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Abstract 

With the recent discovery of the ubiquity of organic material in tropospheric aerosols, it 

has been postulated that the rates of water evaporation and condensation into the aerosols could 

be affected by thin surfactant films, which could ultimately affect cloud formation.  Nathanson et 

al. have begun to study the effect of water evaporation from sulfuric acid solutions through the 

short-chain surfactant, butanol.  They have found that a nearly full monolayer of butanol fails to 

reduce water evaporation from the acid.  This unexpected result raises many questions about the 

mechanism of water evaporation.  We used molecular modeling to help answer some of these 

questions as it allowed us to examine the trajectory by which a molecule leaves the liquid at the 

molecular level.  We also are able to study this problem under conditions closer to that of the 

troposphere because we are free of certain experimental limitations and we intend to do so in the 

future. 

Introduction 

 Aerosols are tiny droplets of liquid suspended in air. Often times, aerosols will have other 

impurities within them or on them. The lowest layer of the atmosphere is called the troposphere. 

The troposphere is the layer in which the weather occurs. Aerosols that are composed of water 

are a key component in the formation of clouds and are necessary in radiation reflection. [1-7] 

With the recent discovery of organic molecules in the troposphere, experimentation was done to 

determine how the impurities may change the characteristics of the aerosols. The impurities that 

have been found in these aerosols encompass many different types of molecules. Differences in 

the nature of these molecules impact how they will behave within the aerosol. A molecule with a 

polar head and non-polar tail will stay on the surface of the aerosol whereas a salt will dissolve 



and dissociate into its ionic parts within the liquid of the aerosol. [8-11] LaMer et al. studied 

water evaporation from pools of water with a covering of long carbon chained molecules. These 

carbon chains were between twelve and eighteen atoms in length, with a polar head. He 

determined that with a full coverage of surfactant, the rate of evaporation from the aerosol 

decreased by a factor of about 10,000. [12-13] Anticipating that longer chain surfactant 

molecules would not be present in the atmosphere due to photodegradation, Nathanson et al. 

studied evaporation through a surfactant of shorter carbon chains, using vacuum and mass 

spectrometry techniques. He studied the evaporation rate of an aerosol with a full coverage of 

butanol, a four carbon length molecule with a polar head. Due to the nature of his experiment, he 

used a system of supercooled sulfuric acid instead of that of water. This was done to keep the 

evaporation rate of the water very low creating a low vapor pressure above the system of interest 

allowing for precise measurements of how many molecules were evaporating. Nathanson found 

that with a full coverage of butanol, the evaporation rate of the aerosol was the same as a system 

with no butanol coverage. [14] By means of molecular modeling, we are looking at why there is 

no change in the evaporation rate between the two systems of supercooled sulfuric acid. 

   To begin to understand why this was occurring, Lawrence and Gilde first set up a model 

that consisted of water and butanol. Running the simulation for one nanosecond takes about one 

day computing time. In this nanosecond, they observed about zero evaporations occur. Since 

they needed a statistically meaningful number of several hundred instances of evaporation in 

order to calculate a rate, they had to run the simulation another way.  

Since at equilibrium, the rate of evaporation is equal to the rate of condensation, they 

were able to measure the rate of condensation instead, which they were able to do in a much 

more computationally efficient manner. To do so, they introduced a water molecule in the gas 



phase with a random displacement from the surface of the interface and a random velocity and 

allow it to strike the interface. [15] Upon collision with the surface, they anticipated three 

possibilities; condensation, inelastic scattering, and adsorption. Inelastic scattering occurs when a 

molecule collides with the surface of the interface and leaves without spending any significant 

amount of time at the interface; whereas an adsorption is a collision with the interface in which 

the gas phase molecule stays at the surface for an amount of time before finally escaping into the 

gas phase. After running 250 simulations, they obtained the percentages in Table 1. [16] 

 

 

 

 

 

 

 

 

 

 

 



Table 1: The Percent of Condensation, Inelastic Scatter, and Adsorption With Respect to 

the Number of Butanol Molecules at the Interface 

Butanol Condense Inelastic Scatter Adsorption 

0 100 0 0 

8 91 2 7 

18 83 6 11 

32 60 24 16 

50 33 38 28 

72 37 43 20 

98 52 31 17 

 

Looking at Table 1, as expected the more butanol molecules that are on the interface the 

fewer molecules condense. This remains true until there are 72 butanol molecules on the 

interface when they saw that the number of condensations began rising again. This trend remains 

true at the 98 butanol coverage and poses the question of why this occurs. Looking at the 

columns for scatter and adsorption, the more butanol that are placed on the interface the greater 

the number of molecules are seen that either scatter or adsorb until a peak. The peak for 



scattering occurs at the 72 butanol molecule coverage, and the adsorption peaks at 50 butanol 

molecules. For the rest of this discussion we will focus on the condensation percentages because 

through them, we will analogously be looking at the evaporation percentages of the system.  

