is specified in the variable Rack which 
has the value 1 or 2.  The variable TargetState gives the state of interest, zero for idle or 1, 2, 3, 
or 4 for a subassembly of that type.  The state of each bin is stored in the three dimensional array 
LocState(Rack, Row, Col).  The variable ColDiff stores the ratio of the horizontal speed to the 
vertical speed of the SR machine which is three in this case. 
 
The entity attributes Row and Col store the location of the bin in the desired state.  If no such bin 
is found both Row and Col have the value zero. 
 
The other two functions use the same variables as SearchOne.  The function SearchRack, shown 
in Figure 18-3b, searches each rack in one of the directions listed above for a bin and returns the 
location of the bin that is closest with respect to movement time to the current position of the SR 
machine.  The rack ID number (1 or 2) is returned in the entity attribute RackA. 
 
The function SearchAll, shown in Figure 18-3c, searches in all four directions from the current SR 
machine location to find the nearest bin in the desired state.  The directions are searched one at 
a time using function SearchRack.  After each search, the nearer location so far is determined.  
The nearest location is returned using the entity attributes Row, Col, and RackA. 
 
The model also contains two processes, Arrival and Retrieval, whose steps were previously 
described.  Pseudo-code for the two processes follows.  The same variables defined above for 
the function SearchOne are also used in the processes.  Note that in the Arrival process, the 
function SearchRack is used instead of SearchAll since the only search direction is up and right 
of the pick point. 
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begin SearchAll 

/* routine to search for a storage state in each of two racks in all 

directions 

   inputs: 

     RowStart    = Row Location of First Cell 

     ColStart    = Column Location of First Cell 

     ColDiff     = Number of columns to move before moving rows 

     RowMax      = Number of Rows in a Rack 

     ColMax      = Number of Columns in a Rack 

     TargetState = Required State of Location 

     LocState    = State of each rack 

   outputs: 

     RackA = Rack ID of the required bin 

     Row = Row of required bin 

     Col = Column of required bin  */ 

/* Search right and up */ 

     RowDir = 1 

     ColDir = 1 

     call S_SearchRack 

     RowTemp1 = Row 

     ColTemp1 = Col 

     RackTemp = RackA 

/* Search right and down */ 

     RowDir = 1 

     ColDir = -1 

     call S_SearchRack 

/* Select which is closer */ 

    if(RowTemp1 = 0 or ColTemp1 = 0) then  

    begin 

        RowTemp1 = Row 

        ColTemp1 = Col  

        RackTemp = RackA 

    end 

    else 

    begin 

        if((abs(RowTemp1-RowStart)*RowSpeed+ 

            abs(ColTemp1-ColStart)*ColSpeed > 

            abs(Row     -RowStart)*RowSpeed+ 

            abs(Col     -ColStart)*ColSpeed)   and 

            (Row > 0 and Col > 0)) then 

        begin 

            RowTemp1 = Row 

            ColTemp1 = Col  

         RackTemp = RackA 

        end 

    end 

 
Figure 18-3c:  Control Algorithm Function for Determining the Shortest Move Time in Any 

Direction 
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/* Search left and up */ 

    RowDir = -1 

    ColDir = 1 

    call S_SearchRack 

/* Select which is closer */ 

    if(RowTemp1 = 0 or ColTemp1 = 0) then  

    begin 

        RowTemp1 = Row 

        ColTemp1 = Col  

        RackTemp = RackA 

    end 

    else 

    begin 

        if((abs(RowTemp1-RowStart)*RowSpeed+ 

            abs(ColTemp1-ColStart)*ColSpeed > 

            abs(Row     -RowStart)*RowSpeed+ 

            abs(Col     -ColStart)*ColSpeed)   and 

            (Row > 0 and Col > 0)) then 

        begin 

            RowTemp1 = Row 

            ColTemp1 = Col  

         RackTemp = RackA 

        end 

    end 

/* Search left and down */ 

     RowDir = -1 

     ColDir = -1 

     call S_SearchRack 

/* Select which is closer */ 

    if(RowTemp1 = 0 or ColTemp1 = 0) then  

    begin 

        RowTemp1 = Row 

        ColTemp1 = Col  

        RackTemp = RackA 

    end 

    else 

    begin 

        if((abs(RowTemp1-RowStart)*RowSpeed+ 

            abs(ColTemp1-ColStart)*ColSpeed > 

            abs(Row     -RowStart)*RowSpeed+ 

            abs(Col     -ColStart)*ColSpeed)   and 

            (Row > 0 and Col > 0)) then 

        begin 

            RowTemp1 = Row 

            ColTemp1 = Col  

         RackTemp = RackA 

        end 

     end 

/* return closest location */ 

     Row   = RowTemp1 

     Col   = ColTemp1 

     RackA = RackTemp 

end 

 

