
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

5-2014

Development of a Control System for a Power Wheelchair Trainer Development of a Control System for a Power Wheelchair Trainer

Stewart James Hildebrand
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Engineering Commons

ScholarWorks Citation ScholarWorks Citation
Hildebrand, Stewart James, "Development of a Control System for a Power Wheelchair Trainer" (2014).
Masters Theses. 717.
https://scholarworks.gvsu.edu/theses/717

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.gvsu.edu%2Ftheses%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/717?utm_source=scholarworks.gvsu.edu%2Ftheses%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Development of a Control System for a Power Wheelchair Trainer

Stewart James Hildebrand

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Engineering

Biomedical Engineering emphasis

Padnos College of Engineering and Computing

May 2014

3

Abstract

The development of a Power Wheelchair Trainer for use by individuals with severe motor,

cognitive, and communication deficits is described. These individuals, who are limited in their ability to

use self-initiated mobility, are typically not considered to be candidates for power wheelchair use. The

Power Wheelchair Trainer provides a motorized platform that allows a manual wheelchair to be

temporarily converted into a power wheelchair, thereby permitting these individuals to practice using

powered mobility while optimally positioned in their own customized seating systems. To

accommodate the needs of these individuals, the Power Wheelchair Trainer incorporates additional

control features not available in commercial systems. These additional features include: 1) a platform

that may be raised or lowered for loading and unloading of the manual wheelchair without lifting; 2) a

wireless joystick and multiple types of switch inputs for versatile drive control; 3) a safety remote with

an override joystick and emergency stop switch; and 4) a user interface permitting the therapist to

configure programmable settings. Programmable settings included: 1) joystick center dead-zone; 2)

joystick outer dead-zone with time-out; 3) joystick sensitivity, also known as tremor dampening; 4)

joystick throw; 5) speed; 6) acceleration; 7) deceleration; and 8) invert mode. A prototype of the Power

Wheelchair Trainer was developed for use with children and young adults at the Lincoln Development

Center, an area public school in Grand Rapids, Michigan that provides special education services. Power

mobility experts have expressed positive feedback about the Power Wheelchair Trainer and would like

to see more rehabilitation centers and schools offer this unique training opportunity.

4

Table of Contents
Abstract ... 3

I. Introduction ... 10

II. Literature Review .. 12

II.1 Independent Mobility during Childhood Development .. 12

II.2 Current Research in Power Mobility Training ... 13

II.3 Drive Control ... 14

II.4 Prior Work – The Turtle Trainer .. 18

II.5 Previous Versions of the Power Wheelchair Trainer .. 20

II.6 Programmable Features Available in Commercial Power Wheelchair Control Systems 25

II.6.1 Invacare MK6 Programmable Features ... 25

II.6.2 PGDT R-Net Omni+ Programmable Features ... 26

II.7 PI Control ... 27

III. Approach and Methods ... 30

III.1 Requirements Gathering .. 30

III.2 Electrical Design ... 31

III.3 Software Design ... 31

IV. Design Input and Requirements .. 33

IV.1 List of Requirements .. 33

IV.2 Required Features Not Available in Commercially Available Control Systems 34

IV.2.1 Outer Dead Zone .. 34

5

IV.2.2 Wireless Joystick ... 35

IV.2.3 Remote Emergency Stop and Override .. 35

IV.2.4 Linear Actuator Control .. 36

IV.2.5 Named Profiles ... 36

IV.3 Input Requirements ... 37

IV.3.1 Emergency Stop .. 37

IV.4 Programming ... 38

IV.5 Improvements over Previous Versions .. 42

IV.5.1 Transportability .. 42

IV.5.2 Joystick Improvements ... 43

IV.5.3 Tray ... 44

IV.5.4 Veer Correction .. 44

IV.6 Quick Start Guide ... 45

IV.7 Operator Manual ... 45

V. Theory of Operation ... 46

V.1 Specifications Table .. 46

V.2 Functional Diagram ... 53

V.3 Main Receiver Circuit Board ... 55

V.3.1 Motor Controller .. 56

V.3.2 Platform Actuators .. 58

6

V.3.3 Control Panel ... 59

V.3.4 Emergency Stop Switches .. 62

V.3.5 Receiving Wireless Module ... 63

V.4 Remote Circuit Boards .. 63

V.4.1 Power Switch ... 64

V.4.2 LED ... 64

V.4.3 Transmitting Wireless Modules ... 64

V.4.4 Learner Joystick ... 64

V.4.5 Therapist Remote .. 66

V.5 Wireless Hardware .. 67

V.6 Software .. 68

V.6.1 Software Architecture and Main Decision Module ... 68

V.6.2 Emergency Stop ... 71

V.6.3 Wireless Protocol ... 71

V.6.4 User Interface Module ... 74

V.6.5 Driving Logic and Stored Parameters .. 77

V.6.6 Motor Controller Communication ... 82

V.6.7 LCD Driver .. 82

V.6.8 Debounce Module ... 86

V.6.9 Watchdog Timer .. 87

7

V.7 Enclosures and Connectors ... 87

V.8 Obstacles Overcome and Lessons Learned... 89

V.8.1 Joystick Shearing/Skewed Axes ... 89

V.8.2 LCD Goes Blank .. 90

VI. Assessment .. 91

VI.1 Verification ... 91

VI.1.1 Specification Testing ... 91

VI.2 Validation ... 95

VII. Future Work .. 98

VII.1 Effects of Power Mobility during Childhood Development .. 98

VII.2 Unloading the Wheelchair in the event of a Power Failure ... 98

VII.3 Mid-wheel Drive ... 98

VII.4 Music and Vibration Feedback ... 99

VII.5 Low Battery Indicator ... 99

VII.6 EMI .. 99

VIII. Conclusion .. 100

 : Invacare MK6 Programmable Settings .. 101 Appendix A

 : PGDT R-Net Omni+ Programmable Settings .. 102 Appendix B

 : Schematics ... 105 Appendix C

 : Source Code (Main Board) .. 114 Appendix D

 : Source Code (Remote) ... 178 Appendix E

 : Bill of Materials .. 194 Appendix F

8

 : Quick Start Guide .. 197 Appendix G

 : Operator Manual ... 199 Appendix H

IX. Intended Use and Safety .. 200

IX.1 Intended Use .. 200

IX.2 Safety ... 200

X. Parts of the system ... 201

X.1 Power Unit .. 202

X.2 Control Panel ... 203

X.3 Learner Joystick ... 204

X.4 Therapist Remote .. 204

X.5 Tray ... 205

XI. Prior to Use .. 206

XI.1 Charging ... 206

XII. Operation .. 208

XII.1 Loading and Unloading a Learner ... 208

XII.2 Drive Control ... 209

XII.2.1 Tray Setup .. 209

XII.2.2 Learner Joystick.. 211

XII.2.3 Therapist Remote .. 212

XII.3 Driving Profiles .. 213

XII.3.1 Profile Settings ... 213

9

XIII. Disassembly for Transport ... 220

XIV. Troubleshooting ... 224

XV. Maintenance ... 227

XVI. References ... 228

10

I. Introduction

The Power Wheelchair Trainer is a device that aids with the training of powered mobility by

converting a manual wheelchair into a power wheelchair. With the Power Wheelchair Trainer, children

and adults with severe motor, cognitive, and communication deficits who are not typically considered

candidates for power mobility are able practice driving a power wheelchair while optimally positioned in

their own customized seating system. Power wheelchairs without customized seating may not provide

sufficient support, and learners in such a power wheelchair may not be positioned to optimize training

capabilities. With the Power Wheelchair Trainer, learners can practice using power mobility with the

goal of demonstrating that they are able to safely operate the controls of a power wheelchair, a

prerequisite to becoming qualified for insurance reimbursement. Often a child will already have a

manual wheelchair with customized seating for optimal support, but a power wheelchair with

customized seating might not be readily available or it would be impractical to set one up for ongoing

training purposes. The Power Wheelchair Trainer is a device that addresses the need for a simple

conversion of a manual wheelchair into a power wheelchair.

This thesis project involved developing and building a control system for version 5 of the Power

Wheelchair Trainer. The control system is the part of the Power Wheelchair Trainer that makes the

wheels turn in response to joystick movements or other inputs. The control system for the Power

Wheelchair Trainer maximizes learner and therapist safety, and allows for loading and unloading a

manual wheelchair without lifting. The Power Wheelchair Trainer project has been ongoing at Grand

Valley State University since Fall 2008. Table 1 gives a brief overview of the prior versions of the Power

Wheelchair Trainer.

11

Version Year Description

1 2008 Rear wheel support only.

2 2009 Rear wheel support only. Improved caster.

3 2010 Platform with wheels underneath.

4 2011 Platform that is able to be lowered. Drive wheels in rear.

5 2012 Control system built by author.

Table 1: Power Wheelchair Trainer History

The existing literature is discussed related to the need for self-initiated mobility during

childhood development, as well as, prior work on powered mobility training devices and how this prior

work relates to the Power Wheelchair Trainer. Then the required features of the control system are

described, and the development of the prototype is documented. Finally, an assessment plan is

detailed, carried out, and documented.

12

II. Literature Review

This section presents the context in which this thesis project exists. This includes a review of

existing work, and its relevancy to the Power Wheelchair Trainer project. First an overview is given of

why mobility is important to childhood development. Then a brief review of current power mobility

training research is given. A description of various power mobility access methods is given, and then a

prior power mobility training project, the Turtle Trainer, is reviewed. Previous versions of the Power

Wheelchair Trainer are then described, and finally an overview of programmable features in two

commercially available control systems is given.

II.1 Independent Mobility during Childhood Development

Children with cerebral palsy, arthrogryposis, spinal muscular atrophy, spinal cord injury,

osteogenesis imperfecta, and other neuromuscular or musculoskeletal impairments have difficulty

physically exploring and interacting with their environment (Jones, McEwen, & Neas, 2012; Hays, 1987;

Tefft, Guerette, & Furumasu, 1999). Children with severe motor impairments often do not have the

ability to move independently making it difficult to explore and interact with their environment. This

inability to move independently negatively influences the development of cognitive skills, spatial

awareness skills, and social skills. The ability of children to move independently and explore their

environment during childhood is important for the development of cognitive and psychosocial skills

(Jones et al., 2012; Tefft et al., 1999). Tefft et al. (1999) identified which cognitive skills are influential in

a young child's ability to operate a power wheelchair functionally. Basic problem solving skills and

spatial relations are predictors of a child’s ability to navigate a wheelchair through tight places, around

stationary objects, and through a crowd of people since spatial relations help the child understand

where objects are in relation to him or herself (Tefft et al., 1999). According to Tefft et al. (1999), self-

initiated movement plays a crucial role in childhood cognitive and psychosocial development.

13

Additionally, independent mobility allows children with motor, cognitive, and communication

impairments to integrate more fully into their educational programs (Tefft et al., 1999). The importance

of independent mobility during childhood warrants the need for children with severe motor

impairments to explore and interact with their environment, and power mobility may be a viable choice

in many situations.

II.2 Current Research in Power Mobility Training

Jones et al. (2012) studied the effects of power wheelchairs on children with severe motor

impairments and their development of psychosocial and cognitive skills. Jones et al. (2012) provided the

families of the children involved in the study with training guidelines, and the children were provided

with power wheelchairs with customized seating for home use. Jones et al. (2012) found that the use of

power mobility enhances the development of young children with severe motor limitations. The study

also found that the amount of time required for a group of children with motor impairments to become

proficient in power wheelchair use ranged from 12 to 42 weeks, and that some children as young as 14

months of age may be suitable to begin using power mobility (Jones et al., 2012). As a result of this

study, Jones et al. (2012) discussed that “more intense training in a structured and controlled

environment” could help learners to attain wheelchair driving proficiency more quickly (p. 137). This

study supports the incentive to have a power mobility training device available to children with motor

impairments, and a viable location may be at their school or rehabilitation centers.

According to Durkin's (2009) responsive partner theory, the role of the power mobility teacher

(therapist) should not be to train the child, but to set up a learning environment that meets the

individual needs of the child (learner) while he or she plays in the powered mobility device (Livingstone,

2010; Durkin, 2006; Durkin, 2009). Learners with motor impairments often require customized seating,

but it is impractical for the therapist to install customized seating on a power wheelchair that is used by

14

several learners. If a learner requiring customized seating were to be placed directly into an off-the-

shelf power wheelchair with a standard seat, the learning environment would not be ideal since he or

she would not be optimally positioned and may not have sufficient hand control without the extra

support normally provided by customized seating.

Learners who are training with power mobility can be classified into potential drivers or cause

and effect learners. Learners who are using power mobility to explore their environment are potential

drivers. Learners who are trying to understand the concept of pushing a switch to make something

happen are cause and effect learners. Nilsson (2007) introduced the concept of “driving to learn”

instead of learning to drive. “Driving to learn” was a study about using power mobility intervention to

learn tool use, where the tool is the joystick. Nilsson’s study found that learners participating in more

than 30 training sessions for a period longer than 2 years, and training in more than one location were

associated with reaching control of steering (Nilsson, 2007). As a result of the study, the theory of de-

plateauing emerged. De-plateauing can be defined as skill improvement beyond preconceived

expectations, which is made possible with assistance and training. The theory of de-plateauing is based

on evidence that individuals with profound cognitive disabilities were capable of exceeding expectations

and learning tool-use (Nilsson, 2007). Individuals who would not typically be considered candidates for

power mobility due to cognitive disabilities or motor impairments may be able to use power mobility

with sufficient training.

II.3 Drive Control

The industry de-facto standard method of power wheelchair drive control is the contactless

inductive joystick. Pictured in Figure 1 is an inductive joystick from an Invacare MK IV controller. An

inductive joystick is a proportional access method for power wheelchair control, meaning that driving

speed depends on the angle of deflection of the joystick handle. An inductive joystick uses several

15

electromagnetic coils to measure the joystick handle position (U.S. Patent No. 6,043,806 A, 2000). One

primary coil is mounted on the internal end of the joystick handle, and 4 secondary coils are mounted in

fixed positions on the joystick base (2 coils for each axis). The primary coil induces a current which is

picked up in the secondary coils. As the joystick handle moves the induced currents will change

depending on the joystick handle position. An inductive joystick is distinct from a resistive joystick,

another proportional control method. A resistive joystick uses a pair of potentiometers to measure the

joystick handle position, one for each axis. The potentiometers in resistive joysticks are prone to dust

buildup and may wear down with excessive use, whereas inductive joysticks are less prone to wear and

tear, last much longer, and do not require maintenance. A third type of joystick is also available,

known as a switch joystick or digital joystick. A switch joystick is essentially a handle that activates one

of four switches. It is either on or off with no proportionality. Joysticks require grading of force, and

people with abnormal muscle tone may not be able to effectively use a joystick (Lange, 2010a).

Figure 1: Inductive Joystick

Alternative methods of power wheelchair control include various types of switches mounted on

the wheelchair or a tray. Between one and four switches may be set up to drive the wheelchair forward,

right turn, left turn, or reverse. Each switch can simply be assigned to a driving direction, or some

systems can be set up to allow the driver to activate both right turn and left turn switches at the same

16

time in order to drive forward eliminating the need for a dedicated forward switch. Other systems can

be set up with a switch that can be used to drive either forward or reverse, alongside a toggle switch to

switch between forward and reverse. Pictured in Figure 2 is a switch used for power wheelchair control.

Learners can activate switches using their hands, upper arms, lower arms, toungue, legs, head

movements. Most commonly these switches have a standard 3.5mm mono jack for connecting to a

power wheelchair control system. AbleNet®, Inc (Roseville, Minnesota) offers a variety of switches of

different sizes and mounting options (AbleNet, 2012). Switches with low or high activation force are

available depending on the learner’s ability to push on the switch.

Figure 2: Round Switch

Pictured in Figure 3 is a gooseneck switch. A gooseneck switch is a switch with a different

mounting system. It has an adjustable arm with a lever that activates a single switch when the lever is

moved or pushed, and it may be clamped on to a wheelchair. If a learner is unable to extend his or her

arm to reach a switch mounted on a tray, then the learner could use his or her arm or head to activate a

gooseneck switch mounted on the wheelchair.

17

Figure 3: Gooseneck Switch

A switch that does not require any force to activate is known as a fiber optic switch. A fiber

optic switch detects the presence of an object by the reflection of light. Fiber optic switches are

typically configured in an array (Lange, 2010b). Another type of switch that does not require any force

to activate is a capacitive switch, similar to a computer touchpad. Capacitive switches have a larger area

of activation than fiber optic switches.

If a user is only able to activate a single switch, a scanning technique may be employed to make

it possible to fully operate the wheelchair with only one switch (Lange, 2010b). A display highlights the

different drive directions one by one, and the driver activates the switch when the desired direction is

highlighted. This method requires basic hand-eye coordination, and can be slow and laborious, but for

some drivers it may be one of the few options available to enable power wheelchair access.

Access using head movements can be made possible with the head array (Lange, 2010b). A

head array is a non-proportional access method utilizing proximity sensors to detect head movement,

and allows the driver to control a power wheelchair with head movements. Typically three proximity

sensors are mounted in a headrest. One sensor for driving left, a second sensor for driving right, and a

third sensor mounted directly behind the head for driving forward or reverse. No force is required to

activate the sensors – the head simply needs to get close to the proximity sensor to activate movement.

18

A head array is typically used in conjunction with a switch to toggle forward or reverse, which can be

mounted at the distal end of a side proximity sensor. Some head arrays are based on mechanical

switches instead of proximity sensors but offer the same basic functionality.

Another alternative method of power wheelchair control is sip-n-puff (Lange, 2010b). A sip-n-

puff system allows the wheelchair driver to control the power wheelchair by mouth. An air tube is

connected to the control system which measures the pressure of the air in the tube. The wheelchair

driver then sips or puffs on the tube to control the power wheelchair. For example, a light puff to drive

forward, a light sip to drive reverse, a hard puff to turn right, and a hard sip to turn left.

Several other control methods exist that are not commercially available due to lack of demand,

safety concerns, or they only exist in research settings. Examples include a head controlled proportional

joystick, chin joystick, and tongue joystick. A head controlled joystick consists of a joystick mounted in

the headrest, and the driver pushed his or her head back against the joystick to activate movement. The

head controlled joystick is a safety concern because applying sustained pressure against a rear pad may

lead to increased muscle tone (Lange, 2012a). A chin cup joystick allows the driver to use his or her chin

to drive the power wheelchair, but bumps in the terrain may lead to extraneous joystick movement and

erratic driving. A tongue joystick allows the driver to use their tongue to control a power wheelchair. A

tongue joystick can be mounted externally, or inside the mouth. The tongue joystick currently only

exists in research settings.

II.4 Prior Work – The Turtle Trainer

The Turtle Trainer concept was first presented at a Rehabilitation Engineering and Assistive

Technology Society of North America (RESNA) conference (Bresler, 1990). The Turtle Trainer is a device

that converts a manual wheelchair into a power wheelchair, and it was developed to help evaluate an

individual’s ability to use power mobility. Figure 4 is an artist’s rendition of the Turtle Trainer. Bresler

19

(1990) describes the device as “a motorized cart with wheelchair tiedowns,” (p. 399) and it has a ramp in

the front for loading and unloading a manual wheelchair. The Turtle Trainer is a no-lift device, meaning

that no lifting is required to load and unload a manual wheelchair. The Turtle Trainer also supports

several types of input controls including a joystick and switches, and it features a wired emergency stop

switch. An artist’s rendition of the Turtle Trainer is shown in Figure 4.

Figure 4: Artist’s Rendition of the Turtle Trainer

Before the Turtle Trainer individuals unable to self-propel a manual wheelchair who would like

to train using a power wheelchair were limited to using a demo power wheelchair without customized

seating, having an evaluator take the time to customize the seating on a demo power wheelchair, or use

a computer simulation. The Turtle Trainer gave power mobility evaluators a new option to evaluate

power mobility readiness. Bresler (1990) reported that individuals whom evaluators were sure could

not use power mobility surprised the researcher and the school staff when using the Turtle Trainer.

The Turtle Trainer did ultimately not succeed commercially because it was focused exclusively

on teaching students to drive instead of the benefits of mobility, and it did not have any clinical data to

prove the effectiveness of the product. Additionally, the design was large and unsophisticated, and the

large front ramp created a blind spot directly in front of the Turtle Trainer making it difficult to navigate

20

effectively. The design of the Power Wheelchair Trainer ensures that there is no blind spot in the front

and enable no-lift wheelchair loading.

II.5 Previous Versions of the Power Wheelchair Trainer

The Power Wheelchair Trainer project has been ongoing at Grand Valley State University since

Fall 2008. Version 1 (shown in Figure 5) was built to solve the problem of converting a manual

wheelchair into a power wheelchair. A manual wheelchair’s rear wheels would be mounted on version

1 of the Power Wheelchair Trainer while the manual wheelchair’s own front casters were utilized for

driving. Version 1 of the Power Wheelchair Trainer proved the concept of converting a manual

wheelchair into a power wheelchair, but it was difficult and cumbersome for a therapist to load the

manual wheelchair.

Figure 5: Version 1 (2008)

Version 2, shown in Figure 6, was based on the same general concept as version 1, except that it

had a wider wheelbase to allow for easier turns. Version 2 was focused on trying to make a better

caster and ease of loading. Ramps were added to make loading easier, but versions 1 and 2 were

ultimately not successful due to the reliance on the manual wheelchair’s own front casters.

21

Figure 6: Version 2 (2009)

Version 3 of the Power Wheelchair Trainer is shown in Figure 7 and Figure 8. The concept for

version 3 was to have all the electronics, including motors, batteries, and control system contained

underneath a platform. A ramp and a winch were used to assist the therapist in loading the manual

wheelchair on the platform. With this concept, however, it proved to be rather cumbersome and time

consuming to load and unload a manual wheelchair, and there was a risk of injury to therapist due to

sharp corners. The winch was removed due to its difficulty of operation. Version 3 was also heavy and

not practical to transport in a vehicle. Version 3 of the Power Wheelchair Trainer was dismantled and

parts used for version 4.

Figure 7: Version 3 (2010) Photo

22

Figure 8: Version 3 (2010) Rendering

Version 4 of the Power Wheelchair Trainer was built by engineering students at Grand Valley

State University during the winter semester of 2011, and is pictured in Figure 9 and Figure 10. Unlike

prior versions of the Power Wheelchair Trainer, version 4 was built around the concept of a platform

that could be lowered for easy loading and unloading of the manual wheelchair with no lifting required.

To load a wheelchair, the platform was lowered by pushing a switch that controls 4 linear actuators. As

the linear actuactors extended, the platform lowered. The front gate was removed, allowing the

wheelchair to be easily wheeled onto the lowered platform and strapped down using industry standard

tiedowns. The design for version 4 has had the most positive feedback from the therapists using it.

Version 4 of the Power Wheelchair Trainer can be classified as versions 4a and 4b due to modifications

to the design. “Version 4” will be used to refer to both version 4a and 4b. Version 4a had a square front

gate that did not leave enough leg room, and the corners of the gate could damage the walls. Version

4a also had bumpers that would tear easily, and the drive wheels were small and caused damage due to

spinning. Version 4b was upgraded to a rounded front gate, sturdier bumpers, and larger drive wheels.

Version 4 utilized a PGDT R-Net Omni+ (PG Drives Technology, United Kingdom) power wheelchair

control system together with a custom input switching and platform control system. The system was

powered by two 12V lead acid batteries in series, and used industry standard power wheelchair DC

brushed motors. For loading and unloading of a manual wheelchair, the main platform could be

23

lowered and raised, and the lowering and raising mechanism was provided by four linear actuators.

There was a safety remote with an emergency stop switch that shuts down the PGDT R-Net Omni+

system. It was capable of being driven with switches, and a digital (4-direction switch) joystick.

Switches could be mounted anywhere on the manual wheelchair to meet the needs of the learner,

making it possible for him or her to use head movements to control the power wheelchair. The 4-

direction joystick mounts in a customized tray that is mounted on the manual wheelchair. Version 3 of

the Power Wheelchair Trainer contained the batteries, motors, and control system underneath the

platform, in version 4 these are all contained in a chassis in the rear that is detachable from the main

platform to make transportation in a vehicle easier. As of December 2013 version 4b of the Power

Wheelchair Trainer was still in use. There have been important lessons learned from the perspective of

supporting and maintaining version 4 of the Power Wheelchair Trainer:

 While commercial power wheelchairs typically use proportional inductive joysticks, the digital

joystick is limited in the ability to finely control the drive speed.

 The small rear wheels on version 4a would spin when the Power Wheelchair Trainer was driven

into walls or other obstacles resulting in damage to the training environment. These wheels

have since been replaced with larger rear wheels on version 4b to reduce wheel spin and reduce

damage to the training environment.

 The batteries are not removable resulting in an extremely heavy rear chassis that is difficult to

lift into a vehicle for transport (yet still easier than version 3).

 The square front gate on version 4a (pictured in Figure 9) did not accommodate learners with

long legs and large wheelchairs very well. The corners could also cause damage to the training

environment and navigation through obstacles was difficult. The square front gate was replaced

with a rounded front gate on version 4b (pictured in Figure 10) to alleviate these problems.

24

 Version 4a of the Power Wheelchair Trainer originally had sensing bumpers that would disable

the motors on impact. However, these sensing bumpers were not sturdy enough and eventually

tore apart. The sensing bumpers also did not allow for the children to learn from bumping into

objects. The sensing bumper system was replaced with non-metallic electrical conduit on

version 4b. The conduit bumpers also worked well to maneuver through doorways and

obstacles because it was smooth and had some flexibility.

 When driving straight forward, version 4 of the Power Wheelchair Trainer would sometimes

unintentionally veer to the right or left (drift). The issue happened more often after a turn

where the front casters did not line up much like a common shopping cart. It was speculated

that it could be caused by poor quality front casters, manufacturing differences in the motors, or

uneven weight distribution. The front casters were replaced and this helped, but veering

continued to be a problem.

 The sensor that detected when the platform was up was unreliable, but this was since fixed.

 There was exposed wiring underneath the switch panel that was not covered up very well.

Loose connections could sometimes lead to the device being non-operational.

Figure 9: Version 4a (2011)

25

Figure 10: Version 4b (2011)

II.6 Programmable Features Available in Commercial Power Wheelchair

Control Systems

A goal while developing the control system for version 5 of the Power Wheelchair Trainer was to

provide a feature set comparable to those of commercial power wheelchairs while simplifying the

programming aspects and removing unnecessary features. Programming is defined as modifying the

configurable parameters (e.g. speed, acceleration, etc.) of the control system to meet a learner’s needs.

The programmable features of two commercially available power wheelchair control systems were

evaluated, 1) the PG Drives Technology (PGDT) R-Net Omni+ power wheelchair controller (this controller

was used in version 4 of the Power Wheelchair Trainer) and 2) the Invacare MK6 power wheelchair.

Only the settings applicable to driving and joysticks were taken into account.

II.6.1 Invacare MK6 Programmable Features

Appendix A contains a list of the relevant programmable settings available in an Invacare MK6

controller (Invacare, 2011). The system is programmed with an external programming dongle. The

system has a fixed number of 4 driving profiles; a feature termed “Drive Mode.” The system allows for

the maximum speeds, acceleration, and deceleration (braking) to be configured in the forward, reverse,

and turning directions. There is an adjustable tremor dampening feature that accommodates tremor

(ataxia) in the hand and upper extremities. There is a maximum power level setting that limits the

26

current available to the motors, in addition to a torque setting and a proprietary G-Trac feature, which

uses gyroscope technology to ensure that the wheelchair drives in a straighter path. A traction setting

lowers the speed when turning. A programmable joystick throw setting determines at what point full

speed is reached in relation to joystick deflection. An axes select setting can assign joystick commands

to a desired driving direction. An input type setting chooses between proportional joystick, switches,

sip-n-puff, and other drive control inputs. Lastly, a momentary/latch setting can be set to command the

wheelchair to drive forward after the joystick has been released, until the joystick is pulled reverse or

emergency stop is activated.

II.6.2 PGDT R-Net Omni+ Programmable Features

Appendix B contains a list of the relevant programmable settings available in a PGDT R-Net

Omni+ controller (PG Drives Technology, 2011). The system can be programmed on board, or with a

separate programming module. The system features up to 8 named driving profiles. Most of the

programmable settings use percentages, not real units like miles per hour. The system has an easily

accessible speed setting, ranging from 1 to 5. Programmable settings like speed, acceleration, and other

settings that affect the driving speed have two separate values for the minimum speed (1) and

maximum speed (5). The maximum speed, acceleration, and deceleration are configurable in the

forward, reverse, and turning directions. There is a setting for tremor dampening, which can be used for

smoothing the effects of a learner’s hand tremor. The system allows for programmable torque and

power. A “fast brake rate” setting specifies the deceleration when pulling the joystick handle backwards

to stop faster. Joystick throw is configurable in all four directions. There is a configurable center dead

zone, or neutral area. The joystick can be inverted forward/reverse, and left/right. There is a latched

setting that enables the wheelchair to keep driving forward after releasing the joystick. The system also

features a boost drive current setting, and a current foldback threshold to protect the motors from

overheating. There are settings to invert either motor’s direction, along with a setting to swap the

27

right/left motor outputs. Finally, there is a setting for steer correction to compensate for differences in

motor speeds.

II.7 PI Control

Version 4 of the Power Wheelchair Trainer occasionally experienced an issue called drifting, or

veering. When the joystick handle was pushed straight forward, the Power Wheelchair Trainer would

drive forward but veer to the right or left. This problem can arise for a number of different reasons,

including manufacturing differences in the motors, uneven weight distribution, and poor quality front

casters. The problem is amplified as the batteries discharge. This is a classic control problem that can

be solved with a Proportional-Integral (PI) controller algorithm (Åström & Hägglund, 1995). The PI

controller algorithm requires motor speed feedback, which can be provided by optical sensors. Power

wheelchair motors do not typically have optical sensors built in, so the motors require modification for

the Power Wheelchair Trainer. A slotted disk is mounted on the drive shaft of the motor, and a photo-

interrupter is installed to read the movement of the drive shaft. This concept is illustrated in Figure 11.

Figure 11: Slotted Disc and Photo-interrupter

Given the complexity of modifying motors in this manner, the significance of the veering issue

will be evaluated and the solution will only be implemented if deemed necessary. The signals from the

28

photo-interrupters attached to the right and left motors will be used in software to correct for veering

while driving straight forward or reverse. The optical sensors allow the PI controller algorithm to

properly control the speed of the motors using a feedback system. The feedback system for one motor

can be modeled as the process in Figure 12.

Figure 12: Motor Feedback Process

In Figure 12, is the setpoint, or the desired motor speed as determined by a joystick input.

is the process variable, or the motor speed as measured by an optical sensor. is the control error, and

is given by equation 1.

 (1)

 is the control variable, or the PI controller, and is given by equation 2.

 () (()

∫ ()

) (2)

The PI controller is the sum of the proportional and integral terms. The controller parameters

are , the proportional gain, and , integral time. These parameters can be tuned empirically to suit the

application. For digital implementation purposes, it is helpful to write the PI controller equation in

discrete form, shown in equation 3.

 () () () (3)

 () is the proportional term, and () is the integral term given by the recursive equation

shown in equation 4, using Tustin’s approximation.

ysp e u y
PI Controller Motor

-1

∑

29

 () ()

 () ()

 (4)

In equation 4, is the discrete sampling period.

30

III. Approach and Methods

The purpose of Power Wheelchair Trainer is to assist in the training of children and adults with

severe motor impairments to use a power wheelchair. To facilitate this, a prototype of the Power

Wheelchair Trainer was developed and produced. This prototype was dubbed version 5. The overall

mechanical design of version 5 of the Power Wheelchair Trainer was based on the version 4 design

because that design has received positive feedback from therapists concerning ease of loading and

unloading manual wheelchairs (C. Ripmaster, personal communication, 2012). The control system,

including circuit boards, cables, connectors, joystick, remote, and software were produced by the

author. The remaining mechanical components of the Power Wheelchair Trainer, including frame,

platform, mounting systems, housing for the joystick, and tray were produced by graduate students at

Grand Valley State University other than the author and the development of these components is

outside the scope of this thesis.

III.1 Requirements Gathering

The requirements for the control system of the Power Wheelchair Trainer were derived in

collaboration with power mobility experts. During prototype development, weekly meetings were held

with the “customer”. The prototype of the Power Wheelchair Trainer version 5 was built in close

collaboration with power mobility experts, and feedback was gathered and implement on a design-

build-iterate bases. A minimum viable product approach was taken, meaning that if a feature request

was deemed as non-critical to the application it was not implemented in favor of time constraints. The

requirements were documented in section IV. From the user requirements, engineering specifications

were derived in section V.

31

III.2 Electrical Design

The most significant change between version 4 and version 5 of the Power Wheelchair Trainer

was to replace the Omni+ control system with a custom control system. The schematics, circuit board

layouts, and software from version 4 of the Power Wheelchair Trainer were used as a starting point for

the electrical design. The design software used for capturing schematics and laying out circuit boards

was Eagle version 5.11 by CadSoft (Germany). The design needed to be reproducible in the future, so it

is important to have the design files readily available. To accomplish that goal, and to assist with version

control management, the schematics and circuit board layout files have been open sourced and hosted

at the website http://pwct.googlecode.com/ in addition being included in Appendix C, Appendix D, and

Appendix E. A complete bill of materials is hosted at http://pwct.googlecode.com/ and in Appendix F.

Component selection and circuit board layouts were performed by the author in order to meet

the requirements, and a review was conducted with an electrical engineering professor at Grand Valley

State University. Board layout files were then submitted to a circuit board manufacturing company and

the components were ordered. Approximately 20% extra components were ordered for debugging

purposes and in case of component failure. After the parts arrived, the circuit boards were assembled

and debugged by the author.

III.3 Software Design

After the circuit boards were assembled, software development began. For the same reasons

mentioned in the previous section, the source code was open sourced and hosted with version control

at http://pwct.googlecode.com/, in addition to being included in Appendix D and Appendix E. The

software was written in the C programming language, and the development tool used was the Atmel

Studio development environment for the AVR processor. The first task was to remove obsolete code,

such as code for the obsolete bumper sensor system in version 4 of the Power Wheelchair Trainer. All

http://pwct.googlecode.com/
http://pwct.googlecode.com/
http://pwct.googlecode.com/

32

required software functionality is divided into modules and sub-modules, and each was implemented in

phases consisting of implementing a (sub-) module, testing, committing to version control, and iterating.

33

IV. Design Input and Requirements

This section describes the design requirements of the control system of the Power Wheelchair

Trainer needed to fulfill the intended purpose. Control system requirements are listed and described

from a user perspective. The motive for building a custom control system is 1) cost reduction compared

to commercial systems, 2) convenience of a wireless joystick, 3) remote emergency stop and override, 4)

drift correction, 5) and outer dead zone timeout for some students who get frustrated and push full

forward (see section IV.2.1).

IV.1 List of Requirements

All user requirements for the control system are listed in Table 2, and are explained in detail in

the following sections.

Requirement Described in section

1 Wireless joystick IV.2.2, IV.3, IV.5.2

2 Safety remote override IV.2.3

3 Safety remote emergency stop IV.2.3

4 Linear actuator control IV.2.4

5 Switch inputs IV.3

6 Hardwired emergency stops IV.3

7 Charging terminal IV.3

8 Named profiles ≥ 20 IV.2.5, IV.4

9 Joystick outer dead zone with programmable time-out IV.2.1, IV.4

10 Programmable throw IV.4

11 Programmable speed IV.4

12 Programmable sensitivity IV.4

13 Programmable acceleration IV.4

34

14 Programmable deceleration IV.4

15 Programmable center dead zone IV.4, IV.5.2.1

16 Invert mode IV.4

17 Proportional as switch IV.4

18 Transportability IV.5.1

19 Modular tray IV.5.3

20 Minimal veering IV.5.4

Table 2: User Requirements

IV.2 Required Features Not Available in Commercially Available Control

Systems

The control system in version 5 of the Power Wheelchair Trainer provides additional features

compared to those available in a commercially available power wheelchair control system. These

features were identified in collaboration with physical therapists. These novel features warrant the

need to build a custom control system for the Power Wheelchair Trainer. Although version 4 of the

Power Wheelchair Trainer utilized a commercial control system in combination with custom circuitry to

accommodate the features not provided by the commercial system, it was a complex task to maintain

the two separate electronic systems. The control system in version 5 of the Power Wheelchair Trainer is

simplified by reducing the number of components with a fully custom control system and a simpler

motor controller. In this section, the features that require custom electronics and software in version 5

of the Power Wheelchair Trainer are described.

IV.2.1 Outer Dead Zone

Power mobility experts expressed the need for a timeout option for some students who would

push the joystick full forward due to frustration, resulting in their elbow locking into extension and being

unable to voluntarily release (C. Ripmaster, personal communication, 2012). In other words, a way was

35

needed to keep the Power Wheelchair Trainer from going at maximum speed in this situation. A joystick

outer dead zone with an adjustable time-out was implemented as a solution. If the joystick handle is

fully deflected (in other words, the joystick handle is held all the way to the edge) for a specified time,

the motors stop. When the joystick handle is fully deflected, the amount of time until the motors stop is

programmable. Operation resumes after the joystick handle has been returned to center.

IV.2.2 Wireless Joystick

For convenience and ease of setup purposes, the learner joystick is wireless. This eliminates one

step in the setup process and enables the learner to spend more time driving the Power Wheelchair

Trainer. If the wireless connection to the learner joystick is lost, the Power Wheelchair Trainer stops

moving. The joystick housing was designed to fit in a modular tray. The electronics and software for the

joystick were produced by the author. The development process of the tray and housing for the joystick

are out of scope for this thesis.

IV.2.3 Remote Emergency Stop and Override

The Power Wheelchair Trainer has a remote emergency stop, known as the therapist remote.

When the emergency stop switch on the therapist remote is activated, the Power Wheelchair Trainer

stops operation immediately. The therapist remote also has an override thumb joystick enabling the

supervising therapist to take control of the Power Wheelchair Trainer if needed. The override joystick

on the therapist remote takes priority over all other inputs. The therapist remote is required to be

powered on and in proximity of the Power Wheelchair Trainer in order for the system to function. If the

wireless connection to the therapist remote is lost, the Power Wheelchair Trainer stops moving. The

therapist remote is capable of driving the Power Wheelchair Trainer independently, even when the

learner joystick is powered off. The learner joystick cannot drive the Power Wheelchair Trainer without

36

the therapist remote in range. The therapist remote has a light indicator that lights up when the

wireless connection to the receiver is lost.

IV.2.4 Linear Actuator Control

The main platform of the Power Wheelchair Trainer has the ability to be lowered and raised for

no-lift loading and unloading of the manual wheelchair. Platform lowering and raising is controlled by a

switch on the control panel. The action of lowering and raising the platform is carried out by linear

actuators with built-in limit switches. When the platform is down, the Power Wheelchair Trainer is not

operational and the LCD screen displays the message “Platform down” as seen in Figure 13.

Figure 13: LCD Platform Down

As a safety precaution the Power Wheelchair Trainer does not drive while the platform is

lowered.

IV.2.5 Named Profiles

Since the Power Wheelchair Trainer is used in a school setting with many different learners,

each student may require different speed, acceleration, etc. settings. Commercially available control

systems only allow for a small number of driving profiles to be specified. The Power Wheelchair Trainer

control system provides at least 20 driving profiles with a target of 50. The control system provides the

ability for the therapist to choose between several named driving profiles. Profile settings and names

are specified by the therapist and individualized to each learner. Profile names make it easy for the

therapist to choose the profile when a new learner is ready to drive.

37

IV.3 Input Requirements

To accommodate various learner capabilities, the Power Wheelchair Trainer has the capability

to be driven using switches or joysticks:

 Up to four switches may optionally be plugged in, and each switch causes the Power Wheelchair

Trainer to drive in one of the four directions: forward, reverse, right, or left. An activated switch

is fully on, meaning that it is equivalent to pushing the joystick handle as far as it goes.

 A wireless learner joystick provides proportional control and is comparable to an industry

standard inductive joystick.

 A thumb joystick on the therapist remote allows the supervising therapist to override movement

of the Power Wheelchair Trainer.

The Power Wheelchair Trainer also has several non-drive-control inputs:

 As a safety feature the Power Wheelchair Trainer has hard-wired emergency stop inputs. The

emergency stop switches use normally closed circuitry (see section V.3.4), so if the wiring fails it

will trigger an emergency stop condition.

 An emergency stop switch on the therapist remote.

 A power switch on the main control panel.

 A platform raise/lower switch on the main control panel.

 A charging terminal.

