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Abstract 
 

The first objective of this study was to determine the relationship between zebra mussel 

densities/biomass and benthic macroinvertebrate composition and density in the Muskegon River 

at a site near Croton Dam, Thirteen benthic quadrat samples were taken along a range of zebra 

mussel and macroinvertebrate densities at a single sample location. Turbellaria was the only taxa 

to have a significant positive relationship with zebra mussel density and biomass, Simuliidae had 

a positive, non-significant relationship with both. No macroinvertebrate taxa decreased because 

of zebra mussel density/biomasss. The other objectives of this study were to compare current 

macroinvertebrate communities in the Muskegon River and Bigelow Creek, as well as between 

the1998 and 2011 samples. Benthic samples were taken at six sites (in summer and fall) in a 22.5 

km reach downstream of Croton Dam of the Muskegon River, and two sites on Bigelow Creek, 

using Hess samples and five-rock clusters. Macroinvertebrate community richness, EPT 

richness, Shannon-Wiener diversity, and evenness were calculated for each site, as well as zebra 

mussel densities. Macroinvertebrate and zebra mussel densities were highest in the upper sample 

sites on the Muskegon River. Macroinvertebrate production shifted from the mid-river sites in 

1998 to the upper sites near Croton Dam in 2011 on the Muskegon River. Cheumatopsyche 

increases in the Muskegon River were the driving taxa in community changes from 1998 to 

2011. Bigelow Creek also experienced changes between the 1998 and 2011 samples, primarily 

due to a shift in taxa from Protoptila and Hydropsychidae to Baetidae and Simuliidae. A single 

factor could not be found for the cause in the change in macroinvertebrate communities from 

1998 to 2011 with the data studied, but is likely due to the invasion of zebra mussels in the 

Muskegon River as well as environmental changes in both Bigelow Creek and Muskegon River.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Rivers and streams are found on every continent on Earth, and vary in size from a trickle 

during precipitation events or snowmelt, to a raging river the size of the Amazon.  They are 

unique ecosystems that can span large geographic areas and have unidirectional flow from the 

source to the mouth. Although streams themselves are unique ecosystems, the shape, size, and 

chemical makeup of a stream are products of the area immediately surrounding the stream, 

known as its catchment. For example, the composition of rock in a stream’s catchment 

determines the type of substrate in and around the stream, ion availability to the stream’s 

inhabitants, as well as the slope of the streambed (Hynes, 1975).  

However, even as each stream is representative of the terrain around it, it has only been 

relatively recently that the study of streams and their catchments has been developed. Many 

important studies and major concepts in stream ecology have only been discerned in the past 30 

years and most studies researched different physical zones of streams, which include: the 

longitudinal flow from headwaters to mouth, the lateral spread of a river into its flood plain, the 

vertical flow of a river into the hyporheic zone, and the physical change of rivers through time 

(Ward, 1989). 

The first dimension stream ecologists identified is based on the longitudinal flow of a 

river. Vannote et al. (1980) expanded on the concept by Strahler (1952) for classifying streams 

based on tributary connections. Vannote et al. (1980) examined how streams generally changed 

from upstream to downstream, and derived three overall river classifications, how each size-class 

differed, and how macroinvertebrate communities segregate themselves by river-size, which is 



14 

 

known as the river-continuum concept (RCC) (Vannote et al., 1980).  Headwater streams are 

generally small in size (order 1-3) and will have high allochthonous input but minimal 

autochthonous production due to heavy shading from the riparian zone (Vannote et al., 1980). As 

the stream gets larger in size and order, dependence on riparian input is reduced and 

autochthonous production as well as use of organic matter from upstream increases (Vannote et 

al., 1980). 

Vannote et al. (1980) also proposed the groundbreaking concept that the community 

composition of organisms as well as functional feeding groups (FFGs) will shift from headwaters 

to mouth, due to changes in stream size and available food resources (Vannote et al., 1980). 

FFGs can be a useful measure to assess stream conditions, and was first described for use in 

streams by Cummins (1973). Vannote et al. (1980) expanded on Cummins (1973) and identified 

four main functional feeding groups in streams: shredders, collectors, grazers, and predators. 

Shredders use allochthonous litter (coarse particulate organic matter, CPOM) as a food source, 

and generate fine particulate organic matter which will be available for use downstream by 

collectors (Vannote et al., 1980). Grazers eat periphyton, fungi, and bacterial colonies off objects 

such as rocks or leaves in the streams (Vannote et al., 1980). Collectors utilize small debris (fine 

particulate organic matter, FPOM), such as the scraps from CPOM, dislodged periphyton from 

scrapers, small algae, and waste from upstream organisms (Vannote et al., 1980). Predators eat 

small fish, crustaceans, and other macroinvertebrates throughout the stream (Vannote et al., 

1980). Along with the previous changes from allochthonous to autochthonous input, the 

macroinvertebrate communities will change as well with increasing stream order (Vannote et al., 

1980). This is considered the longitudinal dimension of streams and rivers, and the RCC was an 

attempt to explain how rivers will change from headwaters to mouth.   
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The second dimension that is identified by stream ecologists is the latitudinal axis: a 

stream’s floodplain and corresponding riparian zone. Streams are invariably connected to 

terrestrial environments, and cannot be thought of simply as a pipe or conduit. The riparian zone 

is an important feature connecting streams to the land and vice versa, through mechanisms such 

as nutrient transfers, water movement, and sediment transfers. During flood events, high water 

levels create a connection to the flood plain, which can then be utilized by biota, such as fish 

spawning grounds, or seed dispersal from terrestrial plants (Junk et al., 1989). During a flood 

event, and the eventual recession of water, terrestrial nutrients will enter the stream system to be 

utilized by the downstream biota (Junk et al., 1989). The riparian zone (or aquatic/terrestrial 

transition zone (ATTZ)) is a unique habitat that is sometimes terrestrial and sometimes aquatic. 

Both terrestrial and aquatic organisms can utilize the riparian zone, and both depend on the 

transfer of nutrients, recycling of organic matter, and physical space that the ATTZ provides. 

Due to the uniqueness of the riparian zone, Junk et al. (1989) proposes that it should be 

considered a specific ecosystem. 

The third dimension of streams and rivers is the vertical dimension known as the 

hyporheic zone or corridor. The hyporheic corridor is defined as the vertical penetration of river 

water into fluvial deposits within the floodplain and active river channel (Triska et al., 1990; as 

cited in Stanford and Ward, 1993). Stanford and Ward (1993) found that the hyporheic corridor 

influences many aspects of the river system itself including species richness, structure of riparian 

zones, transfer of bioavailable resources, and bioproduction through the biogeochemical and 

microbial processes that occur in the corridor (Stanford and Ward, 1993). Because of the 

abundance of nutrients (and in turn food items) and protection from predators as well as 

disturbances, some macroinvertebrates utilize the hyporheic corridor to complete many life 
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stages, or as a permanent residence place (Stanford and Ward, 1993). The hyporheic zone is an 

integral and permanently connected part of a river, but still inadequately studied. Stanford and 

Ward (1993) suggest that the hyporheic corridors are so unique that they should be considered a 

dynamic ecotone.  

With the progression of time, everything changes in some way, and rivers are no 

exception. The above processes are altered and shifted through time to coincide with the 

changing physical aspects of a river and its boundaries. The changes through time in a river can 

be as brief as a recolonization event on a patch of stream after a disturbance, to many hundreds 

of years shifting the flow of the river itself (Ward, 1989). In essence, scientists must not only 

look at the physical characteristics of a river, but should also investigate how time (weeks, 

seasons, or years) will affect how the stream changes (Ward, 1989). The streams around the 

Mount St. Helens crater, provide excellent insight into temporal changes in streams after an 

extreme disturbance (Hawkins et al., 1988; Lamberti et al., 1992,)  

Because of the four-dimensional nature of streams, particularly the unidirectional flow, 

nutrients in streams do not just cycle in place. Rather they are transferred downstream in the 

form of a spiral. A nutrient spiral is the time an atom of a nutrient (such as nitrogen) takes to 

move from the inorganic to the organic phase and back again, with a shorter spiral length being 

more efficient and desirable for a stream (Newbold et al., 1981). Unless nutrient spirals are really 

efficient, they normally do not recycle these nutrient atoms in place, nutrients recycled at one 

point in a stream are unable to be utilized by organisms at that location, instead the nutrients get 

transported downstream for further use and recycling (Newbold et al., 1983).    

Nutrient spirals are often complex, and there are many ways that nutrients are transferred 

to a stream. The particulate organic matter (POM, which is matter > 0.45µm that is undissolved 
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in the water column) input from the riparian zone, as well as in-stream, is shredded by aquatic 

macroinvertebrates and then transported from upstream to downstream. This POM (and the 

microbial ‘peanut butter’ that covers it) is nutritionally loaded and utilized by the flora and fauna 

throughout the river (Cummins, 1974).  

Disturbances are important factors in almost every ecosystem, including rivers and 

streams. A disturbance can be defined as a damaging force that is applied to a habitat occupied 

by a population, community, or ecosystem and can be thought of in three ways (Lake, 2000). A 

pulse disturbance is typically short, with clearly defined start and end points, such as a flood 

(Lake, 2000). A press disturbance is maintained for a long time, with a distinct and sharp start, 

which levels off, such as increased sedimentation in a river after a landslide or persistence of 

heavy metal pollution in a system (Lake, 2000). The third type of disturbance, the ramp, is 

maintained for a long period and typically keeps increasing in strength unless it reaches an 

endpoint (Lake, 2000). An example of a ramp disturbance would be a drought, or the spread of 

an invasive species (Lake, 2000). Many riverine organisms have adapted to predictable natural 

disturbance events, as described earlier, but large disturbance events are also an integral part of 

the natural cycle of a river system (Junk et al., 1989). One of the main concepts regarding 

disturbances is the intermediate disturbance hypothesis which states that at an intermediate level 

of disturbance, species richness will be highest; whereas at low disturbance dominant species 

would overtake weaker competitors, and at high disturbance, disturbance-intolerant species 

would become locally extinct (Connell, 1978). This intermediate disturbance hypothesis (IDH) 

has been found to be applicable to many ecosystems including intertidal communities (Sousa, 

1979), and desert communities (Guo, 1996). Although the IDH has been widely accepted for 

many years, it is not the only disturbance hypothesis. For example, Tilman and Downing (1994) 
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found that a diversity-stability hypothesis was more appropriate for drought-disturbed grassland 

in which a more diverse grassland community would better withstand a major drought. Collins et 

al. (1995) found that neither the IDH nor any other hypothesis could explain how grassland 

species richness was affected by fire, but instead suggested the use of multiple theories. These 

examples attempt to explain natural disturbances, but disturbances can also be anthropogenic in 

origin.  

The impacts of humans on an ecosystem vary widely in severity and cause. It is important 

to consider the spatial scale of disturbances being studied. For example, the effects of these 

human disturbances can be localized (such as washing clothes in a specific location on a river 

(Mathooko, 2001)) or widespread (the 31 dams throughout the Columbia River watershed), and 

the proper scale must be taken into account for the study being conducted.   

For example, anthropogenic disturbances in the John Day River Basin, Oregon, are quite 

different from the disturbances of streams in Appalachia, and both will differ from disturbances 

in the Smoky Mountains National Park; due to geography and population size. The three main 

factors of human disturbance on the John Day River are: cattle grazing, forestry and logging 

practice, and dredge mining; whereas in Appalachia the disturbances are energy generation, 

forestry practices, and sewage/industrial effluents (Resh et al., 1988). In the Smoky Mountains 

National Park, there is no permanent human residence, but logging occurs frequently, and it 

negatively affects streams around the logging area in the park (Silsbee and Larson, 1983).  

In Michigan, anthropogenic disturbances are different depending on stream types. A 

survey of warm-water streams in Michigan found that 38.1% had anthropogenic disturbances 

that were detectable to severe (on a scale of undetectable, detectable, moderate, heavy, and 

severe) (Wang et al., 2008). For warm-water streams the top three anthropogenic disturbances 
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were urban land use, nitrogen and phosphorous inputs, and residential population density (Wang 

et al., 2008). In cold-water streams 18.2% had anthropogenic disturbances that were detectable to 

severe (Wang et al., 2008). The three most significant anthropogenic disturbances of the cold-

water streams in this study were: nitrogen and phosphorous input, road density, and urban land 

use (Wang et al., 2008). Most of the streams in this study were in the Upper Peninsula and 

northern Lower Peninsula of Michigan, which are more natural streams, so these conclusions 

may not be applicable to the southern Lower Peninsula that has much more urbanization and 

agricultural use around streams (Wang et al., 2008). Along with heavy urbanization, one of the 

largest problems with rivers in the Lower Peninsula are dams. Many of the large rivers and their 

tributaries in the southern Lower Peninsula with dams include the Grand, Kalamazoo, 

Muskegon, Rogue, Thornapple, and St. Joseph River (Morman, 1979).  

Although dams are built for many reasons such as generating electricity, transporting 

goods, and fisheries management, the existence of a dam on a river has been shown to affect a 

number of pathways within a river, both upstream and downstream. Ward and Stanford (1983) 

studied the disruptions that dams create in a river and developed the serial discontinuity concept 

from their findings. They predicted that a dam acts as a ‘reset-button’ for the processes defined 

by the RCC, for both abiotic and biotic processes (Ward and Stanford, 1995). In their work, they 

identified three typical reaches in a natural river: the straight headwater reach, a braided middle 

reach, and a meandering lower reach (Ward and Stanford, 1995). When a dam is placed in a 

straight headwater reach, the abiotic factors of the stream such as channel stability and thermal 

regimes are minimally affected (Ward and Stanford, 1995). However, many biotic factors are 

affected; ecological connectivity, POM ratios, and biodiversity all will be negatively impacted in 

an impeded headwater area. In fact, the POM ratio in a headwater reach will behave more like a 
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braided reach with little coarse detritus being transported (Ward and Stanford, 1995). A dam 

installed in the braided middle area of a river will radically impact both the abiotic and biotic 

components (Ward and Stanford, 1995). Channel stability, thermal regimes, ecological 

connectivity, POM ratios, and biodiversity all are ‘reset’ downstream of the dam to resemble and 

operate more like a straight-flowing headwater reach than a braided type reach (Ward and 

Stanford, 1995). If a dam is constructed in a meandering lower reach, there is a large change in 

most of the abiotic and biotic processes (Ward and Stanford, 1995). Again, an impoundment will 

act as a reset-button for most processes, with channel stability, thermal regimes, ecological 

connectivity, and biodiversity returning to a more headwater-like state (Ward and Stanford, 

1995). The CPOM/FPOM ratio will return to a more braided-type state with low CPOM amounts 

(Ward and Stanford, 1995). A human-made dam or impoundment will have considerable 

ramifications for the downstream reaches in a river. 

 Dams have many negative effects on the structure and function of streams; however, 

they do provide a few unintended benefits. For example, in a few instances, they can help to limit 

the expansion of invasive species.  Rood et al. (2010) found that a dam on the Snake River in 

Idaho restricted the downstream expansion of invasive riparian plants due to drought and flood 

stress from the reservoir. Pratt et al. (2009) showed that dams and other barriers stop the invasive 

sea lamprey (Petromyzon marinus) from invading Great Lakes tributaries. Nevertheless, for the 

few benefits that are gained from dams, there are many detriments. For example, dams are 

known to trap and accumulate sediment from upstream in their reservoirs, they change natural 

temperature regimes, reduce water quality, and change biological communities. 

 Changes in thermal regimes of rivers downstream of a dam are common and 

geographically widespread across the world (Patric and Kakela, 1983). For example, Preece and 
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Jones (2002) found that the water discharged in spring and summer from the deep-release Keepit 

Dam on the Namoi River, Australia, cooled the water downstream, causing disruptions in native 

fish spawning cues. These temperature conditions lasted for 100 km downstream of the dam until 

it was restored to natural regimes (Preece and Jones, 2002). Warmer downstream temperatures 

caused by dams are also disruptive. Goniea et al. (2006) found that in the Columbia River below 

and between dams, migrating salmon chose to temporarily use cooler water tributaries that were 

2-7°C cooler than the warm mainstream (20°C) due to the dams. They found that as the water 

temperature rose, the number of salmon using the cooler tributaries grew exponentially (Goniea 

et al., 2006).  Baxter (1977) found that the hypolimnic layer of a stratified reservoir stays cool in 

the summer, thus having an abnormal cooling effect on the stream below the dam. During the 

winter when the reservoir is no longer stratified, the stored solar heat from the epilimnion layer 

gets mixed, and when it flows over the dam has an abnormal warming effect on the stream water 

(Baxter, 1977). Because water temperature and density are correlated, the summer-cooled water 

released downstream drifts to the bottom, whereas the winter-warmed water flows on the top of 

the stream, creating a thermally stratified river (Baxter, 1977). The abnormal temperature 

regimes can lead to dense currents (currents differing from regular flow by differing temperature, 

organic matter, etc.) from the dam, flowing into mainstream tributaries below the dam, reducing 

water quality in those tributaries and affecting the biota (Baxter, 1977). Temperature will also 

effect dissolved oxygen concentrations in an impounded river. Below the Capivara Reservoir 

Dam, Brazil, reduced oxygen concentrations were found due to eutrophication, thermal 

stratification, and the position of the spillway (de Oliveira Naliato et al., 2009). The temperature 

and dissolved oxygen concentrations downstream of the Capivara Dam were similar to the 
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reservoir stratum at which the turbines were pulling water, changing the water quality in the river 

(de Oliveira Naliato et al., 2009). 

Impoundments also affect water quality downstream of a dam. Dams change the 

chemistry and amount of total dissolved solids (TDS) available to the river below the dam. 

Kurunc et al. (2006) found that the Kilickaya Dam in Turkey reduced the concentration of many 

essential ions (K
+
, Ca

2+
, Mg

2+
, etc.) of the downstream water. They suggest the reservoir is the 

cause of this change, as the water has a long residence time (on average 264 days) and ions are 

transformed by organisms (Kurunc et al., 2006).  

These changes to the water chemistry in a river will affect plant and animal metabolism 

and growth rates. Kurunc et al. (2006) mention that microorganisms (bacteria, fungi, algae) will 

be affected by reductions in necessary chemical compounds and nutrients, because most 

microorganisms have the same nutritional requirements as higher organisms living in the same 

environment. Since many microorganisms can convert inorganic forms of elements to usable 

organic forms that are necessary for organism growth, they are an essential part of an ecosystem 

(decomposers, primary producers, etc.) and without the necessary nutrients, could cause a 

cascade effect through higher trophic levels reducing biodiversity (Kurunc et al., 2006).  

Invertebrates are also affected by dams. On the South Saskatchewan River in Canada, 

Lehmkuhl (1972) found a reduction in macroinvertebrate abundances 70 miles downstream of 

Gardiner Dam as compared to upstream of the reservoir. Takao et al. (2008) found a somewhat 

different result in the Yahagi River, Japan. The authors found low taxa richness but high 

abundances of macroinvertebrates below the dam (Takao et al., 2008). This reduction of 

macroinvertebrate richness and diversity, but high abundance right below a dam is a general 

trend observed in many studies, and coincides with the alteration of the environment as described 
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above (Doeg et al., 1987; Munn and Brusven, 1991; Lessard and Hayes, 2003; Santucci Jr. et al., 

2005; Maloney et al., 2008; Growns et al., 2009). 

More recently, studies have found that dam construction can facilitate the introduction of 

invasive species (Johnson et al., 2008). Impoundments have significantly more (2.5 to 7.8 times) 

established populations of invaders than a natural lake system, leading to changes in the 

community and reduced biodiversity in river systems (Johnson et al., 2008). The authors suggest 

that this could be because impoundments are typically larger than natural lakes, and more easily 

accessed by humans, thus promoting invasion (Johnson et al., 2008).  

One notorious invader of many freshwater systems including the Mississippi River, Ohio 

River, Hudson River, and Great Lakes basin is the zebra mussel Dreissena polymorpha. Zebra 

mussels are prolific broadcast spawners, with a single female able to produce over a million eggs 

during one spawning season, making them formidable invaders (Snyder et al., 1999). Since the 

introduction of zebra mussels into the Great Lakes and their tributaries, mussels have impacted 

the ecosystem and its inhabitants. As a single zebra mussel can filter water at a rate of up to 1 

L·day
-1

, this can cause cascades in many food webs (Reeders et al., 1989). Padilla et al. (1996) 

found that in Lake Michigan at Green Bay, WI, zebra mussels had a strong negative effect on 

large phytoplankton during the summer months. The study also found that even if phytoplankton 

were too large to be eaten by the zebra mussels, they were still withdrawn from the plankton and 

expelled as pseudofeces (Padilla et al., 1996). This withdrawal of large phytoplankton reduces 

the competition for nutrients by smaller plankton leading to an indirect positive effect from the 

zebra mussels (Padilla et al., 1996).  

Zebra mussels effect not only phytoplankton communities but also modify the benthic 

environment that they colonize (Strayer et al., 1999; Strayer, 2009). Considerable research has 
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been done into how zebra mussels affect benthic macroinvertebrates in lentic systems. Wisenden 

and Bailey (1995) found that in Lake Erie, zebra mussels at a turbulent site increased the 

abundance of amphipods due to microhabitat stability and a steady food supply, although the 

abundance of midges, caddisflies, and snails decreased as a result of the mussels. Ricciardi et al. 