Figure 18-3c:  Concluded 
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Define Resources 

SRMach  // Storage / retrieval (S/R) machine 
 
Define Attributes 
 ArriveTime  // Time of arrival of subassembly 
 Type   // Type of subassembly 
   
Define Variables 
 Bin   // Bins currently available 
 InvSA1   // Subassemblies of type 1 

InvSA2   // Subassemblies of type 2 
 InvSA3   // Subassemblies of type 3 

InvSA4   // Subassemblies of type 4 
RowStart  // Current location of S/R machine – row 

 ColumnStart  // Current location of S/R machine – column 
 RowDirection  // Direction of row search 
 ColumnDirection // Direction of column search 
 TargetState  // State of requested bin 
 Rack   // Rack with bin in requested state 
 Row   // Row of bin in requested state 
 Column   // Column of bin in requested state 
 VerticalSpeed  // Vertical (column) speed of S/R Machine 
 HorizontalSpeed // Horizontal (row) speed of S/R Machine 
 LocState  // State of each bin 
 ColumnMax  // Number of columns in a rack 
  
Process SubAssembly_Arrivals 
Define Arrivals 
 Time of first arrival: 0 
 Time between arrivals: Exponential 20 seconds 
 Number of arrivals: Infinite  
Begin 
 Set ArriveTime = Clock 
 Set Type = Integer Uniform (1, 4) 
 Wait until Bin > 0 
 Increment Bin by 1 
 Wait until SRMachine is IDLE 
 Make SRMachine BUSY 
 Wait for RowStart*VerticalSpeed + ColumnStart*HorizontalSpeed  

// Move SRMachine to Pick Point 
 Set RowStart = 1 
 Set ColumnStart = 1 
 Set RowDirection = 1 
 Set ColumnDirection = 1 
 Set TargetState = 0 
 Call SearchRack returning Rack, Row, Column 
 Wait for Row*VerticalSpeed + Column*HorizontalSpeed  

// Move SRMachine to Selected Bin 
 Wait for 6 seconds // Store Carrier in Bin 
 Make SRMach IDLE 

LocState (Rack, Row, Column) = Type 
 Increment InvSA<Type> by 1 
End 
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Process SubAssembly_Retrievals 
Define Arrivals 
 Time of first arrival: 2 hours 
 Time between arrivals: Exponential 20 seconds 
 Number of arrivals: Infinite  
Begin 
 Set ArriveTime = Clock 
 Set Type = Integer Uniform (1, 4) 
 Wait until InvSA<Type> >0 
 Decrement InvSA<Type> by 1 
 Set TargetState = Type 

Call SearchAll returning Rack, Row, Column 
Set LocState (Rack, Row, Column) = Type +4 
Wait until SRMachine is IDLE 

 Make SRMachine BUSY 
Wait for abs ((Row – RowStart)*VerticalSpeed) +  

abs ((Column-ColumnStart)*HorizontalSpeed  
// Move SRMachine to Select Bin 

 Wait for 6 seconds  // Remove Carrier from Bin 
Wait for abs (Row-1)*VerticalSpeed + abs (Column-ColumnMax)*HorizontalSpeed  

// Move SRMachine to drop point 
 Make SRMach IDLE 
 Set RowStart = 1 
 Set ColumnStart = ColumnMax 
 Set LocState(Rack, Row, Column) = 0  
End 
_____________________________________________________________________________
_ 
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18.3.3 Identify Root Causes and Assess Initial Alternatives 
 
Table 18-1 gives the design for the AS/RS system simulation experiment.  The final assembly 
process consumes all subassemblies stored in the rack each day.  Thus, a terminating 
experiment with the simulated time interval equal to the time each day that the subassemblies 
arrive to the AS/RS system is appropriate.  The dynamics of how the final assembly process 
consumes the subassemblies remaining in the storage racks after all subassemblies have arrived 
will not affect the choice of configurations.  Thus, this part of the system need not be included in 
the experiment. 
 

Table 18-1:  Simulation Experiment Design for the AS/RS System 
 

Element of the Experiment Values for This Experiment 

Type of Experiment Terminating 

Model Parameters and Their Values Rack configuration -- (10X18 and 9X25) 

Performance Measures 1.  Number of bins in non-IDLE states 
2.  Time subassemblies wait for a bin  
3.  Time subassemblies and final process requests 
wait for the SR machine. 