IV.3.1 Emergency Stop

As a safety feature, pushing any of the emergency stop switches cause the motors to stop

immediately. The source of the emergency stop is shown on the LCD screen. The message shown in

Figure 14 will be displayed on the LCD when the hardwired emergency stop switches trigger the

emergency stop condition.

38

Figure 14: Panel Emergency Stop Display

The message shown in Figure 15 will be displayed on the LCD when the therapist remote

triggers the emergency stop condition.

Figure 15: Remote Emergency Stop LCD Message

To clear the emergency stop condition and make the system usable again, the main power

switch must be toggled off and on.

IV.4 Programming

A separate programming dongle is not necessary to adjust the configurable settings of the

Power Wheelchair Trainer. Programming is done on the controller via a two-line character display and

four arrow key menu buttons. The therapist interacts with this user interface to change settings.

Detailed operation of the user interface is described in section XII.3 of the Operator Manual in Appendix

H. The LCD shows the active profile and selected setting such as top speed, acceleration, etc.

Additionally the LCD shows when there is an emergency stop condition, or when the platform is

lowered. Figure 16 shows a mockup of what the user interface looks like. The arrow keys shown in the

figure are pushbuttons.

Figure 16: User Interface - Character Display and Arrow Keys

39

The user interface and driving profiles are new in version 5 of the Power Wheelchair Trainer.

The user interface enables the therapist to choose a driving profile and view or modify stored

parameters. The right and left arrow keys on the control panel allow the therapist to cycle through the

settings for viewing or changing, and the up and down keys allow the therapist to change the value. The

LCD screen shows the current setting and its value on the first line, except for the choose profile setting

where “Choose Profile” will be displayed on the first line, and the name of the selected profile on the

second line. Modified parameters are remembered even when the system is powered off. Figure 17

shows an example of a setting and its value.

Figure 17: Example Setting and Value

The required programmable settings include a subset of the settings described in section II.6, in

addition to a configurable outer dead zone described in section IV.2.1 and named profiles as described

in section IV.2.5. The required programmable items and their descriptions are listed as follows:

1. Driving profile: This setting is used for easily switching between driving profiles customized for

different learners. A profile name can be specified through the user interface to make the

driving profile easier to remember. The values for the subsequent programmable settings are

stored separately for each driving profile. When a driving profile is selected, the programmable

settings for that driving profile become active. Available characters for specifying profile names

are uppercase A-Z, lowercase a-z, numbers 0-9, and a blank or space. A mechanism is provided

for editing profile names through the user interface.

2. Throw: The amount of joystick handle deflection that is required to reach maximum speed.

There will be separate throw settings for forward, reverse, and turn.

40

3. Maximum speed: The maximum driving speed. There will be separate maximum speed settings

for forward, reverse, and turn.

4. Sensitivity: How quickly the Power Wheelchair Trainer responds to joystick movement or

activation of a switch. Sensitivity is also known as tremor dampening. This feature will be

implemented as a low-pass filter with configurable cut-off frequency.

5. Acceleration and Deceleration: The maximum change in speed over time. This setting will

determine how quickly the Power Wheelchair Trainer speeds up or slows down.

6. Center dead zone: A circular dead zone in the center of the joystick where the joystick is

considered to be centered. This setting will determine how far the joystick handle has to travel

from the center for the motors to start moving. Figure 18 shows the “shape” of the joystick with

the gray area in the middle corresponding to the center dead zone, where the size of the gray

circle (the dead zone) is configurable.

Figure 18: Center Dead Zone

7. Outer dead band: When the joystick handle is fully deflected, the motors will optionally shut off

immediately or after a programmable time-out. The joystick handle is considered to be fully

deflected when it is in the outer dead zone, indicated in Figure 19 with the gray area

corresponding to the outer dead zone. The joystick must return to center before the Power

Wheelchair Trainer will start driving again.

41

Figure 19: Outer Dead Band

8. Invert: When this setting is enabled, pushing the joystick handle forward commands to drive

reverse, and pushing the joystick handle in reverse commands to drive forward.

9. Proportional as switch: Converts a proportional joystick into a switch joystick (digital joystick)

with only four possible directions and no proportionality.

Profile name editing functionality is provided to easily identify each profile (see Figure 20). To

enter name edit mode hold the left arrow key for 2 seconds while the profile setting is active.

Figure 20: Name Edit Mode

Choose the character to modify using the right and left arrow keys (Figure 21).

Figure 21: Character Selection

Modify the character with the up and down arrow keys (Figure 22). Allowed characters are A-Z,

a-z, 0-9, and blank.

Figure 22: Character Modification

Exit name edit mode by holding the left arrow key for 2 seconds.

42

IV.5 Improvements over Previous Versions

This sub-section details the improvements that the control system for version 5 will provide over

previous versions of the control system for the Power Wheelchair Trainer. Version 4 of the Power

Wheelchair Trainer used the PGDT R-Net Omni+ system in addition to custom circuitry resulting in

excessive exposed wiring. The control system for version 5 aims to be simpler than the previous version

by replacing the Omni+ controller with a simpler motor controller. The control system for version 5 will

be simpler with fewer components, resulting in less clutter and fewer exposed wires. Further

improvements are detailed in the following sub-sections.

The improvements of version 5 over version 4 are summarized in Table 3, and are explained in

the following sections.

Description Detailed in section

Easier to transport in a vehicle IV.5.1

Proportional joystick to allow for fine movements IV.5.2

Improved joystick mounting mechanism IV.5.2

Configurable joystick center dead zone IV.5.2.1

Tray easier to set up IV.5.3

Minimal veering IV.5.4

Table 3: Summary of Improvements

IV.5.1 Transportability

Version 4 of the Power Wheelchair Trainer was heavy and difficult to load into a vehicle for

transport, even though the power unit was detachable from the rest of the frame. The rear power unit

contained 2 heavy batteries which made it difficult to load into a vehicle for transport. Version 5 of the

Power Wheelchair Trainer has removable batteries to make loading into a transport vehicle easier. The

batteries are able to be disconnected using appropriate high-amperage connectors. The batteries have

handles to make them easier to pick up.

43

IV.5.2 Joystick Improvements

Version 4 of the Power Wheelchair Trainer used a wired 4-direction switch joystick, also known

as a digital joystick. This joystick was bulky, and had an unsecure mounting system for mounting on the

tray. Additionally, there was a lack of fine control and it was not intuitive to drive forward and turn

simultaneously. The joystick in version 5 of the Power Wheelchair Trainer uses an industry standard

inductive joystick with proportional control instead of a digital joystick. The joystick housing was

developed to fit in a custom tray. For convenience and ease of setup, the joystick features a wireless

connection to the Power Wheelchair Trainer with a minimum range of 25 feet and no required

maximum range.

The learner joystick enables the learner to control the power wheelchair trainer with a hand

joystick. The joystick perimeter has the irregular hexagonal shape shown in Figure 23 as viewed from

the top, where the dot indicates the joystick center.

Figure 23: Joystick Shape

IV.5.2.1 Configurable Center Dead Zone

Some learners are not able to exert much force on the joystick handle and are only able to

deflect the joystick handle a small distance, so a way is needed to make the Power Wheelchair Trainer

move with little movement of the joystick. The learner joystick features a configurable center dead zone

(described in section IV.4). The center dead zone, combined with configurable throw and sensitivity

44

(also described in section IV.4), allows the learner to drive the Power Wheelchair Trainer by deflecting

the joystick handle a small distance. These settings are also useful in a cause and effect scenario when a

joystick is preferred over switches.

IV.5.3 Tray

A tray was developed with a modular placement system. The tray is able to be mounted on the

manual wheelchair, and the learner joystick is able to be mounted in the tray at an appropriate location

for each learner without the use of tools. The tray has forearm support and learners are able to activate

the joystick and/or switches with minimal movement of their upper extremities. The tray was also

designed so the joystick is flush to the surface of the tray. Learners do not need to lift their hand up to

make contact with the joystick, and this gives learners with minimal upper extremity function ability to

use the joystick. The development process of the tray is out of scope for this thesis.

IV.5.4 Veer Correction

While veering was not anticipated to be an issue with a proportional joystick, veering could be a

problem while using switches as input or when the joystick is configured to proportional as switch

mode. The significance of the drift issue was evaluated in version 5 of the Power Wheelchair Trainer by

driving straight forward 10 feet, then measuring the amount of veering to the right or left. If the Power

Wheelchair Trainer veered significantly to the right or left, defined as 2 feet right or left for every 10 feet

driven forward, then the plan for drift correction would be implemented described in section II.7. The

test was performed and veering was measured to be 19 inches (1.58 feet) to the left, so the plan for

veer correction was not implemented. The test result is recorded in Table 19 in section VI.1.1.

45

IV.6 Quick Start Guide

A quick start guide was developed to aid the therapist in quickly setting up and start using the

Power Wheelchair Trainer. The quick start guide is a pamphlet with visual steps describing basic use and

loading and unloading of a manual wheelchair, and can be found in Appendix G.

IV.7 Operator Manual

An operator manual was developed as a user reference guide. The operator manual contains

detailed reference information about safety, use, setup, troubleshooting, transportation, and storage of

the Power Wheelchair Trainer. The operator manual also contains details about configuration of the

driving profiles on the control system. The operator manual can be found in Appendix H.

46

V. Theory of Operation

This section describes the functional operation and technical design of the Power Wheelchair

Trainer control system. The functional components of the system are explained in detail along with

their inputs and outputs. Then the technical implementation details are explained, which intends to

serve as a reference for future maintenance or manufacturing. The implementation details include

hardware schematics, printed circuit board layouts, component selection, connectors, bill of materials,

budget, software development process, wireless communication protocol, and tools used. All source

code, schematics, and circuit board files are available online from http://pwct.googlecode.com and in

Appendix C, Appendix D, and Appendix E. The mechanical specifications and build details are not

included in the scope of this thesis document.

V.1 Specifications Table

This sub-section contains engineering specifications for the Power Wheelchair Trainer control

system. The engineering specifications have been derived from the user requirements. The

specifications were tested after the Power Wheelchair Trainer was built. See section VI.1.1 for further

testing details. Table 4 below lists the engineering specifications and delivered values.

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

1 Power

Wheelchair

Trainer

Battery Life

The amount of

time the Power

Wheelchair

Trainer can

drive on a single

full charge.

Hours 3 or more 8 or

more

Full-day

operation.

5.25

http://pwct.googlecode.com/

47

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

2 Learner

Joystick

Battery Life

The amount of

time the learner

joystick operate

on fresh

batteries

Hours 8 or more 10 or

more

Full-day

operation.

12+

3 Therapist

Remote

Battery Life

The amount of

time the

therapist

remote shall

operate on fresh

batteries

Hours 8 or more 10 or

more

Full-day

operation.

24+

4 Right/Left

Drift

How far the

Power

Wheelchair

Trainer is

allowed to veer

to the right or

left when driven

10 feet straight

forward on a

flat surface

Feet 2 or less 1 or less Less veer

than

version 4.

Some veer

is

acceptable

for indoor

usage.

1.583 to

the left

5 Number of

profiles

How many

named driving

profiles are

available

Count 20 or

more

50 or

more

A number

of learners

at a school

20

6 Number of

characters in

profile name

The maximum

number of

characters that

can be used to

specify a profile

name

Characters 16 or

more

16 or

more

As many

characters

as the LCD

can show

on 1 line

16

7 Number of

lines on

character

display

How much

information can

be displayed

Lines 2 or more 6 or

more

As much

informatio

n as

possible

2

48

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

8 Wireless range

– learner

joystick

Learner joystick

operational at

least this many

feet away from

the receiver. No

maximum is

specified

because if the

therapist

remote goes out

of range the

learner joystick

will not be

operational.

Feet 25 or

more

50 or

more

Indoor

distances

23

9 Wireless range

– therapist

remote

Therapist

remote

operational at

least this many

feet away from

the receiver, but

at some point

will go out of

range.

Feet 25 to 200 50 to

100

Indoor

distances

59

49

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

10 Time to stop

when

therapist

remote out of

range

When the

therapist

remote goes out

of wireless

range (indicated

by the light on

the remote

turning on) how

much time is

allowed to pass

before the

Power

Wheelchair

Trainer halts

operation and

stops the

motors.

Seconds 1 or less 0.75 or

less

Safety

factor

0.824

11 Wireless

Emergency

stop

Number of

emergency stop

switches on the

therapist

remote

Count 1 or more 1 or

more

Safety

factor

1

50

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

12 Time to stop

from low

speed when

remote

emergency

stop pushed

When the

emergency stop

switch on the

therapist

remote is

pushed, how

much time is

allowed to pass

before the

Power

Wheelchair

Trainer halts

operation, stops

the motors, and

comes to a

complete stop

from from a

forward speed

of 35/125

Seconds 0.75 or

less

0.5 or

less

Safety

factor

0.198

13 Emergency

Stop

Number of

hardwired

emergency stop

switches on the

controller

Count 2 or more 3 or

more

Safety

factor

2

51

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

14 Time to stop

from low

speed when

hard wired

panel

emergency

stop pushed

When one of

the hard wired

emergency stop

switches on the

back of the

Power

Wheelchair

Trainer is

pushed, how

much time is

allowed to pass

before the

Power

Wheelchair

Trainer halts

operation, stops

the motors, and

comes to a

complete stop

from a forward

speed of 35/125

Seconds 0.75 or

less

0.5 or

less

Safety

factor

0.198

15 Learner Switch

Drive Control

The learner

joystick shall

have four

3.5mm mono

jacks for use

with input

switches.

Count 4 exact 4 exact One for

each of the

directions

4

16 Platform

raising and

lowering

Time to raise or

lower the

platform

Seconds 3 to 45 3 to 20 A pleasant

speed to

travel 2

inches

3.8

52

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

17 Maximum

current

supplied to

motors

An upper limit

on the

continuous

current supplied

to the motors

for protection

Amperes 30 or less 30 or

less

Motor

protection

25

18 Charging time The time

required to fully

charge the main

batteries of the

Power

Wheelchair

Trainer from

empty

Hours 8 or less 4 or less Overnight

charging

4.1

19 Voltage 3.3V

rail

Main controller

board

Volts 3.3V ±

0.25V

3.3V ±

0.1V

Operating

voltage of

microcontr

oller

3.29

20 Voltage 5V rail Main controller

board

Volts 5V ± 0.45V 5V ±

0.15V

Operating

voltage of

LCD screen

5.01

21 Voltage 5V rail Learner joystick Volts 5V ± 0.2V 5V ±

0.1V

Operating

voltage of

inductive

joystick

4.99

22 Voltage 2.7V

rail

Learner joystick

and therapist

remote

Volts 2.7V ± 0.1 2.7V ±

0.05V

Operating

voltage of

microcontr

oller

2.71

23 Linear

actuator

voltage –

raising

Value will be the

charge level of

the first battery

in series

Volts 12V ± 3V 12V ±

2V

Operating

voltage of

linear

actuators

13.38

53

Specification

Name

Metric

Description

Unit Required

Value

Target

Value

Reasoning Delivered

Value

24 Linear

actuator

voltage -

lowering

Value will be the

charge level of

the second

battery in series

Volts 12V ± 3V 12V ±

2V

Operating

voltage of

linear

actuators

12.95

25 Outer Dead

Zone

When

configured to be

off, do not stop

driving the

motors

Pass/fail Pass Pass Feature

defined

Pass

26 Outer Dead

Zone

When

configured to be

on, how far

from the center

the joystick

handle must be

to be

considered in

the outer dead

zone

Degrees 15 ± 6 15 ± 3 Joystick

handle

travel

distance

15.6

27 Center Dead

Zone

Minimum

configurable

deflection angle

of the dead

zone

Degrees 5 or less 0 Joystick

handle

travel

distance

2.9

28 Center Dead

Zone

Maximum

configurable

deflection angle

of the dead

zone

Degrees 15 ± 6 15 ± 3 Joystick

handle

travel

distance

19.4

Table 4: Control System Specifications

V.2 Functional Diagram

A functional diagram of the Power Wheelchair Trainer control system is shown in Figure 24. This

block diagram depicts the inputs and outputs of the control system hardware, and the arrows between

54

the blocks show the direction of flow of information. The abbreviations used in the figure include liquid

crystal display (LCD) and light emitting diode (LED).

Figure 24: Functional Block Diagram of the Control System

The major components of the control system in version 5 include the therapist remote discussed

in section IV.2.3, the learner joystick discussed in section, IV.2.2, IV.5.2, the main control panel, and

remaining control system components. Each block of the function diagram in Figure 24 is described in

the following sub-sections.

55

V.3 Main Receiver Circuit Board

There are two separate custom circuit boards in the system, (1) the main receiver on the Power

Wheelchair Trainer that handles the drive logic, user interface, and linear actuator control, and (2) the

wireless remote board used for both the learner joystick and the therapist remote (described in section

V.4). This section describes the main receiver circuit board. Many components were carried over from

the version 4 design, and new components were chosen to meet the requirements and specifications.

The parts of the main receiver schematic (see Appendix C) that were reused as-is from version 4 include

the linear actuator control, voltage regulators, microcontroller, and wireless module. The main receiver

schematic was modified to add support for a liquid crystal display (LCD), user interface buttons, and

motor driver interface.

The major components for the main receiver are summarized in Table 5. The complete bill of

materials can be found in Appendix F.

Part Description Legacy or New?

Motor Controller Sabertooth 2x60 New

Microcontroller Atmel ATxmega64A1 Legacy

Wireless Transceiver Nordic nRF24L01+ Legacy

LCD Newhaven Display NHD-0216K1Z-NSW-BBW-L New

Motors 30A DC Brushed motor Legacy

Batteries 12V Lead Acid Legacy

Linear Actuators Hiwin LAS-1-1-50-12G Legacy

Charger Standard power wheelchair charger Legacy

Table 5: Major Components – Receiver

All legacy components are acceptable since they have been proven in the version 4 design. The

microcontroller is acceptable because it has plenty of I/O pins and enough processing power for the task

of filtering joystick signals. Current draw of the microcontroller is negligible given two 12V gel lead acid

56

batteries. Reduced development time was a large contributing factor in choosing to keep many of the

legacy components in addition to choosing new components.

V.3.1 Motor Controller

A new motor controller needed to be chosen that was capable of driving two industry-standard

30 ampere DC brushed motors commonly used in power wheelchairs and used for the Power

Wheelchair Trainer. The Dimension Engineering (Akron, Ohio) Sabertooth 2x60 motor driver is capable

of supplying up to 60 amperes on two channels, for a total of 120 amperes, and takes input voltages

between 6V and 30V (Dimension Engineering, 2011). The Power Wheelchair Trainer uses two gel lead

acid batteries connected in series for a nominal operating voltage of 24 volts. The Sabertooth 2x60 is

also lower cost than the previous Omni+ system.

The motor controller consists of three parts: a software module, a voltage level shifter, and the

Sabertooth 2x60. All parts are new in version 5 of the Power Wheelchair Trainer. The software module

is described in section V.6.6. The microcontroller interfaces with the Sabertooth 2x60 motor controller

using two input terminals, S1 and S2. The microcontroller operates at 3.3V, and the motor controller’s

interface uses 5V signaling, so a voltage level shifter was utilized to convert the voltage levels. The

voltage level shifter schematic is shown in Figure 25.

57

Figure 25: Motor Controller Level Shifter Schematic Excerpt

The interface pinout for the motor controller is shown in Table 6.

Pin Signal Name Signal Direction Description

1 GND Ground

2 5V Sabertooth 2x60 → main board 5 volts supplied by the motor controller

(up to 1 ampere)

3 S1 Microcontroller → Sabertooth 2x60 TTL level RS-232 serial 9600 baud 8-N-1

4 S2 Microcontroller → Sabertooth 2x60 Active-low emergency stop

Table 6: Motor Controller Interface

The S1 signal is an RS-232 compatible serial line with 9600 baud, 8 data bits, no parity, and 1

stop bit. The Sabertooth 2x60 converts speed and direction commands into right motor speed and left

motor speed and provides the high current needed to make the motors run. The Sabertooth 2x60 also

has a 5V voltage regulator that is used to supply the 5V rail on the main receiver.

The Sabertooth 2x60 is powered directly from the batteries. Each motor is connected to the

Sabertooth 2x60 through a 25 ampere resettable fuse (TE Connectivity part # BD280-1927-25/16) for

overcurrent protection. See Table 7 for a description of the battery and motor terminals.

58

Terminal Name Description

B+ 24V

B- 0V GND

M1A Motor 1 positive terminal

M1B Motor 1 negative terminal

M2A Motor 2 positive terminal

M2B Motor 2 negative terminal

Table 7: Motor Controller Power Terminals

V.3.2 Platform Actuators

The platform actuator module consists of both a legacy hardware module and software module.

Four platform actuators take care of lowering and raising the main platform of the power wheelchair

trainer. The linear actuators have built-in limit switches to prevent the platform from being raised or

lowered too far. When the platform down switch is pressed on the control panel, a stored parameter is

set to indicate to the driving module to stop driving. When the platform up switch is pressed the stored

parameter is cleared to indicate to the driving module that it is safe to drive.

The linear actuators run on ±12V and draw up to 2 amperes. To lower the platform, +12V

nominal is applied, and to raise the platform up -12V is applied. The linear actuators are driven using

MOSFETs in a half-bridge configuration. Current is drawn from one battery while lowering the platform,

and from the other battery while raising the platform. A half-bridge MOSFET driver drives the MOSFETs.

59

Figure 26: Linear Actuator Driver Schematic Excerpt

The current sensor design was carried over from the version 4 design and is unused in the

version 5 design. An analog voltage reference (see Figure 43) is also unused since the main board is

consequently not doing any analog to digital conversions.

V.3.3 Control Panel

The control panel is a group of user interface components consisting of an LCD screen, menu

navigation arrow keys, platform raise/lower switch, power switch, and a pair of emergency stop

switches. The control panel elements are pictured in Figure 27 and Figure 28. The control panel is

located on the top face of the rear power unit, and the emergency stop faces are located on the rear

face of the rear power unit next to the rear wheels.

Figure 27: Control Panel

60

Figure 28: Emergency Stop Switches

The following sub-sections describe the components of the control panel.

V.3.3.1 LCD Screen

The liquid crystal display (LCD) is a hardware module that can display 2 rows of 16 characters.

The LCD receives input from the LCD driver software module. The LCD is manufactured by Newhaven

Display (Elgin, Illinois) and the part number is NHD‐0216K1Z‐NSW‐BBW‐L. This LCD display was chosen

because it can display two lines with 16 alpha-numeric characters on each line, and because of its low

cost. Time constraint made it infeasible to upgrade to a 6-line LCD. The LCD operates on 5 volts and

requires 5 volt signaling, so level shifters are necessary to convert the 3.3 volt signals from the

microcontroller to 5 volts. The data interface is a 4-bit parallel bus with three control lines. The

schematic for the voltage level shifters are shown in Figure 29.

61

Figure 29: LCD Interface Schematic Excerpt

The interface pin description is shown in Table 8.

Pin Name Signal Direction Description

RS Microcontroller → LCD Register select

RW Microcontroller → LCD Read or write (always set to write)

E Microcontroller → LCD Data latch

DB7:DB4 Microcontroller → LCD 4-bit parallel data bus

DB3:DB0 Unused

Table 8: LCD Interface Pin Descriptions

Further LCD interface details are in the LCD software module section V.6.7.

62

V.3.3.2 Control Panel Arrow Keys

There are four arrow keys on the control panel: up, down, left, and right. The arrow keys are

momentary pushbuttons connected to the microcontroller. External pull-up resistors are used on the

signal lines. When pushed, the microcontroller pin is shorted to ground for active-low switch activation.

V.3.3.3 Platform Switch

A momentary rocker switch on the control panel provides control of the linear actuators.

Lowering and rising of the platform is performed by the linear actuators. External pull-up resistors are

used on the signal lines. When pushed, the microcontroller pin is shorted to ground for active-low

switch activation. When the platform down switch on the control panel has been pressed, an internal

variable is set to indicate to the main decision module to halt operation of the motors.

V.3.3.4 Power Switch

A simple switch powers the control system on or off. The switch is a double-pole, single-throw

configuration which enables it to switch both 12V and 24V simultaneously. Since the current

requirements of the motor controller are so high, the power switch only toggles power to the main

board, not the motor controller. The motor controller remains on when the system is powered down,

but without the microcontroller commands to the motor controller the serial link times out and the

motors stop.

V.3.4 Emergency Stop Switches

The hardwired emergency stop switches utilize normally closed circuitry, meaning that any

unexpected wiring failure will also trigger an emergency stop condition. In other words, the switch is set

up in a “push-to-break” fashion. The emergency stop signal line also uses external pull-up resistors, and

as a consequence of the normally closed switch, the emergency stop signal is active-high. The

emergency stop switches are comprised of Apem (Haverhill, Massachusetts) part numbers A0150B and

63

A01ESSP3 (see Appendix F). The emergency stop input to the microcontroller is sampled in a polled

fashion (see Figure 32), and when an emergency stop condition is detected an emergency stop

subroutine is called. The emergency stop subroutine signals to the motor controller to shut down

immediately and cut power to the motors. The emergency stop routine prevents any further operation

until a power cycle is performed.

V.3.5 Receiving Wireless Module

The main receiver circuit board has a Nordic nRF24L01+ wireless transceiver. Wireless is

described further in section V.5.

V.4 Remote Circuit Boards

The learner joystick and therapist remote use the same circuit board but not all components are

populated on each board, and the two boards are programmed with different software. The parts of

the wireless remote schematic (see Appendix C) that were reused as-is from the version 4 design are the

microcontroller and wireless interface. The wireless remote schematic was modified to handle a

resistive joystick or inductive joystick as input, and was additionally upgraded with on-board voltage

regulators. The major components for the remote circuit boards are summarized in Table 9. The

complete bill of materials can be found in Appendix F.

Part Description Legacy or New? Notes

Microcontroller ATtiny461 Legacy

Wireless Transceiver Nordic nRF24L01+ Legacy

Voltage regulator 2.7V Texas Instruments TPS61200DRCT New

Voltage regulator 5V Texas Instruments TPS61202DSCR New Learner joystick only

Inductive Joystick Invacare MK IV New Learner joystick only

Table 9: Major Components – Remote Controls

64

The microcontroller and wireless module were chosen because they have been proven in the

version 4 design. The voltage regulators were chosen because of their capability to operate on a wide

range of input voltages since the battery topography was not known at the time of the design. The

voltage regulators automatically operate in either a switching boost regulator mode or linear regulator

mode, and are able to handle low input voltages. The inductive joystick was chosen because it is the

industry standard method of power wheelchair control.

V.4.1 Power Switch

A simple rocker switch powers the remote circuit board on or off. Power is provided by two AA

batteries connected in series.

V.4.2 LED

A red LED turns on when there is no wireless connection to the receiver. The LED is connected

in series with a current limiting resistor and is powered by a microcontroller pin.

V.4.3 Transmitting Wireless Modules

Each remote circuit board has a Nordic nRF24L01+ wireless transceiver. Wireless is described

further in section V.5.

V.4.4 Learner Joystick

An industry-standard inductive hand joystick is used. The inductive joystick was taken from an

Invacare MKIV controller. The joystick has a notch indicating the reverse direction as shown in Figure

30.

65

Figure 30: Invacare MKIV Inductive Joystick

The electrical interface of the inductive joystick was determined by the author, and results are

shown in Table 10.

Wire Color Signal Description Signal Direction

Red +5V supply voltage Voltage regulator → joystick

Black 0V ground

Yellow Y-axis, Speed Joystick → microcontroller

Blue X-axis, Direction Joystick → microcontroller

Table 10: Invacare MKIV Inductive Joystick Interface

Additional electrical characteristics of the inductive joystick were measured by the author and

are shown in Table 11.

Measurement Value

Start-up delay 150 microseconds

Current draw 9 milliamps

Table 11: Invacare MKIV Inductive Joystick Electrical Characteristics

66

The 5V supply for the inductive joystick is provided by a boost regulator. When the joystick is

centered, the speed and direction outputs are nominally 2.5 volts. The voltage on the yellow wire

increases as the joystick handle is pushed forward, and the voltage on the blue wire increases as the

joystick handle is pushed to the right. These speed and direction signals are above the operating voltage

of the microcontroller, so they are routed through voltage divider resistors (see Figure 40). The output

of each voltage divider goes to a microcontroller pin capable of performing analog to digital conversions.

V.4.4.1 Learner Joystick Enable Switch

The joystick enable switch enables or disables the joystick, which is useful for using it purely for

switch inputs. The switch is connected to a microcontroller pin with an external pull-up resistor, and

when the switch is activated the pin is shorted to ground to indicate switch activation.

V.4.4.2 Learner Switch Inputs

The learner joystick provides 4 switch inputs for switch drive control. The switch inputs are for

use with external momentary switches with a 3.5mm mono barrel jack connector. The switch inputs are

enabled anytime the learner joystick is powered on. The learner joystick takes priority over the switch

inputs, except when the learner joystick enable switch is in the off position. Each switch is connected to

a separate microcontroller pin with an external pull-up resistor.

V.4.5 Therapist Remote

The 5V voltage regulator is not populated on the therapist remote circuit board since it does not

need to power an inductive joystick.

V.4.5.1 Therapist Joystick

A thumb joystick overrides the learner joystick. The therapist remote has its own special driving

profile with the full range of customizable settings. The special profile comes after the last learner

driving profile on the Power Wheelchair Trainer. The thumb joystick uses two potentiometers to

67

measure the joystick position. The potentiometers are powered from the same operating voltage as the

microcontroller, and outputs from the potentiometers are routed directly to microcontroller pins

capable of performing analog to digital conversions.

V.4.5.2 Therapist Emergency Stop

The emergency stop switch on the therapist remote is a red momentary pushbutton. The

microcontroller’s internal pull-up resistor is used on the emergency stop signal line. When the switch is

activated, the microcontroller pin is shorted to ground for active-low switch activation and the

microcontroller signals the main decision module to call the emergency stop routine.

V.5 Wireless Hardware

The wireless module is legacy, carried over from version 4 of the Power Wheelchair Trainer.

Wireless functionality for the Power Wheelchair Trainer and peripherals is provided by 3 Nordic

nRF24L01+ transceivers. One of these is set up as a receiver on the main receiver circuit board, and the

other 2 are set up as transmitters in the learner joystick and therapist remote. The wireless IC operates

in the 2.4GHz band, with a specific RF channel frequency of 2.524GHz. This channel frequency is higher

than common 802.11 frequencies, reducing the possibility of interference with Wi-Fi signals.

The schematic and board layout for the wireless IC, including the antenna trace (see Figure 31),

was carried over from the proven version 4 design, which in turn was based on the Sparkfun Nordic FOB

example project (Nordic, 2009).

Figure 31: Nordic nRF24L01+ PCB Antenna Trace

68

The wireless IC uses serial peripheral interface (SPI) to communicate to microcontroller. A pin

diagram for the SPI interface is shown in Table 12.

Pin Name Description Direction

CE Chip enable Microcontroller → wireless IC

CSN SPI Chip select Microcontroller → wireless IC

SCK SPI Clock Microcontroller → wireless IC

MOSI SPI Master out, slave in Microcontroller → wireless IC

MISO SPI Master in, slave out Wireless IC → microcontroller

IRQ Interrupt request Wireless IC → microcontroller

Table 12: Wireless IC Interface Description

Additional details about wireless can be found in section V.5.

V.6 Software

The software architecture and modules are described in the following sub-sections.

V.6.1 Software Architecture and Main Decision Module

The main decision module initializes the system, determines what state of the system is in, and

controls the overall flow of information. The overall software architecture consists of a main loop and

interrupt-driven routines. Initialization routines are run before entering the main loop. During the

initialization process, the initialization routines for the following modules are run:

 Driving logic

 Motor controller

 Debounce module

 Wireless module

 LCD driver

69

These initialization routines are discussed in their respective sections. Additionally, general

microcontroller input/output (I/O) pin directions are initialized. After initialization, the main decision

module enters the main loop. A software decision flowchart describing the polled portion of the

software is shown on the next page in Figure 32, which includes a high-level overview of the main

software loop for the learner joystick, therapist remote, and wheelchair.

70

Figure 32: Software Decision Flowchart

71

Interrupt-driven portions and polled subroutines of the software are specific to certain modules,

and are explained in their appropriate sub-section.

V.6.2 Emergency Stop

When the main decision module detects an emergency stop condition, an emergency stop

subroutine is called. The emergency stop subroutine signals to the motor controller to shut down

immediately and cut power to the motors. The emergency stop subroutine also signals to the user

interface module to display an emergency stop message on the LCD screen. The emergency stop

routine prevents any further operation until a power cycle is performed.

V.6.3 Wireless Protocol

Wireless functionality for the Power Wheelchair Trainer and peripherals is provided by 3 Nordic

nRF24L01+ transceivers. As mentioned previously, one of these is set up as a receiver in the power unit,

and the other 2 are set up as transmitters in the learner joystick and therapist remote. The software

initializes the wireless IC and ensures reliable communication between the learner joystick, therapist

remote, and main receiver. The nRF24L01+ supports up to 6 data pipes, or data streams. For the Power

Wheelchair Trainer, 2 data pipes are as a way to distinguish between the learner joystick and therapist

remote. To ensure reliable data transmission, automatic acknowledge packets (ACK), cyclic redundancy

checksum (CRC) with two CRC bytes, and retry logic have been set up as recommended by the

nRF24L01+ data sheet (Nordic Semiconductor, 2008). If the receiver receives a packet and successfully

verifies the CRC, an ACK is sent as a reply. In the event of a CRC error, the receiver responds with a not

acknowledged (NACK) packet, and the transmitter retries the transmission. The transmitters will

continually retry transmissions until an ACK packet is received. When the 2 transmitters are

transmitting at the same time they effectively block each other, however, retransmit delays are different

for the 2 transmitters to prevent blocking more than once. If the therapist remote does not receive an

72

ACK packet, it retries up to 5 times with a delay of 500 microseconds until an ACK packet is received. If

the learner joystick does not receive an ACK packet, it retries once with a delay of 2500 microseconds

until an ACK packet is received. The 2 transmitters are differentiated at the receiver by having different

data pipe addresses. The ACK, CRC, retransmit, and data pipe address functionality are all provided by

the nRF24L01+ wireless transceiver. The nRF24L01+ can operate on a selection of channels within the

2.4GHz band. The chosen RF channel frequency in this application is 2.524GHz.

Two timers are set up on the main receiver for time-out purposes, behaving in a similar fashion

to a watchdog timer with a time-out period 0.25 seconds. Two timers are required since it is necessary

to determine the integrity of both the therapist remote data pipe and the learner joystick data pipe.

Upon successful receipt of a data packet from the therapist remote or learner joystick, the

corresponding timer is reset. If the timer is allowed to run out, then the joystick variables associated

with the device are zeroed in the timer’s interrupt service routine (ISR). In other words, if a wireless

packet has not been received at the wheelchair in the last 0.25 seconds, or if the transmitter has not

received an ACK packet in the last 0.25 seconds, the wireless connection is assumed to be lost due to the

transmitter and receiver being out of range or turned off, and in this case the joystick variables are

zeroed.

The receiving software module operates in an interrupt-driven manner. The receive interrupt

routine is based on the flow diagram shown in Figure 33.

73

Figure 33: Wireless Receiving Flowchart

Timers are also set up at the transmitting end. If an ACK has not been registered in the last 0.25

seconds, the transmitting device turns on an LED to indicate a lost wireless connection.

Data is transmitted in a packet format consisting of a preamble, pipe address, packet control

field, payload, and CRC bytes. The payload is the only field specified by the user, and the payload format

is described in Table 13.

Byte 0 Switch joystick and emergency stop – see Table 14

Byte 1 Direction, X, horizontal axis, right/left

Byte 2 Speed, Y, vertical axis, forward/reverse

Start

Wait for incoming

transmission

CRC verified?

Send ACK

Discard packet

Reset therapist remote

receive timer

Update therapist

remote variables

Reset learner joystick

receive timer

Therapist remote

or learner joystick?

Update learner

joystick variables

 Yes

 No

Learner

joystick
Therapist

remote

74

Byte 3 Reserved, set to 0x00

Table 13: Payload Contents

A description of the bit meanings of byte 0 can be seen in Table 14 (tables are not necessary to

describe the other bytes). Bytes 1 and 2 are signed 8-bit integers representing the joystick position in

the speed and direction notation.

Bit 7 6 5 4 3 2 1 0

Meaning
Reserved Right Left Reverse Forward Reserved Reserved Emergency

stop

Table 14: Payload Byte 0

Bits 3-6 represent the state of the switch inputs and are valid only for the learner joystick,

though the same packet format is used for both the learner joystick and therapist remote. Bit 0

represents the state of the emergency stop switch on the therapist remote. A logical ‘1’ means that the

switch is activated and a logical ‘0’ means that the switch is inactivated.

The nRF24L01+ has selectable data rates of 250 kilobits per second (kbps), 1 megabit per second

(Mbps), or 2 Mbps. 250 kbps is chosen since that data rate allows for lower receive sensitivity and has

farther range. A transmit period must be chosen such that the available data bandwidth is not saturated

and can allow for re-transmits to occur. The length of a packet is given by: 8 preamble bits + 40 address

bits + 9 packet control field bits + 32 payload bits + 16 CRC bits = 105 bits total. An ACK packet has a

zero payload, so an ACK packet amounts to 73 bits. Under ideal conditions, one transmission utilizes

178 bits. Since there are two transmitters, two transmissions need to be counted, so 356 bits. The

theoretical maximum packet transmission period is 1.424 milliseconds, but to allow for ACK delays,

processing delays, and re-transmits, and packet transmission period of 5 milliseconds was chosen.

V.6.4 User Interface Module

The user interface allows the user to view and change stored parameters. The arrow key inputs

are debounced in the debounce module (section V.6.8), and the debounce module ensures that a press

75

of an arrowkey only returns true once for a call to the function since the user interface module is a

polled software module. There are 3 non-volatile variables are needed for the current menu state:

 Active profile: indicates the currently selected profile.

 Active setting: indicates the active programmable setting.

 Platform down: indicates whether the platform is currently lowered or raised.

One additional variable is stored in random access memory (RAM):

 Name edit mode: indicates whether the user interface is in name edit mode.

The current setting and value is displayed on line 1 of the LCD screen. The current profile name

is always displayed on line 2 of the LCD screen. The user interface also allows for editing profile names.

A flow diagram modeling the user interface subroutine is shown in Figure 34.

76

Figure 34: User Interface Flowchart

 Yes

No

 Yes

 Yes

No

No

 Yes

No

 Yes

No

 Yes

 Yes

 Yes

No

 No

No

No

No

No

No

 Yes

 Yes

 Yes

 Yes

 Yes

 Yes

 No

No

Start

Read arrow keys from

debounce module

Is platform

down?

LCD text:

"Platform down"

Return to main loop

Is name edit mode

enabled?

Is left button long-pressed

and choose profile

option selected?

Scroll to the

next option

Scroll to the

previous option

Enable name edit mode

(zero drive control inputs)

Increment value

for selected option

Decrement value

for selected option

Is right arrowkey

pressed?

Is left arrowkey

pressed?

Is up arrowkey

pressed?

Is down arrowkey

pressed?

Is new value/option

within allowed limits?

Ignore new

value/option

Save new value/option

to non-volatile storage

Return to main loop

Refresh LCD text with

selected option and value

Is right arrowkey

pressed?

Is left arrowkey

pressed?

Is up arrowkey

pressed?

Is down arrowkey

pressed?

Is left arrowkey

long-pressed?

Scroll cursor

to the left

Scroll cursor

to the right

Change current letter to the

next letter in the alphabet

Change current letter to the

previous letter in the alphabet

Is new value/option

within allowed limits?

Update profile

name in RAM

Disable name edit mode

Save name to

non-volatile storage

Ignore new cursor

position/letter

Refresh LCD text

with profile name

Return to main loop

77

V.6.5 Driving Logic and Stored Parameters

The driving logic is run in a polled fashion since it involves lots of mathematical operations and it

is undesirable to put heavy-weight code in an interrupt service routine (ISR). If the code gets stuck, the

watch dog timer (section V.6.9) will ensure a safe reset.

The driving logic and stored parameter modules work together to prioritize drive inputs and

apply filters to joystick movements according to programmable values. Multiple driving profiles can be

specified, and each driving profile contains an array of programmable values. Non-volatile storage is

utilized so the customized profile settings are not lost when the system is turned off. The non-volatile

storage can be categorized into general parameters, and profile-specific parameters. The general

parameters in non-volatile storage determine the current menu state of the user interface, and were

described in the previous section.

