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ABSTRACT 

 

 Bacterial resistance to antibiotic therapies, especially to β-lactams, is an 

increasing problem. Β-lactamases are the main source of clinical resistance to these 

antibiotics, and the class D β-lactamases are one of the most rapidly expanding classes of 

these enzymes. The emergence of class D enzymes with the ability to hydrolyze the 

newest family of β-lactams - the carbapenems - is a serious concern for the healthcare 

system as carbapenems are last resort antibiotics: ideal for severe infections after other 

therapies have failed. Class D β-lactamases are very diverse in terms of sequence and 

substrate profile, and it remains unclear what factors affect the enzymes’ ability to 

hydrolyze certain classes of antibiotics (e.g. carbapenems or cephalosporins). The β5-β6 

loop has been previously shown to affect the substrate profile of OXA enzymes, for 

carbapenems in particular. This work examines the effects of selected mutations in the 

β5-β6 loop on the proteins’ dynamics via Molecular Dynamics simulations. OXA-24 (a 

carbapenemase) and three mutants (M223A, G224D, P227S) were simulated for 40 nsec, 

and the trajectories revealed that all three mutations alter the dynamics of the enzyme. 

Our data show that the mutations affect the flexibility of several crucial segments of the 

enzyme structure, the overall compactness of the protein, as well as the size of the active 

site. Our results suggest that the β5-β6 loop can affect the substrate profile of OXA-24 by 

modulating the enzyme’s dynamics in a way that is consistent with substrate profile 

expansion, in particular with the ability to bind 3
rd

 generation cephalosporins. 
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CHAPTER I 

INTRODUCTION 

1. Antibiotics 

 Antibiotics are chemical agents that impede the growth of bacteria 

(bacteriostatics) or kill the bacteria (bacteriocidals). There are many classes of antibiotics 

(Talaro 2011), including: (i) the β-lactams, targeting bacterial cell wall transpeptidases; 

(ii) polymyxins, targeting the bacterial cell membrane; (iii) sulfonamides, targeting 

dihydropteroate synthetases involved in folate synthesis; (iv) tetracyclines and (v) 

aminoglycosides, which target the 30S ribosomal subunit; (vi) quinolones, targeting DNA 

gyrases; (vii) macrolides, which target the 50S ribosomal subunit. These compounds have 

been extremely useful in saving lives. However, a misuse of antibiotics, both in human 

therapies, and in livestock, combined with a lack of understanding of the gravity of the 

problem led to the problem of bacterial resistance to antibiotics that we are experiencing 

today (Neu 1992; Bax 2001; CDC 2013). Solving this problem will require many 

changes, such as improved public education about antibiotics/antibiotic resistance, and 

removal of antibiotics from animal feed in addition to the development of novel antibiotic 

compounds (Bush 2011a). 

1A. β-Lactam Antibiotics 

 β-lactam antibiotics target DD-transpeptidases (E.C. 3.4.16.4, also called 

penicillin binding proteins (PBPs)) in bacteria. DD-transpeptidases cross-link the 

peptidoglycan chains in bacterial cell walls, and are inhibited upon binding β-lactam 
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Fig. 1: β-Lactam Core Structures. A: β-lactam ring. B: Left, core structure of 
penicillins. C: Middle, core structure of cephalosporins. D: Right, core structure of 
monobactams. 

antibiotics. A lack of cross-links without these enzymes providing maintenance of the 

cell walls will result in cell death from lysis (Talaro 2011). 

Unlike other antibiotics whose targets have human homologs, β-lactam antibiotics 

are the safest antibiotics available (Salkind 2001). They are also cheap to manufacture on 

a large scale, with a kilogram of penicillin costing only $15-20 at the beginning of the 

millennium (Elander 2003). The name β-lactam comes from the β-lactam ring (Fig. 1A), 

a cyclic amide that is found within all classes of related antibiotics 

(Fig. 1B-D).  

The first β-lactam antibiotic discovered was penicillin in 1928 by Alexander 

Fleming and, it has been used clinically since the 1940s. While its discovery was an 

important step in treating bacterial infections, it was recognized almost immediately that 

penicillin was relatively ineffective against Gram-negative bacteria (Hall 1994). It was 

not until ampicillin entered the market in 1963 that an antibiotic was effective against 

both Gram-positive and Gram-negative bacteria (Medeiros 1997). However, the first 

penicillin resistant strain was discovered as early as 1944 (Kirby 1944). Since then 

multiple other types of β-lactams have been discovered and further developed, including 

the cephalosporins (Fig. 1B), and monobactams (Fig. 1D). 

A 

B 
C 

D 
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Fig. 2: Carbapenem Core Structure & 
Doripenem. Top: Core structure of 
carbapenems. Bottom: Structure of 
doripenem. 

The most recent class of β-lactam antibiotics to 

be discovered and used clinically are the carbapenems 

(Fig. 2).The first carbapenem introduced into the United 

States was imipenem in 1987. Since then three more 

carbapenems have been approved for clinical use: 

meropenem in 1996, ertapenem in 2001, and 

doripenem in 2007. Carbapenem antibiotics 

are considered to be last resort antibiotics 

(Carrër 2008). While each carbapenem has a 

specific therapeutic role, they are generally 

used to treat patients with moderate to 

severe infections (Zhanel 2007, Keam 

2008). Within the group of β-lactam antibiotics, carbapenems are considered to be 

clinically “stable.” This term is used to describe their intrinsic resistance to many β-

lactamases (i.e. β-lactamases are not able to hydrolyze the β-lactam ring in these 

compounds). In addition to their β-lactamase resistance, newer carbapenems are also 

resistant to renal dehydropeptidase (E.C. 3.4.13.19) hydrolysis, which was a common 

problem with imipenem. The resistance of carbapenems against most β-lactamases is 

attributed to a trans-α-1-hydroxyethyl group at position 6 (Fig. 2, R1 substituent).  Renal 

dehydropeptidase resistance was accounted for due to a 1-β-methyl group placed at the 

R2 position (Fig. 2) (Zhanel 2007). This resistance to hydrolysis by a majority of β-

lactamases made carbapenems the most important last resort clinical agents used in 
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complicated nosocomial infections (Cornaglia 2010). Thus, emergence of strains that do 

inactivate carbapenems is a grave problem. 

2. Clinical Aspects of Antibiotic Resistance 

 Many different drug-resistant bacteria species have become the root-cause of 

serious health complications (Sharma 2011) – a problem that is estimated to cost the U.S. 

economy in excess of $20 billion according to the Centers for Disease Control and 

Prevention (Roberts 2009; CDC 2013). Various strains of S. aureus are now implicated in 

fatal cases of sepsis, and necrotizing fasciitis due to methicillin (Boyle-Vavra 2007) and 

vancomycin (Bozdogan 2003) resistance. Respiratory infections as well show antibiotic 

resistance, with different strains of S. pneumonia and S. pyogenes providing penicillin 

and macrolide resistance (Albrich 2004). Acinetobacter baumannii has become an 

increasingly important pathogen, especially with bloodstream infections (CDC 2004). 

Much of A. baumannii’s resistance is due to class D β-lactamases, which will be 

discussed in following sections. 

3. Diversity of Mechanisms of Antibiotic Resistance 

 Ultimately, every antibiotic exerts evolutionary pressure on bacteria to develop 

survival and resistance mechanisms. In the case of β-lactams, major mechanisms of 

resistance are: β-lactamases; the overexpression of β-lactamases in susceptible strains 

(Guitérrez 2007); antibiotic sensing domains (Zeng 2013); mobile genetic elements to 

facilitate rapid spread of resistance genes (Rumbo 2011); penicillin binding protein 

mutations (Katayama 2004), efflux pumps (Nakae 1999), and mutations in transporters 
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reducing influx and permeability of antibiotics (Li 2009). The most common mechanism 

is via β-lactam ring cleavage by β-lactamases. 

4. β-Lactamases 

4A. Classes and Diversity 

β–lactamases (E.C. 3.5.2.6) are major mediators of bacterial resistance to 

antibiotic therapies, and pose a serious threat to the most widely used class of antibiotics 

(Ferech 2006). They form a large family (500+) of distinct enzymes (Bush 2010). All of 

these enzymes are believed to have evolved from ancestral PBPs, which helped 

synthesize cell walls (Kelly 1986; Massova 1998; Hall 2004) 

Currently there are two classification systems for the β–lactamase family: one 

based on sequence similarity (Ambler 1980) and the other – based on functional profile 

(Bush 2010), i.e. the types of β–lactam substrates that a given subgroup can hydrolyze. 

According to sequence-based classification there are four classes of β-lactamases: A, B, 

C, and D (Hall 2005). Classes A, C, and D are serine-hydrolase enzymes (Fig. 3), while 

class B enzymes are metalloenzymes that use a Zn2+ ion for catalysis. In classes A, C, 

and D the hydrolysis process occurs in two steps: acylation of the enzyme by the 

antibiotic (Fig. 3A-B), and deacylation that yields in inactivated product (Fig. 3C-F). 
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Fig. 3: Serine-based Mechanism of β-Lactam Hydrolysis. Mechanism depicts the roles 
of the active site serine (nucleophile), and water molecule which assists with the deacylation. 
The mechanism requires serine activation by a general base: a glutamate residue serves this 
role in class A enzymes (Matagne 1998), and a carboxylated lysine (full side chain not shown) 
residue in class D enzymes. Figure adapted from Che (2012). 

The functional classification developed by Bush et al. (1989; 2010) divides the 

enzymes into groups based on their clinical activity. Factors such as substrate(s), and 

inhibitory molecules are taken into account. This classification has only 3 groups: Group 

1 being solely cephalosporinases (class C enzymes); Group 2 being serine β-lactamases 

(classes A and D), containing multiple functional subgroups with some enzymes showing 

multispecificity towards ligands; and Group 3 being the metallo-β-lactamases (class B 

enzymes) (Fig. 4). 
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Fig. 4: Functional Classification of β-Lactamases. Abbreviations are: Cb, carbapenems; 
Cf, early marketed cephalosporins; CA, clavulanic acid; EDTA, ethylenediaminetetraacetic 
acid; Esc, Expanded spectrum cephalosporins; M, monobactam; Pn, penicillins. Figure 
adapted from Bush (2013). 