Random Number Streams 1.  Type of subassembly to store  
2.  Time between arrivals of subassemblies to the 
AS/RS system 
3.  Type of subassembly requested by final assembly 
4.  Time between arrivals of requests from final 
assembly 

Initial Conditions The bins empty and the SR machine idle 

Number of Replicates 20 

Simulation End Time One eight hour day (time in seconds) 

 
The initial conditions are the daily start-up conditions for the system: all bins empty and the SR 
machine idle.  Twenty replicates will comprise the experiment.  There are four random number 
streams, one each to determine the type of subassembly delivery to the AS/RS and requested by 
the final assembly process as well as one each for the time between arrivals of subassemblies 
and requests from the final assembly process. 
 
The model parameter is the rack configuration with the two alternatives proposed by 
management tested.  Performance measures have to do with the utilization of bins, subassembly 
waiting time for an empty bin, and waiting time for the SR machine to move subassemblies. 
 
Results of this experiment are shown in Table 18-2.    The average percent of bins occupied is 
16% less for the 9 X 25 rack configuration with an approximate 95% confidence interval of 15% to 
18% for the true percent difference.  The 9 X 25 rack is 25% bigger than the 10 X 18 rack.  Thus, 
some use is made of the extra bin space.  This is reflected in the fact that there is no waiting for 
an empty bin when the larger rack is used.  However, the average waiting time for the smaller 
rack is only 2.5 seconds with an approximate 95% confidence interval of 0.7 to 4.3 seconds for 
the true mean waiting time.  The average waiting time for the SR machine increases when the 
larger rack size is used, though the average difference is only 2.4 seconds. 



18-14 

Table 18-2:  Results of the AS/RS System Simulation Experiment 
 

  
 

Percentage of Full Bins 

 
Average Time Waiting for 
an Empty Bin (Seconds) 

Average Time Waiting 
for the SR Machine 

(Seconds) 

Replicate 10 X 18 9 X 25 Diff 10 X 18 9 X 25 Diff 10 X 18 9 X 25 Diff 

  1 70% 92% 22% 0 8.3 8.3 9.4 6.8 2.6 

  2 72% 92% 20% 0 8.8 8.8 9.4 6.7 2.7 

  3 71% 92% 20% 0 8.2 8.2 9.5 6.7 2.8 

  4 67% 93% 27% 0 8.7 8.7 9.6 6.7 2.9 

  5 65% 92% 27% 0 8.5 8.5 9.3 6.7 2.6 

  6 72% 92% 19% 0 8.2 8.2 9.4 6.7 2.7 

  7 68% 94% 26% 0 8.8 8.8 9.5 6.7 2.7 

  8 72% 93% 21% 0 8.8 8.8 9.5 6.7 2.9 

  9 73% 91% 18% 0 8.9 8.9 9.5 6.7 2.9 

10 70% 93% 23% 0 8.5 8.5 9.5 6.7 2.8 

11 68% 92% 25% 0 8.8 8.8 9.6 6.6 3.0 

12 69% 92% 24% 0 8.4 8.4 9.5 6.8 2.7 

13 77% 91% 14% 0 8.2 8.2 9.4 6.7 2.7 

14 68% 92% 24% 0 8.3 8.3 9.5 6.7 2.8 

15 63% 94% 31% 0 9.0 9.0 9.6 6.7 2.9 

16 70% 92% 22% 0 8.2 8.2 9.6 6.7 2.9 

17 68% 93% 25% 0 8.9 8.9 9.5 6.7 2.9 

18 74% 93% 18% 0 8.5 8.5 9.3 6.7 2.6 

19 71% 92% 22% 0 8.7 8.7 9.4 6.7 2.8 

20 65% 92% 27% 0 8.3 8.3 9.6 6.7 2.9 

Average 70% 92% 23% 0 8.5 8.5 9.5 6.7 2.8 

Std. Dev. 3% 1% 3.9% 0 0.28 0.28 0.088 0.043 0.10 

99% C.I. 
Lower 
Bound 67% 92% 20% 0 8.4 8.4 9.4 6.7 2.7 

99% C.I. 
Upper 
Bound 72% 93% 25% 0 8.7 8.7 9.5 6.7 2.8 
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18.3.4 Review and Extend Previous Work 
 
The smaller rack configuration seems preferable since it would be less costly and require less 
floor space as long as system performance is not significantly improved by using the larger rack.  
While the larger rack does eliminate waiting for an empty bin, it increases waiting time for the SR 
machine.  However, no waiting time is very long for either configuration.  The bin utilization is 
relatively high for both rack sizes (92% versus 70%).   
 
18.3.5 Implement the Selected Solution and Evaluate 
 
The AS/RS system with the 10 X 18 configuration of two racks of bins will be implemented.  
Subassembly waiting at the pick point will be monitored and sufficient buffer space provided as 
needed. 
 
18.4 Summary 
 
This case study shows how system operational algorithms can be included in models.  The use of 
modeler defined resource states is included.  Inventories and other resources are shared 
between processes in the model.  The simulation experiment compares alternative system 
configurations. 
 