To understand why at the 72 and 98 butanol coverages the number of condensations 

increases, Lawrence and Gilde looked at how the butanol molecules are laying on the interface. 

By subtracting the position of the tail from the position of the polar head, they obtained a value 

for the height of the butanol. Figure 1 is a graph of the heights of the butanol for each level of 

interface coverage.  

 

 

 

 

 

 

 

 

 

 

 



Figure 1: The Probability of Butanol Heights of Varying Interfaces 

 

 As seen in Figure 1, at low coverages of butanol, the height of the butanol is 

short, as seen in Figure 1, for butanol molecule coverages 8-32. If there is an increase in the 

number of butanol on the interface, there is an increase in the height of the butanol. This tells us 

the more butanol molecules that are placed onto the interface the closer they are placed to one 

another and the straighter they stand. At low butanol coverage the molecules are able to lie flatter 

to the surface due to the low concentration. Looking at the 72 and 98 butanol coverage, the 

average height of the butanol is significantly less than that of the 50 coverage. Also, there are 

more butanol molecules with negative values, and that the negative values become very large. 



This indicates that the butanol molecules form a bilayer after the 50 butanol coverage. This 

would also indicate as to why there are such large negative values for the length of the butanol. 

 

Figure 2: A Butanol Bilayer 

 

Since the bilayer has polar heads that are now sticking out into the gas phase, it is 

conceivable that an incoming water molecule approaching the interface would be attracted to the 

polar heads of the bilayer and may bind to them, never moving down into the bulk of the liquid. 

After determining that the bilayer is the reason for the increase in the number of condensations, 

Lawrence and Gilde analyzed the data again, this time only counting a collision as resulting in a 

condensation if it reached the bulk liquid. Figure 3 shows condensations that made their way all 



the way to the bulk, not just those that did not become trapped in the bilayer. This graph shows 

the trend that they have seen with increasing concentrations of butanol surfactant.   

 

 

Figure 3: Percent Condensation in the Water and Butanol Simulation at Different 

Coverages of Butanol

      
In Figure 3: Percent Condensation in the Water and Butanol Simulation at Different Coverages of Butanol, the black 

circles show the original percent condensation and the red circles show the new percent condensation which focuses 

on the molecules that reach the bulk of the liquid. 

 

Looking back at Figure 1, we estimate a complete monolayer of butanol is obtained at 50 

butanol, as after this point there is a bilayer forming. Regarding the mechanism of condensation, 



they were able to conclude from the simulation that only those molecules that formed a hydrogen 

bond upon hitting the surface managed to condense. 

 Comparing the simulation results to the work of Nathanson et al. is not possible at this 

point due to the differences in their systems. Nathanson studied a supercooled sulfuric acid 

system with a full covering of butanol, while Lawrence and Gilde modeled a system of water 

with a full covering of butanol at room temperature. To better attempt to model Nathanson’s 

experiment, we have now begun to run our simulations using sulfuric acid in the bulk phase of 

water.  

Methods 

To add sulfuric acid to our simulation, we had to determine what concentrations of 

sulfuric acid solutions we were going to work with. Nathanson had studied three different 

concentrations, 60, 64, and 68 percent by weight sulfuric acid in water. When sulfuric acid is 

placed in water, it dissociates into bisulfate and sulfate ions, protonating water into the 

hydroinum species. Using these three concentrations, we then calculated how many molecules of 

bisulfate, sulfate, hydronium, and water would be in the system. [17] 

The classical molecular dynamics simulations were performed using the SPC/E model for 

water [18] and the TraPPE-UA force field (a unified atom model) for the alcohols. [19] In 

addition to the intermolecular interactions described by the SPC/E model, harmonic force 

constants were employed for internal motion. [20] The parameters for the ionic species 

(hydronium, sulfate, and bisulfate) were obtained from various sources. [21-23] In all three 

cases, it was necessary to supplement these models with an intramolecular force field.  To do so, 

we performed electronic structure calculations at the B3LYP/6-311G(d,p) level in which the 



bonds and angles were stretched.  The results of these calculations were fit to find harmonic 

force constants. To find the torsion barrier for rotation of the S-O4 bond, the bond was rotated 

within an electronic structure calculation.  The barrier was found to be 1.043x10
-21

 J. 