 

4B. Extended-Spectrum β-Lactamases versus CPase Activity 

 β-lactamases that are capable of hydrolyzing third generation cephalosporins (Fig. 

5), in addition to other narrow-spectrum antibiotics like penicillin are generally referred 

to as Extended Spectrum β-lactamases (ESBLs) (Bradford 2001). There are currently 

over 200 ESBLs within the molecular classes A, C, and D. Most of these enzymes do not 

exhibit CPase activity, and carbapenem antibiotics are thus the treatment of choice in the 

case of infections caused by ESBL expressing strains (Paterson 2005). However, this 

increased use of carbapenems in response to ESBL activity is likely a factor in applying 

selective pressure for organisms to acquire and express Carbapenem Hydrolyzing class D 

β-lactamases (CHDLs). 

 The molecular explanation for why certain enzymes show ESBL activity while 

others do not is generally attributed to the ability of the active site to accommodate the 

bulkier substituents that are present on third generation cephalosporins, such as 
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ceftazidime and ceftriaxone (Fig. 5). Specific examples will be discussed in the following 

sections. 

Fig. 5: Structures of Ceftazidime & Ceftriaxone. Left: Ceftazidime. Right: Ceftriaxone. 

 

 4B-1. Mutations Enlarging the Active Site Promote Cephalosporinase Activity 

 Numerous enzymes have gained ESBL activity through unique mutations. The 

class C enzyme GC1 achieved this function through a three amino acid insertion within 

the Ω loop (Crichlow 1999; Fig. 7). The exact sequence of the amino acids appears to 

play no significant role, but the length of the insertion does as it causes the Ω loop to shift 

and open up the active site. SHV-2, a class A enzyme, contains a Gly238Ser mutation 

which causes the β3 strand to shift away from the enzyme’s Ω loop as Ser238 hydrogen 

bonds with Asn170. This ~3Å shift opens up the active site to larger substrates (Nukaga 

2003). Both support the hypothesis that the size of the binding pocket is vital for 

accommodating large substituents. The class D enzyme, OXA-163, differs from OXA-48 

(a CHDL) by a 1 amino acid substitution (S212D), and a 4 amino acid deletion (R214-

P217) after the KTG family motif on the β5 strand. This sequence change causes 
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increased cephalosporinase activity (Poirel 2011). While the authors do not detail a 

structure/functional relationship for this newly gained activity, based on how previous 

enzymes have acquired ESBL activity the likely cause of OXA-163’s ESBL activity is an 

opening of the active site. 

 Multispecificity of a β-lactamase is an undesirable trait from a clinical 

perspective. Since carbapenems tend to be the treatment of choice for ESBL-producing 

infections, and 3
rd

 generation cephalosporins for CHDL-producing infections, bacteria 

which are capable of producing multispecific (i.e. both CHDL and ESBL) resistance 

enzymes pose a major threat to the current arsenal of antimicrobials. Any CHDL and 

ESBL-producing bacterium drastically limits the options for antibacterial chemotherapy 

to drugs with undesirable side-effects – such as those observed with linezolid, an 

antibiotic that when used over the long term may cause GI complications and 

thrombocytopenia (Kalil 2010); or polymyxins, which have shown neurotoxic effects 

(Grill 2011). 

 4B-2. OXA-24 Variant Exhibits Cephalosporinase and CPase Activity 

 The molecular mechanisms of ligand selection are not well understood and, given 

that a single amino acid substitution can have a profound effect on substrate profile 

(Afzal-Shah 2001; Nukaga 2003; Kaitany 2013), is it vital to elucidate (and predict) the 

effects of specific mutations. This can help predict evolutionary pathways of these 

enzymes, and perhaps lead to more effective antimicrobial chemotherapeutics. In this 

project we aim to help understand the mutational effects that affect both CHDLs 

and ESBLs in OXA-24 and its variants. OXA-160 is a P227S mutation of OXA-24 
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(Tian 2011) which confers increased resistance to third generation cephalosporins, 

ampicillin, and aztreonam. It increases activity against doripenem, but decreases activity 

against imipenem (Mitchell 2015). 

4C. Class D Enzymes and OXA-24 as Focus of this Thesis 

 4C-1. Unique Features 

 There are currently over 200 unique enzymes in the class, and more are expected 

as the class is currently experiencing the fastest growth out of all β-lactamase subfamilies 

(Fig. 6). It should be noted that while the CMY class C β-lactamases, and class A KPC 

enzymes have higher rates of growth, the class D enzymes has the most unique enzymes 

of all the subfamilies. 

Fig. 6: Growth Rate of β-Lactamase Classes. Class D enzymes are only designated as 
OXA. Class A enzyme designations are TEM, SHV, CTX, GES, and KPC. Class B enzymes 
are IMP, and VIM. Class C enzyme family is CMY. Figure adapted from Bush et al. (2011b). 

 

 Class D β-lactamases, like the class A and C enzymes, use an active-site serine for 

hydrolysis (Ledent 1993), but are most likely distant relatives of these enzymes (Massova 

1998) and contain many unique features. Unlike the other two classes, class D enzymes 



29 
 

contain a rare, modified, amino acid: a carboxylated lysine, which is critical for catalytic 

activity (Golemi 2001). The carboxylysine residue acts as the general base in the 

hydrolysis mechanism, playing a particularly essential role in the deacylation step of 

catalysis (Schneider 2009b). 

 4C-2. Conserved Motifs and Residues  

 In addition to the general base and catalytic serine, highly conserved motifs and 

residues were identified in the class D family. Highly conserved motifs include (residue 

numbers correspond to PDB 3ISG): P65-[AD]STFK, S115-xV, [YF]141-GN, and K212-

[TS]G (Bou 2000). Highly conserved residues (>95 %) outside of those motifs are: G128, 

W160, I167, L184, W228, G231, and F243 as revealed by multiple sequence alignment 

of 80+ unique OXA sequences (Szarecka 2011). 

 4C-3. Structural Features 

 Structures of OXAs are highly conserved (as revealed by a number of crystal 

structures of various class D enzymes). Crystal structures are available for OXA-1 (PDB 

1M6K), OXA-2 (1K38), OXA-10 (1FOF), OXA-13 (1H87), OXA-23 (4K0X), OXA-24 

(2JC7), OXA-45 (4GN2), OXA-46 (3IF6), OXA-48 (3HBR), OXA-58 (4OH0), OXA-

146 (4K0W), OXA-160 (4X56), and OXA-225 (4X55). The fold (Fig. 7) includes a 

helix-only domain, and an α/β domain. The helical domain contains the active site 

PASTFK motif, the P loop, and other active site stabilizing elements (e.g. Trp167). The 

α/β domain contains the β5-β6 loop, the K[ST]G motif, and both the N and C-termini. All 

of these elements will be discussed in further detail in the sections to follow. 
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Fig. 7: Class D Conserved Secondary Elements. 

Catalytic PASTFK motif colored green, P loop 

colored yellow, Ω loop colored red, β5-β6 loop 

colored blue. 

 4C-4. Class D CPases and 

OXA-24 Subgroup 

Fairly recently, multiple 

class D enzymes with CPase 

activity (functional subgroup 2df, 

Fig. 4) have been identified 

(Afzal-shah 2001). These newer 

class D members are the main 

source of carbapenem resistance 

in A. baumannii infections (Poirel 

2006), and are becoming 

increasingly common (Queenan 

2007). Distinct Class D CPase 

subgroups are OXA-23, 24, 48, 51, 58, and 228 (Bonnin 2012). The focus of this 

research is on the parent enzyme OXA-24, and three OXA-24 mutants (M223A, 

G224D, P227S). OXA-24 (NCBI RefSeq YP_002967455.1) is a CPase that was 

discovered in Spain over a decade ago in a strain of A. baumannii (Bou 2000). It is 

identical to OXA-40 and is sometimes referred to as OXA-24/40. Initially OXA-24 was 

thought to only be chromosomally encoded (Bou 2000), but recent studies have shown 

that horizontal transfer events of the blaoxa-24 gene can occur (Rumbo 2011) resulting in 

an enzyme with an increased potential for pathogenic spread. OXA-24 has spread, from 

Spain to Portugal (Da Silva 2004), France (Quinteira 2007), Italy (D’Andrea 2009), and 

the United States (Tian 2011). Based on our sequence alignment OXA-24 is also a parent 



31 
 

enzyme to multiple variants, including OXA-25, 26, 72, 139, 143, 160, 182, 207, 231, 

253, and 255.  Based on the MSA I performed using M-Coffee (Wallace 2006), OXA-24 

shares 99% sequence identity with OXAs-25, 26, 72, 139, 160, and 207; 88% identity 

with OXA-143, 231; 89% identity with OXA-182; 90% identity with OXA-253; and 87% 

identity with OXA-255 (Table 14, Appendix C). These group members have spread as 

well, such as OXA-72 in Colombia (Montealegre 2012), the United States (Tian 2011), 

China (Wang 2007), and Lithuania (Povilonis 2012). 

 OXA-24 is capable of hydrolyzing other antibiotics in addition to carbapenems. 

