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Abstract

This project has revolved around creating a proof checker in python. This proof checker
checks proofs that are written in the Hilbert-style as seen in the book Understanding Symbolic
Logic by Klenk. It does a reasonably good job, but could also be expanded upon a great
deal. Also, because this was only for a two credit class for one semester there were certain
things that I was not able to do simply due to the fact that my time was limited. I will be
going over what I did during this semester, some of the research that I did, and explaining
some of the basics of formal languages and logic.

1 Introduction

Over the course of the semester I have read from many different books and articles on the subject
of logic and mechanical proof checking. It has been my goal to create my own proof checker
written in my programming language of choice, python. I first would like to say what motivated
me in choosing this topic and what I had hoped to be able to achieve. I will then go over the
basics of propositional and predicate logic, how these two logics are connected and some things
about them that I found interesting. Finally, I will go over the development of the python proof
checker and some screenshots showing what it can be used for.

2 Motivation

My main motivation comes from having read The QED Manifesto. The QED Manifesto is an
anonymous pamphlet written in 1994 and argues for the standardization of mathematical proofs.
This standardization would allow for proofs to be checked for validity in an algorithmic manner
and if some algorithm existed for checking proofs it would follow that they could be checked
mechanically. It has been eighteen years since this paper was written and we are still nowhere
close to having a single standard for mathematical proofs. This is probably due to the lack of
interest in this area. The argument made in The QED Manifesto Revisited is that even if this
could be done it would serve no practical benefit to the mathematical community.

I, however, feel that having a standard that could be used for all proofs could be of great
benefit to the mathematical community. As proofs become more and more complex it becomes
more and more necessary to employ computers. However, programs do not have the same rigour
that is associated with mathematical proofs. The way that programs are now developed revolves
around test cases, which are good enough in most situations, but in some cases bugs still appear.
In order to prove that a program will act in the way that you expect it to you need to provide
proof of this fact. In order to accept the validity of the computer based proof of the four-color
theorem we need to be assured that the program that is running the proof has no bugs. I feel
that the solution to this problem revolves around creating some standard for proofs and using
this standard with proof checkers and proof assistants.

Without a standardization of mathematical proofs and a proof checker that can verify the
validity of these proofs, advances in computer science will be underemployed in solving some of
the tougher problems in mathematics. In the next two sections we will look at how propositional
and predicate logic are defined.

3 Propositional Logic

Before we talk about what propositional logic is, we must first introduce some new terms.
Propositional logic is an example of a formal system. We usually denote formal systems with
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F and because propositional logic is also referred to as zeroth order logic we denote it as F0.
Propositional logic, like all formal systems, contains a formal language L0 and a deductive system
D0. The formal language of propositional logic is propositional calculus and the deductive system
is defined by the axioms within D0. Because propositional logic is made up of these two parts,
we say that F0 = (L0,D0).

3.1 Propositional Calculus

Propositional calculus is the formal language of propositional logic and is denoted L0 as we
have said before. Because L0 is just one element of the set of all formal languages L0 ∈ L.
Propositional calculus is made up of an alphabet and a grammar. This alphabet’s elements are
called letters and these letters are divided up into statement variables, statement constants, and
signs. Statement variables are typically lower case letters such as p, q, and r, while statement
constants are typically written with upper case letters such as A, B, and C. It is also possible
to use something like Px to mean that x is president. The signs in L′

0s alphabet are either
connectives or punctuation. The following is a list of connectives in L0.

∧ conjunction
∨ disjunction
⊃ conditional
:: biconditional
∼ negation
> tautology
⊥ contradiction

The binary connectives are ∧, ∨, ⊃, and ::. The unary connective is ∼. The two nullary
connectives are > and ⊥. There are two punctuation signs in propositional calculus’s alphabet.
These two are ( and ).

In addition to an alphabet, every formal language must have a formal grammar. There are
different ways of expressing the same formal grammar. The only necessary condition for a formal
grammar is that every string of letters is decidedly valid or invalid according to the formal
grammar. Here is the formal grammar of propositional calculus written in Backus-Naur Form
where p is an element the set of statement variables.

< formula > ::= p|>|⊥
< formula > ::=∼< formula >

< formula > ::= (< formula >< op >< formula >)

< op > ::= ∧ | ∨ | ⊃ | ::

3.2 Propositional Logic’s Deductive System

The deductive apparatus used in propositional logic is split into a group of axioms, also called
an axiom schemata, and rules of inference for deriving theorems in this logic. In the case of the
book Understanding Symbolic Logic we are given eight rules of inference and ten replacement
rules. This does not represent a minimal set, because some of these rules of inference can be
derived from others and all of the replacement rules can be proven to be a result of the rules of
inference. An example of a minimal set would be the three axioms Simplification, Frege, and
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Transposition from page 49 of Margaris’ book First order mathematical logic and Hamilton’s
postulated inference rule of propositional calculus from page 73 of Logic for mathematicians.
Margaris’ three axioms can be thought of as assumed tautologies. These three tautologies
make up the following set where ϕ, ψ, and χ are formulas as defined in propositional calculus.
{(ϕ ⊃ (ψ ⊃ ϕ)), ((ϕ ⊃ (ψ ⊃ χ))((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))), ((∼ ϕ ⊃∼ ψ) ⊃ (ψ ⊃ ϕ)} Hamilton’s
postulate is represented in this way on us.metamath.org.

Hypotheses
ϕ
ϕ ⊃ ψ
Assertion
ψ

Margaris’ third axiom is similar to the contraposition replacement rule, but is not a bijection.
One direction of the bijection can be proven from the other and so it is redundant. The other two
axioms are not directly connected to the rules of inference or the replacement rules. Hamilton’s
postulate is the same as the law of inference called Modus Ponens used in Klenk’s book. It is the
only inference rule needed to be a complete deductive system for propositional logic.

While being able to represent propositional logic’s deductive system in a minimalistic manner
has some appeal, it is much harder to work with than what we normally think of as the replacement
rules and the rules of inference. Even though using these axioms means that we do not have a
minimal set, these axioms are much more intuitional and easier to use. That is why I chose to
work with these instead of the ones used on the metamath site.

3.3 Example Propositional Logic Proof

Here is an example proof coming from pages 118 and 119 of Understanding Symbolic Logic. It
illustrates how sentences are symbolized and how a step by step Hilbert-style proof works.

John is weak with a stomach ache. If John is weak, has a stomach ache, and has a rash or
a fever, then he either has food poisoning or mono. If John has food poisoning, then he must
have eaten bean sandwiches at Joe’s. John did not eat bean sandwiches at Joe’s, but instead had
lobster at Max’s. John does not have a rash, but does have a fever. From these statements we
can prove that John has mono.

We start this proof by first assigning letters to each of the simple sentences.
Symbol Simple Sentence
W John is weak.
S John has a stomach ache.
R John has a rash.
F John has a fever.
P John has food poisoning.
M John has mono.
B John ate bean sandwiches at Joe’s.
L John had a lobster at Max’s.

Next we list all of our premises numbering each along the way.
Step Statement Reasoning
1. W · S Premise
2. ((W · S) · (R ∨ F )) ⊃ (P ∨M) Premise
3. P ⊃ B Premise
4. ∼ B · L Premise
5. ∼ R · F/ ∴M Premise
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Each premise is justified simply by being a premise. For the last premise it is common to also say
what it is we are trying to prove which will be our last statement. Next we will use the rules of
inference to prove that John has mono.
Step Statement Reasoning
6. F Simplification 5
7. R ∨ F Addition 6
8. (W · S) · (R ∨ F ) Conjunction 1, 7
9. P ∨M Modus Ponens 2, 8
10. ∼ B Simplification 4
11. ∼ P Modus Tollens 3, 10
12. M Disjunctive Syllogism 9, 11

Each step is justified by one of the rules of inference and so under reasoning we state the rule of
inference being used and the line numbers that are used to satisfy its hypotheses. The rules of
inference are in the appendix which is taken from Understanding Symbolic Logic. For step 9 the
hypotheses are satisfied because ((W ·S) · (R∨F )) ⊃ (P ∨M) (line 2) is a form instance of p ⊃ q
and (W · S) · (R ∨ F ) is a form instance of p where p and q are simple variables. I used this fact
later when putting together a second version of my proof checker. The last statement is M , which
follows directly from the preceding statements which follow from the premises and so we have
shown that John having mono follows from the premises. All together the Hilbert-style proof is
Step Statement Reasoning
1. W · S Premise
2. ((W · S) · (R ∨ F )) ⊃ (P ∨M) Premise
3. P ⊃ B Premise
4. ∼ B · L Premise
5. ∼ R · F Premise
6. F Simplification
6. F Simplification 5
7. R ∨ F Addition 6
8. (W · S) · (R ∨ F ) Conjunction 1, 7
9. P ∨M Modus Ponens 2, 8
10. ∼ B Simplification 4
11. ∼ P Modus Tollens 3, 10
12. M Disjunctive Syllogism 9, 11

4 Predicate Logic

Predicate logic is also a formal system. It is denoted as F1, because it is also called first order
logic. It inherits all of the axioms from propositional calculus, which means that anything that
has been proven for propositional logic is also true for predicate logic. We call the formal language
for F1 predicate calculus. We do not go into the details of it here, but it is important to know that
L0 ⊂ L1 and so everything that is a letter in propositional calculus is also a letter in predicate
calculus. In addition to the letters in L0, predicate calculus has the quantifiers ∀ and ∃. The
grammar for predicate calculus is very similar to propositional calculus, but with additional rules
for ∀ and ∃.
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4.1 Deductive Apparatus

With predicate logic we have all of the axioms and rules of inference from D0. In other words,
D0 ⊂ D1. In addition to the axioms and rules of inference from propositional calculus, we
have Universal Instantiation, Existential Instantiation, Universal Generalization, and Existential
Generalization.