The profile-specific parameters stored in non-volatile storage are listed and described in Table

15. The driving logic module functions in a polled fashion. The initialization sequence initializes a timer

for use with sensitivity, acceleration, and deceleration (described in Table 15). The driving logic module

continuously reads the following inputs:

 Therapist remote joystick position

 Learner joystick position

 Switch inputs in all four directions

The stored parameters for the active profile are used in the process of translating the joystick

position or switch direction into a final driving speed and direction that will get passed on to the motor

controller. The driving logic module also takes care of input priority: the learner joystick overrides the

switch inputs, and the therapist joystick overrides all. This is also visualized in Figure 32 above. The

78

joystick position is described by speed and direction. This notation is similar to y and x coordinates in a

Cartesian coordinate system. The speed and direction are defined as follows:

 Speed: the forward/reverse axis of the joystick, where zero is center, positive values are

forward, and negative values are reverse. Speed is also known as the vertical axis, y-axis, or

yellow wire.

 Direction: the right/left axis of the joystick, where zero is center, positive values are right, and

negative values are left. Direction is also known as the horizontal axis, x-axis, or blue wire.

Table 15 describes all the stored parameters contained in a driving profile. Each driving profile

contains a unique array of stored parameters. With the exception of the profile name, each stored

parameter is part of a filter, transform, or limit that is applied to the joystick speed and direction. Each

item (except profile name) is applied to the joystick variables in the order it is listed in the table.

Stored Parameter Name Function

Profile name 16 characters are used to specify the name of the driving profile.

79

Stored Parameter Name Function

Outer dead zone If the outer dead zone stored parameter is zero, the outer dead zone is

disabled. Otherwise, given the joystick position in Cartesian coordinates

the distance from center is calculated using the Pythagorean theorem,

given by equation 5.

 √ (5)

If the distance is greater than an empirically determined preset value, the

joystick is considered to be in the outer dead zone and a timer is started.

After this, one of the following scenarios occur:

 If the joystick remains in the outer dead zone for the duration of

the time specified by the stored parameter, the motors stop. The

joystick must return to center before the motors start again.

 If the joystick goes out of the dead zone before the time is up, the

timer is stopped and reset.

Invert If invert is enabled (specified by the stored parameter) then forward and

reverse are swapped. This setting does not apply to the switch inputs.

Proportional as switch When this setting is enabled (specified by the stored parameter) the learner

joystick emulates a switch joystick with only 4 possible directions (forward,

reverse, left, and right) and no diagonal. The top speed stored parameter

determines the speed and direction values. This setting does not apply to

the switch inputs.

80

Stored Parameter Name Function

Center dead zone The speed and direction notation is defined in the Cartesian coordinate

system. Conversion from Cartesian to polar coordinates is accomplished

with equations 6 and 7.

 √ (6)

 ()
(7)

() are the direction and speed, respectively, in Cartesian coordinates,

and () are the radius and angle in polar coordinates. is the C

standard arctangent function which takes into account the sign of both

arguments in order to determine quadrant (atan2, n.d.).

The dead zone is applied by subtracting the stored parameter from the

radius. If the resulting radius is negative, it is set to zero (indicating a

centered joystick; the joystick is in the dead zone). Finally, the radius and

angle are converted back to Cartesian coordinates using equations 8 and 9.

 ()
(8)

 ()
(9)

This setting does not apply to the switch inputs.

Forward, reverse, and

turn throw

Joystick throw determines how far to deflect the joystick to attain a certain

speed. This is implemented by multiplying the joystick position by the

stored parameter. There is a separate stored parameter for forward,

reverse, and turn, thus throw is applied separately for forward, reverse, and

turn. This setting does not apply to the switch inputs.

81

Stored Parameter Name Function

Forward, reverse, and

turn maximum speed

If speed or direction is greater than the stored parameter, then set the

speed or direction to the stored parameter. Top speed is applied

separately for forward, reverse, and turn.

Sensitivity Sensitivity is implemented as a first order low-pass filter, given by equation

10.

 () (10)

The stored parameter specifies , the cut-off frequency of the filter. The

filter iterates every 1 millisecond, and it is only applied while speed is

increasing. The filter is applied to speed and direction in Cartesian

coordinates.

Acceleration and

Deceleration

The stored parameter specifies how many milliseconds to wait before

speed/direction is allowed to increase or decrease by one. If

speed/direction is increasing, use the acceleration stored parameter. If

decreasing, use the deceleration stored parameter.

Table 15: Stored Parameter Functions

Simple error checking is performed in case of non-volatile storage failure. During initialization,

the settings are checked that they are within the range of allowed values. Additionally, every time a

value is written to non-volatile storage, the value is read back and compared to the expected value. In

the event of a failed check, the message show in Figure 35 is displayed on the LCD. This message

indicates that the non-volatile storage is corrupted and the microcontroller should be replaced.

Figure 35: EEPROM Corrupt LCD Message

82

V.6.6 Motor Controller Communication

The motor controller software module initializes the serial communication peripheral of the

microcontroller required for sending speed and direction commands to the hardware motor controller.

The motor controller software uses the Universal Serial Interface (USI) peripheral of the microcontroller

to output a RS-232 compatible 9600 baud, 8 data bits, no parity, 1 stop bit signal on the S1 pin of the

Sabertooth 2x60 motor controller. The microcontroller must continually send speed and direction

commands to the Sabertooth 2x60. If the Sabertooth 2x60 has not received a command in 500

milliseconds, a time-out occurs and the motors stop. The S2 pin of the Sabertooth 2x60 is an active-low

emergency stop. A motor controller command packet is shown in Table 16.

Byte Number Description

1 Address

2 Command

3 Data

4 7-bit checksum

Table 16: Motor Controller Packet Description

The Sabertooth 2x60 has a hardcoded address of 128. The command byte tells whether the

packet is specifying the speed or the direction. The data byte specifies how fast to drive the motors.

The Sabertooth 2x60 converts speed and direction values into left motor and right motor speeds. The

checksum byte is calculated as the lower 7 bits of equation 11:

 ()
(11)

V.6.7 LCD Driver

The LCD driver is an interrupt-driven software module that converts text for display into

electrical signals and commands to interface with the LCD application programming interface (API). The

LCD module is new in version 5 of the Power Wheelchair Trainer. The module handles signal timing and

83

sends data according to the signaling protocol described in detail in the LCD controller application notes

(Sitronix, 2006; Sunplus Technology, 2003). The LCD driver software is written in an interrupt-driven

manner since it involves waiting periods and it is undesirable to block other more important parts of the

software while waiting for an LCD character to be sent.

During the initialization routine, a timer peripheral is set up to trigger an interrupt service

routine (ISR) for the LCD driver. To initiate sending a text string to the LCD, the main code calls a

lcdText() subroutine that copies the text string to local memory for the LCD driver (see lcd_driver.c in

Appendix D). Then the function sends the start command to the LCD by setting the appropriate data

bits and a timer is started. At this point, the function returns and the main code can continue. After the

timer reaches a delay value specified by LCD API, the interrupt service routine (ISR) for the LCD driver

executes and sends the next command to the LCD, and sets a new timer value for the next state. The

variables and registers used as part of the LCD driver and API are explained in Table 17.

Variable Description

RS RS: LCD API control variable. Register select.

E E: LCD API control variable. Clock.

PORT PORT: The microcontroller pins used to send commands to

the LCD.

ADDR ADDR: The memory address corresponding to the first line

of the LCD.

ADDR2 ADDR2: The memory address corresponding to the second

line of the LCD.

CurrLine CurrLine: An LCD driver internal variable used to keep track

of which line is being processed.

Line1 Line1: The text to send for line 1.

Line2 Line2: The text to send for line 2.

Delay Delay: The amount of delay between sending commands.

84

CharPos CharPos: An LCD driver internal variable used to keep track

of which character is being processed.

Table 17: LCD Variables

Figure 36 is a flow diagram of the LCD driver algorithm. In Figure 36, each box contains the

commands to be executed during the ISR and the delay timer value until the next box is executed. It

starts by sending the address of the first character of the first line of the LCD, and then the subsequent

16 characters are transmitted. Then it sends the address of the second line of the LCD screen, and the

remaining 16 characters are transmitted.

85

Figure 36: LCD Signaling Flow Diagram

Timer on

RS=0

E=1

PORT=ADDR[7:4]

CurrLine=Line1

Delay=1µs

RS=0

E=1

PORT=ADDR2[7:4]

CurrLine=Line2

Delay=1µs

E=0

Delay=1µs

E=1

PORT=ADDR[3:0]

or

PORT=ADDR2[3:0]

Delay=1µs

E=0

Delay=1µs

E=0

CharPos=0

Delay=38µs

RS=1

E=1

PORT=CHAR[7:4]

Delay=1µs

E=1

PORT=CHAR[3:0]

Delay=1µs

Timer off

Start

Send Character

Line 2 Start

End

CharPos < 16

CharPos=16

AND

CurrLine=Line1

CharPos=16

AND

CurrLine=Line2

E=0

CharPos++

Delay=38µs

86

V.6.8 Debounce Module

The debounce module corresponds to the “Sample hardwired inputs” box of the flowchart in

Figure 32. The debounce module is an interrupt-driven software module that filters out false

keypresses. When a keypress is recorded by a fast microprocessor, a phenomenon known as switch

bounce or contact bounce can introduce extraneous unintended keypresses. Switch contacts are usually

made of springy metals, and when the contacts strike together their momentum and elasticity cause the

contacts to bounce apart. The result is that electrical contact is unstable for a short period of time

before steady state is reached. To solve this problem, the debounce module monitors the button input

and waits for a period of approximately 40 milliseconds before considering a button as being pushed.

The debounce module filters the keypresses from the control panel, including the arrow keys, platform

switch, and emergency stop switches. The debounce module was rewritten for version 5 of the Power

Wheelchair Trainer to be more modular.

During the initialization routine, a timer peripheral is initialized for debouncing purposes. The

debouncing algorithm works by remembering the previous 8 keypress input samples, each measured 5

milliseconds apart. The debounced output is only set or cleared when all 8 previous samples are in

agreement. An interrupt service routine (ISR) runs every 5 milliseconds, triggered by the timer

peripheral. The pseudo-code for the ISR is listed in Table 18 below. InputValues is an 8-bit unsigned

integer.

1
2
3
4
5

InputValues = (InputValues << 1) | (ReadInput() ? 1 : 0);
if (InputValues == UINT8_MAX)
 DebouncedValue = 1;
if (InputValues == 0)
 DebouncedValue = 0;

Table 18: Debounce Code Listing

Additionally, the debounce module detects when a button has been pressed for a longer period

of 2 seconds, known as a long-press. The debounce module ensures that a call to an input function only

87

returns true once per keypress/falling edge to allow proper operation of polled software routines. The

first call to an input function during a switch activation returns true, and subsequent calls return false.

The full source code can be found in PWCT_io.c in Appendix D.

V.6.9 Watchdog Timer

To ensure software reliability and safety, the microcontroller’s watchdog timer peripheral has

been enabled with a time-out period of 125 milliseconds. If the watchdog timer is allowed to run out, a

microcontroller reset is initiated. The main loop resets the watchdog timer on every iteration.

V.7 Enclosures and Connectors

All electrical components were enclosed in order to reduce the amount of visible wiring. The

main receiver circuit board and motor controller were enclosed in a custom enclosure located between

the two batteries in the rear power frame of the Power Wheelchair Trainer. The LCD, user interface (UI)

buttons, power switch, and linear actuator switch were mounted on the top panel of the enclosure. This

concept is illustrated in Figure 37.

88

Figure 37: Electrical Enclosure

As few connectors as possible were located on the outside of the electrical enclosure. These

connectors are for the batteries, motors, charging, emergency stop switches, and linear actuators.

Modular connectors and wiring were chosen to provide sufficient amperage. An overview of the

external connectors is shown in Figure 38, with the number of required conductors and current rating

shown by the wires. Where current rating is not shown, it can be assumed to be negligible.

LCD

Charging

plug

3.5"

6.25"

7 to 8.25"

UI

buttons

BatteryBattery

89

Figure 38: Overview of Connectors

Wire gauges were chosen to safely accommodate amperage ratings. The Sabertooth 2x60

datasheet recommends 8 AWG wire for motor connections (Dimension Engineering, 2011). All

connecters are keyed such that they only fit one way in order to avoid a reverse polarity condition. The

complete bill of materials for connectors is shown in Appendix F.

V.8 Obstacles Overcome and Lessons Learned

V.8.1 Joystick Shearing/Skewed Axes

For unknown reasons the inductive joystick started having a problem where pushing the joystick

straight forward would cause the Power Wheelchair Trainer to turn slightly. The joystick axes could be

roughly represented by the skewed axes shown in Figure 39.

Electrical

enclosure

Battery

Motor 1 Motor 2

Photointerrupter 1 Photointerrupter 2

Linear actuators Emergency stop

switch

2 conductors

120A rating

6AWG

2 conductors

60A rating

8AWG

2 conductors

60A rating

8AWG

3 conductors
3 conductors

2 conductors

Battery

2 conductors

120A rating

6AWG

8 conductors

6A rating

90

Figure 39: Skewed Axes

The symptom was temporarily compensated for in software using a shear mapping algorithm

with empirically determined parameters. However, the joystick skew changed over time and it became

obvious that the software fix was not a permanent one. Ultimately the inductive joystick was replaced

and the problem has not re-appeared as of this writing.

V.8.2 LCD Goes Blank

Occasionally, the LCD screen would go blank while using the linear actuators to lower/raise the

platform. It was determined that this was due to electromagnetic interference (EMI). The MOSFET half-

bridge driver requires a PWM signal in order to turn on the top MOSFETs, resulting in high-current

switching causing lots of EMI. This EMI was picked up by the LCD wiring, occasionally causing the LCD to

go blank. The issue was resolved by routing the LCD wires through a ferrite bead.

91

VI. Assessment

The Food & Drug Administration (FDA) gives guidance for medical device manufacturers on how

to apply verification and validation processes to the design of the medical device (Food & Drug

Administration, 1997). These guidelines were taken into account when evaluating the design and

performance of the Power Wheelchair Trainer control system.

VI.1 Verification

The purpose of verification is to ensure that the Power Wheelchair Trainer meets all engineering

specification and assures the quality of the design. FDA guidelines say that medical device

manufacturers should perform verification activities and document them, where the verification activity

confirms that the design meets the requirements (Food & Drug Administration, 1997). For the Power

Wheelchair Trainer controller design, verification was carried out by testing each of the requirements

specified in Table 4 in section V.1 using the final prototype.

VI.1.1 Specification Testing

Verification testing was performed and results recorded in Table 19. The table describes the

testing method for each requirement, and the test results were recorded and verified that they meet

the acceptable range of values. All engineering specifications from Table 4 in section V.1 were tested.

Voltage levels were measured with a Fluke 189 True RMS Multimeter.

Procedure Unit Required

Value

Target

Value

Result Pass

/fail

1 From a full charge, prop up the

power unit, start driving forward,

and start a timer. Stop the timer

when the battery voltage reaches

19V.

Hours 3 or more 8 or more 5.25

Pass

92

Procedure Unit Required

Value

Target

Value

Result Pass

/fail

2 Turn off the Power Wheelchair

Trainer. From a fresh set of AA

batteries, turn on the learner

joystick, observe that the red LED is

on, and start a timer. Stop the timer

when the LED turns off.

Hours 8 or more 10 or more 12+ Pass

3 Turn off the Power Wheelchair

Trainer. From a fresh set of AA

batteries, turn on the therapist

remote, observe that the red LED is

on, and start a timer. Stop the timer

when the LED turns off.

Hours 8 or more 10 or more 24+ Pass

4 Set “prop as switch” on, drive

forward 10 ft, measure veer.

Feet 2 or less 1 or less 1.583

to the

left

Pass

5 Count the number of available

driving profiles.

Count 20 or more 50 or more 20 Pass

6 Count the number of available

characters in a profile name.

Characters 16 or more 16 or more 16 Pass

7 Count the number of lines on the

LCD

Lines 2 or more 6 or more 2 Pass

8 Turn on the Power Wheelchair

Trainer and the learner joystick.

Move the learner joystick away from

the Power Wheelchair Trainer until

the red LED turns on, and measure

the distance.

Feet 25 or more 50 or more 23 Fail

9 Turn on the Power Wheelchair

Trainer and the therapist remote.

Move the therapist remote away

from the Power Wheelchair Trainer

until the red LED turns on, and

measure the distance.

Feet 25 to 200 50 to 100 59 Pass

93

Procedure Unit Required

Value

Target

Value

Result Pass

/fail

10 Set forward speed to 35, start

recording video, drive PWCT

forward, turn off remote, measure

time from switch turned off to the

Power Wheelchair Trainer comes to

a complete stop.

Seconds 1 or less 0.75 or less 0.824 Pass

11 Count the number of emergency

stop switches on the therapist

remote.

Count 1 or more 1 or more 1 Pass

12 Set forward speed to 35, start

recording video, drive the Power

Wheelchair Trainer forward, push

remote emergency stop switches,

and measure the time from button

press to the Power Wheelchair

Trainer comes to a complete stop.

Seconds 0.75 or less 0.5 or less 0.198 Pass

13 Count the number of hardwired

emergency stop switches on the

Power Wheelchair Trainer.

Count 2 or more 3 or more 2 Pass

14 Set forward speed to 35, start

recording video, drive PWCT

forward, push hardwired emergency

stop switches, measure time from

button press to the Power

Wheelchair Trainer comes to a

complete stop.

Seconds 0.75 or less 0.5 or less 0.198 Pass

15 Count the number of switch input

jacks on the learner joystick.

Count 4 4 4 Pass

16 Start with platform up, start

recording video, push platform

down switch, measure time it takes

the platform to lower.

Seconds 3 to 45 3 to 20 3.89 Pass

94

Procedure Unit Required

Value

Target

Value

Result Pass

/fail

16 Start with platform down, start

recording video, push platform up

switch, measure time it takes the

platform to raise.

Seconds 3 to 45 3 to 20 3.759 Pass

17 Observe the presence of a 30A (or

less) fuse or resettable fuse on both

of the motor connections inside the

control unit enclosure.

Amperes 30 or less 30 or less 2 25A

fuses

Pass

18 Start with the batteries at 19V,

connect the charger, and measure

the time until the charger light turns

green.

Hours 8 or less 4 or less 4.1 Pass

19 3.3V main Volts 3.3V ± 0.25V 3.3V ± 0.1V 3.2953 Pass

20 5V main Volts 5V ± 0.45V 5V ± 0.15V 5.0091 Pass

21 5V learner joystick Volts 5V ± 0.2V 5V ± 0.1V 4.9984 Pass

22 2.7V therapist remote Volts 2.7V ± 0.1 2.7V ± 0.05V 2.7124 Pass

22 2.7V learner joystick Volts 2.7V ± 0.1 2.7V ± 0.05V 2.6926 Pass

23 Linear actuator voltage – raising Volts 12V ± 3V 12V ± 2V 13.38 Pass

24 Linear actuator voltage – lowering Volts 12V ± 3V 12V ± 2V 12.95 Pass

25 Set the Outer Dead Zone to be off.

Hold the joystick handle all the way

to the edge and observe that the

Power Wheelchair Trainer keeps

driving.

Pass/fail Pass Pass Pass Pass

26 Set the Outer Dead Zone to be on,

and start recording video of the

joystick. Start moving the joystick

handle to the edge, and hold it still

when the Power Wheelchair Trainer

stops. Measure the joystick

deflection angle.

Degrees 15 ± 6 15 ± 3 15.6° Pass

95

Procedure Unit Required

Value

Target

Value

Result Pass

/fail

27 Set the Center Dead Zone to 1. Start

moving the joystick handle, and hold

it still when the Power Wheelchair

Trainer starts moving. Measure the

deflection angle.

Degrees 5 or less 0 2.9° Pass

28 Set the Center Dead Zone to 10.

Start moving the joystick handle,

and hold it still when the Power

Wheelchair Trainer starts moving.

Measure the deflection angle.

Degrees 15 ± 6 15 ± 3 19.4° Pass

Table 19: Specification Tests

One test did not pass verification testing. The failed test was test #8, learner joystick wireless

range. The required value was 25 feet of wireless range, but the test yielded only 23 feet until the

wireless connection was lost. Wireless range depends on environmental factors such as building

structure, intereference, and the joystick’s relation to the human body. Since the learner joystick is less

than 10 feet away from the receiver in the typical use case, it was deemed unnecessary to resolve the

issue.

VI.2 Validation

The purpose of validation is to ensure that the Power Wheelchair Trainer meets the user needs

and fulfills the intended uses. FDA guidelines state that medical devices need to undergo clinical

evaluation and should be tested in the actual or simulated use environment as a part of validation (Food

& Drug Administration, 1997). In some circumstances, a comparison with a predicate device may serve

as a form of validation (Teixeira & Bradley, 2002). The most likely predicate device for the Power

Wheelchair Trainer would be a power wheelchair. While there are similarities between a power

wheelchair and the Power Wheelchair Trainer, they ultimately solve two different problems and have

different intended uses. To validate that the design of the Power Wheelchair Trainer meets the user

96

needs and fulfills the intended uses, the Power Wheelchair Trainer was demonstrated to experts in the

field of power mobility and informal feedback gathered. The Power Wheelchair Trainer was

demonstrated to the following power mobility and rehabilitation experts:

 Karen Koch, Occupational Therapist, Registered (OTR), of Blossomland Learning Center in

Berrien County, Michigan

 Beth McCarty, Occupational Therapist, Registered, Licensed (OTR/L), Assistive Technology

Professional (ATP), and the staff at the Aaron W. Perlman Center at Cincinnati Children’s

Hospital, Cincinnati, Ohio

 Linda Bidabe, Creator of MOVE International, Bakersfield, California

 Edward Hurvitz, Doctor of Medicine (MD), of the University of Michigan, Ann Arbor, Michigan

The Power Wheelchair Trainer was trialed at Blossomland Learning Center under supervision of

Karen Koch, OTR. Several children trialed the Power Wheelchair Trainer, and Karen Koch, OTR

expressed positive feedback.

The Power Wheelchair Trainer was also trialed with several children at the Aaron W. Perlman

center at Cincinnati Children’s Hospital under the supervision of Beth McCarty, OTR/L, ATP, a power

mobility expert. Here several children also tried the Power Wheelchair Trainer with great success. Beth

McCarty suggested that a power mobility training device for smaller children could also be useful. We

had to take it apart to fit in the elevator.

Linda Bidabe of California came to Lincoln Development Center and observed several training

sessions. Linda Bidabe expressed positive feedback about the Power Wheelchair Trainer.

In June 2013, the Power Wheelchair Trainer was demonstrated to Edward Hurvitz and a team of

power mobility staff of Ann Arbor. The author found that due to the large size it was difficult to

navigate the Power Wheelchair Trainer through indoor hallways. The Power Wheelchair Trainer

97

required partial disassembly to fit in an elevator, and there were two doorways that were too narrow

for the trainer, also requiring partial disassembly. Hurvitz’s team also noted that mid-wheel drive is

preferred to rear-wheel drive, and they hardly ever sell anything that is not mid-wheel drive anymore.

The team also noted that fully-custom electronics is cumbersome to maintain when compared to a

commercially available control system such as those from Invacare (Elyria, Ohio). If the electronics were

to fail, replacement parts for the custom system are not readily available, and repairs are often time

consuming and expensive. The issue of FDA approval also came up, and some of the team noticed that

there was no disengage lever on the motors which may be a barrier to FDA approval. The wireless

joystick may also be a barrier to FDA approval.

The Power Wheelchair Trainer has been in use since September, 2012, and as of this writing is

still in use, at the Lincoln Development Center, an area public school in Grand Rapids, Michigan that

provides special education services for individuals aged 5 to 26. Students with various motor

impairments who lack independent mobility skills are selected to participate in training using the Power

Wheelchair Trainer based on their interest in the environment and their apparent desire to move.

Individual 30-minute practice sessions with the Power Wheelchair Trainer are supervised by a physical

therapist and conducted 1-2 times per week during the school year. The training sessions consist of

both structured movement tasks and unstructured self-directed mobility exploration. Some individuals

are working on developing basic cause and effect skills while others are learning to drive safely within

their environment.

98

VII. Future Work

VII.1 Effects of Power Mobility during Childhood Development

Current research shows that the ability of children to move independently and explore their

environment during childhood is important for the development of cognitive and psychosocial skills

(Jones et al., 2012; Tefft et al., 1999). Research is needed to asses the effects of power mobility training

on the cognitive and psychosocial skills of children with severe motor impairments, or children who lack

independent mobility skills during childhood development.

VII.2 Unloading the Wheelchair in the event of a Power Failure

One notable unsolved safety issue is that if the battery drains and platform will not go down,

there is no safe and easy way to unload the learner and his/her wheelchair without lifting. Possible

ideas to work around this issue would be to mount the front casters on the frame instead of the gate so

that the front gate can be removed. Another possibility is to revert back to the version 4a front gate

where the front gate swings open. A design change involving a U-Haul® style ramp is possibly a viable

option. The ramp would slide out from underneath the platform. A ramp like the one on the original

Turtle Trainer (Bresler, 1990) would block the view and is therefore not viable.

VII.3 Mid-wheel Drive

Feedback from power mobility experts noted that the rear-wheel drive design makes it difficult

to navigate around poles and other stationary objects. A mid-wheel drive design would make navigation

easier for the user.

99

VII.4 Music and Vibration Feedback

Suggest from therapists suggested that to enhance the learning experience through positive

reinforcement, the Power Wheelchair Trainer could provide vibration and/or musical feedback while

driving.

VII.5 Low Battery Indicator

The Power Wheelchair Trainer currently does not provide a way to tell the current charge of the

batteries unless the charger is plugged in. A low battery indicator on the control panel would be useful

to the supervising therapist.

VII.6 EMI

A problem with the LCD going blank was resolved with a ferrite bead (see section V.8.2), but

such a fix is considered to be temporary. The root cause of the problem is that the linear actuator driver

performs high power switching, resulting in electromagnetic interference (EMI). Future work would

involve reducing that EMI. One method of doing so is to route unrelated traces on the circuit board

perpendicularly to reduce crosstalk. Another method is use p-channel MOSFETs as the top MOSFET in

the half-bridge configuration of the linear actuator drivers.

100

VIII. Conclusion

This thesis documented the development of a control system for the Power Wheelchair Trainer,

a device that converts a manual wheelchair into a power wheelchair. A literature review was conducted

with a focus on the need for power mobility at a young age, power mobility training, and technical

aspects relating to the project including a review of wheelchair drive control input types, prior work and

previous versions of the Power Wheelchair Trainer, and common programmable settings in power

wheelchair control systems. The required features of the control system have been gathered and

documented, along with how version 5 of the Power Wheelchair Trainer control system was different

from prior versions. The Power Wheelchair Trainer control system was built successfully and provided

the required features. A fully custom control system has potential barriers to FDA approval because it is

unknown if the FDA will approve a wireless joystick. A future version would make use of a commercially

available control system in order to increase likelihood of FDA approval. The design and build process

was documented, and the prototype Power Wheelchair Trainer was tested and evaluated to ensure that

it meets engineering requirements and fulfills the intended use. Physical therapists and powered

mobility experts have expressed positive feedback about the Power Wheelchair Trainer and would like

to see more rehabilitation centers and schools offer this unique powered mobility training opportunity.

The Power Wheelchair Trainer can aid with further research on the effects of power mobility on

cognitive and psychosocial skills in children with severe motor impairments.

101

: Invacare MK6 Programmable Settings Appendix A

The following table is copied from the Invacare MK6i Electronics Programming Manual

(Invacare, 2011).

Setting Description

Forward Speed Sets maximum forward speed

Forward Acceleration Time taken to reach maximum forward speed

Forward Braking Maximum braking force available to Stop or Slow the wheelchair

Reverse Speed Sets the maximum reverse speed, independent of turning and forward speed

Reverse Acceleration Time taken to reach maximum Reverse speed

Reverse Braking Maximum braking force available to Stop or Slow the wheelchair in Reverse

Turning Speed Sets Maximum Turning Speed – Independent of Forward Speed

Turning Acceleration How quickly the wheelchair reaches the programmed turning speed

Turning Deceleration How quickly the wheelchair “brakes” out of a turn when returning joystick to
neutral

Tremor Dampening Accommodates Upper Extremity Tremors / Ataxia

Power Level Sets the Max power (current) available to the motors / drive wheels, or the
point at which the wheelchair will stall at an obstacle or under a load

G-Trac Proprietary electronic gyroscope technology to ensure the wheelchair drives
in a straighter path

Torque A function of Time and Power. How quickly programmed Power Level is
reached

Traction A reduction of the speed when going into and coming out of turns

Joystick Throw Used to calibrate joystick throw. Sets the point for reaching full speed in
relation to joystick displacement. Used with individuals having reduced
range of motion available for joystick operation.

Axes Select Assigns / Re-Assigns joystick commands to a desired direction. Each of the
four input axes can be redirected to any output axis, or turned off.

Input Type Selection between proportional joystick, digital (4-direction) joystick, sip-n-
puff, and other inputs

Color Theme Sets the background color of the liquid crystal display (LCD)

Momentary/Latch Determines the mode for FORWARD driving commands. Momentary
commands are only active while the command is being given. Latched
commands remain active after release of the driver control – until 2 reverse
commands or emergency stop switch is activated.

102

: PGDT R-Net Omni+ Programmable Settings Appendix B

The following table is copied directly from the R-Net Technical Manual (PG Drives Technology,

2011).

Setting Description

Speed A user-adjustable speed setting with easily accessible speed increase and
decrease buttons. Setting ranges from 1 to 5.

Maximum Forward Speed Sets the forward driving speed of the wheelchair when the joystick is
deflected full ahead and the speed setting is at maximum (all 5 bars
illuminated). Programmable range is 0 to 100% in steps of 1%.

Minimum Forward Speed Sets the forward driving speed of the wheelchair when the joystick is
deflected full ahead and the speed setting is at minimum (just 1 bar
illuminated). Programmable range is 0 to Maximum Forward Speed in steps
of 1%.

Maximum Reverse Speed Sets the reverse driving speed of the wheelchair when the joystick is
deflected to full reverse and the speed setting is at maximum (all 5 bars
illuminated). Programmable range is 0 to 100% in steps of 1%.

Minimum Reverse Speed Sets the reverse driving speed of the wheelchair when the joystick is
deflected to full reverse and the speed setting is at minimum (just 1 bar
illuminated). Programmable range is 0 to Maximum Reverse Speed in steps
of 1%.

Maximum Turning Speed Sets the turning speed of the wheelchair when the joystick is deflected fully
left or right and the speed setting is at maximum (all 5 bars illuminated).
Programmable range is 0 to 100% in steps of 1%.

Minimum Turning Speed Sets the turning speed of the wheelchair when the joystick is deflected full
left or right and the speed setting is at minimum (just 1 bar illuminated).
Programmable range is 0 to Maximum Turning Speed in steps of 1%.

Maximum Forward
Acceleration

Sets the acceleration rate of the wheelchair in the forward direction when
the speed setting is at maximum (all 5 bars illuminated). Programmable
range is 0 to 100% in steps of 1%.

Minimum Forward
Acceleration

Sets the acceleration rate of the wheelchair in the forward direction when
the speed setting is at minimum (just 1 bar illuminated). Programmable
range is 0 to Maximum Forward Acceleration in steps of 1%.

Maximum Forward
Deceleration

Sets the deceleration rate of the wheelchair in the forward direction when
the speed setting is at maximum (all 5 bars illuminated). Programmable
range is 0 to 100% in steps of 1%.

Minimum Forward
Deceleration

Sets the deceleration rate of the wheelchair in the forward direction when
the speed setting is at minimum (just 1 bar illuminated). Programmable
range is 0 to Maximum Forward Deceleration in steps of 1%.

Maximum Reverse
Acceleration

Sets the acceleration rate of the wheelchair in the reverse direction when
the speed setting is at maximum (all 5 bars illuminated). Programmable
range is 0 to 100% in steps of 1%.

103

Setting Description

Minimum Reverse
Acceleration

Sets the acceleration rate of the wheelchair in the reverse direction when
the speed setting is at minimum (just 1 bar illuminated). Programmable
range is 0 to Maximum Reverse Acceleration in steps of 1%.

Maximum Reverse
Deceleration

Sets the deceleration rate of the wheelchair in the reverse direction when
the speed setting is at maximum (all 5 bars illuminated). Programmable
range is 0 to 100% in steps of 1%.

Minimum Reverse
Deceleration

Sets the deceleration rate of the wheelchair in the reverse direction when
the speed setting is at minimum (just 1 bar illuminated). Programmable
range is 0 to Maximum Reverse Deceleration in steps of 1%.

Maximum Turn
Acceleration

Sets the acceleration rate of the wheelchair into a turn when the speed
setting is at maximum (all 5 bars illuminated). Programmable range is 0 to
100% in steps of 1%.

Minimum Turn
Acceleration

Sets the acceleration rate of the wheelchair into a turn when the speed
setting is at minimum (just 1 bar illuminated). Programmable range is 0 to
Maximum Turn Acceleration in steps of 1%.

Maximum Turn
Deceleration

Sets the deceleration rate of the wheelchair while turning when the speed
setting is at maximum (all 5 bars illuminated). Programmable range is 0 to
100% in steps of 1%.

Minimum Turn
Deceleration

Sets the deceleration rate of the wheelchair while turning when the speed
setting is at minimum (just 1 bar illuminated). Programmable range is 0 to
Maximum Turn Deceleration in steps of 1%.

Power This reduces the power of the wheelchair. Power is the ability of a
wheelchair to climb a hill or overcome an obstacle. If it is set to 100% then
the wheelchair will provide full power.

Torque This parameter can be used to boost the power to the motors at low drive
speeds. This is useful for overcoming obstacles such as door thresholds or
thick pile carpets and for countering Rollback. Programmable range is 0% to
100% in steps of 1%.

Tremor Dampening This parameter can be used to reduce the effects of a user’s hand tremor.
The programmable range is 0% to 100%.

Fast Brake Rate This parameter sets the deceleration rate that is used while fast braking.
Fast braking is when the joystick is pulled to the reverse position to make a
faster stop. The programmable range is 0 to 200.

Joystick Forward Throw This sets the amount of forward movement of the joystick that is required
to reach full forward speed. This is particularly useful for users with limited
hand movement. The programmable range is 25% to 100% in steps of 1%.

Joystick Reverse Throw This sets the amount of reverse movement of the joystick that is required to
reach full reverse speed. This is particularly useful for users with limited
hand movement. The programmable range is 25% to 100% in steps of 1%.

Joystick Left Throw This sets the amount of left movement of the joystick that is required to
reach full left turning speed. This is particularly useful for users with limited
hand movement. The programmable range is 25% to 100% in steps of 1%.

Joystick Right Throw This sets the amount of right movement of the joystick that is required to
reach full right turning speed. This is particularly useful for users with
limited hand movement. The programmable range is 25% to 100% in steps
of 1%.

104

Setting Description

Joystick Deadband This sets the size of the joystick’s neutral area. In other words, how far the
joystick has to be deflected before the brakes are released and drive
commences. The programmable range is 10% to 50% in steps of 1%.

Invert Fwd Rev JS Axis If it is required that the joystick has to be pulled in reverse to initiate
forward driving, enable this setting

Invert Left Right JS Axis If it is required that the joystick has to be pushed left to initiate a right turn,
enable this setting

Latched Drive This sets the type of latched drive of the wheelchair. Step and Cruise modes
are available.

Latched Timeout This sets the time-out period for latched drive and actuator control. The
programmable range is 0 to 250 Seconds in steps of 1 Second.

Maximum Current Limit Sets the long-term maximum current output of the Power Module.

Boost Drive Current Sets the short-term maximum current output of the Power Module.

Boost Drive Time Sets the period of time that the level of current set by Boost Drive Current is
available.

Current Foldback
Threshold, Time, and
Level

Three parameters can be used to protect the wheelchair motors from
overheating.

Invert M1 Direction This inverts the direction of rotation of motor channel M1 on the Power
Module.

Invert M2 Direction This inverts the direction of rotation of motor channel M2 on the Power
Module.

Motor Swap This swaps the motor output channels, M1 and M2, of the Power Module.

Steer Correct This parameter compensates for any mis-match in motor speeds, thereby
ensuring the wheelchair drives in a straight line when the joystick is being
pushed directly forward. This is particularly useful for switch type Input
Devices. The programmable range is –9 to 9 in steps of 1.