(1997) observed that zebra mussels increased the number of macroinvertebrates (deposit-feeding 

organisms, small predatory invertebrates, and small gastropods) in lakes and canals on the St. 

Lawrence River system, due to habitat complexity (shell architecture) and the increase in organic 

matter the mussels bio-deposit in their beds. However, the zebra mussel colonies reduced 

biodiversity, displacing certain taxa (large snails and large filterers) that were prevalent before 

invasion (Ricciardi et al., 1997). Horvath et al. (1999) found similar results in Christiana Creek 

(a lake outlet); zebra mussels increased certain types of macroinvertebrates due to the complex 

substrate the mussel shells create.  

Somewhat less research has focused on how zebra mussels affect river systems, although 

this topic has received considerable attention more recently (see Caraco et al., 1997; Horvath et 

al., 1999; Strayer et al., 2004; Bartsch et al., 2005; Strayer and Malcolm, 2007; Ward and 

Ricciardi, 2007). Most studies of this nature have been done on large river systems like the 

Hudson River or St. Lawrence River system. As these two rivers were some of the earliest 

invaded by zebra mussels, the studies from these rivers have helped to shape our understanding 

of what to expect in a newly invaded system; such as how zebra mussels affect 

macroinvertebrate communities (Strayer et al., 1998), fish communities (Strayer et al., 2004), 

native unionid communities (Ricciardi et al., 1996; Strayer and Malcolm, 2007), and the aquatic 

environment in general (Strayer et al., 1999; Jones and Ricciardi, 2005; Strayer, 2009). 
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  Zebra mussels were discovered in the Muskegon River, MI in 2000, with a density of 

8500 m
-2

, and by 2001 had increased to 25,000 m
-2

 (M. Luttenton, unpublished data). Fuentes 

(2003) suggested that initially, zebra mussels were introduced into Croton Reservoir (a dam on 

the Muskegon River) by boaters and subsequently established populations downstream of the 

dam. Zebra mussels reduced phytoplankton biomass, which likely reduced available food 

sources to downstream communities, leading to shifts in invertebrate communities (Fuentes, 

2003). The most profound shifts were seen in the family Hydropsychidae, with densities of 

Hydropsyche plummeting throughout the river, while Cheumatopsyche increased at the Croton 

sample site, but were reduced at the other sample locations (Luttenton et al., 2006). 

The current studies were conducted to better understand how zebra mussel 

densities/biomass affect benthic macroinvertebrate communities. Specifically, I wanted to 

investigate macroinvertebrate composition and density, as well as classify the current 

macroinvertebrate community in the Muskegon River and Bigelow Creek, a tributary of the 

Muskegon River.  I also sought to examine how the present macroinvertebrate communities have 

changed from the historical, pre-zebra mussel invasion macroinvertebrate communities studied 

by Godby (2000) in the Muskegon River and Bigelow Creek, Michigan. 
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CHAPTER II 

 

THE RELATIONSHIP BETWEEN MACROINVERTEBRATE COMMUNITIES AND THE 

INVASIVE ZEBRA MUSSEL (DREISSENA POLYMORPHA) IN THE MUSKEGON RIVER, 

MI, BELOW CROTON DAM 

 

ABSTRACT 

 Zebra mussels invaded the Muskegon River via Croton Dam reservoir in the early 2000s 

and have changed the river ecosystem drastically in ways such as water-clarity, plankton 

reductions/taxa modifications, and substrate alterations. These environmental changes have had 

impacts on the macroinvertebrate community; in order to characterize these changes, thirteen 

benthic samples representing a range of zebra mussel densities were taken in one area of the 

Muskegon River, downstream of Croton Dam. Total macroinvertebrate density had no 

significant relationship with zebra mussel density or biomass. Positive significant relationships 

were found with Turbellaria and increasing zebra mussel density and biomass. Commonly 

affected macroinvertebrate taxa such as Amphipoda, Gastropoda, Chironomidae, and 

Hydropsychidae had no significant relationship with zebra mussels. No macroinvertebrate taxa 

significantly decreased because of zebra mussel density/biomass, which may indicate that 

macroinvertebrates are responding more to the sample environment than to the zebra mussels 

themselves. 
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INTRODUCTION 

 Zebra mussels (Dreissena polymorpha) were introduced into the Great Lakes around 

1986 through ballast water discharge into Lake St. Clair from European ocean-crossing vessels 

(Griffiths et al., 1991). Since then, zebra mussels have spread across North America and have 

irreversibly changed the ecology of the Laurentian Great Lakes. Zebra mussels have caused 

economic damage in excess of $1 billion per year due to declines in commercial and recreational 

fisheries, impacts to water and power facilities, loss of tourism, and boating damages, as well as 

other similar problems (Pimentel, 2005; Connelly et al., 2007; Strayer, 2009). The zebra mussel 

invasion has also caused ecological damage; zebra mussels increase greenhouse gas emissions 

(Svenningsen et al., 2012), outcompete native fauna (Strayer and Malcom, 2007; Strayer 2009), 

reduce phytoplankton and zooplankton populations, and cause blooms of toxic cyanobacteria 

(Caraco et al., 1997; Vanderploeg et al., 2001; Miller and Watzin, 2007;Fishman et al., 2009; 

Higgins and Vander Zanden, 2010). 

Many of these changes are due to the fact that zebra mussels are prodigious feeders, with 

a single zebra mussel able to filter up to 1 L·day
-1

 (Snyder et al., 1997) which will increase water 

clarity and light penetration, allowing macrophytes to grow excessively and spread to locations 

in a waterbody that they could not previously colonize (Caraco, 2000; Sabater et al., 2008).  

Nutrient ratios can shift as phytoplankton decline; phosphorus and soluble nitrogen may 

increase, although not consistently due to feeding times/rates of the zebra mussels (Fishman et 

al., 2009). Trophic structure may be altered due to changes at the base of the aquatic food chain 

leading to declines in many groups of herbivores  (Strayer, 2009).  

Zebra mussels also act as ecosystem engineers. They change benthic substrates by adding 

habitat complexity via their shell architecture and clumped distribution, providing shelter from 
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predators, altering flow, and moving energy from the water column to the benthos via their waste 

(Ricciardi et al., 1997, Horvath et al., 1999). These habitat changes affect many 

macroinvertebrate communities. For example, certain macroinvertebrate taxa (such as 

gastropods, flatworms, and Ephemeropterans) seem to increase in abundance after a zebra 

mussel invasion (see Wisenden and Bailey, 1995, Ricciardi et al., 1997, Ward and Ricciardi, 

2007). In contrast, native unionids are outcompeted for resources, or are directly fouled by zebra 

mussels colonizing on them, which interfere with feeding, movement, and reproduction. This 

leads to a noticeable loss in abundance and density (Strayer, 1999). 

Studies that have investigated the effects of zebra mussels have reported significant 

changes in both structure and function of river systems (Ricciardi et al., 1997; Strayer et al., 

1998; Horvath et al., 1999; Strayer et al., 2004). Our understanding of how zebra mussels affect 

rivers is still relatively limited, particularly for moderate-size rivers. This is the case for many 

impounded Michigan rivers, which have seen zebra mussel invasions in the past decade, and 

which are an important economic resource for many areas through recreation, sport, and 

aesthetics.  

Zebra mussels were found in 2000 in the Muskegon River, Michigan, a large impounded 

river system (Fuentes, 2003). By 2001, zebra mussel densities below Croton Dam on the 

Muskegon River reached approximately 25,000 m
-2

 (Fuentes, 2003), and changes in 

macroinvertebrate communities were linked to this increase (Luttenton, personal 

communication). The greatest densities of zebra mussels are found in a 2 km section below 

Croton Dam, although there are small, isolated pockets of zebra mussels further downstream.  

The potential impacts on the Muskegon River are of particular concern given the very popular 

sport fisheries. For example, the U.S. Environmental Protection Agency states the Muskegon 
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River fishery is worth $5 million annually (EPA, 2008).  The objectives of this study were to 

determine the relationship between zebra mussel densities/biomass and benthic 

macroinvertebrate composition and density in the Muskegon River near Croton Dam. 
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METHODS 

Study Area 

The Muskegon River, one of the largest rivers in Michigan, is 341 km long, has a 

watershed of approximately 6086 km
2
, and has approximately 94 tributaries (O’Neal, 1997).  

The river is regulated by a series of three impoundments: Rogers Dam, Hardy Dam, and Croton 

Dam, which are ordered from upstream to downstream.  Average discharge was 55.01 m
3
·s

-1
 in 

November and December of 2011 at Croton Dam (US Geological Survey, 2013).  

My sampling site was located in a wadeable run habitat approximately 600 m 

downstream of Croton Dam (Figure 1). This sample site was chosen because there was relatively 

little human disturbance at this site compared to areas closer to the dam. The site had an average 

depth of 0.39 m and an average velocity of 0.14 m·s
-1

. River width at this location was 

approximately 78 m on December 1, 2011. The substrate consisted primarily of cobble and 

gravel, and the sample quadrats had physical and chemical characteristics that were relatively 

similar (Table 1).  

Field Sampling 

To evaluate the relationship between zebra mussel densities and macroinvertebrate 

community composition, I collected 13 benthic samples from a single study reach on December 

1, 2011. Within the reach, sampling sites were randomly chosen from a 50 m long by 2 m wide 

zone that was parallel to shore. Benthic samples were collected by placing a 0.25 m
2
 x 0.25 m

2
 

quadrat on the substrate and removing all of the sediment within the quadrat to a depth of 

approximately 2 cm. A 150 µm mesh D-frame net was placed directly downstream of the quadrat 

as the substrate was collected. In the field, the macroinvertebrates, algae, and zebra mussels were 

removed from the collected rocks.  The rocks were then washed with ethanol over a 212 µm 
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sieve to detach any macroinvertebrates that were not removed by forceps. The 

macroinvertebrates, algae and zebra mussels collected were placed in 95% ethanol.  

A YSI multiparameter water quality sonde (model 556 MPS) was used to measure  

dissolved oxygen, percent saturation, pH, conductivity, and temperature directly above the 

substrate within each sampling quadrat. Sensors were calibrated the night before field sampling 

took place. I measured flow velocity at a point halfway between the surface and benthos in each 

quadrat using a Marsh-McBirney Flo-Mate™ (model 2000) flowmeter. A qualitative benthic 

substrate analysis (percentage) was done within each 0.25 m
2
 x 0.25 m

2
 quadrat for substrate 

types, and included: cobble, gravel, zebra mussel hash, and sand.   

Laboratory Procedures 

I used an elutriation method to separate most of the macroinvertebrates from the residual 

substrate collected. A sample was poured into a tray and 2 – 4 cm of water was added, depending 

on the amount of substrate in the sample. The sample was gently mixed by hand until most 

organic particles were suspended in the water. The suspension was then gently decanted from the 

tray through a 212-µm sieve. This process was repeated a total of four times to remove most 

macroinvertebrates from the substrate. The substrate was then examined under a Nikon 

SMZ1500 dissecting scope to remove zebra mussels and any macroinvertebrates that may have 

clung to the substrate. The macroinvertebrates were identified to the lowest level reasonable, 

usually to order or family; Hydropsychid caddisflies were identified to genus (using Merritt et al. 

2008), because hydropsychids accounted for a significant portion of the community. Samples 

were analyzed using a Nikon SMZ1500 dissecting scope. Zebra mussels were counted and 

assigned to one of three size categories: small (≤7 mm); medium (7.01 – 13 mm); or large 
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(≥13.01 mm). Biomass of each zebra mussel size-category was then measured on a Mettler 

Toledo NewClassic MF scale that is accurate to thousandths of a gram.    

Community Indices and Statistical Analyses 

 For each quadrat, I calculated taxa richness, density, Shannon-Wiener diversity, and 

Pielou’s evenness index (eveness). Evenness and the Shannon-Wiener diversity index were 

calculated following the methods presented in Merritt and Cummins (2006). 

Regression analyses were performed to detect relationships between the total density of 

macroinvertebrates and densities of specific macroinvertebrate taxa, and zebra mussel densities 

or biomass. Total macroinvertebrate, Chironomidae, Simuliidae, and Turbellaria densities were 

log transformed to meet normality assumptions (Shapiro-Wilk test). Gastropod and amphipod 

data were normally distributed. I used a Spearman Rank correlation to analyze Oligochaeta 

density data, which could not be normalized. For all statistical tests, significance was judged at 

α=0.05. All analyses were done using R software, version 2.14.1 (R Development Core Team, 

2011). 

Multivariate canonical correspondence analysis (CCA) was used to evaluate relationships 

among macroinvertebrate taxa densities and zebra mussel biomass, dissolved oxygen, 

temperature, flow, and depth. Distance scaling was used to observe associations between the 

environmental vectors and macroinvertebrate taxa. Taxa included in this analysis were 

Turbellaria, Simuliidae, Hydropsychidae, Gastropoda, and Oligochaeta. The environmental 

variables used in the analysis were not correlated to one another (established using a matrix 

scatterplot). 
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RESULTS 

 A total of 35 macroinvertebrate taxa were found (excluding zebra mussels) in the thirteen 

samples. Sample richness ranged from 18 to 31 (Table 2). Shannon-Wiener Diversity values 

ranged from 1.119 to 2.185, and evenness values ranged from 0.387 to 0.742 (Table 2).   

However, the greatest taxa richness did not correspond to the highest diversity index value or 

greatest evenness (Table 2). 

Total macroinvertebrate density varied widely across sample quadrats ranging from 5024 

to 51,504 m
-2

, with an average density (±SE) of 16,689±3209 m
-2

 (Figure 2). In contrast, zebra 

mussel densities (Table 2, Figure 2) were less variable, ranging from 464 to 3424 m
-2

, with an 

average of 1319±217 m
-2

. Zebra mussel biomass (Table 2) ranged from 17.60 to 172.75 g·m
-2

, 

with an average biomass of 70.00±12.82 g·m
-2

. Zebra mussel density and zebra mussel biomass 

was significantly correlated (Spearman Rank test, =0.90, p<0.0001), however I have used both 

density and biomass in my analyses because some taxa were correlated with one term more than 

the other. There was no significant relationship between total macroinvertebrate densities (log 

transformed, excluding Simuliidae and Turbellaria, as they were found to be closely correlated 

with zebra mussels) and zebra mussel biomass (p=0.325, R
2
=0.087) (Figure 3a) nor between 

total macroinvertebrate density and zebra mussel density (p=0.172, R
2
=0.162) (Figure 3b).  

Excluding zebra mussels, five taxa accounted for the majority of the invertebrates 

collected during the study (see Figure 7). Chironomidae were most abundant, with densities 

ranging from 1440 to 31,472 m
-2

 and an average density of 10,227±2062 m
-2

. Simullidae were 

the second most abundant taxa, and had densities ranging from 208 to 6336 m
-2 

with an average 

density of 1139±449 m
-2

. Turbellarians ranged from 368 to 4320 m
-2 

with an average density of 

1050±288 m
-2

 whereas average Hydropsychidae density was 920±281 m
-2

 with densities ranging 
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from 144 to 3312 m
-2

.  Oligochaete density ranged from 160 to 3696 m
-2

 with an average density 

of 890±330 m
-2

.   

Total constrained variability explained with CCA was 74.2 %. The first two axes of the 

CCA explained 62.4% of the variability (Figure 4). Both axes were controlled by three main 

vectors: dissolved oxygen, flow, and zebra mussel biomass (Axis 1: eigenvalue=0.244, 48.2% of 

variation, Axis 2: eigenvalue=0.072, 14.1% of variation, Table 3). Axis 1 represents a gradient of 

increasing zebra mussel biomass and decreasing dissolved oxygen, depth and flow. Axis 2 was 

interpreted as a gradient of increasing dissolved oxygen and decreasing flow, depth and zebra 

mussel biomass. There seems to be an association between the zebra mussel biomass vector and 

Simuliidae (Figure 4). Hydropsychidae seemed to be loosely associated with dissolved oxygen.  

Dissolved oxygen had an inverse relationship with zebra mussel biomass; depth was uncorrelated 

with zebra mussel biomass (Figure 4). 

Of the five dominant taxa (see Figure 7), only one was significantly associated with zebra 

mussel density and/or biomass. There was a significant positive linear relationship between 

Turbellaria density and both zebra mussel biomass (p=0.004, R
2
=0.543) and zebra mussel 

density (p=0.0002, R
2
=0.720) (Figure 5). There was a non-significant positive linear relationship 

between Simuliidae abundance and zebra mussel biomass (p=0.055, R
2
=0.294) as well as zebra 

mussel density (p=0.053. R
2
=0.298) (Figure 6). Chironomidae and Hydropsychidae densities had 

no relationship with zebra mussel biomass (p=0.351, p=0.992) or zebra mussel density (p=0.220, 

p=0.908). Oligochaeta likewise had no significant correlation with zebra mussel density 

(p=0.799, = 0.079) or zebra mussel biomass (p=0.816, =0.071). 

Amphipods and Gastropods were not considered common taxa during this study, 

although they are commonly correlated with zebra mussels. Amphipods showed no significant 
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relationship with zebra mussel density (p=0.647, R
2
=0.019) or zebra mussel biomass (p=0.888, 

R
2
=0.001), but both tests showed a slight negative trend. Gastropoda had a positive but non-

significant relationship with zebra mussel biomass and density (p=0.234, p=0.088 respectively). 

There was also no relationship between algal biomass and zebra mussel biomass (p=0.870) or 

density (p=0.787). 

Relative abundance of the five dominant taxa also varied across sample sites (Figure 7).  

Chironomidae accounted for the greatest proportion of individuals in all samples ranging from 

28% (Sample 11) to 75% (Sample 1). Turbellaria comprised 2% (Sample 4) to 26% (Sample 11) 

of samples. Hydropsychidae abundances ranged from 1% (Sample 4) to 15% (Sample 12). 

Oligochaetes composed 1% (Sample 3) to 21% (Sample 4) of samples. Simuliidae abundances 

ranged from 1% (Sample 2) to 12% (Sample 13). There was no obvious visual relationship 

between the relative abundance of the five dominant macroinvertebrate taxa and zebra mussel 

density (Figure 7).   
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DISCUSSION 

Previous studies have generally identified changes in macroinvertebrate communities in 

response to the introduction of zebra mussels.  The intent of this study was to evaluate the 

relationship between macroinvertebrate communities and the abundance of zebra mussels more 

than 10 years after initial colonization by zebra mussels.  Zebra mussel populations in the 

Muskegon River have entered a cyclic phase, shifting from relatively high to relatively low 

densities.  It appears that this study was conducted when zebra mussels were at a relatively low 

population density.   I found only a weak association between zebra mussel density (or biomass) 

and macroinvertebrate densities, thus, they may have little to no clear influence on 

macroinvertebrates at low population densities.  Indeed, at low zebra mussel densities, substrate 

composition and other environmental factors may be more important in determining 

macroinvertebrate community density and composition in the Muskegon River. 

Total macroinvertebrate density had no significant relationship with zebra mussel density 

or biomass (Figure 3), which contrasts with results of other studies. Increases of total 

macroinvertebrate densities in zebra mussel beds are common and have been observed in many 

studies in both rivers and lakes (Botts et al., 1996; Horvath et al., 1999; Strayer et al., 1999; 

Mayer et al., 2002; Ward and Ricciardi, 2007). For example, Horvath et al. (1999) found 

significantly greater abundances of macroinvertebrates on higher (1000 m
-2

) zebra mussel 

density rocks, than on lower densities in Christiana Creek, MI. However, Christiana Creek’s 

substrate is composed mostly of sand and small gravel so the addition of zebra mussel covered 

rocks added a great deal of stable substrate allowing a strong reaction from the 

macroinvertebrates in the river (Horvath et al., 1999). Conversely, the substrate in the Muskegon 

River has been stable, and composed mostly of cobble, gravel, and boulders pre- and post-zebra 
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mussel invasion, which may have explain the diminished response of some macroinvertebrates to 

zebra mussels.   

There were five dominant taxa present in the Muskegon River at my sample reach, as 

compared to three taxa in Christiana Creek, MI. In my study reach, Chironomidae was the most 

abundant taxa present, and Simuliidae had extensive numbers as well (Figure 7). In contrast, 

within Christiana Creek, MI, Hydridae, Trichoptera, and Gastropoda were the most abundant 

taxa present in zebra mussel beds, while Simuliidae was a rare species (Horvath et al., 1999). 

There are ample differences between Christiana Creek and Muskegon River.  For example, the 

zebra mussel beds added a lot of solid substrate to the unstable benthos of Christiana Creek. 

Outside of the zebra mussel beds on the benthos, Christiana Creek had a substrate consisting of 

small gravel and depositional sediments (such as sand) (Horvath et al., 1999), whereas in the 

Muskegon River, the substrate was mostly gravel, cobble, and boulders. Other differences 

include the size of the rivers; Christiana Creek had a channel width of 15 m, and had discharge 

of 2.0 m
3
/s (Horvath et al., 1999), while the Muskegon River had an average discharge of 52.5 

m
3
/s (on the sample date), and had a channel width of 78 meters. The physical differences 

previously mentioned, as well as others such as canopy cover (Hawkins et al., 1982), salinity 

(Piscart et al., 2005), and human activity (Woodcock and Huryn, 2006; Yates and Bailey, 2010)  

between streams such as Christiana Creek and Muskegon River, will accommodate different 

macroinvertebrate communities. Nevertheless, Horvath et al., (1999) did find similar patterns 

with higher macroinvertebrate abundance with increasing zebra mussel abundance.  The data 

presented in this study revealed that most macroinvertebrate taxa in this sample location on the 

Muskegon River tended to increase (although most increases were not significant) at a certain 



45 

 

point with zebra mussel density or biomass. However, more samples would help broaden the 

range of macroinvertebrate and zebra mussel densities. 