4.2 Example Predicate Logic Proof

A proof in predicate logic works by first taking the terms that are bound by quantifiers and
making them instances. Then we can use the same rules that we used in propositional logic to
make changes to the statements. Finally, we apply the generalization rules to reach our conclusion.
Here is an example proof for some Quakers are ambitious from Understanding Symbolic Logic.

Step Statement Reasoning
1. (x)(Px ⊃ Ax) Premise
2. (∃x)(Px ·Qx) Premise
3. Pa ·Qa Existential Instantiation 2
4. Pa ⊃ Aa Universal Instantiation 1
5. Pa Simplification 2
6. Aa Modus Ponens 4,5
7. Qa Simplification 3
8. Qa ·Aa Conjunction 7,6
9. (∃x)(Qx ·Ax) Existential Generalization 8

5 Proof Checking Program

This was what I spent the majority of my time on this semester. I have made three different
versions of this program.

5.1 Development

My first attempt in checking proofs followed this approach. First, I would break up the text
document that contains a proof into individual lines and put each of these lines a dictionary. The
key for each element in the dictionary would be the line number and the value would be a list
containing the rest of the line broken up by the statement, the reasoning, and the referenced lines.
I would then go through this dictionary line by line, calling the appropriate method according to
the rule being used, and check if this line followed logically from the preceding lines. Although it
worked for the first few rules, this ended up making the code much too difficult to read and so I
scrapped most of it and started over.

My second attempt started with making sure that the methods for applying the rules of
inference were as simple as possible. The simplest way that I could think of was having each
method compare two or three strings, depending on the rule of inference being used, and return a
true or false. The strings themselves would have to confirmed to be well formed formulas using
another method. So, I worked on making some methods that would apply the rules of inference
to strings. I then decided that I needed a quicker way of checking these methods, so I made a
python unittest to go through cases for each of the rules. At this point I still did not have a
method for confirming proofs found in text files so I decided that since I had enough rules of
inference I should probably try that next. The text files are in the following format.

4.\tB\t\tMP 1,2
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The first part is the line number followed by a period and separated from the next element by
at least one tab. This part is actually discarded (its position in the list containing the proof is
sufficient), but it is still a necessary part in writing out the proofs. The next part is the formula.
The third part is separated from the second by at least one tab. The last element is a list of
referenced lines and is separated from the third by a single space. Eventually the references are
replaced by the strings that they reference, the rule of inference becomes the first element, and
the conclusion becomes the last element. The resulting list follows.

[\mp","A->B","A","B"]

The first element of the list is the name of the method called and the last three elements are
arguments for this method. After creating the methods for taking a proof text file, I took some
examples from the book and used them as test cases. I used this same process for the replacement
rules.

I then worked with conditional proofs and indirect proofs (proofs by contradiction). Conditional
proofs can be nested, but one cannot start inside one conditional proof and end outside another.
So, I wrote a method to make sure that the structure of the conditional proof is valid as well as a
method to check the conclusion made by the conditional proof.

Working with predicate logic was much more challenging than propositional logic. For the
universal and existential instantiation and generalization rules, you have to keep track of flagged
variables. I did this using a dictionary to make sure that flagged variables always referred to the
same thing. If a single flagged variable references to different things, you can easily make invalid
proofs such as all integers are odd and even.

After making my second version of the proof checker, I realized that the programs code
could be shortened a great deal if I made a single general method for all of the inference and
replacement rules. What this general method does is check that each statement being referenced
and the conclusion is a form instance of the hypotheses and conclusion of the rule of inference
or replacement rule being used. With this one method (named confirm) I was able to reduce
each of the methods for the reference rules to a single call to the confirm method. For this third
version of the program, I also split the program into classes to form a more logical structure.
There is a predicate class which inherited from the propositional class. There is also a class that
stores the parts of each wff. Its attributes include the main operator, the wff to the left of the
main operator, and the wff to the right of the main operator. There is a class that checks the
validity of the proof as well as stores all of the problems with it. Unfortunately, I had not yet
refactored all of the parts for the predicate logic before the deadline and so the third version is
still incomplete. It is however much more concise and easier to read than the second version.
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5.2 Screenshots

6 Conclusion

When I first started this project I had hoped that I would be able to come up with some useful
application for it in Mathematics. Computer algebra systems may be the closest fit for this. A
logic system embedded into one of these programs that could confirm that a method will produce
the correct output could be useful for a project like Mathics which attempts to mimic some of
Mathematica’s functionality.
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Rules of Inference
Modus Ponens (M.P.)

p ⊃ q
p

/ ∴ q

Modus Tollens (M.T.)
p ⊃ q
∼ q
/ ∴∼ p

Hypothetical Syllogism (H.S.)
p ⊃ q
q ⊃ r

/ ∴ p ⊃ r

Simplification (Simp.)
p · q
/ ∴ p

p · q
/ ∴ q

Conjunction (Conj.)
p
q

/ ∴ p · q

Dillemma (Dil.)
p ⊃ q
r ⊃ s
p ∨ r

/ ∴ q ∨ s

Disjunctive Syllogism (D.S.)
p ∨ q
∼ p
/ ∴ q

p ∨ q
∼ q
/ ∴ p

Addition (Add.)
p

/ ∴ p ∨ q
q

/ ∴ p ∨ q

Replacement Rules
Double Negation (D.N.)

p ::∼∼ p
Duplication (Dup.)

p :: (p ∨ p)
p :: (p · p)

Commutation (Comm.
(p ∨ q) :: (q ∨ p)
(p · q) :: (q · p)

Association (Assoc.)
((p ∨ q) ∨ r) :: (p ∨ (q ∨ r))

((p · q) · r) :: (p · (q · r))

Contraposition (Contrap.)
(p ⊃ q) :: (∼ q ⊃∼ p)

DeMorgan’s (DeM.)
∼ (p ∨ q) :: (∼ p· ∼ q)
∼ (p · q) :: (∼ p∨ ∼ q)

Biconditional Exchange (B.E.)
(p ≡ q) :: ((p ⊃ q) · (q ⊃ p))

Conditional Exchange (C.E.)
(p ⊃ q) :: (∼ p ∨ q)

Distribution (Dist.)
(p · (q ∨ r)) :: ((p · q) ∨ (p · r))
(p ∨ (q · r)) :: ((p ∨ q) · (p ∨ r))

Exportation (Exp.)
((p · q) ⊃ r) :: (p ⊃ (q ⊃ r))
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Statement of the Quantifier Rules, with all
Necessary Restrictions

A. Preliminary Definitions

1. φx is a propositional function of x, simple or complex. If complex, it is assumed that it is
enclosed in parentheses, so that the scope of any prefixed quantifier extends to the end of
the formula.

2. φa is a formula just like φx, except that every occurrence of x in φx has been replaced by
an a.

3. An instance of a general formula is the result of deleting the initial quantifier and replacing
each variable bound by that quantifier uniformly with some name.

4. An a-flagged subproof is a subproofthat begins with the words ”flag a” and ends with some
instance containing a.

B. The Four Quantifier Rules

Universal Instantiation (U.I.)
(x)φx
/ ∴ φa

Existential Instantiation (E.I.)
(∃x)φx
/ ∴ φa

provided we flag a

Universal Generalization (U.G.)

flag a

·
·
·

φa

(x)φx/ ∴

Existential Generalization (E.G.)
φa

/ ∴ (∃x)φx

C. Flagging Restrictions

1. A letter being flagged must be new to the proof; that is, it may not appear, either in a
formula or as a letter being flagged, previous to the step in which it gets flagged.

2. A flagged letter may not appear either in the premises or in the conclusion of a proof.

3. A flagged letter may not appear outside the subproof in which it gets flagged.
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7 Prop.py

The script prop.py contains the main program which is split up into three parts.

7.1 Rules of Inference

The rules of inference make up the axioms of zeroth order logic and are implemented before
everything else.

#!/usr/bin/python
import re
from pyparsing import Literal,Word,ZeroOrMore,Forward,nums,oneOf,Group,srange

class Prop():
def __init__(self):

pass
self.flagset = set()

#The following two methods define wffs and check them in the proof.
def syntax(self):

op = oneOf( ’\\/ -> * ::’)
lpar = Literal(’(’)
rpar = Literal( ’)’ )
statement = Word(srange(’[A-Z]’),srange(’[a-z]’))
expr = Forward()
atom = statement | lpar + expr + rpar
expr << atom + ZeroOrMore( op + expr )
expr.setResultsName("expr")
return expr

def confirm_wff(self, form1):
expr = self.syntax()
form1 = self.strip_form(form1)
try:

result = ’’.join(list(expr.parseString(form1)))
except:

result = None
return result == form1

#Rules of inference.
def mp(self, form1, form2, form3):

"""
Checks for the correct use of Modus Ponens.
Both A->B,A,B and A,A->B,B are valid.
"""
return (self.__mp_one_way(form1, form2, form3) or

self.__mp_one_way(form2, form1, form3))

def __mp_one_way(self, form1, form2, form3): #Modus Ponens
"""
The first formula is split up and compared to the
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other two formulas.
"""

a = self.split_form(form1)

try:
return (a[2] == ’imp’ and

self.strip_form(form2) == a[0] and
self.strip_form(form3) == a[1])

except:
return False

def mt(self, form1, form2, form3):
return (self.__mt_one_way(form1, form2, form3) or

self.__mt_one_way(form2, form1, form3))

def __mt_one_way(self, form1, form2, form3): # Modus Tollens
"""
The first formula is split and compared to the other
two.
"""

a = self.split_form(form1)

strip2 = self.strip_form(form2)
strip3 = self.strip_form(form3)

try:
return (a[2] == ’imp’ and

strip2[0] == ’˜’ and
strip3[0] == ’˜’ and
a[0] == self.strip_form(strip3[1:]) and
a[1] == self.strip_form(strip2[1:])
)

except:
return False

def hs(self, form1, form2, form3):
return (self.__hs_one_way(form1, form2, form3) or

self.__hs_one_way(form2, form1, form3))

def __hs_one_way(self, form1, form2, form3): #Hypothetical Syllogism
"""
All three formulas are split and compared to one another.
"""
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(form3)

try:
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return (a[2] == ’imp’ and
b[2] == ’imp’ and
c[2] == ’imp’ and
a[0] == c[0] and
a[1] == b[0] and
b[1] == c[1])

except:
return False

def simp(self, form1, form2): #Simplification
"""
The first formula is split and compared to the
second.
"""

a = self.split_form(form1)
strip2 = self.strip_form(form2)

try:
return (a[2] == ’and’ and

(a[0] == strip2 or
a[1] == strip2)