Problems 
 
1. Based on the process steps in the simulation model, tell why the bin states: occupied with 

a subassembly of type one, two, three, or four that is committed to the final assembly 
process are necessary.  

 
2. Validate the function SearchOne by searching from rack location row 2 column 2 as 

shown in Figure 18-2 in the right and up direction.  List the first ten values of RowIndex 
and ColIndex computed in SearchOne, including the infeasible bin location values that 
cause the loops in SearchOne to end. 

 
3. In the Arrival process model, why is it not necessary to check if the function SearchRack 

located a bin in the IDLE state? 
 
4. Tell why the quantity: Number of final assembly process requests waiting for a 

subassembly is not an effective performance measure for the simulation experiment in 
this chapter. 

 
5. What impact would running the simulation experiment until all subassemblies had been 

moved to the final assembly process have on the validity of the performance measure 
estimates? 

 
6. Explain why the average waiting time for the SR machine increases when the larger rack 

size is used especially considering that there is no waiting for an empty bin.   
 
7. Would you expect the utilization of the SR machine to increase or decrease when the 

larger rack size is used?  Justify your answer. 
 
8. Use Little’s Law to estimate the average number of subassemblies waiting at the pick 

point.  How much buffer space would you use at the pick point? 
 
9. Compute the expected time to store a carrier in a bin after the SR machine is obtained. 
 
10. Visit a manufacturing facility and observe the automated material handling equipment 

that is in use. 
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11. Make a list of the automated material handling equipment you have observed in the 

service systems you encounter regularly. 
 
12. How much improvement is there in the AS/RS system if the speed of the SR machine 

increases by 100%. 
 
13. How much improvement is there in the AS/RS system if the time between requests from 

the second manufacturing process is uniformly distributed between 10 and 30 seconds? 
 
14. Perform additional simulation experiments to find the smallest difference between the 

starting time of the storage process (currently 6:00 A.M.) and the retrieval process 
(currently 8:00 A.M) for which the system can effectively operate. 

 
15. The current rack configurations are about one story high.  Suppose a two story high 

configuration was preferred, specifically 18 bins high and 10 bins wide.  Compare system 
performance using this configuration to the 10 bins high and 18 bins wide configuration. 

 
16. Embellish the model in this chapter with acceleration and deacceleration of the SR 

machine.  Assume the acceleration (deacceleration) distance is one bin in either direction 
and the average time to traverse this bin is twice that of other bins. 

 
Case Problem 
 
The benefits of AS/RS technology have been effectively realized in libraries.  The amount of floor 
space required for books and periodicals has been reduced by ten-fold or more.  The number of 
librarians required was reduced as well.  Reshelving errors were eliminated.  The location of each 
item while in the library is known with certainty.  Despite these benefits, it is estimated that a few 
(less than 12) mini-load AS/RS systems have been installed in libraries.   
 
This case problem involves determining the saturation point for a mini-load AS/RS system 
installed in a particular library.  This is done be creating a graph of the cycle time for retrieving a 
book or periodical versus the arrival rate for such requests.  The arrival rate resulting in the 
longest acceptable retrieval time is the saturation point.  The smallest arrival rate of interest is 10 
requests per hour.  Assume that the arrival rate for retrievals is the same as the arrival rate for 
returns. 
 
The mini-load AS/RS system installed in one particular library has a capacity of 250,000 books 
and periodicals.  There is a single aisle with identical racks on each side.  The system is installed 
inside a secured vault for safety and security reasons. 
 
Books and periodicals are stored in carriers that are 4 feet deep and 2 feet wide.  Each carrier 
row is one of three heights: 10, 12, or 15 inches.  Each item is stored in the shallowest carrier in 
which it can stand.   Thus, vertical space is used most efficiently.  Assume that the number of 
books and periodicals of each height is the same. 
 
There are 36 carrier rows on each side of the single aisle.  The height of the first row is 10 inches, 
the second 12 inches, the third 15 inches, the fourth 10 inches and so forth.  There are 60 
carriers in each row. 
 
The S/R machine travels at a high rate of speed: 12.6 feet/second horizontally and 4.3 
feet/second vertically.  Assume that the S/R machine must travel either horizontally or vertical but 
not diagonally. 
 
The process of retrieving a book or periodical is the following.  A patron makes a request using 
the electronic library catalog system.  The AS/RS fills one request at a time.  The location of the 
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item is completely random.  The S/R machine moves from its idle location to the required carrier, 
extracts the carrier in 3 seconds, and places the carrier in the pick and delivery station.  A 
librarian must remove the desired item from the carrier and record its status in the information 
system.  This takes 7 seconds.  The S/R machine remains idle at the pick and delivery station. 
 