105

: Schematics Appendix C

Figure 40: Learner Joystick and Therapist Remote Schematic

106

Figure 41: Learner Joystick and Therapist Remote Board Layout

107

Figure 42: Wheelchair Schematic 1 of 6

108

Figure 43: Wheelchair Schematic 2 of 6

109

Figure 44: Wheelchair Schematic 3 of 6

110

Figure 45: Wheelchair Schematic 4 of 6

111

Figure 46: Wheelchair Schematic 5 of 6

112

Figure 47: Wheelchair Schematic 6 of 6

113

Figure 48: Wheelchair Board Layout

114

: Source Code (Main Board) Appendix D

main.c

/* This file has been prepared for Doxygen automatic documentation generation... kind
of.*/
/*! \file ***
 *
 * \brief PWCT main function source file
 *
 * This file contains the main function of the Power Wheelchair Trainer
 *
 * \par Target note:
 * This code is written for an XMEGA 64 A1 device
 *
 * \author
 * Stew Hildebrand, Jeff VanOss, Anderson Peck, Paul Shields
 *
 * $Revision: 1 $
 * $Date: 03-28-2011$ \n
 *
 ***/

#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h> // strtol
#include "../atmel/clksys_driver.h"
#include "../atmel/wdt_driver.h"
#include "util.h"
#include "nordic_driver.h"
#include "linear_actuator.h"
#include "PWCT_io.h"
#include "motor_driver.h"
#include "lcd_driver.h"
#include "menu.h"
#include "joystick_algorithm.h"
//#include "test.h"

static void eStop(const char *estopText)
{
 motorEStop();
 while (1)
 {
 lcdText(estopText, "Ver. " __DATE__, 0);
 WDT_Reset();
 }
}

static void displayResetReason(double delayTime_ms)
{
 uint8_t status = RST.STATUS;
 char lcdLine[LCD_NUM_CHARACTERS+1];
 lcdLine[LCD_NUM_CHARACTERS] = '\0';

115

main.c

 sprintf(lcdLine, "RST.STATUS=0x%02x", status);

 RST.STATUS = status & 0x3F;

 if (status & RST_SDRF_bm) {
 lcdText("Spike Detect Rst", lcdLine, 1);
 while (1) {
 }
 }
 if (status & RST_SRF_bm) {
 lcdText("Software Reset", lcdLine, 1);
 while (1) {
 }
 }
 if (status & RST_PDIRF_bm) {
 lcdText("PDI Reset", lcdLine, 1);
 _delay_ms(delayTime_ms);
 }
 if (status & RST_WDRF_bm) {
 lcdText("Watchdog Reset", lcdLine, 1);
 while (1) {
 }
 }
 if (status & RST_BORF_bm) {
 lcdText("Brown-out Reset", lcdLine, 1);
 while (1) {
 }
 }
 if (status & RST_EXTRF_bm) {
 lcdText("External Reset", lcdLine, 1);
 _delay_ms(delayTime_ms);
 }
 if (status & RST_PORF_bm) {
 lcdText("Power-on Reset", lcdLine, 1);
 _delay_ms(delayTime_ms);
 }
 if (status == 0) {
 lcdText("RST.STATUS == 0", lcdLine, 1);
 while (1) {
 }
 }
}

/*! \brief Main function
 *
 * This function initializes the hardware, starts monitoring input signals.
 */
int main(void)
{
 uint8_t actuatorSwitchState = 0;
 states state = IDLE;
 //states previousState = IDLE;
 int16_t speed;
 int16_t dir;

 //Setup the 32MHz Clock

116

main.c

 //start 32MHz oscillator
 CLKSYS_Enable(OSC_RC32MEN_bm);
 //wait for 32MHz oscillator to stabilize
 while (CLKSYS_IsReady(OSC_RC32MRDY_bm) == 0);
 //set clock as internal 32MHz RC oscillator
 CLKSYS_Main_ClockSource_Select(CLK_SCLKSEL_RC32M_gc);

 // Enable global interrupts.
 sei();
 joystickAlgorithmInit();
 initMotorDriver();

 dbgLEDinit();
 dbgUSARTinit();

 initLinearActuators();

 initPWCTio();

 nordic_Initialize();

 initLCDDriver();

 displayResetReason(500);

 menuInit();

 WDT_EnableAndSetTimeout(WDT_PER_128CLK_gc); //set watchdog timer for 0.125s
period

 printf("\nReset\n");

 //testJoystickDriveMotors();

 //testPropJoy();

 //testNordicWireless();

 //testInputs();

 //testMotorDriver();

 //Run Operational State Machine
 while(1) {
 WDT_Reset();

 getProportionalMoveDirection(&speed, &dir);
 menuUpdate(speed, dir);

 //check inputs for state changes
 SampleInputs();

 actuatorSwitchState = ActuatorSwitchPressed();

 if (nordic_getInstructorEStop()) {
 eStop("Remote E-stop");

117

main.c

 } else if (PanelEStopPressed()) {
 eStop("Panel E-stop");
 } else if (menuGetIsPlatformDown() || ((state == IDLE || state == LOAD) &&
actuatorSwitchState)) {
 state = LOAD;
 } else if (!menuGetIsPlatformDown() && (speed != 0 || dir != 0)) {
 state = MOVE;
 } else {
 state = IDLE;
 }

 /*
 if (previousState != state)
 {
 switch (state) {
 case IDLE:
 printf("Idle\n");
 break;
 case MOVE:
 printf("Move\n");
 break;
 case LOAD:
 printf("Load\n");
 break;
 }
 previousState = state;
 }
 */

 //set state output
 switch(state) {
 case IDLE:
 StopPlatform();
 OmniStopMove();
 //turn off platform down LED
 PORTK.OUTCLR = PIN5_bm;
 break;
 case LOAD:
 OmniStopMove();
 switch(actuatorSwitchState) {
 case 0: //actuator switch not pressed, stop platform
 StopPlatform();
 break;
 case 1: //actuator switch down, lower platform
 LowerPlatform();
 menuPlatformDownPushed();
 break;
 case 2: // actuator switch up, raise platform
 RaisePlatform();
 menuPlatformUpPushed();
 break;
 }
 //turn on platform down LED
 PORTK.OUTSET = PIN5_bm;
 break;
 case MOVE:

118

main.c

 StopPlatform();
 setMotors(speed, dir);
 //turn off platform down LED
 PORTK.OUTCLR = PIN5_bm;
 break;
 }
 }
 return 1;
}

joystick_algorithm.h

/*
 * joystick_algorithm.h
 *
 * Created: 9/27/2012 9:52:55 PM
 * Author: Stew
 */

#ifndef JOYSTICK_ALGORITHM_H_
#define JOYSTICK_ALGORITHM_H_

void joystickAlgorithmInit();
void getProportionalMoveDirection(int16_t *speed, int16_t *dir);

#endif /* JOYSTICK_ALGORITHM_H_ */

joystick_algorithm.c

/*
 * joystick_algorithm.c
 *
 * Created: 9/27/2012 9:52:10 PM
 * Author: Stew
 */

#include <stdint.h>
#include <math.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "../atmel/avr_compiler.h"
#include "nordic_driver.h"
#include "menu.h"

// Input to time-based filters (acceleration, tremor dampening)
static volatile int16_t gSpeedPreFilter = 0;
static volatile int16_t gDirPreFilter = 0;

static volatile double gSpeedBetweenFilters = 0;
static volatile double gDirBetweenFilters = 0;

119

joystick_algorithm.c

// Output from time-based filters
static volatile int16_t gSpeedPostFilter = 0;
static volatile int16_t gDirPostFilter = 0;

static volatile uint8_t gIsOuterDeadBand = 0;
static volatile uint8_t gIsOuterDeadBandTimeout = 0;

static volatile uint8_t gOverridden = 0;

void joystickAlgorithmInit()
{
 // TCD1 is the timer acceleration and tremor filtering
 TCD1.CTRLA = TC_CLKSEL_DIV1_gc; // 1 tick = 31.25 nanoseconds
 TCD1.CTRLB = TC_WGMODE_FRQ_gc;
 TCD1.INTCTRLB = TC_CCAINTLVL_MED_gc;
 TCD1.CCA = 32000; // Goal: interrupt every 1 millisecond

 PMIC.CTRL |= PMIC_MEDLVLEN_bm;
}

static void outerDeadBandLogic(int16_t speed, int16_t dir)
{
 // Calculate joystick distance from center using pythagorean theorem
 double r = sqrt(speed * speed + dir * dir);

 AVR_ENTER_CRITICAL_REGION();
 if (menuGetOuterDeadBand(gOverridden) && (
 (r > 60) ||
 (gIsOuterDeadBand && gIsOuterDeadBandTimeout && (r >
menuGetCenterDeadBand(gOverridden) + 5))
)) {
 gIsOuterDeadBand = 1;
 } else {
 gIsOuterDeadBand = 0;
 }
 AVR_LEAVE_CRITICAL_REGION();
}

static void centerDeadBand(int16_t *x, int16_t *y, uint8_t deadBand)
{
 double theta;
 double r;

 // Convert to polar coordinates
 r = sqrt((*x) * (*x) + (*y) * (*y));
 theta = atan2(*y, *x);

 // Apply the deadband
 r = r - (double)deadBand;
 if (r < 0) {
 r = 0;
 }

 // Convert back to cartesian coordinates
 *x = (r * cos(theta));
 *y = (r * sin(theta));

120

joystick_algorithm.c

}

void getProportionalMoveDirection(int16_t *returnSpeed, int16_t *returnDir)
{
 int16_t speed = nordic_getInstructorSpeed();
 int16_t dir = nordic_getInstructorDirection();

 if (speed >= -1 && speed <= 1 &&
 dir >= -1 && dir <= 1) {
 gOverridden = 0;
 speed = nordic_getWirelessPropJoySpeed();
 dir = nordic_getWirelessPropJoyDirection();
 } else {
 gOverridden = 1;
 }

 if (menuGetMotorsDisabled()) {
 speed = 0;
 dir = 0;
 }

 //TODO: we should still be able to override with the therapist remote when the
outer dead zone shut-off is in effect
 //TODO: also, check the logic for switch inputs and propasswitch mode
 outerDeadBandLogic(speed, dir);
 if (gIsOuterDeadBand && gIsOuterDeadBandTimeout) {
 speed = 0;
 dir = 0;
 }

 if (menuGetInvert(gOverridden)) {
 speed = -speed;
 }

 // Proportional joystick as switch joystick
 if (menuGetPropAsSwitch(gOverridden))
 {
 uint8_t threshold = 50;
 if (speed > threshold) {
 speed = menuGetTopFwdSpeed(gOverridden);
 } else if (speed < -threshold) {
 speed = -menuGetTopRevSpeed(gOverridden);
 } else {
 speed = 0;
 }

 if (dir > threshold) {
 dir = menuGetTopTurnSpeed(gOverridden);
 } else if (dir < -threshold) {
 dir = -menuGetTopTurnSpeed(gOverridden);
 } else {
 dir = 0;
 }
 }
 else
 {

121

joystick_algorithm.c

 // apply center dead band
 centerDeadBand(&dir, &speed, menuGetCenterDeadBand(gOverridden));

 // fwd/rev throw
 if (speed > 0) {
 speed *= menuGetFwdThrow(gOverridden);
 }
 if (speed < 0) {
 speed *= menuGetRevThrow(gOverridden);
 }
 // turn throw
 dir *= menuGetTurnThrow(gOverridden);

 // Top speeds
 if (speed > menuGetTopFwdSpeed(gOverridden)) {
 // max forward speed
 speed = menuGetTopFwdSpeed(gOverridden);
 } else if (speed < -menuGetTopRevSpeed(gOverridden)) {
 // max reverse speed
 speed = -menuGetTopRevSpeed(gOverridden);
 }

 // max turn speed
 if (dir > menuGetTopTurnSpeed(gOverridden)) {
 dir = menuGetTopTurnSpeed(gOverridden);
 } else if (dir < -menuGetTopTurnSpeed(gOverridden)) {
 dir = -menuGetTopTurnSpeed(gOverridden);
 }
 }

 // We don't want to get interrupted while accessing shared variables
 AVR_ENTER_CRITICAL_REGION();

 // todo: will the outer dead zone stop signal that the joystick is not active,
then switches take precedence even if the joystick is at full blast?
 if (speed >= -1 && speed <= 1 &&
 dir >= -1 && dir <= 1 && !gOverridden) {
 // Buddy buttons only active if joystick not active
 if (nordic_getStudentForward() != nordic_getStudentReverse()) {
 if (nordic_getStudentForward()) {
 speed = menuGetTopFwdSpeed(gOverridden);
 } else if (nordic_getStudentReverse()) {
 speed = -menuGetTopRevSpeed(gOverridden);
 }
 }
 if (nordic_getStudentRight() != nordic_getStudentLeft()) {
 if (nordic_getStudentRight()) {
 dir = menuGetTopTurnSpeed(gOverridden);
 } else if (nordic_getStudentLeft()) {
 dir = -menuGetTopTurnSpeed(gOverridden);
 }
 }
 }

 // We've applied the direct-mapped logic, now it's time to hand it off to the
filters

122

joystick_algorithm.c

 gSpeedPreFilter = speed;
 gDirPreFilter = dir;

 speed = gSpeedPostFilter;
 dir = gDirPostFilter;
 AVR_LEAVE_CRITICAL_REGION();

 *returnSpeed = speed;
 *returnDir = dir;
}

// Filter topography and variable naming:
// preFilter --> [low-pass] --> betweenFilters --> [accel/decel] --> postFilter
ISR(TCD1_CCA_vect)
{
 static uint8_t accelerationCount = 0;
 static uint8_t decelerationCount = 0;
 static uint16_t outerDeadBandMillisecondCount = 0;
 static uint8_t outerDeadBandTime = 0;

 if (gIsOuterDeadBand) {
 if (!gIsOuterDeadBandTimeout) {
 uint8_t timeoutTime = menuGetOuterDeadBand(gOverridden) - 1;
 if (timeoutTime == 0) {
 gIsOuterDeadBandTimeout = 1;
 } else if (timeoutTime > 0) {
 outerDeadBandMillisecondCount++;
 if (outerDeadBandMillisecondCount >= 500) {
 outerDeadBandMillisecondCount = 0;
 outerDeadBandTime++;
 if (outerDeadBandTime >= timeoutTime) {
 gIsOuterDeadBandTimeout = 1;
 }
 }
 }
 }
 } else {
 outerDeadBandMillisecondCount = 0;
 outerDeadBandTime = 0;
 gIsOuterDeadBandTimeout = 0;
 }

 // Low-pass filter (aka Tremor Dampening aka Tremor Suppression aka Sensitivity)
 if ((gSpeedPreFilter > 0 && gSpeedPreFilter > gSpeedBetweenFilters) ||
 (gSpeedPreFilter < 0 && gSpeedPreFilter < gSpeedBetweenFilters)) {
 gSpeedBetweenFilters = gSpeedBetweenFilters +
menuGetSensitivity(gOverridden) * (gSpeedPreFilter - gSpeedBetweenFilters);
 } else {
 gSpeedBetweenFilters = gSpeedPreFilter;
 }
 if ((gDirPreFilter > 0 && gDirPreFilter > gDirBetweenFilters) ||
 (gDirPreFilter < 0 && gDirPreFilter < gDirBetweenFilters)) {
 gDirBetweenFilters = gDirBetweenFilters + menuGetSensitivity(gOverridden) *
(gDirPreFilter - gDirBetweenFilters);
 } else {
 gDirBetweenFilters = gDirPreFilter;

123

joystick_algorithm.c

 }

 // Acceleration/deceleration: must wait X milliseconds before speed/dir is changed
by 1
 accelerationCount++;
 decelerationCount++;
 if (accelerationCount >= menuGetAcceleration(gOverridden))
 {
 accelerationCount = 0;

 if (gSpeedPostFilter >= 0 && gSpeedBetweenFilters > gSpeedPostFilter) {
 gSpeedPostFilter++;
 }
 if (gSpeedPostFilter <= 0 && gSpeedBetweenFilters < gSpeedPostFilter) {
 gSpeedPostFilter--;
 }
 if (gDirPostFilter >= 0 && gDirBetweenFilters > gDirPostFilter) {
 gDirPostFilter++;
 }
 if (gDirPostFilter <= 0 && gDirBetweenFilters < gDirPostFilter) {
 gDirPostFilter--;
 }
 }

 if (decelerationCount >= menuGetDeceleration(gOverridden))
 {
 decelerationCount = 0;

 if (gSpeedPostFilter > 0 && gSpeedBetweenFilters < gSpeedPostFilter) {
 gSpeedPostFilter--;
 if (gSpeedBetweenFilters < 0) {
 gSpeedPostFilter--;
 }
 }
 if (gSpeedPostFilter < 0 && gSpeedBetweenFilters > gSpeedPostFilter) {
 gSpeedPostFilter++;
 if (gSpeedBetweenFilters > 0) {
 gSpeedPostFilter++;
 }
 }

 if (gDirPostFilter > 0 && gDirBetweenFilters < gDirPostFilter) {
 gDirPostFilter--;
 if (gDirBetweenFilters < 0) {
 gDirPostFilter--;
 }
 }
 if (gDirPostFilter < 0 && gDirBetweenFilters > gDirPostFilter) {
 gDirPostFilter++;
 if (gDirBetweenFilters > 0) {
 gDirPostFilter++;
 }
 }
 }
}

124

lcd_driver.h

/*
 * lcd_driver.h
 *
 * Created: 6/4/2012 4:22:33 PM
 * Author: Stew
 */

#ifndef LCD_DRIVER_H_
#define LCD_DRIVER_H_

// BEGIN HARDWARE SPECIFIC

#define LCD_NUM_CHARACTERS 16

// DB7 = PC7
#define LCD_DB7_PORT PORTC
#define LCD_DB7_PIN_bm PIN7_bm

// DB6 = PC6
#define LCD_DB6_PORT PORTC
#define LCD_DB6_PIN_bm PIN6_bm

// DB5 = PC5
#define LCD_DB5_PORT PORTC
#define LCD_DB5_PIN_bm PIN5_bm

// DB4 = PC4
#define LCD_DB4_PORT PORTC
#define LCD_DB4_PIN_bm PIN4_bm

// Operation Enable, E = PD1
#define LCD_E_PORT PORTD
#define LCD_E_PIN_bm PIN1_bm

// Read/Write, RW = PD4
#define LCD_RW_PORT PORTD
#define LCD_RW_PIN_bm PIN4_bm
//RW=0: write
//RW=1: read WARNING READ NOT SUPPORTED BY HARDWARE

// Register Select, RS = PD5
#define LCD_RS_PORT PORTD
#define LCD_RS_PIN_bm PIN5_bm
//RS=0: instruction
//RS=1: data

// END HARDWARE SPECIFIC

// Instructions/Commands

#define LCD_CMD_CLEAR_DISPLAY 0x01
 // Execution time = 1.52msec

125

lcd_driver.h

 // Also returns home

#define LCD_CMD_RETURN_HOME 0x02
 // Execution time = 1.52msec

#define LCD_CMD_ENTRY_MODE_SET 0x04
 // Execution time = 38usec
#define LCD_CMD_ENTRY_MODE_I_D_bm 0x02
 // I/D=1: cursor moves right / DDRAM address increments / display shift left
 // I/D=0: cursor moves left / DDRAM address decrements / display shift right
#define LCD_CMD_ENTRY_MODE_S_bm 0x01
 // S=0: don't shift display
 // S=1: during DDRAM write operation, shift display

#define LCD_CMD_DISPLAY_ON_OFF 0x08
 // Execution time = 38usec
#define LCD_CMD_DISPLAY_ON_OFF_D_bm 0x04
 // D=1: display on
 // D=0: display off
#define LCD_CMD_DISPLAY_ON_OFF_C_bm 0x02
 // C=1: cursor on
 // C=0: cursor off
#define LCD_CMD_DISPLAY_ON_OFF_B_bm 0x01
 // B=1: cursor blink on
 // B=0: cursor blink off

#define LCD_CMD_CURSOR_OR_DISPLAY_SHIFT 0x10
 // Execution time = 38usec
#define LCD_CMD_CURSOR_OR_DISPLAY_SHIFT_S_C_bm 0x08
 // S/C=0: shift cursor
 // S/C=1: shift display
#define LCD_CMD_CURSOR_OR_DISPLAY_SHIFT_R_L_bm 0x04
 // R/L=0: shift left
 // R/L=1: shift right

#define LCD_CMD_FUNCTION_SET 0x20
 // Execution time = 38usec
#define LCD_CMD_FUNCTION_DL_bm 0x10
 // DL=1: 8 bit bus
 // DL=0: 4 bit bus
#define LCD_CMD_FUNCTION_N_bm 0x08
 // N=0: 1-line display
 // N=1: 2-line display
#define LCD_CMD_FUNCTION_F_bm 0x04
 // F=0: 5x8
 // F=1: 5x11

#define LCD_CMD_SET_CGRAM_ADDR 0x40
 // Execution time = 38usec
#define LCD_CGRAM_ADDR_bm 0x3F

#define LCD_CMD_SET_DDRAM_ADDR 0x80
 // Execution time = 38usec
#define LCD_DDRAM_ADDR_bm 0x7F

#define LCD_LINE_1_START_ADDR 0x00

126

lcd_driver.h

#define LCD_LINE_2_START_ADDR 0x40

void initLCDDriver(void);
void lcdText(const char *line1, const char *line2, uint8_t blocking);
void lcdCommandBlocking(uint8_t command);

#endif /* LCD_DRIVER_H_ */

lcd_driver.c

/*
 * lcd_driver.c
 *
 * Created: 6/4/2012 4:22:20 PM
 * Author: Stew
 *
 * Interrupt-driven 4-bit parallel LCD driver for a 2-line LCD
 */

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <string.h>
#include "../atmel/avr_compiler.h"
#include "lcd_driver.h"

// 0.25 µs per tick
#define LCD_TIMER_CLKSEL TC_CLKSEL_DIV8_gc

static volatile uint8_t gLCDState;
static volatile uint8_t gLCDCharPosition;
static volatile char *gLCDCurrentLine;

static volatile char gLCDLine1[LCD_NUM_CHARACTERS + 1];
static volatile char gLCDLine2[LCD_NUM_CHARACTERS + 1];

static inline uint8_t lcdBusy(void)
{
 return gLCDState;
}

static void lcdBusyWait(void)
{
 do {} while (lcdBusy());
}

static inline void setTimerPeriod(uint16_t period)
{
 TCE1.CCA = period;
 TCE1.CTRLFSET = TC_CMD_RESTART_gc; // The Counter, direction, and all compare
outputs are set to zero
 TCE1.INTFLAGS = TC0_CCAIF_bm; // Clear compare interrupt
}

127

lcd_driver.c

static inline void stopTimer()
{
 TCE1.CTRLA = TC_CLKSEL_OFF_gc;
 TCE1.CTRLFSET = TC_CMD_RESTART_gc; // The Counter, direction, and all compare
outputs are set to zero
 TCE1.INTFLAGS = TC0_CCAIF_bm; // Clear compare interrupt
}

static inline void startTimer()
{
 TCE1.CTRLFSET = TC_CMD_RESTART_gc; // The Counter, direction, and all compare
outputs are set to zero
 TCE1.INTFLAGS = TC0_CCAIF_bm; // Clear compare interrupt
 TCE1.CTRLA = LCD_TIMER_CLKSEL;
}

static inline void lcdESet(void)
{
 LCD_E_PORT.OUTSET = LCD_E_PIN_bm;
}

static inline void lcdEClr(void)
{
 LCD_E_PORT.OUTCLR = LCD_E_PIN_bm;
}

static inline void lcdRSSet(void)
{
 LCD_RS_PORT.OUTSET = LCD_RS_PIN_bm;
}

static inline void lcdRSClr(void)
{
 LCD_RS_PORT.OUTCLR = LCD_RS_PIN_bm;
}

static void lcdSetPortData(uint8_t data) {
 if (data & 0x8) {
 LCD_DB7_PORT.OUTSET = LCD_DB7_PIN_bm;
 } else {
 LCD_DB7_PORT.OUTCLR = LCD_DB7_PIN_bm;
 }
 if (data & 0x4) {
 LCD_DB6_PORT.OUTSET = LCD_DB6_PIN_bm;
 } else {
 LCD_DB6_PORT.OUTCLR = LCD_DB6_PIN_bm;
 }
 if (data & 0x2) {
 LCD_DB5_PORT.OUTSET = LCD_DB5_PIN_bm;
 } else {
 LCD_DB5_PORT.OUTCLR = LCD_DB5_PIN_bm;
 }
 if (data & 0x1) {
 LCD_DB4_PORT.OUTSET = LCD_DB4_PIN_bm;
 } else {

128

lcd_driver.c

 LCD_DB4_PORT.OUTCLR = LCD_DB4_PIN_bm;
 }
}

static void lcdNibble(uint8_t data)
{
 lcdSetPortData(data);
 lcdESet();
 _delay_us(1);
 lcdEClr();
}

void lcdCommandBlocking(uint8_t command)
{
 lcdBusyWait();
 lcdRSClr();
 lcdNibble(command >> 4);
 _delay_us(1);
 lcdNibble(command & 0x0F);

 if ((command == LCD_CMD_CLEAR_DISPLAY) || ((command & 0xFE) ==
LCD_CMD_RETURN_HOME)) {
 _delay_ms(1.52);
 } else {
 _delay_us(38);
 }
}

static inline void lcdStartWrite(void)
{
 // case 0: Set E - ADDRLINE1[7:4]
 lcdRSClr();
 lcdESet();
 lcdSetPortData((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_1_START_ADDR)) >> 4);
 gLCDState = 1;
 gLCDCurrentLine = gLCDLine1;
 setTimerPeriod(4);
 startTimer();
}

// Copies src into dest, max LCD_NUM_CHARACTERS chars, pads with ' ', null terminates
static void copyString(volatile char *dest, const char *src)
{
 size_t i;
 size_t srclen = strlen(src);
 if (srclen > LCD_NUM_CHARACTERS) {
 srclen = LCD_NUM_CHARACTERS;
 }
 for (i = 0; i < srclen; i++) {
 dest[i] = src[i];
 }
 for (; i < LCD_NUM_CHARACTERS; i++) {
 dest[i] = ' ';
 }
 dest[i] = '\0';

129

lcd_driver.c

}

void lcdText(const char *line1, const char *line2, uint8_t blocking)
{
 if (blocking) {
 while (lcdBusy()) {
 // twiddle thumbs
 }
 } else if (lcdBusy()) {
 return;
 }

 copyString(gLCDLine1, line1);
 copyString(gLCDLine2, line2);

 lcdStartWrite();
}

void initLCDDriver(void)
{
 // I/O pin setup
 LCD_DB7_PORT.DIRSET = LCD_DB7_PIN_bm;
 LCD_DB7_PORT.OUTCLR = LCD_DB7_PIN_bm;
 LCD_DB6_PORT.DIRSET = LCD_DB6_PIN_bm;
 LCD_DB6_PORT.OUTCLR = LCD_DB6_PIN_bm;
 LCD_DB5_PORT.DIRSET = LCD_DB5_PIN_bm;
 LCD_DB5_PORT.OUTCLR = LCD_DB5_PIN_bm;
 LCD_DB4_PORT.DIRSET = LCD_DB4_PIN_bm;
 LCD_DB4_PORT.OUTCLR = LCD_DB4_PIN_bm;
 LCD_RS_PORT.DIRSET = LCD_RS_PIN_bm;
 LCD_RS_PORT.OUTCLR = LCD_RS_PIN_bm;
 LCD_RW_PORT.DIRSET = LCD_RW_PIN_bm;
 LCD_RW_PORT.OUTCLR = LCD_RW_PIN_bm;
 LCD_E_PORT.DIRSET = LCD_E_PIN_bm;
 LCD_E_PORT.OUTCLR = LCD_E_PIN_bm;

 // Timer setup
 TCE1.CTRLB = TC_WGMODE_FRQ_gc;
 TCE1.INTCTRLB = TC_CCAINTLVL_LO_gc;
 gLCDState = 0;

 // LCD init sequence

 _delay_ms(40); //Wait >40 msec after power is applied

 // Start out as 8-bit bus

 lcdRSClr();
 lcdNibble((LCD_CMD_FUNCTION_SET | LCD_CMD_FUNCTION_DL_bm) >> 4); //Wake up #1
 _delay_ms(5);
 lcdNibble((LCD_CMD_FUNCTION_SET | LCD_CMD_FUNCTION_DL_bm) >> 4); //Wake up #2
 _delay_us(160);
 lcdNibble((LCD_CMD_FUNCTION_SET | LCD_CMD_FUNCTION_DL_bm) >> 4); //Wake up #3
 _delay_us(160);
 lcdNibble((LCD_CMD_FUNCTION_SET) >> 4); // Tell the LCD to switch to 4-bit bus
(this command is still 8-bit)

130

lcd_driver.c

 _delay_us(38);

 //Now it's a 4-bit bus

 lcdCommandBlocking(LCD_CMD_FUNCTION_SET | LCD_CMD_FUNCTION_N_bm); // 2-line LCD,
5x8
 lcdCommandBlocking(LCD_CMD_DISPLAY_ON_OFF | LCD_CMD_DISPLAY_ON_OFF_D_bm);
//Display ON
 lcdCommandBlocking(LCD_CMD_ENTRY_MODE_SET | LCD_CMD_ENTRY_MODE_I_D_bm); //Cursor
moves right
 lcdCommandBlocking(LCD_CMD_CLEAR_DISPLAY); // Last thing to do before writing text
}

ISR(TCE1_CCA_vect)
{
 AVR_ENTER_CRITICAL_REGION();
 switch (gLCDState)
 {
 default:
 break;
 case 1: // Clear E - ADDRLINEx[7:4]
 lcdEClr();
 gLCDState = 2;
 break;
 case 2: // Set E - ADDRLINEx[3:0]
 lcdESet();
 if (gLCDCurrentLine == gLCDLine1) {
 lcdSetPortData((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_1_START_ADDR)) & 0x0F);
 } else {
 lcdSetPortData((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_2_START_ADDR)) & 0x0F);
 }
 gLCDState = 3;
 break;
 case 3: // Clear E - ADDRLINEx[3:0]
 lcdEClr();
 gLCDCharPosition = 0;
 gLCDState = 4;
 setTimerPeriod(152);
 break;
 case 4: // Set E - CHAR[7:4]
 lcdRSSet();
 lcdESet();
 lcdSetPortData(gLCDCurrentLine[gLCDCharPosition] >> 4);
 gLCDState = 5;
 setTimerPeriod(4);
 break;
 case 5: // Clear E - CHAR[7:4]
 lcdEClr();
 gLCDState = 6;
 break;
 case 6: // Set E - CHAR[3:0]
 lcdESet();
 lcdSetPortData(gLCDCurrentLine[gLCDCharPosition] & 0x0F);
 gLCDState = 7;

131

lcd_driver.c

 break;
 case 7: // Clear E - CHAR[3:0]
 lcdEClr();
 gLCDCharPosition++;
 if (gLCDCharPosition >= LCD_NUM_CHARACTERS) {
 if (gLCDCurrentLine == gLCDLine1) {
 gLCDState = 8;
 } else {
 gLCDState = 9;
 }
 } else {
 gLCDState = 4;
 }
 setTimerPeriod(152);
 break;
 case 8: // Set E - ADDRLINE2[7:4]
 lcdRSClr();
 lcdESet();
 lcdSetPortData((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_2_START_ADDR)) >> 4);
 gLCDState = 1;
 gLCDCurrentLine = gLCDLine2;
 setTimerPeriod(4);
 break;
 case 9: // End
 stopTimer();
 gLCDState = 0;
 break;
 }
 AVR_LEAVE_CRITICAL_REGION();
}

linear_actuator.h

/*
 * linear_actuator.h
 *
 * Created on: Mar 26, 2011
 * Author: grant
 */

#ifndef LINEAR_ACTUATOR_H_
#define LINEAR_ACTUATOR_H_

void initLinearActuators(void);
int8_t RaisePlatform(void);
int8_t LowerPlatform(void);
int8_t StopPlatform(void);

void PrintLACurrents(void);

//int8_t RaisePlatform(uint8_t ratePercent);
//int8_t LowerPlatform(uint8_t ratePercent);

132

linear_actuator.h

#endif /* LINEAR_ACTUATOR_H_ */

linear_actuator.c

/*
 * linear_actuator.c
 *
 * Created on: Mar 26, 2011
 * Author: grant
 */

#include <avr/io.h>
#include "linear_actuator.h"
#include "../atmel/TC_driver.h"
#include "../atmel/adc_driver.h"
#include "util.h"
#include "stdio.h"
#include "../atmel/pmic_driver.h"

//200 = 6.2us
#define TC_PERIOD 1000

//TODO set up current threshold
#define CURRENT_THRESHOLD_MAX 150
#define CURRENT_THRESHOLD_MIN -150

static int8_t adcb_offset0, adcb_offset1, adcb_offset2, adcb_offset3;
static int16_t adc_result0, adc_result1, adc_result2, adc_result3;
static uint8_t OVERCURRENT_FLAG;

static void setTop(void) {
 PORTE.OUTSET = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm;
}

static void clrTop(void) {
 PORTE.OUTCLR = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm;
}

static void setBottom(void) {
 PORTE.OUTSET = PIN5_bm;
 PORTF.OUTSET = PIN0_bm | PIN1_bm | PIN3_bm;
}

static void clrBottom(void) {
 PORTE.OUTCLR = PIN5_bm;
 PORTF.OUTCLR = PIN0_bm | PIN1_bm | PIN3_bm;
}

void initLinearActuators(void)
{
 //turn off timers
 TC0_ConfigClockSource(&TCE0, TC_CLKSEL_OFF_gc);

 //Enable output

133

linear_actuator.c

 clrTop();
 clrBottom();
 PORTE.DIRSET = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm | PIN5_bm;
 PORTF.DIRSET = PIN0_bm | PIN1_bm | PIN3_bm;

 /* Set the TC period.
 * 1000 at 32MHz is 32kHz, above human hearing range*/
 TC_SetPeriod(&TCE0, TC_PERIOD); // Timer/Counter E0

 /* Configure the TC for single slope mode. */
 TC0_ConfigWGM(&TCE0, TC_WGMODE_NORMAL_gc);

 //set overflow interrupt
 TC0_SetOverflowIntLevel(&TCE0, TC_OVFINTLVL_MED_gc);

 // enable interrupt level
 PMIC.CTRL |= PMIC_MEDLVLEN_bm;

 /************************** ADC CONFIG ******************/
 ADC_CalibrationValues_Load(&ADCB);

 /* Set up ADC B to have signed conversion mode and 12 bit resolution. */
 ADC_ConvMode_and_Resolution_Config(&ADCB, ADC_ConvMode_Signed,
ADC_RESOLUTION_12BIT_gc);

 // The ADC has different voltage reference options, controlled by the REFSEL bits
in the
 // REFCTRL register. Here an external reference is selected
 ADC_Reference_Config(&ADCB, ADC_REFSEL_AREFA_gc);

 // The clock into the ADC decide the maximum sample rate and the conversion time,
and
 // this is controlled by the PRESCALER bits in the PRESCALER register. Here, the
 // Peripheral Clock is divided by 512 (gives 62.5 KSPS with 32Mhz clock)
 ADC_Prescaler_Config(&ADCB, ADC_PRESCALER_DIV512_gc);

 /* Setup channels*/
 ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH0, ADC_CH_INPUTMODE_DIFF_gc,
ADC_DRIVER_CH_GAIN_NONE);
 ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH1, ADC_CH_INPUTMODE_DIFF_gc,
ADC_DRIVER_CH_GAIN_NONE);
 ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH2, ADC_CH_INPUTMODE_DIFF_gc,
ADC_DRIVER_CH_GAIN_NONE);
 ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH3, ADC_CH_INPUTMODE_DIFF_gc,
ADC_DRIVER_CH_GAIN_NONE);

 // Setting up the which pins to convert.
 ADC_Ch_InputMux_Config(&ADCB.CH0, ADC_CH_MUXPOS_PIN4_gc, ADC_CH_MUXNEG_PIN0_gc);
 ADC_Ch_InputMux_Config(&ADCB.CH1, ADC_CH_MUXPOS_PIN5_gc, ADC_CH_MUXNEG_PIN1_gc);
 ADC_Ch_InputMux_Config(&ADCB.CH2, ADC_CH_MUXPOS_PIN6_gc, ADC_CH_MUXNEG_PIN2_gc);
 ADC_Ch_InputMux_Config(&ADCB.CH3, ADC_CH_MUXPOS_PIN7_gc, ADC_CH_MUXNEG_PIN3_gc);

 // Setup Interrupt Mode on complete
// ADC_Ch_Interrupts_Config(&ADCB.CH0, ADC_CH_INTMODE_COMPLETE_gc,
ADC_CH_INTLVL_MED_gc);
// ADC_Ch_Interrupts_Config(&ADCB.CH1, ADC_CH_INTMODE_COMPLETE_gc,

134

linear_actuator.c

ADC_CH_INTLVL_MED_gc);
// ADC_Ch_Interrupts_Config(&ADCB.CH2, ADC_CH_INTMODE_COMPLETE_gc,
ADC_CH_INTLVL_MED_gc);
// ADC_Ch_Interrupts_Config(&ADCB.CH3, ADC_CH_INTMODE_COMPLETE_gc,
ADC_CH_INTLVL_MED_gc);

 // Enable PMIC interrupt level
 PMIC.CTRL |= PMIC_MEDLVLEN_bm;

 // Setup sweep of all 4 virtual channels.
 ADC_SweepChannels_Config(&ADCB, ADC_SWEEP_0123_gc);

 // Before the ADC can be used it must be enabled
 ADC_Enable(&ADCB);

 // Wait until the ADC is ready
 ADC_Wait_32MHz(&ADCB);

 /* Get offset value for ADC B. */
 OVERCURRENT_FLAG = 0;
 adc_result0 = adc_result1 = adc_result2 = adc_result3 = 0;
 adcb_offset0 = adcb_offset1 = adcb_offset2 = adcb_offset3 = 0;
// adcb_offset0 = ADC_Offset_Get_Signed(&ADCB, &(ADCB.CH0), true);
// adcb_offset1 = ADC_Offset_Get_Signed(&ADCB, &(ADCB.CH1), true);
// adcb_offset2 = ADC_Offset_Get_Signed(&ADCB, &(ADCB.CH2), true);
// adcb_offset3 = ADC_Offset_Get_Signed(&ADCB, &(ADCB.CH3), true);
// printf("offsets:%d\t%d\t%d\t%d\n\r", adcb_offset0, adcb_offset1, adcb_offset2,
adcb_offset3);

 //start single conversion
// ADC_Ch_Conversion_Start(&ADCB.CH0);

 //enable free running mode
 ADC_FreeRunning_Enable(&ADCB);
}

int8_t LowerPlatform(void)
{
 int8_t err = 0;

 if(OVERCURRENT_FLAG) {
 return -1;
 }

 //turn off bottom fets
 clrBottom();

 //turn on top fets and start timer to recharge bootstrap
// TCE0.CNT = 0;
 setTop();
 TC0_ConfigClockSource(&TCE0, TC_CLKSEL_DIV1_gc);

 return err;
}

// Recharge Bootstrap Cap

135

linear_actuator.c

// necessary for the LT1160 to turn on the top mosfet
ISR(TCE0_OVF_vect)
{
 //turn off top fets
 clrTop();

 //turn on bottom fets
 setBottom();

 //wait a little bit for cap to charge
 asm volatile ("nop"); //31.25ns delay
 asm volatile ("nop"); //31.25ns delay

 //turn off bottom fets
 clrBottom();

 //turn on top fets
 setTop();
}

int8_t RaisePlatform(void)
{
 int8_t err = 0;

 if(OVERCURRENT_FLAG) {
 return -1;
 }

 //turn off raise platform pins and timer
 TC0_ConfigClockSource(&TCE0, TC_CLKSEL_OFF_gc);
 clrTop();

 //turn on lower platform pins
 setBottom();

 return err;
}

int8_t StopPlatform(void)
{
 int8_t err = 0;

 TC0_ConfigClockSource(&TCE0, TC_CLKSEL_OFF_gc);

 clrTop();
 clrBottom();

 return err;
}

//Returns 0 for no overcurrent, else bitwise mask for which linear actuator is over
currenting
// 0x01, 0x02, 0x04, 0x08
/*
static int8_t isOverCurrent(void)
{

136

linear_actuator.c

 return OVERCURRENT_FLAG;
}
*/

void PrintLACurrents(void)
{
 printf("1:%5d 2:%5d 3:%5d 4:%5d F:%d\n\r", adc_result0, adc_result1, adc_result2,
adc_result3, OVERCURRENT_FLAG);
}

static void checkForOverCurrent(int16_t adc_result, uint8_t LAnum)
{
 if(adc_result > CURRENT_THRESHOLD_MAX || adc_result < CURRENT_THRESHOLD_MIN) {
 StopPlatform();
 OVERCURRENT_FLAG = 1<<LAnum;
 } else {
 OVERCURRENT_FLAG = 0;
 }

}

ISR(ADCB_CH0_vect)
{
// dbgLEDtgl();
 //int16_t adc_result0;
 adc_result0 = ADC_ResultCh_GetWord_Signed(&ADCB.CH0, adcb_offset0);
 checkForOverCurrent(adc_result0, 0);
}

ISR(ADCB_CH1_vect)
{
// dbgLEDtgl();
 //int16_t adc_result1;
 adc_result1 = ADC_ResultCh_GetWord_Signed(&ADCB.CH1, adcb_offset1);
 checkForOverCurrent(adc_result1, 1);
}

ISR(ADCB_CH2_vect)
{
// dbgLEDtgl();
 //int16_t adc_result2;
 adc_result2 = ADC_ResultCh_GetWord_Signed(&ADCB.CH2, adcb_offset2);
 checkForOverCurrent(adc_result2, 2);
}

ISR(ADCB_CH3_vect)
{
// dbgLEDtgl();
 //int16_t adc_result3;
 adc_result3 = ADC_ResultCh_GetWord_Signed(&ADCB.CH3, adcb_offset3);
 checkForOverCurrent(adc_result3, 3);
}

137

menu.h

/*
 * menu.h
 *
 * Created: 8/16/2012 10:19:43 AM
 * Author: Stew
 */

#ifndef MENU_H_
#define MENU_H_

void menuInit();
uint8_t menuGetMotorsDisabled();
void menuUpdate(int16_t speed, int16_t dir);
void menuPlatformDownPushed();
void menuPlatformUpPushed();
uint8_t menuGetIsPlatformDown();
float menuGetFwdThrow(uint8_t overridden);
float menuGetRevThrow(uint8_t overridden);
float menuGetTurnThrow(uint8_t overridden);
uint8_t menuGetTopFwdSpeed(uint8_t overridden);
uint8_t menuGetTopRevSpeed(uint8_t overridden);
uint8_t menuGetTopTurnSpeed(uint8_t overridden);
double menuGetSensitivity(uint8_t overridden);
uint8_t menuGetAcceleration(uint8_t overridden);
uint8_t menuGetDeceleration(uint8_t overridden);
uint8_t menuGetOuterDeadBand(uint8_t overridden);
uint8_t menuGetCenterDeadBand(uint8_t overridden);
uint8_t menuGetPropAsSwitch(uint8_t overridden);
uint8_t menuGetInvert(uint8_t overridden);
void incrementWirelessTimeout();

#endif /* MENU_H_ */

menu.c

/*
 * menu.c
 *
 * Created: 8/16/2012 10:19:14 AM
 * Author: Stew
 */

#include <stdio.h>
#include <string.h>
#include <avr/eeprom.h>
#include "../atmel/avr_compiler.h"
#include "../atmel/wdt_driver.h"
#include "menu.h"
#include "PWCT_io.h"
#include "lcd_driver.h"
#include "motor_driver.h"

uint8_t gWirelessTimeoutCount = 0;
uint8_t gMotorsDisabled = 0;

138

menu.c

uint8_t gNameEditMode = 0;

// Define the order of the menu options, zero-based
#define MENU_OPTION_PROFILE 0
#define MENU_OPTION_FWD_THROW 1
#define MENU_OPTION_REV_THROW 2
#define MENU_OPTION_TURN_THROW 3
#define MENU_OPTION_TOP_FWD_SPEED 4
#define MENU_OPTION_TOP_REV_SPEED 5
#define MENU_OPTION_TOP_TURN_SPEED 6
#define MENU_OPTION_SENSITIVITY 7
#define MENU_OPTION_ACCELERATION 8
#define MENU_OPTION_DECELERATION 9
#define MENU_OPTION_CTR_DEAD_BAND 10
#define MENU_OPTION_OUTER_DEAD_BAND 11
#define MENU_OPTION_INVERT 12
#define MENU_OPTION_PROP_AS_SWITCH 13
// We must know how many menu options there are
#define LAST_MENU_OPTION MENU_OPTION_PROP_AS_SWITCH