)

except:
return False

def conj(self, form1, form2, form3): #Conjunction
"""
Conjunction uses the simplification method to
validate that form1 is a simplification of form3
and form2 is a simplification of form3.
"""
return self.simp(form3,form1) and self.simp(form3,form2)

def dil(self, form1, form2, form3, form4):
return (self.__dil_one_way(form1, form2, form3, form4) or

self.__dil_one_way(form1, form3, form2, form4) or
self.__dil_one_way(form2, form1, form3, form4) or
self.__dil_one_way(form2, form3, form1, form4) or
self.__dil_one_way(form3, form1, form2, form4) or
self.__dil_one_way(form3, form2, form1, form4))

def __dil_one_way(self, form1, form2, form3, form4): #Dilemma
tup1 = self.split_form(form1)
tup2 = self.split_form(form2)
tup3 = self.split_form(form3)
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tup4 = self.split_form(form4)

return ((tup1[2], tup2[2], tup3[2], tup4[2]) == (’imp’,’imp’,’or’,’or’)
and {tup3[0],tup3[1]} == {tup1[0],tup2[0]}
and {tup4[0],tup4[1]} == {tup1[1],tup2[1]})

def ds(self, form1, form2, form3):
return (self.__ds_one_way(form1, form2, form3) or

self.__ds_one_way(form2, form1, form3))

def __ds_one_way(self, form1, form2, form3): #Disjunctive Syllogism

try:

a = self.split_form(form1)
b = self.split_form(form2)
c = self.strip_form(form3)

return ((a[2] == ’or’ and
b[1] == ’neg’) and
((a[0] == b[0] and
a[1] == c)
or

(a[1] == b[0] and
a[0] == c)
))

except:
return False

def add(self, form1, form2): #Addition

a = self.split_form(form2)
strip1 = self.strip_form(form1)

try:
return (a[2] == ’or’ and

(a[0] == strip1 or a[1] == strip1))

except:
return False

7.2 Replacement Rules

The replacement rules can be derived from the axioms of zeroth order logic. We implement these
rules in this next block of code.

#Replacement Rules
def dn(self, form1, form2): #Double Negation

return ((form1[:2] == ’˜˜’ and
self.strip_form(form1[2:]) == self.strip_form(form2))
or
(form2[:2] == ’˜˜’ and
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self.strip_form(form2[2:]) == self.strip_form(form1))
)

def dup(self, form1, form2):
return (self.__dup1(form1, form2) or

self.__dup1(form2, form1))

def __dup1(self, form1, form2): #Duplication
a = self.split_form(form2)

return (self.conj(form1, form1, form2) or(
self.add(form1, form2) and
a[0] == a[1]))

def comm(self, form1, form2): #Commutation

a = (self.find_main_op(form1)[0], self.find_main_op(form1)[1],
self.find_main_op(form2)[1])

return ((a[1],a[2]) in [(’or’,’or’),(’and’,’and’)] and
form1[a[0]+1:] + form1[a[0]] + form1[:a[0]] == form2)

def assoc(self,form1, form2): #Association
"""
First we will decide which way the association rule is applied.
Then we will apply it and finally we will decide if
it is valid.
"""

a = self.split_form(form1)

try:
if a[2] == ’or’:

return self.assocor(form1,form2)
else:

return self.assocand(form1,form2)
except:

return False

def assocor(self, form1, form2):

try:
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[0])
d = self.split_form(b[1])

if (a[1] == d[1] and
b[0] == c[0] and
c[1] == d[0] and
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(a[2],b[2],c[2],d[2]) ==
(’or’,’or’,’or’,’or’)):

return True

except:
pass

try:
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[1])
d = self.split_form(b[0])

if (a[0] == d[0] and
b[1] == c[1] and
c[0] == d[1] and
(a[2],b[2],c[2],d[2]) ==
(’or’,’or’,’or’,’or’)):

return True

except:
pass

return False

def assocand(self, form1, form2):

try:
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[0])
d = self.split_form(b[1])

if (a[1] == d[1] and
b[0] == c[0] and
c[1] == d[0] and
(a[2],b[2],c[2],d[2]) ==
(’and’,’and’,’and’,’and’)):

return True

except:
pass

try:
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[1])
d = self.split_form(b[0])
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if (a[0] == d[0] and
b[1] == c[1] and
c[0] == d[1] and
(a[2],b[2],c[2],d[2]) ==
(’and’,’and’,’and’,’and’)):

return True

except:
pass

return False

def contra(self, form1, form2):
return (self.__contra1(form1, form2) or

self.__contra1(form2, form1))

def __contra1(self, form1, form2): #Contraposition

a = self.split_form(form1)
b = self.split_form(form2)

try:
return (self.strip_form(b[0][1:]) == a[1] and

self.strip_form(b[1][1:]) == a[0] and
a[2] == ’imp’ and
b[2] == ’imp’)

except:
return False

def dem(self, form1, form2):

return (self.__dem1(form1, form2) or
self.__dem1(form2, form1))

def __dem1(self, form1, form2): #DeMorgan’s
try:

split_form1 = self.split_form(form1)
split_form2 = self.split_form(form2)
if split_form1[1] != ’neg’:

return False
split_form1 = self.split_form(split_form1[0])
if split_form1[2] == ’and’:

return self.__demand(split_form1, split_form2)
else:

return self.__demor(split_form1, split_form2)

except:
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return False

def __demor(self, split_form1, split_form2):
a = split_form1
b = split_form2

try:
return (’˜’ + a[0] == b[0] and

’˜’ + a[1] == b[1] and b[2] == ’and’)

except:
return False

def __demand(self, split_form1, split_form2):

a = split_form1
b = split_form2

try:
return (’˜’ + a[0] == b[0] and

’˜’ + a[1] == b[1] and b[2] == ’or’)

except:
return False

def be(self, form1, form2):
try:

return (self.__be1(form1, form2) or
self.__be1(form2, form1))

except:
return False

def __be1(self, form1, form2):
a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(b[0])
d = self.split_form(b[1])

return (a[2] == ’equiv’ and
b[2] == ’and’ and
c[2] == ’imp’ and
d[2] == ’imp’ and
a[0] == c[0] and
a[0] == d[1] and
a[1] == c[1] and
a[1] == d[0]
)

def ce(self, form1, form2):

try:
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return (self.__ce1(form1, form2) or
self.__ce1(form2, form1))

except:
return False

def __ce1(self, form1, form2):
a = self.split_form(form1)
b = self.split_form(form2)

return (a[2] == ’imp’ and
b[2] == ’or’ and
’˜’ + a[0] == b[0] and
a[1] == b[1])

def dist(self, form1, form2):
try:

return (self.__dist1(form1, form2) or
self.__dist1(form2, form1))

except:
return False

def __dist1(self, form1, form2):

try:

a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[1])
d = self.split_form(b[0])
e = self.split_form(b[1])

if a[2] == ’and’:
return self.__distand(a,b,c,d,e)

else:
return self.__distor(a, b, c, d, e)

except:
return False

def __distand(self,a,b,c,d,e):
try:

return (a[2] == ’and’ and
b[2] == ’or’ and
c[2] == ’or’ and
d[2] == ’and’ and
e[2] == ’and’ and
a[0] == d[0] and
c[0] == d[1] and
c[1] == e[1] and
d[0] == e[0]
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)

except:
return False

def __distor(self,a,b,c,d,e):
try:

return (a[2] == ’or’ and
b[2] == ’and’ and
c[2] == ’and’ and
d[2] == ’or’ and
e[2] == ’or’ and
a[0] == d[0] and
c[0] == d[1] and
c[1] == e[1] and
d[0] == e[0]
)

except:
return False

def exp(self, form1, form2): #Exportation
try:

return (self.__exp1(form1, form2) or
self.__exp1(form2, form1))

except:
return False

def __exp1(self, form1, form2):
try:

a = self.split_form(form1)
b = self.split_form(form2)
c = self.split_form(a[0])
d = self.split_form(b[1])

return (a[2] == ’imp’ and
b[2] == ’imp’ and
c[2] == ’and’ and
d[2] == ’imp’ and
a[1] == d[1] and
b[0] == c[0] and
c[1] == d[0])

except:
return False
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7.3 Conditional Proof

This next block of code implements conditional proofs for zeroth order logic. It is the last thing
we implement for zeroth order logic before moving on to first order logic.