Hydrolysis of ampicillin is relatively similar to that of imipenem and doripenem (Km/kcat 

= 3.1 ±0.4 μM
-1

s
-1

 for doripenem and imipenem, 2.6 ±0.3 μM
-1

s
-1

 for ampicillin) 

(Mitchell 2015). OXA-24 binds the carbapenems much more tightly than ampicillin; the 

Km for ampicillin is ~200 times greater than that of imipenem. However, OXA-24 turns 

over ampicillin at a much greater rate than the carbapenems (Kcat of 480 ±20s
-1

 for 

ampicillin, and 0.074 ±0.001s
-1 

and 2.1 ±0.1s
-1 

for doripenem and imipenem 

respectively). The hydrolysis of 3
rd

 generation cephalosporins in quite poor: Kcat/Km for 

cefotaxime is 0.00051 ±0.00005 μM
-1

s
-1

, while ceftazidime hydrolysis is not detectable 

(Mitchell 2015). 

4D. Current Knowledge on Factors Determining ESBL or CHDL Activity in OXAs 

 The mechanism through which some class D enzymes acquire new function is 

poorly understood, and evolutionary pathways that govern the functional diversity and 

multispecificity within class D β-lactamases must be elucidated. Detailed information is 
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needed on which residues assist, and which residues hinder various stages of the catalytic 

cycle for various classes of β-lactams. 

 Several factors have been proposed in the literature with regard to the mechanism 

of ESBL and CHDL activities. As mentioned before, in the majority of cases, β-

lactamases cannot exhibit both ESBL and CHDL activity. Thus, increased ability to 

hydrolyze cephalosporins reduces the ability of catalyzing carbapenems and vice-versa. 

OXA-160 (OXA-24 P227S) is a notable exception in this respect. 

 In the case of ESBL, the size of the binding pocket is vital as 3
rd

 generation 

cephalosporins contain bulky substituents (Fig. 5) that need to be packed inside the active 

site without affecting the position of the β-lactam ring with respect to the catalytic 

residues. Thus, mutations that increase the size of the binding cavity should promote 

ESBL activity. It is equally important that no steric barriers hinder the entrance to the 

pocket. Indeed, Kaitany et al. (2013) suggested that the Tyr112-Met223 interaction in 

OXA-24 forms a bridge that prevents binding of such bulky ligands and may facilitate 

carbapenem binding. 

 In the case of CPase activity, the following factors have been proposed in the 

literature: (1) the ability to recruit a necessary water molecule to complete the catalytic 

cycle (Schneider 2009a); (2) interactions between the hydroxyl group in position R1 (Fig. 

2) with the carboxylysine may diminish the latter’s ability to serve as the general base 

(Schneider 2011); (3) intramolecular reactions such as tautomerization of the pyrroline 

ring within the substrate that may hinder deacylation (Schneider 2011); (4) mutations that 
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promote decarboxylation of the general base (Schneider 2011); (5) mutations in the loop 

adjacent to the catalytic center (De Luca 2011). 

 With regard to factor (5), a recent study by De Luca et al. (2011) reported that the 

β5-β6 alone is able to “switch” on the CPase activity. When OXA-10’s (a non-CPase) β5-

β6 sequence (residues 221-228, OXA-24 numbering) was replaced with that of OXA-

24’s the hybrid enzyme showed CPase activity. The authors hypothesized that the β5-β6 

loop impacts the binding mode of carbapenems, facilitating hydrolysis. Thus, it is clear 

that this loop is involved in CHDL activity although the mechanism through which the 

β5-β6 loop affects substrate selection is not well understood. It should be noted that the 

“β5-β6” term is not technically correct when identifying the loop in OXA-24. OXA 

structures vary in the exact number of stands in their extended β sheet so the strand 

numbering varies from enzyme to enzyme. The actual loop in OXA-24 WT would be the 

β4-β5 loop (Fig. 36, Appendix C), but because the term was defined using OXA-48 

(Docquier 2009; De Luca 2011), we have decided to continue using this nomenclature. 

 In addition, OXA-160 (Tian 2011) and other studies (Kaitany 2013; Mitchell 

2015) revealed that single amino-acid mutations within the β5-β6 loop in CPases impart 

the ability to hydrolyze 3
rd

 generation cephalosporins, i.e. a multispecific ESBL-CHDL 

enzyme emerged. 
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5. Research objectives 

In light of the above findings, I have set the following aim as the research 

objective of my thesis: 

Aim: To elucidate the mechanism through which the β5-β6 loop affects the ligand 

binding and selectivity of the OXA-24 enzyme, in particular the binding of 3
rd

 generation 

cephalosporins and doripenem. 

Hypothesis: Since the β5-β6 loop is not directly involved in the ligand binding or in 

hydrolysis, I hypothesize that mutations within this loop have an indirect affect – through 

modulating the enzyme dynamics. 

Aim 1a: Analysis of Molecular Dynamics simulation trajectories of OXA-24 wild-type, 

M223A, G224D, and P227S mutants. Simulation trajectories (40 nsec) provide insight 

into the residue fluctuations in different variants, size and shape of the active site, 

conformational flexibility of the β5-β6 and Ω loops, and the stability of the catalytic 

center. 

Aim 1b: Docking simulations of representative antibiotics to multiple trajectory frames. 

Differences in the conformational ensembles of different variants can be identified within 

the trajectories, and representative frames then serve as docking targets for various 

classes of antibiotics. This will provide insight into the ability of the variants to 

accommodate various types of β-lactams. 
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CHAPTER II 

METHODS 

1. Sequence Analysis 

 CPase sequences from the OXA-24 family were collected by performing a protein 

BLASTp search of the OXA-24 sequence on the non-redundant protein sequences 

database through the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/), and saving all sequences which shared ≥85% identity 

with OXA-24. Representative sequences from other class D families – determined via 

Poirel et al. (2010) - were acquired from the NCBI Protein database. This cutoff percent 

was self-chosen as all members of the OXA-24 subgroup share >85% identity with every 

other member. The lowest identity shared between two members of the OXA-24 

subgroup is 86%. OXA-24 only shares 62% identity with CPase OXA-51; identities 

between OXA-24 and other class D CPases are lower still. Therefore, the 85% sequence 

identity cutoff was chosen to best represent enzymes that are currently part of the OXA-

24 subgroup.  

The Multiple Sequence Alignment (MSA) tool M-Coffee (Wallace 2006) was 

employed for motif discovery and sequence alignment. M-Coffee was run through its 

online server at http://tcoffee.crg.cat/apps/tcoffee/do:mcoffee (Moretti 2007). M-Coffee 

uses several MSA algorithms, and then combines those alignments into one, final 

alignment. All eight default MSA methods were utilized for aligning the collected class D 

sequences: PCMA (Pei 2003), POA (Lee 2002), DIALIGN-T (Subramanian 2005), 

http://tcoffee.crg.cat/apps/tcoffee/do:mcoffee
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MAFFT (Katoh 2005), MUSCLE (Edgar 2004), ProbCons (Do 2005), CLUSTAL W 

(Thompson 1994), and T-Coffee (Notredame 2000) 

2. Molecular Dynamics 

2A. Theoretical Background 

 MD simulations are a deterministic method of modeling the physical movements 

of atoms within a user-defined system. While many methods exist for sampling the 

conformational space of proteins (e.g. Monte Carlo simulation), MD simulations allow 

for the conformational space to be sampled in a time-dependent manner; essentially 

allowing for the system to evolve on its own biological time-scale (Karplus 2002). 

 The determination of atomic movements requires a potential energy function; also 

known as a “force field.” The force field approximates the energy of a system by 

expressing it as a function of the system’s structure (atomic positions) (Fig. 8). From the 

potential energy, it is possible to determine the individual forces acting on each atom 

within the system. Then, by applying Newton’s equations of motion to the N-atom 

system over small time-scales, a time-dependent evolution of the protein structure (also 

known as a trajectory) can be obtained.  

 Current force fields rely on empirical parameters; numerical constants which 

describe all of the potential interactions between all types of atoms present within the MD 

simulation. Standard sets of parameters have been developed for proteins and nucleic 

acids, and implemented in simulation packages such as CHARMM (Brooks 2009) or 

AMBER (Case 2005). However, additional parameters are needed to model novel or 
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modified residues. In the case of this work, additional parameters were needed to model 

the carboxylated lysine present within OXA-24. 

𝑈(�⃑� ) = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝑈𝐵(𝑆 − 𝑆0)
2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ 𝐾𝜑(1 + cos(𝑛𝜑 − 𝛿)) + ∑ 𝐾𝜔(𝜔 − 𝜔0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ {휀𝑖𝑗
𝑚𝑖𝑛 [(

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2(
𝑅𝑖𝑗

𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋휀0휀𝑟𝑖𝑗
}

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

+ ∑ 𝑈𝐶𝑀𝐴𝑃(𝜑, 𝜓)

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

 

Fig. 8: CHARMM Force Field. This function determines potential energy of a 
conformation using the following molecular components: bonds, angles, Urey-Bradley, 
dihedrals, impropers, electrostatic interactions, and Van der Waals interactions. Figure 
adapted from Brooks et al. (2009). 

 In the case of the CHARMM force field the parameters fall into the following 

categories: force constants, equilibrium values, multiplicities (number of energy minima 

present during the rotation of dihedrals), and other factors such as atomic charges and 

Van der Waals parameters. The covalent bonds, bond angles, Urey-Bradley term – an 

additional harmonic term that helps reproduce crystal structure geometries and 

vibrational spectra more consistently by describing certain distances between the first and 

third atoms in an angle (MacKerell Jr 1998), though not all force fields use this term 

(Wang 2003) - and improper dihedrals, are all treated as “springs,” i.e. represented by a 
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harmonic potential. The farther from their respective equilibrium values, the higher the 

overall energy a particular conformation will have. The non-bonded pairs portion of the 

equation represents the interactions between two charged particles, qi and qj, with a 

distance between them of rij. 휀0 is the permittivity of a vacuum, and ε is the classic 

dielectric constant of the medium separating the charged particles. The Lennard-Jones, or 

12-6, potential is used to calculate Van der Waals forces between two atoms. 휀𝑖𝑗
𝑚𝑖𝑛 is the 

depth of the potential energy well between two particles, 𝑟𝑖𝑗
𝑚𝑖𝑛 is the minimum distance 

where the two particles interact, and 𝑟𝑖𝑗 is the current distance between both atoms. 