Zebra mussels create a large amount of organic matter through their daily metabolic 

activities, creating layers of feces and pseudofeces in the bed. Many filter-feeding and detrital-

feeding macroinvertebrates are able to use the mussels’ waste as an abundant food-source 

(Ricciardi et al., 1997; Gergs and Rothhaupt, 2008a). Predatory taxa also utilize the zebra mussel 

beds for a high density of prey items to feed on (Stewart et al., 1998). Zebra mussels emit 

kairomones, which may attract some macroinvertebrate taxa (Gergs and Rothhaupt, 2008b). 

Both the biotic and physical factors in a zebra mussel bed add important complexity to 

benthic substrates and can lead to increases in macroinvertebrate taxa richness, diversity, and 

density (Ricciardi et al., 1997; Thayer et al., 1997; Stewart et al., 1998; Ward and Ricciardi, 

2007). Every waterbody is different, however there are some common taxa that seem to adapt to 

zebra mussel beds.  Botts et al. (1996) found that turbellarians, amphipods, chironomids, 

oligochaetes, and hydrozoans increased when zebra mussel shells (dead or alive) were present. 

Thayer et al. (1997) observed more of an increase in oligochaetes and crustaceans in enclosed 

ponds with zebra mussels than ponds without zebra mussels. In a meta-analysis of 47 sites, Ward 

and Ricciardi (2007) discovered that after a zebra mussel invasion, the most common taxa to 

increase in density were Hirudinea, Turbellaria, and Ephemeroptera. 

In this study, Turbellaria was the only taxa to significantly increase with zebra mussel 

density/biomass (Figure 5). Simuliidae densities had a p-value close to α with both zebra mussel 

densities and biomass, which may indicate an ecological significance even if the tests are not 

statistically significant. An abundant food source is likely the reason that these taxa were able to 

flourish in the zebra mussel beds.  Fuller et al. (1988) found that bacteria growing in organic 
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matter were an important energy source for Simulium vittatum, allowing it to grow and complete 

its life cycle in a very short time. The predatory Turbellaria thrives in zebra mussel beds because 

the beds allow for abundant prey and a refuge from other predators (Stewart et al., 1998).  

Many past studies have found a positive relationship between amphipod densities and 

zebra mussel densities (Ricciardi et al., 1997; Stewart et al., 1998; González and Downing, 1999; 

Gergs and Rothhaupt, 2008b). However, the current study found low numbers of amphipods in 

all samples and they were shown to have no significant interaction with zebra mussels. Because 

of the diversity of microhabitats in the Muskegon River, these findings should not be 

extrapolated to other areas unless sites are similar in substrate and flow to my sample area. 

The increase of Turbellaria (and Simuliidae although not significantly) associated with an 

increase in zebra mussel density/biomass could have trophic ramifications. Prior to ZM invasion, 

steelhead parr were found to consume mainly amphipods (41.8%), and trichopterans (26.6%), of 

which most were hydropsychids (17.3%), and other groups (14.3%) which were mainly 

cladocerans, terrestrial items, and unidentifiable items (Giuliano, 2011). Parr diet post-mussel 

invasion (2003) changed to mainly dipterans (50.1%, which were mainly chironomids), 

amphipods (30.4%), and ephemeropterans (7.2%) (Giuliano, 2011). Turbellaria were not a part 

of the steelhead parr diet at all either pre- or post-zebra mussel invasion, and although dipterans 

are a large part of parr diet, simulids seem to be a small portion. However, Giuliano (2011) 

sampled during a different season (summer, fall) from this study (winter), which may account for 

differences in abundance of taxa.  

An ecological threshold may exist within the Muskegon River between the 

macroinvertebrate and zebra mussel communities. An ecological threshold is a turning point in 

an ecosystem where small changes in the environment (such as a certain density of zebra 



47 

 

mussels) will produce large responses (such as the sudden increase in macroinvertebrate 

densities) in the surrounding area (Groffman et al., 2006). There was no apparent effect of zebra 

mussel densities affecting the macroinvertebrate densities until zebra mussel densities were 

approximately 1.5 times greater than the next highest zebra mussel density (Figure 2). This could 

denote that until the density of zebra mussels is approximately 3500 per m
2
, or have a biomass of 

approximately 178 g·m
-2

 that the macroinvertebrate community may not have any (or a muted) 

response to the changes in the habitat in the Muskegon River.  This threshold effect is suggested 

by one high-density sample (Sample 13), and is problematic for making more general 

conclusions about the river. 

Macroinvertebrates in Christiana Creek, MI seemed to have a threshold response in zebra 

mussel beds; macroinvertebrate densities had no significant difference on control (0 zebra 

mussels), low (200 mussels   m
-2

), and medium (500 mussels m
-2

) zebra mussel densities 

(Horvath et al., 1999). However, macroinvertebrate response to high zebra mussel densities 

(1000 mussels m
-2

) were significantly different from the other treatments (Horvath et al., 1999), 

and may have shown an ecological threshold in Christiana Creek. 

Continuing research will be necessary to improve and clarify the patterns seen in this 

study. Additional quadrat samples from the study area on the Muskegon River would help to 

define macroinvertebrate communities in more detail. More quadrat samples with high zebra 

mussel density (3500 per m
2
 or greater) would aid in identifying an ecological threshold between 

zebra mussels and macroinvertebrates in the Muskegon River. The use of other sampling areas, 

although not comparable to each other, would assist in illustrating if these relationships occur all 

over the Muskegon River or are unique to one area. Sampling in a different season (such as 
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summer and fall) in the same sampling area may produce different abundances of taxa, which 

may produce different relationships.   

Conclusions 

The macroinvertebrate communities in the Muskegon River have changed through time 

from pre- to post-zebra mussel invasion, and may continue to change and affect the trophic 

dynamics of the river. My analyses have shown that even at relatively low densities, zebra 

mussels in the Muskegon River may influence some macroinvertebrate taxa. Turbellarian 

densities had a significant positive relationship with both zebra mussel densities and biomass. 

Simuliidae had a positive but non-significant relationship with zebra mussel biomass and 

density, but still may have ecological significance. There was a non-significant positive 

relationship between Gastropoda and zebra mussel biomass and density. Amphipods, 

chironomids, hydropsychids, and algae had no relationship with either zebra mussel density or 

biomass.  Five macroinvertebrate taxa dominated the zebra mussel substrate in my sample site in 

the Muskegon River: Chironomidae, Simuliidae, Oligochaeta, Hydropsychidae, and Turbellaria. 

An ecological threshold may exist in the Muskegon River between zebra mussel densities and 

macroinvertebrate densities; however, only one sample (Sample 13) is responsible for this 

potential threshold and more samples would help to clarify this relationship.  
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Table 1. Physical and chemical characteristics of macroinvertebrate sample locations on the 

Muskegon River, near Croton, MI. Samples were taken on December 1, 2011. Depth is in (m), 

Flow is in (m·s
-1

), Temp is temperature (°C), Cond is conductivity (µS·cm
-1

), DO% is percent 

dissolved oxygen, DO mg is dissolved oxygen concentration (mg·L
-1

). 

 

Sample Depth Flow Temp Cond pH DO% DO mg 

1 0.396 0.30 6.31 0.381 8.02 101.9 12.55 

2 0.396 0.46 6.57 0.377 7.31 107.5 13.16 

3 0.366 0.41 7.57 0.377 8.31 108.5 14.16 

4 0.305 0.45 6.66 0.377 7.31 106.0 12.93 

5 0.411 0.49 6.52 0.378 7.51 103.3 12.66 

6 0.366 0.51 6.66 0.377 7.35 101.1 12.36 

7 0.427 0.51 6.57 0.378 7.41 100.3 12.30 

8 0.366 0.37 6.57 0.377 7.28 103.7 12.70 

9 0.366 0.40 6.62 0.377 7.28 105.5 12.89 

10 0.472 0.36 6.36 0.380 7.62 98.8 12.16 

11 0.427 0.46 6.32 0.381 7.80 98.7 12.17 

12 0.442 0.53 6.61 0.377 7.39 104.0 12.71 

13 0.335 0.41 6.67 0.377 7.36 101.3 12.39 

Mean±SE 0.390±0.01 0.435±0.01 6.616±0.09 0.378±0.0 7.535±0.09 103.12±0.87 12.70±0.15 
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Table 2. Richness (R), Shannon-Wiener Diversity Index (H’), Evenness (J) values for 

macroinvertebrates (excluding zebra mussels) in each sample taken from the Muskegon River, 

December 2011. Zebra mussel density (m
-2

), and zebra mussel biomass (g·m
-2

) are given for 

each sample. Sample numbers correspond to Figure 2. 

 

Sample R H' J ZM Density ZM Biomass 

1 18 1.119 0.387 464 17.60 

2 24 2.134 0.672 464 18.59 

3 23 1.838 0.586 608 37.22 

4 22 1.409 0.456 848 18.62 

5 22 1.668 0.540 1072 57.36 

6 24 1.813 0.570 1104 67.12 

7 22 1.358 0.439 1120 43.20 

8 23 1.307 0.417 1248 107.31 

9 24 1.524 0.479 1600 60.56 

10 21 1.667 0.548 1680 116.26 

11 19 2.185 0.742 1696 91.38 

12 23 1.722 0.549 1824 102.05 

13 31 1.343 0.391 3424 172.75 

Mean±SE 22.8±0.86 1.622±0.09 0.521±0.03 1319.4±217.49 70.00±12.82 
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Table 3. Biplot scores of the vectors used in the canonical correspondence analysis. 

 

Vector CCA 1 CCA 2 

ZM Biomass 0.3819 -0.3121 

Algae 0.0665 0.1672 

Depth -0.5295 -0.8083 

Flow -0.3066 -0.1205 

DO -0.7020 0.6489 
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Figure 1. Macroinvertebrate sampling location on the Muskegon River in Croton, MI, 

approximately 600 river meters below Croton Dam. 
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Figure 2. Total macroinvertebrate density (bars, left axis) and zebra mussel density (right axis) 

for thirteen samples collected from the Muskegon River near Croton, MI.  Samples were 

collected December 1, 2011. 
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Figure 3. Regression plots of zebra mussel biomass (g·m
-2

) (A) and density (m
-2

) (B) against log-

transformed total densities of macroinvertebrates. Simuliidae and Turbellaria densities were 

excluded from these regressions. Samples were collected from the Muskegon River near Croton, 

MI on December 1, 2011. 
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Figure 4. Canonical correspondence analysis (CCA) of taxa abundance and environmental 

variables. Data are from the Muskegon River on December 1, 2011. The taxa included are: 

Gastropoda (Snails), Oligochaeta (Oligo), Turbellaria, Simuliidae, and Hydropsychidae (Hydro). 
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Figure 5. Regression plots of zebra mussel biomass (g·m
-2

) (A) and density (m
-2

) (B) against log-

transformed densities of Turbellaria. Samples were collected from the Muskegon River near 

Croton, MI on December 1, 2011. 
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Figure 6. Regression plots of zebra mussel biomass (g·m
-2

) (A) and density (m
-2

) (B) against log-

transformed densities of Simuliidae. Samples were collected from the Muskegon River near 

Croton, MI on December 1, 2011. 
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Figure 7. Relative abundance (bars) of the five dominant taxa found in the thirteen samples from 

the Muskegon River (left axis), and zebra mussel density in each sample is also shown as a line 

plot (right axis). Samples were collected on December 1, 2011 from the Muskegon River near 

Croton, MI. 
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CHAPTER III 

 

MACROINVERTEBRATE COMMUNITIES IN THE MUSKEGON RIVER, MI AND IN 

BIGELOW CREEK, A COLD-WATER TRIBUTARY 

 

ABSTRACT 

 Macroinvertebrate communities have shifted in richness, density, and diversity in the 

Muskegon River since 1998. The invasion of zebra mussels (Dreissena polymorpha) in the early 

2000s has changed the Muskegon River drastically, leading to water clarification, substrate 

alterations, as well as a reduction and taxa modification of plankton. To distinguish some of the 

variation that has occurred in the macroinvertebrate community since 1998, both Hess and five-

rock cluster sampling methods were used at six sample sites on the Muskegon River and two 

sample sites on Bigelow Creek, a cold-water tributary, for both summer and fall seasons. 

Macroinvertebrate community richness, EPT richness, Shannon-Wiener diversity, and evenness 

were calculated for each site, as well as zebra mussel densities.  Hydropsychidae and 

Cheumatopsyche increases in the Muskegon River were the driving taxa in community changes 

from 1998 to 2011. In Bigelow Creek a shift in the taxa from Protoptila and Hydropsychidae to 

Baetidae and Simuliidae were responsible for the shift from 1998 to 2011. 

 

 

 

 

 

 



67 

 

INTRODUCTION 

 Aquatic macroinvertebrates are one of the most pervasive and ecologically diverse 

groups in freshwater systems; they encompass many different phyla including Mollusca, 

Arthropoda, Platyhelminthes, Annelida, and Nematoda. They are adapted to a range of aquatic 

ecosystems and contribute significantly to the structure and function of aquatic systems. 

Specifically, macroinvertebrates are found at multiple trophic levels and play a key role in 

processing organic matter. In some systems, macroinvertebrates may influence the structure of 

communities by functioning as a keystone species, and often facilitate the transfer of energy 

from primary producers to higher trophic levels. Recognizing the importance of 

macroinvertebrates, aquatic ecologists have placed a premium on understanding the role of 

macroinvertebrates in streams (Merritt and Cummins, 2006). 

 Due to their relative importance and their sensitivity to environmental factors, 

macroinvertebrates are often used as indicators of stream condition; as some taxa are quite 

intolerant of change, they can show degradation of habitat or habitat loss that other methods may 

not identify. Thus, macroinvertebrates may serve as surrogates for stream condition and many 

commonly used metrics (including functional feeding groups and EPT richness among others) 

have been developed (Barbour et al., 1999).  

Numerous factors may cause shifts in macroinvertebrate communities.  Changes in water 

quality, impoundments, loss of riparian vegetation, and exotic species have all been shown to 

alter macroinvertebrate communities (Lehmkuhl, 1979; Cummins and Klug, 1979; Quinn and 

Hickey, 1990; Leland and Fend, 1998; Lessard and Hayes, 2003; Santucci Jr. et al., 2005; 

Correia and Anastácio, 2008; Huff et al., 2008; Takao et al., 2008; Growns et al., 2009; Rosin et 

al., 2009; Kokeš, 2011).  For example, the introduction of zebra mussels into the Muskegon 
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River corresponded to a decline in some invertebrate taxa such as Chironomidae and 

Hydropsyche, but led to a rise in Cheumatopsyche (Luttenton et al., 2006). Stewart et al. (1998) 

found that the three-dimensional habitat created by zebra mussels was important for the rise of 

certain macroinvertebrate taxa such as Dugesia, Gammarus, and Hydridae, but the organic 

matter created by the mussel beds was essential for other taxa such as Physella, and 

Microtendipes. In the Hudson River, New York, the benthic communities declined shortly after 

zebra mussels invaded (approximately 1990) (Strayer et al., 2011).  

Streams, however, streams are often impacted my multiple factors. For example, the 

Muskegon River, Michigan has experienced numerous changes during the past 150 years. The 

legacy of several factors (logging, development, impoundments) continues to influence this 

system. In addition, several exotic species such as sea lamprey (Petromyzon marinus), rusty 

crayfish (Orconectes rusticus), spiny water flea (Bythotrephies cederstromii), curly pond weed 

(Potamogetan crispus), and Eurasian water milfoil (Myriophyllum spicatum) have become well-

established members of the benthic community (Luttenton, personal observation). Unfortunately, 

pre-disturbance or pre-introduction data is not available for these factors, so estimating the 

overall impacts is difficult. 

More recently, the introduction of new invasive species may complicate this already 

complex aquatic community. Specifically, zebra mussels (Dreissena polymorpha) were 

discovered below Croton Dam in 2000 (Luttenton et al. 2006) and round gobies (Neogobius 

melanostomus) were discovered in the Muskegon River below Croton Dam in 2011 (personal 

observation). In addition, the operators of Croton Dam (Consumers Energy) modified dam 

operation to reduce thermal loading below the dam. Fortunately, data collected just prior to the 
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discovery of zebra mussels (2000) are available (Godby, 2000) and provide the opportunity to 

compare pre-invasion and post-invasion invertebrate communities.  

The objectives of this study were to characterize current macroinvertebrate communities 

in the Muskegon River (altered) and Bigelow Creek (relatively unaltered) and to compare current 

macroinvertebrate communities to those present during the late 1990’s (Godby, 2000). These 

data provide a unique opportunity to compare macroinvertebrate communities following several 

environmental changes over a relatively short temporal scale. 
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METHODS 

Study Area 

 The Muskegon River watershed extends from mid-central to west central Michigan and 

incorporates about 6086 km
2
 of land (Figure 1). The Muskegon River originates at Houghton 

Lake and Higgins Lake, and flows 341 km to Lake Michigan making it the second longest river 

in the state (O’Neal, 1997).  With a drowned river mouth lake (Muskegon Lake) at its mouth, 

and roughly 94 tributaries, the Muskegon River system exhibits an extraordinary array of aquatic 

habitats (O’Neal, 1997).  There are three hydroelectric dams in succession on the Muskegon 

River; Rogers Dam is the most upstream, then Hardy Dam, and finally Croton Dam.  Croton 

Dam blocks the upstream movement of resident fish as well as adfluvial fish. 

The study reach for this project extended about 22.5 km, and is located from Croton Dam 

on the Muskegon River to the town of Newaygo, at Henning Park (official name Ed H. Henning 

County Park) (Figure 1).  This section of the Muskegon River reach has been divided into six 

strata based on a 1989 principal components analysis of stream substrate and riparian vegetation 

(Icthyological Associates, 1991, as used by Godby, 2000). The strata are defined as distinct 

habitats within the Muskegon River (Table 1) (Icthyological Associates, 1991, as used by 

Godby, 2000).  Through this section the Muskegon River is approximately 50 meters wide and 

had an annual mean discharge of 48 m
3
·s

-1
 in 2011 below Croton Dam. In the summer (June, 

July, August) the mean discharge was 49 m
3
·s

-1
, and in the fall (September October, November) 

the mean discharge was 44 m
3
·s

-1
. The physical and chemical characteristics (temperature, pH, 

conductivity, etc.) varied slightly among Muskegon River sample sites (Table 2). I also sampled 

Bigelow Creek, a small cold-water tributary of the Muskegon River that connects to the main 

channel just above the town of Newaygo (Figure 1). Bigelow Creek is approximately 5.3 meters 
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across on average and had a discharge of 2 m
3
·s

-1
 (high-water) in late October 2011 at the mouth. 

The upstream site was dominated by sand, whereas the downstream site was dominated by 

gravel (Table 3). The riparian zone is intact at both sites and there are many areas of large woody 

debris in the stream. The upstream section of Bigelow Creek was warmer than the downstream 

section during the summer sampling period (Table 4). 

Field Sampling 

 Macroinvertebrates were collected at six sites in the Muskegon River and two sites in 

Bigelow Creek (Figure 1). Muskegon River sites were partitioned between the 6 strata with one 

site in strata 1 (at the Croton boat launch), one site at the boundary between strata 1 and strata 2 

(above the Pine Street access), two sites in strata 4 (upstream and downstream of the Thornapple 

access), and 2 sites in strata 5 (upstream and downstream of Henning Park).  All Muskegon 

River sites were located in riffle areas. Bigelow Creek sites were located at 58
th

 street, and at the 

mouth. Invertebrate communities were sampled during summer (late July to early August) and 

again in fall (early October to early November). Sampling sites and seasons correspond to the 

sample regime used by Godby (2000). 

Macroinvertebrate samples were collected at each sample site following the protocol 

outlined by Godby (2000). I collected three replicate benthic invertebrate samples with a 33.5cm 

diameter Hess sampler (sample area of 0.881 m
2
) with a 242 µm net at each of the 6  Muskegon 

River sites, (one in Stratum 1, one in Stratum 2, two in Stratum 4, and two in Stratum 5) and the 

two sites in Bigelow Creek on both sampling dates. Invertebrates were dislodged by disturbing 

the sediment and rocks to a two centimeter depth inside the sampler. In addition, three replicate 

five-rock cluster samples were collected at each of the six sampling sites. A 150 μm mesh D-

frame net was placed downstream while each rock was retrieved so any invertebrates dislodged 
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from the substrate would be caught. All macroinvertebrates, zebra mussels, and algae were 

removed from the rocks using forceps, and preserved in 95% ethanol. Chosen rocks were then 

washed with 95% ethanol over a 212 µm sieve to ensure all macroinvertebrates were removed 

from the rock. After picking, the rock clusters were placed into individual labeled bags.  

A YSI multiparameter sonde (model 556 MPS) was used to measure dissolved oxygen 

percent and concentration, pH, conductivity, and temperature at each of the macroinvertebrate 

sampling sites. Flow velocity was measured at each sampling site using a Marsh-McBirney Flo-

Mate™ (model 2000) portable flow meter.  