#Conditional proof methods and structural checks.
def cp(self, form1, form2, form3):

a = self.split_form(form3)
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)

return (form1 == a[0] and
form2 == a[1] and
a[2] == ’imp’)

def ip(self, form1, form2, form3):
form1 = self.strip_form(form1)
form3 = self.strip_form(form3)
return (self.__is_contradiction(form2) and

(form1 == ’˜’ + form3 or
form3 == ’˜’ + form1 or
form1 == ’˜(’ + form3 + ’)’ or
form3 == ’˜(’ + form1 + ’)’))

def __is_contradiction(self,form1):
a = self.split_form(form1)
try:

return (a[2] == ’and’ and
(a[0] == ’˜’ + a[1] or
a[1] == ’˜’ + a[0] or
a[0] == ’˜(’ + a[1] + ’)’ or
a[1] == ’˜(’ + a[0] + ’)’))

except:
return False

def confirm_structure(self, ip, refs):
for tuple1 in refs:

if not len(tuple1) == 1:
lst1 = []

for tuple2 in ip:
# if the line number is outside the scope of
# an assumption we must be cautious
if tuple1[0] > tuple2[1]:

lst1.append(tuple2)
for ref in tuple1[1:]:

if self.__is_between(ref,lst1):
return False

return True

def __is_between(self,ref,lst1):
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if lst1:
for range1 in lst1:

if (ref <= range1[1] and
ref >= range1[0]):
return True

return False

def ip_do_not_cross(self,lst1):
lst2 = []
for element in lst1:

if (element[1] == ’assp’ or
element[1] == ’fs’):
lst2.append(element[0])

if element[1] in (’ip’,’cp’, ’ug’):
x = lst2.pop()
if not element[2] == x:

return False
return not bool(lst2)

7.4 Predicate Logic

Next we implement the rules of first order logic UG, EG, UI, and EI.

#Predicate Logic Methods

def ui(self, form1, form2):

try:
dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[1]
form1 = form1[4:-1]
for i in range(len(form1)):

if form1[i] == var:
if not dict1.has_key(var):

dict1[var] = form2[i]
else:

return re.sub(var,dict1[var],form1) == form2

except:
return False

def eg(self, form1, form2):

try:
dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[8]
form2 = form2[11:-1]
for i in range(len(form2)):
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if form2[i] == var:
if not dict1.has_key(var):

dict1[var] = form1[i]
else:

return re.sub(var,dict1[var],form2) == form1

except:
return False

def ei(self, form1, form2):
try:

dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[8]
form1 = form1[11:-1]
for i in range(len(form1)):

if form1[i] == var:
if not dict1.has_key(var):

dict1[var] = form2[i]
break

if dict1[var] not in self.flagset and re.sub(var,dict1[var],form1) == form2:
self.flagset.add(dict1[var])
return True

except:
return False

def ug(self, flag, form1, form2): #Universal Generalization
"""
This method compares the flagged variable, the first
formula in the Universal Generalization subproof and
the conclusion to the subproof. The flagged variable
is discarded if the proof is valid.
"""
try: #Anything that goes wrong here means that something is incorrect.

form1 = self.strip_form(form1) #Get rid of access space
form2 = self.strip_form(form2)
var = form2[1]
form2 = form2[4:-1]
bool1 = bool(re.sub(var,flag,form2) == form1)
if bool1:

self.flagset.discard(flag) #Once the ug subproof is complete flagged variable can be used again.
return True

else:
return False

except:
return False

def fs(self, flag):

try:
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bool1 = bool(flag not in self.flagset)
if bool1:

self.flagset.add(flag)
return True

else:
return False

except:
return False

7.5 Quantifier Negation

In this next block we implement the quantifier negation rules.

#QN Rules

def qn1(self, form1, form2):
return (self.__qn1oneway(form1, form2) or

self.__qn1oneway(form2, form1))

def __qn1oneway(self, form1, form2):

try:

form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[2]

return (form1[0:4] == ’˜(’+var+’)’ and
form2[0:10] == "(\\exists" + var + ")" and
self.split_form(’˜’ + form1[4:]) == self.split_form(form2[10:]))

except:
return False

def qn2(self, form1, form2):
try:

return (self.__qn2oneway(form1, form2) or
self.__qn2oneway(form2, form1))

except:
return False

def __qn2oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[1]
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return (form1[0:11] == ’˜(\\exists’+var+’)’ and
self.split_form(’˜(’+form1[11:]+’)’) == self.split_form(form2[3:])
and
form2[0:3] == ’(’+var+’)’)

except:
return False

def qn3(self, form1, form2):
return (self.__qn3oneway(form1, form2) or

self.__qn3oneway(form2, form1))

def __qn3oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[2]

return (form1[0:4] == ’˜(’+var+’)’ and
form2[0:10] == ’(\\exists’+var+’)’ and
self.split_form(form1[4:]) == self.split_form(’˜(’+form2[10:]+’)’))

except:
return False

def qn4(self, form1, form2):
return (self.__qn4oneway(form1, form2) or

self.__qn4oneway(form2, form1))

def __qn4oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[1]

return (form1[0:11] == ’˜(\\exists’+var+’)’ and
self.split_form(form1[11:]) == self.split_form(’˜(’+form2[3:]+’)’)
and
form2[0:3] == ’(’+var+’)’)

except:
return False

7.6 Utilities

Finally, we have some methods that are used at various parts in the program to make things
easier.
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#Utilities used by above methods.
def strip_form(self, form):

form = re.sub(’ ’,’’,form)
depth = 0
for i,char in enumerate(form):

if char == ’(’:
depth += 1

if char == ’)’:
depth -= 1

if depth == 0 and i == len(form) -1 and len(form) > 1:
return self.strip_form(form[1:-1])

elif depth == 0:
break

return form

def find_main_op(self, form):
"""
Takes a stripped formula as an argument. Not used
directly. Used as a helper function to split_form.
"""
subdepth = 0

try:
for i, char in enumerate(form):

if char == ’(’:
subdepth += 1

if char == ’)’:
subdepth -= 1

if char == ’*’ and subdepth == 0:
return (i, ’and’)

if char == ’\\’ and subdepth == 0:
if form[i+1] == ’/’:

return (i, ’or’)
if char == ’:’ and subdepth == 0:

if form[i+1] == ’:’:
return (i, ’equiv’)

if char == ’-’ and subdepth == 0:
if form[i+1] == ’>’:

return (i, ’imp’)

if form[0] == ’˜’:
return (0, ’neg’)

except:
pass

def split_form(self, form):
"""
Splits a formula up into a tuple where the first element is the
first part of the formula before the main operator, the second
element is the second part of the formula after the main operator,
and the third is the name of the main operator.
"""
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form = self.strip_form(form)
a = self.find_main_op(form)

#checks for None
if not a:

return None

if a[1] == ’neg’:
return (self.strip_form(form[1:]), ’neg’)

if a[1] in [’or’,’imp’,’equiv’]:
tuple1 = (self.strip_form(form[:a[0]]), self.strip_form(form[a[0]+2:]),

a[1])

else:
tuple1 = (self.strip_form(form[:a[0]]), self.strip_form(form[a[0]+1:]),

a[1])

return tuple1

#The following methods control the entire checking process.
def confirm_validity(self, file1):

lst1,ip,refs = self.proof_to_list(file1)
lst2 = []

for element in lst1:
lst2.append(self.test(element))

return (all(lst2) and
self.confirm_structure(ip, refs)
and
self.ip_do_not_cross(lst1))

def confirm_validity_string(self, file1):
str1 = ("There is a problem with the " +

"following lines: ")
lst1,ip,refs = self.proof_to_list(file1)
lst2 = []
for element in lst1:

lst2.append(self.test(element))
if all(lst2):

return "Proof is valid."
else:

for i,elem in enumerate(lst2):
if elem == False:

str1 += str(i+1) + ", "
return str1[:-2]

def test(self, lst1):
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lst1[1]
lst2 = []

if lst1[0] == ’return False’:
return False

if not (lst1[1] == ’pr’ or lst1[1] == ’assp’
or lst1[1] == ’fs’):

str1 = "self." + lst1[1] + "(*lst2)"
for x in lst1[2:]:

lst2.append(x)
lst2.append(lst1[0])
try:

return eval(str1)
except:

return False

return True

def proof_to_list(self, file1):
lst1 = []
lst3 = []
for line in file1:

line = line.rstrip()
line = re.sub(r"\t+","\t",line)
line = re.sub(r"\.\t+","\t",line)
lst2 = line.split("\t")
if len(lst2) == 3:

lst2 = lst2[1:]
lst2 = self.convert1(lst2)
lst1.append(lst2)

elif re.sub(r"\s+","",lst2[0]):
lst1.append([’return False’,’return False’])

ip = self.__ip(lst1)
refs = self.__refs(lst1)

for element in lst1:
lst2 = self.convert2(element, lst1)
lst2[1] = lst2[1].lower()
lst3.append(lst2)

return (lst3,ip,refs)

def __refs(self,lst1):
lst2 = []
for i,element in enumerate(lst1):

if (not isinstance(element[-1],int)
or
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element[-3].lower() in (’cp’,’ip’,’ug’)):

lst2.append((i+1,))

elif not isinstance(element[-2],int):
lst2.append((i+1,element[-1]))

else:
lst2.append((i+1,element[-2],element[-1]))

return lst2

def __ip(self,lst1):
lst2 = []
for element in lst1:

try:
if element[1].lower() in (’cp’,’ip’,’ug’):

lst2.append((element[-2],element[-1]))
except:

pass
return lst2

def flatten(self, x):
result = []
for el in x:

if hasattr(el, "__iter__") and not isinstance(el, basestring):
result.extend(self.flatten(el))

else:
result.append(el)

return result

def convert1(self, lst1):
lst1[1] = lst1[1].split(’ ’)
try:

lst1[1][1] = lst1[1][1].split(’,’)
except:

pass

lst1 = self.flatten(lst1)

if len(lst1) > 2:
for i, x in enumerate(lst1[2:]):

lst1[i + 2] = int(x)

return lst1

def convert2(self, lst1, lst2):
if not len(lst1) == 2: #Not a premise or assumption.

for i, x in enumerate(lst1[2:]):
lst1[i+2] = lst2[x - 1][0]

return lst1
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def prompt_for_file(self):
filename = raw_input("Please enter the name of the file to be checked: ")
return open(filename, ’r’)

8 Unit Tests

The unit tests are split up in a way similar to the main program prop.py. The order of the
tests that are done is the same order as how they were implemented in prop.py.