// EEPROM variables, RAM shadow variables, and sane initial values
// Note: the initial values are only updated when programming the EEPROM memory
(wheelchair.eep)

#define PROFILE_COUNT 21

uint8_t EEMEM eepromIsPlatformDown = 0;
uint8_t eepromShadowIsPlatformDown = 0;

uint8_t EEMEM eepromCurrentProfile = 0;
uint8_t eepromShadowCurrentProfile = 0;

uint8_t EEMEM eepromMenuState = 0;
uint8_t eepromShadowMenuState = 0;

char EEMEM eepromProfileName[PROFILE_COUNT][LCD_NUM_CHARACTERS+1] = {"Profile 1",
"Profile 2", "Profile 3", "Profile 4", "Profile 5",
 "Profile 6", "Profile 7", "Profile 8", "Profile 9", "Profile 10", "Profile 11",
"Profile 12", "Profile 13",
 "Profile 14", "Profile 15", "Profile 16", "Profile 17", "Profile 18", "Profile
19", "Profile 20", "Remote override"};
char currentProfileName[LCD_NUM_CHARACTERS+1];

float EEMEM eepromFwdThrow[PROFILE_COUNT] = {1.0, 1.0, 2.0, 1.0, 1.0, 0.65, 0.75, 1.0,
1.05, 1.0, 0.8, 1.0, 1.05, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.5, 0.8};
float eepromShadowFwdThrow = 1.0;
float eepromShadowOverrideFwdThrow = 0.8;

float EEMEM eepromRevThrow[PROFILE_COUNT] = {0.75, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75, 0.8,
0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.6};
float eepromShadowRevThrow = 0.8;
float eepromShadowOverrideRevThrow = 0.6;

float EEMEM eepromTurnThrow[PROFILE_COUNT] = {0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.85, 0.6,
0.55, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.4};
float eepromShadowTurnThrow = 0.6;

139

menu.c

float eepromShadowOverrideTurnThrow = 0.4;

uint8_t EEMEM eepromTopFwdSpeed[PROFILE_COUNT] = {40, 40, 35, 35, 45, 90, 15, 35, 45, 40,
45, 25, 50, 50, 50, 50, 50, 50, 50, 125, 50};
uint8_t eepromShadowTopFwdSpeed = 50;
uint8_t eepromShadowOverrideTopFwdSpeed = 50;

uint8_t EEMEM eepromTopRevSpeed[PROFILE_COUNT] = {25, 35, 30, 20, 20, 35, 40, 35, 25, 35,
35, 35, 30, 35, 35, 35, 35, 35, 35, 50, 35};
uint8_t eepromShadowTopRevSpeed = 35;
uint8_t eepromShadowOverrideTopRevSpeed = 35;

uint8_t EEMEM eepromTopTurnSpeed[PROFILE_COUNT] = {25, 25, 45, 30, 35, 45, 25, 35, 35,
30, 25, 35, 25, 30, 20, 20, 20, 20, 20, 35, 35};
uint8_t eepromShadowTopTurnSpeed = 20;
uint8_t eepromShadowOverrideTopTurnSpeed = 35;

uint8_t EEMEM eepromSensitivity[PROFILE_COUNT] = {9, 7, 4, 8, 5, 8, 8, 7, 6, 5, 6, 6, 7,
9, 3, 3, 3, 3, 3, 7, 7};
uint8_t eepromShadowSensitivity = 3;
uint8_t eepromShadowOverrideSensitivity = 7;
static const double gSensitivityMap[10] = {0.0001, 0.000167, 0.000278, 0.000463,
0.000772, 0.00129, 0.00214, 0.00357, 0.01, 0.5};

uint8_t EEMEM eepromAcceleration[PROFILE_COUNT] = {16, 8, 16, 8, 4, 4, 4, 8, 8, 16, 4,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16};
uint8_t eepromShadowAcceleration = 16;
uint8_t eepromShadowOverrideAcceleration = 16;

uint8_t EEMEM eepromDeceleration[PROFILE_COUNT] = {12, 12, 12, 12, 12, 12, 12, 12, 8, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12};
uint8_t eepromShadowDeceleration = 12;
uint8_t eepromShadowOverrideDeceleration = 12;

uint8_t EEMEM eepromOuterDeadBand[PROFILE_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t eepromShadowOuterDeadBand = 0;
uint8_t eepromShadowOverrideOuterDeadBand = 0;

uint8_t EEMEM eepromCenterDeadBand[PROFILE_COUNT] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2};
uint8_t eepromShadowCenterDeadBand = 2;
uint8_t eepromShadowOverrideCenterDeadBand = 2;

uint8_t EEMEM eepromPropAsSwitch[PROFILE_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0};
uint8_t eepromShadowPropAsSwitch = 0;
uint8_t eepromShadowOverridePropAsSwitch = 0;

uint8_t EEMEM eepromInvert[PROFILE_COUNT] = {0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0};
uint8_t eepromShadowInvert = 0;
uint8_t eepromShadowOverrideInvert = 0;

static void eepromCorrupt()
{

140

menu.c

 motorEStop();
 while (1)
 {
 lcdText("EEPROM corrupt", "Ver. " __DATE__, 0);
 WDT_Reset();
 }
}

void menuInit()
{
 // Initialize all shadow variables
 eepromShadowIsPlatformDown = eeprom_read_byte(&eepromIsPlatformDown);
 eepromShadowCurrentProfile = eeprom_read_byte(&eepromCurrentProfile);
 if (eepromShadowCurrentProfile >= PROFILE_COUNT) {
 eepromCorrupt();
 }
 eepromShadowMenuState = eeprom_read_byte(&eepromMenuState);
 eeprom_read_block(currentProfileName,
eepromProfileName[eepromShadowCurrentProfile], LCD_NUM_CHARACTERS+1);

 eepromShadowFwdThrow =
eeprom_read_float(&eepromFwdThrow[eepromShadowCurrentProfile]);
 eepromShadowOverrideFwdThrow = eeprom_read_float(&eepromFwdThrow[PROFILE_COUNT-
1]);

 eepromShadowRevThrow =
eeprom_read_float(&eepromRevThrow[eepromShadowCurrentProfile]);
 eepromShadowOverrideRevThrow = eeprom_read_float(&eepromRevThrow[PROFILE_COUNT-
1]);

 eepromShadowTurnThrow =
eeprom_read_float(&eepromTurnThrow[eepromShadowCurrentProfile]);
 eepromShadowOverrideTurnThrow = eeprom_read_float(&eepromTurnThrow[PROFILE_COUNT-
1]);

 eepromShadowTopFwdSpeed =
eeprom_read_byte(&eepromTopFwdSpeed[eepromShadowCurrentProfile]);
 eepromShadowOverrideTopFwdSpeed =
eeprom_read_byte(&eepromTopFwdSpeed[PROFILE_COUNT-1]);

 eepromShadowTopRevSpeed =
eeprom_read_byte(&eepromTopRevSpeed[eepromShadowCurrentProfile]);
 eepromShadowOverrideTopRevSpeed =
eeprom_read_byte(&eepromTopRevSpeed[PROFILE_COUNT-1]);

 eepromShadowTopTurnSpeed =
eeprom_read_byte(&eepromTopTurnSpeed[eepromShadowCurrentProfile]);
 eepromShadowOverrideTopTurnSpeed =
eeprom_read_byte(&eepromTopTurnSpeed[PROFILE_COUNT-1]);

 eepromShadowSensitivity =
eeprom_read_byte(&eepromSensitivity[eepromShadowCurrentProfile]);
 if (eepromShadowSensitivity >= 10) {
 eepromCorrupt();
 }
 eepromShadowOverrideSensitivity =

141

menu.c

eeprom_read_byte(&eepromSensitivity[PROFILE_COUNT-1]);

 eepromShadowAcceleration =
eeprom_read_byte(&eepromAcceleration[eepromShadowCurrentProfile]);
 eepromShadowOverrideAcceleration =
eeprom_read_byte(&eepromAcceleration[PROFILE_COUNT-1]);

 eepromShadowDeceleration =
eeprom_read_byte(&eepromDeceleration[eepromShadowCurrentProfile]);
 eepromShadowOverrideDeceleration =
eeprom_read_byte(&eepromDeceleration[PROFILE_COUNT-1]);

 eepromShadowOuterDeadBand =
eeprom_read_byte(&eepromOuterDeadBand[eepromShadowCurrentProfile]);
 eepromShadowOverrideOuterDeadBand =
eeprom_read_byte(&eepromOuterDeadBand[PROFILE_COUNT-1]);

 eepromShadowCenterDeadBand =
eeprom_read_byte(&eepromCenterDeadBand[eepromShadowCurrentProfile]);
 eepromShadowOverrideCenterDeadBand =
eeprom_read_byte(&eepromCenterDeadBand[PROFILE_COUNT-1]);

 eepromShadowPropAsSwitch =
eeprom_read_byte(&eepromPropAsSwitch[eepromShadowCurrentProfile]);
 eepromShadowOverridePropAsSwitch =
eeprom_read_byte(&eepromPropAsSwitch[PROFILE_COUNT-1]);

 eepromShadowInvert = eeprom_read_byte(&eepromInvert[eepromShadowCurrentProfile]);
 eepromShadowOverrideInvert = eeprom_read_byte(&eepromInvert[PROFILE_COUNT-1]);
}

void incrementWirelessTimeout()
{
 gWirelessTimeoutCount++;
}

uint8_t menuGetMotorsDisabled()
{
 return gMotorsDisabled;
}

static void eepromUpdateByteSafe(uint8_t *eepromVariable, uint8_t *shadowVariable,
uint8_t newValue)
{
 uint8_t readValue;
 eeprom_busy_wait();
 eeprom_update_byte(eepromVariable, newValue);
 printf("EEPROM written\n");
 eeprom_busy_wait();
 readValue = eeprom_read_byte(eepromVariable);
 if (readValue != newValue) {
 eepromCorrupt();
 } else {
 *shadowVariable = newValue;
 }
}

142

menu.c

static void eepromUpdateFloatSafe(float *eepromVariable, float *shadowVariable, float
newValue)
{
 float readValue;
 eeprom_busy_wait();
 eeprom_update_float(eepromVariable, newValue);
 printf("EEPROM written\n");
 eeprom_busy_wait();
 readValue = eeprom_read_float(eepromVariable);
 if (readValue != newValue) {
 eepromCorrupt();
 } else {
 *shadowVariable = newValue;
 }
}

static void eepromUpdateStringSafe(char *src, char *eepromDst)
{
 char readString[LCD_NUM_CHARACTERS+1];
 eeprom_busy_wait();
 eeprom_update_block(src, eepromDst, LCD_NUM_CHARACTERS+1);
 printf("EEPROM written\n");
 eeprom_busy_wait();
 eeprom_read_block(readString, eepromDst, LCD_NUM_CHARACTERS+1);
 if (strcmp(readString, src)) {
 eepromCorrupt();
 }
}

void menuPlatformDownPushed() {
 if (!eepromShadowIsPlatformDown) {
 eepromUpdateByteSafe(&eepromIsPlatformDown, &eepromShadowIsPlatformDown,
1);
 }
}

void menuPlatformUpPushed() {
 if (eepromShadowIsPlatformDown) {
 eepromUpdateByteSafe(&eepromIsPlatformDown, &eepromShadowIsPlatformDown,
0);
 }
}

uint8_t menuGetIsPlatformDown() {
 return eepromShadowIsPlatformDown;
}

float menuGetFwdThrow(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideFwdThrow;
 else
 return eepromShadowFwdThrow;
}

143

menu.c

float menuGetRevThrow(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideRevThrow;
 else
 return eepromShadowRevThrow;
}

float menuGetTurnThrow(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideTurnThrow;
 else
 return eepromShadowTurnThrow;
}

uint8_t menuGetTopFwdSpeed(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideTopFwdSpeed;
 else
 return eepromShadowTopFwdSpeed;
}

uint8_t menuGetTopRevSpeed(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideTopRevSpeed;
 else
 return eepromShadowTopRevSpeed;
}

uint8_t menuGetTopTurnSpeed(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideTopTurnSpeed;
 else
 return eepromShadowTopTurnSpeed;
}

double menuGetSensitivity(uint8_t overridden)
{
 if (overridden)
 return gSensitivityMap[eepromShadowOverrideSensitivity];
 else
 return gSensitivityMap[eepromShadowSensitivity];
}

uint8_t menuGetAcceleration(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideAcceleration;
 else
 return eepromShadowAcceleration;
}

144

menu.c

uint8_t menuGetDeceleration(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideDeceleration;
 else
 return eepromShadowDeceleration;
}

uint8_t menuGetOuterDeadBand(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideOuterDeadBand;
 else
 return eepromShadowOuterDeadBand;
}

uint8_t menuGetCenterDeadBand(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideCenterDeadBand;
 else
 return eepromShadowCenterDeadBand;
}

uint8_t menuGetPropAsSwitch(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverridePropAsSwitch;
 else
 return eepromShadowPropAsSwitch;
}

uint8_t menuGetInvert(uint8_t overridden)
{
 if (overridden)
 return eepromShadowOverrideInvert;
 else
 return eepromShadowInvert;
}

uint8_t isValidChar(char c)
{
 uint8_t isValid = 0;
 if (c == ' ') {
 isValid = 1;
 }
 if (c >= '0' && c <= '9') {
 isValid = 2;
 }
 if (c >= 'A' && c <= 'Z') {
 isValid = 3;
 }
 if (c >= 'a' && c <= 'z') {
 isValid = 4;
 }
 return isValid;

145

menu.c

}

void menuUpdate(int16_t speed, int16_t dir)
{
 uint8_t up = lcdUpFallingEdge();
 uint8_t down = lcdDownFallingEdge();
 uint8_t right = lcdRightFallingEdge();
 uint8_t left = lcdLeftFallingEdge();
 uint8_t leftLongPress = lcdLeftLongPress();
 static uint8_t cursorPosition = 0;

 char lcdLine1[LCD_NUM_CHARACTERS+1];
 char lcdLine2[LCD_NUM_CHARACTERS+1];
 lcdLine1[LCD_NUM_CHARACTERS] = '\0';
 lcdLine2[LCD_NUM_CHARACTERS] = '\0';

 if (eepromShadowIsPlatformDown) {
 sprintf(lcdLine1, "Platform down");
 lcdLine2[0] = '\0';
 lcdText(lcdLine1, lcdLine2, 0);
 gMotorsDisabled = 1;
 return;
 }

 if (eepromShadowMenuState == MENU_OPTION_PROFILE && leftLongPress) {
 gNameEditMode = !gNameEditMode;

 if (gNameEditMode) {
 sprintf(lcdLine1, "Edit name");
 sprintf(lcdLine2, "%s", currentProfileName);
 lcdText(lcdLine1, lcdLine2, 1);

 // Display on, LCD cursor on, blink off
 lcdCommandBlocking(LCD_CMD_DISPLAY_ON_OFF |
LCD_CMD_DISPLAY_ON_OFF_D_bm | LCD_CMD_DISPLAY_ON_OFF_C_bm);
 lcdCommandBlocking(LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_2_START_ADDR));
 cursorPosition = 0;
 } else {
 // Display on, LCD cursor off, blink off
 lcdCommandBlocking(LCD_CMD_DISPLAY_ON_OFF |
LCD_CMD_DISPLAY_ON_OFF_D_bm);

 // Write to eeprom
 eepromUpdateStringSafe(currentProfileName,
eepromProfileName[eepromShadowCurrentProfile]);
 }
 }

 if (gNameEditMode) {
 gMotorsDisabled = 1;
 if (!isValidChar(currentProfileName[cursorPosition])) {
 currentProfileName[cursorPosition] = ' ';
 currentProfileName[cursorPosition+1] = '\0';
 }
 if (left || right) {

146

menu.c

 if (left && cursorPosition > 0) {
 cursorPosition--;
 }
 if (right && cursorPosition < LCD_NUM_CHARACTERS - 1) {
 cursorPosition++;
 if (!isValidChar(currentProfileName[cursorPosition])) {
 currentProfileName[cursorPosition] = ' ';
 currentProfileName[cursorPosition+1] = '\0';
 }
 }
 // Change cursor position
 lcdCommandBlocking((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_2_START_ADDR)) + cursorPosition);
 }
 if (up || down) {
 // Change letter
 if (up) {
 if (currentProfileName[cursorPosition] == ' ') {
 currentProfileName[cursorPosition] = 'A';
 } else if (currentProfileName[cursorPosition] == 'Z') {
 currentProfileName[cursorPosition] = 'a';
 } else if (currentProfileName[cursorPosition] == 'z') {
 currentProfileName[cursorPosition] = '0';
 } else if (currentProfileName[cursorPosition] == '9') {
 currentProfileName[cursorPosition] = ' ';
 } else {
 currentProfileName[cursorPosition]++;
 }
 }
 if (down) {
 if (currentProfileName[cursorPosition] == ' ') {
 currentProfileName[cursorPosition] = '9';
 } else if (currentProfileName[cursorPosition] == '0') {
 currentProfileName[cursorPosition] = 'z';
 } else if (currentProfileName[cursorPosition] == 'a') {
 currentProfileName[cursorPosition] = 'Z';
 } else if (currentProfileName[cursorPosition] == 'A') {
 currentProfileName[cursorPosition] = ' ';
 } else {
 currentProfileName[cursorPosition]--;
 }
 }
 sprintf(lcdLine1, "Edit name");
 sprintf(lcdLine2, "%s", currentProfileName);
 lcdText(lcdLine1, lcdLine2, 1);
 lcdCommandBlocking((LCD_CMD_SET_DDRAM_ADDR | (LCD_DDRAM_ADDR_bm &
LCD_LINE_2_START_ADDR)) + cursorPosition);
 }
 return;
 }

 gMotorsDisabled = 0;

 if (right)
 {
 if (eepromShadowMenuState < LAST_MENU_OPTION) {

147

menu.c

 eepromUpdateByteSafe(&eepromMenuState, &eepromShadowMenuState,
eepromShadowMenuState + 1);
 }
 }
 if (left)
 {
 if (eepromShadowMenuState > 0) {
 eepromUpdateByteSafe(&eepromMenuState, &eepromShadowMenuState,
eepromShadowMenuState - 1);
 }
 }

 switch (eepromShadowMenuState)
 {
 case MENU_OPTION_PROFILE:
 if (up && eepromShadowCurrentProfile < PROFILE_COUNT - 1) {
 eepromUpdateByteSafe(&eepromCurrentProfile,
&eepromShadowCurrentProfile, eepromShadowCurrentProfile + 1);
 menuInit();
 }
 if (down && eepromShadowCurrentProfile > 0) {
 eepromUpdateByteSafe(&eepromCurrentProfile,
&eepromShadowCurrentProfile, eepromShadowCurrentProfile - 1);
 menuInit();
 }
 sprintf(lcdLine1, "Choose Profile");
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_FWD_THROW:
 if (up && eepromShadowFwdThrow < 2.45) {
 eepromUpdateFloatSafe(&eepromFwdThrow[eepromShadowCurrentProfile],
&eepromShadowFwdThrow, eepromShadowFwdThrow + 0.05);
 }
 if (down && eepromShadowFwdThrow > 0.05) {
 eepromUpdateFloatSafe(&eepromFwdThrow[eepromShadowCurrentProfile],
&eepromShadowFwdThrow, eepromShadowFwdThrow - 0.05);
 }
 sprintf(lcdLine1, "Fwd Throw: %.2f", (double)eepromShadowFwdThrow);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_REV_THROW:
 if (up && eepromShadowRevThrow < 2.45) {
 eepromUpdateFloatSafe(&eepromRevThrow[eepromShadowCurrentProfile],
&eepromShadowRevThrow, eepromShadowRevThrow + 0.05);
 }
 if (down && eepromShadowRevThrow > 0.05) {
 eepromUpdateFloatSafe(&eepromRevThrow[eepromShadowCurrentProfile],
&eepromShadowRevThrow, eepromShadowRevThrow - 0.05);
 }
 sprintf(lcdLine1, "Rev Throw: %.2f", (double)eepromShadowRevThrow);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_TURN_THROW:
 if (up && eepromShadowTurnThrow < 2.45) {
 eepromUpdateFloatSafe(&eepromTurnThrow[eepromShadowCurrentProfile],
&eepromShadowTurnThrow, eepromShadowTurnThrow + 0.05);

148

menu.c

 }
 if (down && eepromShadowTurnThrow > 0.05) {
 eepromUpdateFloatSafe(&eepromTurnThrow[eepromShadowCurrentProfile],
&eepromShadowTurnThrow, eepromShadowTurnThrow - 0.05);
 }
 sprintf(lcdLine1, "Turn Throw: %.2f", (double)eepromShadowTurnThrow);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_TOP_FWD_SPEED:
 if (up && eepromShadowTopFwdSpeed < 125) {
 eepromUpdateByteSafe(&eepromTopFwdSpeed[eepromShadowCurrentProfile],
&eepromShadowTopFwdSpeed, eepromShadowTopFwdSpeed + 5);
 }
 if (down && eepromShadowTopFwdSpeed > 5) {
 eepromUpdateByteSafe(&eepromTopFwdSpeed[eepromShadowCurrentProfile],
&eepromShadowTopFwdSpeed, eepromShadowTopFwdSpeed - 5);
 }
 sprintf(lcdLine1, "Fwd Speed: %d", eepromShadowTopFwdSpeed);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_TOP_REV_SPEED:
 if (up && eepromShadowTopRevSpeed < 125) {
 eepromUpdateByteSafe(&eepromTopRevSpeed[eepromShadowCurrentProfile],
&eepromShadowTopRevSpeed, eepromShadowTopRevSpeed + 5);
 }
 if (down && eepromShadowTopRevSpeed > 5) {
 eepromUpdateByteSafe(&eepromTopRevSpeed[eepromShadowCurrentProfile],
&eepromShadowTopRevSpeed, eepromShadowTopRevSpeed - 5);
 }
 sprintf(lcdLine1, "Rev Speed: %d", eepromShadowTopRevSpeed);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_TOP_TURN_SPEED:
 if (up && eepromShadowTopTurnSpeed < 125) {

 eepromUpdateByteSafe(&eepromTopTurnSpeed[eepromShadowCurrentProfile],
&eepromShadowTopTurnSpeed, eepromShadowTopTurnSpeed + 5);
 }
 if (down && eepromShadowTopTurnSpeed > 5) {

 eepromUpdateByteSafe(&eepromTopTurnSpeed[eepromShadowCurrentProfile],
&eepromShadowTopTurnSpeed, eepromShadowTopTurnSpeed - 5);
 }
 sprintf(lcdLine1, "Turn Speed: %d", eepromShadowTopTurnSpeed);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_SENSITIVITY:
 if (up && eepromShadowSensitivity < 9) {
 eepromUpdateByteSafe(&eepromSensitivity[eepromShadowCurrentProfile],
&eepromShadowSensitivity, eepromShadowSensitivity + 1);
 }
 if (down && eepromShadowSensitivity > 0) {
 eepromUpdateByteSafe(&eepromSensitivity[eepromShadowCurrentProfile],
&eepromShadowSensitivity, eepromShadowSensitivity - 1);
 }
 sprintf(lcdLine1, "Sensitivity: %d", eepromShadowSensitivity + 1);

149

menu.c

 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_ACCELERATION:
 if (up && eepromShadowAcceleration > 4) {

 eepromUpdateByteSafe(&eepromAcceleration[eepromShadowCurrentProfile],
&eepromShadowAcceleration, eepromShadowAcceleration - 4);
 }
 if (down && eepromShadowAcceleration < 100) {

 eepromUpdateByteSafe(&eepromAcceleration[eepromShadowCurrentProfile],
&eepromShadowAcceleration, eepromShadowAcceleration + 4);
 }
 sprintf(lcdLine1, "Acceleration: %d", (104 - eepromShadowAcceleration) /
4);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_DECELERATION:
 if (up && eepromShadowDeceleration > 4) {

 eepromUpdateByteSafe(&eepromDeceleration[eepromShadowCurrentProfile],
&eepromShadowDeceleration, eepromShadowDeceleration - 4);
 }
 if (down && eepromShadowDeceleration < 100) {

 eepromUpdateByteSafe(&eepromDeceleration[eepromShadowCurrentProfile],
&eepromShadowDeceleration, eepromShadowDeceleration + 4);
 }
 sprintf(lcdLine1, "Deceleration: %d", (104 - eepromShadowDeceleration) /
4);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_OUTER_DEAD_BAND:
 if (up && eepromShadowOuterDeadBand < 20) {

 eepromUpdateByteSafe(&eepromOuterDeadBand[eepromShadowCurrentProfile],
&eepromShadowOuterDeadBand, eepromShadowOuterDeadBand + 1);
 }
 if (down && eepromShadowOuterDeadBand > 0) {

 eepromUpdateByteSafe(&eepromOuterDeadBand[eepromShadowCurrentProfile],
&eepromShadowOuterDeadBand, eepromShadowOuterDeadBand - 1);
 }
 if (eepromShadowOuterDeadBand == 0) {
 // 0: off
 sprintf(lcdLine1, "Outer DB: Off");
 } else if (eepromShadowOuterDeadBand == 1) {
 // 1: immediate
 sprintf(lcdLine1, "Outer DB: Immed.");
 } else {
 // 2: 0.5s, 3: 1.0s, 4: 1.5s, etc
 // Conversion: y=(x-1)/2
 sprintf(lcdLine1, "Outer DB: %d.%ds", (eepromShadowOuterDeadBand-
1)/2, (eepromShadowOuterDeadBand-1) % 2 ? 5 : 0);
 }
 sprintf(lcdLine2, "%s", currentProfileName);

150

menu.c

 break;
 case MENU_OPTION_CTR_DEAD_BAND:
 if (up && eepromShadowCenterDeadBand < 56) {

 eepromUpdateByteSafe(&eepromCenterDeadBand[eepromShadowCurrentProfile],
&eepromShadowCenterDeadBand, eepromShadowCenterDeadBand + 6);
 }
 if (down && eepromShadowCenterDeadBand > 2) {

 eepromUpdateByteSafe(&eepromCenterDeadBand[eepromShadowCurrentProfile],
&eepromShadowCenterDeadBand, eepromShadowCenterDeadBand - 6);
 }
 sprintf(lcdLine1, "Center DB: %d", (eepromShadowCenterDeadBand - 2) / 6 +
1);
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_PROP_AS_SWITCH:
 if (up || down) {
 if (eepromShadowPropAsSwitch) {

 eepromUpdateByteSafe(&eepromPropAsSwitch[eepromShadowCurrentProfile],
&eepromShadowPropAsSwitch, 0);
 } else {

 eepromUpdateByteSafe(&eepromPropAsSwitch[eepromShadowCurrentProfile],
&eepromShadowPropAsSwitch, 1);
 }
 }
 sprintf(lcdLine1, "PropAsSwitch:%s", eepromShadowPropAsSwitch ? " On" :
"Off");
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 case MENU_OPTION_INVERT:
 if (up || down) {
 if (eepromShadowInvert) {

 eepromUpdateByteSafe(&eepromInvert[eepromShadowCurrentProfile],
&eepromShadowInvert, 0);
 } else {

 eepromUpdateByteSafe(&eepromInvert[eepromShadowCurrentProfile],
&eepromShadowInvert, 1);
 }
 }
 sprintf(lcdLine1, "Invert: %s", eepromShadowInvert ? "On" : "Off");
 sprintf(lcdLine2, "%s", currentProfileName);
 break;
 default:
 lcdLine1[0] = '\0';
 lcdLine2[0] = '\0';
 break;
 }

 if ((up || down) && eepromShadowCurrentProfile == PROFILE_COUNT - 1) {
 menuInit();
 }

151

menu.c

 //if (eepromShadowMenuState != MENU_OPTION_PROFILE) {
 //sprintf(lcdLine2, "S=%4d T=%4d%3d", speed, dir, gWirelessTimeoutCount);
 //}

 lcdText(lcdLine1, lcdLine2, 0);
}

motor_driver.h

/*
 * motor_driver.h
 *
 * Created: 6/4/2012 3:30:02 PM
 * Author: Stew
 */

#ifndef MOTOR_DRIVER_H_
#define MOTOR_DRIVER_H_

typedef union {
 uint8_t array[4];
 struct {
 uint8_t address;
 uint8_t command;
 uint8_t data;
 uint8_t checksum;
 } parts;
} sabertooth_packet;

#define SABERTOOTH_ADDRESS 128

// Sabertooth Commands
#define MOTOR_CMD_DRIVE_FORWARD_MOTOR_1 0
#define MOTOR_CMD_DRIVE_BACKWARDS_MOTOR_1 1
#define MOTOR_CMD_MIN_VOLTAGE 2
#define MOTOR_CMD_MAX_VOLTAGE 3
#define MOTOR_CMD_DRIVE_FORWARD_MOTOR_2 4
#define MOTOR_CMD_DRIVE_BACKWARDS_MOTOR_2 5
#define MOTOR_CMD_DRIVE_MOTOR_1_7_BIT 6
#define MOTOR_CMD_DRIVE_MOTOR_2_7_BIT 7
#define MOTOR_CMD_DRIVE_FORWARD_MIXED_MODE 8
#define MOTOR_CMD_DRIVE_BACKWARDS_MIXED_MODE 9
#define MOTOR_CMD_TURN_RIGHT_MIXED_MODE 10
#define MOTOR_CMD_TURN_LEFT_MIXED_MODE 11
#define MOTOR_CMD_DRIVE_FORWARDS_BACK_7_BIT 12
#define MOTOR_CMD_TURN_7_BIT 13
#define MOTOR_CMD_SERIAL_TIMEOUT 14
#define MOTOR_CMD_BAUD_RATE 15
#define MOTOR_CMD_RAMPING 16
#define MOTOR_CMD_DEADBAND 17

void initMotorDriver(void);

152

motor_driver.h

void motorEStop(void);
void resetMotorEStop(void);
void sendMotorCommand(uint8_t command, uint8_t data);
void setMotors(int16_t speed, int16_t dir);

#endif /* MOTOR_DRIVER_H_ */

motor_driver.c

/*
 * motor_driver.c
 *
 * Created: 6/4/2012 3:28:23 PM
 * Author: Stew
 *
 * The motor controller is a Sabertooth 2x60 from Dimension Engineering
 * See the Sabertooth's datasheet for some useful info
 * S1 = PD7/TXD1 (USARTD1)
 * S2 = PD6/RXD1 (USARTD1)
 *
 * DIP switch settings:
 * 1: down
 * 2: down
 * 3: up
 * 4: up
 * 5: up
 * 6: up
 *
 * Address = 128
 */

#include <avr/io.h>
#include "../atmel/usart_driver.h"
#include "motor_driver.h"
#include "menu.h"

USART_data_t USARTD1_data;

void initMotorDriver(void) {
 //Set PD6 and PD7 both as outputs
 PORTD.DIRSET = PIN6_bm | PIN7_bm;
 PORTD.OUTSET = PIN6_bm | PIN7_bm;

 // Use USARTD1 and initialize buffers.
 USART_InterruptDriver_Initialize(&USARTD1_data, &USARTD1, USART_DREINTLVL_HI_gc);

 // USARTD1, 8 Data bits, No Parity, 1 Stop bit.
 USART_Format_Set(USARTD1_data.usart, USART_CHSIZE_8BIT_gc,
USART_PMODE_DISABLED_gc, false);

 // Disable RXC interrupt.
 USART_RxdInterruptLevel_Set(USARTD1_data.usart, USART_RXCINTLVL_OFF_gc);

 // Set Baudrate to 9600 bps

153

motor_driver.c

 USART_Baudrate_Set(&USARTD1, 3317 , -4);

 // Disable RX, enable TX
 USART_Rx_Disable(USARTD1_data.usart);
 USART_Tx_Enable(USARTD1_data.usart);

 PMIC.CTRL |= PMIC_HILVLEN_bm;

 // Let's hope that global interrupts are already enabled...

 // Set minimum voltage to 18V
 sendMotorCommand(MOTOR_CMD_MIN_VOLTAGE, 60);

 // Enable serial timeout 500 ms
 sendMotorCommand(MOTOR_CMD_SERIAL_TIMEOUT, 5);
}

void motorEStop(void)
{
 //S2 is an active-low E-stop when the motor driver is in packetized serial mode
 PORTD.OUTCLR = PIN6_bm;
}

void resetMotorEStop(void)
{
 PORTD.OUTSET = PIN6_bm;
}

static void sendMotorPacket(sabertooth_packet *packet)
{
 uint8_t i = 0;
 while (i < sizeof(packet->array))
 {
 if (USART_TXBuffer_PutByte(&USARTD1_data, packet->array[i]))
 {
 i++;
 }
 }
}

void sendMotorCommand(uint8_t command, uint8_t data)
{
 sabertooth_packet packet;
 packet.parts.address = SABERTOOTH_ADDRESS;
 packet.parts.command = command;
 packet.parts.data = data;
 packet.parts.checksum = (packet.parts.address + packet.parts.command +
packet.parts.data) & 0x7F;
 sendMotorPacket(&packet);
}

void setMotors(int16_t speed, int16_t dir)
{
 if (speed >= 0) {
 sendMotorCommand(MOTOR_CMD_DRIVE_FORWARD_MIXED_MODE, speed);
 } else {

154

motor_driver.c

 speed = -speed;
 sendMotorCommand(MOTOR_CMD_DRIVE_BACKWARDS_MIXED_MODE, speed);
 }
 if (dir >= 0) {
 sendMotorCommand(MOTOR_CMD_TURN_RIGHT_MIXED_MODE, dir);
 } else {
 dir = -dir;
 sendMotorCommand(MOTOR_CMD_TURN_LEFT_MIXED_MODE, dir);
 }
}

ISR(USARTD1_DRE_vect)
{
 USART_DataRegEmpty(&USARTD1_data);
}

nordic_driver.h

/*
 * nordic_driver.h
 *
 * Created on: Feb 22, 2011
 * Author: grant
 */

#ifndef NORDIC_DRIVER_H_
#define NORDIC_DRIVER_H_

// NORDIC COMMAND WORDS
// R_REGISTER 0b000XXXXX where XXXXX = 5 bit register map address
#define R_REGISTER_nCmd 0x00
// W_REGISTER 0b001XXXXX where XXXXX = 5 bit register map address
#define W_REGISTER_nCmd 0x20
#define R_RX_PAYLOAD_nCmd 0x61
#define W_TX_PAYLOAD_nCmd 0xA0
#define FLUSH_TX_nCmd 0xE1
#define FLUSH_RX_nCmd 0xE2
#define REUSE_TX_PL_nCmd 0xE3
#define R_RX_PL_WID_nCmd 0x60
// W_ACK_PAYLOAD 0b10101PPP where PPP = pipe number to write packet to
#define W_ACK_PAYLOAD_nCmd 0xA8
#define W_TX_PAYLOAD_NOACK_nCmd 0xB0
#define NOP_nCmd 0xFF

// NORDIC REGISTERS (5-bit addresses, 8-bit values)
#define CONFIG_nReg 0x00
#define EN_AA_nReg 0x01
#define EN_RXADDR_nReg 0x02
#define SETUP_AW_nReg 0x03
#define SETUP_RETR_nReg 0x04
#define RF_CH_nReg 0x05
#define RF_SETUP_nReg 0x06
#define STATUS_nReg 0x07
#define OBSERVE_TX_nReg 0x08

155

nordic_driver.h

#define RPD_nReg 0x09
#define RX_ADDR_P0_nReg 0x0A
#define RX_ADDR_P1_nReg 0x0B
#define RX_ADDR_P2_nReg 0x0C
#define RX_ADDR_P3_nReg 0x0D
#define RX_ADDR_P4_nReg 0x0E
#define RX_ADDR_P5_nReg 0x0F
#define TX_ADDR_nReg 0x10
#define RX_PW_P0_nReg 0x11
#define RX_PW_P1_nReg 0x12
#define RX_PW_P2_nReg 0x13
#define RX_PW_P3_nReg 0x14
#define RX_PW_P4_nReg 0x15
#define RX_PW_P5_nReg 0x16
#define FIFO_STATUS_nReg 0x17
#define DYNPD_nReg 0x1C
#define FEATURE_nReg 0x1D

typedef union {
 volatile uint8_t array[4];
 struct {
 volatile uint8_t SwitchState;
 volatile uint8_t JoyDirection;
 volatile uint8_t JoySpeed;
 volatile uint8_t Reserved;
 } parts;
} NORDIC_DATA_PACKET;

typedef struct {
 volatile NORDIC_DATA_PACKET data;
 volatile uint8_t rxpipe;
} NORDIC_PACKET;

void nordic_Initialize();

uint8_t nordic_getInstructorEStop();
uint8_t nordic_getInstructorLAUp();
uint8_t nordic_getInstructorLADown();
uint8_t nordic_getStudentForward();
uint8_t nordic_getStudentReverse();
uint8_t nordic_getStudentLeft();
uint8_t nordic_getStudentRight();

int8_t nordic_getWirelessPropJoySpeed();
int8_t nordic_getWirelessPropJoyDirection();

int8_t nordic_getInstructorSpeed();
int8_t nordic_getInstructorDirection();

#endif /* NORDIC_DRIVER_H_ */

nordic_driver.c

/*

156

nordic_driver.c

 * nordic_driver.c
 *
 * Created on: Feb 22, 2011
 * Author: grant
 */

#include <stdio.h>
#include <string.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "nordic_driver.h"
#include "PWCT_io.h"
#include "menu.h"
#include "../atmel/avr_compiler.h"

#define RXPIPE_INSTRUCTOR_REMOTE 0
#define RXPIPE_STUDENT_JOYSTICK 1

#define SPI_SS_bm PIN4_bm
#define SPI_MOSI_bm PIN5_bm
#define SPI_MISO_bm PIN6_bm
#define SPI_SCK_bm PIN7_bm

static volatile NORDIC_PACKET LAST_PACKET;

static uint8_t gStudentForward;
static uint8_t gStudentReverse;
static uint8_t gStudentLeft;
static uint8_t gStudentRight;
static int8_t gStudentSpeed;
static int8_t gStudentDirection;
static uint8_t gInstructorLAUp;
static uint8_t gInstructorLADown;
static uint8_t gInstructorEStop;
static int8_t gInstructorSpeed;
static int8_t gInstructorDirection;
static volatile uint8_t gIsInstructorTimeout;

static void timeoutTimerSetup(TC0_t * tc)
{
 // Packet time-out counter
 tc->CTRLA = TC_CLKSEL_OFF_gc;
 // 1 tick = 32us
 // 7812 ticks = 0.25s
 tc->PER = 7812;
 // Set timer to normal mode
 tc->CTRLB = TC_WGMODE_NORMAL_gc;
 // Set overflow interrupt (level med)
 tc->INTCTRLA = TC_OVFINTLVL_MED_gc;
 // reset packet watchdog timer
 tc->CNT = 0;
 // start timer
 tc->CTRLA = TC_CLKSEL_DIV1024_gc;
}

157

nordic_driver.c

static inline void hardwareSetup()
{
 // SPI prescaler = div128, enable, master
 SPIF.CTRL = SPI_PRESCALER_DIV128_gc | SPI_ENABLE_bm | SPI_MASTER_bm |
SPI_MODE_0_gc;

 // No SPI interrupt
 SPIF.INTCTRL = SPI_INTLVL_OFF_gc;

 // MOSI and SCK as output
 PORTF.DIRSET = SPI_MOSI_bm | SPI_SCK_bm;

 // Set chip enable (CE) pin as output (not a part of SPI)
 PORTE.OUTCLR = PIN7_bm;
 PORTE.DIRSET = PIN7_bm;

 // Setup IRQ pin interrupt
 PORTH.DIRCLR = PIN2_bm;
 PORTH.PIN2CTRL = PORT_ISC_FALLING_gc;
 PORTH.INTCTRL = PORT_INT0LVL_MED_gc;
 PORTH.INT0MASK = PIN2_bm;

 // Enable med level interrupt
 PMIC.CTRL |= PMIC_MEDLVLEN_bm;

 timeoutTimerSetup(&TCD0);
 timeoutTimerSetup(&TCF0);
}

// CS line must be pulled low before calling this function and released when finished
static uint8_t SPI_TransceiveByte(uint8_t TXdata)
{
 // Send pattern
 SPIF.DATA = TXdata;

 // Wait for transmission complete
 while (!(SPIF.STATUS & SPI_IF_bm)) {

 }

 // Read received data
 uint8_t result = SPIF.DATA;

 return (result);
}

// pull CS low
static inline void chipSelect(void)
{
 PORTF.OUTCLR = PIN4_bm;
 PORTF.DIRSET = PIN4_bm;
}