Laboratory Procedures 

 I used an elutriation method to separate macroinvertebrates from the substrate collected 

with the Hess samples. A sample was poured into a tray and 2-4 cm of water was added, 

depending on the amount of substrate in the sample. The sample was gently disturbed by hand to 

suspend particles and macroinvertebrates in the water. The suspension was then gently decanted 

from the tray through a 212-µm sieve, with as little substrate as possible going into the sieve. 

This process was repeated a total of 4 times to remove most macroinvertebrates from the 

substrate. The remaining substrate was then examined microscopically to remove zebra mussels 

and any remaining macroinvertebrates. The macroinvertebrates were then identified to the lowest 

practical taxonomic level (using Merritt et al. 2008) and counted using a Nikon SMZ1500 

dissecting scope. Rock surface areas were calculated using the aluminum foil method described 

in Lamberti et al. (1991). 

Density, Diversity Indices, and Taxa Richness 

 Densities of each taxon were estimated for both the Hess samples and rock cluster 

samples. The sample method that generated the highest density estimate for a given taxon was 
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then used to calculate total density (sample n=3). Generally, Hess samples were used to estimate 

the density of large, rare taxa and rock cluster samples were used to estimate smaller, common 

taxa. Macroinvertebrate densities, richness, diversity indices, and evenness were calculated using 

these estimates and are referred to as ‘density’, ‘richness’, ‘diversity’ or ‘evenness’ respectively 

in the tests where they are used. For each sample site and season, taxa richness, common taxa 

percentage, density, EPT (Ephemeroptera, Plecoptera, Trichoptera) richness, EPT index, 

Shannon-Wiener diversity, and Pielou’s evenness index (evenness) were calculated.  The 

Shannon-Wiener diversity index (Hˈ) and evenness (J) were calculated following the methods 

presented in Merritt and Cummins (2006).  I also determined the common taxa richness (CTR) of 

each site.  I have defined CTR as the number of taxa that had ≥5% relative abundance at a site, as 

the few dominant taxa provided almost all of the percent composition. Taxa were considered to 

be rare if they accounted for <5% relative abundance. 

EPT analyses followed methods described in Merritt and Cummins (2006). These 

analyses are based on the presumption that a high-quality aquatic system should have higher 

counts of Ephemeroptera, Plecoptera, and Trichoptera than a low quality system. The EPT 

richness is the total number of Ephemeroptera, Plecoptera, and Trichoptera species in each 

sample. The EPT index is calculated by dividing the EPT richness by the total species richness in 

a sample.  

Functional Feeding Group Metrics 

 The ecological function of river systems can be characterized by assigning each 

macroinvertebrate taxon to a functional feeding group (FFG) (Barbour et al. 1999, Merritt and 

Cummins 2006, and Merritt et al. 2008). I chose to use the method outlined by Merritt and 

Cummins (2006) to categorize taxa into FFG. Although this method uses more general categories 
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than alternative methods (Barbour et al. 1999, Merritt et al. 2008), it provided a sufficient level 

of detail for this study (as I was looking for general trends of the macroinvertebrate communities 

in Muskegon River and Bigelow Creek), even if it resulted in a small reduction in resolution. 

This method distinguishes four main groups including: scrapers, collectors, predators, and 

shredders. Thus, I combined filterer-collectors and gatherer-collectors into the collector group 

and I combined scrapers and piercers into the scraper group. I used FFGs to assess several stream 

attributes including the autotrophy to heterotrophy index, where a stream is considered 

autotrophic if the ratio of scrapers to shredders and total collectors is greater than 0.75. The 

coarse particulate organic matter (CPOM) to fine particulate organic matter (FPOM) index was 

calculated as the ratio of the abundance of shredders to the abundance of collectors. The criterion 

value for the spring to summer months is greater than 0.25, and in the fall to winter months the 

criterion value is greater than 0.5. I calculated the suspended to stored FPOM index using the 

ratio of filtering collectors to gathering collectors. When transport of FPOM exceeds deposited 

FPOM the index value is >0.5. Channel stability was also characterized from the ratio of scrapers 

and filtering collectors to shredders and gathering collectors.  The benthic substrate is considered 

stable if the ratio is greater than 0.50. I also examined top-down predator control in the system, 

where a normal predator-to-prey (all other FFG groups) ratio is between 0.10 – 0.20.  

Statistical Analyses 

 I used regression analysis to determine relationships for combined sample seasons 

between Muskegon River macroinvertebrate density, zebra mussel density, and distance from 

Croton Dam. Data were first fit to a linear model, but if the data did not fit a linear relationship, a 

quadratic regression was used. All samples (Hess and rock cluster, sample n=6) were used for 

the macroinvertebrate density and distance from Croton Dam regression. 
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 I also analyzed for differences among sites and seasons using one-way or two-way 

ANOVAs, or their nonparametric test equivalent if data did not meet normality or variance 

parameters.  Variables included: mean macroinvertebrate densities, Chironomidae densities, and 

Hydropsychidae densities, zebra mussel densities, and EPT richness. Chironomidae and 

Hydropsychidae densities were log transformed to meet normality assumptions. T-tests, or their 

nonparametric test equivalents were used to compare Muskegon River and Bigelow Creek 

macroinvertebrate communities.  

A goal of the current study was to compare macroinvertebrate community structure 

during 2011 to that reported by Godby (2000).  Regression analyses were used to compare 

relationships between 1998 and 2011 seasonal all-sample macroinvertebrate densities, combined 

season taxa richness, and distance downstream from Croton Dam. For regressions comparing 

1998 samples (Godby 2000) and 2011 samples, I included both sample types as replicates (Hess 

and rock cluster, sample n=6). These analyses are labeled as ‘all sample’ in each figure or table 

legend whenever it is used.  It is important to note that this approach differs from how Godby 

(2000) presented this information. T-tests (or non-parametric alternatives) were used to compare 

seasonal Chironomidae and Hydropsychidae densities in the 1998 and 2011 samples. A 

multivariate non-metric multidimensional scaling analysis (NMDS) test was used to investigate 

differences in macroinvertebrate communities collected from the Muskegon River and Bigelow 

Creek by Godby (2000) and during the current study. All macroinvertebrate taxa densities in 

both studies were used with the exception of zebra mussels and Chironomidae. Chironomidae 

were excluded because their abundance obscured differences among sites. The NMDS was 

performed using Bray-Curtis distance measures, and 999 iterations. I used two dimensions in my 

analysis, as a stress plot showed that stress was not reduced significantly with more than two 
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dimensions. A multivariate ANOVA post-hoc test (adonis, 5000 permutations) was performed to 

analyze differences in macroinvertebrate community composition between sampling years. A 

similarity percentage (SIMPER) post-hoc test was performed if the adonis test was significant. A 

SIMPER test evaluates the percent contribution of dissimilar taxa to the percent contribution of 

similar taxa between samples, and calculates an average. Taxa with the largest average to 

dissimilarity ratios are responsible for the observed differences between samples (Quinn and 

Keough, 2002). There were too many possible crosses in the SIMPER test to include all of the 

sites for both years, so the upper site (Croton) and lower site (Henning DS) on the Muskegon 

River, for both sample years, were chosen for the test.  
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RESULTS 

Muskegon Macroinvertebrate Communities 

There was a significant negative linear relationship (p=0.046, R
2
=0.671) between 

macroinvertebrate density and distance below Croton Dam when data for both seasons were 

combined (Figure 2). A two-way ANOVA indicated that there were significant differences 

between seasons (p<0.05, summer mean (±SE)  macroinvertebrate densities were 14804±2386 

m
-2

, fall mean macroinvertebrate densities were 199534±1918 m
-2

 ) and sites (p<0.05, 

macroinvertebrate densities ranged from 24887±4440 m
-2

 at the upstream site Croton to 

9679±2580 m
-2

 at Henning US), and the interaction between season and site was significant 

(p<0.05) (Table 5).   

Mean macroinvertebrate densities (excluding zebra mussels) varied among sample sites 

on the Muskegon River and in the summer, were highest (31,359 m
-2

) at the upstream site 

(Croton) with densities generally lower at mid-reach and downstream sites (Figure 3). Linear 

regression analysis of summer macroinvertebrate density and downstream distance was not 

significant (p=0.074, R
2
=0.589, Figure 4). A one-way ANOVA showed there were no significant 

differences among sites during summer (F5,12=2.668, p>0.05). 

In the fall, the highest (26,637 m
-2

) 
 
 mean macroinvertebrate densities (excluding zebra 

mussels) were generally at upstream and mid-reach sites and lowest (10,893 m
-2

) at downstream 

sites (Figure 3). The relationship between fall total invertebrate densities and distance from 

Croton Dam was not significant (linear regression, p=0.500, R
2
=0.120) (Figure 5). In addition, a 

one-way ANOVA indicated that differences among sites during fall (F5,12=1.382, p>0.2) were 

not significant. 
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 The combination of summer and fall samples yielded 74 total macroinvertebrate taxa 

found in the Muskegon River samples. There was a significant positive relationship (p=0.035, 

R
2
=0.707) between macroinvertebrate species richness and distance below Croton Dam for both 

sample seasons (Figure 6). Species richness ranged from 31 to 43 taxa during the summer, with a 

mean (±SE) of 37.5±1.7. During the fall, richness ranged from 36 to 55, and the mean species 

richness per site jumped to 44.5±2.8 (Table 6). Common taxa richness (CTR, taxa density > 5% 

of total  relative abundance) had a range of 3 to 6 in the summer and 2 to 5 in the fall, with  mean 

CTR slightly higher in the summer (4.66±0.42) than in the fall (3.5±0.50) (Table 6). 

Taxa diversity and evenness followed the same general pattern as taxa richness, with 

highest values at downstream sites and lowest values closer to Croton Dam. The upstream 

sample site at Henning Park had the greatest diversity and evenness throughout both seasons, the 

Croton site had the lowest during both seasons (Table 6). Shannon-Wiener Diversity index 

values and evenness values were similar in both the summer (ranging from 1.419 to 2.460) and 

fall (1.821 to 2.855) samples (Table 6).  The mean (±SE) Shannon-Wiener Index value was 

2.192±0.160 in the summer and 2.246±0.138 in the fall. Evenness values ranged from 0.413 to 

0.712; the mean evenness value for summer samples was 0.603±0.038, and the mean fall value 

was 0.591±0.028 (Table 6).   

The total EPT richness for the Muskegon River was 41, and the EPT index value was 

0.554, when both sample season data were combined. EPT richness increased in a downstream 

direction, although not significantly (linear regression p=0.091, R
2
=0.549, Figure 7). EPT 

richness was higher in the fall compared to the summer (two-way ANOVA, Tables 7 & 8). The 

greatest summer EPT richness and index values were observed at mid-reach sample sites 
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(Thornapple US) whereas the highest fall EPT richness and EPT index values were recorded at 

sites farthest downstream (Thornapple DS, Henning US, and Henning DS ) (Table 7).   

Average zebra mussel densities ranged from 0 to 6302.70 m
-2

 and were highest near 

Croton Dam (Croton sample site) regardless of season (Table 9). The two downstream sites 

(Henning DS and Henning US) had the lowest zebra mussel densities during summer and fall 

respectively (Table 9).  Mean zebra mussel density had a non-significant (p=0.063, R
2
=0.619) 

negative linear relationship with distance from Croton Dam. A quadratic regression was found to 

have a better fit, and a significant positive relationship (p=0.043, R
2
=0.876) with increasing 

distance from Croton Dam (Figure 8).  Zebra mussel densities were significantly different among 

sites (Kruskal Wallis, p=0.001), but a Mann-Whitney post hoc test (with Bonferroni correction) 

could not identify which sites differed.  Zebra mussel densities in the Muskegon River did not 

significantly differ between seasons (Kruskal Wallis, p=0.398). Mean total macroinvertebrate 

density had a significant (p=0.001, R
2
=0.946) logarithmic relationship with mean zebra mussel 

density, although this relationship appears to be driven by one sample point (Figure 9).  

Chironomidae and Hydropsychidae were the most abundant taxa during both seasons 

(Appendix A). Chironomidae mean density was highest during the summer, with the maximum 

mean densities closest to Croton Dam (Croton and Pine sites) (Figure 10). A one-way ANOVA 

on log-transformed Chironomidae densities indicated there were significant differences among 

sites during the summer (F5,11=14.93,  p<0.001). A Tukey’s HSD post hoc test using the summer 

data revealed significant differences between Croton and Thornapple US (p<0.001), Thornapple 

DS (p<0.001), Henning US (p<0.001), and Henning DS (p=0.002) as well as between Pine and 

Thornapple US (p=0.029), and Pine and Thornapple DS (p=0.013). The comparison between 

Pine and Henning US was not significant (p=0.055).  
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During fall, the mean densities of chironomids declined to almost half of the summer 

mean density with maximum mean densities shifting toward mid-reach and downstream sample 

sites (Thornapple DS, and Henning DS) (Figure 10). A one-way ANOVA on log-transformed 

Chironomidae densities reported significant differences among sites in the fall (F5,12=4.29,  

p<0.05). A Tukey’s HSD post-hoc test for fall data indicated significant differences between 

Croton and Henning US (p=0.028), Pine and Henning US (p=0.041), Thornapple DS and 

Henning US (p=0.039), and Henning US and Henning DS (p=0.020). A statistically significant 

difference was not found between Thornapple US and Henning US (p=0.078).   

Hydropsychidae mean densities were highest at upstream sites (Croton and Pine) in the 

Muskegon River (Table 10).  This pattern was observed for both summer and fall sampling 

seasons with summer values somewhat higher (Figure 11).  Although differences among sites 

were significant (two-way ANOVA, p<0.01, Table 10), a Tukey’s HSD test could not 

distinguish significant differences among sites. Separate one-way ANOVAs found that there was 

a significant difference among sites in summer (F5,11=4.436, p<0.05) but not fall (F5,12=1.396, p 

>0.10). A Tukey’s HSD post-hoc test for summer sites found that the Croton and Henning US 

sites were significantly different (p=0.036).   

Bigelow Creek Macroinvertebrate Communities 

Mean macroinvertebrate densities varied seasonally in Bigelow Creek. During summer, 

mean macroinvertebrate densities were highest at the downstream site (10,729 m
-2

) and lowest in 

the upstream site (4,350 m
-2

) (Figure 3). This pattern was reversed in the fall, with highest mean 

macroinvertebrate densities at the upstream site (9,534 m
-2

) and lowest densities at the 

downstream site (4,450 m
-2

) (Figure 3). Separate two-tailed t-tests found that there was no 

significant difference between seasons (p=0.871), or sites (p=0.681) on Bigelow Creek.  
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There were 58 total macroinvertebrate taxa found in Bigelow Creek, when summer and 

fall samples were combined. The upstream and downstream sites had approximately equal 

richness during both sampling periods (Table 11). The Bigelow Upstream site had a greater 

diversity and evenness in the summer sample season (1.722 and 0.496 respectively), 

Bigelow Creek had a total EPT richness of 37 and an EPT index value of 0.637. The 

Bigelow Downstream site had the greatest EPT richness and index value throughout both sample 

seasons (Table 12). EPT richness was significantly different between seasons (two-way 

ANOVA, p<0.05), but not between sites (Table 13). One-way ANOVAs showed no significant 

difference between sites in summer (F1,4=0.045, p=0.842) or fall (F1,4=0.729, p=0.441). 

Overall, Chironomidae and Hydropsychidae had the highest density in all samples 

compared to other taxa (Appendix A). Chironomid densities were not significantly different 

between sites in summer (Kruskal-Wallis, p=0.083) or fall (Kruskal-Wallis, p=0.275).  

Hydropsychidae densities followed the same pattern with no significant difference between sites 

in summer samples (Kruskal-Wallis, p=0.083) or fall samples (Kruskal-Wallis, p=0.275). 

Comparison of Macroinvertebrate Communities in the Muskegon River and Bigelow Creek  

Macroinvertebrate taxa density, richness, diversity, and EPT richness varied between 

Muskegon River (n=36) and Bigelow Creek (n=12), evenness values were similar. The 

macroinvertebrate densities between Muskegon River and Bigelow Creek were significantly 

different (two-tail t- test, p=0.001). Muskegon River macroinvertebrate richness was 

significantly different from Bigelow Creek macroinvertebrate richness for combined seasons 

(two-tail t-test, p=0.007). The Shannon-Wiener Diversity Index for the Muskegon River was 

significantly different from the Diversity Index of Bigelow Creek (two-tail t-test, p=0.018).  

There was a significant difference in EPT richness between the Muskegon River and Bigelow 
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Creek (two-tail t-test, p=0.006). Evenness values between the Muskegon River and Bigelow 

Creek had no significant difference (Welch’s t-test, p=0.342). 

Functional Feeding Groups 

Macroinvertebrate functional feeding groups indicated that most Muskegon River sites 

were autotrophic (>0.75 ratio value, Figure 12), with a mean combined season value of 0.814 

(based on the ratio of scrapers and shredders to collectors in the Muskegon River).This ratio 

implies that the Muskegon River’s base food supply comes largely from algae, plankton, and 

rooted vascular plants. The CPOM/FPOM index (the ratio of shredders to collector 

macroinvertebrates) values for the Muskegon River were much lower than the criterion values 

(>0.25 summer-spring, >0.50 fall-winter) for both sample seasons; the combined season mean 

for sites was 0.079. This value indicates that there are low amounts of CPOM and more FPOM 

in the river. The transported FPOM to benthic FPOM (TFPOM/BFPOM) ratio (the ratio of 

filtering to gathering collectors) indicated that there was a higher than normal loading of FPOM 

in suspension (>0.50 criterion value, mean combined season ratio of 0.777) in the Muskegon 

River. The large value indicates an abundance of FPOM in transport, and low benthic storage of 

FPOM in the Muskegon River. The FFG ratio index estimating channel stability  (the ratio of 

scrapers and filtering collectors to shredders and gathering collectors) determined that the 

Muskegon River had very stable substrates (>0.50 criterion value, mean combined season value 

of 2.001). Top-down predator trophic controls (predators to all other functional feeding groups) 

for most sites on the Muskegon River were within parameters (0.1≤ x ≤0.2 criterion value, mean 

combined season value of 0.162). However, the few sites that had above-normal criterion values 

for Muskegon River indicated that there were more predatory taxa to the prey taxa at those sites 

and seasons.  The ratio values within parameters indicate a nominal predator-prey ratio. 
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During the summer sampling season, the values for the P/R ratio in the Muskegon River 

ranged from 0.625 (Croton) to 0.928 (Henning DS), and were mostly autotrophic. The only sites 

that were not autotrophic were Croton (0.625) and Thornapple DS (0.684) during the summer 

season (Figure 12). The CPOM/FPOM ratios for the Muskegon River had a range of 0.055 

(Thornapple DS) to 0.076 (Henning DS) (Figure 13). The summer TFPOM/BFPOM Muskegon 

River values ranged from 0.50 (Croton, Thornapple US and DS) to 0.875 (Pine) (Figure 14). 

Muskegon River benthic channel stability ratios for the summer ranged from 1.363 (Croton) to 

2.375 (Henning DS) (Figure 15). The predator prey ratio in the Muskegon River had values 

ranging from 0.10 (Pine) to 0.272 (Henning US) (Figure 16). Only the Henning US (0.272) and 

Henning DS (0.25) were above the criterion values in the summer season.  

In the fall season, the Muskegon River P/R values ranged from 0.761 (Thornapple DS) to 

1.000 (Croton) (Figure 12).  The CPOM/FPOM values ranged from 0.066 (Thornapple US) to 

0.117 (Pine) (Figure 13), while the fall TFPOM/BFPOM values ranged from 0.666 (Croton) to 

1.0 (Thornapple US and DS, and Henning DS) for the Muskegon River (Figure 14). Channel 

stability ratios for fall ranged from 2.0 (Croton and Henning US) to 2.555 (Thornapple US) 

(Figure 15). Predator/prey ratios in the fall for the Muskegon River ranged from 0.076 (Pine) to 

0.209 (Henning US); Pine was the only site in the fall season that had low predator/prey values 

and was not in the criterion range (Figure 16).  

Bigelow Creek exhibited a heterotrophic state for both seasons and sites (<0.75 ratio, 

mean combined season value of 0.625). This ratio implies that the base food-supply for 

macroinvertebrate communities in Bigelow Creek comes from allochthonous input (such as leaf 

litter) from the riparian zone.  Bigelow Creek exhibited a below-typical CPOM/FPOM ratio, 

with a mean combined season value of 0.126; this value suggests that there are low food 
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resources from the riparian zone (CPOM), and more FPOM available in-stream, when the 

seasons were combined. Bigelow Creek had a high TFPOM/BFPOM loading value (>0.50 

criterion value, mean combined season value of 0.634). The large ratio value of transported to 

benthic FPOM indicates there is an abundance of FPOM in transport in Bigelow Creek, and a 

low abundance of benthic-stored FPOM.  Bigelow Creek had a stable substrate for 

macroinvertebrates to live in and cling onto (criterion value of >0.50, mean combined season 

value of 1.485). The overall predator/prey ratio in Bigelow Creek was slightly higher than the 

criterion value (0.10 to 0.20) with a mean combined season value of 0.244, suggesting that there 

were slightly more macroinvertebrate predators than prey taxa.  