#!/usr/bin/python
import unittest
from prop import Prop
class TestProp(unittest.TestCase):

def setUp(self):
self.prop = Prop()
self.expr = self.prop.syntax()

#Tests for the Rules of Inference

def test_mp(self):
self.assertTrue(self.prop.mp("(A\\/B)->˜C","A\\/B","˜C"))
self.assertTrue(self.prop.mp("A\\/B","(A\\/B)->˜C","˜C"))
self.assertTrue(self.prop.mp("(A\\/B)->˜C","A\\/B","˜C"))
self.assertFalse(self.prop.mp("(A\\/B)->C","A\\/B","˜C"))
self.assertFalse(self.prop.mp("A","A\\/B","˜C"))

def test_mt(self):
self.assertTrue(self.prop.mt("Za->(Ha*Wa)","˜(Ha*Wa)","˜Za"))
self.assertFalse(self.prop.mt("Za->(Ha*Wa)","Ha*Wa","˜Za"))
self.assertFalse(self.prop.mt("Za","Ha*Wa","˜Za"))

def test_hs(self):
self.assertTrue(self.prop.hs("(A\\/B)->(C*D)","(C*D)->(˜E*F)","(A\\/B)->(˜E*F)"))
self.assertTrue(self.prop.hs("(A\\/B)->(D)","(D)->(˜E*F)","(A\\/B)->(˜E*F)"))
self.assertTrue(self.prop.hs("(A\\/B)->D","(D)->(˜E*F)","(A\\/B)->(˜E*F)"))
self.assertFalse(self.prop.hs("(A\\/B)*(D)","(D)->(˜E*F)","(A\\/B)->(˜E*F)"))
self.assertFalse(self.prop.hs("(A)","(D)->(˜E*F)","(A\\/B)->(˜E*F)"))

def test_simp(self):
self.assertFalse(self.prop.simp("(A\\/B)->˜C", "˜C"))
self.assertFalse(self.prop.simp("(A\\/B)*˜C", "C"))
self.assertTrue(self.prop.simp("(A\\/B)*˜C", "˜C"))

def test_conj(self):
self.assertTrue(self.prop.conj("A\\/B","˜(C->D)","(A\\/B)*˜(C->D)"))
self.assertFalse(self.prop.conj("A","B","A*B*C"))

def test_dil(self):
self.assertTrue(self.prop.dil("((A\\/B)->C)->(D\\/F)","(F::G)->(A->F)",
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"((A\\/B)->C)\\/(F::G)","(D\\/F)\\/(A->F)"))
self.assertTrue(self.prop.dil("(F::G)->(A->F)","((A\\/B)->C)->(D\\/F)",

"((A\\/B)->C)\\/(F::G)","(D\\/F)\\/(A->F)"))

def test_ds(self):
self.assertTrue(self.prop.ds("(˜A\\/(B->C))\\/˜D","˜(˜A\\/(B->C))","˜D"))
self.assertTrue(self.prop.ds("(˜A\\/(B->C))\\/˜D","˜(˜D)","(˜A\\/(B->C))"))
self.assertFalse(self.prop.ds("(˜A\\/(B->C))\\/˜D","(˜D)","(˜A\\/(B->C))"))
self.assertFalse(self.prop.ds("A","(˜D)","(˜A\\/(B->C))"))
self.assertTrue(self.prop.ds("˜(B\\/C)\\/˜(A*D)", "˜˜(A*D)", "˜(B\\/C)"))
self.assertTrue(self.prop.ds("˜(B\\/C)\\/˜(A\\/D)", "˜˜(A\\/D)", "˜(B\\/C)"))

def test_add(self):
self.assertTrue(self.prop.add("(A->B)","(A->B)\\/C"))
self.assertTrue(self.prop.add("((((A\\/B)\\/C)\\/D)\\/E)\\/F","(((((A\\/B)\\/C)\\/D)\\/E)\\/F)\\/G"))
self.assertFalse(self.prop.add("(B)","(A)"))

#Tests for the Replacement Rules
def test_dn(self):

self.assertTrue(self.prop.dn("A","˜˜A"))
self.assertTrue(self.prop.dn("˜˜A","A"))
self.assertTrue(self.prop.dn("˜˜(A->(B*C))","A->(B*C)"))

def test_dup(self):
self.assertTrue(self.prop.dup("A","A*A"))
self.assertTrue(self.prop.dup("A","A\\/A"))
self.assertTrue(self.prop.dup("A*A","A"))
self.assertTrue(self.prop.dup("A\\/A","A"))

def test_comm(self):
self.assertTrue(self.prop.comm("E*F","F*E"))
self.assertTrue(self.prop.comm("E*(F->G)","(F->G)*E"))

def test_assoc(self):
self.assertTrue(self.prop.assoc("(A*B)*C","A*(B*C)"))
self.assertTrue(self.prop.assoc("A*(B*C)","(A*B)*C"))
self.assertTrue(self.prop.assoc("(A*B)*(C->D)","A*(B*(C->D))"))
self.assertTrue(self.prop.assoc("(A*B)*(C*D)","A*(B*(C*D))"))
self.assertTrue(self.prop.assoc("(A\\/B)\\/C","A\\/(B\\/C)"))
self.assertFalse(self.prop.assoc("",""))

def test_assocand(self):
self.assertTrue(self.prop.assocand("(A*B)*C","A*(B*C)"))
self.assertTrue(self.prop.assocand("A*(B*C)","(A*B)*C"))
self.assertTrue(self.prop.assocand("(A*B)*(C->D)","A*(B*(C->D))"))

def test_assocor(self):
self.assertTrue(self.prop.assoc("(A\\/B)\\/C","A\\/(B\\/C)"))
self.assertFalse(self.prop.assoc("(A\\/B)*C","A\\/(B\\/C)"))

def test_contra(self):
self.assertTrue(self.prop.contra("A->B","˜B->˜A"))
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self.assertTrue(self.prop.contra("˜B->˜A","A->B"))
self.assertFalse(self.prop.contra("",""))

def test_dem(self):
self.assertTrue(self.prop.dem("˜(A*B)","˜A\\/˜B"))
self.assertTrue(self.prop.dem("˜(A\\/B)","˜A*˜B"))
self.assertTrue(self.prop.dem("˜A\\/˜B","˜(A*B)"))
self.assertTrue(self.prop.dem("˜A*˜B","˜(A\\/B)"))
self.assertFalse(self.prop.dem("",""))

def test_be(self):
self.assertTrue(self.prop.be("A::B","((A->B)*(B->A))"))
self.assertTrue(self.prop.be("((A->B)*(B->A))","A::B"))
self.assertFalse(self.prop.be("",""))

def test_ce(self):
self.assertTrue(self.prop.ce("A->B","˜A\\/B"))
self.assertTrue(self.prop.ce("˜A\\/B","A->B"))
self.assertFalse(self.prop.ce("",""))

def test_dist(self):
self.assertTrue(self.prop.dist("A*(B\\/C)","(A*B)\\/(A*C)"))
self.assertTrue(self.prop.dist("Ax*(By\\/Cz)","(Ax*By)\\/(Ax*Cz)"))
self.assertTrue(self.prop.dist("(A*B)\\/(A*C)","A*(B\\/C)"))
self.assertTrue(self.prop.dist("A\\/(B*C)","(A\\/B)*(A\\/C)"))
self.assertFalse(self.prop.dist("",""))

def test_exp(self):
self.assertTrue(self.prop.exp("(A*B)->C","A->(B->C)"))
self.assertTrue(self.prop.exp("A->(B->C)","(A*B)->C"))
self.assertFalse(self.prop.exp("",""))

#Predicate Logic Methods

def test_ui(self):
self.assertTrue(self.prop.ui("(x)(Cx->Mx)","Ca->Ma"))
self.assertTrue(self.prop.ui("(x)(Mx->Vx)","Ma->Va"))
self.assertTrue(self.prop.ui("( x )( Mx -> Vx )","Ma->Va"))
self.assertFalse(self.prop.ui("",""))

def test_eg(self):
self.assertTrue(self.prop.eg("Oa*Ea*Na","(\exists x)(Ox*Ex*Nx)"))

def test_ei(self):
self.assertTrue(self.prop.ei("(\exists x)(Ox*Ex*Nx)","Oa*Ea*Na"))
self.assertFalse(self.prop.ei("(\exists x)(Ox*Ex*Nx)","Oa*Ea*Na"))

def test_ug(self):
self.assertTrue(self.prop.ug("a","Ca->Ma","(x)(Cx->Mx)"))

def test_fs(self):
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self.assertTrue(self.prop.fs("a"))
self.assertTrue(self.prop.fs("b"))

#Tests for conditional and indirect proofs.
def test_cp(self):

self.assertTrue(self.prop.cp("A","F->˜E","A->(F->˜E)"))
self.assertTrue(self.prop.cp("Ax","Fy->˜Ez","Ax->(Fy->˜Ez)"))

def test_ip(self):
self.assertTrue(self.prop.ip("E","I*˜I","˜E"))
self.assertTrue(self.prop.ip("E","˜I*˜˜I","˜E"))
self.assertTrue(self.prop.ip("E","(I)*˜I","˜E"))
self.assertTrue(self.prop.ip("E","(A->B)*˜(A->B)","˜E"))
self.assertTrue(self.prop.ip("E","˜(A->B)*˜˜(A->B)","˜E"))
self.assertTrue(self.prop.ip("Ex","˜(Ax->By)*˜˜(Ax->By)","˜Ex"))
self.assertFalse(self.prop.ip("E","˜˜(A->B)*˜˜(A->B)","˜E"))