Table 2: Force Constants for Hydronium 

Atom Pair Force Constant in Joules / Meters
2
 

H – O  757.07355 

H – H  197.0548 

 

Table 3: Force Constants for Sulfate 

Atom Pair Force Constant in Joules / Meters
2
 

S-O 595.9676 

O-O 238.2084 

  

 

 

 

 

 

 



Figure 3: Numbering Scheme for Bisulfate 

 

 

 

 

 

 

 

 



 

 

Table 4: Force Constants for Bisulfate 

Atom Pair Force Constant in Joules / Meters
2
 

1 – 2  845.5501 

1 – 3 845.5501 

1 – 4  313.7240 

1 – 5  845.5501 

1 – 6  145.7730 

2 – 3 190.4946 

2 – 4  194.1632 

2 – 5  306.2742 

3 – 4  161.0048 

3 – 5 188.4823 

4 – 5  193.4489 

4 – 6  831.4710 

 

Rectangular periodic boundary conditions were applied and the electrostatic forces were 

calculated using the damped shifted force alternative to the Ewald summation as described by 

Fennell and Gezelter. [24-26] The damping parameter, alpha, was 0.2 angstroms to the negative 

one and the cutoff radius was set to 12.3 angstroms (half of the shortest of the box lengths). The 

equations of motion were integrated using the leapfrog algorithm with a time step of 0.5 fs. In all 



cases, the temperature was held constant through velocity scaling at each step. Initially a cubic 

system containing 500 water molecules was prepared in which the box length was chosen such 

that the density of the system would be equal to experimental value at 300 K. Velocities were 

randomly assigned to each atom.  The system was equilibrated for 250 ps.  

To prepare the sulfuric acid interface, the length of the box was extended in one 

dimension (z) to 110 angstroms (about four times the length in the original cubic box). To allow 

the system to reequilibrate after this change, an additional run of 250 ps was performed. For the 

water/surfactant systems, when the original cubic box was extended, a layer of evenly spaced 

alcohol molecules was added to the upper and lower interfaces followed by an equilibration run 

of 250 ps. Simulations were run with surfactant coverage’s of 8, 18, 32, 50, 72, and 98 

molecules.  

After the interfaces were prepared, the scattering simulations were performed by 

introducing water molecules in the vapor region of the system. The velocities of these molecules 

were selected based on the Boltzmann distribution for the translational, rotational, and 

vibrational degrees of freedom. The bonds were also randomly displaced from equilibrium in the 

same manner. [27] Each molecule was randomly placed in the x and y dimensions and positioned 

about 10 angstroms from the interface along the z-axis. When the velocity in that direction was 

assigned to be positive, the molecule approached the lower interface and when the z velocity was 

negative, the molecule approached the upper interface. Once this molecule had collided with 

another (defined by an oxygen-oxygen or oxygen-carbon distance of less than 4 angstroms), the 

simulation continued for an additional 10 ps. At this point, we would return to the original 

equilibrated interface and insert another vapor molecule. For each system, 250 scattering 

trajectories were calculated. 



Results and Discussion 

 From these scattering calculations for the three different concentrations of sulfuric acid, 

we obtained the following data for the condensation percentage. 

Table 5: Percent Condensations at Different Concentrations of Sulfuric Acid and Water 

Through Various Butanol Surfactant Coverages 

Surfactant 

Butanol 

Molecules 

Water 60wt% 64wt% 68wt% 

8 91% 93% 96% 95% 

18 83% 86% 86% 89% 

32 59% 64% 77% 72% 

50 28% 51% 56% 31% 

72 18% 21% 27% 13% 

 

Table 5 shows the results obtained from the 250 runs of the simulation. Nathanson’s 

experiment was conducted with a full monolayer of butanol molecules, thus we will be looking 

at the 50 butanol coverage as this is where a full monolayer of butanol molecules occurs in our 

simulations. Focusing on the 50 butanol coverage, the percent condensation is 51 for the 60 wt% 



sulfuric acid, 56 for the 64 wt% sulfuric acid, and 30 for the 68 wt% sulfuric acid. The average 

percent condensations at the 50 butanol coverage of the acid simulations are significantly higher 

than the 28 % obtained from the water butanol simulation. The value of 30 % for the 68 wt% was 

not double checked and we hypothesize that the percent is actually higher than that based on the 

fact that the rest of the percent condensations do not depend on the acid concentration. 

Nathanson’s experimentally determined value for the rate of evaporation of sulfuric acid 

through a complete monolayer of butanol is about 100% of the rate of evaporation of a bare 

sulfuric acid system. Our preliminary results obtained by the sulfuric acid simulations are closer 

to the experimental value; however, they are still a factor of 2 less.   

After having determined that the condensation percentages were not dependent on the 

concentrations of the sulfuric acid systems, we turned towards the idea of a temperature 

dependency. However, after obtaining nearly the same percentages at 300K as were obtained at 

213K, we were not sure what other cause there might be. We were working toward an 

understanding of this difference when we uncovered an error in some of the parameters used for 

the sulfuric acid simulations. We have since corrected the errors and are currently running the 

new simulations.   

Conclusion 

Preliminary results of the sulfuric acid simulation indicate that the condensation rate 

increases when comparing to the rate obtained by the butanol water simulation. Those 

simulations indicated that the change is not a temperature dependant effect, and as such we are 

unclear in what is causing the change. Next we plan to rerun the sulfuric acid simulations with 

the corrected input values in the program and plan to check if the previous conclusions still hold, 



and if so, we plan to work towards understanding why there is a change between the two 

simulations. 
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