In the summer sampling season, Bigelow Creek had heterotrophic P/R values of 0.470 at 

Bigelow US, while Bigelow DS had a value of 0.642, (Figure 12). Summer CPOM/FPOM FFG 

ratios were comparable for Bigelow Creek, with a value of 0.062 at Bigelow US and slightly 

greater downstream with a value of 0.076 at Bigelow DS (Figure 13).  Bigelow Creek had  high 

TPOM/BFPOM loading values during the summer samples, with the Bigelow US site having a 

value of 0.777, while Bigelow DS site had a value of 0.625 (Figure 14). Bigelow Creek had a 

benthic channel-stability summer value of 1.50 at Bigelow US, and 1.555 at Bigelow DS (Figure 

15). During the summer, Bigelow Creek exhibited high predator/prey ratio values of 0.240 at 

Bigelow US and 0.304 at Bigelow DS (Figure 16). 

For the fall sampling season of Bigelow Creek, the P/R ratio remained heterotrophic, 

with Bigelow US having a ratio value of 0.666 and Bigelow DS having a value of 0.722  (Figure 

12). CPOM/FPOM ratios increased from summer values to 0.166 at Bigelow US and 0.200 at 

Bigelow DS in the fall (Figure 13). In the fall, the Bigelow US site had a TFPOM/BFPOM ratio 

value of 0.636, while Bigelow DS had a value of 0.50 (Figure 14). In the fall, channel stability 
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values at Bigelow US stayed at 1.50, whereas Bigelow DS changed to 1.384 (Figure 15). 

Predator/prey ratios of the Bigelow US site fell to be within the criteria to 0.142, while Bigelow 

DS was still above the criteria values, at 0.290 (Figure 16). 

Comparison Between 1998 and 2011Macroinvertebrate Communities 

A significant positive quadratic relationship was found between all-sample 

macroinvertebrate densities and distance downstream of Croton Dam for summer 2011 samples 

on the Muskegon River (p=0.024, R
2
=0.916); whereas the summer 1998 data displayed a 

significant negative relationship (p=0.015, R
2
=0.938) (Figure 17). In the fall, no significant 

relationship was found between all-sample macroinvertebrate densities and distance from Croton 

Dam for 2011 samples (p=0.301, R
2
=0.583) or 1998 samples (p=0.515, R

2
=0.357). Both sample-

years displayed a negative quadratic trend (Figure 18).  

The 1998 Muskegon River all-sample macroinvertebrate taxa richness had a significant 

positive linear relationship with distance downstream from Croton Dam (p=0.040, R
2
=0.690). 

The 2011 Muskegon River samples followed the same trend, although more macroinvertebrate 

taxa were present in the samples (p=0.035, R
2
=0.707) (Figure 6).  

In 2011, Chironomidae mean densities were highest near Croton Dam, whereas the 1998 

summer samples had the highest densities of chironomids in the mid-reach sample sites 

(Thornapple and Henning) (Figure 19a). There was not a significant difference between the mean 

1998 and 2011 summer chironomid densities in the Muskegon River (two-tail t-test, p =0.695).  

Fall 2011 samples had slightly higher mean Chironomidae densities than summer 

samples, and had the highest densities closest to Croton Dam (Figure 19b). The 1998 fall 

samples had the highest chironomid density near Croton Dam as well (Figure 19b). Fall 1998 
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mean Chironomidae densities were significantly greater than the fall 2011 mean chironomid 

densities in the Muskegon River (Wilcoxon test, p<0.01).  

Summer 2011 Hydropsychidae mean densities were highest near Croton Dam in summer, 

and in 1998, the densities were highest in the mid-reach sample sites (Figure 20a). There was no 

significant difference between summer 2011 and summer 1998 mean Hydropsychidae densities 

in the Muskegon River (Welch’s t-test, p=0.120).  

Hydropsychidae mean densities were highest in the sites close to Croton Dam for both 

1998 (Croton site) and 2011 (Pine site) samples (Figure 20b). However, there was a large 

increase in Hydropsychidae densities in a mid-reach sample site (Thorn DS) in 1998 (Figure 

20b). There was not a significant difference between fall 1998 and 2011 mean Hydropsychidae 

densities in the Muskegon River (Wilcoxon test, p=0.179).  

 In general, samples separated by sample year based on the NMDS analysis. There was a 

significant difference between the macroinvertebrate communities as a whole on the Muskegon 

River from the total samples taken in 1998, and the current study’s total samples taken in 2011 

(NMDS stress=0.148 and subsequent adonis analysis, R
2
=0.111, p<0.001) (Figure 21). There 

was a significant difference between macroinvertebrate communities for the upstream (Croton) 

and downstream (Henning DS) sites between the 1998 Muskegon River samples, and the 2011 

samples (NMDS plot, stress=0.105, and adonis post-hoc test R
2
=0.116, p<0.001) (Figure 22).  A 

SIMPER test on the upstream and downstream Muskegon River sites revealed the 

macroinvertebrate taxa driving the variation between communities differed between year and 

site. The macroinvertebrate taxa with the greatest cumulative contribution for the comparison 

between Croton 1998 and Henning DS 1998, Croton 1998 and Croton 2011 samples, and Croton 

2011 and Henning DS 2011 samples were Hydropsychidae and Cheumatopsyche. The taxa that 
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were driving the differences in macroinvertebrate communities between the Henning DS 1998 

and Henning DS 2011 sample were Protoptila and Hydropsychidae (Appendix B). 

Bigelow Creek also had a significant difference between the macroinvertebrate 

communities between the two sampling years 1998 and 2011 (NMDS stress = 0.134, adonis 

R
2
=0.118, p<0.001), and sites (p<0.001, R

2
=0.090) (Figure 23). However, I should note that 

there was no Bigelow downstream sample collected during summer 1998 which may affect the 

clarity of these tests.  I should also note that the vertical line of Bigelow Upstream 1998 sample 

points near the middle of Figure 19 were the Hess samples collected at that sample site during 

summer and fall of 1998. I suggest that the arrangement of these points is probably due to the 

similar taxa richness and densities in those samples, especially Brachycentrus, Cheumatopsyche, 

Ceratopsyche, and Hydropsyche. A SIMPER test showed that macroinvertebrate taxa 

responsible for the difference in the communities between sites changed by year (Appendix B). 

Taxa with the greatest cumulative contribution to differences between the Bigelow Upstream site 

during 1998 (US) and the Bigelow Downstream site during 1998 (DS), were Protoptila and 

Hydropsychidae. Comparing 2011 sites, differences between the upstream and downstream sites 

were due to Baetidae and Simuliidae.  Differences between the Bigelow US 1998 sample and the 

Bigelow US 2011 sample were driven by Hydropsychidae and Protoptila.  The taxa that 

accounted for the greatest cumulative contribution when comparing the Bigelow DS site between 

1998 and 2011 samples shifted from Protoptila and Hydropsychidae to Protoptila and Baetidae. 
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DISCUSSION 

The objectives of this study were to examine current macroinvertebrate communities in 

the Muskegon River and Bigelow Creek and to compare current macroinvertebrate communities 

to those studied by Godby (2000). I found clear differences in the density, richness, and diversity 

of macroinvertebrate communities in both rivers since 1998, and a possible ecological threshold 

relationship with zebra mussel densities and biomass. These changes in the macroinvertebrate 

communities may have trophic effects for higher organisms, such as the many game fish in the 

Muskegon River.  

Muskegon Macroinvertebrate Communities 

I found a significant negative linear relationship between macroinvertebrate densities and 

distance downstream of Croton Dam when sample seasons were combined (Figure 2) and this 

trend continued (although not significantly) when the summer and fall samples were analyzed 

separately (Figure 4, 5). Lehmkuhl (1972) found a similar reduction in macroinvertebrate 

densities up to 70 miles downstream of Gardiner Dam on the Saskatchewan River. He suggested 

that the cause of the drop in macroinvertebrate density downstream of the dam was attributed to 

lower water temperatures from the Gardiner Dam reservoir (Lehmkuhl, 1972). The Croton Dam 

on the Muskegon River does not produce lower water temperatures going into the river, but 

instead raises water temperatures downstream of the dam; this may be a part of the reason for 

low macroinvertebrate densities in this section of river, but I would suggest that the food 

availability and benthic substrate composition are the main factors.  The most upstream site 

(Croton) on the Muskegon River had the highest density of zebra mussels on the benthos (6303 ± 

4186 m
-2

 in summer, 1688 ± 567 m
-2 

in fall), while the Henning DS site had very few zebra 

mussels (0 m
-2

 in summer, 37.04 ± 29.39 m
-2

 in fall, Table 9). Zebra mussels create a complex 
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benthic environment when they invade a system, allowing for a localized increase in some 

benthic fauna (Horvath et al., 1999; Strayer, 2009). Dead zebra mussel shells also create a 

complex habitat (Horvath et al., 1999) and the piles of shells downstream of Croton Dam provide 

many places for exploitation by macroinvertebrates. The Croton site (right below Croton Dam) 

will be the first to receive any phytoplankton (and any POM) to come through the dam, giving 

the macroinvertebrates and zebra mussels living closest to the dam the best accessibility to food. 

As the water passes over the zebra mussel beds and macroinvertebrates at Croton, it is suggested 

that most of the POM and phytoplankton is depleted, thus not allowing for high densities of 

zebra mussels (and a reduced amount of macroinvertebrates) to survive downstream such as at 

Henning DS.  

Macroinvertebrate taxa richness for the Muskegon River samples significantly increased 

further downstream of Croton Dam (Figure 6). The recovery of organism richness (and diversity) 

with increasing downstream distance is a common characteristic of an impounded river, and 

many organisms display this trend as well including: macroinvertebrates (Vinson, 2001; Takao et 

al., 2008; Growns et al., 2009), primary producers (Bernez et al., 2004; Cibils Martina et al., 

2013), and fish (Lessard and Hayes, 2003; Santucci Jr. et al., 2005). The fall Muskegon River 

samples had higher macroinvertebrate richness (including EPT richness) than the summer 

samples (Table 6, 7). This seasonal effect is likely due to the emergence of more taxa (shredders 

and collectors) able to utilize the abundant leaf litter introduced to the system.    

Zebra mussel densities in the Muskegon River followed a positive quadratic trend with 

distance downstream of Croton Dam (Figure 8). This trend approximately follows a source-sink 

type model of invasion, with Croton reservoir acting as the source, and the Muskegon River 

acting as the sink. The source-sink model has been shown as a useful descriptor for zebra mussel 
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population expansion in a flowing-water system (Horvath et al., 1996). The zebra mussel 

densities decrease until the furthest downstream sample sites (Figure 8, Table 9). This 

downstream decrease in zebra mussel density is most likely due to a lack of available food 

(Fuentes, 2003). The small rise in zebra mussel densities at the Thornapple DS and Henning 

sample sites does not quite fit into the source-sink model from Croton Dam. However as the 

Thornapple and Henning sample sites are public boat launches, these sites could be acting as 

another source for the zebra mussel population (if infected boats are put into the river at those 

locations). The Muskegon River macroinvertebrate communities followed a logarithmic 

relationship with zebra mussel density when both seasons were combined (Figure 9). This 

logarithmic relationship shows that macroinvertebrate densities plateau after about 350 zebra 

mussels m
-2

, which may imply that after a certain zebra mussel density, macroinvertebrate 

communities are not as influenced by the zebra mussels. This could show that high zebra mussel 

densities do not influence macroinvertebrate communities as much as lower zebra mussel 

densities in this section of the Muskegon River; the addition of the three-dimensional habitat at 

low zebra mussel populations may allow more macroinvertebrates to use that substrate, but at 

higher densities may not attract as many macroinvertebrates. However, caution must be taken in 

analyzing this relationship, only six sample locations were used for this analysis and this 

relationship appears to be driven by one sample point. More data would help to reveal if the 

logarithmic relationship of zebra mussel to total macroinvertebrate density is true over multiple 

locations and years.  

Bigelow Creek Macroinvertebrate Communities 

There was no significant difference between macroinvertebrate densities the upstream 

and downstream sample sites on Bigelow Creek for either sample season. This similarity 
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between the two sites could be because Bigelow Creek is much smaller in size and discharge 

than the Muskegon River, and there was much less distance between the two sample locations in 

Bigelow Creek. Although Bigelow Creek had less total taxa richness than the Muskegon River 

when the seasons were pooled, the taxa richness for each season was remarkably similar from 

Bigelow US to Bigelow DS (Table 11). Even though the taxa richness was similar between the 

seasons, there were still taxa that were site-specific (Table 18, Appendix A); Hydropsyche and 

Baetisca were exclusive to the Bigelow US samples, whereas Tipula and Seratella were unique 

to the Bigelow DS samples.   

Bigelow Creek was restored from 2004 to 2009 and included adding woody habitat 

structures, flow modifiers, and other habitat improvements (Muskegon River Watershed 

Assembly, 2013). This work was mainly for improving habitat for game fish; however stream 

restoration usually has an effect on macroinvertebrate communities as well, typically through a 

change in composition, diversity, or densities (Gørtz, 1998; Moerke et al., 2004; Sariquett et al., 

2007; Miller et al., 2010). The restoration work on Bigelow Creek in previous years, may have 

influenced the macroinvertebrate communities that were found in the river in 2011. 

Comparison of Macroinvertebrate Communities in the Muskegon River and Bigelow Creek 

Macroinvertebrate densities in the Muskegon River were significantly higher than 

macroinvertebrate densities in Bigelow Creek (p<0.001), but that is to be expected as the 

Muskegon River is a much larger river than Bigelow Creek and has a more diverse range of 

environments for macroinvertebrates to inhabit. 

The Muskegon River had significantly higher macroinvertebrate taxa richness, than 

Bigelow Creek. However, even though the Muskegon River and Bigelow Creek share a 
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watershed, there are inherent differences between the two streams in substrate, flow, 

temperature, and riparian coverage (Tables 1-4). 

Mid-order streams (such as the Muskegon River) have been shown to have higher 

diversity and richness than low-order (such as Bigelow Creek), or high-order streams (Vannote 

et al., 1980; Minshall et al., 1985).  This is partially because in low-order streams, there is 

typically a consistent temperature regime between seasons, which only some macroinvertebrate 

taxa will be able to tolerate. High-order streams have a large volume of water, and hence tend to 

also have a consistent temperature throughout. Mid-order streams have fluctuating temperatures 

and water flow, and thus are able to provide a better environment for more thermally diverse 

macroinvertebrate taxa (Vannote et al., 1980). Both Vannote et al. (1980) and Minshall et al. 

(1985) state that there are many other factors including temperature, benthic substrate, and 

riparian influence that have effects on the diversity and richness of macroinvertebrate taxa in 

streams.  

Bigelow Creek and Muskegon River varied greatly in temperature. The Muskegon River 

had higher temperatures than Bigelow Creek in both the summer and fall samples (Table 2, 4). 

This positive trend of greater taxa richness corresponding to higher temperature conforms to the 

trend found by Jacobsen et al. (1997). Their global study of rivers showed that macroinvertebrate 

family richness and diversity follow a positive linear trend with temperature, i.e. the higher the 

temperature in a river, a greater number of macroinvertebrate families. A study examining 

Michigan rivers found a different trend; Lessard and Hayes (2003) found macroinvertebrate 

community similarity values, not richness values, had a linear trend with increasing temperature. 

Friberg et al. (2009) found that macroinvertebrate communities in Icelandic streams lost 

diversity but increased in density with higher stream temperatures.  
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Dams also affect macroinvertebrate community richness and diversity. This study found a 

positive linear relationship between macroinvertebrate richness and distance from Croton Dam, 

which conforms to the trend found in Godby et al. (2000).  The recovery of organism richness 

and diversity with increasing distance from a dam is a common characteristic of impounded 

rivers, and can be seen in macroinvertebrate communities (Vinson, 2001; Takao et al., 2008; 

Growns et al., 2009), fish (Lessard and Hayes, 2003; Santucci Jr. et al., 2005), and primary 

producers (Bernez et al., 2004; Cibils Martina et al., 2013).   

The Muskegon River has varied substrates throughout its length, including zebra mussel 

hash, cobble, and boulder, whereas Bigelow Creek is comprised of mostly sand and some woody 

debris, although there is some cobble substrate near the mouth (Table 1, 3).  Macroinvertebrate 

richness and diversity tends to be higher in a river with heterogeneous substrate such as the 

Muskegon River, than in a river with homogeneous or almost homogeneous substrate such as 

Bigelow Creek (Vannote et al., 1980; Miller et al., 2010).  The macroinvertebrate richness and 

diversity found in this study between the two rivers conforms to the trend seen in other studies, 

where larger substrate size (Muskegon River) up to a point (i.e. sand to cobble to boulder) 

increases richness and diversity (Minshall, 1984; Quinn and Hickey, 1990). A study by Kokeš 

(2011) had a different outcome for Czech rivers; higher habitat diversity did not lead to an 

increase in macroinvertebrate diversity, but was still shown to be an important contributing 

factor for invertebrate assemblages through a multivariate redundancy analysis.    

Utilizing rock clusters and Hess samples to obtain a perspective of macroinvertebrate 

communities in each river is a favorable option, as these two methods get a broader view of the 

communities in the river; however, it introduces bias. Bigelow Creek is comprised mostly of 

sand and woody debris, but there were no woody debris samples taken. There were also no 
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woody debris samples taken in the Muskegon River, but as mentioned previously, the Muskegon 

River has a much more heterogenic substrate, which is favorable for more macroinvertebrate 

diversity. Since woody debris is one of the only permanent habitats in Bigelow Creek, not having 

sampled this environment severely overlooked the taxa that may have actually been in the river. 

In the Satilla River, snag habitats (woody debris) were found to have the highest diversity and 

macroinvertebrate standing stock biomass compared to sandy or mud habitats on the same river 

(Benke et al., 1984). Miller et al. (2010) found that adding large woody debris tends to increase 

macroinvertebrate richness in impaired streams, and while Bigelow Creek is not impaired, the 

woody debris was not sampled, which resulted in low total taxa richness in the river. However 

even without sampling the woody debris, it was found that Bigelow Creek did support some 

macroinvertebrate taxa not found in the Muskegon River, such as Polycentropodidae spp., and 

Tipula spp. (Appendix A). 

Seasonality has an effect on when certain taxa will be found in aquatic systems. The life 

cycles of macroinvertebrates are diverse, and can range from just a few weeks to several years to 

complete (Merritt et al., 2008). Some macroinvertebrate species only have one complete life 

cycle per year (univoltine) while others (such as many chironomidae) have several completions 

during one year (multivoltine) and are found in rivers during every season. In temperate climates, 

the life cycles of certain taxa (i.e. fall-winter shredders and some collectors) revolve around the 

addition of allochthonous input during the fall season as a food source (Cummins, 2002). There 

was an increase in both shredders and collectors during the fall sample in both Bigelow Creek 

and Muskegon River. Dieterich et al. (1997) discovered a significant positive relationship, life-

cycle synchronization, between shredders and collectors. The authors found that shredders 

seemed to emerge first in a temporary Oregon stream, and collectors would emerge sometime 
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after, once there was an adequate food-source for those taxa, generated from the shredders 

(Dieterich et al., 1997). The timing of the emergence of these fall-winter seasonal shredders and 

collectors could be the reason for an increase in taxa richness during our fall sample in both the 

Muskegon River and Bigelow Creek. 

Functional Feeding Groups 

 Using the ratios of different functional feeding groups is an inexpensive and commonly 

used approach to getting a basic view of the health of a river and the pathways that transpire 

within a river. Even though Bigelow Creek and the Muskegon River are in the same watershed, 

there are distinct differences in their macroinvertebrate communities, and the proportion of taxa 

in each FFG.  

One of the main differences between the two rivers is the production / respiration ratios. 

The Muskegon River was almost exclusively autotrophic, except for the Croton and Thornapple 

DS summer samples. Bigelow Creek was shown to be exclusively heterotrophic (Figure 12). The 

two P/R ratios of the different streams correspond almost exactly to the River Continuum 

Concept (Vannote et al., 1980). The Muskegon River is a mid-order river, and relies less on 

allochthonous input from the riparian zone than a head-water stream or a small tributary (such as 

Bigelow Creek). Mid-order streams employ more autochthonous primary production (from 

macrophytes and phytoplankton), and organic transport from upstream (Vannote et al., 1980). 

The CPOM/FPOM ratios for the Muskegon River were below criterion levels and 

indicate that there is a low-functioning riparian zone on the Muskegon River; this is likely 

because there are a series of three dams directly upstream of our first sample site, Croton (Figure 

13). Dams are known to modify CPOM/FPOM transportation from the headwaters to mouth. 

Normally, allochthonous input from the headwaters gets shredded by macroinvertebrates, and is 
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used by collector macroinvertebrates downstream in the mid-order reaches. However, in a 

dammed river, allochthonous input from the riparian zone upstream cannot get past the barrier 

(dam), and thus severely limits, and changes, the ratio of macroinvertebrate taxa that utilize 

POM as their main food source (shredders and collectors) beneath the dam (Ward and Stanford, 

1983).  