#Tests for QN

def test_qn(self):
self.assertTrue(self.prop.qn1("˜(x)(Ax)","(\\exists x)(˜Ax)"))
self.assertTrue(self.prop.qn1("(\\exists x)(˜Ax)","˜(x)(Ax)"))
self.assertTrue(self.prop.qn1("(\\exists x)˜(Ax)","˜(x)(Ax)"))
self.assertTrue(self.prop.qn2("˜(\exists x)(Ax)","(x)(˜Ax)"))
self.assertTrue(self.prop.qn3("˜(x)˜(Ax)","(\exists x)(Ax)"))
self.assertTrue(self.prop.qn4("˜(\exists x)˜(Ax)","(x)(Ax)"))

#Tests for utilities
def test_split_form(self):

self.assertEqual(self.prop.split_form("(F::G)->(A->F)"), ("F::G","A->F","imp"))
self.assertEqual(self.prop.split_form("(F::G)->(A ->F)"), ("F::G","A->F","imp"))
self.assertEqual(self.prop.split_form("(F::G) -> (A -> F )"), ("F::G","A->F","imp"))
self.assertEqual(self.prop.split_form("˜(A*B) -> C"), ("˜(A*B)","C","imp"))
self.assertEqual(self.prop.split_form("˜(A\\/B) \\/ C"), ("˜(A\\/B)","C","or"))
self.assertEqual(self.prop.split_form("˜(B\\/C)\\/˜(A*D)"), ("˜(B\\/C)","˜(A*D)","or"))
self.assertEqual(self.prop.split_form("˜(A*B)"), ("A*B",’neg’))
self.assertTrue(self.prop.split_form("A") == None)

def test_find_main_op(self):
self.assertEqual(self.prop.find_main_op("˜(A*B)->C"), (6,’imp’))
self.assertEqual(self.prop.find_main_op("(A\\/B)->˜C"),(6,’imp’))
self.assertEqual(self.prop.find_main_op("((A*B)\\/(A*B))->(B\\/C"),(14,’imp’))
self.assertEqual(self.prop.find_main_op("(A\\/B)*˜C"),(6,’and’))
self.assertEqual(self.prop.find_main_op("(A\\/B)\\/˜C"),(6,’or’))
self.assertEqual(self.prop.find_main_op("(A\\/B)::˜C"),(6,’equiv’))
self.assertEqual(self.prop.find_main_op("˜(A\\/D)"),(0,’neg’))
self.assertEqual(self.prop.find_main_op("˜˜(A\\/D)"),(0,’neg’))
self.assertTrue(self.prop.find_main_op("A") == None)
self.assertTrue(self.prop.find_main_op("") == None)

def test_strip_form(self):
self.assertEqual(self.prop.strip_form("( A \\/ B ) -> ˜C"),"(A\\/B)->˜C")
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self.assertEqual(self.prop.strip_form(" ( ( A \\/ B ) -> ˜C ) "),"(A\\/B)->˜C")
self.assertEqual(self.prop.strip_form(" ( ( A \\/ B )) "),"A\\/B")
self.assertEqual(self.prop.strip_form("(F::G) -> (A -> F )"),"(F::G)->(A->F)")
self.assertEqual(self.prop.strip_form("( x )(Cx ->Mx)"),"(x)(Cx->Mx)")

def test_confirm_structure(self):
self.assertTrue(self.prop.confirm_structure([(7,16),(6,17),(5,18),(4,19)],

[(1,),(2,),(3,),(4,),(5,),(6,),(7,),(8,1,5),
(9,4),(10,8,9),(11,10),(12,2,11),
(13,7,12),(14,13),(15,3,6),(16,14,15),
(17,),(18,),(19,),(20,)]))

def test_confirm_validity(self):
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof.txt",’r’)))
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof2.txt",’r’)))
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof3.txt",’r’)))
self.assertFalse(self.prop.confirm_validity(open("./proofs/proof4.txt",’r’)))
self.assertFalse(self.prop.confirm_validity(open("./proofs/proof5.txt",’r’)))
self.assertFalse(self.prop.confirm_validity(open("./proofs/proof6.txt",’r’)))
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof7.txt",’r’)))
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof8.txt",’r’)))
self.assertTrue(self.prop.confirm_validity(open("./proofs/proof9.txt",’r’)))

def test_confirm_validity_string(self):
self.assertEqual(self.prop.confirm_validity_string(open("./proofs/proof6.txt",’r’)),

"There is a problem with the following lines: 5, 6")
# print self.prop.confirm_validity(open("./proofs/proof16.txt",’r’))

def test_confirm_wff(self):
self.assertTrue(self.prop.confirm_wff("A\\/B"))
self.assertTrue(self.prop.confirm_wff("(A\\/B)"))
self.assertTrue(self.prop.confirm_wff("(A\\/B) -> C"))
self.assertFalse(self.prop.confirm_wff("A\\/B)"))

if __name__ == ’__main__’:
unittest.main()

9 Unfinished Version

This version of the main program was not finished in time to meet the end of the semester
deadline, but it is here for anyone who is interested at looking at it. The main difference in
this version is the use of the confirm method, which provides a general method for the rules of
inference and the replacement rules.

#!/usr/bin/python
"""
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Version 3 of prop.py
"""
import re
from itertools import permutations
#Has the rules of propositional calculus.
class Prop:

def __init__(self):
pass

def confirm(self,forms, mold):
"""
This generalized confirm method is used by all of
the rules of inference methods.
"""

if len(forms) != len(mold):
return False

variable_dict = {}

for index in range(len(forms)):
form1 = Wff(forms[index])
form2 = Wff(mold[index])
variable_dict = form1.similar(form2, variable_dict)
if not variable_dict:

return False

return True

#Rules of inference.
def mp(self, premise1, premise2, premise3):

"""
Checks for the correct use of Modus Ponens.
Both A->B,A,B and A,A->B,B are valid.
"""
mp_rule = (’p->q’,’p’,’q’)

return (self.confirm((premise1, premise2, premise3), mp_rule) or
self.confirm((premise2, premise1, premise3), mp_rule))

def mt(self, premise1, premise2, conclusion):
return (self.__mt_one_way(premise1, premise2, conclusion) or

self.__mt_one_way(premise2, premise1, conclusion))

def __mt_one_way(self, premise1,premise2,conclusion): # Modus Tollens

premise1 = Wff(premise1)
premise2 = Wff(premise2)
conclusion = Wff(conclusion)
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try:
return (premise1.main_op == ’imp’ and

premise2.main_op == ’neg’ and
conclusion.main_op == ’neg’ and
premise1.left == conclusion.left and
premise1.right == premise2.left)

except:
return False

def hs(self, premise1, premise2, conclusion):
return (self.__hs_one_way(premise1, premise2, conclusion) or

self.__hs_one_way(premise2, premise1, conclusion))

def __hs_one_way(self, premise1,premise2,conclusion): #Hypothetical Syllogism
"""
All three formulas are split and compared to one another.
"""

premise1 = Wff(premise1)
premise2 = Wff(premise2)
conclusion = Wff(conclusion)

try:
return (premise1.main_op == ’imp’ and

premise2.main_op == ’imp’ and
conclusion.main_op == ’imp’ and
premise1.left == conclusion.left and
premise1.right == premise2.left and
premise2.right == conclusion.right )

except:
return False

def simp(self, premise,conclusion): #Simplification
"""
The first formula is split and compared to the
second.
"""

premise = Wff(premise)
conclusion = Wff(conclusion)

try:
return (premise.main_op == ’and’ and

(premise.left == conclusion.string or
premise.right == conclusion.string)

)

except:
return False
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def conj(self, premise1, premise2, conclusion): #Conjunction
"""
Conjunction uses the simplification method to
validate that premise1 is tuple_of_form simplification of conclusion
and premise2 is tuple_of_form simplification of conclusion.
"""
return self.simp(conclusion, premise1) and self.simp(conclusion, premise2)

def dil(self, premise1,premise2,premise3,conclusion):
boolean = False
for permutation in permutations((premise1,premise2,premise3),3):

boolean = self.__dil_one_way(permutation[0],permutation[1],permutation[2], conclusion)
if boolean:

break
return boolean

def __dil_one_way(self, premise1, premise2, premise3, conclusion): #Dilemma

premise1 = Wff(premise1)
premise2 = Wff(premise2)
premise3 = Wff(premise3)
conclusion = Wff(conclusion)

return (premise1.main_op == ’imp’ and
premise2.main_op == ’imp’ and
premise3.main_op == ’or’ and
conclusion.main_op == ’or’ and
{premise3.left, premise3.right} == {premise1.left, premise2.left} and
{conclusion.left, conclusion.right} == {premise1.right, premise2.right})

def ds(self, form1, form2, form3):
return (self.__ds_one_way(form1, form2, form3) or

self.__ds_one_way(form2, form1, form3))

def __ds_one_way(self, a,b,c): #Disjunctive Syllogism

a = Wff(a)
b = Wff(b)
c = Wff(c)

try:
return (a.main_op == ’or’ and

b.main_op == ’neg’ and
(a.left == b.left and
a.right == c.string)
or
(a.right == b.left and
a.left == c.string)

)
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except:
return False

def add(self, a,b): #Addition

a = Wff(a)
b = Wff(b)

try:
return (b.main_op == ’or’ and

(a.string in b.form))

except:
return False

#Replacement Rules
def dn(self, form1,form2): #Double Negation

form1a = Wff(form1)
form2a = Wff(form2)
form1b = Wff(form1a.left)
form2b = Wff(form2a.left)

#The second wff is the double negation.
if (form1a.string == form2b.left and form2a.main_op == ’neg’

and form2b.main_op == ’neg’):
return True

#The first wff is the double negation.
else:

return (form2a.string == form1b.left and form1a.main_op == ’neg’
and form1b.main_op == ’neg’)

def dup(self, form1, form2):

form1 = Wff(form1)
form2 = Wff(form2)

if (form1.main_op == ’or’ and form1.left == form2.string):
return form1.left == form1.right

if (form1.main_op == ’and’ and form1.left == form2.string):
return form1.left == form1.right

if (form2.main_op == ’or’ and form2.left == form1.string):
return form2.left == form2.right

if (form2.main_op == ’and’ and form2.left == form1.string):
return form2.left == form2.right