Next the librarian determines whether any item that needs to be returned to storage is of the 
same size as the carrier.  If so, the item’s new carrier location is recorded in the information 
system and the item placed in the carrier.  Both steps combined take 7 seconds.   
 
Assume the library is open 16 hours per day, 7 days per week. 
 
Embellishment: The AS/RS system tests the carrier for weight restrictions.  One in 100 tests fail.  
In this case, the librarian must remove the item as well as the newly entered location from the 
information system in 7 seconds.  In either case, the S/R machine replaces the carrier and 
returns empty to its idle location. 
 
Embellishment:  Find the saturation point when the following procedure is used.  The S/R 
machine does not replace a carrier that is at a pick and delivery station until the next retrieval 
request is made.  At that time, a carrier is first stored and then the next carrier retrieved. 
 
Embellishment:  Limit the number of carriers stored at the pickup/dropoff station to a total of 
three.  When the fourth carrier arrives, it is immediate returned to the same storage location by 
the AS/RS machine. 
 
Case Problem Issues: 
 
1. How should carriers be modeled? 
 
2. How should the location of the carrier containing the book or periodical requested be 

determined? 
 
3. How should S/R machine travel time be computed? 
 
4. Specify the process for book and periodical returns. 
 
5. What are good initial conditions for this simulation experiment? 
 
6. What performance measures, other than cycle time, would be of interest? 
 
7. What is the expected utilization of the SR machine? 
 
8. How should verification and validation evidence be obtained? 
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AutoMod Summary and Tutorial for the Chapter 6 Case Study 

 
A.1. Introduction 
 
AutoMod modeling constructs and experimental specifications generally needed for modeling 
arrivals, operations, and detractors such as rework, downtime, and setup / batching are 
presented.  Example models illustrating routing and inventory dynamics are given as part of the 
application studies.  A tutorial gives step-by-step instructions for building and simulating the 
model associated with the single workstation case study in Chapter 6. 
 
A.2. AutoMod Modeling Elements 

 
The application studies use primarily AutoMod modeling elements defined in Table A-1. 
 

Table A-1:  AutoMod Modeling Elements 
 

Modeling Element Definition 

Process The steps used to model entity processing at a workstation as well as 
upon arrival or departure  

Loads Entities 

Attributes Entity attributes 

Resources Resources 

Resource Cycles The pattern of state changes of a resource due to the breakdown and 
repair cycle 

Counters Resource-like variables used to model inventories 

Queues Buffers or waiting areas 

Order Lists A list of loads.  Loads remain on the list until ordered to leave. 

Variables State variables used throughout a model such as parameters of a 
processing time or characteristics of a resource 

Tables The collection mechanism for performance measure observations not 
automatically maintained by AutoMod 

Random Streams Pseudo-random number streams 

 
In AutoMod, loads (entities in the text) flow through one or more processes.  A process is 
described by a set of statements.  AutoMod has many statements.  Table A-2 describes some of 
the commonly used statements.  A complete definition of each statement is provided in the 
AutoMod help system along with examples. 
 
The user needs to be aware of one quirk in AutoMod, whick expects models to have a visual 
component.  Thus, entities must always be where they can be displayed graphically.  For right 
now, this place is in a queue.  Thus, while an entity is being processed by a resource, it must be 
in a queue.  Thus, a single queue preceding a resource will contain the loads in the buffer as well 
as the loads in processing that is all the loads at the workstation. Alternatively, the user can 
employ one queue to represent the buffer where entities wait for a resource and a second queue 
to represent where an entity is graphically while it is being processed by the resource.  The 
former approach will be used in this tutorial.   
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Table A-2:  Commonly Used Statements 
 

Statement Definition 

begin Start of a process or of a block of statements 

end End of a process or of a block of statements 

set Assign a value to a variable or attribute as well as changing the state 
or number of units of a resource or the value of a counter 

send to Send an entity to the start of another process 

tabulate Record the value of a performance measure (observed type) 

clone Create copies of an entity and send the copies to a process 

move into Enter a queue 

wait for Time delay for a process step 

wait until <condition> Delay until the condition (logical expression) becomes true 

get Acquire one or more units of a resource that are in the idle state.  
Same as: wait until <resource> is idle; make <resource> busy 

free Free one or more units of a resource placing them in the idle state.  
Same as: make <resource> idle 

increment Add to the value of a variable or attribute as well as increasing the 
number of units of a resource or the value of a counter 

decrement Subtract from the value of a variable or attribute as well as decreasing 
the number of units of a resource or the value of a counter 

wait to be ordered Enter an order list 

order Send one or more loads on an order list to a process 

while <condition> do 
begin 
end 

While loop. 

 
A-3. Tutorial – Model Building 
 
This section shows how to build the single workstation model as specified in the chapter 6 case 
problem in AutoMod step-by-step. 
 