// release CS
static inline void chipRelease(void)
{

158

nordic_driver.c

 PORTF.OUTSET = PIN4_bm;
 PORTF.DIRCLR = PIN4_bm;
}

//set CE high
static inline void activeMode(void)
{
 PORTE.OUTSET = PIN7_bm;
}

static int8_t nordic_SendCommand(uint8_t cmd, uint8_t *txdata, uint8_t *rxdata, uint8_t
dataSize, uint8_t *status)
{
 uint8_t i;
 uint8_t rx;
 uint8_t data;
 uint8_t statusFake;
 int8_t err = 0;

 //check to make sure parameters are valid
 if (status == NULL) {
 status = &statusFake;
 }

 chipSelect();

 //send command
 *status = SPI_TransceiveByte(cmd);

 //send/receive LSByte first
 if (dataSize != 0) {
 i = dataSize;
 do {
 i--;
 if (txdata == NULL) {
 data = 0;
 } else {
 data = txdata[i];
 }
 rx = SPI_TransceiveByte(data);
 if (rxdata != NULL) {
 rxdata[i] = rx;
 }
 } while(i != 0);
 }

 chipRelease();

 return err;
}

//Write a register that contains a single byte of data
static inline int8_t nordic_WriteRegister(uint8_t reg, uint8_t data, uint8_t *status)
{
 return nordic_SendCommand(W_REGISTER_nCmd | reg, &data, NULL, 1, status);
}

159

nordic_driver.c

//Writes a register with N bytes of data
static inline int8_t nordic_WriteRegisters(uint8_t reg, uint8_t *data, uint8_t size,
uint8_t *status)
{
 return nordic_SendCommand(W_REGISTER_nCmd | reg, data, NULL, size, status);
}

static void nordicSetup()
{
 uint8_t datas[10];
 uint8_t configRegValue;

 configRegValue = 0x0D; //RX_DR, TX_DS, MAX_RT on IRQ; CRC enabled, two CRC bytes;
RX mode
 nordic_WriteRegister(CONFIG_nReg, configRegValue, NULL);

 //enable auto acknowledge on pipe 0 and 1
 nordic_WriteRegister(EN_AA_nReg, 0x03, NULL);

 //enable auto retransmit, try 5 times with delay of 250us
 nordic_WriteRegister(SETUP_RETR_nReg, 0x05, NULL);

 //EN_RXADDR_nReg Default data pipe 0 and 1 enabled
 //SETUP_AW_nReg Default address width of 5 bytes

 //Set RF Channel as 0x7C
 nordic_WriteRegister(RF_CH_nReg, 0x7C, NULL);

 //Set output power 0dB, data rate of 250kbps
 nordic_WriteRegister(RF_SETUP_nReg, 0x27, NULL);

 //Rx Address data pipe 0
 datas[0] = 0xE7;
 datas[1] = 0xE7;
 datas[2] = 0xE7;
 datas[3] = 0xE7;
 datas[4] = 0xE7;
 nordic_WriteRegisters(RX_ADDR_P0_nReg, datas, 5, NULL);

 //Rx Address data pipe 1
 datas[0] = 0xC2;
 datas[1] = 0xC2;
 datas[2] = 0xC2;
 datas[3] = 0xC2;
 datas[4] = 0xC2;
 nordic_WriteRegisters(RX_ADDR_P1_nReg, datas, 5, NULL);

 //Set Payload width of 4 bytes
 nordic_WriteRegister(RX_PW_P0_nReg, sizeof(LAST_PACKET.data.array), NULL);
 nordic_WriteRegister(RX_PW_P1_nReg, sizeof(LAST_PACKET.data.array), NULL);

 //clear fifos (necessary for wdt/soft reset)
 nordic_SendCommand(FLUSH_RX_nCmd, NULL, NULL, 0, NULL);
 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);

160

nordic_driver.c

 //clear interrupts (necessary for wdt/soft reset)
 nordic_WriteRegister(STATUS_nReg, 0x70, NULL);

 configRegValue |= 0x02; //PWR_UP bit set
 nordic_WriteRegister(CONFIG_nReg, configRegValue, NULL);

 //wait for startup
 _delay_us(1500);

 activeMode(); //start receiving
}

void nordic_Initialize()
{
 hardwareSetup();
 nordicSetup();

 //set default values
 gStudentForward = 0;
 gStudentReverse = 0;
 gStudentLeft = 0;
 gStudentRight = 0;
 gStudentSpeed = 0;
 gStudentDirection = 0;
 gInstructorLAUp = 0;
 gInstructorLADown = 0;
 gInstructorEStop = 0;
 gInstructorSpeed = 0;
 gInstructorDirection = 0;
 gIsInstructorTimeout = 0;
}

uint8_t nordic_getInstructorEStop()
{
 return gInstructorEStop;
}

uint8_t nordic_getInstructorLAUp()
{
 return gInstructorLAUp;
}

uint8_t nordic_getInstructorLADown()
{
 return gInstructorLADown;
}

uint8_t nordic_getStudentForward()
{
 return gStudentForward;
}

uint8_t nordic_getStudentReverse()
{
 return gStudentReverse;
}

161

nordic_driver.c

uint8_t nordic_getStudentLeft()
{
 return gStudentLeft;
}

uint8_t nordic_getStudentRight()
{
 return gStudentRight;
}

int8_t nordic_getWirelessPropJoySpeed(void)
{
 return gStudentSpeed;
}

int8_t nordic_getWirelessPropJoyDirection(void)
{
 return gStudentDirection;
}

int8_t nordic_getInstructorSpeed()
{
 return gInstructorSpeed;
}

int8_t nordic_getInstructorDirection()
{
 return gInstructorDirection;
}

static void setVariables(uint8_t isTimeout)
{
 static uint8_t eStopCount = 0;
 if ((LAST_PACKET.data.array[0] & 0b00000001) >> 0) {
 if (eStopCount < 1) {
 eStopCount++;
 } else {
 gInstructorEStop = 1;
 }
 } else if (LAST_PACKET.rxpipe == RXPIPE_INSTRUCTOR_REMOTE) {
 eStopCount = 0;
 }

 if (LAST_PACKET.rxpipe == RXPIPE_INSTRUCTOR_REMOTE) {
 gInstructorLAUp = ((LAST_PACKET.data.array[0] & 0b00000010) >> 1);
 gInstructorLADown = ((LAST_PACKET.data.array[0] & 0b00000100) >> 2);
 gInstructorSpeed = LAST_PACKET.data.array[2];
 gInstructorDirection = LAST_PACKET.data.array[1];
 }

 if (LAST_PACKET.rxpipe == RXPIPE_STUDENT_JOYSTICK) { // Student joystick
 gStudentForward = ((LAST_PACKET.data.array[0] & 0b00001000) >> 3);
 gStudentReverse = ((LAST_PACKET.data.array[0] & 0b00010000) >> 4);
 gStudentLeft = ((LAST_PACKET.data.array[0] & 0b00100000) >> 5);
 gStudentRight = ((LAST_PACKET.data.array[0] & 0b01000000) >> 6);

162

nordic_driver.c

 gStudentSpeed = LAST_PACKET.data.array[2];
 gStudentDirection = LAST_PACKET.data.array[1];
 }
 if (isTimeout) {
 gStudentForward = 0;
 gStudentReverse = 0;
 gStudentLeft = 0;
 gStudentRight = 0;
 gStudentSpeed = 0;
 gStudentDirection = 0;
 }
}

ISR(PORTH_INT0_vect)
{
 uint8_t status;
 uint8_t size = 0;
 uint8_t data[4] = {0,0,0,0};

 //get status
 nordic_SendCommand(NOP_nCmd, NULL, NULL, 0, &status);

 if (status & 0x40) { // Data Ready RX FIFO

 //get payload size
 nordic_SendCommand(R_RX_PL_WID_nCmd, NULL, &size, 1, NULL);
 if (size == sizeof(data)) {
 //get latest packet
 nordic_SendCommand(R_RX_PAYLOAD_nCmd, NULL, data, size, NULL);
//get payload
 LAST_PACKET.data.array[0] = data[0];
 LAST_PACKET.data.array[1] = data[1];
 LAST_PACKET.data.array[2] = data[2];
 LAST_PACKET.data.array[3] = data[3];
 LAST_PACKET.rxpipe = (status & 0x0E) >> 1;

 //reset packet receive time-out
 if (LAST_PACKET.rxpipe == RXPIPE_INSTRUCTOR_REMOTE) {
 TCD0.CNT = 0;
 gIsInstructorTimeout = 0;
 }
 if (LAST_PACKET.rxpipe == RXPIPE_STUDENT_JOYSTICK) {
 TCF0.CNT = 0;
 }
 }
 //clear fifo
 nordic_SendCommand(FLUSH_RX_nCmd, NULL, NULL, 0, NULL);

 //update remote variables
 if (!gIsInstructorTimeout) {
 setVariables(0);
 }
 //} else {
 // printf("Status=%d\n", status);
 }
 if (status & 0x20) { // Data Sent TX FIFO

163

nordic_driver.c

 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);
 }
 if (status & 0x10) { // Maximum number of TX retransmits
 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);
 }

 //clear interrupts
 nordic_WriteRegister(STATUS_nReg, status & 0x70, NULL);
}

ISR(TCD0_OVF_vect) //packet receive time-out
{
 gIsInstructorTimeout = 1;
 LAST_PACKET.data.array[0] = 0;
 LAST_PACKET.data.array[1] = 0;
 LAST_PACKET.data.array[2] = 0;
 LAST_PACKET.data.array[3] = 0;
 LAST_PACKET.rxpipe = RXPIPE_INSTRUCTOR_REMOTE;
 setVariables(1);
 incrementWirelessTimeout();
}

ISR(TCF0_OVF_vect) //packet receive time-out
{
 LAST_PACKET.data.array[0] = 0;
 LAST_PACKET.data.array[1] = 0;
 LAST_PACKET.data.array[2] = 0;
 LAST_PACKET.data.array[3] = 0;
 LAST_PACKET.rxpipe = RXPIPE_STUDENT_JOYSTICK;
 setVariables(1);
 incrementWirelessTimeout();
}

PWCT_io.h

/*
 * PWCT_io.h
 *
 * Created on: Mar 28, 2011
 * Author: grant
 */

#ifndef PWCT_IO_H_
#define PWCT_IO_H_

#include <avr/io.h>
#include <stdint.h>
#include <stdbool.h>

typedef struct {
 PORT_t *port;
 uint8_t pin_bm;
 volatile uint8_t previous_values;
 volatile uint8_t debounced_value;

164

PWCT_io.h

 uint8_t previous_debounced_value;
 uint16_t pressedCount;
} debounced_input;

void initPWCTio(void);
void SampleInputs(void);
void OmniStopMove(void);
void OmniMove(uint8_t moveDir);
uint16_t getWiredPropJoySpeed(void);
uint16_t getWiredPropJoyDirection(void);
uint8_t lcdUpFallingEdge(void);
uint8_t lcdDownFallingEdge(void);
uint8_t lcdRightFallingEdge(void);
uint8_t lcdLeftFallingEdge(void);
uint8_t lcdLeftLongPress(void);

bool LimitSwitchPressed(void);
uint8_t ActuatorSwitchPressed(void);
bool PanelEStopPressed(void);
void PulsePGDTEstop(void);

#endif /* PWCT_IO_H_ */

PWCT_io.c

/*
 * PWCT_io.c
 *
 * Created on: Mar 28, 2011
 * Author: grant
 */

#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include "../atmel/TC_driver.h"
#include "../atmel/port_driver.h"
#include "../atmel/pmic_driver.h"
#include "../atmel/adc_driver.h"
#include "nordic_driver.h"
#include "util.h"
#include "PWCT_io.h"

//pulse timer 1tick = 8us
//31250 ticks = 250ms
#define PGDT_ESTOP_PULSE_PERIOD 31250

#define ENABLE_INSTRUCTOR_REMOTE_LINEAR_ACTUATOR_CONTROL 0

/* Input/Output List
 * Item Pin In/Out
 Note
 * Prop. Joy Detect PK7 Input
 * Prop. Joy Speed (Fwd/Rev) PA1 Input A/D

165

PWCT_io.c

 * Prop. Joy Direction (L/R) PA2 Input A/D
 * Bumper PA7 Input
 optional A/D
 * Limit Switch 1 PA3 Input
 A/D
 * Limit Switch 2 PA4 Input
 A/D
 * Limit Switch 3 PA5 Input
 A/D
 * Limit Switch 4 PA6 Input
 A/D
 * Student Forward PJ3 Input
 * Student Reverse PJ4 Input
 * Student Left PJ5 Input
 * Student Right PJ6 Input
 * Student Fifth PJ7 Input
 * Buddy Button Forward PH6 Input
 * Buddy Button Reverse PH7 Input
 * Buddy Button Left PJ0 Input
 * Buddy Button Right PJ1 Input
 * Buddy Button Fifth PJ2 Input
 * Emergency Stop PK2 Input
 Normally closed, debounce
 * Omni+ On/Off Switch PK6 Output
 * Panel LA Up PK0 Input
 * Panel LA Down PK3 Input
 * Panel LA LED PK5 Output
 * Panel Bumper Override LED PK4 Output
 * Panel Bumper Override Switch PK1 Input
 * Omni+ Out Forward PH1 Output
 * Omni+ Out Reverse PH0 Output
 * Omni+ Out Left PH4 Output
 * Omni+ Out Right PH3 Output
 * Omni+ Out Fifth PH5 Output
 * LCD Button 1 PQ0 Input
 Debounce
 * LCD Button 2 PQ1 Input
 Debounce
 * LCD Button 3 PQ2 Input
 Debounce
 * LCD Button 4 PQ3 Input
 Debounce
 * Extra I/O pin PR0 I/O
 * Fwd/Rev Invert PR1 Input
 */

//these input flags are all active low
static uint8_t BB_FORWARD;
static uint8_t BB_REVERSE;
static uint8_t BB_LEFT;
static uint8_t BB_RIGHT;
static uint8_t BB_FIFTH;
static uint8_t STUDENT_FORWARD;
static uint8_t STUDENT_REVERSE;
static uint8_t STUDENT_LEFT;
static uint8_t STUDENT_RIGHT;

166

PWCT_io.c

static uint8_t STUDENT_FIFTH;
static uint8_t PANEL_LA_UP;
static uint8_t PANEL_LA_DOWN;
static uint8_t PANEL_BUMPER_OVERRIDE;
static uint8_t PROP_JOY_DETECT;
static uint8_t INVERT_SWITCH;
static uint8_t LIMIT_SWITCH;

#define DEBOUNCED_INPUT_COUNT 5
static debounced_input gDebouncedInputs[DEBOUNCED_INPUT_COUNT];

static volatile uint16_t gWiredPropJoySpeed;
static volatile uint16_t gWiredPropJoyDirection;

static void joystickADCsetup(void)
{
 // ADC configuration for proportional joystick
 ADC_CalibrationValues_Load(&ADCA);

 ADC_ConvMode_and_Resolution_Config(&ADCA, ADC_ConvMode_Unsigned,
ADC_RESOLUTION_12BIT_gc);

 // External reference on PA0/AREFA
 ADC_Reference_Config(&ADCA, ADC_REFSEL_AREFA_gc);
 ADC_Prescaler_Config(&ADCA, ADC_PRESCALER_DIV512_gc);

 // In Unsigned Single-ended mode, the conversion range is from ground to the
reference voltage.
 ADC_Ch_InputMode_and_Gain_Config(&ADCA.CH0, ADC_CH_INPUTMODE_SINGLEENDED_gc,
ADC_DRIVER_CH_GAIN_NONE);
 ADC_Ch_InputMode_and_Gain_Config(&ADCA.CH1, ADC_CH_INPUTMODE_SINGLEENDED_gc,
ADC_DRIVER_CH_GAIN_NONE);

 ADC_Ch_InputMux_Config(&ADCA.CH0, ADC_CH_MUXPOS_PIN1_gc, 0);
 ADC_Ch_InputMux_Config(&ADCA.CH1, ADC_CH_MUXPOS_PIN2_gc, 0);

 ADC_FreeRunning_Enable(&ADCA);
 ADC_SweepChannels_Config(&ADCA, ADC_SWEEP_01_gc);

 //ADC_Events_Config(&ADCA, ADC_EVSEL_0123_gc, ADC_EVACT_SYNCHSWEEP_gc);
 ADC_Ch_Interrupts_Config(&ADCA.CH0, ADC_CH_INTMODE_COMPLETE_gc,
ADC_CH_INTLVL_MED_gc);
 ADC_Ch_Interrupts_Config(&ADCA.CH1, ADC_CH_INTMODE_COMPLETE_gc,
ADC_CH_INTLVL_MED_gc);

 PMIC.CTRL |= PMIC_MEDLVLEN_bm;

 ADC_Enable(&ADCA);
 ADC_Wait_32MHz(&ADCA);
}

static void setupEstopTimer()
{
 // TCF1 is the timer used for Omni E-stop pulse
 //turn off timers
 TC1_ConfigClockSource(&TCF1, TC_CLKSEL_OFF_gc);

167

PWCT_io.c

 // Set the TC period.
 TC_SetPeriod(&TCF1, 0xFFFF);

 //Set timer in normal mode
 TC1_ConfigWGM(&TCF1, TC_WGMODE_NORMAL_gc);

 TC1_SetCCBIntLevel(&TCF1, TC_CCBINTLVL_MED_gc);

 //start clocks
 TC1_ConfigClockSource(&TCF1, TC_CLKSEL_DIV256_gc);

 PMIC.CTRL |= PMIC_MEDLVLEN_bm;
}

static void setupDebouncedInputs()
{
 //LCD Button 1 PQ0
#define DEBOUNCE_INDEX_LCD1 0
 gDebouncedInputs[DEBOUNCE_INDEX_LCD1].port = &PORTQ;
 gDebouncedInputs[DEBOUNCE_INDEX_LCD1].pin_bm = PIN0_bm;

 //LCD Button 2 PQ1
#define DEBOUNCE_INDEX_LCD2 1
 gDebouncedInputs[DEBOUNCE_INDEX_LCD2].port = &PORTQ;
 gDebouncedInputs[DEBOUNCE_INDEX_LCD2].pin_bm = PIN1_bm;

 //LCD Button 3 PQ2
#define DEBOUNCE_INDEX_LCD3 2
 gDebouncedInputs[DEBOUNCE_INDEX_LCD3].port = &PORTQ;
 gDebouncedInputs[DEBOUNCE_INDEX_LCD3].pin_bm = PIN2_bm;

 //LCD Button 4 PQ3
#define DEBOUNCE_INDEX_LCD4 3
 gDebouncedInputs[DEBOUNCE_INDEX_LCD4].port = &PORTQ;
 gDebouncedInputs[DEBOUNCE_INDEX_LCD4].pin_bm = PIN3_bm;

 //Panel E-stop
#define DEBOUNCE_INDEX_ESTOP 4
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].port = &PORTK;
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].pin_bm = PIN2_bm;

 int i;
 for (i = 0; i < DEBOUNCED_INPUT_COUNT; i++)
 {
 // Set as input
 gDebouncedInputs[i].port->DIRCLR = gDebouncedInputs[i].pin_bm;

 // Enable pull-up
 PORTCFG.MPCMASK = gDebouncedInputs[i].pin_bm;
 gDebouncedInputs[i].port->PIN0CTRL = PORT_OPC_PULLUP_gc;

 // Default values
 gDebouncedInputs[i].previous_values = UINT8_MAX;
 gDebouncedInputs[i].debounced_value = 1;
 gDebouncedInputs[i].previous_debounced_value = 1;

168

PWCT_io.c

 gDebouncedInputs[i].pressedCount = 0;
 }

 // E-stop needs an initial value of 0 since it is a normally closed switch
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].previous_values = 0;
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].debounced_value = 0;
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].previous_debounced_value = 0;
}

static void setupDebounceTimer()
{
 // TCC1 is the timer used for debouncing
 TCC1.CTRLA = TC_CLKSEL_DIV4_gc;
 TCC1.CTRLB = TC_WGMODE_FRQ_gc;
 TCC1.INTCTRLB = TC_CCAINTLVL_LO_gc;
 TCC1.CCA = 40000; // Goal: interrupt every 5 milliseconds

 PMIC.CTRL |= PMIC_LOLVLEN_bm;
}

void initPWCTio(void)
{
 setupEstopTimer();

 setupDebouncedInputs();

 setupDebounceTimer();

 PORT_ConfigurePins(&PORTH, PIN6_bm | PIN7_bm, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // BB fwd, BB rev
 PORT_ConfigurePins(&PORTJ, 0xFF, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // remaining BB, switch joystick in
 PORT_ConfigurePins(&PORTK, PIN0_bm | PIN1_bm | PIN3_bm | PIN7_bm, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // LA up, bumper override, LA down, Prop.
Joy Detect
 PORT_ConfigurePins(&PORTK, PIN2_bm, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // e-stop button
 PORT_ConfigurePins(&PORTQ, PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // LCD buttons
 PORT_ConfigurePins(&PORTR, PIN0_bm | PIN1_bm, false, false,
PORT_OPC_PULLUP_gc, PORT_ISC_BOTHEDGES_gc); // LCD button, invert switch

 PORT_SetPinsAsInput(&PORTH, PIN6_bm | PIN7_bm);
 PORT_SetPinsAsInput(&PORTJ, PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm | PIN4_bm |
PIN5_bm | PIN6_bm | PIN7_bm);
 PORT_SetPinsAsInput(&PORTK, PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm | PIN7_bm);
 PORT_SetPinsAsInput(&PORTQ, PIN0_bm | PIN1_bm | PIN2_bm | PIN3_bm);
 PORT_SetPinsAsInput(&PORTR, PIN0_bm | PIN1_bm);

 //set outputs
 PORTK.OUTCLR = PIN4_bm | PIN5_bm; //leds off
 PORTK.OUTCLR = PIN6_bm; //Omni+ on/off switch disabled
 PORTK.DIRSET = PIN4_bm | PIN5_bm | PIN6_bm;
 PORTH.OUTCLR = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm | PIN5_bm; //switch
joystick disabled
 PORTH.DIRSET = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm | PIN5_bm;

169

PWCT_io.c

 joystickADCsetup();

 //get default values
 SampleInputs();

 PMIC.CTRL |= PMIC_MEDLVLEN_bm;
}

void SampleInputs(void)
{
 BB_FORWARD = PORTH.IN & PIN6_bm;
 BB_REVERSE = PORTH.IN & PIN7_bm;
 BB_LEFT = PORTJ.IN & PIN0_bm;
 BB_RIGHT = PORTJ.IN & PIN1_bm;
 BB_FIFTH = PORTJ.IN & PIN2_bm;
 STUDENT_FORWARD = PORTJ.IN & PIN3_bm;
 STUDENT_REVERSE = PORTJ.IN & PIN4_bm;
 STUDENT_LEFT = PORTJ.IN & PIN5_bm;
 STUDENT_RIGHT = PORTJ.IN & PIN6_bm;
 STUDENT_FIFTH = PORTJ.IN & PIN7_bm;
 PANEL_LA_UP = PORTK.IN & PIN3_bm;
 PANEL_LA_DOWN = PORTK.IN & PIN0_bm;
 PANEL_BUMPER_OVERRIDE = PORTK.IN & PIN1_bm;
 PROP_JOY_DETECT = PORTK.IN & PIN7_bm;
 INVERT_SWITCH = PORTR.IN & PIN1_bm;
 LIMIT_SWITCH = 0;
}

void OmniStopMove(void)
{
 PORTH.OUTCLR = PIN0_bm | PIN1_bm | PIN3_bm | PIN4_bm | PIN5_bm;
}

//moveDir is a bit field of active directions 0b000SFVLR
//S = Select/Fifth button
//F = Forward
//V = Reverse
//L = Left
//R = Right
void OmniMove(uint8_t moveDir)
{
 /* Out Forward PH1
 * Out Reverse PH0
 * Out Left PH4
 * Out Right PH3
 * Out Fifth PH5
 */

 if(moveDir & 0x10) { //fifth button
 PORTH.OUTSET = PIN5_bm;
 }
 else {
 PORTH.OUTCLR = PIN5_bm;
 }

170

PWCT_io.c

 if((moveDir & 0x0C) == 0x08) { //forward
 PORTH.OUTSET = PIN1_bm;
 }
 else {
 PORTH.OUTCLR = PIN1_bm;
 }

 if((moveDir & 0x0C) == 0x04) { //reverse
 PORTH.OUTSET = PIN0_bm;
 }
 else {
 PORTH.OUTCLR = PIN0_bm;
 }

 if((moveDir & 0x03) == 0x02) { //left
 PORTH.OUTSET = PIN4_bm;
 }
 else {
 PORTH.OUTCLR = PIN4_bm;
 }

 if((moveDir & 0x03) == 0x01) { //right
 PORTH.OUTSET = PIN3_bm;
 }
 else {
 PORTH.OUTCLR = PIN3_bm;
 }
}

uint16_t getWiredPropJoySpeed(void)
{
 uint16_t returnValue;
 AVR_ENTER_CRITICAL_REGION();
 returnValue = gWiredPropJoySpeed;
 AVR_LEAVE_CRITICAL_REGION();
 return returnValue;
}

uint16_t getWiredPropJoyDirection(void)
{
 uint16_t returnValue;
 AVR_ENTER_CRITICAL_REGION();
 returnValue = gWiredPropJoyDirection;
 AVR_LEAVE_CRITICAL_REGION();
 return returnValue;
}

static uint8_t isInputFallingEdge(uint8_t i)
{
 uint8_t isFallingEdge = 0;
 AVR_ENTER_CRITICAL_REGION();
 if (gDebouncedInputs[i].debounced_value == 0 &&
gDebouncedInputs[i].debounced_value != gDebouncedInputs[i].previous_debounced_value)
 {
 isFallingEdge = 1;

171

PWCT_io.c

 }
 gDebouncedInputs[i].previous_debounced_value =
gDebouncedInputs[i].debounced_value;
 AVR_LEAVE_CRITICAL_REGION();
 return isFallingEdge;
}

static uint8_t isInputLongPress(uint8_t i)
{
 uint8_t isLongPress = 0;
 AVR_ENTER_CRITICAL_REGION();
 if (gDebouncedInputs[i].pressedCount > 400 && gDebouncedInputs[i].pressedCount <
UINT16_MAX) {
 gDebouncedInputs[i].pressedCount = UINT16_MAX;
 isLongPress = 1;
 }
 AVR_LEAVE_CRITICAL_REGION();
 return isLongPress;
}

uint8_t lcdUpFallingEdge(void)
{
 return isInputFallingEdge(DEBOUNCE_INDEX_LCD4);
}

uint8_t lcdDownFallingEdge(void)
{
 return isInputFallingEdge(DEBOUNCE_INDEX_LCD3);
}

uint8_t lcdRightFallingEdge(void)
{
 return isInputFallingEdge(DEBOUNCE_INDEX_LCD1);
}

uint8_t lcdLeftFallingEdge(void)
{
 return isInputFallingEdge(DEBOUNCE_INDEX_LCD2);
}

uint8_t lcdLeftLongPress(void)
{
 return isInputLongPress(DEBOUNCE_INDEX_LCD2);
}

bool LimitSwitchPressed(void)
{
 return !LIMIT_SWITCH;
}

/* 0 = NO
 * 1 = DOWN
 * 2 = UP
 */
uint8_t ActuatorSwitchPressed(void)
{

172

PWCT_io.c

 //panel controls take priority over instructor remote controls
 if(!PANEL_LA_UP && PANEL_LA_DOWN) {
 return 2; //up is pressed
 }
 else if(PANEL_LA_UP && !PANEL_LA_DOWN) {
 return 1; //down is pressed
 }
#if ENABLE_INSTRUCTOR_REMOTE_LINEAR_ACTUATOR_CONTROL
 else if(INSTRUCTOR_LA_UP && !INSTRUCTOR_LA_DOWN) {
 return 2; //up is pressed
 }
 else if(!INSTRUCTOR_LA_UP && INSTRUCTOR_LA_DOWN) {
 return 1; //down is pressed
 }
#endif
 else {
 return 0; //nothing is pressed or up and down are both pressed
 }
}

bool PanelEStopPressed(void)
{
 // normally closed switch
 return gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].debounced_value;
}

void PulsePGDTEstop(void)
{
 PORTK.OUTSET = PIN6_bm;
 //start pulse timer
 TC_SetCompareB(&TCF1, TCF1.CNT + PGDT_ESTOP_PULSE_PERIOD);
 TC1_EnableCCChannels(&TCF1, TC1_CCBEN_bm);
}

ISR(TCF1_CCB_vect) //Omni e-stop
{
 if((TCF1.CTRLB & TC1_CCBEN_bm) == 0) {
 return;
 }
 TC1_DisableCCChannels(&TCF1, TC1_CCBEN_bm);
 PORTK.OUTCLR = PIN6_bm;
}

ISR(ADCA_CH0_vect)
{
 AVR_ENTER_CRITICAL_REGION();
 gWiredPropJoySpeed = ADC_ResultCh_GetWord(&ADCA.CH0);
 AVR_LEAVE_CRITICAL_REGION();
}

ISR(ADCA_CH1_vect)
{
 AVR_ENTER_CRITICAL_REGION();
 gWiredPropJoyDirection = ADC_ResultCh_GetWord(&ADCA.CH1);
 AVR_LEAVE_CRITICAL_REGION();
}

173

PWCT_io.c

// Debounce timer ISR
ISR(TCC1_CCA_vect)
{
 int i;
 for (i = 0; i < DEBOUNCED_INPUT_COUNT; i++)
 {
 gDebouncedInputs[i].previous_values = (gDebouncedInputs[i].previous_values
<< 1) | ((gDebouncedInputs[i].port->IN & gDebouncedInputs[i].pin_bm) ? 1 : 0);

 if (gDebouncedInputs[i].previous_values == UINT8_MAX)
 {
 gDebouncedInputs[i].debounced_value = 1;
 gDebouncedInputs[i].pressedCount = 0;
 }
 else if (gDebouncedInputs[i].previous_values == 0)
 {
 gDebouncedInputs[i].debounced_value = 0;
 if (gDebouncedInputs[i].pressedCount < UINT16_MAX - 1) {
 gDebouncedInputs[i].pressedCount++;
 }
 }
 }
}

util.h

/*
 * util.h
 *
 * Created on: Nov 1, 2010
 * Author: grant
 */

#ifndef UTIL_H_
#define UTIL_H_

typedef enum {
 IDLE, MOVE, LOAD
} states;

void dbgLEDinit(void);
void dbgLEDset(void);
void dbgLEDclr(void);
void dbgLEDtgl(void);
void dbgUSARTinit(void);
void dbgPutChar(char c);
void dbgPutStr(char *str);

#endif /* UTIL_H_ */

174

util.c

/*
 * util.c
 *
 * Created on: Nov 10, 2010
 * Author: grant
 */
#include <stdint.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "../atmel/usart_driver.h"
#include "util.h"

static int uart_putchar (char c, FILE *stream);

/*! USART data struct. */
USART_data_t USARTD0_data;
static FILE mystdout = FDEV_SETUP_STREAM (uart_putchar, NULL, _FDEV_SETUP_WRITE);

void dbgLEDinit(void)
{
 PORTD.OUTCLR = PIN0_bm;
 PORTD.DIRSET = PIN0_bm;
}

void inline dbgLEDset(void)
{
 PORTD.OUTSET = PIN0_bm;
}

void inline dbgLEDclr(void)
{
 PORTD.OUTCLR = PIN0_bm;
}

void inline dbgLEDtgl(void)
{
 PORTD.OUTTGL = PIN0_bm;
}

void dbgUSARTinit(void)
{
 stdout = &mystdout;

 /* PD3 (TXD0) as output. */
 PORTD.DIRSET = PIN3_bm;
 /* PD2 (RXD0) as input. */
 PORTD.DIRCLR = PIN2_bm;

 /* Use USARTD0 and initialize buffers. */
 USART_InterruptDriver_Initialize(&USARTD0_data, &USARTD0, USART_DREINTLVL_LO_gc);

 /* USARTD0, 8 Data bits, No Parity, 1 Stop bit. */

175

util.c

 USART_Format_Set(USARTD0_data.usart, USART_CHSIZE_8BIT_gc,
 USART_PMODE_DISABLED_gc, false);

 /* Enable RXC interrupt. */
 USART_RxdInterruptLevel_Set(USARTD0_data.usart, USART_RXCINTLVL_LO_gc);

 /* Set Baudrate to 115200 bps */
 //USART_Baudrate_Set(USARTD0_data.usart, 1047 , -6);

 /* Set Baudrate to 38400 bps */
 //USART_Baudrate_Set(USARTD0_data.usart, 3269 , -6);

 /* Set Baudrate to 9600 bps */
 USART_Baudrate_Set(USARTD0_data.usart, 3317 , -4);

 /* Enable both RX and TX. */
 USART_Rx_Enable(USARTD0_data.usart);
 USART_Tx_Enable(USARTD0_data.usart);

 /* Enable PMIC interrupt level low. */
 PMIC.CTRL |= PMIC_LOLVLEN_bm;
}

void dbgPutChar(char c)
{
 bool byteBuffered = false;
 while (byteBuffered == false) {
 byteBuffered = USART_TXBuffer_PutByte(&USARTD0_data, c);
 }
}

void dbgPutStr(char *str)
{
 uint8_t i = 0;
 uint8_t len;
 bool byteToBuffer;
 len = strlen(str);

 while (i < len) {
 byteToBuffer = USART_TXBuffer_PutByte(&USARTD0_data, str[i] == '\n' ? '\r'
: str[i]);
 if(byteToBuffer){
 i++;
 }
 }
}

/*
//0 for success, -1 for no available bytes
static int8_t dbgGetCharNonblocking(char *c)
{
 int8_t err = 0;

 if (USART_RXBufferData_Available(&USARTD0_data)) {
 *c = USART_RXBuffer_GetByte(&USARTD0_data);
 }

176

util.c

 else {
 err = -1; //no bytes available
 }
 return err;
}

//0 for success, -1 for no available bytes
//max length is the max number of characters in string, so actually string length
//would be maxLength+1
//return 0 success, -1 didn't reach end of string
static int8_t dbgGetStrNonblocking(char *str, uint8_t maxLength)
{
 uint8_t i = 0, err = 0;

 do {
 if (USART_RXBufferData_Available(&USARTD0_data)) {
 str[i] = USART_RXBuffer_GetByte(&USARTD0_data);
 i++;
 }
 else {
 str[i] = 0;
 err = -1;
 break;
 }
 } while (str[i-1] != 0);

 return err;
}
*/

/*! \brief Receive complete interrupt service routine.
 *
 * Receive complete interrupt service routine.
 * Calls the common receive complete handler with pointer to the correct USART
 * as argument.
 */
ISR(USARTD0_RXC_vect)
{
 USART_RXComplete(&USARTD0_data);

 //echo
 if (USART_RXBufferData_Available(&USARTD0_data)) {
 dbgPutChar(USART_RXBuffer_GetByte(&USARTD0_data));
 }
}

/*! \brief Data register empty interrupt service routine.
 *
 * Data register empty interrupt service routine.
 * Calls the common data register empty complete handler with pointer to the
 * correct USART as argument.
 */
ISR(USARTD0_DRE_vect)
{
 USART_DataRegEmpty(&USARTD0_data);

177

util.c

}

//---
//put a byte in the passed file stream
static int uart_putchar (char c, FILE *stream)
{
 //replace new line with carriage return
 if (c == '\n')
 return uart_putchar('\r', stream);

 while (!USART_TXBuffer_PutByte(&USARTD0_data, c))
 {
 }

 return 0;
}

178

: Source Code (Remote) Appendix E

main.c

/*
 * main.c
 *
 * Created on: Apr 11, 2011
 * Author: grant
 */
#include <string.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "remote_hardware.h"
#include "nordic_driver.h"
#include "nordic_hardware_specific.h"

#define sbi(var, mask) ((var) |= (uint8_t)(1 << mask))
#define cbi(var, mask) ((var) &= (uint8_t)~(1 << mask))

#define XOFFSET 0
#define YOFFSET 0

// Shear mapping: x' = x + m * y
static inline uint8_t shearMapX(uint8_t x, uint8_t y) {
 return ((int16_t)x - XOFFSET - ((int16_t)y - YOFFSET) / 4) + XOFFSET;
}

// Shear mapping: y' = y + m * x
static inline uint8_t shearMapY(uint8_t x, uint8_t y) {
 return ((int16_t)y - YOFFSET - ((int16_t)x - XOFFSET) / 4) + YOFFSET;
}

static void sendData(void)
{
 NORDIC_PACKET testPacket;
 int8_t x = getADC5(); // Direction
 int8_t y = getADC6(); // Speed
 memset(&testPacket, 0, sizeof(testPacket));

#ifdef STUDENT_JOYSTICK
 testPacket.data.array[0] = getBuddyButtons();
 if (isJoystickEnabled()) {
 testPacket.data.array[1] = x - 118; // shearMapX(x, y);
 testPacket.data.array[2] = y - 117; // shearMapY(x, y);
 } else {
 testPacket.data.array[1] = 0;
 testPacket.data.array[2] = 0;
 }
#else //INSTRUCTOR_REMOTE
 testPacket.data.array[0] = getEStop();
 if (x == 0 || x == 1) {
 x = 127;
 } else {
 x = -(x - 129);

179

main.c

 }
 y = y - 128;
 testPacket.data.array[1] = x;
 testPacket.data.array[2] = y;
#endif

 nordic_TransmitData(&testPacket);
}

int main(void)
{
 //enable interrupts
 sei();

 initHardware();
 nordic_Initialize();

 while(1) {
 sendData();
 _delay_ms(5);
 }

 return 0;
}

nordic_driver.h

/*
 * nordic_driver.h
 *
 * Created on: Feb 22, 2011
 * Author: grant
 */

#ifndef NORDIC_DRIVER_H_
#define NORDIC_DRIVER_H_

#include <avr/io.h>

// NORDIC COMMAND WORDS
// R_REGISTER 0b000XXXXX where XXXXX = 5 bit register map address
#define R_REGISTER_nCmd 0x00
// W_REGISTER 0b001XXXXX where XXXXX = 5 bit register map address
#define W_REGISTER_nCmd 0x20
#define R_RX_PAYLOAD_nCmd 0x61
#define W_TX_PAYLOAD_nCmd 0xA0
#define FLUSH_TX_nCmd 0xE1
#define FLUSH_RX_nCmd 0xE2
#define REUSE_TX_PL_nCmd 0xE3
#define R_RX_PL_WID_nCmd 0x60
// W_ACK_PAYLOAD 0b10101PPP where PPP = pipe number to write packet to
#define W_ACK_PAYLOAD_nCmd 0xA8
#define W_TX_PAYLOAD_NOACK_nCmd 0xB0
#define NOP_nCmd 0xFF

180

nordic_driver.h

// NORDIC REGISTERS (5-bit addresses, 8-bit values)
#define CONFIG_nReg 0x00
#define EN_AA_nReg 0x01
#define EN_RXADDR_nReg 0x02
#define SETUP_AW_nReg 0x03
#define SETUP_RETR_nReg 0x04
#define RF_CH_nReg 0x05
#define RF_SETUP_nReg 0x06
#define STATUS_nReg 0x07
#define OBSERVE_TX_nReg 0x08
#define RPD_nReg 0x09
#define RX_ADDR_P0_nReg 0x0A
#define RX_ADDR_P1_nReg 0x0B
#define RX_ADDR_P2_nReg 0x0C
#define RX_ADDR_P3_nReg 0x0D
#define RX_ADDR_P4_nReg 0x0E
#define RX_ADDR_P5_nReg 0x0F
#define TX_ADDR_nReg 0x10
#define RX_PW_P0_nReg 0x11
#define RX_PW_P1_nReg 0x12
#define RX_PW_P2_nReg 0x13
#define RX_PW_P3_nReg 0x14
#define RX_PW_P4_nReg 0x15
#define RX_PW_P5_nReg 0x16
#define FIFO_STATUS_nReg 0x17
#define DYNPD_nReg 0x1C
#define FEATURE_nReg 0x1D

typedef union {
 uint8_t array[4];
 struct {
 uint8_t SwitchState;
 uint8_t JoyDirection;
 uint8_t JoySpeed;
 uint8_t Reserved;
 } parts;
} NORDIC_DATA_PACKET;

typedef struct {
 NORDIC_DATA_PACKET data;
 uint8_t rxpipe;
} NORDIC_PACKET;

int8_t nordic_Initialize();
void nordic_TransmitData(NORDIC_PACKET * packet);

//nordic_IRQ() is called from an ISR in nordic_hardware_specific.c
//triggered by the falling edge of the IRQ pin from the nordic chip
uint8_t nordic_IRQ(void);