39



return False

def comm(self, form1, form2): #Commutation

form1 = Wff(form1)
form2 = Wff(form2)

if ((form1.main_op == ’or’ and form2.main_op == ’or’) or
(form1.main_op == ’and’ and form2.main_op == ’and’)):
return (form1.left == form2.right and

form1.right == form2.left)

return False

def assoc(self,form1, form2): #Association
"""
First we will decide which way the association rule is applied.
Then we will apply it and finally we will decide if
it is valid.
"""

mold = (’((p\/q)\/r)’,’(p\/(q\/r))’)

if (self.confirm((form1,form2), mold) or self.confirm((form2,form1),mold)):
return True

mold = (’(p*q)*r’,’p*(q*r)’)

return self.confirm((form1,form2), mold) or self.confirm((form2,form1),mold)

def contra(self, form1, form2):

mold = (’p->q’,’˜q->˜p’)

return (self.confirm((form1, form2), mold) or
self.confirm((form2,form1), mold))

def dem(self, form1, form2):

mold = (’˜(p\/q)’,’˜p*˜q’)

if (self.confirm((form1, form2), mold) or
self.confirm((form1, form2), mold)):
return True

mold = (’˜(p*q)’,’˜p\/˜q’)

return (self.confirm((form1, form2), mold) or
self.confirm((form1, form2), mold))

def be(self, form1, form2):
mold = (’p::q’,’(p->q)*(q->p)’)
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return (self.confirm((form1,form2), mold) or
self.confirm((form1,form2), mold))

def ce(self, form1, form2):
mold = (’p->q’, ’˜p\/q’)

return (self.confirm((form1,form2), mold) or
self.confirm((form1,form2), mold))

def dist(self, form1, form2):
mold = (’p*(q\/r)’, ’(p*q)\/(p*r)’)

if (self.confirm((form1,form2), mold) or
self.confirm((form1,form2), mold)):

return True

mold = (’p\/(q*r)’, ’(p\/q)*(p\/r)’)

return (self.confirm((form1,form2), mold) or
self.confirm((form1,form2), mold))

def exp(self, form1, form2): #Exportation

mold = (’(p*q)->r’,’p->(q->r)’)

return (self.confirm((form1,form2), mold) or
self.confirm((form1,form2), mold))

#Conditional proof methods and structural checks.
def cp(self, form1, form2, form3):

tuple_of_form = self.split_form(form3)
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)

return (form1 == tuple_of_form[0] and
form2 == tuple_of_form[1] and
tuple_of_form[2] == ’imp’)

def ip(self, form1, form2, form3):
form1 = self.strip_form(form1)
form3 = self.strip_form(form3)
return (self.__is_contradiction(form2) and

(form1 == ’˜’ + form3 or
form3 == ’˜’ + form1 or
form1 == ’˜(’ + form3 + ’)’ or
form3 == ’˜(’ + form1 + ’)’))

def __is_contradiction(self,form1):
tuple_of_form = self.split_form(form1)
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try:
return (tuple_of_form[2] == ’and’ and

(tuple_of_form[0] == ’˜’ + tuple_of_form[1] or
tuple_of_form[1] == ’˜’ + tuple_of_form[0] or
tuple_of_form[0] == ’˜(’ + tuple_of_form[1] + ’)’ or
tuple_of_form[1] == ’˜(’ + tuple_of_form[0] + ’)’))

except:
return False

def confirm_structure(self, ip, refs):
for tuple1 in refs:

if not len(tuple1) == 1:
lst1 = []

for tuple2 in ip:
# if the line number is outside the scope of
# an assumption we must be cautious
if tuple1[0] > tuple2[1]:

lst1.append(tuple2)
for ref in tuple1[1:]:

if self.__is_between(ref,lst1):
return False

return True

def __is_between(self,ref,lst1):
if lst1:

for range1 in lst1:
if (ref <= range1[1] and

ref >= range1[0]):
return True

return False

def ip_do_not_cross(self,lst1):
lst2 = []
for element in lst1:

if (element[1] == ’assp’ or
element[1] == ’fs’):
lst2.append(element[0])

if element[1] in (’ip’,’cp’, ’ug’):
x = lst2.pop()
if not element[2] == x:

return False
return not bool(lst2)

#Predicate Logic Methods

class Pred(Prop):
def __init__(self):

super(Pred, self).__init__()

42



self.flagset = set()

def ui(self, form1, form2):
try:

dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[1]
form1 = form1[4:-1]
for i in range(len(form1)):

if form1[i] == var:
if not dict1.has_key(var):

dict1[var] = form2[i]
else:

return re.sub(var,dict1[var],form1) == form2

except:
return False

def eg(self, form1, form2):

try:
dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[8]
form2 = form2[11:-1]
for i in range(len(form2)):

if form2[i] == var:
if not dict1.has_key(var):

dict1[var] = form1[i]
else:

return re.sub(var,dict1[var],form2) == form1

except:
return False

def ei(self, form1, form2):
try:

dict1 = {}
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[8]
form1 = form1[11:-1]
for i in range(len(form1)):

if form1[i] == var:
if not dict1.has_key(var):

dict1[var] = form2[i]
break

if dict1[var] not in self.flagset and re.sub(var,dict1[var],form1) == form2:
self.flagset.add(dict1[var])
return True
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except:
return False

def ug(self, flag, form1, form2): #Universal Generalization
"""
This method compares the flagged variable, the first
formula in the Universal Generalization subproof and
the conclusion to the subproof. The flagged variable
is discarded if the proof is valid.
"""
try: #Anything that goes wrong here means that something is incorrect.

form1 = self.strip_form(form1) #Get rid of access space
form2 = self.strip_form(form2)
var = form2[1]
form2 = form2[4:-1]
bool1 = bool(re.sub(var,flag,form2) == form1)
if bool1:

self.flagset.discard(flag) #Once the ug subproof is complete flagged variable can be used again.
return True

else:
return False

except:
return False

def fs(self, flag):

try:

bool1 = bool(flag not in self.flagset)
if bool1:

self.flagset.add(flag)
return True

else:
return False

except:
return False

#QN Rules

def qn1(self, form1, form2):
return (self.__qn1oneway(form1, form2) or

self.__qn1oneway(form2, form1))

def __qn1oneway(self, form1, form2):

try:

form1 = self.strip_form(form1)
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form2 = self.strip_form(form2)
var = form1[2]

return (form1[0:4] == ’˜(’+var+’)’ and
form2[0:10] == "(\\exists" + var + ")" and
self.split_form(’˜’ + form1[4:]) == self.split_form(form2[10:]))

except:
return False

def qn2(self, form1, form2):
try:

return (self.__qn2oneway(form1, form2) or
self.__qn2oneway(form2, form1))

except:
return False

def __qn2oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[1]

return (form1[0:11] == ’˜(\\exists’+var+’)’ and
self.split_form(’˜(’+form1[11:]+’)’) == self.split_form(form2[3:])
and
form2[0:3] == ’(’+var+’)’)

except:
return False

def qn3(self, form1, form2):
return (self.__qn3oneway(form1, form2) or

self.__qn3oneway(form2, form1))

def __qn3oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form1[2]

return (form1[0:4] == ’˜(’+var+’)’ and
form2[0:10] == ’(\\exists’+var+’)’ and
self.split_form(form1[4:]) == self.split_form(’˜(’+form2[10:]+’)’))

except:
return False
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def qn4(self, form1, form2):
return (self.__qn4oneway(form1, form2) or

self.__qn4oneway(form2, form1))

def __qn4oneway(self, form1, form2):

try:
form1 = self.strip_form(form1)
form2 = self.strip_form(form2)
var = form2[1]

return (form1[0:11] == ’˜(\\exists’+var+’)’ and
self.split_form(form1[11:]) == self.split_form(’˜(’+form2[3:]+’)’)
and
form2[0:3] == ’(’+var+’)’)

except:
return False

#Class that represents a well-formed formula.
class Wff:

"""
Takes the string representation of the tuple. ("A","B","imp")
Has left for left of main op, right for right of main op, and main_op for main_op
The tuple form also contains these.
"""

def __init__(self, form):

#Change the the string "A -> B" to "A->B".
self.string = self.strip_form(form)
self.form = self.string

#Find the name and index of main operator.
tuple_of_form = self.find_main_op(self.form)

#If any of the following if statements are true, the method is
#broken out of with a return.