1. Start AutoMod as you would any windows program. 
2. Choose FILE from the menu bar and then NEW.  Specify the location you want for 

the model files in the directory structure. 
3. Design the model. 

a. Decide what processes are necessary.  In this case, use three processes: one 
for entity arrival, one for entity departure, and one for the workstation. 

b. Decide what attributes are necessary.  In this case, arrival time is sufficient. 
4. Define the arrival process.  By convention, process names begin with P_.  Choose 

PROCESS from the process system menu and then NEW.  Give the name of the 
process (P_Arrive is good) and enter a title as documentation. 

5. Select EDIT arriving procedure and the text editor appears.  The statements for 
P_Arrive can be entered. 
a. Enter begin on the first line and end on the second line to delimit the procedure.  

Insert a comment line after the first line to describe the procedure.  Comments 
start with //.  Comments may be placed on the same line as statements. 

b. The procedure P_Arrive must accomplish two things.  The first thing is assigning 
the value of the time between arrivals load attribute to the arrival time: set 
A_ArriveTime = ac, where ac is the current simulation time (absolute clock). 

c. The second thing is to send the arriving entity to the process for the workstation: 
send to P_WSA. 

d. Terminate the edit using FILE then SAVE and FILE then EXIT.  Notice that 
AutoMod will object that the load attribute (A_ArriveTime) as well as the 
workstation process (P_WSA) have not as yet been defined.  The strategy that 
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we are using is to define them at this point.  In the error box for A_ArriveTime, 
choose define and load attribute.  In the attribute definition box, enter the name 
and a title for documentation as well as the type as real.  In the error box for 
P_WSA, choose define and process and then simply hit return to take all of the 
defaults. 

e. In the Edit a Process window, select OK. 
6. Next choose PROCESS from the process system menu and edit P_WSA in the same 

way that P_Arrive was created.  The procedure must accomplish the following. 
a. Enter the buffer of the workstation: move into Q_WS 
b. Acquire the workstation resource: get R_WS 
c. Perform processing:  wait for RS_WS uniform 7.5, 1.5 min 
d. Free the workstation resource:  free R_WS 
e. Send the load to the process for departing entities: send to P_Depart 

7. Next choose FILE then SAVE and FILE then EXIT.  Note that one queue, one 
resource, one random number stream, and a process must be defined.  Define a 
queue by specifying its name, a title, and capacity.  The capacity of Q_WSA is 
INFINITE. 
a. Define a resource by specifying its name, a title, and default capacity (number of 

units), in this case one. 
b. Define a random number stream by specifying its name: RS_WS. 

8. P_Depart must accomplish the following. 
a. Observe entity time in the system:  tabulate (ac – A_ArriveTime) in 

T_LeadTime 
b. Destroy the entity: send to die. 

9. Choose File then SAVE and FILE then EXIT.   
a. A table is defined by specifying its name and a title. 

10. Define the load type for parts.  From the process system menu, select Loads and 
then select New for a new load type.  Name the load L_Part.   
a. Next select New Creation to specify the arrival process for loads.   
b. Specify the time between arrivals as exponentially distributed with a mean of 10 

minutes.    
c. Specify the first arrival at time 0: Constant 0 in the First One at field.   
d. Specify the first process as P_Arrive. 

11. Define the load type for initial parts at the workstation at the start of the simulation.  
From the process system menu, select Loads and then select New for a new load 
type.  Name the load L_InitPart.   
a. Next select New Creation to specify the arrival process for loads. 
b. Specify the number of creations to be 3.   
c. Specify the time between arrivals as a constant 0 so all the parts arrive at time 0 
d. Specify the first arrival at time 0: Constant 0 in the First One at field.   
e. Specify the first process as P_Arrive. 
f. Modify P_Depart so that data is not collected on the parts initially in the system, 

where type is a built-in load attribute: if type = L_Part tabulate (ac – 
A_ArriveTime) in T_LeadTime 

12. Specify the length of the run as 168 hours.  Select Run Control and new.  Specify the 
snap (replicate) length as 168 hours. 

13. Save the model.  
14. Export the model:  File/Export   
15. Use the zip utility to create a zip file containing the exported (archive) version of the 

model: Programs/AutoMod/Utilities/Model Zip and select the model archive. 
 
Note:  The exported version of the model is a condensed version of the model suitable for 
sending by email.  This is the version of the model that should be submitted. 
  



 AutoMod-4 

A-4. Tutorial – Model Execution 
 
The model can be run as follows. 
 