#endif /* NORDIC_DRIVER_H_ */

181

nordic_driver.c

/*
 * nordic_driver.c
 *
 * Created on: Feb 22, 2011
 * Author: grant
 */
#include <stdio.h>
#include "nordic_driver.h"
#include "nordic_hardware_specific.h"
#include "remote_hardware.h"

static volatile NORDIC_PACKET LAST_PACKET;

//make sure txdata and rxdata are at least of length dataSize
static int8_t nordic_SendCommand(uint8_t cmd, uint8_t *txdata, uint8_t *rxdata, uint8_t
dataSize, uint8_t *status)
{
 uint8_t i;
 uint8_t rx;
 uint8_t data;
 uint8_t statusFake;
 int8_t err = 0;

 //check to make sure parameters are valid
 if(status == NULL) {
 status = &statusFake;
 }

 standbyMode();

 // _delay_us(4);
 chipSelect();

 //send command
 *status = SPI_TransceiveByte(cmd);

 //send/receive LSByte first
 if(dataSize != 0) {
 i = dataSize;
 do {
 i--;
 if(txdata == NULL) {
 data = 0;
 }
 else {
 data = txdata[i];
 }
 rx = SPI_TransceiveByte(data);
 if(rxdata != NULL) {
 rxdata[i] = rx;
 }
 } while(i != 0);
 }

 chipRelease();

182

nordic_driver.c

 return err;
}

//Write a register that contains a single byte of data
static inline int8_t nordic_WriteRegister(uint8_t reg, uint8_t data, uint8_t *status)
{
 return nordic_SendCommand(W_REGISTER_nCmd | reg, &data, NULL, 1, status);
}

//Writes a register with N bytes of data
static inline int8_t nordic_WriteRegisters(uint8_t reg, uint8_t *data, uint8_t size,
uint8_t *status)
{
 return nordic_SendCommand(W_REGISTER_nCmd | reg, data, NULL, size, status);
}

//Read a register that contains a single byte of data
static inline int8_t nordic_ReadRegister(uint8_t reg, uint8_t *data, uint8_t *status)
{
 return nordic_SendCommand(R_REGISTER_nCmd | reg, NULL, data, 1, status);
}

//Read a register with N bytes of data
static inline int8_t nordic_ReadRegisters(uint8_t reg, uint8_t *data, uint8_t size,
uint8_t *status)
{
 return nordic_SendCommand(R_REGISTER_nCmd | reg, NULL, data, size, status);
}

static inline void setDirTx(void)
{
 standbyMode();
 //RX_DR, TX_DS, MAX_RT on IRQ; CRC enabled, two CRC bytes; TX mode; PWR_UP bit set
 nordic_WriteRegister(CONFIG_nReg, 0x0E, NULL);
}

int8_t nordic_Initialize()
{
 uint8_t configRegValue;
 uint8_t datas[10];
 int8_t err = 0;

 initalizeHardwareForNordic();

 //Initialize Nordic nRF24L01+
 configRegValue = 0x0C; //RX_DR, TX_DS, MAX_RT on IRQ; CRC enabled, two CRC
bytes; TX mode
 err = nordic_WriteRegister(CONFIG_nReg, configRegValue, NULL);

 //enable auto acknowledge on pipe 0 and 1
 err = nordic_WriteRegister(EN_AA_nReg, 0x03, NULL);

#ifdef INSTRUCTOR_REMOTE
 //enable auto retransmit, try 5 times with delay of 500us
 err = nordic_WriteRegister(SETUP_RETR_nReg, 0x15, NULL);
#else //STUDENT_JOYSTICK

183

nordic_driver.c

 //enable auto retransmit, try 1 time with delay of 2500us
 err = nordic_WriteRegister(SETUP_RETR_nReg, 0x91, NULL);
#endif

 //EN_RXADDR_nReg Default data pipe 0 and 1 enabled
 // todo: enable only 0 or 1 ?
 //SETUP_AW_nReg Default address width of 5 bytes

 //Set RF Channel as 0x7C
 err = nordic_WriteRegister(RF_CH_nReg, 0x7C, NULL);

 //Set output power 0dB, data rate of 250kbps
 err = nordic_WriteRegister(RF_SETUP_nReg, 0x27, NULL);

 //Rx Address data pipe 0
 //ACK comes in on RX data pipe 0
#ifdef INSTRUCTOR_REMOTE
 datas[0] = 0xE7;
 datas[1] = 0xE7;
 datas[2] = 0xE7;
 datas[3] = 0xE7;
 datas[4] = 0xE7;
#else //STUDENT_JOYSTICK
 datas[0] = 0xC2;
 datas[1] = 0xC2;
 datas[2] = 0xC2;
 datas[3] = 0xC2;
 datas[4] = 0xC2;
#endif

 err = nordic_WriteRegisters(RX_ADDR_P0_nReg, datas, 5, NULL);

 //Rx Address data pipe 1
 datas[0] = 0xC2;
 datas[1] = 0xC2;
 datas[2] = 0xC2;
 datas[3] = 0xC2;
 datas[4] = 0xC2;
 err = nordic_WriteRegisters(RX_ADDR_P1_nReg, datas, 5, NULL);

 //Tx Address
#ifdef INSTRUCTOR_REMOTE
 datas[0] = 0xE7;
 datas[1] = 0xE7;
 datas[2] = 0xE7;
 datas[3] = 0xE7;
 datas[4] = 0xE7;
#else //STUDENT_JOYSTICK
 datas[0] = 0xC2;
 datas[1] = 0xC2;
 datas[2] = 0xC2;
 datas[3] = 0xC2;
 datas[4] = 0xC2;
#endif
 err = nordic_WriteRegisters(TX_ADDR_nReg, datas, 5, NULL);

184

nordic_driver.c

 //Set Payload width of 4 bytes
 err = nordic_WriteRegister(RX_PW_P0_nReg, sizeof(LAST_PACKET.data.array), NULL);
 err = nordic_WriteRegister(RX_PW_P1_nReg, sizeof(LAST_PACKET.data.array), NULL);

 //clear fifos (necessary for wdt/soft reset)
 nordic_SendCommand(FLUSH_RX_nCmd, NULL, NULL, 0, NULL);
 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);

 //clear interrupts (necessary for wdt/soft reset)
 nordic_WriteRegister(STATUS_nReg, 0x70, NULL);

 configRegValue |= 0x02; //PWR_UP bit set
 err = nordic_WriteRegister(CONFIG_nReg, configRegValue, NULL);

 //wait for startup
 _delay_us(1500);

 return err;
}

//This sends out the data in txdata, leaves chip in standby tx mode
void nordic_TransmitData(NORDIC_PACKET * packet)
{
 nordic_WriteRegister(STATUS_nReg, 0x70, NULL); //Clear any interrupts

 setDirTx(); //set to Tx mode, powered up

 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL); //Clear TX Fifo

 // put dataSize bytes from txdata into the tx fifo
 nordic_SendCommand(W_TX_PAYLOAD_nCmd, packet->data.array, NULL, sizeof(packet-
>data.array), NULL);

 //Pulse CE to start transmission for at least 10us
 activeMode();
 _delay_us(50);
 standbyMode();
}

//Nordic IRQ pin interrupt
inline uint8_t nordic_IRQ(void)
{
 uint8_t status, previousMode, size = 0;
 uint8_t data[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

 //get status
 previousMode = standbyMode();
 nordic_SendCommand(NOP_nCmd, NULL, NULL, 0, &status);

 if (status & 0x40) { // Data Ready RX FIFO
 //get latest packet
 nordic_SendCommand(R_RX_PL_WID_nCmd, NULL, &size, 1, NULL); //get payload
size
 if (size > sizeof(data)) {
 size = sizeof(data);
 }

185

nordic_driver.c

 if (size != 0) {
 nordic_SendCommand(R_RX_PAYLOAD_nCmd, NULL, data, size, NULL); //get
payload
 LAST_PACKET.data.array[0] = data[0];
 LAST_PACKET.data.array[1] = data[1];
 LAST_PACKET.data.array[2] = data[2];
 LAST_PACKET.data.array[3] = data[3];
 LAST_PACKET.rxpipe = (status & 0x0E) >> 1;
 }
 //clear fifo
 nordic_SendCommand(FLUSH_RX_nCmd, NULL, NULL, 0, NULL);
 }
 if (status & 0x20) { // Data Sent TX FIFO
 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);
 }
 if (status & 0x10) { // Maximum number of TX retransmits
 nordic_SendCommand(FLUSH_TX_nCmd, NULL, NULL, 0, NULL);
 setLEDDelay();
 } else {
 clrLEDDelay();
 }

 //clear interrupts
 nordic_WriteRegister(STATUS_nReg, status & 0x70, NULL);
 setMode(previousMode);

 return status;
}

nordic_hardware_specific.h

/*
 * nordic_hardware_specific.h
 *
 * Created on: Apr 12, 2011
 * Author: grant
 */

#ifndef NORDIC_HARDWARE_SPECIFIC_H_
#define NORDIC_HARDWARE_SPECIFIC_H_

#include <avr/io.h>
#include <avr/interrupt.h>
#include "util/delay.h"

//function to disable interrupts
#define AVR_ENTER_CRITICAL_REGION() cli()

//function to enable interrupts
#define AVR_LEAVE_CRITICAL_REGION() sei()

void chipSelect(void);
void chipRelease(void);
uint8_t standbyMode(void);

186

nordic_hardware_specific.h

void activeMode(void);
void setMode(uint8_t mode);
void initalizeHardwareForNordic(void);
uint8_t SPI_TransceiveByte(uint8_t data);

#endif /* NORDIC_HARDWARE_SPECIFIC_H_ */

nordic_hardware_specific.c

/*
 * nordic_hardware_specific.c
 *
 * Created on: Apr 12, 2011
 * Author: grant
 */

#include "nordic_hardware_specific.h"
#include "nordic_driver.h"

#define BITBANG_SPI 1

#define sbi(var, mask) ((var) |= (uint8_t)(1 << mask))
#define cbi(var, mask) ((var) &= (uint8_t)~(1 << mask))

//pull CS low
inline void chipSelect(void)
{
 cbi(PORTB, PB5);
 sbi(DDRB, PB5);
}

//release CS
inline void chipRelease(void)
{
 sbi(PORTB, PB5);
 cbi(DDRB, PB5);
}

//set CE low
inline uint8_t standbyMode(void)
{
 uint8_t mode;
 mode = PORTB & _BV(PB4);
 cbi(PORTB, PB4);
 return mode;
}

//set CE high
inline void activeMode(void)
{
 sbi(PORTB, PB4);
}

//set CE low if mode == 0, else set CE high

187

nordic_hardware_specific.c

inline void setMode(uint8_t mode)
{
 if (mode) {
 activeMode();
 } else {
 standbyMode();
 }
}

//Initialize microcontroller pin directions, spi, interrupts
void initalizeHardwareForNordic(void)
{
 //init SPI DDR
 //MOSI, CLK, CS are outputs
#if BITBANG_SPI
 DDRB |= _BV(PB0) | _BV(PB2) | _BV(PB5);
#endif
 //set chip enable (CE) pin as output, set CE to low for standby mode
 cbi(PORTB, PB4);
 sbi(DDRB, PB4);

 //init IRQ interrupt, PB6, INT0
 sbi(MCUCR, ISC01);
 sbi(GIMSK, INT0);
}

uint8_t SPI_TransceiveByte(uint8_t data)
{
 //Bit Bang SPI
#if BITBANG_SPI
#define TX_PORT PORTB
#define TX_PORT_PIN PINB
#define TX_PORT_DD DDRB
#define TX_SCK 2 //Output
#define TX_MISO 1 //Input
#define TX_MOSI 0 //Output
//#define RF_DELAY 5
#define RF_DELAY 55

 //sample on rising edge, setup on falling edge
 //CPOL = 0, CPHA=0
 uint8_t i, incoming = 0;

 //Send outgoing byte
 for(i = 0 ; i < 8 ; i++)
 {
 if(data & 0b10000000)
 sbi(TX_PORT, TX_MOSI);
 else
 cbi(TX_PORT, TX_MOSI);

 cbi(TX_PORT, TX_SCK); //TX_SCK = 0;
 _delay_us(RF_DELAY);

 //MISO bit is valid after clock goes going low
 incoming <<= 1;

188

nordic_hardware_specific.c

 if(TX_PORT_PIN & (1<<TX_MISO)) incoming |= 0x01;

 sbi(TX_PORT, TX_SCK); //TX_SCK = 1;
 _delay_us(RF_DELAY);

 data <<= 1;
 }
 cbi(TX_PORT, TX_SCK); //TX_SCK = 0 after byte sent

 return(incoming);
/* sample on falling edge, setup on rising edge
 * CPOL = 0, CPHA=1
 uint8_t i, incoming = 0;

 //Send outgoing byte
 for(i = 0 ; i < 8 ; i++)
 {
 if(data & 0b10000000)
 sbi(TX_PORT, TX_MOSI);
 else
 cbi(TX_PORT, TX_MOSI);

 sbi(TX_PORT, TX_SCK); //TX_SCK = 1;
 _delay_us(RF_DELAY);

 //MISO bit is valid after clock goes going high
 incoming <<= 1;
 if(TX_PORT_PIN & (1<<TX_MISO)) incoming |= 0x01;

 cbi(TX_PORT, TX_SCK); //TX_SCK = 0;
 _delay_us(RF_DELAY);

 data <<= 1;
 }

 return(incoming);
 */

#undef TX_PORT
#undef TX_PORT_PIN
#undef TX_PORT_DD
#undef TX_SCK
#undef TX_MISO
#undef TX_MOSI
#undef RF_DELAY
#else
 //use hardware module
#endif
}

//need nordic IQR ISR here, only respond to falling edge of nordic IQR
ISR(INT0_vect)
{
 nordic_IRQ();
}

189

remote_hardware.h

/*
 * remote_hardware.h
 *
 * Created on: Apr 12, 2011
 * Author: grant
 */

#ifndef REMOTE_HARDWARE_H_
#define REMOTE_HARDWARE_H_

#include <avr/io.h>

//#define INSTRUCTOR_REMOTE
#define STUDENT_JOYSTICK

#ifndef INSTRUCTOR_REMOTE
#ifndef STUDENT_JOYSTICK
#error "Please #define either INSTRUCTOR_REMOTE or STUDENT_JOYSTICK in remote_hardware.h"
#endif
#endif

#ifdef INSTRUCTOR_REMOTE
#ifdef STUDENT_JOYSTICK
#error "Please only #define one of INSTRUCTOR_REMOTE or STUDENT_JOYSTICK in
remote_hardware.h"
#endif
#endif

typedef struct {
 volatile uint8_t *pin;
 uint8_t pin_bm;
 volatile uint8_t previous_values;
 volatile uint8_t debounced_value;
} debounced_input;

uint8_t getADC5(void);
uint8_t getADC6(void);
#ifdef INSTRUCTOR_REMOTE
uint8_t getEStop(void);
#endif // INSTRUCTOR_REMOTE
void initHardware(void);
void setLED(void);
void clrLED(void);
void tglLED(void);
void setLEDDelay();
void clrLEDDelay();
#ifdef STUDENT_JOYSTICK
uint8_t isJoystickEnabled();
uint8_t getBuddyButtons();
#endif // STUDENT_JOYSTICK

#endif /* REMOTE_HARDWARE_H_ */

190

remote_hardware.c

/*
 * remote_hardware.c
 *
 * Created on: Apr 12, 2011
 * Author: grant
 */

#include <avr/io.h>
#include <avr/interrupt.h>
#include "remote_hardware.h"

static uint8_t valueADC5;
static uint8_t valueADC6;

#ifdef INSTRUCTOR_REMOTE
#define DEBOUNCED_INPUT_COUNT 1
static debounced_input gDebouncedInputs[DEBOUNCED_INPUT_COUNT];

static void setupDebouncedInputs()
{
 // Assumption: pins are already set as input and pull-ups enabled

 //E-stop button
 #define DEBOUNCE_INDEX_ESTOP 0
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].pin = &PINA;
 gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].pin_bm = _BV(PA1);

 int i;
 for (i = 0; i < DEBOUNCED_INPUT_COUNT; i++)
 {
 // Default values
 gDebouncedInputs[i].previous_values = UINT8_MAX;
 gDebouncedInputs[i].debounced_value = 1;
 }
}
#endif // INSTRUCTOR_REMOTE

static void setupDebounceTimer()
{
 //TCCR0A: TCW0 ICEN0 ICNC0 ICES0 ACIC0 - - CTC0
 TCCR0A = _BV(CTC0);

 // Prescaler = 64
 //TCCR0B: - - - TSM PSR0 CS02 CS01 CS00
 TCCR0B = _BV(CS01) | _BV(CS00);

 // Goal: interrupt every 5 milliseconds
 OCR0A = 78;

 //TIMSK: OCIE1D OCIE1A OCIE1B OCIE0A OCIE0B TOIE1 TOIE0 TICIE0
 TIMSK |= _BV(OCIE0A);
}

191

remote_hardware.c

void initHardware(void)
{
//Init LED
 PORTB &= ~_BV(PB3);
 DDRB |= _BV(PB3);

//Init ADC values
 valueADC5 = 125;
 valueADC6 = 125;

 //set buttons pins as inputs
 DDRA &= ~(_BV(PA0) | _BV(PA1) | _BV(PA2) | _BV(PA3) | _BV(PA4) | _BV(PA5));
 //enable pullups on button lines
 PORTA |= _BV(PA0) | _BV(PA1) | _BV(PA2) | _BV(PA3) | _BV(PA4) | _BV(PA5);

#ifdef INSTRUCTOR_REMOTE
 setupDebouncedInputs();
#endif // INSTRUCTOR_REMOTE
 setupDebounceTimer();

//INIT ADC
 // ADMUX = REFS1:0 ADLAR MUX4:0
 // Select Vcc voltage reference, left adjust result
#define ADMUX_ADC5_bm (_BV(ADLAR) | 0x05) //ADC5 = PA6 = x-axis = horizontal axis =
right/left = joystick direction = blue wire
#define ADMUX_ADC6_bm (_BV(ADLAR) | 0x06) //ADC6 = PA7 = y-axis = vertical axis = fwd/rev
= joystick speed = yellow wire
 ADMUX = ADMUX_ADC5_bm;

 // ADCSRA = ADEN ADSC ADATE ADIF ADIE ADPS2:0
 ADCSRA = _BV(ADEN) | _BV(ADIE) | _BV(ADPS2); //Enable ADC, interrupt enabled,
clock divider 16 (62 KHz@1MHz)

 // ADCSRB = BIN GSEL - REFS2 MUX5 ADTS2:0

 DIDR0 = _BV(ADC5D) | _BV(ADC6D); //disable digital inputs on channels used for
analog

 ADCSRA |= _BV(ADSC); //Start conversion
}

inline void setLED(void)
{
 PORTB |= _BV(PB3);
}

inline void clrLED(void)
{
 PORTB &= ~_BV(PB3);
}

inline void tglLED(void)
{
 if(PORTB & _BV(PB3)) {
 PORTB &= ~_BV(PB3);
 } else {

192

remote_hardware.c

 PORTB |= _BV(PB3);
 }
}

// Turns the LED on only after a 0.25 delay
static volatile uint8_t gLEDDelayOn = 0;
void setLEDDelay()
{
 gLEDDelayOn = 1;
}

// Turns the LED off immediately and resets the LED delay
void clrLEDDelay()
{
 gLEDDelayOn = 0;
}

uint8_t getADC5(void)
{
 return valueADC5; // Left/Right
}

uint8_t getADC6(void)
{
 return valueADC6; // Up/Down
}

#ifdef INSTRUCTOR_REMOTE
uint8_t getEStop(void)
{
 return !gDebouncedInputs[DEBOUNCE_INDEX_ESTOP].debounced_value;
}
#endif // INSTRUCTOR_REMOTE

#ifdef STUDENT_JOYSTICK
uint8_t isJoystickEnabled()
{
 return !(PINA & _BV(PA1));
}

uint8_t getBuddyButtons()
{
 uint8_t buttonMask = 0;
 if (!(PINA & _BV(PA4))) {
 buttonMask |= 0b00001000; // Forward
 }
 if (!(PINA & _BV(PA2))) {
 buttonMask |= 0b00010000; // Reverse
 }
 if (!(PINA & _BV(PA5))) {
 buttonMask |= 0b00100000; // Left
 }
 if (!(PINA & _BV(PA3))) {
 buttonMask |= 0b01000000; // Right
 }
 return buttonMask;

193

remote_hardware.c

}
#endif // STUDENT_JOYSTICK

ISR(ADC_vect)
{
 if (ADMUX == ADMUX_ADC5_bm)
 {
 valueADC5 = ADCH;

 ADMUX = ADMUX_ADC6_bm;
 }
 else
 {
 valueADC6 = ADCH;

 ADMUX = ADMUX_ADC5_bm;
 }
 ADCSRA |= _BV(ADSC); //Start conversion
}

// Debounce timer ISR
ISR(TIMER0_COMPA_vect)
{
 static uint8_t ledOnCount = 0;
#ifdef INSTRUCTOR_REMOTE
 int i;
 for (i = 0; i < DEBOUNCED_INPUT_COUNT; i++)
 {
 gDebouncedInputs[i].previous_values = (gDebouncedInputs[i].previous_values
<< 1) | ((*(gDebouncedInputs[i].pin) & gDebouncedInputs[i].pin_bm) ? 1 : 0);

 if (gDebouncedInputs[i].previous_values == UINT8_MAX)
 {
 gDebouncedInputs[i].debounced_value = 1;
 }
 else if (gDebouncedInputs[i].previous_values == 0)
 {
 gDebouncedInputs[i].debounced_value = 0;
 }
 }
#endif // INSTRUCTOR_REMOTE

 if (gLEDDelayOn) {
 if (ledOnCount < 50) {
 ledOnCount++;
 } else {
 setLED();
 }
 } else {
 clrLED();
 ledOnCount = 0;
 }
}

194

: Bill of Materials Appendix F

Table 20: Connector Components

Category Description Manufacturer Mfg part number Supplier Supplier part number Price × 1 Quantity Price × Qty

Ring terminals (7 or 8 mm) Molex 19071-0196 Mouser 538-19071-0196 $0.66 4 $2.64

Disconnect housing Anderson Power Products 6810G1-BK Mouser 879-6810G1-BK $4.71 4 $18.84

Disconnect contact 6 AWG Anderson Power Products 1319G6-BK Mouser 879-1319G6-BK $3.26 8 $26.08

Panel mount housing Anderson Power Products 1321-BK Mouser 879-1321-BK $4.95 6 $29.70

Panel mount contact 6 AWG Anderson Power Products 1319G6-BK Mouser 879-1319G6-BK $3.26 6 $19.56

Panel mount plates (pair - complain to Mouser if single) Anderson Power Products 1464G2 Mouser 879-1464G2 $7.04 1 $7.04

Additional contact 4 AWG Anderson Power Products 1319G4-BK Mouser 879-1319G4-BK $3.14 1 $3.14

Additional contact 2 AWG Anderson Power Products 1319-BK Mouser 879-1319-BK $3.14 0 $0.00

PP75 red housing Anderson Power Products 5916G7-BK Mouser 879-5916G7-BK $1.47 4 $5.88

PP75 black housing Anderson Power Products 5916G4-BK Mouser 879-5916G4-BK $1.47 4 $5.88

contact Anderson Power Products 5900-BK Mouser 879-5900-BK $0.62 8 $4.96

Panel mount (pair) Anderson Power Products 1463G1 Mouser 879-1463G1 $4.19 2 $8.38

Panel mount Neutrik RT3MP Mouser 568-RT3MP-B $1.86 2 $3.72

Plug Neutrik RT3FC-B Mouser 568-RT3FC-B $2.54 2 $5.08

Panel mount (housing only) Molex 15-06-0245 Mouser 538-15-06-0245 $2.07 1 $2.07

Plug Molex 39-01-2240 Mouser 538-39-01-2240 $1.25 1 $1.25

Female Socket crimp contacts 16 AWG Molex 45750-3111 Mouser 538-45750-3111 $0.09 24 $2.04

Male Pin crimp contacts 16 AWG Molex 46012-3142 Mouser 538-46012-3142 $0.22 24 $5.33

XLR receptacle (panel mount) Neutrik NC3FD-LX-0 Mouser 568-NC3FD-LX-0 $3.32 1 $3.32

XLR receptacle (cable) Switchcraft AAA3FPZ Mouser 502-AAA3FPZ $3.19 1 $3.19

Fuses 8A or 10A charging $0.00

6 AWG Red (foot) McMaster-Carr 6948K912 $1.68 9 $15.12

6 AWG Black (foot) McMaster-Carr 6948K911 $1.68 9 $15.12

8 AWG Red (foot) McMaster-Carr 6948K892 $1.18 3 $3.54

8 AWG Black (foot) McMaster-Carr 6948K891 $1.18 3 $3.54

24AWG Black (foot) McMaster-Carr 7587K921 $0.09 150 $13.79

24AWG White (foot) McMaster-Carr 7587K924 $0.09 150 $13.79

16AWG Black (foot) McMaster-Carr 7587K961 $0.23 50 $11.44

16AWG Red (foot) McMaster-Carr 7587K962 $0.23 50 $11.44

16AWG Yellow (foot) McMaster-Carr 7587K963 $0.23 50 $11.44

3-conductor wire (foot) McMaster-Carr 9936K25 $1.47 20 $29.40

Wire sleeves Mesh sleeving McMaster-Carr 9284K415 $7.95 1 $7.95

D-sub standoffs McMaster-Carr 93620A701 $1.40 4 $5.60

Battery cable (6 AWG)

Motor (8 AWG)

Connector to front

Wire

Charging connector

Photointerrupter

195

Table 21: Main Receiver Components

ID # Manufacturer MFG Part # Description Supplier Supplier Part # Schematic Ref. Price Qty Sub Total

Resistors $0.00

1 Stackpole Electronics RMCF0805JT10K0 10kΩ 0805 Digi -Key RMCF0805JT10K0CT-ND

R4, R7, R8, R10,

R11, R12, R13, R14,

R15, R17, R18, R19,

R20, R22, R23, R24,

R27, R28, R31, R32,

R33, R34, R36, R37,

R41, R42, R48, R49,

R51, R52, R53, R54,

R55, R57, R65, R66,

R67, R68, R72, R75,

R77, R78, R79, R80,

R81, R82, R83, R84

$0.03 48 $1.44

2 Stackpole Electronics RMCF0402FT1M00 1M 0402 Digi -Key RMCF0402FT1M00CT-ND R1 $0.04 1 $0.04

3 Panasonic ERJ-2RKF2202X 22k 0402 Digi -Key P22.0KLCT-ND R2 $0.10 1 $0.10

4 Panasonic ERJ-6ENF40R2V 40 0805 Digi -Key P40.2CCT-ND R3, R69, R70 $0.10 3 $0.30

5 Stackpole Electronics RMCF0805FT147R 145 0805 Digi -Key RMCF0805FT147RCT-ND R16 $0.04 1 $0.04

6 Stackpole Electronics RMCF0805FT100K 100k 0805 Digi -Key RMCF0805FT100KCT-ND
R21, R43, R44, R45,

R46, R47, R64
$0.04 7 $0.28

7 Panasonic ERJ-6ENF1100V 110 0805 Digi -Key P110CCT-ND R35 $0.10 1 $0.10

8 Stackpole Electronics RMCF0805FT12K4 12.5k 0805 Digi -Key RMCF0805FT12K4CT-ND R38 $0.04 1 $0.04

9 Stackpole Electronics RMCF0805FT1K00 1k 0805 Digi -Key RMCF0805FT1K00CT-ND R39, R71, R73 $0.04 3 $0.12

10 Panasonic ERJ-6ENF4020V 400 0805 Digi -Key P402CCT-ND R40 $0.10 1 $0.10

11 Stackpole Electronics RMCF0805JT15R0 15 0805 Digi -Key RMCF0805JT15R0CT-ND
R5, R6, R25, R26,

R29, R30, R50, R56
$0.03 8 $0.24

12 Stackpole Electronics RMCF0805FT220R 220 0805 Digi -Key RMCF0805FT220RCT-ND
R58, R59, R60, R61,

R62, R63
$0.04 6 $0.24

13 Stackpole Electronics RMCF0805ZT0R00 0 0805 Digi -Key RMCF0805ZT0R00CT-ND R9, R74 $0.03 2 $0.06

14 Bourns Inc 3362P-1-203LF 20k Potentiometer Digi -Key 3362P-203LF-ND R76 $1.05 1 $1.05

$0.00

Capacitors $0.00

1 Kemet T491C107K016ZT 100uF 2312 Digi -Key 399-5214-1-ND C11, C12 $1.34 2 $2.68

2 Kemet C0805C103K5RACTU 0.01uF 0805 Digi -Key 399-1158-1-ND
C10, C16, C21, C26,

C31
$0.05 5 $0.25

3 Taiyo Yuden TMK105B7103KV-F 10nF 0402 Digi -Key 587-1223-1-ND C8 $0.05 1 $0.05

4 Taiyo Yuden UMK105B7102KV-F 1nF 0402 Digi -Key 587-1220-1-ND C9 $0.05 1 $0.05

5 Taiyo Yuden UMK105B7222KV-F 2.2nF 0402 Digi -Key 587-1221-1-ND C4 $0.05 1 $0.05

6 Taiyo Yuden UMK105CG220JV-F 22pF 0402 Digi -Key 587-1203-1-ND C1,C2 $0.06 2 $0.12

7 Johanson Technology Inc 500R07S1R0BV4T 1pF 0402 Digi -Key 712-1266-1-ND C6 $0.19 1 $0.19

8 Johanson Technology Inc 500R07S4R7BV4T 4.7pF 0402 Digi -Key 712-1166-1-ND C5 $0.26 1 $0.26

9 AVX Corp 04025U1R5BAT2A 1.5pF 0402 Digi -Key 478-5992-1-ND C7 $0.16 1 $0.16

10 TDK Corporation C1005X7R1E333K 33nF 0402 Digi -Key 445-4939-1-ND C3 $0.04 1 $0.04

11 AVX Corp 08055C104JAT2A 0.1uF 0805 Digi -Key 478-3352-1-ND

C17, C18, C19, C22,

C23, C24, C27, C28,

C29, C32, C33, C34,

C35, C36, C37, C38,

C41, C42, C45, C48,

C49, C50

$0.05 22 $1.10

12 AVX Corp 0805PC102KAT1A 1nF 0805 Digi -Key 478-5541-1-ND
C15, C20, C25, C30,

C51, C52
$0.30 6 $1.80

13 Murata Electronics GRM21BR61E106KA73L 10uF 0805 Digi -Key 490-5523-1-ND C13, C39, C43, C46 $0.26 4 $1.04

14 Taiyo Yuden UMK212BJ105KG-T 1uF 0805 Digi -Key 587-2229-1-ND C14, C40, C44, C47 $0.39 4 $1.56

$0.00

IC $0.00

1 National Semiconductor LM2674M-3.3/NOPB 3.3 voltage regulator Digi -Key LM2674M-3.3-ND IC3 $3.47 1 $3.47

2 Nordic Semiconductor nRF24L01P-T Nordic 2.4GHz Wireless IC Mouser 949-NRF24L01P-T U1 $3.60 1 $3.60

3 Al legro Microsystems ACS716KLATR-12CB-T ±12A Current Sensor Digi -Key 620-1443-1-ND IC4, IC7, IC10, IC13 $4.35 4 $17.40

4 Atmel ATXMEGA64A1-AU Xmega64A1 Mouser 556-ATXMEGA64A1-AU IC5 $7.50 1 $7.50

5 Linear Technologies LT1160CS#PBF Hal f Bridge Driver Digi -Key LT1160CS#PBF-ND IC1, IC2, IC6, IC8 $5.65 4 $22.60

6 NXP Semiconductors 74LVC2T45DC,125 2-bit Level Trans lator Digi -Key 568-5479-1-ND IC9 $0.62 1 $0.62

7 Texas Instruments SN74LVC8T245DGVR 8-bit Level Trans lator Digi -Key 296-19287-1-ND IC11, IC12 $1.26 2 $2.52

$0.00

Other $0.00

1 Fairchi ld Semiconductor FDD6630A hal f bridge Nfet Digi -Key FDD6630ACT-ND
Q2, Q3, Q10, Q11,

Q12, Q13, Q16, Q17
$0.69 8 $5.52

2 Pulse Electronics Corp PE-53811SNL 118uH inductor for vol tage regulator Digi -Key 553-1395-ND L4 $1.89 1 $1.89

3 Micro Commercia l Co SS24-TP Schottky Diode Digi -Key SS24-TPMSCT-ND D1, D3, D4, D5, D6 $0.51 5 $2.55

4 Li te-On Inc LTST-C170TBKT Debug LED 0805 Digi -Key 160-1579-1-ND LED1 $0.46 1 $0.46

5 NXP Semiconductors TL431MSDT,215 Shunt Voltage Reference Digi -Key 568-4880-1-ND D2 $0.47 1 $0.47

6 E-Switch TL1015AF160QG Reset Switch Digi -Key EG4344CT-ND SW1 $0.95 1 $0.95

7 Johanson Technology Inc L-07C2N7SV6T 2.7nH 0402 Digi -Key 712-1415-1-ND L2 $0.10 1 $0.10

8 Johanson Technology Inc L-07C3N9SV6T 3.9nH 0402 Digi -Key 712-1459-1-ND L1 $0.10 1 $0.10

9 Johanson Technology Inc L-07C8N2JV6T 8.2nH 0402 Digi -Key 712-1420-1-ND L3 $0.10 1 $0.10

10 Abracon Corp ABM3B-16.000MHZ-10-1-U-T 16MHz Crysta l Digi -Key 300-8206-1-ND Q1 $1.50 1 $1.50

11 Micro Commercia l Co SK106-TP Flyback Schottky Diode Digi -Key SK106-TPCT-ND

D20, D21, D22,

D23, D24, D25,

D26, D27

$1.00 8 $8.00

12 Micro Commercia l Co BZV55C3V3-TP 3.3V Zener Digi -Key BZV55C3V3-TPMSCT-ND
D17, D18, D19,

D48, D49
$0.38 5 $1.90

13 Semtech UCLAMP3304A.TCT 3.3V TVS Digi -Key UCLAMP3304ACT-ND

D10, D11, D12,

D13, D45, D46,

D50, D51, D52

$0.57 9 $5.13

14 Semtech UCLAMP0504A.TCT 5V TVS Digi -Key UCLAMP0504ACT-ND D14, D15, D16, D47 $0.49 4 $1.96

15 Bourns Inc SMBJ16CA 16V Bidirectional TVS Digi -Key SMBJ16CABCT-ND

D28, D29, D30,

D31, D32, D33,

D34, D35

$0.30 8 $2.40

16 Bourns Inc SMAJ26A 26V Unidirectional TVS Digi -Key SMAJ26ABCT-ND

D36, D37, D38,

D39, D40, D41,

D42, D43

$0.34 8 $2.72

17 Newhaven Display Intl NHD-0216K1Z-NSW-BBW-L LCD Digi -Key NHD-0216K1Z-NSW-BBW-L-ND $11.70 1 $11.70

18 Sharp Microelectronics GP1A51HRJ00F Photointerrupter Digi -Key 425-1949-5-ND $1.44 2 $2.88

$0.00

Connectors &

Switches
$0.00

1 Kobiconn 161-1640-EX 1/8" Mono Female Mouser 161-1640-EX $1.04 6 $6.24

2 CW Industries GRS-4013C-0001 Mom-Off-Mom Rocker, Linear Actuators Digi -Key SW340-ND $1.62 1 $1.62

3 TE Connectivi ty PRASC1-16F-BBR00 Bumper Override Rocker Switch Digi -Key 450-1041-ND $2.05 2 $4.10

4 E-Switch R5BBLKGRNFF2 DPST Power Switch Digi -Key EG1536-ND $2.75 1 $2.75

5 E-Switch PS1057ABLK Pushbuttons for UI Digi -Key EG2041-ND $1.63 6 $9.78

6 Apem A01ESSP3 E-stop button Mouser 642-A01ES-SP3 $19.38 2 $38.76

7 Apem A0150B E-stop switch block Mouser 642-A0150B $6.77 2 $13.54

8 Apem A01YL1 E-stop s ticker (optional) Mouser 642-A01YL1 $2.21 2 $4.42

9 Lumex Opto SSI-LXH8080GD Actuator Indicator LED Digi -Key 67-1168-ND $1.17 1 $1.17

10 Amphenol Commercia l G17S0910110EU D-sub 9 plug panel mount Mouser 523-G17S0910110EU $0.58 2 $1.16

11 Kobiconn 172-2136 E-Stop Mono Cable Mouser 172-2136 $2.35 1 $2.35

12 FCI 68602-406HLF Programming header Mouser 649-68602-406HLF PROG1 $0.12 1 $0.12

13 Molex 22-28-4360 Stra ight Male header Digi -Key WM6436-ND $1.18 4 $4.72

14 TE Connectivi ty 881545-2 Shunt Jumpers Digi -Key A26242-ND $0.21 10 $2.13

15 Phoenix Contact 1935187 Motor driver connector Digi -Key 277-1579-ND JP15 $0.64 1 $0.64

16 Keystone Electronics 7200 Hex s tandoff 3/8" Digi -Key 7200K-ND $0.68 4 $2.72

17 Sul l ins Connector Solutions PPTC161LFBN-RC Female pin header 16 pos s ingle row Digi -Key S7014-ND $1.22 1 $1.22

18 Sul l ins Connector Solutions PPTC061LFBN-RC Female pin header 6 pos s ingle row Digi -Key S7004-ND $0.67 1 $0.67

19 Sul l ins Connector Solutions PPTC031LFBN-RC Female pin header 3 pos s ingle row Digi -Key S7001-ND $0.63 2 $1.26

20 Sul l ins Connector Solutions PPTC021LFBN-RC Female pin header 2 pos s ingle row Digi -Key S7000-ND $0.49 2 $0.98

21 Sul l ins Connector Solutions PPTC122LFBN-RC Female pin header 24 pos double row Digi -Key S7080-ND $1.73 1 $1.73

22 Sul l ins Connector Solutions PPTC042LFBN-RC Female pin header 8 pos double row Digi -Key S7072-ND $0.83 1 $0.83

196

Table 22: Main Receiver Components (Continued)

Table 23: Remote Components

ID # Manufacturer MFG Part # Description Supplier Supplier Part # Schematic Ref. Price Qty Sub Total