CMAP is a torsional angle correction term, which helps with certain backbone 

inconsistencies for alanine, glycine, and proline that were observed previously in the 

CHARMM force field (MacKerell Jr 2004).  

 Modeling the protein’s environment is also key to obtaining realistic trajectories. 

MD simulations typically use either an implicit or explicit solvent model. Implicit 

solvation approximates the effects of water on a simulation by modeling water as a 

dielectric continuum, instead of individual molecules. While these models are less 

computationally demanding, they fall short when modeling many important protein-water 

interactions (Tan 2006).  Explicit solvent models include every water molecule present 

within the system. These models generally provide more detailed information about 

solvent effects on the protein, but this level of detail comes at the cost of computational 

speed. Explicit water models tend to differ from one another in the number of interaction 

points present on each water molecule. These can range from simple two-site models 

(Dyer 2009), to five-site models that not only model each atom, but represent the lone 
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electron pairs (Mahoney 2000). Typically, MD simulations use either a three-site model 

(such as TIP3P), or a four-site model. 

2B. Computational Details 

 OXA-24 WT and the P227S mutant were constructed using the previously 

published OXA-24 WT crystal structure (PDB ID 3PAE). Mutating Pro227 to serine was 

accomplished using the MMTSB script library (Feig 2004). The CHARMM script library 

was used to add hydrogen atoms, and to create protein structure files (PSF). Protonation 

states were set to coincide with neutral pH. System charge was brought to 0 by 

selectively deprotonating Lys40 and Lys242. Both residues are incapable of directly 

interacting with the active site, and are exposed to the solvent; no effects of the 

deprotonation on the system are expected.  Both structures were solvated with TIP3P 

(Jorgensen 1983) with the box dimensions of 90 Å x 70 Å x 65 Å. 

OXA-24 G224D and the M223A were set up using a crystallographic OXA-24 

G224D structure (Mitchell, unpublished data). These structures have two additional 

residues present on the N-terminus, an asparagine and phenylalanine. These two residues 

are located away from the active site and are not expected to affect the system. System 

charge was brought to 0 by selectively deprotonating Lys244 (identical to Lys242 in WT 

and P227S) for the G224D mutant; both Lys 42 (identical to Lys40 in WT and P227S) 

and Lys244 were deprotonated in the M223A mutant. All methods required to set up both 

the G224D and M223A mutant are otherwise identical to the methods employed to set up 

the WT and P227S mutant simulations. Box dimensions for both proteins are 90 Å × 67 

Å × 62 Å. 
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The CHARMM22 force field (Brooks 2009) and CHARMM 35a1 simulation 

package were used to perform the MD simulations. Topology and parameter files were 

modified to include entries for the carboxylated lysine (Simakov and Wymore, 

unpublished data; Appendix A). All systems were minimized for 500 steps using the 

Steepest Descent algorithm, followed by Adopted Basis Newton-Raphson until the 

gradient threshold of 0.01 kcal/Å
-2

 was archived. All systems were then heated from 10K 

to 300K over 30,000 steps (1 fsec/step). An NPT ensemble was then employed to 

stabilize the box conditions; done for 20,000 steps (1 fsec/step). Harmonic constraints 

were applied to the protein during these stages (minimization, heating, NPT): the SHAKE 

algorithm, which held bonds containing hydrogens near equilibrium values; and a 5 

kcal/mol penalty to positional deviations on the protein’s non-hydrogen atoms. The 

productive simulation (excluding energy minimization) was performed at the Pittsburgh 

Supercomputing Center using an NVT ensemble, SHAKE algorithm, Leapfrog algorithm 

for integration of the potential energy function, and a time-step of 2 fsec. The first 1 nsec 

of the NVT trajectories was treated as an equilibration period. Total NVT simulation time 

of all systems was 39 nsec. Rectangular periodic boundary conditions were employed; 

particle mesh Ewald was used for electrostatic calculations; and a non-bonded cutoff of 

10 Å with a switching function was utilized throughout all stages of the simulation. 

3. MD Trajectory Analysis 

 VMD (Humphrey 1996) was used to analyze the trajectories and render images. 

Frames were aligned by the protein Cα atoms using the RMSD Visualizer Tool plugin. 

Unless specified, frame 0 was used as the reference frame (first frame of the NVT portion 

of the simulation). RMSDs were calculated using the RMSD Visualizer Tool – reference 
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frame identical to trajectory alignment. RMSF, average structures, and Rgyr calculations 

were calculated with the Tk console using VMD’s built-in functions for each. RMSF, 

average structures, and Rgyr procedures were performed using the last 22 nsec of the 

trajectories (see the appropriate sections in CHAPTER III).  

The Python script which calculated the active site volume was written by Brian 

Mullen (Mullen and Szarecka, unpublished data). The code uses the Quickhull algorithm 

(Barber 1996), to create a convex hull with triangular facets which encloses the atoms of 

the specified binding pocket. Techniques for calculating volume of the resulting three-

dimensional surface are extended from two-dimensional calculations. In two dimensions, 

the area of an arbitrary polygon can be calculated by taking the sum of the areas of a set 

of triangles, each with a base at one of the sides, and an apex at the center of the shape. In 

three dimensions, the same method can be used with tetrahedrons. The atomic selection 

used to define the active site can be found in Table 15 (Appendix C). The active site 

atoms were selected to best represent how OXA-24 accommodates substrates. Since 

entrance to the OXA-24 active site is essentially regulated by the Tyr112-Met223 

hydrophobic bridge, atom selections were chosen to best represent this information. 

Heatmaps generated from the volume script were created using the statistical 

software RStudio (http://www.rstudio.com/). These heatmaps were generated using 

Script 6 (Appendix B). 

Hydrogen bonds (HB) were considered present in our simulation if the donor and 

acceptor heavy (oxygen, nitrogen) atoms are less than 3.2 Å from each other (Arunan 

2011).  When taking into account donor-hydrogen-acceptor angles, a conservative range 
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of 120-180° was employed. Since authors differ on what the correct geometric criteria of 

HB in proteins are (Arunan 2011; Torshin 2002), we decided to adopt the above ranges as 

representing the unequivocal and strong HB contributions. For example, other sources in 

the literature on the subject describe hydrogen bonding with liberal donor-acceptor 

distances of less than 3.9 Å, and donor-hydrogen-acceptor angles greater than 90.0° 

(Torshin 2002).  

4. WT and P227S Structure Selection 

 Φ/Ψ-based selection of WT and P227S structures were performed to acquire 

unique conformations for molecular docking, and to detect differences between the 

conformational ensembles in both proteins. Every 2 psec of the last 22 nsec was loaded, 

and the φ and ψ angles for each β5-β6 loop residue was determined and plotted. These 

Ramachandran plots were subsequently overlaid to observe differences between WT and 

P227S. Regions on the Ramachandran plot which were occupied by only one of the 

enzymes were considered unique, and an individual point was chosen (by eye) to be used 

as a representative structure. 

5. Molecular Docking 

5A. Theoretical Background 

 Molecular docking is a computational technique for the prediction and modeling 

of protein-ligand interactions. Ideally, accurate binding affinities are predicted along with 

the correct poses of the ligand. Several algorithms have been  implemented for docking, 

for example incremental construction algorithms – where small portions of the ligand are 

placed into the active site and scored for the best position, other fragments are then added 
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on and scored until the entire ligand is “built” into the active site (Rarey 1996); and 

genetic algorithms (GAs). 

 GAs are used by many docking programs – such as AutoDock4 (Morris 2009), 

and GOLD (Jones 1997) - to determine the optimal position of the ligand in relation to 

the receptor. GAs are conformational search algorithms that attempt to imitate the 

process of natural selection. The best solution to a problem (best binding position in a 

receptor) is therefore the solution with the best “fitness.” In the case of molecular 

docking, the best fitness is given to the receptor-ligand conformation with the lowest 

energy. The Lamarckian GA present in AutoDock4 is a combination of both a GA, and a 

local search method. The “Lamarckian” aspect of this algorithm comes from Jean-

Baptiste Lamarck, who believed that traits acquired through an individual’s life will be 

passed on to their offspring. This is essentially a phenotypic change which brings about a 

genotypic change. This hybrid algorithm starts with the mapping of phenotype to 

genotype. All rotatable bonds and the xyz position of the ligand within the search box are 

“coded by” genes and chromosomes. For a user-specified number of individuals (i.e. 

population size), all of these values are randomized initially. The “fitness” (binding 

energy) is evaluated for all individuals and individuals are allowed to reproduce; the 

chromosomes and genes defining each individual’s state may undergo crossing-over 

(depending on the user-defined rate of crossing-over). Mutation then occurs at a defined 

rate, which randomly alters genes. Just before the next generation begins, local searches 

are done at a user-defined rate. This local search - the Lamarckian aspect of the algorithm 

- allows for a further exploration of an individual’s torsional space. The individuals that 

undergo a local search have their corresponding genes altered to reflect the local search. 
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The next generation begins, and the processes are repeated until either all generations 

have passed, or all energy evaluations have been performed regardless of the number of 

generations that have been passed. The search space of the algorithm is organized in a 3-

dimensional box, or grid. This grid consists of a user-specified number of points along 

each of the x, y, and z directions. The energy of each atom type present in the ligand will 

be evaluated at each point using AutoDock4’s free energy function, and the total ligand 

energy within the binding site is a combination of all of the atoms’ energies. 

5B. Computational Details 

 Docking to selected conformations was carried out using AutoDockTools4 and 

AutoDock4 (Morris 2009). The antibiotic structure of doripenem was downloaded and 

saved from PubChem (http://pubchem.ncbi.nlm.nih.gov/) in the 3D SDF format. 