1. Select RUN and then RUN MODEL. 
2. The model will be compiled and a new window opened. 
3. In the new window, select CONTROL and CONTINUE to run the simulation. 
4. To make the model run faster, turn off animation:  CNTL-G. 
5. At the end of the run (or during the run), examine the reports for Processes, Queues, 

Resources, and Tables using VIEW and then REPORTS. 
6. Use the information in the reports to obtain verification evidence. 

   
A-5. Tutorial – Modeling Extension 
 
Next close the execution window and return to the model.  Save the model under a new name so 
that the modifications to follow are kept distinct from the original model. 
 
The first modification is to model setup and batching at the workstation using the logic described 
in chapter 6.  First determine the batch size using the computations in chapter 6.  The enter setup 
and batching into the model as follows:  

1. Modify P_Arrive to create a batch.  Whenever the total number of arrivals to P_Arrive 
(P_Arrive total) is a multiple of the batch size, a batch is created.  Thus, when a load 
arrives, test whether or not this condition if met.  The expression:  P_Arrive total % 
V_Batchsize will be zero when a P_Arrive total is a multiple of the batch size.  Recall 
that % is the remainder operator. 
a. If it is NOT met: wait to be ordered on OL_BatchList // hold load on batch list 
b. If it is met: send to P_WSA 

2. Save and exit.  Define the order list OL_BatchList by giving its name and description. 
3. Modify P_WS to process a batch.  Between get R_WS and free R_WS, add the 

following 
a. Wait for the setup time:  wait for 45 min 
b. Use a while <condition> do loop to model processing each item in the batch 

individually 
i. set V_LoopIndex = 0 
ii. while V_LoopIndex < V_BatchSize do 

iii. begin 
iv. wait for RS_WS uniform 7.5, 1.5 min 
v. increment V_LoopIndex by 1 
vi. end 

4. After free R_WS, send each individual load to P_Depart:  
a. order (V_BatchSize-1) loads from OL_BatchList to P_Depart  

5. Save the model. 
 
The second change is to add rework of a part to the model.  This requires a little thought since 
loads in P_WS represent batches not parts.  Here is one way this can be accomplished.  
Incrementing V_LoopIndex means that the part successfully completed.  Thus, incrementing 
V_LoopIndex with the probability of completing a successful part would model part rework. 
 
If RS_Rework uniform 0.5, 0.5 > 0.05 then increment V_LoopIndex by 1  
// 0.05 is the probability that a part needs rework 
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The third change in the model involves a downtime repair cycle.  Your tasks are as follows: 
1. Create a new resource cycle and name it C_Bdown.  Select Resources and then 

New for resource cycles.  Select OK, edit to create the resource cycle. 
2. Select MTTF/MTTR and fill in the required information. 
3. Edit the resource WS to attach the resource cycle. 
4. Save the model.   

 
Follow the directions in IV above to make sure the model works by obtaining verification 
evidence. 

 
A-6. Tutorial – Conducting Experiments with AutoStat 

 
AutoStat is the component of the AutoMod simulation environment that is used to conduct 
simulation experiments.  AutoStat is used after the model is built as well as verified and validated 
using the graphical execution component. 
 
Start AutoStat from the build component menu: RUN, Run AutoStat.  The AutoStat setup wizard 
will ask several questions.  Answers can be modified later by selecting Properties from the menu 
bar.  In answer the setup wizard questions, use the following information. 
 

1. The model is random. 
2. Answer no to the second question. 
3. The model does not require warm-up. 
4. The snap length is 168 hours. 
5. It is fine to have the method of common random numbers as the default method. 

 
Next conduct a simulation experiment as follows: 
 

1. Define a new analysis of type single scenario. 
2. In the pop-up box, give the analysis a name, specify 20 replications. Next select: OK 

do these runs. 
3. Next from the main AutoStat window, select new responses to extract from the 

simulation runs the performance measure statistics of interest.  In this case, select 
the mean lead time.  This is done by choosing Table as the AutoMod entity and mean 
as the statistic of interest.  A name should be specified as well.  This step can be 
repeated for all performance measures of interest, such as utilization and maximum 
lead time. 

4. View the performance measure values by selecting Analyses from the main AutoMod 
window and then the Run Results item under the name of the analysis of interest. 

5. Copy the results to an Excel spreadsheet from the window where the run results are 
displayed.  Select Edit/Copy Entire Table.  In Excel, select Edit / Paste Special / 
Unicode Text.    

 
One through five above should be done for each model, the original workstation model and the 
one with detractors 

 
6. Analyze the simulation results using Excel.  Create three columns:  Replicate number 

(1-20), Lead Time for Original, Lead Time with detractors.  Use the Excel function 
Transpose to place the simulation results in the proper column.  Compute the 
difference in cycle time replicate by replicate in a fourth column.  Compute summary 
statistics and t confidence intervals as appropriate.  Use the Excel function TINV to 
return the appropriate critical values from the Student’s t distribution with n-1 degrees 
of freedom. 
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A-7. Initialization of State Variables 
 
Initialization of state variables, that is setting the value of a counter or a resource capacity 
(number of units of the resource) before the simulation begins, is important in some models.  This 
is accomplished using the model initialization function, which AutoMod automatically executes 
before a model is simulated.  There is at most one model initialization function per model. 
 