Resistors $0.00

1 Stackpole Electronics RMCF0805JT10K0 10kΩ 0805 Digi -Key RMCF0805JT10K0CT-ND

R4, R7, R8, R10,

R11, R12, R13, R14,

R15, R17, R18, R19,

R20, R22, R23, R24,

R27, R28, R31, R32,

R33, R34, R36, R37,

R41, R42, R48, R49,

R51, R52, R53, R54,

R55, R57, R65, R66,

R67, R68, R72, R75,

R77, R78, R79, R80,

R81, R82, R83, R84

$0.03 48 $1.44

2 Stackpole Electronics RMCF0402FT1M00 1M 0402 Digi -Key RMCF0402FT1M00CT-ND R1 $0.04 1 $0.04

3 Panasonic ERJ-2RKF2202X 22k 0402 Digi -Key P22.0KLCT-ND R2 $0.10 1 $0.10

4 Panasonic ERJ-6ENF40R2V 40 0805 Digi -Key P40.2CCT-ND R3, R69, R70 $0.10 3 $0.30

5 Stackpole Electronics RMCF0805FT147R 145 0805 Digi -Key RMCF0805FT147RCT-ND R16 $0.04 1 $0.04

6 Stackpole Electronics RMCF0805FT100K 100k 0805 Digi -Key RMCF0805FT100KCT-ND
R21, R43, R44, R45,

R46, R47, R64
$0.04 7 $0.28

7 Panasonic ERJ-6ENF1100V 110 0805 Digi -Key P110CCT-ND R35 $0.10 1 $0.10

8 Stackpole Electronics RMCF0805FT12K4 12.5k 0805 Digi -Key RMCF0805FT12K4CT-ND R38 $0.04 1 $0.04

9 Stackpole Electronics RMCF0805FT1K00 1k 0805 Digi -Key RMCF0805FT1K00CT-ND R39, R71, R73 $0.04 3 $0.12

10 Panasonic ERJ-6ENF4020V 400 0805 Digi -Key P402CCT-ND R40 $0.10 1 $0.10

11 Stackpole Electronics RMCF0805JT15R0 15 0805 Digi -Key RMCF0805JT15R0CT-ND
R5, R6, R25, R26,

R29, R30, R50, R56
$0.03 8 $0.24

12 Stackpole Electronics RMCF0805FT220R 220 0805 Digi -Key RMCF0805FT220RCT-ND
R58, R59, R60, R61,

R62, R63
$0.04 6 $0.24

13 Stackpole Electronics RMCF0805ZT0R00 0 0805 Digi -Key RMCF0805ZT0R00CT-ND R9, R74 $0.03 2 $0.06

14 Bourns Inc 3362P-1-203LF 20k Potentiometer Digi -Key 3362P-203LF-ND R76 $1.05 1 $1.05

$0.00

Capacitors $0.00

1 Kemet T491C107K016ZT 100uF 2312 Digi -Key 399-5214-1-ND C11, C12 $1.34 2 $2.68

2 Kemet C0805C103K5RACTU 0.01uF 0805 Digi -Key 399-1158-1-ND
C10, C16, C21, C26,

C31
$0.05 5 $0.25

3 Taiyo Yuden TMK105B7103KV-F 10nF 0402 Digi -Key 587-1223-1-ND C8 $0.05 1 $0.05

4 Taiyo Yuden UMK105B7102KV-F 1nF 0402 Digi -Key 587-1220-1-ND C9 $0.05 1 $0.05

5 Taiyo Yuden UMK105B7222KV-F 2.2nF 0402 Digi -Key 587-1221-1-ND C4 $0.05 1 $0.05

6 Taiyo Yuden UMK105CG220JV-F 22pF 0402 Digi -Key 587-1203-1-ND C1,C2 $0.06 2 $0.12

7 Johanson Technology Inc 500R07S1R0BV4T 1pF 0402 Digi -Key 712-1266-1-ND C6 $0.19 1 $0.19

8 Johanson Technology Inc 500R07S4R7BV4T 4.7pF 0402 Digi -Key 712-1166-1-ND C5 $0.26 1 $0.26

9 AVX Corp 04025U1R5BAT2A 1.5pF 0402 Digi -Key 478-5992-1-ND C7 $0.16 1 $0.16

10 TDK Corporation C1005X7R1E333K 33nF 0402 Digi -Key 445-4939-1-ND C3 $0.04 1 $0.04

11 AVX Corp 08055C104JAT2A 0.1uF 0805 Digi -Key 478-3352-1-ND

C17, C18, C19, C22,

C23, C24, C27, C28,

C29, C32, C33, C34,

C35, C36, C37, C38,

C41, C42, C45, C48,

C49, C50

$0.05 22 $1.10

12 AVX Corp 0805PC102KAT1A 1nF 0805 Digi -Key 478-5541-1-ND
C15, C20, C25, C30,

C51, C52
$0.30 6 $1.80

13 Murata Electronics GRM21BR61E106KA73L 10uF 0805 Digi -Key 490-5523-1-ND C13, C39, C43, C46 $0.26 4 $1.04

14 Taiyo Yuden UMK212BJ105KG-T 1uF 0805 Digi -Key 587-2229-1-ND C14, C40, C44, C47 $0.39 4 $1.56

$0.00

IC $0.00

1 National Semiconductor LM2674M-3.3/NOPB 3.3 voltage regulator Digi -Key LM2674M-3.3-ND IC3 $3.47 1 $3.47

2 Nordic Semiconductor nRF24L01P-T Nordic 2.4GHz Wireless IC Mouser 949-NRF24L01P-T U1 $3.60 1 $3.60

3 Al legro Microsystems ACS716KLATR-12CB-T ±12A Current Sensor Digi -Key 620-1443-1-ND IC4, IC7, IC10, IC13 $4.35 4 $17.40

4 Atmel ATXMEGA64A1-AU Xmega64A1 Mouser 556-ATXMEGA64A1-AU IC5 $7.50 1 $7.50

5 Linear Technologies LT1160CS#PBF Hal f Bridge Driver Digi -Key LT1160CS#PBF-ND IC1, IC2, IC6, IC8 $5.65 4 $22.60

6 NXP Semiconductors 74LVC2T45DC,125 2-bit Level Trans lator Digi -Key 568-5479-1-ND IC9 $0.62 1 $0.62

7 Texas Instruments SN74LVC8T245DGVR 8-bit Level Trans lator Digi -Key 296-19287-1-ND IC11, IC12 $1.26 2 $2.52

$0.00

Other $0.00

1 Fairchi ld Semiconductor FDD6630A hal f bridge Nfet Digi -Key FDD6630ACT-ND
Q2, Q3, Q10, Q11,

Q12, Q13, Q16, Q17
$0.69 8 $5.52

2 Pulse Electronics Corp PE-53811SNL 118uH inductor for vol tage regulator Digi -Key 553-1395-ND L4 $1.89 1 $1.89

3 Micro Commercia l Co SS24-TP Schottky Diode Digi -Key SS24-TPMSCT-ND D1, D3, D4, D5, D6 $0.51 5 $2.55

4 Li te-On Inc LTST-C170TBKT Debug LED 0805 Digi -Key 160-1579-1-ND LED1 $0.46 1 $0.46

5 NXP Semiconductors TL431MSDT,215 Shunt Voltage Reference Digi -Key 568-4880-1-ND D2 $0.47 1 $0.47

6 E-Switch TL1015AF160QG Reset Switch Digi -Key EG4344CT-ND SW1 $0.95 1 $0.95

7 Johanson Technology Inc L-07C2N7SV6T 2.7nH 0402 Digi -Key 712-1415-1-ND L2 $0.10 1 $0.10

8 Johanson Technology Inc L-07C3N9SV6T 3.9nH 0402 Digi -Key 712-1459-1-ND L1 $0.10 1 $0.10

9 Johanson Technology Inc L-07C8N2JV6T 8.2nH 0402 Digi -Key 712-1420-1-ND L3 $0.10 1 $0.10

10 Abracon Corp ABM3B-16.000MHZ-10-1-U-T 16MHz Crysta l Digi -Key 300-8206-1-ND Q1 $1.50 1 $1.50

11 Micro Commercia l Co SK106-TP Flyback Schottky Diode Digi -Key SK106-TPCT-ND

D20, D21, D22,

D23, D24, D25,

D26, D27

$1.00 8 $8.00

12 Micro Commercia l Co BZV55C3V3-TP 3.3V Zener Digi -Key BZV55C3V3-TPMSCT-ND
D17, D18, D19,

D48, D49
$0.38 5 $1.90

13 Semtech UCLAMP3304A.TCT 3.3V TVS Digi -Key UCLAMP3304ACT-ND

D10, D11, D12,

D13, D45, D46,

D50, D51, D52

$0.57 9 $5.13

14 Semtech UCLAMP0504A.TCT 5V TVS Digi -Key UCLAMP0504ACT-ND D14, D15, D16, D47 $0.49 4 $1.96

15 Bourns Inc SMBJ16CA 16V Bidirectional TVS Digi -Key SMBJ16CABCT-ND

D28, D29, D30,

D31, D32, D33,

D34, D35

$0.30 8 $2.40

16 Bourns Inc SMAJ26A 26V Unidirectional TVS Digi -Key SMAJ26ABCT-ND

D36, D37, D38,

D39, D40, D41,

D42, D43

$0.34 8 $2.72

17 Newhaven Display Intl NHD-0216K1Z-NSW-BBW-L LCD Digi -Key NHD-0216K1Z-NSW-BBW-L-ND $11.70 1 $11.70

18 Sharp Microelectronics GP1A51HRJ00F Photointerrupter Digi -Key 425-1949-5-ND $1.44 2 $2.88

$0.00

Connectors &

Switches
$0.00

1 Kobiconn 161-1640-EX 1/8" Mono Female Mouser 161-1640-EX $1.04 6 $6.24

2 CW Industries GRS-4013C-0001 Mom-Off-Mom Rocker, Linear Actuators Digi -Key SW340-ND $1.62 1 $1.62

3 TE Connectivi ty PRASC1-16F-BBR00 Bumper Override Rocker Switch Digi -Key 450-1041-ND $2.05 2 $4.10

4 E-Switch R5BBLKGRNFF2 DPST Power Switch Digi -Key EG1536-ND $2.75 1 $2.75

5 E-Switch PS1057ABLK Pushbuttons for UI Digi -Key EG2041-ND $1.63 6 $9.78

6 Apem A01ESSP3 E-stop button Mouser 642-A01ES-SP3 $19.38 2 $38.76

7 Apem A0150B E-stop switch block Mouser 642-A0150B $6.77 2 $13.54

8 Apem A01YL1 E-stop s ticker (optional) Mouser 642-A01YL1 $2.21 2 $4.42

9 Lumex Opto SSI-LXH8080GD Actuator Indicator LED Digi -Key 67-1168-ND $1.17 1 $1.17

10 Amphenol Commercia l G17S0910110EU D-sub 9 plug panel mount Mouser 523-G17S0910110EU $0.58 2 $1.16

11 Kobiconn 172-2136 E-Stop Mono Cable Mouser 172-2136 $2.35 1 $2.35

12 FCI 68602-406HLF Programming header Mouser 649-68602-406HLF PROG1 $0.12 1 $0.12

13 Molex 22-28-4360 Stra ight Male header Digi -Key WM6436-ND $1.18 4 $4.72

14 TE Connectivi ty 881545-2 Shunt Jumpers Digi -Key A26242-ND $0.21 10 $2.13

15 Phoenix Contact 1935187 Motor driver connector Digi -Key 277-1579-ND JP15 $0.64 1 $0.64

16 Keystone Electronics 7200 Hex s tandoff 3/8" Digi -Key 7200K-ND $0.68 4 $2.72

17 Sul l ins Connector Solutions PPTC161LFBN-RC Female pin header 16 pos s ingle row Digi -Key S7014-ND $1.22 1 $1.22

18 Sul l ins Connector Solutions PPTC061LFBN-RC Female pin header 6 pos s ingle row Digi -Key S7004-ND $0.67 1 $0.67

19 Sul l ins Connector Solutions PPTC031LFBN-RC Female pin header 3 pos s ingle row Digi -Key S7001-ND $0.63 2 $1.26

20 Sul l ins Connector Solutions PPTC021LFBN-RC Female pin header 2 pos s ingle row Digi -Key S7000-ND $0.49 2 $0.98

21 Sul l ins Connector Solutions PPTC122LFBN-RC Female pin header 24 pos double row Digi -Key S7080-ND $1.73 1 $1.73

22 Sul l ins Connector Solutions PPTC042LFBN-RC Female pin header 8 pos double row Digi -Key S7072-ND $0.83 1 $0.83

ID # Manufacturer MFG Part # Description Supplier Supplier Part # Schematic Ref. Price Qty Sub Total

Resistors $0.00

1 Stackpole Electronics RMCF0402FT1M00 1M 0402 Digi -Key RMCF0402FT1M00CT-ND R1 $0.04 1 $0.04

2 Susumu RR0510P-223-D 22k ±1% 0402 Digi -Key RR05P22.0KDCT-ND R2 $0.08 1 $0.08

3 Stackpole Electronics RMCF0402JT100K 100k 0402 Digi -Key RMCF0402JT100KCT-ND R3, R7, R8, R9, R10 $0.02 5 $0.10

4 Stackpole Electronics RMCF0402JT110R 110 0402 Digi -Key RMCF0402JT110RCT-ND R4 $0.02 1 $0.02

5 Stackpole Electronics RMCF0402FT75K0 75k 0402 Digi -Key RMCF0402FT75K0CT-ND R6 $0.04 1 $0.04

6 Stackpole Electronics RMCF0402FT330K 330k 0402 Digi -Key RMCF0402FT330KCT-ND R5 $0.04 1 $0.04

$0.00

Capacitors $0.00

7 Taiyo Yuden TMK105BJ104KV-F 0.1μF 0402 Digi -Key 587-1456-1-ND C10 $0.10 1 $0.10

8 Taiyo Yuden TMK105B7103KV-F 10nF 0402 Digi -Key 587-1223-1-ND C8 $0.10 1 $0.10

9 Taiyo Yuden UMK105B7102KV-F 1nF 0402 Digi -Key 587-1220-1-ND C9 $0.10 1 $0.10

10 Taiyo Yuden UMK105B7222KV-F 2.2nF 0402 Digi -Key 587-1221-1-ND C4 $0.10 1 $0.10

11 Taiyo Yuden UMK105CG220JV-F 22pF 0402 Digi -Key 587-1203-1-ND C1,C2 $0.10 2 $0.20

12 TDK Corporation C1005C0G1H010B 1pF 0402 Digi -Key 445-4854-1-ND C6 $0.10 1 $0.10

13 TDK Corporation C1005C0G1H4R7B 4.7pF 0402 Digi -Key 445-4878-1-ND C5 $0.10 1 $0.10

14 TDK Corporation C1005C0G1H1R5B 1.5pF 0402 Digi -Key 445-4858-1-ND C7 $0.10 1 $0.10

15 TDK Corporation C1005X7R1E333K 33nF 0402 Digi -Key 445-4939-1-ND C3 $0.10 1 $0.10

16 TDK Corporation C1608X5R0J226M 22μF 0603 Digi -Key 445-8028-1-ND C11, C14, C15 $0.38 3 $1.14

17 Kemet C0402C105K9PACTU 1μF 0402 Digi -Key 399-4873-1-ND C12, C13 $0.07 2 $0.14

$0.00

Inductors $0.00

18 Johanson Technology Inc. L-07C2N7SV6T 2.7nH 0402 Digi -Key 712-1415-1-ND L2 $0.10 1 $0.10

19 Johanson Technology Inc. L-07C3N9SV6T 3.9nH 0402 Digi -Key 712-1459-1-ND L1 $0.10 1 $0.10

20 Johanson Technology Inc. L-07C8N2JV6T 8.2nH 0402 Digi -Key 712-1420-1-ND L3 $0.10 1 $0.10

21 TDK Corporation CPL2512T2R2M 2.2μH 0805 Digi -Key 445-4172-1-ND L4, L5 $0.45 2 $0.90

$0.00

IC's $0.00

22 Atmel ATTINY461V-10MUR Attiny461 microcontrol ler QFN32 Digi -Key ATTINY461V-10MURCT-ND IC1 $3.05 1 $3.05

23 Nordic Semiconductor nRF24L01P-T Nordic Wireless Mouser 949-NRF24L01P-T IC2 $3.60 1 $3.60

24 Texas Instruments TPS61200DRCT Adjustable Boost regulator Digi -Key 296-21663-1-ND IC3 $3.74 1 $3.74

25 Texas Instruments TPS61202DSCR 5V Boost regulator Digi -Key 296-24865-1-ND IC4 $3.17 1 $3.17

$0.00

Other $0.00

26 Abracon Corp ABM3B-16.000MHZ-10-1-U-T 16MHz Crysta l Digi -Key 300-8206-1-ND XTAL1 $1.50 1 $1.50

27 Semtech UCLAMP3304A.TCT 3.3V TVS Digi -Key UCLAMP3304ACT-ND D1 $0.57 1 $0.57

28 CHIPLED LS Q976-NR-1-0-20-R18 LED RED 0603 Digi -Key 475-2512-1-ND LED1 $0.13 1 $0.13

29 Fairchi ld Semiconductor MBR0520L Reverse battery protection diode Digi -Key MBR0520LCT-ND D2 $0.36 1 $0.36

30 FCI 67996-206HLF Header AVR programming Digi -Key 609-3210-ND AVR $0.29 1 $0.29

31 Sparkfun Thumb Joystick PS2 s tyle Sparkfun COM-09032 JSTICK1 $3.95 1 $3.95

32 Kobiconn 161-1640-EX 3.5mm mono jack female Mouser 161-1640-EX $1.04 4 $4.16

33 Molex 22-28-4360 Male pin header Digi -Key WM6436-ND $1.18 1 $1.18

34 Sul l ins Connector Solutions PPTC042LFBN-RC 2x4 Female pin header Digi -Key S7072-ND $0.83 1 $0.83

35 Sul l ins Connector Solutions PPTC021LFBN-RC 2x1 Female pin header Digi -Key S7000-ND $0.49 1 $0.49

36 1x1 Female pin header Digi -Key $0.00

37
MPD (Memory Protection

Devices)
BC2AAW Battery Holder 2xAA Digi -Key BC2AAW-ND BAT1 $0.85 1 $0.85

38 Cherry PRK22J5DBBNN On/off switch Digi -Key CH865-ND $1.36 2 $2.72

39 CW Industries GPB507A05BR Red e-s top Button Digi -Key SW637-ND $2.11 1 $2.11

197

: Quick Start Guide Appendix G

Figure 49: Quick Start Guide Front

198

Figure 50: Quick Start Guide Back

199

: Operator Manual Appendix H

Power Wheelchair Trainer Operator Manual

Figure 51: The Power Wheelchair Trainer

200

IX. Intended Use and Safety

IX.1 Intended Use

 The Power Wheelchair Trainer is intended to be used in conjunction with a power mobility

training program developed by a physical therapist or occupational therapist.

 The Power Wheelchair Trainer is not to be used outdoors. The Power Wheelchair Trainer is

intended only to be used indoors on smooth surfaces.

IX.2 Safety

 The Power Wheelchair Trainer is a prototype device and has not yet been approved by the Food

and Drug Administration for clinical use.

 Two emergency stop switches are located on the back of the Power Wheelchair Trainer, and one

emergency stop switch on the therapist remote. If the emergency stop has been engaged it will

be indicated on the liquid crystal display (LCD), and the power must be turned off and on to

make the Power Wheelchair Trainer operational again.

 Ensure that the remote, joystick, and trainer are powered OFF before storing or charging.

 Turn OFF the remote and joystick power before loading or unloading a learner.

 Ensure that an appropriate driving profile has been selected for the specific learner.

 Do not change driving profiles or settings while the Power Wheelchair Trainer is in use.

 The Power Wheelchair Trainer will not drive unless the therapist remote is powered ON and in

close proximity to the trainer.

 The Power Wheelchair Trainer is to be used only while supervised by a qualified therapist.

 The supervising therapist must hold the remote at all times.

201

X. Parts of the system

Power unit

Lift

platform

Front gate

Rear tie downs

Front tie downs

Figure 52: Major Parts of the Power Wheelchair Trainer

202

X.1 Power Unit

Platform/Power

Unit Latches

Battery Battery Control

Panel

Emergency Stops

Emergency Stop Cable and Connector Charging Connector

Figure 53: Power Unit Components

Figure 54: Rear Components

203

X.2 Control Panel

Motor Connectors Linear Actuator Connector

Battery Connectors

Main Power

Liquid Crystal Display (LCD)

Menu Arrow Keys

Platform Up/Down Switch

Figure 55: Cables and Connectors

Figure 56: Control Panel Components

204

X.3 Learner Joystick

See Section XII.2.2 – Learner Joystick for a complete overview of the learner joystick function.

X.4 Therapist Remote

See Section XII.2.3 – Therapist Remote for a complete overview of therapist remote function.

Figure 58: Therapist Remote Components

Joystick

Emergency Stop

Power

Light Emitting Diode (LED)

Switch

Inputs

Joystick Main

Power Switch
Joystick Enable/Disable

Figure 57: Wireless Joystick Components

205

X.5 Tray

Figure 59: Tray

Removable

Velcro Tiles

Armrest

Straps

Rear Strap

206

XI. Prior to Use

Ensure that the following cables are properly plugged in prior to use:

 Linear actuator plug (see Figure 55)

 Motor cables (see Figure 55)

 Battery cable (see Figure 55)

 Emergency stop cable (see Figure 54)

Ensure that the rear emergency stop switches are disengaged / pulled out (see Figure 54). If the

emergency stop has been engaged it will be indicated on the liquid crystal display (LCD), and the power

must be turned off and on to make the Power Wheelchair Trainer operational.

Ensure that the front gate pins are fully inserted (see Figure 62) and in line with the frame as

shown in Figure 51.

Ensure that the main batteries are charged before daily use. Additionally, check the batteries in

the joystick and remote.

XI.1 Charging

Before charging, ensure that the Power Wheelchair Trainer is turned OFF and the battery cable

is properly connected. The charging plug is located at the rear of the power unit (see Figure 60). To

charge the device, connect the charger to the charging plug and use a standard 115V, 60Hz, grounded 3-

prong electrical outlet, preferably with a surge protector. The charger will indicate the current battery

charge level once plugged into an electrical outlet. When the light on the charger is green, the batteries

are fully charged and the charger will automatically stop charging.

207

The charging time will vary depending on the initial charge level and condition of the batteries.

The time that the Power Wheelchair Trainer will run on a full charge varies and depends on usage,

battery condition, and other environmental factors such as temperature, incline, type of flooring.

Due to the chemistry of the gel lead acid batteries, they will last longer when kept fully charged.

Therefore it is recommended to keep the charger plugged in anytime the Power Wheelchair Trainer is

not in use. If charging is not a possibility during storage, disconnect the battery cables to reduce the

self-discharge rate and fully charge the batteries at least once every 3 months. Never store the Power

Wheelchair Trainer with discharged batteries.

Figure 60: Location of Charging Plug

208

1

2

XII. Operation

XII.1 Loading and Unloading a Learner

1. Ensure that all cables are properly plugged in (see Section XI

– Prior to Use) and turn the power ON with the green power

switch on the control panel

2. Press and hold the platform down switch on the control

panel until the platform touches the floor

3. Once the platform has been lowered, pull the two pins out

to detach and remove the front gate

4. Wheel the learner onto the platform with his or her back

facing the power unit and ensure that the wheelchair’s front

casters are facing forward, parallel to the gray lines on the

platform

5. Once the learner has been loaded, attach the front straps to

the wheelchair’s front tie down brackets and adjust the strap

4

Figure 61: Location of Power Switch
and Platform Switch

3

Figure 62: Front Gate Pins

Figure 63: Wheelchair on the
Platform

209

lengths to position the learner near the front of the platform. Positioning the learner near the

front helps with visual perception.

6. Engage the wheelchair brakes, then push the red lever on the rear Sure-lok tie downs to attach

the straps to the wheelchair’s rear tie down brackets. Turn the knob to retract the rear tie

downs, and then re-check the front tie downs to make sure the wheelchair is firmly secured.

7. Once the wheelchair has been securely locked in place, reattach the front gate and insert the

locking pins all the way, making sure they line up with the frame. Raise the platform all the way

up.

XII.2 Drive Control

XII.2.1 Tray Setup

1. With the learner sitting in the wheelchair, place

the tray on the armrests.

5

6

Retracting knob

Release lever

Figure 64: Front and Rear Tiedowns

Figure 65: Tray on Wheelchair

1

210

2. Secure the armrest straps around the wheelchair’s armrests. There are two straps on each side.

Figure 66: Armrest Straps

3. Secure the tray’s long rear strap around the back of the wheelchair. Be careful not to tighten

the strap too much for the comfort of the learner.

Figure 67: Rear Strap

2a 2b

3a 3b

211

XII.2.2 Learner Joystick

The wireless learner joystick may be mounted in any position in the tray by removing 3 tiles on

the tray in the desired position. To help ensure consistent joystick positioning the tray tiles are labeled

in a grid of letters and numbers. Ensure that the arrow on the joystick base is pointing forward (away

from the learner), and secure the joystick with Velcro. The base of the joystick should be flush with the

tray.

Figure 68: Joystick Mounted in Tray

Up to four external switches may be

plugged in to the learner joystick and secured

to the tray or wheelchair. Make sure all

wires are tucked in the wheelchair or on the

platform away from the wheels of the

trainer.

The joystick and switch inputs may

be used at the same time. The joystick, when

enabled, will override the switch inputs. The joystick may optionally be disabled while switches are

Switch

Inputs

Joystick

Main

Power

Switch

Joystick

Enable /

Disable

Figure 69: Wireless Joystick Components

212

being used for drive control. The joystick enable/disable

switch affects the joystick only – any switches that are

plugged in will work anytime the joystick main power is on.

Figure 70 shows the “shape” of the learner joystick.

XII.2.3 Therapist Remote

The joystick on the therapist remote overrides all other control inputs.

The Power Wheelchair Trainer will not

drive unless the therapist remote is powered

ON and in close proximity to the trainer. The

light emitting diode (LED) on the therapist

remote will light up when the wireless

connection is lost between the remote and

control unit – in this case the Power Wheelchair

Trainer will stop moving.

The therapist remote has a red emergency stop switch that immediately shuts down operation

of the Power Wheelchair Trainer. The intent of the emergency stop is to stop the Power Wheelchair

Trainer in case of emergencies or potentially dangerous situations. If the emergency stop has been

engaged (on the remote or power unit) it will be indicated on the liquid crystal display (LCD), and the

power must be turned off and on to make the Power Wheelchair Trainer operational again.

There is a driving profile specifically for the therapist remote to ensure safe driving speeds while

driving the Power Wheelchair Trainer with the therapist remote. All profile parameters are available in

this special profile (see Section 4.3.1 – Profile Settings).

Joystick

Emergency Stop

Power

Light Emitting

Diode (LED)

Figure 71: Therapist Remote Components

Figure 70: Learner Joystick Shape

213

XII.3 Driving Profiles

Before changing any settings, please ensure that the wireless joystick

and therapist remote are powered OFF to avoid accidentally moving the Power

Wheelchair Trainer.

Use the four arrow keys below the liquid crystal display (LCD) screen to

navigate the menu interface. Right/left chooses the setting to change, and

up/down changes the value. For example, scroll all the way to the left to get

to the profile setting, and then scroll up or down to change the current

profile. A driving profile has a customized speed, acceleration, sensitivity, etc. for each learner (see

Section XII.3.1 – Profile Settings). Once an appropriate profile is selected, turn the joystick power ON

and turn the therapist remote power ON. The learner is now ready to drive.

XII.3.1 Profile Settings

The following is a list of the available profile settings and their range of values, along with

reasonable values to be used as starting points. Each setting applies to both joystick and switch use

unless indicated otherwise. Anytime a setting is changed it is immediately and automatically saved, and

the settings are remembered even when the power is turned off.

It is recommended that a transport profile is set up so the therapist can easily drive the Power

Wheelchair Trainer without changing any learner profiles.

All values are relative (i.e. no standard units) unless otherwise specified.

1. Profile

 How it appears on the LCD: “Choose Profile”

 Used for easily switching between driving profiles customized for different learners

Figure 72: Navigating the Menu

214

 There is a fixed number of 20 driving profiles, plus one special profile that applies to the

therapist remote joystick

 To edit the profile name, hold the left button for 2 seconds to enter the name edit mode.

Name edit mode is shown in Figure 73.

Figure 73: Name Edit Mode

Choose the character to modify with the right and left arrow keys as shown in Figure 74.

Figure 74: Choosing the Character to Modify

Modify the character with the up and down arrow keys as shown in Figure 75. The available

profile name characters are: blank, uppercase A-Z, lowercase a-z, 0-9.

Figure 75: Modifying a Character

Hold the left button for 2 seconds to exit name edit mode.

2. Throw (forward, reverse, and turn)

 How it appears on the LCD: “Fwd Throw”, “Rev Throw”, “Turn Throw”

 This setting is not applicable when switches are used as input or when proportional as

switch mode (setting 9) is active

 Definition: How far the joystick moves to reach top speed. A higher setting means the

joystick moves less distance to obtain top speed. A lower number means the joystick moves

farther to obtain top speed.

215

 Setting: 0.05 to 2.50 in steps of 0.05

 Reasonable starting values are 1.2, 0.8, and 1.0 for forward, reverse, and turn throw

settings, respectively

 For a learner with minimal hand movement who will only move the joystick a small distance,

values between 1.5 and 2.5 are recommended for all three throw settings

3. Top Speed (Forward, Reverse, Turn)

 How it appears on the LCD: “Fwd Speed”, “Rev Speed”, “Turn Speed”

 Definition: Maximum speed. A higher number means a higher top speed.

 Setting: 5 to 125 in steps of 5

o Note: this is only an arbitrary numerical value. It is not miles per hour.

 Reasonable starting values are 35, 25, and 30 for forward, reverse, and turn speed,

respectively

 If the Power Wheelchair Trainer is having trouble driving over thresholds in the floor while

turning, or it is having trouble driving on carpet, try increasing the turn speed

 A heavier learner may require a higher top speed setting

 For a learner with minimal hand movement, it is recommended to set a relatively low top

speed (around 30) for all three speed settings so they have the same response in all

directions

4. Sensitivity

 How it appears on the LCD: “Sensitivity”

216

 Definition: How quickly the Power Wheelchair Trainer responds to joystick movement or

activation of a switch. Also known as tremor dampening. A higher number means quicker

response.

 Setting: 1 to 10

 A reasonable starting value is 8

 Typically sensitivity and acceleration/deceleration are adjusted together in order to achieve

the desired behavior

 For learners who may have jerky or uncontrolled hand movement it is recommended to

decrease the sensitivity

5. Acceleration/Deceleration

 How it appears on the LCD: “Acceleration”, “Deceleration”

 Definition: The maximum change in speed over time. A higher number means quicker

acceleration or deceleration.

 Setting: 1 to 25

 A reasonable starting value is 22. A setting of 25 may result in jerkiness

6. Center dead band

 How it appears on the LCD: “Center DB”

 This setting is not applicable when switches are used as input or when proportional as

switch mode (setting 9) is active

 Definition: A circular dead zone in the center of the joystick of configurable size where the

joystick is considered to be centered. This setting determines how far the joystick handle

217

has to travel from the center for the motors to start moving. Figure 76 shows the “shape”

of the joystick with the gray area in the middle corresponding to the center dead zone,

where the size of the gray circle (the dead zone) is configurable. A larger setting means a

larger dead zone.

Figure 76: Center Dead Zone

 Setting: 1 to 10

 A reasonable starting value is 1

 This setting may be increased for learners who have jerky or uncontrolled hand (or upper

extremity) movement if a lower sensitivity setting does not produce desirable results

 With an increased setting, the joystick handle must be moved further to be activated

7. Outer dead band

 How it appears on the LCD: “Outer DB”

 This setting is not applicable when switches are used as input or when proportional as

switch mode (setting 9) is active

 Definition: A circular band along the perimeter of the joystick where the motors will

optionally shut off immediately, or after a time-out. Figure 77 shows the “shape” of the

joystick with the gray area corresponding to the outer dead zone. If a time setting is chosen,

the motors will shut off if the joystick has been in the outer dead zone for the chosen

218

number of seconds. The joystick must return to center before the Power Wheelchair

Trainer will start driving again (it is not necessary to cycle power).

Figure 77: Outer Dead Zone

 Setting: Off, Immediate, seconds until motors shut off

 It is recommended to set a timeout for learners with high muscle tone who may be forceful

with hand movement and lock their elbow into extension and be unable to voluntarily

release

8. Invert

 How it appears on the LCD: “Invert”

 This setting is not applicable when switches are used as input

 Definition: swap forward / reverse

 Setting: Off, On

 It is recommended to turn this setting on for learners who have better control pulling the

joystick toward their body than they do pushing it away

9. Proportional as switch

 How it appears on the LCD: “PropAsSwitch”

219

 This setting is not applicable when switches are used as input

 If proportional as switch mode is active, the following settings do not apply: throw (setting

2), center dead band (setting 6), outer dead band (setting 7)

 Definition: converts the proportional joystick into a switch joystick with four directions

 Setting: Off, On

220

XIII. Disassembly for Transport

The power unit may be detached from the platform to allow for easier vehicle transport. Before

detaching the power unit it is recommended to drive the Power Wheelchair Trainer near the transport

vehicle.

1. Lower the platform to the loading position, turn off the power, and connect the tie downs

together.

Figure 78: Tiedowns Tied Together

2. Unplug the emergency stop cable.

Figure 79: Emergency Stop Cable

Tied together

221

3. Unplug the blue center battery connector.

Figure 80: Battery Connector

4. Unplug the two gray battery connectors and the motor connectors.

5. Remove the batteries and unplug the linear actuator connector to remove the control panel.

Figure 81: Battery and Motor Connectors

Figure 82: Linear Actuator Connector

222

6. Unlock the two white latches.

Figure 83: White Latches

7. Using proper body mechanics lift the platform up and away from the power unit to disconnect

the two. Let the power unit drop forward and pull the power unit away from the platform.

Figure 84: Power Unit Detached

8. If desired, remove the front gate.

223

The power unit and platform may now be loaded into a vehicle for transport. It is

recommended that 2 people lift the power unit and the platform into and out of the vehicle. To

reassemble the Power Wheelchair Trainer, follow the above steps in reverse order.

224

XIV. Troubleshooting

Symptom Troubleshooting steps

The Power Wheelchair

Trainer does not turn

on, or the LCD is dark

when the power switch

is on

 Ensure that all cables are properly connected (see Section XI – Prior to

Use)

 Ensure that the batteries are charged (see Section XI.1 – Charging)

 Turn the trainer ON using the main power switch on the control panel

(see Figure 61)

LCD displays “E-stop” Ensure that the rear emergency stop cable is plugged in (see Section XI –

Prior to Use)

 Ensure that the rear emergency stop switches are disengaged/pulled out

(see Figure 54: Rear Components)

 Turn the main power off and on again to clear the emergency stop

condition (see Figure 61)

225

Symptom Troubleshooting steps

The LCD is on, but the

trainer is not moving

 Ensure that the motor cables are properly connected (see Section XI –

Prior to Use)

 Ensure that the therapist remote is ON and in close proximity to the

trainer, and the LED on the remote is off (see Section X.4 – Therapist

Remote)

 Ensure that the learner joystick is powered ON, and the joystick switch is

ON (see Section X.3 – Learner Joystick)

 Check the batteries in the remote and joystick and replace as necessary

 It is possible that the active profile is configured inappropriately – try

switching to another profile or use the recommended starting values

described in Section XII.3.1 – Profile Settings

The LED on the therapist

remote is on

 Ensure that the trainer is ON and that the therapist remote is in close

proximity to the trainer (see Section X.4 – Therapist Remote)

The trainer continues to

move after the joystick

is released

 Increase the deceleration setting (see setting #5 in Section XII.3.1 –

Profile Settings)

The wheels are spinning Decrease all three top speed settings (see setting #3 in Section XII.3.1 –

Profile Settings)

226

Symptom Troubleshooting steps

The trainer is unable to

turn

 Increase the turn speed setting (see setting #3 in Section XII.3.1 – Profile

Settings)

 If increasing the turn speed does not solve the problem, increase the

acceleration and sensitivity settings (see settings #5 and #4 in Section

XII.3.1 – Profile Settings)

LCD displays “EEPROM

corrupt” or any other

error code

 Turn the main power off and on again (see Figure 61)

 If the problem persists, take the Power Wheelchair Trainer back to the

manufacturer

227

XV. Maintenance

Due to the chemistry of the gel lead acid batteries, they will last longer when kept fully charged.

Therefore it is recommended to keep the charger plugged in anytime the Power Wheelchair Trainer is

not in use. If charging is not a possibility during storage, disconnect the battery cables to reduce the

self-discharge rate and fully charge the batteries at least once every 3 months. Never store the Power

Wheelchair Trainer with discharged batteries.

If the trainer has not been used in a long time, perform all the checks described in Section XI –

Prior to Use. Additionally, ensure that all bolts and screws are tightened properly.

The batteries and electronics are sensitive to extreme high or low temperatures. Do not expose

the Power Wheelchair Trainer’s batteries, electronics, and motors to temperatures below 0°C or above

55°C (32°F to 131°F). It’s best to store the Power Wheelchair Trainer at or slightly below normal room

temperature. Do not store the power unit electronics in a vehicle overnight.

228

XVI. References

AbleNet. (2012). Switch selection guide. Retrieved from

http://www.ablenetinc.com/Portals/0/KnowledgeBase/Selection_Grids/Switch_Selection_Grid.

pdf

atan2. (n.d.). Retrieved from http://www.cplusplus.com/reference/cmath/atan2/

Atwell, A. K., & Pontin, T. K. (2000). U.S. Patent No. 6,043,806 A. Washington, DC: U.S. Patent and

Trademark Office.

Bresler, M. I. (1990). Turtle trainer: A way to evaluate power mobility readiness. Proceedings of the 13th

Annual RESNA Conference, 399-400.

Dimension Engineering. (2011). Sabertooth 2x60 User’s Guide. Retrieved from

https://www.dimensionengineering.com/datasheets/Sabertooth2x60.pdf

Durkin, J. (2006). Developing powered mobility with children who have multiple and complex disabilities:

moving forward (Doctoral dissertation), University of Brighton.

Durkin, J. (2009). Discovering powered mobility skills with children: 'Responsive partners' in learning.

International Journal of Therapy and Rehabilitation, 16(6), 331.

Food & Drug Administration. (1997). Design control guidance for medical device manufacturers.

Retrieved from

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocu

ments/ucm070642.pdf

Hays, R. M. (1987). Childhood motor impairments: Clinical overview and scope of the problem. Paper

presented at the Childhood Powered Mobility: Developmental, Technical, and Clinical

http://www.ablenetinc.com/Portals/0/KnowledgeBase/Selection_Grids/Switch_Selection_Grid.pdf
http://www.ablenetinc.com/Portals/0/KnowledgeBase/Selection_Grids/Switch_Selection_Grid.pdf
http://www.cplusplus.com/reference/cmath/atan2/
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm070642.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm070642.pdf

229

Perspectives. Proceedings of the RESNA First Northwest Regional Conference. Washington, DC:

Rehabilitation Engineering and Assistive Technology Society of North America, 1-10.

Invacare. (2011, March). Invacare® MK6i™ electronics field reference guide. (Rev 1-03/11) [Field

Reference Guide]. Elyria, Ohio: Invacare Corporation.

Jones, M. A., McEwen, I. R., & Neas, B. R. (2012). Effects of power wheelchairs on the development and

function of young children with severe motor impairments. Pediatric Physical Therapy : The

Official Publication of the Section on Pediatrics of the American Physical Therapy Association,

24(2), 131-40; discussion 140. doi:10.1097/PEP.0b013e31824c5fdc

Lange, M. L. (2010a). Proportional control for power wheelchairs: the right options can put your client in

the driver’s seat. Advance for Occupational Therapy Practitioners 26(10), 13. Retrieved from

http://occupational-therapy.advanceweb.com/Archives/Article-Archives/Proportional-Control-

For-Power-Wheelchairs.aspx

Lange, M. L. (2010b). Alternative Access: Options beyond joysticks for driving power wheelchairs.

Advance for Occupational Therapy Practitioners 26(12), 13. Retrieved from http://occupational-

therapy.advanceweb.com/Archives/Article-Archives/Alternative-Access.aspx

Livingstone, R. (2010). A critical review of powered mobility assessment and training for children.

Disability & Rehabilitation: Assistive Technology, 5(6), 392-400.

Nilsson L. (2007). Driving to Learn: the process of growing consciousness of tool use – a grounded theory

of de-plateauing (Doctoral dissertation). Lund University, Sweden. Retrieved from

https://lup.lub.lu.se/search/publication/548098

Nordic Semiconductor. (2008). nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0.

Retrieved from

http://occupational-therapy.advanceweb.com/Archives/Article-Archives/Proportional-Control-For-Power-Wheelchairs.aspx
http://occupational-therapy.advanceweb.com/Archives/Article-Archives/Proportional-Control-For-Power-Wheelchairs.aspx
http://occupational-therapy.advanceweb.com/Archives/Article-Archives/Alternative-Access.aspx
http://occupational-therapy.advanceweb.com/Archives/Article-Archives/Alternative-Access.aspx
https://lup.lub.lu.se/search/publication/548098

230

http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Spe

cification_1_0.pdf

PG Drives Technology. (2011). Programming. In R-Net technical manual. (SK77981/7) [Technical

Manual]. Christchurch, UK: PG Drives Technology

Sitronix. (2006). ST7066U Dot Matrix LCD Controller/Driver. Retrieved from

http://www.newhavendisplay.com/app_notes/ST7066U.pdf

Sparkfun. (2009). Nordic FOB. Retrieved from https://www.sparkfun.com/products/retired/8602

Sunplus Technology. (2003). SPLC780D 16COM/40SEG Controller/Driver. Retrieved from

http://www.newhavendisplay.com/app_notes/SPLC780D.pdf

Tefft, D., Guerette, P., & Furumasu, J. (1999). Cognitive predictors of young children's readiness for

powered mobility. Developmental Medicine and Child Neurology, 41(10), 665-670.

Teixeira, M. B., & Bradley, R. (2002). Overview. In Design controls for the medical device industry.

London, England: CRC Press.

Åström, K. J., & Hägglund, T. (1995). PID Controllers: Theory, Design, and Tuning (2nd ed.). Research

Triangle Park, NC: The International Society for Measurement and Control.

http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.newhavendisplay.com/app_notes/ST7066U.pdf
https://www.sparkfun.com/products/retired/8602
http://www.newhavendisplay.com/app_notes/SPLC780D.pdf

	Development of a Control System for a Power Wheelchair Trainer
	ScholarWorks Citation

	Power Wheelchair Trainer