Antibiotic 3D SDF files were converted to PDB files using the Online SMILES 

Translator and Structure File Generator (http://cactus.nci.nih.gov/services/translate/). The 

carboxylate group of doripenem was deprotonated using VMD to best represent the drug 

in physiological conditions. Hydrogen atoms were added to antibiotic structures using 

AutoDockTools4, and edited using VMD. Only polar receptor hydrogens were utilized 

during docking runs, and Kollman partial charges (Singh 1984) were added to receptor 

atoms. Search parameters regarding the GA were identical for all docking simulations: 

 Grid Spacing = 0.225 

 # of GA Runs = 100 

 Population Size = 750 

 Maximum # of Energy Evaluations = 1.0x10
8
 

http://pubchem.ncbi.nlm.nih.gov/
http://cactus.nci.nih.gov/services/translate/
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 Maximum # of Generations = 5.0x10
4
 

 Maximum # of Individuals that Automatically Survive = 1 

 Rate of Gene Mutations = 0.02 

 Rate of Crossover = 0.8 

 GA Crossover mode = “twopt” 

 Mean of Cauchy distribution for gene mutation = 0.0 

 Variance of Cauchy distribution for gene mutation = 1.0 

 # of generations for picking worst individual = 10 

All other docking/local search parameters were set as defaults. Grid box size was 

dependent upon the receptor, as active site elements may have undergone rearrangements 

during the MD simulation. For each unique conformation, grid boxes were centered upon 

the following atoms, and had the following grid sizes (# of x, y, and z points): 

 3PAE_Target.pdb: Centered on Arg261’s Cζ with grid size of 120x100x110. 

Structure used for docking validation. This is a WT OXA-24 structure which does 

not contain the KCX, instead an aspartate is present. Structure was modified 

directly from PDB 3PAE, where only one protein chain was used as the receptor 

for the docking of acylated doripenem. 

 oxa24wtsys1.pdb: Centered on Arg261’s Cζ with grid size of 120x100x110. 

Structure used for docking validation. This is a WT OXA-24 structure which does 

contain the KCX. This structure was taken from the MD setup just prior to energy 

minimization. Only the protein chain was used as the receptor for the docking of 

acylated and un-bound doripenem, 
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 wt_trp190.pdb: Grid box for doripenem was centered on Ser81’s Oγ with grid 

size of 120 x 110 x 110. This is the WT structure utilized from the Trp221 φ/ψ 

structure selection. 

 wt_pro196.pdb: Grid box for doripenem was centered on Ser81’s Oγ with grid 

size of 110 x 100 x 110. This is the WT structure utilized from the Pro/Ser227 

φ/ψ structure selection. 

 ps_trp190.pdb: Grid box for doripenem was centered on Ser81’s Oγ with grid size 

of 110 x 100 x 100. This is the P227S structure utilized from the Trp221 φ/ψ 

structure selection. 

 ps_ser196.pdb: Grid box for doripenem was centered on Ser81’s Oγ with grid size 

of 110 x 100 x 100. This is the P227S structure utilized from the Pro/Ser227 φ/ψ 

structure selection. 

All docking simulations were performed using the Lamarckian GA on the 

Phoenix Computing Cluster at Grand Valley State University (supported by NSF Grant 

No. CNS-1228291). Docking results were analyzed in VMD. 
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CHAPTER III 

RESULTS 

1. Determination of OXA-24 Subfamily 

 The sequences retrieved from the non-redundant protein database through NCBI 

can be found on the following page in Table 1. Approximately 11 enzymes (as designated 

by Parental Enzyme) were determined to be part of the OXA-24 subgroup. Other parental 

CPase and non-CPase sequences were saved for comparison. The MSA that resulted from 

M-Coffee can be found in the Supplementary Data (Fig. 37, Appendix C). While the 

primary goal of the MSA was to determine if any unique motifs were present in only the 

OXA-24 subgroup, the members of the OXA-24 subgroup were also determined, as 

previous attempts to organize the class D family were incomplete (Poirel 2010). The 

motifs that are truly unique to only the OXA-24 subgroup are small in number. Some 

motifs appear in the OXA-24 family, and one other CPase subgroup. One example is a 

Gln50-Thr-Gln motif which appears in every member of the OXA-24 subgroup, but also 

in OXA-228. On the whole the MSA did not provide any additional motifs for analysis 

within the MD simulations. However, one unique feature of the β5-β6 loop in CPase 

OXAs is the presence of a hydrophobic residue (typically a valine, or isoleucine for 

OXAs-23 and 48) at position 225 (OXA-24 numbering). No non-CPase OXA in the table 

below contained a hydrophobic residue in the homologous position. This does not mean 

that this pattern is universal, but the trend is present amongst the enzymes collected. 
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Enzyme NCBI Accession # Parental Enzyme CPase 

OXA-1 AAA91586.2 OXA-1 No 

OXA-2 YP_006953608.1 OXA-2 No 

OXA-5 CAA41211.1 OXA-5 No 

OXA-10 YP_008658337.1 OXA-10 No 

OXA-20 AAC23554.1 OXA-20 No 

OXA-23  ABK34775.1 OXA-23 Yes 

OXA-24 YP_002967455.1 OXA-24 Yes 

OXA-25 AAG35607.1 OXA-24 Yes 

OXA-26 AAG35608.1 OXA-24 Yes 

OXA-48 AAP70012.1 OXA-48 Yes 

OXA-51 CAC83905.2 OXA-51 Yes 

OXA-58 AAW57529.1 OXA-58 Yes 

OXA-63 AAU88145.1 OXA-63 No 

OXA-72 YP_008090878.1 OXA-24 Yes 

OXA-139 CAQ51348.1 OXA-24 Yes 

OXA-143 ACX70402.1 OXA-24 Yes 

OXA-160 ADB28891.1 OXA-24 Yes 

OXA-182 ADK92148.1 OXA-24 Yes 

OXA-207 AFK28473.1 OXA-24 Yes 

OXA-228 AFM55001.1 OXA-228 Yes 

OXA-231 AFG29918.1 OXA-24 Yes 

OXA-253 AGK07368.1 OXA-24 Yes 

OXA-255 AGK07369.1 OXA-24 Yes 

Table 1: Class D Representative Sequences. Non-CPase enzymes were collected to 
determine if discovered motifs were conserved amongst only CPases, or only OXA-24-
related CPases. Members of the OXA-24 subgroup are shown as having OXA-24 as the 
parental enzyme. 
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2. Comparison of Mutant Dynamics 

2A. Trajectory RMSDs 

 2A-1. All Protein RMSD 

 Stability of the simulations was evaluated using all-Cα RMSD of each enzyme 

(Fig. 9). RMSD calculations were performed using the initial frame of the NVT 

simulation as the reference. Trajectories were aligned by all Cα atoms. 

Fig. 9: All-Cα RMSD of Entire Protein. 

 All simulations showed the characteristic increase and leveling of all-Cα RMSD 

values. Because RMSD is a commonly accepted measure of structural drift throughout 

the simulation, WT, M223A, and P227S trajectories were considered stable as large 

deviations were not observed past the extended 18 nsec equilibration period. 

All Cα 

All Cα 
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Interestingly, the P227S mutant shows lower RMSD values than the WT for the majority 

of the productive trajectory (i.e. from 18 nsec onward), while the M223A mutant shows 

the opposite behavior. The behavior of the G224D mutant has been unique in that RMSD 

values vary more dramatically (for example, around the 5 and 17 nsec time points). This 

makes us uncertain about the successful stabilization of the G224D system. The G224D 

peaks are caused by large fluctuations of the N-terminus; N-terminal Cαs in the high 

RMSD frames deviate by ~23 Å from the reference frame (Fig. 38, Appendix C), but the 

N-terminal residues (His32, Ile33, Ser34) do not form interactions with other residues. 

While the G224D mutant may not have yet stabilized, in the following sections we use 

the last 22 nsec as productive trajectory. It should also be mentioned that the enzymes’ P 

loops may not have been sufficiently sampled due to the fact that large loop movements 

of proteins tend to occur on the μsec timescale (Dror 2012).  

 

 2A-2. RMSD of Loops

P loop 
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β5-β6 loop 

Ω loop 

Ω loop 

P loop 
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Fig. 10: Cα RMSD of Protein Loops.  Residue spans are: P loop, residues 93-120; Ω loop, 
residues 154-176; β5-β6 loop, residues 221-228.  

The RMSD drift calculations are present in Table 2. 

 

 Whole 

Protein: Cα 

Atoms (Å) 

P Loop: Cα 

Atoms (Å) 

Ω Loop: Cα 

Atoms (Å) 

β5-β6 Loop: 

Cα Atoms (Å) 

WT 1.6 ±0.1 1.7 ±0.5 1.4 ±0.2 2.2 ±0.5 

M223A 1.8 ±0.2 3.1 ±0.5 1.0 ±0.1 1.4 ±0.3 

G224D 1.4 ±0.3 2.0 ±0.5 0.9 ±0.2 0.8 ±0.2 

P227S 1.3 ±0.2 2.1 ±0.6 1.0 ±0.2 1.2 ±0.3 

Table 2: RMSD Drift. RMSD drifts are calculated using the last 22nsec of the trajectory.  
RMSD drift is calculated as the average RMSD. 

 Loop regions were expected to contribute greatly to the overall RMSD drift. In 

the case of OXA-24, we were interested in the P loop, Ω loop, and the β5-β6 loop, with 

the P loop being particularly difficult to stabilize over a relatively short trajectory span. 

As shown in Table 2, we observe rather low values of RMSD for the β5-β6, and Ω loops, 

but the P loop experiences much higher drift overall, particularly for M223A. In all 

mutants both β5-β6 and Ω loops have lower RMSD values than WT overall. 

β5-β6 loop 
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 2A-3. RMSD of Active Site 

 The modality of the active site residues was measured as the RMSD of PASTFK, 

KSG, SxV, and Arg261 motifs using both the RMSD of only Cα atoms, and all atoms to 

reveal deviations from the initial structure (Fig. 11). 