A model initialization function is created as follows: 

1. Select Source Files from the Process System panel. 
2. Select New 
3. For name, use logic.m 
4. Select edit to open the editor. 

 
The following example illustrates how to use the model initialization function.  Assume the 
variables have been defined and given initial values in their definitions. 
 

 
begin model initialization function 
 
// Set the value of counter to target inventory value  
// Note the current attribute of the counter must be referenced 
 set C_Inventory current = V_TargetInventory 
  
// Set the capacity of a resource (number of units) to the number of machines at a station 
 set R_Station capacity = V_MachinesAtStation 
 

return true //AutoMod requirement 
end  
 

 
A-8. Creating a Trace File in Comma Separated Value (.csv) Format 
 
Consider the model of a single workstation with no detractors as described in section III above.  
Suppose a trace of all state changes:  from idle to busy as well as from busy to idle is desired.  
This trace is to be written to a user defined comma separated value (.csv) file that can be opened 
in Excel.  In the file, columns are delimited by commas. Every time Excel sees a comma, the 
following information is placed in the next column to the right.  As well, such files can be opened 
in editors, like Notepad, in which the contents of the file including the commas can be seen.  
 
The following example shows how to open .csv file in the model initialization function and write 
the column headers to the file.   
 

begin model initialization function 
 
// open the trace file; note that the variable V_TraceFile is of type file ptr (pointer) 
// by Automod convention, the file will reside in the \arc directory for the model  

open "StateTrace.csv" for writing save result as V_TraceFile 
  

// write the header to the trace file 
 print “Clock, New State” to V_TraceFile  
 

return true //AutoMod requirement 
end  
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Column values can be written in a similar way whenever desired.  For example, the print 
statement to write the state change to busy to the trace file is as follows: 
 
print ac, “, Busy” to V_TraceFile 
 
A-9. Choose between Two Resources 
 
Suppose an operation can be performed by either of two resources, R_MachineA or 
R_MachineB.  The first resource with one unit in the idle state will be used.  If both are available 
R_MachineA will be use.  The following process fragment shows how to accomplish this.  Note 
that A_Machine is load attribute of type resource ptr (resource name). 
 

 
wait until R_MachineA remaining > 0 or R_MachineB remaining > 0  // wait for a machine 
if R_MachineA remaining > 0 then 
begin 
 set A_Machine     = R_MachineA  // Machine A is available 
end 
else 
begin 
 set A_Machine     = R_MachineB // Only Machine B is available 
end 
  
get A_Machine // get selected machine 
wait for 15 min  // perform operation 
free A_Machine // free selected machine 
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Distribution Function Fitting in JMP: Tutorial  
 

B.1 Introduction 
 
JMP is a general purpose data analysis software tool that includes fitting distribution functions to 
data.  This tutorial leads the reader through a data fitting exercise for version 9 of JMP.  Steps of 
the tutorial are shown in italics. 
 
B.2. Procedures for Fitting Data to Distributions 
 
Start up JMP in the usual way for a Windows program.   
 
Select View / JMP Starter 
 
Within JMP Starter, Select New Data Table.   
 
Within New Data Table, Select File / Open to load the file with the data to be fit.  The file is a .txt 
file. The data in the file will appear in a spreadsheet- like table. 
 
Next select Basic from the category column.   
 
Next select Distribution.  Click in the box to the right of: Y, columns.  Then double click on column 
0.  Then select OK. 
 
A box appears containing statistical summaries of the data set.  Examine these carefully. 
 
Next see how well the data fits a normal distribution.  Click the arrow next to the column label 0.  
Select Continuous Fit then normal distribution.  Look at the normal distribution superimposed on 
the histogram. 
 
Next test the fit.  Click the arrow next to Fitted Normal.  Select Goodness of Fit.  Note that the fit 
to a distribution is not adequate.   
 
Let go back and re-examine the data values.  Assume that a zero value represents a no ship 
condition and that we are interest in the distribution of the volume shipped given that shipments 
were made.  Let’s eliminate the zero values and refit the distribution.  Select the first six rows in 
the data table by selecting the row numbers 1 through 6.  Select the arrow next Rows and then 
Exclude / Unexclude. 
 
Repeat the above process for fitting a distribution function to the data. 
 
In addition, repeat all of the above for the gamma distribution.  Which fits better in your opinion, 
the normal or the gamma? 
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