The TFPOM/BFPOM (T/B) ratio established that all of the sites on the Muskegon River 

had higher values than the criterion ratio, which suggests excess FPOM loading in the water 

column, throughout all the sites and seasons (Figure 14). This is unusual because the 

CPOM/FPOM FFG analysis indicated that there was little CPOM or FPOM in the river (Figure 

13). The T/B ratio could be inflated due to the abundant presence of zebra mussels at the most 

upstream site, Croton. Zebra mussels are known to produce considerable OM through their 

metabolic activities, and this OM may get caught in the current before it settles and moves 

downstream where collector macroinvertebrates may be able to use it. This flow of OM could be 

why there is a high number of TFPOM macroinvertebrates at the Pine site, but is reduced again 

at the Thornapple sites. An additional reason that the T/B ratio in the Muskegon River may be 

unusual is the distance between certain sites. For example, the Pine and Thornapple US site are 

approximately 8.18 km apart. This distance may allow for collectors to filter out most of the 

FPOM within the water column between the high TFPOM Pine summer sample and the normal-

range Thornapple US and DS summer samples. The Thornapple DS site and the Henning US site 

are approximately 9.78 km apart. The Thornapple sites are in Stratum 4, which has many deep 

and shallow runs and the substrate consists of mostly sand/silt and gravel, which is not a 

preferred substrate for many macroinvertebrates. The Henning US and DS sites are located in 

Stratum 5, which, highly urbanized, may input OM from runoff of impermeable surfaces. Many 
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grass lawns are mowed straight to the river bank (or retaining wall) with no buffer zone to stop 

runoff from the civilized areas.  

The FFG values for the substrates of the Muskegon River and Bigelow Creek 

demonstrated that the channels were quite stable, with all of the sites having a value much higher 

than the 0.5 value given for plentiful stable substrate (Figure 15). However, this is an artifact of 

the sampling method used to gather the macroinvertebrates. I used rock clusters (which are a 

stable substrate) as well as Hess samples as the main source of macroinvertebrate taxa; most taxa 

that utilize the rocks as habitat are going to be the few that are present in stable substrate. The 

sample methods inflated the channel stability ratios, and this FFG test should not be used to 

make expansive claims of the stability of both rivers. Bigelow Creek is a mostly sandy-bottom 

river (Table 3) that has fast stream flow (discharge of 2.14 m
3
/s at high-water mark), so the 

stability of the channel is actually much less than the value given with the FFG ratios.  

Top-down control from predators in the Muskegon River was within the normal range at 

most sites for both seasons (Figure 16). The summer 2011 Henning US and DS sites were above 

criterion values for the predator-prey ratio (PPR). The fall 2011 sample season shows that the 

Pine sample site has lower predator-prey ratio values, but Henning US is still above the criteria 

value. Bigelow Creek had a similar pattern; in the summer both US and DS sites were above the 

PPR criteria value, but in the fall only the Bigelow DS site was above the value (Figure 16). 

Jeffries and Lawton (1985) conducted a meta-analysis of freshwater macroinvertebrates in North 

America and Britain; they found an average PPR of 0.36, higher than the criteria range used in 

the FFG metrics. Furthermore, the average PPR of a species-poor community was 0.48, and the 

ratio for a species-rich community was 0.29 (Jeffries and Lawton, 1985).    
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The criteria values that Merritt and Cummins (2006) presented for the FFG metrics are 

not absolute. Different geographic regions may have different “normal” ranges from the 

generalized FFG metric. A FFG metric developed for different geographic regions would help 

account for ecosystem variability throughout the United States. 

Comparison Between 1998 and 2011 Macroinvertebrate Communities 

 The summer 2011 Muskegon River macroinvertebrate samples differed from the summer 

1998 macroinvertebrate samples. The summer 2011 macroinvertebrate densities had a significant 

positive quadratic slope with increasing distance from Croton Dam, whereas the 1998 summer 

data from Godby (2000) showed a significant negative quadratic relationship with increasing 

distance from Croton Dam (Figure 17). The fall Muskegon River samples from 1998 and 2011 

also differed; although neither regression was significant, the 1998 samples had higher mean 

densities than the 2011 samples.  

Chironomidae and Hydropsychidae density changed between 1998 and 2011. 

Chironomidae density was higher in the middle portions of the Muskegon River (Pine, 

Thornapple US, and Thornapple DS) in 1998; however, more chironomids were found in 2011 at 

the most upstream site (Croton) and most downstream sites (Henning US and Henning DS) 

(Figure 19a). In the fall, the chironomid densities of the 1998 samples were much higher than the 

densities found in 2011 (Figure 19b). The 2011 summer Hydropsychidae densities were always 

higher than the 1998 sample densities (with the exception of the Thornapple US site). However, 

in the fall, the 1998 samples had higher densities than the 2011 samples with the exception of the 

Pine and Henning US sites (Figure 20a, b).  These data seem to show a shift in production of the 

Muskegon River from 1998 to 2011. In 1998, most macroinvertebrate production occurred in the 

mid-river sample sites than in the upper or lower reaches, and in 2011 macroinvertebrate 
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production shifted to the upper-river sample sites nearest to Croton Dam. Many factors could 

have affected the macroinvertebrate communities since 1998, such as the zebra mussel invasion 

in the early 2000s, a shift in the way Croton Dam is operated, an increase of riparian landowners, 

or just a natural change in the river itself. However, examining the common taxa richness found 

in the Muskegon River samples (Table 6), it seems as though these shifts in the 

macroinvertebrate production is caused by the numerous rare (<5% relative abundance) 

macroinvertebrate taxa, instead of the fewer abundant taxa (≥5% relative abundance). There is 

no way to identify the source of this change in macroinvertebrate communities to any one 

variable with the data available.  

The taxa driving the communities between the upper site (Croton) and the lower site 

(Henning DS) (Hydropsychidae and Cheumatopsyche) did not change between 1998 and 2011 

(Appendix B). Since there was not a change in the driving-force taxa from upstream to 

downstream between the 1998 and 2011 samples, and upon examining the common taxa richness 

found in the Muskegon River samples (Table 6), it seems as though these shifts in the 

macroinvertebrate production are caused by the numerous rare (<5% relative abundance) 

macroinvertebrate taxa, instead of the fewer abundant taxa (≥5% relative abundance).  

When the Henning DS site was compared between the years, the taxa that were driving 

the change at this site were Protoptila and Hydropsychidae. There was an almost 720% increase 

in Protoptila at this site from 1998 to 2011. Protoptila are facultative scrapers found in lotic-

erosional zones, and have a mean tolerance value of 1 in the Midwest region, meaning that most 

of the species are sensitive to pollution and changes in habitat (Merritt et al., 2008). The inflation 

of the Protoptila densities at the Henning DS site is strange since it is the downstream sample of 

the Henning Park sample. Henning Park (official name Ed H. Henning County Park) is an 82-
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acre Newaygo County-run park that is a campsite and boat launch on the Muskegon River, and 

thus heavily used and disturbed by human-use (Newaygo County Government, 2013). Protoptila 

is supposed to sensitive to pollution and disturbance, and yet their densities have increased 

seven-fold since 1998. Zebra mussels invaded the Muskegon River after the 1998 sample 

(approximately the year 2000) and are known to clarify the water column due to their filter 

feeding, which allows for algal and macrophyte growth (Strayer et al., 1999). This increase in 

algal, macrophyte, and diatom growth could be the reason that Protoptila densities were so high 

at the Henning DS site, as those plants and algae provide an ample food-source. 

The macroinvertebrate communities of Bigelow Creek between 1998 and 2011 were 

significantly different (Figure 23). However, during the summer 1998 season, no samples were 

taken at the Bigelow DS site, which may affect the clarity and implications of the results.  

The macroinvertebrate communities have changed from Bigelow US to DS from the 

1998 sample to the 2011 sample. The important taxa that were driving the community in the 

1998 Bigelow US to Bigelow DS were Protoptila and Hydropsychidae, while in 2011 the 

driving taxa were Baetidae and Simuliidae. Again, there was no sample taken in summer 1998, 

so caution must be taken when comparing the two years. Nevertheless, examining the data from 

Godby et al. (2000) in 1998, there were hardly any simulids in the Bigelow US site from the 

summer and none in the fall sample. In 2011, there were many simulids in both the upstream and 

downstream sites for both seasons (Appendix A). Baetidae followed a similar trend; there were 

limited individuals in both the upstream and downstream site for both 1998 seasons, and in 2011, 

there were numerous individuals at both sites and seasons (Appendix A).  
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Conclusions 

 This study has shown through regression, ANOVA, t-test, and NMDS analysis (and 

subsequent post hoc analyses), that the Muskegon River and Bigelow Creek macroinvertebrate 

communities differed between the 1998 and the 2011 samples. Between the 1998 and 2011 

sample periods, the major macroinvertebrate production on the Muskegon River has moved from 

mid-reach sample sites to the upper reaches, closer to Croton Dam. This production shift is most 

likely due to the rare (<5% relative abundance) macroinvertebrate taxa, as a SIMPER test has 

shown that the main driving macroinvertebrate taxa (Hydropsychidae and Cheumatopsyche) 

stayed the same between the Croton and Henning DS 1998 and the Croton and Henning DS 

2011samples. This macroinvertebrate shift from mid- to upper reaches could be caused by many 

environmental or physical changes to the Muskegon River since 1998 such as the zebra mussel 

invasion.  

 Macroinvertebrate communities in Bigelow Creek also changed between the 1998 and 

2011 samples. The SIMPER test showed from upstream to downstream between the 1998 and 

2011 samples that the taxa driving the change shifted from Protoptila and Hydropsychidae (in 

1998) to Baetidae and Simuliidae (in 2011). Much restoration work was done on Bigelow Creek 

since the 1998 sample was taken, including the addition of flow modifiers, woody habitat 

structures, and other improvements, which possibly caused this macroinvertebrate shift. 
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Table 1. Habitat description and location of strata used in this study on the Muskegon River, MI. 

Stratum 1 is closest to Croton Dam, Stratum 5 is furthest downstream. (Icthyological Associates, 

1991, as used by Godby et al., 2007). 

 

Stratum 

Location 

(m downstream of Croton 

Dam) 

Substrate / Habitat Description of River Segments 

1 305 to 1829 Gravel riffle spawning habitat 

2 1829 to 4267 Spawning habitat with run-holding habitat 

3A 4267 to 8534 Run/pool with some high banks 

4 8534 to 11582 Deep and shallow runs with spawning gravel 

3B 11582 to 15240 Run/pool with some high banks 

5 18288 to 21031 Higher gradient reach with instream cover provided 

by man-made log/rock cribs 

                    

 

 

 

 



 

 

 

1
1
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Table 2. Mean (n=3) physical and chemical characteristics of Muskegon River sample sites during summer and fall, 2011. 

Measurements were taken at upstream, middle, and downstream locations within a 100 m
 
x 3 m sample site. Measurements include 

temperature (°C), dissolved oxygen (DO, mg·L
-1

), conductivity (µS·cm
-1

), and pH. Sites are listed from upstream to downstream (left 

to right), Thorn is the Thornapple sample site, US denotes an upstream site, DS denotes a downstream site. 

 

 

 
Croton Pine Thorn US Thorn DS Henning US Henning DS 

Season Summer Fall Summer Fall Summer Fall Summer Fall Summer Fall Summer Fall 

Temperature 23.67 16.96 23.36 17.11 22.41 17.49 21.94 17.28 23.78 16.36 23.91 15.43 

DO 7.21 10.79 6.94 8.05 7.62 8.60 7.05 8.57 9.17 12.69 9.16 12.14 

Conductivity 0.325 0.391 0.322 0.397 0.367 0.399 0.360 0.401 0.364 0.396 0.363 0.397 

pH 7.91 7.91 7.84 8.12 8.17 8.11 8.02 8.17 8.34 7.97 9.16 7.95 
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Table 3. Habitat description of macroinvertebrate sample sites on Bigelow Creek, MI from 

samples taken in 2011. 

 

 

Site Substrate / Habitat Description 

Bigelow Upstream 

(58th St) 

Sandy substrate, many deep pools, little cobble/gravel, few 

riffles, substantial woody debris, extensive riparian cover 

 

Bigelow Downstream 

(Mouth) 

Cobble and sand substrate, many riffles, frequent woody 

debris, adequate riparian cover, extensive stream 

incision/bank erosion 

 

 

 

 

 

 

 

 

 

Table 4. Mean (n=3) physical and chemical characteristics of Bigelow Creek sample sites during 

summer and fall, 2011. Measurements were taken at upstream, middle, and downstream 

locations within a 100 m
 
x 3 m sample site. Measurements include temperature (°C), dissolved 

oxygen (DO, mg·L
-1

), conductivity (µS·cm
-1

), and pH. Sites are listed from upstream to 

downstream (left to right), US denotes an upstream site, DS denotes a downstream site.  

 

 
Bigelow US Bigelow DS 

Season Summer Fall Summer Fall 

Temperature 23.43 11.30 17.37 10.25 

DO 8.14 11.60 9.27 11.04 

Conductivity 0.302 0.327 0.329 0.348 

pH 8.15 7.95 8.05 7.84 
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Table 5. Results of a two-way ANOVA and mean (±SE) macroinvertebrate densities in the 

Muskegon River by season (summer (S) and fall (F)) , and sample site (Site) (Croton (Cr), Pine 

(P), Thornapple Upstream (TU), Thornapple Downstream (TD), Henning Upstream (HU), 

Henning Downstream (HD)), and the interaction between the two terms (Season x Site).  Data 

presented are from 2011 samples. Zebra mussels are not included in this analysis.   

 

 

 

Source df Mean±SE F p 

Season 1 S: 14804±2386 4.417 0.046 

F: 199534±1918 

Site 5 Cr: 24887±4440 2.963 0.032 

P: 19541±4123 

TU: 14338±3613 

TD: 19190±4154 

HU: 9679±2580 

HD: 16639±1784 

Season x Site 5 - 2.85 0.037 
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Table 6. Seasonal Richness (R), Common Taxa Richness (CTR, taxa  ≥5% relative abundance), 

Shannon-Wiener Diversity Index (H), and Evenness (J) values for macroinvertebrates 

(excluding zebra mussels) samples collected at six sites on the Muskegon River during 2011. 

Sites are arranged from upstream (US) to downstream (DS). 

 

Site R CTR H' J 

Season Summer Fall Summer Fall Summer Fall Summer Fall 

Croton 31 36 3 3 1.419 1.821 0.413 0.508 

Pine 35 43 5 5 2.172 2.280 0.610 0.606 

Thorn US 39 39 6 3 2.334 2.123 0.637 0.579 

Thorn DS 40 47 5 2 2.411 2.205 0.653 0.573 

Henning US 43 55 4 5 2.460 2.855 0.654 0.712 

Henning DS 37 47 5 3 2.355 2.192 0.652 0.569 
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Table 7. Seasonal EPT Richness and EPT Index at sample sites on the Muskegon River during 

2011. Sites are arranged from upstream (US) to downstream (DS). 

 

 

Site EPT Richness EPT Index 

 
Summer Fall Summer Fall 

Croton 16 19 0.52 0.53 

Pine 20 25 0.57 0.58 

Thorn US 21 23 0.54 0.59 

Thorn DS 27 30 0.68 0.64 

Henning US 23 32 0.53 0.58 

Henning DS 22 29 0.59 0.62 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

Table 8. Results of a two-way ANOVA  and mean (±SE) Ephemeropteran, Plecopteran, and 

Trichopteran richness in the Muskegon River by  season (summer (S) and fall (F)), and sample 

site (Site) (Croton (Cr), Pine (P), Thornapple Upstream (TU), Thornapple Downstream (TD), 

Henning Upstream (HU), Henning Downstream (HD)), and the interaction between the two 

terms (Season x Site).  Data presented are from samples taken in 2011.  

 

 

Source df Mean±SE F p 

Season 1 S: 14.6±0.9 6.400 0.018 

F: 18.7±1.3 

Site 5 Cr: 11.7±1.7 2.154 0.093 

P: 16.3±2.0 

TU: 15.7±0.8 

TD: 18.7±1.1 

HU: 18.2±3.6 

HD: 19.5±1.5 

Season x Site 5 - 0.281 0.918 
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Table 9. Mean zebra mussel densities m
-2

 (±SE) for 2011 summer and fall samples in the 

Muskegon River. This data includes information from both rock cluster and Hess samples. Sites 

are arranged from upstream (US) to downstream (DS). 

 

 

Site Summer Fall 

Croton 6303 ± 4186 1688 ± 567 

Pine 126 ± 59 498 ± 300 

Thorn US 6 ± 6 1 ± 1 

Thorn DS 17 ± 13 55 ± 48 

Henning US 10 ± 6 1 ± 1 

Henning DS 0 37.04 ± 29.39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

 

Table 10. Results of a two-way ANOVA on log-transformed Hydropsychidae densities, and 

mean (±SE) Hydropsychidae densities in the Muskegon River by  season (summer (S) and fall 

(F)), and sample site (Site) (Croton (Cr), Pine (P), Thornapple Upstream (TU), Thornapple 

Downstream (TD), Henning Upstream (HU), Henning Downstream (HD)), and the interaction 

between the two terms (Season x Site).  Data presented are from samples taken in 2011.  

 

 

Source df Mean±SE F p 

Season 1 S: 4570±1024 0.004 0.949 

F: 3739±992 

Site 5 Cr: 8657±1608 3.957 0.009 

P: 8846±2002 

TU: 1555±596 

TD: 2485±916 

HU: 1807±891 

HD: 1967±366 

Season x Site 5 - 1.211 0.336 
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Table 11. Seasonal Richness (R), Common Taxa Richness (CTR, taxa ≥5% relative abundance), 

Shannon-Wiener Diversity Index (H), and Evenness (J) values for macroinvertebrates at sample 

sites on Bigelow Creek in 2011. Sites are arranged from upstream (US) to downstream (DS). 

 

Site R CTR H' J 

 Summer Fall Summer Fall Summer Fall Summer Fall 

Bigelow US 32 41 2 3 1.722 1.771 0.496 0.477 

Bigelow DS 32 42 3 5 1.420 2.326 0.409 0.622 
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Table 12. Seasonal EPT Richness and EPT Index values at sample sites on Bigelow Creek in 

2011. Sites are arranged from upstream (US) to downstream (DS).  

 

Site EPT Richness EPT Index 

 
Summer Fall Summer Fall 

Bigelow US 16 25 0.50 0.60 

Bigelow DS 25 27 0.78 0.66 
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Table 13. Results of a two-way ANOVA and mean (±SE) on Ephemeroptera, Plecoptera, and 

Trichoptera richness in Bigelow Creek by season (summer (S) and fall (F)), and sample site 

(Site) (Bigelow Upstream (BU) and Bigelow Downstream (BD)), and the interaction between the 

two terms (Season x Site).  Data presented are from samples taken in 2011.  

 

 

Source df Mean±SE F p 

Season 1 S: 8.8±0.7 6.894 0.030 

F: 14.8±2.1 

Site 1 BU: 12.8±2.2 0.766 0.407 

BD: 10.8±1.7 

Season x Site 1 - 0.532 0.487 
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Table 15. Unique macroinvertebrate taxa on Bigelow Creek, between the two sample sites. 

Bigelow US and Bigelow DS. The taxa include both summer and fall sample seasons for 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Site Specific Taxa 

Bigelow US Hydropsyche, Polycentropodidae, Hexatoma, Baetisca, Caenis, Stenacron, 

Perlesta, Agnetina 

 

Bigelow DS Tipula, Seratella, Drunella, Corydalidae, Acroneuria, Perlidae, Podura 
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Figure 1. Location of sample sites on the Muskegon River and Bigelow Creek. 

Macroinvertebrate sampling sites on the Muskegon River and Bigelow Creek are shown and 

strata boundaries are delineated on the Muskegon River (see Table 1). 
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Figure 2. Linear regression of all sample macroinvertebrate mean density and distance from 

Croton Dam for data collected 2011. Summer and fall samples were combined for this figure.  
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Figure 3. Mean macroinvertebrate densities (± SE, excluding zebra mussels) at Muskegon River 

and Bigelow Creek sample sites during 2011 sampling events (summer and fall). Sites are 

arranged from upstream to downstream. 
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Figure 4. Linear regression of all-sample mean macroinvertebrate density (excluding zebra 

mussels) and distance from Croton Dam for data collected in summer 2011. This data includes 

information from both rock cluster and Hess samples. 
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Figure 5. Linear regression of all-sample mean macroinvertebrate density (excluding zebra 

mussels) and distance from Croton Dam for data collected in fall 2011. This data includes 

information from both rock cluster and Hess samples. 
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Figure 6. Linear regression of all-sample macroinvertebrate taxa richness and distance from 

Croton Dam for data collected in 1998 and 2011 macroinvertebrate communities. The 1998 

samples are delineated by the open triangles and the dashed regression line, the 2011 samples are 

the closed circles and solid regression line. This data includes information from both rock cluster 

and Hess samples. Summer and fall samples were combined for both years in this figure. The 

1998 data were used with permission. 
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Figure 7. Linear regression of all-sample Ephemeroptera, Plecoptera, and Trichoptera taxa 

richness and distance from Croton Dam for data collected in 2011. Summer and fall samples 

were combined for both years. This data includes information from both rock cluster and Hess 

samples. 
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Figure 8. Linear and quadratic regressions of log-transformed mean zebra mussel density and 

distance downstream of Croton Dam in the Muskegon River during 2011 sampling events 

(summer and fall).   
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Figure 9. Logarithmic regression of  mean total macroinvertebrate density (excluding zebra 

mussels) and mean zebra mussel density at the six sampling sites in the Muskegon River during 

2011 sampling events (summer and fall). 
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Figure 10. Mean Chironomidae densities (± SE) at Muskegon River and Bigelow Creek sample 

sites during 2011 sampling events (summer and fall). Sites are arranged from upstream to 

downstream. 