 

 

 

PASTFK Cα Atoms 

PASTFK Cα Atoms 

PASTFK All Atoms 
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Fig. 11: RMSD of Active Site. Other active site residues are: Ser128 and Val130 (SxV 
motif), Lys218, Ser219, and Gly220 (KSG motif), as well as Arg261. PASTFK motif starts 
with Pro79. 

 The RMSD drift for the RMSDs in Fig. 11 are present in Table 3. 

 

 

 

PASTFK All Atoms 

Other Active Site Residues Cα Atoms 

Other Active Site Residues Cα Atoms 

Other Active Site Residues All Atoms 

Other Active Site Residues Cα Atoms 

Other Active Site Residues Cα Atoms 

Other Active Site Residues All Atoms 
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 PASTFK 

Motif: Cα 

Atoms (Å) 

PASTFK 

Motif: All 

Atoms (Å) 

Other Active 

Site Residues: 

Cα Atoms (Å) 

Other Active 

Site Residues: 

All Atoms (Å) 

WT 1.0 ±0.2 1.4 ±0.2 1.1 ±0.2 1.6 ±0.1 

M223A 1.5 ±0.2 2.1 ±0.2 1.5 ±0.2 1.9 ±0.1 

G224D 0.7 ±0.1 1.3 ±0.1 1.2 ±0.3 1.8 ±0.2 

P227S 1.0 ±0.2 1.5 ±0.2 1.2 ±0.2 1.7 ±0.1 

Table 3: RMSD Drift of Active Site. RMSD drifts are calculated using the last 22nsec of 
the trajectory.  RMSD drift is calculated as the average RMSD. Other active site residues are: 
Ser128, Val130, Lys218, Ser219, Gly220, and Arg261. PASTFK motif starts with Pro79. 

 

 The PASTFK motif shows changes in RMSD in all mutants, but only large 

deviations in the M223A mutant when all atoms are examined. A similar pattern is 

present in the other active site residues, but not to the same extent. The M223A RMSD 

peak in Fig. 11 Other Active Site Residues Cα/All Atoms (around 7 nsec) corresponds to a 

conformational shift in the protein backbone where Ser128 and Val130 are located. Both 

of the residues’ Cαs shift ~4 Å from the reference frame (Fig. 39, Appendix C). Overall, 

M223A and G224D (to a lesser extent) mutants are most affected. 

2B. Internal Flexibility of Mutants 

 The effects of β5-β6 loop mutations on the global dynamics of the protein can 

also be studied through the relative average flexibilities of different regions of the protein 

calculated over the entire trajectory – the Root Mean Square Fluctuation (RMSF). 

Differences in RMSF were calculated for all mutants with respect to the WT (Fig. 12-13, 

Table 4). 
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Fig. 12: ΔRMSF between Mutants & WT. M223A: ΔRMSF between M223A and WT. 
G224D: ΔRMSF between G224D and WT. P227S: ΔRMSF between P227S and WT. 
ΔRMSF was calculated by subtracting the Cα RMSF values of the WT from the Cα RMSF 
values of the specified mutant. Values above the zero line indicate increased fluctuations in 
the mutant over the WT, while values below the line indicate decreased fluctuations. 
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Fig. 13: RMSF of WT & Mutants. 
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Mutant Residues with Decreased 

Fluctuations Relative to 

WT 

Residues with Increased Fluctuations Relative to 

WT 

M223A 80, 81, 82, 106-111, 113, 

114, 116, 211, 212, 221-

228, 253, 254, 274,  275 

32-36, 39, 48, 49, 58-61, 64, 70, 100, 101, 102, 103, 

104, 120, 121-123, 125, 130, 131, 134, 135, 139, 158, 

162-165, 168-171, 192, 239, 240, 256-259, 261 

G224D 69-71, 81, 82, 107, 108, 

169, 222-227 

32-38, 44-50, 58-60, 64, 74, 92, 93-104, 110-113, 115, 

117, 118, 120, 121-123, 125-131, 135, 136, 138-148, 

150-152, 156, 161, 162, 184, 185, 187-190, 192-204, 

206-210, 212-215, 236-244, 254-270, 272 

P227S 60, 61, 67-72, 82, 211, 222-

227, 253, 275 

32-37, 48, 49, 99, 100, 105-109, 111-114, 116, 122-

131, 164, 165, 168, 169, 204, 205, 238-242, 255-259 

Table 4: Residues with Decreased/Increased Fluctuations Relative to WT.  A 
decrease means a ΔRMSF < -0.1Å, and an increase mean a ΔRMSF > 0.1Å. Residue 
numbers are colored according to the structural motif on which they are located, blue is β5-
β6 loop, green is P loop, red is Ω loop, and orange is catalytic PASTFK motif.  

 

As seen from the ΔRMSF calculations, all three β5-β6 loop mutations decrease 

the overall fluctuations of the loop. At least some part of the catalytic PASTFK motif also 

decreases in flexibility across the mutants – typically Thr82. Some residues in the Ω loop 

see consistent increases in total fluctuations relative to the WT as well (generally the 

residues around Gln162); particularly so in the M223A mutant. Curiously, all of the 

mutants’ N-termini (residues 32-40, part of helix 1) fluctuate greatly over the WT 

enzyme. 

Differences between the enzymes are primarily in the P loop. The area of the P 

loop around Thr111 fluctuates highly in the G224D trajectory. Of interest is the adjacent 
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residue Tyr112, which forms a hydrophobic bridge with Met223. This bridge has been 

implicated in ligand binding and selectivity (Schneider 2011). The RMSF for Tyr112’s 

Cα in the WT and G224D trajectories are 1.44 Å, and 2.47 Å respectively. The P227S 

mutant as well shows increases in P loop flexibility over the WT. RMSF of Tyr112 also 

increases, but Asp106 in particular shows large a large increase in fluctuations. The 

M223A mutant shows a different behavior with the first (N-terminal) portion of the loop 

experiencing increased fluctuations, while the latter half shows decreased fluctuations.  

 Leu70 in M223A shows an extraordinary increase in RMSF over the WT. Leu70 

is exposed to solvent, on the α2 helix, and is approximately 22 Å from the site of the 

M223A mutation. 

 Another residue of interest is Val169 in the G224D mutant, which is the only Ω 

loop residue to have decreased fluctuations relative to the WT; the other mutants have 

some Ω loop residues with increased fluctuations, but none with decreases. 

2C. Average Conformations 

In order to evaluate how the above changes impact the structure of each enzyme, 

we have calculated trajectory average structures. Average structures are limited in that 

side chain atoms’ positions invariably become unphysical. However, they are appropriate 

for comparing backbone conformational changes between mutants. Average structures 

for each protein were determined using Script 5 (Appendix B). Average structures were 

aligned by all Cα atoms to allow for comparison. The comparison between the WT and 

mutant average structures is below (Fig. 14); the Cα RMSD between the mutant 

structures and WT are given in Table 5. 
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 M223A G224D P227S 

RMSD (Å) 1.37 1.15 1.18 

Table 5: Cα RMSD between WT & Mutant Average Structures. 

Common amongst the mutants’ average structures is the shift of the P loop away 

from the β5-β6 loop. The Ω loop for all mutants has also shifted “downward” and closer 

to the β5-β6 loop; the M223A mutant has shifted the closest with G224D showing the 

least change relative to the WT. Also across all the mutants, the β5-β6 loops have all 

shifted towards the Ω loop, and the Ω loops have all shifted toward the β5-β6 loops as 

well. These trends are also illustrated by average distances between atoms in both of the 

loops (Table 6). 

P Loop 

Ω Loop 

β5-β6 Loop 

Fig. 14: Average Structures. 
WT average structure colored 
blue, M223A average structure 
colored purple, G224D colored 
green, and P227S colored red. 
Proteins were aligned by all 
Cαs.  
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 WT Avg. (Å) M223A Avg. (Å) G224D Avg. (Å) P227S Avg. (Å) 

Leu168Cα - Gly222Cα 7.94 ±1.07 6.45 ±0.44 6.59 ±0.38 6.71 ±0.37 

Leu168Cα - Gly/Asp224Cα 7.85 ±0.97 6.78 ±0.70 7.05 ±0.47 6.68 ±0.78 

Leu168Cα - Met/Ala223Cα 9.36 ±1.09 8.18 ±0.52 8.25 ±0.36 8.13 ±0.47 

Val163Cα - Gly/Asp224Cα 7.87 ±1.39 6.43 ±0.88 6.42 ±0.39 6.24 ±0.58 

Val163Cα - Val225Cα 8.92 ±1.44 6.61 ±0.83 6.45 ±0.48 6.34 ±0.50 

Table 6: Atomic Distances between Ω & β5-β6 Loop. Distances selected from Table 

16, Appendix C. 

 

 There are few other differences between the mutants’ average structures when 

being compared to the WT. One of the few is the shift of the α3 helix (containing the 

catalytic PASTFK) towards the ligand-binding space in the M223A and P227S mutants, 

but not G224D (Fig. 15, Table 7).  

 

 

 

Fig. 15: Average Structures α3 Helix Shift. Left: WT colored blue, M223A colored 

purple, P227S colored red. Right: WT colored blue, G224D colored green. *Ligand 

binding space is located to the right of the helices in both images. 

N-term N-term 

C-term C-term 

* * 
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 WT Avg. (Å) M223A Avg. (Å) G224D Avg. (Å) P227S Avg. (Å) 

Ala80Cα - Gly222Cα 6.12 ±0.73 5.17 ±0.27 5.40 ±0.31 5.29 ±0.32 

Ala80Cα - Trp221Cα 7.46 ±0.89 6.24 ±0.30 6.57 ±0.40 6.15 ±0.28 

KCX84Cα – Ser219Cα 10.50 ±0.43 9.98 ±0.25 10.72 ±0.43 9.82 ±0.32 

Ser81CA - Gly220Cα 4.87 ±0.25 4.70 ±0.24 4.83 ±0.20 4.61 ±0.25 

Thr82Cα - Lys218Cα 6.65 ±0.44 6.02 ±0.20 6.66 ±0.35 5.89 ±0.24 

Table 7: Atomic Distances between PASTFK & β5. Distances selected from Table 16, 

Appendix C. 