#There is no main operator.
if not tuple_of_form:

self.form = (self.form,’’)
self.left = self.form[0]
self.right = None
self.main_op = None
return

#Main operator is a ’negation’. Length is 1.
if tuple_of_form[1] == ’neg’:

self.form = (self.form[1:], ’neg’)
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self.left = self.form[0]
self.right = None
self.main_op = ’neg’
return

#Main operator is ’or’, ’imp’, or ’quiv’. All are length 2.
if tuple_of_form[1] in [’or’,’imp’,’equiv’]:

self.form = (self.form[:tuple_of_form[0]], self.form[tuple_of_form[0]+2:],
tuple_of_form[1])

self.left = self.form[0]
self.right = self.form[1]
self.main_op = self.form[2]
return

#Main operator is an ’and’. Length is 1.
else:

self.form = (self.form[:tuple_of_form[0]], self.form[tuple_of_form[0]+1:],
tuple_of_form[1])

self.left = self.form[0]
self.right = self.form[1]
self.main_op = self.form[2]

def strip_form(self, form):
form = re.sub(’ ’,’’,form)
depth = 0
for i,char in enumerate(form):

if char == ’(’:
depth += 1

if char == ’)’:
depth -= 1

if depth == 0 and i == len(form) -1 and len(form) > 1:
return self.strip_form(form[1:-1])

elif depth == 0:
break

return form

def find_main_op(self, form):
"""
Takes tuple_of_form wff and converts it to tuple_of_form tuple.
ie ("name of operator", index_of_operator)
"""

if form[0] == ’˜’:
return (0, ’neg’)

#This could be better implemented as tuple_of_form stack.

subdepth = 0

for i, char in enumerate(form):
if char == ’(’:

subdepth += 1
if char == ’)’:

47



subdepth -= 1
if char == ’*’ and subdepth == 0:

return (i, ’and’)
if char == ’\\’ and subdepth == 0:

if form[i+1] == ’/’:
return (i, ’or’)

if char == ’:’ and subdepth == 0:
if form[i+1] == ’:’:

return (i, ’equiv’)
if char == ’-’ and subdepth == 0:

if form[i+1] == ’>’:
return (i, ’imp’)

def similar(self, form2, dictionary):
"""
Confirms that the self fits the mold form2 and the dictionary is consitant.
Any variables not in the dictionary are added and returned.
If there is some conflict, false is returned else the dictionary.
"""

if self.main_op != form2.main_op:
return False

if self.left in dictionary:
if dictionary[self.left] != form2.left:

return False
else:

dictionary[self.left] = form2.left

if self.right in dictionary:
if dictionary[self.right] != form2.right:

return False
else:

dictionary[self.right] = form2.right

return dictionary

class Proof:
"""
This class contains the attribute valid, which is true if
there are no problems with the proof.
Problems with the proof are stored in the following.
rules_of_inference: stores a list of tuples (line_number, specific_rule)
replacement_rules: list of (line_number, replacement_rule)
flag: list of lines with incorrect flags
"""

def __init__(self, file1):
"""
Initialize Proof using a file. This automatically stores validity
in valid and all of the problems of the proof.
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"""
self.logic = Pred()
self.invalid_line = []
self.invalid_number_of_arguments = []
self.invalid_reasoning = []

#Temporary list for proof. Elements are in the form
#[premise1,premise2,...,conclusion,rule]
proof_lst = self._file_to_list(file1)

for index in range(len(proof_lst)):
if proof_lst[index] == None:

#Add one to the index for line number.
self.invalid_line.append(index+1)
#Do nothing else if problem with format.
return

#Only reached if format of proof is correct

#Proof list changed to final format.
proof_lst = self._replace_and_rearrange(proof_lst)

#Check the individual parts of the proof and not the structure.
for index, element in enumerate(proof_lst):

if element[0] == ’pr’:
pass

else:
#If not true add to list of errors.
try:

if not eval(’self.logic.’+element[1]+’(*element[1:])’):
self.invalid_reasoning.append((element[1], index+1))

except TypeError:
self.invalid_number_of_arguments.append(index+1)

#Check that the flags are valid.

#Check that the structure is valid.

def _file_to_list(self, file1):
"""
Takes proof file and returns proof as list.
"""

#Proof as a list
proof_lst = []

for line in file1:
#Remove newline from string
line = line.rstrip()

#Remove excess tabs
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line = re.sub(r"\t+","\t",line)
line = re.sub(r"\.\t+","\t",line)

#Split by tabs
lst = line.split("\t")

#The list should equal three except for blank lines
if len(lst) == 3:

proof_lst.append(lst)

#If line is not equal to three and not blank
#append None
elif re.sub(r"\s+","",lst2[0]):

lst1.append(None)

return proof_lst

def _replace_and_rearrange(proof_lst):
"""
Takes a list with elements in the form [line_num, conclusion, reason, prem1ref,...]
and returns a list with elements [reason, prem1,...,conclusion].
Ready to be used with rules of inference and replacement rules.
"""
#Holds result of proof_lst after the change.
result = []

for index, element in enumerate(proof_lst):
#reason holds rule of inference, replacement, or pr
if element[-1].lower() == ’pr’:

reason = ’pr’

else:
#Temp lst
lst = element[-1].split(’ ’)
reason = lst[0]

#Will hold a list of line elements
line_lst = [reason]
for ref in lst[1:]:

line_lst.append(proof_lst[ref][1])

#Append the conclusion
line_lst.append(element[1])

result.append(line_lst)

return result

#Confirms the validity of the proof.
class Confirm:

def __init__(self):
self.logic = Pred()
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def confirm_validity(self, file1):
lst1,ip,refs = self.proof_to_list(file1)
lst2 = []

for element in lst1:
lst2.append(self.test(element))

return (all(lst2) and
self.confirm_structure(ip, refs)
and
self.ip_do_not_cross(lst1))

def confirm_validity_string(self, file1):
str1 = ("There is tuple_of_form problem with the " +

"following lines: ")
lst1,ip,refs = self.proof_to_list(file1)
lst2 = []
for element in lst1:

lst2.append(self.test(element))
if all(lst2):

return "Proof is valid."
else:

for i,elem in enumerate(lst2):
if elem == False:

str1 += str(i+1) + ", "
return str1[:-2]

def test(self, lst1):
lst1[1]
lst2 = []

if lst1[0] == ’return False’:
return False

if not (lst1[1] == ’pr’ or lst1[1] == ’assp’
or lst1[1] == ’fs’):

str1 = "self." + lst1[1] + "(*lst2)"
for x in lst1[2:]:

lst2.append(x)
lst2.append(lst1[0])
try:

return eval(str1)
except:

return False

return True

def proof_to_list(self, file1):
lst1 = []
lst3 = []
for line in file1:

line = line.rstrip()
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line = re.sub(r"\t+","\t",line)
line = re.sub(r"\.\t+","\t",line)
lst2 = line.split("\t")
if len(lst2) == 3:

lst2 = lst2[1:]
lst2 = self.convert1(lst2)
lst1.append(lst2)

elif re.sub(r"\s+","",lst2[0]):
lst1.append([’return False’,’return False’])

ip = self.__ip(lst1)
refs = self.__refs(lst1)

for element in lst1:
lst2 = self.convert2(element, lst1)
lst2[1] = lst2[1].lower()
lst3.append(lst2)

return (lst3,ip,refs)

def __refs(self,lst1):
lst2 = []
for i,element in enumerate(lst1):

if (not isinstance(element[-1],int)
or
element[-3].lower() in (’cp’,’ip’,’ug’)):

lst2.append((i+1,))

elif not isinstance(element[-2],int):
lst2.append((i+1,element[-1]))

else:
lst2.append((i+1,element[-2],element[-1]))

return lst2

def __ip(self,lst1):
lst2 = []
for element in lst1:

try:
if element[1].lower() in (’cp’,’ip’,’ug’):

lst2.append((element[-2],element[-1]))
except:

pass
return lst2

def flatten(self, x):
result = []
for el in x:

if hasattr(el, "__iter__") and not isinstance(el, basestring):
result.extend(self.flatten(el))
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else:
result.append(el)

return result

def convert1(self, lst1):
lst1[1] = lst1[1].split(’ ’)
try:

lst1[1][1] = lst1[1][1].split(’,’)
except:

pass

lst1 = self.flatten(lst1)

if len(lst1) > 2:
for i, x in enumerate(lst1[2:]):

lst1[i + 2] = int(x)

return lst1

def convert2(self, lst1, lst2):
if not len(lst1) == 2: #Not tuple_of_form premise or assumption.

for i, x in enumerate(lst1[2:]):
lst1[i+2] = lst2[x - 1][0]

return lst1

if __name__ == ’__main__’:
#Tests for Version 3
a = Wff("A->B")
b = Wff("˜A")
c = Wff("A*B")
print a.form
print b.form
print c.form
a = "A->B"
b = "A"
c = "B"
prop = Prop()
print prop.mp(a,b,c)
print prop.mp(b,a,c)
print prop.mp(c,a,c)
print prop.mp(b,a,"B->C")
b = "˜B"
c = "˜A"
print prop.mt(a,b,c)
b = "B->C"
c = "A->C"
print prop.hs(a,b,c)
print prop.hs(b,a,c)
print prop.hs(b,c,c)
a = "A*B"
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b = "A"
c = "B"
print prop.simp(a, b)
print prop.simp(a, c)
a = "A->B"
b = "C->D"
c = "A\\/C"
d = "B\\/D"
print prop.dil(a, b, c, c)
print prop.dil(a, b, c, d)
print prop.dil(b,a, c, d)
print prop.dil(a, b, c, c)
d = "˜C"
e = "˜A"
print prop.ds(c,d,"A")
print prop.ds(c,d,e)
a = "A"
b = "B"
c = "A\\/B"
print prop.add(a, c)
print prop.add(b,c)
print prop.dn("A","˜˜A")
print prop.dn("˜˜A","˜˜˜˜A")
print prop.dn("˜˜A","A")
print prop.dn("˜A","A")

a = ’A’
b = ’A\\/A’
c = ’A*A’

print prop.dup(a,b)
print prop.dup(a,c)
print prop.dup(b,a)
print prop.dup(c,"B")

a = ’A\\/B’
b = ’B\\/A’
c = ’A*B’
d = ’B*A’
print prop.comm(a,b)
print prop.comm(c,d)
print prop.comm("A","B")

a = ’((A\/B)\/C)’
b = ’(A\/(B\/C))’
c = ’((A*B)*C)’
d = ’(A*(B*C))’
print prop.assoc(a,b)
print prop.assoc(b,a)
print prop.assoc(c,d)
print prop.assoc(d,c)

a = ’A->B’

54



b = ’˜A->˜B’

print prop.contra(a,b)
print prop.contra(b,a)

a = ’˜(A\/B)’
b = ’˜A*˜B’

print prop.dem(a,b)

a = ’A::B’
b = ’(A->B)*(B->A)’

print prop.be(a,b)

a = ’A->B’
b = ’˜A\/B’

print prop.ce(a,b)

a = ’A*(B\/C)’
b = ’(A*B)\/(A*C)’

print prop.dist(a,b)

a = ’(A*B)->C’
b = ’A->(B->C)’

print prop.exp(a,b)
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