 

 

 

 



 

132 

 

Sample Location

Cro
to

n
Pine

Thorn
 U

S

Thorn
 D

S

Henning U
S

Henning D
S

Bigelow U
S

Bigelow D
S

M
e

a
n

 D
e

n
s
it
y
 H

y
d

ro
p

s
y
c
h

id
a

e
 (

m
-2

)

0

2000

4000

6000

8000

10000

12000

14000

Summer 

Fall 

 

Figure 11. Mean Hydropsychidae densities (± SE) at Muskegon River and Bigelow Creek 

sample sites during 2011 sampling events (summer and fall). Sites are arranged from upstream to 

downstream. 

 

 

 

 

 

 

 

 



 

133 

 

 

 

Figure 12. Ratios of functional feeding groups (scrapers/shredders and total collectors) in the 

Muskegon River and Bigelow Creek, estimating heterotrophic or autotrophic conditions during 

summer and fall seasons. Sites with values >0.75 (scrapers > shredders and collectors) are 

considered autotrophic. Sites with values <0.75 are considered heterotrophic. 
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Figure 13. Ratios of functional feeding groups (shredders/total collectors) estimating organic 

matter size in Muskegon River and Bigelow Creek, were calculated for the summer and fall 

seasons. The criterion value for spring and summer is >0.25, whereas the criterion value for fall 

and winter is >0.50. 
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Figure 14. Ratios of functional feeding groups (filtering collectors/gathering collectors) in the 

Muskegon River and Bigelow Creek during summer and fall 2011. The FPOM in suspension (T) 

or stored in the benthos (B), has a criterion value that is typically <0.50. 
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Figure 15. Ratios of functional feeding groups (scrapers and filtering collectors/shredders and 

gathering collectors) in the Muskegon River and Bigelow Creek, estimating benthic substrate 

stability were calculated for the summer and fall seasons. A site is considered to have a stable 

substrate if it has a value >0.50.  
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Figure 16. Ratios of functional feeding groups (predators/all other FFGs) in the Muskegon River 

and Bigelow Creek, estimating predator to prey densities were calculated for the summer and fall 

seasons. The nominal ratio of macroinvertebrate predators to prey is between 0.10 and 0.20. 
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Figure 17. Quadratic regressions of 1998 and 2011 all-sample mean macroinvertebrate density of 

Muskegon River sites for summersamples. The 1998 samples are delineated by the open 

triangles and the dashed regression line, the 2011 samples are the closed circles and solid 

regression line.  Data points include invertebrate estimates from both rock cluster and Hess 

samples. The 1998 data were used with permission. 
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Figure 18.  Quadratic regressions of 1998 and 2011 all-sample mean macroinvertebrate density 

of Muskegon River sites for fall samples. The 1998 samples are delineated by the open triangles 

and the dashed regression line, the 2011 samples are the closed circles and solid regression line. 

This data includes invertebrate estimates from both rock cluster and Hess samples. The 1998 

data were used with permission. 
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Figure 19. Mean density of Chironomidae in the Muskegon River during summer (A) and fall 

(B) 1998 and 2011. The 1998 samples are delineated by the open triangles and the dashed line, 

the 2011 samples are the closed circles and solid line.  The 1998 data were used with permission. 
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Figure 20. Mean density of Hydropsychidae in the Muskegon River during summer (A) and fall 

(B) 1998 and 2011. The 1998 samples are delineated by the open triangles and the dashed line, 

the 2011 samples are the closed circles and solid line.  The 1998 data were used with permission. 
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Figure 21. Nonmetric multidimensional scaling (NMDS) ordination plot of macroinvertebrate 

taxa density collected at sites located on the Muskegon River during the summer and fall of 1998 

and 2011. All macroinvertebrate taxa collected were used with the exception of Chironomidae 

and zebra mussels. The 1998 data were used with permission. 
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Figure 22. Nonmetric multidimensional scaling (NMDS) ordination plot of macroinvertebrate 

taxa density at the upstream (Croton) and downstream site (Henning DS) of the Muskegon River 

collected during summer and fall of 1998 and 2011. All macroinvertebrate taxa were used with 

the exception of Chironomidae and zebra mussels. The 1998 data were used with permission. 
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Figure 23. Nonmetric multidimensional scaling (NMDS) ordination plot of macroinvertebrate 

taxa density at the upstream (Bigelow Up) and downstream site (Bigelow Mouth) of Bigelow 

Creek collected during summer and fall of 1998 and 2011. All macroinvertebrate taxa were used 

with the exception of Chironomidae and zebra mussels. The 1998 data were used with 

permission. 
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APPENDIX A 

Densities of each macroinvertebrate taxon were estimated for both the Hess samples (n=3) and 

rock cluster samples (n=3) for both Muskegon River and Bigelow Creek. The sample method 

(either Hess or rock cluster) that generated the highest density estimate for a given taxon was 

used for that particular sample’s replicates. The highest density estimate samples for each taxon 

are presented below; summer samples are denoted with (S), fall samples are denoted with (F). A 

density of zero is represented with (-), and (n) is given if there is no data for a sample. Upstream 

samples are indicated by (US), downstream sites are (DS). 

 

Taxon 
Croton 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - - 

Coenagrionidae - - - - - - 

Gomphidae - - - - - - 

Odonata - - - - - - 

Corixidae - - - - - - 

Hemiptera - - - - - - 

Saldidae - - - - - - 

Amphipoda 1576.955 1474.850 828.185 215.555 578.595 238.245 

Isopoda 714.735 317.660 204.210 - 11.345 56.725 

Agraylea - 471.466 - - 7.461 - 

Brachycentrus - 22.690 - - - - 

Ceratopsyche 67.293 62.035 203.000 195.720 499.887 1313.808 

Cheumatopsyche 6330.510 3879.990 2824.905 668.710 4051.323 3147.936 

Chimarra - - - - - - 

Glossosoma - 12.407 - 8.155 14.922 - 
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Taxon 
Croton 

S1 S2 S3 F1 F2 F3 

Helicopsyche - - - 8.155 - 13.008 

Hydropsyche - - - 8.155 - - 

Hydropsychidae 1839.342 7692.340 9097.731 668.710 3044.088 6354.408 

Hydroptilidae 22.690 - - 8.155 253.674 247.152 

Leuchotrichia 29.908 - - 48.930 29.844 84.552 

Macrostemum - - - - - - 

Micrasema - 372.210 40.797 8.155 7.461 19.512 

Neophylax - 22.690 - 16.310 22.383 - 

Nyctiophylax - - - - - - 

Philopotomidae - - - 1508.885 68.070 - 

Protoptila - - - - - - 

Psychomyia - 56.725 34.035 122.325 373.050 526.824 

Antocha 89.724 186.105 108.792 163.100 611.802 351.216 

Atherix - - - - - - 

Ceratopogonidae 13.599 - - - - - 

Chironomidae 12516.498 25359.908 13925.376 3912.665 9676.917 11791.752 

Diptera - - - - - - 

Empididae - 24.814 - 22.690 11.345 22.690 

Simuliidae - 37.221 27.198 - - 91.056 

Anthopotamus - - - - - - 

Baetidae - 11.345 - 11.345 - - 

Baetisca - - - - - - 

Caenis 22.690 34.035 68.070 11.345 22.690 - 

Drunella - - - - - - 

Ephemerella - - - - - - 

Ephemerellidae - - - - - - 
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Taxon 
Croton 

S1 S2 S3 F1 F2 F3 

Ephemeridae - - - - - - 

Ephemeroptera - 22.690 - 34.035 - - 

Heptageniidae - - - 8.155 89.532 32.520 

Isonychia - - - - - - 

Maccaffertium - - - - - - 

Rhithrogena - - - - - - 

Seratella - - - - - - 

Stenacron - - - - - - 

Stenonema - 11.345 - 8.155 - 6.504 

Tricorythodes - - 11.345 40.775 7.461 6.504 

Chauliodes - - - - - - 

Corydalidae - - - 8.155 7.461 6.504 

Nigronia - - - 8.155 - - 

Coleoptera - - - - - - 

Dubiraphia - - - - - - 

Elmidae - - - - - - 

Optioservus - - - - - 11.345 

Psephenus - - - - - 11.345 

Stenelmis - 11.345 - - - - 

Petrophila - - - - 7.461 6.504 

Acroneuria - - - - - - 

Perlesta - - - - - - 

Perlidae - - - - - - 

Perlodidae - - - - - - 

Plecoptera - - - - - - 

Taeniopteryx - - - - - - 
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Taxon 
Croton 

S1 S2 S3 F1 F2 F3 

Gastropoda 34.035 623.975 - 90.760 419.765 56.725 

Hydrachnidia - 136.140 34.035 - 141.759 143.088 

Limpets - 136.140 - - 193.986 - 

Nematoda - 136.140 306.315 - 22.383 - 

Oligochaeta - 828.185 340.315 918.945 192.865 601.285 

Platyhelminthes - 737.425 13.599 587.160 246.213 175.608 

Podura - - 13.599 - - - 

Zebra Mussel 1043.740 26706.130 181.520 1231.405 3335.067 3011.352 
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Taxon 
Pine 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - - 

Coenagrionidae - - - - - 11.345 

Gomphidae - - - - - - 

Odonata - - - - - - 

Corixidae - - - - - - 

Hemiptera - - - - - - 

Saldidae - - - - - - 

Amphipoda n 453.800 453.800 1293.330 487.835 612.630 

Isopoda - - - 11.345 11.345 11.345 

Agraylea - - 127.820 - - - 

Brachycentrus n 34.035 11.345 22.206 95.051 40.565 

Ceratopsyche n 1486.195 1792.510 481.130 1849.174 1533.357 

Cheumatopsyche n 3165.255 3142.565 2030.755 113.450 3641.745 

Chimarra - - - - - 11.345 

Glossosoma - - - - 17.282 32.452 

Helicopsyche - - - 207.256 146.897 137.921 

Hydropsyche 12.303 - - 29.608 155.538 97.356 

Hydropsychidae n 4538.000 5649.810 4447.240 726.080 9631.905 

Hydroptilidae 553.635 353.848 127.820 133.236 - 576.023 

Leuchotrichia 1500.966 1141.964 1035.342 703.190 1175.176 567.910 

Macrostemum n - 45.380 - - - 

Micrasema n 158.830 181.520 59.216 - 170.373 

Neophylax 319.878 112.588 12.782 - - 8.113 

Nyctiophylax - - - 11.345 - - 

Philopotomidae - - - - 136.140 - 

Protoptila n 465.145 181.520 90.760 22.690 4696.830 
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Taxon 
Pine 

S1 S2 S3 F1 F2 F3 

Psychomyia 233.757 434.268 76.692 59.216 - 48.678 

Antocha n 215.555 170.175 325.688 69.128 227.164 

Atherix - - - - - - 

Ceratopogonidae - - - - - - 

Chironomidae n 8315.885 8849.100 9699.975 5241.390 6704.895 

Diptera - 60.487 - - - - 

Empididae n 1363.140 - 363.040 329.005 147.485 

Simuliidae 184.545 209.092 242.858 11.345 - 79.415 

Anthopotamus - - - - - - 

Baetidae n 669.355 260.935 102.105 11.345 226.900 

Baetisca - - - - - - 

Caenis n 442.455 465.145 45.380 22.690 - 

Drunella - - - - - - 

Ephemerella - - - - - - 

Ephemerellidae - - - - - - 

Ephemeridae - - - - - - 

Ephemeroptera 86.121 80.420 51.128 14.804 8.641 16.226 

Heptageniidae 24.606 16.084 - 397.075 113.450 136.140 

Isonychia - - - - - - 

Maccaffertium 12.303 - - 90.760 22.690 45.380 

Rhithrogena - - - - - - 

Seratella - - - - - - 

Stenacron - - - 29.608 - 81.130 

Stenonema - 16.084 - 34.035 22.690 11.345 

Tricorythodes n 11.345 - 238.245 7.461 6.504 

Chauliodes - - - - - - 
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Taxon 
Pine 

S1 S2 S3 F1 F2 F3 

Corydalidae - - - - - - 

Nigronia n 22.690 - - - - 

Coleoptera - - - - - - 

Dubiraphia - - - - - - 

Elmidae - - - - - - 

Optioservus n 11.345 22.690 56.725 - - 

Psephenus n 22.690 - 11.345 34.035 34.035 

Stenelmis n 22.690 79.415 - - 22.690 

Petrophila - - - 44.412 - 24.339 

Acroneuria - - - - - - 

Perlesta - - - - - - 

Perlidae - - - - - - 

Perlodidae - - - - - - 

Plecoptera - - - - - - 

Taeniopteryx - - - - - 11.345 

Gastropoda 49.212 - - 987.015 181.520 805.495 

Hydrachnidia 295.272 273.428 25.564 476.490 238.245 623.975 

Limpets - - - - - - 

Nematode n 68.070 11.345 68.070 - 102.105 

Oligochaeta n 521.870 147.485 113.450 34.035 11.345 

Platyhelminthes 270.666 16.084 12.782 760.115 419.765 102.105 

Podura - - - 11.345 - - 

Zebra Mussel 282.969 176.924 - 1917.305 680.700 158.830 
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Taxon 
Thornapple US 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - - 

Coenagrionidae - - - - - - 

Gomphidae - - - - - - 

Odonata - - - - - 13.918 

Corixidae - - - - - - 

Hemiptera - - - - - - 

Saldidae - - - - - - 

Amphipoda 34.035 79.415 11.345 90.760 181.520 226.900 

Isopoda - - - - - - 

Agraylea - - - - - - 

Brachycentrus - - - - 60.472 34.795 

Ceratopsyche 283.625 34.035 1531.575 121.770 158.739 125.262 

Cheumatopsyche 45.380 22.690 1747.130 73.062 226.770 361.868 

Chimarra - - - - 22.690 56.725 

Glossosoma 20.283 - - - - - 

Helicopsyche - - 6.761 - 52.913 48.713 

Hydropsyche 124.795 11.345 124.795 474.903 748.341 389.704 

Hydropsychidae 241.087 280.876 1102.043 949.806 944.875 1078.645 

Hydroptilidae - - 68.070 - 400.627 - 

Leuchotrichia 7.777 19.596 527.358 840.213 393.068 1530.980 

Macrostemum - - - - - - 

Micrasema 101.101 39.192 - 124.795 158.830 - 

Neophylax - - - - - 6.959 

Nyctiophylax - - - - - - 

Philopotomidae - - - - - - 

Protoptila 90.760 11.345 45.380 4249.773 7657.267 9081.495 
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Taxon 
Thornapple US 

S1 S2 S3 F1 F2 F3 

Psychomyia 23.331 71.852 67.610 170.478 393.068 626.310 

Antocha 93.324 300.472 54.088 669.335 329.005 22.690 

Atherix 45.380 - 136.140 - - 13.918 

Ceratopogonidae - - - - - - 

Chironomidae 1974.030 2632.040 3925.370 4742.210 10426.055 4367.825 

Diptera - - - - - - 

Empididae - - - 192.865 329.005 170.175 

Simuliidae 46.662 13.064 365.094 36.531 30.236 34.795 

Anthopotamus - - - - - - 

Baetidae 192.865 204.210 952.980 680.700 363.040 - 

Baetisca - - - - - - 

Caenis 34.035 181.520 113.450 73.062 - - 

Drunella - - - - - - 

Ephemerella - - - - - - 

Ephemerellidae - 65.320 - 1690.405 1531.575 703.390 

Ephemeridae - - - - - - 

Ephemeroptera 79.415 - - - - - 

Heptageniidae - 45.380 79.415 964.325 260.935 397.075 

Isonychia - - - - - 6.959 

Maccaffertium - 11.345 - 328.779 347.714 13.918 

Rhithrogena - - - - - - 

Seratella 11.345 - 11.345 12.177 - 13.918 

Stenacron - - - - - - 

Stenonema 11.345 - - 36.531 45.354 - 

Tricorythodes - - - 207.009 128.503 20.877 

Chauliodes - - - - - - 
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Taxon 
Thornapple US 

S1 S2 S3 F1 F2 F3 

Corydalidae - - - - - - 

Nigronia - - - - - - 

Coleoptera - - 11.345 - - - 

Dubiraphia - 11.345 11.345 - - - 

Elmidae - - - - - - 

Optioservus 22.690 - 249.590 56.725 - - 

Psephenus - 22.690 - - 22.690 - 

Stenelmis - - 113.450 - 22.690 - 

Petrophila - - - - - 6.959 

Acroneuria - - - - - - 

Perlesta 11.345 - - - - - 

Perlidae - - - - - - 

Perlodidae - - - - - - 

Plecoptera - - - - - 13.918 

Taeniopteryx - - - - - - 

Gastropoda - 249.590 - - 124.795 22.690 

Hydrachnidia 260.935 79.415 1361.400 1077.775 703.390 113.450 

Limpets - - - - - - 

Nematode 34.035 340.350 - - 68.070 - 

Oligochaeta 45.380 136.140 465.145 136.140 294.970 215.555 

Platyhelminthes - - 22.690 - 22.690 11.345 

Podura - - - - - - 

Zebra Mussel - 34.035 - - - 6.959 
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Taxon 
Thornapple DS 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - - 

Coenagrionidae - - - - 26.055 - 

Gomphidae - - - - - - 

Odonata - - - - - - 

Corixidae - - - - - - 

Hemiptera - - - - - - 

Saldidae - - - - - - 

Amphipoda 34.035 11.345 11.345 124.795 95.535 201.852 

Isopoda - - - - - - 

Agraylea - - - - - - 

Brachycentrus 45.380 22.690 34.035 419.765 34.035 - 

Ceratopsyche 1281.985 90.760 181.520 283.136 43.425 661.626 

Cheumatopsyche 726.080 873.565 45.380 73.062 226.770 361.868 

Chimarra - - - - - 44.856 

Glossosoma 748.770 - - - - - 

Helicopsyche - 11.345 - 10.112 130.275 89.712 

Hydropsyche 317.660 204.210 34.035 485.376 8.685 470.988 

Hydropsychidae 4538.000 1610.990 476.490 1820.160 34.740 1244.754 

Hydroptilidae - - - 485.376 - 201.852 

Leuchotrichia 113.450 22.690 - 1688.704 8.685 1715.742 

Macrostemum - - - 10.112 - - 

Micrasema - 193.292 148.475 - 26.055 100.926 

Neophylax 12.017 43.930 89.085 - 138.960 - 

Nyctiophylax - - - - 8.685 - 

Philopotomidae - - - - - - 

Protoptila 3596.365 2473.210 1213.915 10263.680 - 17202.276 
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Taxon 
Thornapple DS 

S1 S2 S3 F1 F2 F3 

Psychomyia 45.380 - - 170.478 393.068 626.310 

Antocha 84.119 114.218 41.573 131.456 816.390 381.276 

Atherix 158.830 56.725 22.690 34.035 - - 

Ceratopogonidae - - - - - - 

Chironomidae 2541.280 2110.170 2405.140 8883.135 10085.705 3959.405 

Diptera - - - - - - 

Empididae - 11.345 - 10.112 972.720 100.926 

Simuliidae 79.415 56.725 2098.825 202.240 8.685 302.778 

Anthopotamus - - - - 11.345 - 

Baetidae 997.411 966.460 314.767 717.952 69.480 706.482 

Baetisca 11.345 - - - - - 

Caenis 385.730 170.175 79.415 - 8.685 56.070 

Drunella - - - - - - 

Ephemerella - - 5.939 - - - 

Ephemerellidae - 11.345 - 1939.995 34.035 11.345 

Ephemeridae 11.345 - - - - - 

Ephemeroptera 181.520 56.725 147.485 - - 22.428 

Heptageniidae 34.035 11.345 22.690 2178.240 - 45.380 

Isonychia - - - - - - 

Maccaffertium - - 11.345 1293.330 - 11.345 

Rhithrogena 11.345 - - 34.035 - - 

Seratella - 26.358 - 34.035 11.345 - 

Stenacron - - - - - - 

Stenonema 11.345 11.345 - 20.224 17.370 179.424 

Tricorythodes 11.345 - - 329.005 56.725 22.690 

Chauliodes - - - - - - 
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Taxon 
Thornapple DS 

S1 S2 S3 F1 F2 F3 

Corydalidae - - - - - - 

Nigronia - - - - - - 

Coleoptera - - - - - - 

Dubiraphia - - - - - - 

Elmidae - - - - - - 

Optioservus 113.450 22.690 68.070 294.970 - - 

Psephenus - - - - 8.685 - 

Stenelmis - 22.690 34.035 158.830 - - 

Petrophila - - - - 34.740 11.214 

Acroneuria - 8.786 - - - - 

Perlesta 11.345 - - - - - 

Perlidae - - - - - - 

Perlodidae - - - - - 22.428 

Plecoptera - - - 79.415 - - 

Taeniopteryx - - - - - 11.214 

Gastropoda - - 306.315 11.345 192.865 374.385 

Hydrachnidia 748.770 294.970 136.140 323.584 2240.730 347.634 

Limpets - - - - - - 

Nematode 56.725 34.035 34.035 30.336 52.110 11.214 

Oligochaeta 192.865 294.970 294.970 80.896 1702.260 392.490 

Platyhelminthes - 22.690 11.345 11.345 - - 

Podura - - - - - - 

Zebra Mussel - 79.074 - - 294.970 - 
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Taxon 
Henning US 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - - 