 

 The other difference is found when examining the average structures of the WT 

and M223A enzymes, Leu70’s Cα is shifted ~2 Å from the WT’s position. Leu70 saw a 

large increase in fluctuations over the WT - as detailed in the previous section (Flexibility 

of Mutants). 

2D. Radius of Gyration 

To determine the effect of the mutations on the compactness of the enzymes, we 

calculated the Rgyr for all of the proteins’ heavy atoms (Fig. 16, Table 8). 
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Fig. 16: Radius of Gyration. Rgyr values for all trajectories were determined using Script 

4 (see Appendix B). Top: Rgyr comparing M223A and G224D to WT. Bottom: Rgyr 

comparing P227S to WT. 

 

Trajectory: WT Avg. M223A Avg. G224D Avg. P227S Avg. 

Rgyr (Å): 18.0 ±0.1 18.5 ±0.1 18.3 ±0.1 18.2 ±0.1 

Table 8: Average Rgyr Values. Average Rgyr values calculated using the last 22 nsec of 

the trajectories. 

 

All β5-β6 loop mutations appear to decrease the overall compactness of the 

mutants, although the difference between the WT and P227S is not dramatic. Both 

M223A and G224D are significantly less compact than WT throughout the majority of 

their respective trajectories. M223A maintains higher Rgyr values from 5 nsec onward, 

and G224D follows the same pattern until 30nsec when it begins to resemble the WT. 

The P227S mutant is the most similar to the WT when examining the Rgyr. Only for 

~18% of the trajectory – from 18 nsec to about 25 nsec – does the mutant consistently 
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have greater Rgyr values than the WT. For the rest of the trajectory, they both share 

relatively similar values, and thus a similar level of compactness. The G224D mutant 

shows a similar trend, while also fluctuating to a less compact conformation from 5 to 12 

nsec. 

2E. Volume of Active Site 

Because the size of the antibiotic and the corresponding size of the enzymatic 

active site are essential in the substrate selectivity of class D enzymes, we sought to 

determine how the volume of the active site was changing throughout the trajectories. A 

volume-calculation script was written in Python by Brian Mullen (Mullen and Szarecka, 

unpublished data). Each active site was defined using specific atoms selected from each 

enzyme, as the M223A and G224D mutations introduce new atoms to the definition of 

protein surface that is used to calculate volume. The binding pocket was divided into two 

parts: upper and lower. The upper part of the pocket includes the P loop residues; 

designed to reflect its contributions to active site volume (Fig. 17A-C). The lower part of 

the pocket contains the other important elements (catalytic residues, Ω loop, β5-β6 loop), 

and is designed to model their effects on the shape and size of the active site (Fig. 17D) 

where the bulky functional groups of 3
rd

 generation cephalosporins would have to fit 

(refer to Fig. 5). The pocket was defined this way since an unpublished crystal structure 

of OXA-24 in a complex with a 3
rd

 generation cephalosporin showed that the antibiotic’s 

occupancy of the active site was mostly limited by the space bordered by the β5 stand, 

and the Ω loop (Mitchell 2015). 
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Fig. 17: Atomic Selection of Active Site. A: Orientation 1 of the P loop-inclusive active 

site selection. B: Orientation 2 of the P loop-inclusive active site selection. C: Orientation 

of P loop-inclusive selection showing the Tyr112-Met223 bridge. D: Figure of the 

“lower” active site, without P loop atoms. *P loop. 

 
By creating two different selections for the active site, it is possible to see which 

part of the active site is contributing most to volume changes. Fig. 18 depicts how the 

“whole” (P loop-inclusive) active site volume changed over the trajectories for each 

enzyme. 

A B 

C D 

* 
* 

* 
* 
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Fig. 18: Whole Active Site Volume. 

 

 Fig. 19 shows the active site volume when P loop residues are removed from the 

calculation. Table 9 shows the average volume and standard deviations of the two active 

site selections. 

Fig. 19: Lower Active Site Volume. 

 

 Whole Active Site Volume 

Avg. (Å
3
) 

Lower Active Site Volume 

Avg. (Å
3
) 

WT 236 ±34 135 ±19 

M223A 199 ±43 147 ±24 

G224D 196 ±42 176 ±42 

P227S 219 ±51 173 ±37 

Table 9: Average Active Site Volumes. Averages were calculated using the last 22 nsec 

of the trajectory. 
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 The WT, which has the largest average whole active site volume, interestingly has 

the smallest average lower active site volume. The mutants do fluctuate to higher 

volumes, sometimes higher than the WT, but they all also fluctuate to lower volumes 

(Fig. 18). The lower active site shows the tendency of the mutants to remain at a higher 

volume, until the end of the trajectory where all of the enzymes to converge to similar 

values (Fig. 19). 

 We have calculated the mean distances between each atom in the user-defined 

active site, and the variances of those mean distances. Using these matrices it is possible 

to determine which atoms are contributing to the fluctuations of the each active site’s 

volume. Fig. 20 shows both the mean distances and distance variances of the whole 

active site for the M223A mutant. Fig. 21 shows both the mean distances and distance 

variances of the whole active site for the G224D mutant. Fig. 22 and 23 show the same 

data for the P227S and WT enzymes respectively. Additionally, due to the fact that the 

defined active sites between the P227S mutant and WT are identical in both total number 

of atoms and atom numbering it was possible to create matrices representing the 

differences between the two enzymes in terms of mean distances, and the variances. Fig. 

24 shows both the differences between mean distances and distance variances of the 

whole active site for the P227S and WT enzyme. 
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Fig. 20: Mean Distance Matrix & Distance Variances for Entire M223A Active 

Site. Right: Mean Distance Matrix. Left: Variance Matrix. Letters correspond to 

groups of atoms found within a specific area of the protein. A: Residues 80-84; P: P 

loop; L: Leu127 and Ser218; Ω: Ω loop; β5: β5 strand; β5-β6: β5-β6 loop; the last 

small region corresponds to Arg261. 
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 The heatmaps allow us to detail which residues contribute the most to the 

fluctuation of the active site. Across all of the mutants, the distances between P loop 

and the β5-β6 loop show most of the variance. The majority of the variance in the 

fluctuations of the entire M223A active site stem from the distances between Tyr112 

and the catalytic serine and general base, as well as all β5-β6 loop residues, Leu168, 

and Arg261. The single largest point of variance within M223A is the distance  
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Fig. 21: Mean Distance Matrix & Distance Variances for Entire G224D Active 

Site. Right: Mean Distance Matrix. Left: Variance Matrix. Letters correspond to 

groups of atoms found within a specific area of the protein. A: Residues 80-84; P: P 

loop; L: Leu127 and Ser218; Ω: Ω loop;β5: β5 strand; β5-β6: β5-β6 loop; the last 

small region corresponds to Arg261. 
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between KCX84’s OQ1 and Leu168’s CD2. This is likely caused by the tendency for 

KCX84 to hydrogen bond with Ser81 and Lys218, instead of Ser81 and Trp167 – a ~6 

Å shift. Variance in the G224D distances is a result of the fluctuations between 

Tyr112, and all other atoms in the defined active site. The largest variances, across all 

proteins, stem fromTyr112’s side chain oxygen atom in the G224D mutant. Met223’s 

Cε also reveals an increased variance in its distance to active site residues (Ser81,  
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Fig. 22: Mean Distance Matrix & Distance Variances for Entire P227S Active 

Site. Right: Mean Distance Matrix. Left: Variance Matrix. Letters correspond to 

groups of atoms found within a specific area of the protein. A: Residues 80-84; P: P 

loop; L: Leu127 and Ser218; Ω: Ω loop;β5: β5 strand; β5-β6: β5-β6 loop; the last 

small region corresponds to Arg261. 
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KCX84), Tyr112, and Leu127 and Ser128. The P227S mutant shows increases in 

average distances over the WT between the P loop/Ser128 and the β5-β6 loop - 

though generally these increases are not more than 1 Å – and the distances between 

Val169 and the β5-β6 loop shows decreases. These results correspond well with the 

previously determined average distances (Table 16, Appendix C). The largest increase 

in variance – as with the M223A mutant– likely depicts the preference of the KCX  
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Fig. 23: Mean Distance Matrix & Distance Variances for Entire WT Active Site. 

Right: Mean Distance Matrix. Left: Variance Matrix. Letters correspond to groups of 

atoms found within a specific area of the protein. A: Residues 80-84; P: P loop; L: 

Leu127 and Ser218; Ω: Ω loop;β5: β5 strand; β5-β6: β5-β6 loop; the last small region 

corresponds to Arg261. 
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residue to hydrogen bond with Lys218 over Trp167. The largest decrease in P227S 

variance is between the side chain atoms of Tyr112 and Met223-Gly224; which may 

suggest that the P loop is in a fixed conformation, despite being ~1Å further from the 

β5-β6 loop. The WT shows the second greatest variance in P loop distances to the β5-

β6 loop, which may reflect the WT loop’s larger RMSF relative to the mutants. 

Average distances also aid in describing which residues contribute to active site  
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Fig. 24: Mean Distance & 

Variance Difference 

Matrices for P227S and 

WT. Top: Difference 

between mean distances. 

Bottom: Difference between 

variances of mean distances. 

Differences were calculated 

by subtracting WT values 

from P227S values. 

Therefore, red colors 

indicate increases in average 

distance and variance of 

P227S over WT; blue colors 

indicate the opposite. 