Coenagrionidae - - - - 5.913 - 

Gomphidae - - - - - - 

Odonata - - 7.948 n - 22.690 

Corixidae - - - n 11.345 - 

Hemiptera - - 7.948 - - - 

Saldidae 12.450 - 

 

n - 11.345 

Amphipoda - - 22.690 n 22.690 22.690 

Isopoda - - - - - - 

Agraylea - - - - 5.913 - 

Brachycentrus 11.345 22.690 34.305 n 79.415 294.970 

Ceratopsyche 12.450 400.775 325.868 n 192.865 930.290 

Cheumatopsyche 1.345 260.935 499.180 n 113.450 918.945 

Chimarra - - - n 5.913 32.664 

Glossosoma - - 278.180 n - 11.345 

Helicopsyche - - 11.345 31.000 35.478 - 

Hydropsyche - 11.345 56.725 n 374.385 703.390 

Hydropsychidae 363.040 476.490 941.635 n 215.555 3380.810 

Hydroptilidae 181.520 90.760 136.140 n 612.630 2938.355 

Leuchotrichia 149.400 185.725 143.064 2503.250 1182.600 5.444 

Macrostemum - - 7.948 n 11.345 226.900 

Micrasema 124.500 166.175 63.584 n 113.450 272.280 

Neophylax 24.900 9.775 65.584 15.500 11.826 - 

Nyctiophylax - - - - - - 

Philopotomidae - - - - - - 

Protoptila 34.035 124.795 850.875 - - - 
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Taxon 
Henning US 

S1 S2 S3 F1 F2 F3 

Psychomyia 796.800 322.575 373.556 n 113.450 941.635 

Antocha 298.800 146.625 95.376 54.250 230.607 506.292 

Atherix - 45.380 22.690 - - - 

Ceratopogonidae - - - - - - 

Chironomidae 5502.900 2746.775 1955.208 891.250 2093.202 2999.644 

Diptera - - - - - - 

Empididae - - 34.035 46.500 189.216 146.988 

Simuliidae 181.520 22.690 79.415 46.500 - 10.888 

Anthopotamus - - - n 34.035 - 

Baetidae 771.460 476.490 646.665 n 79.415 306.315 

Baetisca - - - - - - 

Caenis 408.420 408.420 215.555 n - 34.035 

Drunella - - - - - - 

Ephemerella - - - - - - 

Ephemerellidae 22.690 - 11.345 n 204.210 113.450 

Ephemeridae - 5.913 - - - - 

Ephemeroptera - 107.525 39.740 n 56.725 215.555 

Heptageniidae 238.245 158.830 170.175 n 204.210 2666.075 

Isonychia - - - n - 68.070 

Maccaffertium 34.035 45.380 - n 56.725 737.425 

Rhithrogena - - - n 11.345 90.760 

Seratella - 19.550 - n 11.345 204.210 

Stenacron - 11.826 - - - - 

Stenonema - 11.345 - n - 192.865 

Tricorythodes - - - n 11.345 68.070 

Chauliodes - - - - - - 
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Taxon 
Henning US 

S1 S2 S3 F1 F2 F3 

Corydalidae - - - - - - 

Nigronia - 11.345 - - - - 

Coleoptera 34.035 - - - - 10.888 

Dubiraphia - - - - - - 

Elmidae - 11.345 - n - 11.345 

Optioservus 204.210 238.245 283.625 n 147.485 1247.950 

Psephenus 45.380 11.345 11.345 15.500 118.260 97.992 

Stenelmis 22.690 34.035 22.690 n - 68.070 

Petrophila - - - - 47.304 38.108 

Acroneuria - - - - - - 

Perlesta - 11.345 - - - - 

Perlidae - - - n - 22.690 

Perlodidae - - - - - - 

Plecoptera - - - n 22.690 22.690 

Taeniopteryx - - - n 34.035 22.690 

Gastropoda 99.600 68.425 - 54.250 153.738 179.652 

Hydrachnidia 136.140 204.210 385.730 n 68.070 987.015 

Limpets - - - - - - 

Nematode 68.070 - 45.380 n 158.830 - 

Oligochaeta 283.625 158.830 340.350 - 100.521 - 

Platyhelminthes 62.250 29.325 39.740 - 23.652 - 

Podura - - - n - 56.725 

Zebra Mussel 37.350 9.775 - - 5.913 - 
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Taxon 
Henning DS 

S1 S2 S3 F1 F2 F3 

Aeshnidae - - - - - 6.509 

Coenagrionidae - - - - - - 

Gomphidae - - - - 11.345 - 

Odonata - - - - - - 

Corixidae - - - - - - 

Hemiptera - - - - - - 

Saldidae - - - - - - 

Amphipoda - - - 34.035 45.380 68.070 

Isopoda - - - - - - 

Agraylea - 57.228 8.562 27.262 26.812 - 

Brachycentrus 34.035 - 22.690 22.690 170.175 11.345 

Ceratopsyche 347.152 314.754 188.364 218.096 475.913 117.162 

Cheumatopsyche 106.816 143.070 51.372 54.524 375.368 247.342 

Chimarra - - - - 22.690 34.035 

Glossosoma - - - - 136.140 - 

Helicopsyche - - - 313.513 60.327 - 

Hydropsyche 253.688 457.824 359.604 258.989 221.199 670.427 

Hydropsychidae 1882.632 2661.102 1823.706 926.908 1581.908 286.396 

Hydroptilidae 400.560 71.535 - 2126.436 2553.843 839.661 

Leuchotrichia 22.690 - 748.770 1549.876 1072.480 221.306 

Macrostemum - - - - 13.406 78.108 

Micrasema 200.280 200.298 136.992 95.417 100.545 52.072 

Neophylax 11.345 56.725 - - - - 

Nyctiophylax - - - - - - 

Philopotomidae - - - - - - 

Protoptila 2163.024 1745.454 1164.432 4934.422 3820.710 1314.818 



 

162 

 

Taxon 
Henning DS 

S1 S2 S3 F1 F2 F3 

Psychomyia 413.912 114.456 102.744 354.406 415.586 117.162 

Antocha 120.168 1573.770 59.934 313.513 636.785 273.378 

Atherix 34.035 - 11.345 - - 22.690 

Ceratopogonidae - - - - - - 

Chironomidae 3671.800 5236.362 3227.874 6126.300 8361.265 10879.855 

Diptera - - - - - - 

Empididae 11.345 57.228 - 794.415 79.415 397.075 

Simuliidae 373.856 1573.770 2097.690 218.096 100.545 39.054 

Anthopotamus - - - - - 79.415 

Baetidae 192.865 805.495 1100.465 34.035 385.730 34.035 

Baetisca - - - - - - 

Caenis 136.140 113.450 226.900 - 22.690 11.345 

Drunella - 14.307 - - - - 

Ephemerella - - - - - - 

Ephemerellidae - - - 204.210 226.900 204.210 

Ephemeridae - - - - - - 

Ephemeroptera - - 68.496 - - 91.126 

Heptageniidae 13.352 14.307 8.562 245.358 241.308 52.072 

Isonychia - - - 13.631 20.109 - 

Maccaffertium - - 22.690 90.760 102.105 - 

Rhithrogena 13.352 14.307 8.562 - 22.690 - 

Seratella - - 34.035 - 6.703 6.509 

Stenacron - - - - - - 

Stenonema - - - 13.631 33.515 6.509 

Tricorythodes - - - - 22.690 - 

Chauliodes - - 8.562 - - - 
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Taxon 
Henning DS 

S1 S2 S3 F1 F2 F3 

Corydalidae - - - - - - 

Nigronia - - - - - - 

Coleoptera - - - - - - 

Dubiraphia - - - - - - 

Elmidae - - - - - - 

Optioservus 124.795 226.900 170.175 - 544.560 351.695 

Psephenus - - 11.345 - 68.070 22.690 

Stenelmis 11.345 56.725 45.380 - 90.760 - 

Petrophila - - - 13.631 - - 

Acroneuria - - - - - - 

Perlesta - 28.614 8.562 - - - 

Perlidae - - - - - - 

Perlodidae - - - - - - 

Plecoptera - 11.345 133.035 - 6.703 - 

Taeniopteryx - - - 11.345 - 11.345 

Gastropoda 53.408 71.535 25.686 45.380 68.070 45.380 

Hydrachnidia 90.760 294.970 238.245 477.085 241.308 299.414 

Limpets - - - - - - 

Nematode - 22.690 - 113.450 - 45.380 

Oligochaeta 11.345 521.870 408.420 - 22.690 930.290 

Platyhelminthes 80.112 71.535 - 27.262 - 58.581 

Podura - - - - - 11.345 

Zebra Mussel - - - 34.035 - 181.520 
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Taxon 
Bigelow US 

S1 S2 S3 F1 F2 F3 

Corixidae 50.348 56.496 22.116 22.690 34.035 11.345 

Hemiptera 11.345 - - - - - 

Saldidae 181.520 - - 241.098 29.604 73.469 

Amphipoda - 71.904 73.720 - 1372.745 215.555 

Brachycentrus - - - - - 13.358 

Ceratopsyche - 22.690 - 27.819 - 93.506 

Cheumatopsyche 37.761 238.240 84.168 287.463 207.228 661.221 

Helicopsyche - 11.345 - - - 53.432 

Hydropsyche 37.761 - - - - - 

Hydroptilidae - - 7.372 9.273 19.736 6.679 

Leuchotrichia - - - - - 11.345 

Macrostemum - - - - 45.380 11.345 

Micrasema - - - - - 6.679 

Nyctiophylax 25.174 339.849 25.174 157.641 9.868 86.827 

Paranyctiophylax - - 14.744 - - - 

Philopotomidae - - - 79.415 22.690 - 

Polycentropodidae 2706.205 2218.752 2742.384 3732.505 10346.640 3709.815 

Protoptila - 11.345 - - 34.035 - 

Psychomyia - - - - - 53.432 

Rhyacophila - 5.136 - - - - 

Trichoptera - - 81.092 111.276 404.588 514.283 

Antocha 22.690 - - - - - 

Atherix - - - 56.725 - 11.345 

Chironomidae 12.587 46.224 250.648 111.276 611.816 768.085 

Chrysops 11.345 - - 79.415 - 68.070 

Empididae - - - - - - 
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Taxon 
Bigelow US 

S1 S2 S3 F1 F2 F3 

Pilaria - - - - 9.868 33.395 

Simuliidae 22.690 - - 22.690 340.350 340.350 

Tipulidae 873.565 374.385 22.690 22.690 90.760 113.450 

Anthopotamus - - - - - - 

Baetidae 12.587 - 14.744 18.546 39.472 13.358 

Ephemera - - - - 69.076 6.679 

Ephemerella - 22.690 - - 56.725 90.760 

Ephemerellidae - - - 56.725 - - 

Ephemeroptera - - - - - 11.345 

Heptageniidae - - - 45.380 113.450 - 

Isonychia - - - - - - 

Maccaffertium - - - - - - 

Rhithrogena 37.761 - 14.744 - 9.868 - 

Seratella 440.545 - 95.836 9.273 118.416 26.716 

Tricorythodes 12.587 - - - - - 

Chauliodes 34.035 - - - - 306.315 

Corydalidae - - - - - - 

Coleoptera 22.690 - - - 294.970 204.210 

Elmidae - - - - - 11.345 

Stenelmis - - - - - - 

Petrophila - 11.345 - - - - 

Acroneuria - - 7.372 - - - 

Agnetina - - - - - 79.415 

Nemouridae - - - - - - 

Paragnetina - - - - 9.868 46.753 

Perlesta - - - - - - 
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Taxon 
Bigelow US 

S1 S2 S3 F1 F2 F3 

Perlidae - - - - 113.450 - 

Perlodidae 294.970 11.345 283.625 90.760 170.175 340.350 

Plecoptera - - - - - - 

Gastropoda 5313.311 3963.616 3774.464 5364.180 14947.250 8289.202 

Hydrachnidia - - - - 88.812 - 

Limpets 20.000 16.000 16.000 21.000 27.000 34.000 

Oligochaeta 465.145 521.870 34.035 181.520 283.625 294.970 

Zebra Mussel - - - - - 11.345 
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Taxon 
Bigelow DS 

S1 S2 S3 F1 F2 F3 

Corixidae 68.070 90.760 68.070 124.795 - 45.380 

Hemiptera 11.345 - - - - - 

Saldidae 24.744 n - - - 68.070 

Amphipoda 68.070 - - 56.725 22.690 1077.775 

Brachycentrus - - - - 7.436 - 

Ceratopsyche - - - - - - 

Cheumatopsyche 43.302 n 63.126 9.314 126.412 74.187 

Helicopsyche - - - - 104.104 34.035 

Hydropsyche 185.580 n 70.140 - - - 

Hydroptilidae 34.035 45.380 11.345 34.035 - 102.105 

Leuchotrichia - - - - - - 

Macrostemum 11.345 45.380 - 124.795 - 623.975 

Micrasema 22.690 147.485 - 102.454 118.976 362.692 

Nyctiophylax 736.134 n 2511.012 - 44.616 131.888 

Paranyctiophylax 11.345 - 11.345 - - - 

Philopotomidae - - - 11.345 - - 

Polycentropodidae 13423.620 n 6985.944 74.512 4662.372 469.851 

Protoptila - 34.035 - - - - 

Psychomyia - - - - - 8.243 

Rhyacophila - - - - - - 

Trichoptera - - - - 7.436 90.673 

Antocha 11.345 - - - - 22.690 

Atherix - - - - - - 

Chironomidae 971.202 n - 9.314 104.104 8.243 

Chrysops - - - - - - 
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Taxon 
Bigelow DS 

S1 S2 S3 F1 F2 F3 

Empididae - - 11.345 - - - 

Pilaria - - - - 44.616 8.243 

Simuliidae - - 11.345 - - - 

Tipulidae 2876.490 n 757.512 - 208.208 41.215 

Anthopotamus 12.372 n 7.014 - - 22.690 

Baetidae - - - - - 56.725 

Ephemera - - - - - 22.690 

Ephemerella - - - - - - 

Ephemerellidae - - 11.345 - - - 

Ephemeroptera - - - - - 11.345 

Heptageniidae 11.345 22.690 - 68.070 - 771.460 

Isonychia - - - 34.035 - 34.035 

Maccaffertium - - 11.345 - - - 

Rhithrogena - - - - - - 

Seratella 11.345 - - - - 45.380 

Tricorythodes - - - - 11.345 22.690 

Chauliodes 11.345 - 11.345 11.345 56.725 45.380 

Corydalidae - - - - 11.345 - 

Coleoptera 192.865 249.590 363.040 113.450 170.175 1497.540 

Elmidae - 68.070 11.345 - - 68.070 

Stenelmis - - - - - 11.345 

Petrophila - - - - - - 

Acroneuria - - - - - - 

Agnetina - - - - 22.690 - 

Nemouridae - - - - 11.345 - 
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Taxon 
Bigelow DS 

S1 S2 S3 F1 F2 F3 

Paragnetina - 215.555 56.725 476.490 124.795 - 

Perlesta - - 11.345 - 7.436 - 

Perlidae - - - - 11.345 - 

Perlodidae 45.380 - 45.380 56.725 - - 

Plecoptera - - - - 11.345 - 

Gastropoda 19203.734 1281.985 11699.423 1500.269 5946.241 5903.410 

Hydrachnidia - - - 22.690 - 34.035 

Limpets 22.000 11.000 21.000 18.000 23.000 30.000 

Oligochaeta 419.765 363.040 669.355 170.175 56.725 90.760 

Zebra Mussel - - - - 11.345 - 
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APPENDIX B 

Similarity of percentage (SIMPER) test results for the upstream sample site (Croton) and the 

downstream sample site (Henning DS) on the Muskegon River, and the two sites on Bigelow 

Creek for the 1998 data and 2011 data. A SIMPER test evaluates the percent contribution of 

dissimilar taxa to the percent contribution of similar taxa between samples, and calculates an 

average. Taxa with the largest average to dissimilarity ratios are responsible for the observed 

differences between samples (Quinn and Keough, 2002). Upstream sites are indicated by (US), 

and downstream sites are (DS). Chironomidae and zebra mussels were excluded from this test. 

 

Taxon Croton 1998 Avg Henning DS 1998 Avg Cum. Contribution 

Hydropsychidae 1774.7283 723.8954 23.51% 

Cheumatopsyche 656.6375 545.9400 45.43% 

Ceratopsyche 311.5117 105.6788 54.25% 

Antocha 92.3075 359.1375 60.83% 

Corixidae 18.5717 0.2383 66.41% 

Stenonema 9.5600 13.3883 71.15% 

Protoptila 0.0000 229.7950 75.59% 

Amphipoda 55.8600 132.3663 79.90% 

Micrasema 0.0000 203.9100 82.72% 
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Taxon Croton 1998 Avg Croton 2011 Avg Cum. Contribution 

Hydropsychidae 1774.7283 3495.6316 37.65% 

Cheumatopsyche 656.6375 2231.6537 60.28% 

Amphipoda 55.8600 367.7231 66.55% 

Oligochaeta 0.0000 275.7282 71.82% 

Platyhelminthes 0.0000 252.4656 75.85% 

Ceratopsyche 311.5117 212.2448 79.48% 

Gastropoda 0.0000 144.9262 82.52% 

 

 

Taxon Henning DS 1998 Avg Henning DS 2011 Avg Cum. Contribution 

Protoptila 229.7950 1765.4477 18.73% 

Hydropsychidae 723.8954 1083.5897 31.66% 

Hydroptilidae 22.6308 686.0273 39.22% 

Leuchotrichia 143.7133 480.0498 44.74% 

Simuliidae 20.7400 427.0892 50.17% 

Baetidae 49.9767 323.2030 55.10% 

Cheumatopsyche 545.9400 125.0515 59.87% 

Antocha 359.1375 190.6665 64.43% 

Oligochaeta 0.0000 200.5900 68.50% 

Hydrachnidia 0.0000 252.0931 71.93% 

Hydropsyche 57.8633 232.1381 74.87% 

Ceratopsyche 105.6788 221.1728 77.80% 

Empididae 30.5450 140.6772 80.72% 
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Taxon Croton 2011 Avg Henning DS 2011 Avg Cum. Contribution 

Hydropsychidae 3495.6316 1083.5897 21.50% 

Cheumatopsyche 2231.6537 125.0515 37.55% 

Protoptila 34.9804 1765.4477 52.19% 

Hydroptilidae 53.7601 686.0273 57.67% 

Simuliidae 18.6288 427.0892 61.58% 

Leuchotrichia 28.3933 480.0498 65.41% 

Oligochaeta 275.7282 200.5900 68.71% 

Baetidae 18.5049 323.2030 72.00% 

Amphipoda 367.7231 26.5039 75.16% 

Ceratopsyche 212.2448 221.1728 77.37% 

Platyhelminthes 252.4656 21.5900 79.53% 

Hydropsyche 9.1883 232.1381 81.64% 

 

 

Taxon Bigelow US 1998 Avg Bigelow DS 1998 Avg Cum. Contribution 

Protoptila 1255.8600 844.5833 19.66% 

Hydropsychidae 1231.0625 255.8850 32.91% 

Ceratopsyche 465.4792 73.6700 44.01% 

Hydropsyche 430.5375 24.5567 54.54% 

Cheumatopsyche 361.8083 24.5567 63.42% 

Glossosoma 132.5350 466.3667 71.26% 

Antocha 571.9650 98.9833 77.22% 

Elmidae 362.8590 0.0000 80.55% 
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Taxon Bigelow US 1998 Avg Bigelow US 2011 Avg Cum. Contribution 

Hydropsychidae 1231.0625 215.0824 15.33% 

Protoptila 1255.8600 7.7262 27.13% 

Antocha 571.9650 204.8872 36.29% 

Ceratopsyche 465.4792 214.5617 44.15% 

Baetidae 138.2117 170.1857 51.32% 

Hydropsyche 430.5375 16.2109 56.83% 

Cheumatopsyche 361.8083 52.4561 61.64% 

Oligochaeta 2.6192 101.6659 66.00% 

Hydrachnidia 0.0000 124.4787 69.56% 

Elmidae 362.8592 28.3625 72.95% 

Psychomyia 0.0000 127.5837 76.17% 

Heptageniidae 0.0000 57.5655 79.00% 

Nematoda 0.0000 57.6704 81.59% 
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Taxon Bigelow DS 1998 Avg Bigelow DS 2011 Avg Cum. Contribution 

Protoptila 844.5833 88.1057 14.28% 

Baetidae 49.4900 635.6323 28.54% 

Glossoma 466.3667 85.8060 40.18% 

Simuliidae 0.0000 491.7295 51.43% 

Optioservus 0.4767 237.0653 57.97% 

Ceratopsyche 73.6700 155.5893 63.80% 

Hydropsychidae 255.8850 55.5737 68.99% 

Plecoptera 0.0000 91.3472 73.44% 

Hyrachnidia 0.0000 130.9835 77.84% 

Antocha 98.9833 110.6962 81.33% 
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Taxon Bigelow US 2011 Avg Bigelow DS 2011 Avg Cum. Contribution 

Baetidae 170.1857 635.6323 16.32% 

Simuliidae 44.5859 491.7295 28.29% 

Ceratopsyche 214.5617 155.5893 35.45% 

Antocha 204.8872 110.6962 42.32% 

Optioservus 50.6746 237.0653 48.68% 

Hydropsychidae 215.0824 55.5737 54.40% 

Hydrachnidia 124.4787 130.9835 59.33% 

Oligochaeta 1010.6659 14.0454 63.28% 

Glossosoma 0.5566 85.8060 67.16% 

Plecoptera 8.5001 91.3472 70.95% 

Psychomyia 127.5837 15.1072 74.58% 

Nematoda 57.6704 41.7219 77.81% 

Heptageniidae 57.5655 6.0035 80.49% 
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