Letters correspond to groups 

of atoms found within a 

specific area of the protein. 

A: Residues 80-84; P: P 

loop; L: Leu127 and 

Ser218; Ω: Ω loop; β5: β5 

strand; β5-β6: β5-β6 loop; 

the last small region 

corresponds to Arg261. 
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 WT Avg. (Å) M223A Avg. (Å) G224D Avg. (Å) P227S Avg. (Å) 

Leu168Cα - Glu251Cα 17.55 ±0.48 15.66 ±0.42 15.87 ±0.40 15.92 ±0.38 

Leu168Cα - Arg261Cα 19.78 ±0.94 18.71 ±0.59 18.70 ±0.52 18.80 ±0.56 

Leu168Cα - Met/Ala223Cα 9.36 ±1.09 8.18 ±0.52 8.25 ±0.36 8.13 ±0.47 

Met/Ala223Cα - Arg261Cα 14.88 ±0.48 14.70 ±0.46 14.67 ±0.46 14.68 ±0.50 

Met/Ala223Cα - Glu251Cα 10.71 ±0.37 10.31 ±0.33 10.67 ±0.37 10.55 ±0.37 

Ser81Cα - Ser128Cα 7.90 ±0.52 8.77 ±0.48 8.09 ±0.43 7.51 ±0.82 

Ser81Cα – Tyr112Cα 16.20 ±0.91 17.21 ±0.96 17.22 ±1.79 15.79 ±0.96 

Ser128Cα - Ser219Cα 8.74 ±0.57 10.66 ±0.77 9.41 ±0.64 9.65 ±0.71 

Ser128Oγ - Ser219Oγ 6.77 ±0.88 8.63 ±1.33 7.72 ±0.82 7.35 ±1.27 

Tyr112Cα - Met/Ala223Cα 15.03 ±1.63 18.19 ±1.28 15.85 ±1.92 16.23 ±1.39 

Table 10: Distances Across Active Site. Distances selected from Table 16, Appendix C. 

volume differences (Table 10). 

 The average distances help show the P loop’s role in affecting the volume of all 

mutants. There is a ~3 Å increase in the distance between the Cα atoms of Tyr112 and 

Met/Ala223 in the M223A mutant, and ~1 Å increase the P227S mutant. Also observed is 

an increase in the distance between the Cα atoms of Tyr112 and the catalytic Ser81 in the 

M223A and G224D mutants. This is also seen when examining the heatmaps. The 

distance between Ser128 and Ser219 increasing in all of the mutants also shows an 

opening of the active site. Ser128 acts as part of the “roof” of the active site, while 

Ser219 is located just prior to the β5-β6 loop. The distance between the Ω and β5-β6 loop 

is shown to decrease based on the average distances (Leu168 to Met/Ala223), and the 

mean distance heatmaps as well; this was observed in the previous section which 

described the average structures of the mutants. 
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3. Further Analysis of P227S Mutation 

 Because the P227S mutation results in a particularly striking change in substrate 

selectivity, additional analyses were carried out for this mutant. We examined how this 

mutation might affect the enzyme in two different ways: (i) as a potential hydrogen bond 

center, and (ii), with regard to substrate selectivity/ligand binding by docking antibiotics 

to unique conformations from the WT and P227S trajectories. 

3A. Ser227-Glu251 Hydrogen Bond 

 Replacing the proline should result in an increased dihedral freedom for residue 

227, which in turn would allow the β5-β6 loop to explore more conformations. We 

initially hypothesized that the P227S mutation would increase fluctuations of the β5-β6 

loop. Interestingly, the dynamics observed during simulations reflect the opposite. As 

detailed in the previous section (Comparison of Mutant Dynamics), the P227S mutation 

results in a less flexible β5-β6 loop. The reason for this decreased flexibility is likely due 

to the formation of a hydrogen bond between Ser227 and Glu251 (Fig. 25). 
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Fig. 25: Ser227-Glu251 Hydrogen Bond. Top: Image taken from 20.2 nsec point. 

Distance between donor and acceptor is 2.65 Å. Distance between hydrogen and acceptor 

is 1.69 Å; donor-hydrogen-acceptor angle is 176°. Bottom: Other hydrogen bond donors 

in close proximity to Glu251. Figure adapted from Mitchell et al. (2015). 



76 
 

 Based on the hydrogen bonding criteria of a donor-acceptor distance of <3.2 Å 

and a donor-hydrogen-acceptor angle of 120°-180°, Ser227’s Oγ hydrogen bonds to 

Glu251’s Oε atoms during 76% of the trajectory (Fig. 26), with an average donor-

acceptor distance of 2.73 ±0.99 Å while the hydrogen bond is formed (average over 

trajectory is 3.84 ±0.99 Å). In the WT trajectory, Pro227’s Cγ is within a similar distance 

during 0.4% of the trajectory; Glu251 instead hydrogen bonds with Lys253, Arg72, and 

Gln52 for 33%, 29%, and 14% of the trajectory respectively. None of these interactions 

with Lys253, Arg72, and Gln52 are present in the P227S trajectory to the same extent; 

Glu251 in the P227S mutant hydrogen bonds to Lys253, Arg72, and Gln52 for 6%, 3%, 

and 7% of the trajectory respectively. 

Fig. 26: Hydrogen Bonding Distance. Bars represent the distribution of frames with 

Ser227 (Oγ atom, red) or Pro227 (Cγ atom, black) residing within the hydrogen bonding 

distance from Glu251 or outside of this range. Angle criteria is not presented in figure as 

comparison with WT would not be possible. Figure adapted from Mitchell et al. (2015). 

 

 

 

 

< 3.2Å from Glu251 Oε1 < 3.2Å from Glu251 Oε2 > 3.2Å from Glu251 Oε 
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3B. Exploration of β5-β6 Conformations using RMSD 

 As we have observed changes in the overall RMSD and RMSF profiles of β5-β6 

loop in the two proteins, it was likely that the loop may have different conformational 

ensembles. We used loop RMSD as the criterion to identify conformational clusters 

within each trajectory. Trajectories were aligned by all Cα atoms, and the RMSD of the 

β5-β6 loop was calculated. The RMSD values were sorted in the ascending order, and 

every 0.5 Å increment was specified as a bin. RMSD values from 0-0.5 Å were 

designated as Bin 1, 0.51-1.0 Å was Bin 2, etc. Two structures from each RMSD range 

was saved for comparison – the very first and middle structure of each 0.5 Å range of 

RMSD values. The structures acquired can be seen below in Fig. 27. 

Fig. 27: WT & P227S Binned Structures. Left: WT structures. WT reference frame 

(frame 0) in dark blue. Right: P227S structures. P227S reference frame (frame 0) in red. 

  

 The WT trajectory contained 10 bins, P227S contained 7 bins, indicating that 

there is greater conformation diversity in the WT enzyme. This finding is consistent with 

our previous RMSD/RMSF data. The β5-β6 loop adopts two main conformation in the 

P227S mutant (Fig. 28). β5-β6 loops from the lowest, middle, and highest RMSD values 

WT P227S 

β5-β6 

loop 

β5-β6 

loop 
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can be seen below in Fig. 28A-B. The new conformations show a widening of the space 

between the β5-β6 loop and the P loop (Fig. 28C-D), a trend which is not seen in the WT. 

 

 

Fig. 28: Selected β5-β6 Loop Conformations from Binned Structures. A: Loops from 

WT trajectory. Reference frame is blue, 0.29 Å structure in cyan, 2.23 Å structure in 

yellow, 4.57 Å structure in green. B: Loops from P227S trajectory. Reference frame is 

red, 0.30 Å structure in cyan, 1.51 Å structure in yellow, 3.05 Å structure in green. C: 

Side chain positions in WT binned structures. D: Side chain positions in P227S binned 

structures. Trajectories aligned by all Cα atoms. *Ω loop located to left of β5-β6 loop in 

figures. C-D adapted from Mitchell (2015); ceftazidime (magenta), aztreonam (blue). 

 

3C. Docking of Doripenem to Selected Trajectory Frames 

Identification of different, unique conformations present in the P227S and absent 

in the WT trajectory would allow us an opportunity to explore different binding modes of 

antibiotics. Docking simulation of diverse ligands to multiple protein target frames not 

only has a potential to explain the ligand selectivity, but also allows us to incorporate 

some protein flexibility aspects into the overall docking results. In this part of the project, 

B A 

* 
* 

C D Met223 Met223 

Tyr112 Tyr112 
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we conducted a set of preliminary tests on a small number of selected frames for 

doripenem binding. The following sections described the process, docking parameters, 

and selected frames. 

 3C-1. Docking Protocol 

The docking protocol would be considered accurate if crystallographic 

conformations of the acylated antibiotic could be reproduced sufficiently, and if the 

binding affinity (Km, calculated by AutoDock as Ki) were consistent with in vitro values. 

The crystal structure used for the validation was OXA-24 complexed with doripenem 

(contained KCX84D mutation to prevent deacylation, PDB 3PAE) (Schneider 2011). The 

Hγ present on Ser81 was removed to best represent the physiologic state of the enzyme 

when using the acylated form of the antibiotic for docking (in general, hydrogens were 

added only to all polar atoms in the protein target). 

Our first goal was to determine which Lamarckian GA settings will produce the 

closest agreement between the experimentally determined ligand conformation and the 

predicted one. As criteria we used distances between (i) Leu168 and doripenem’s 6’ 

carbon, (ii) Ser81 to the β-lactam rings’ carbonyl carbon, (iii) doripenem’s carboxylate 

oxygens to Arg261, and (iv) Trp221’s backbone nitrogen to the β-lactam’s carbonyl 

oxygen. We have tested both acylated doripenem (cleaved β-lactam ring), and intact 

(Michaelis complex) doripenem. Optimized Lamarckian GA parameters were population 

size, number of energy evaluations, number of GA runs, box size, and grid spacing. The 

Lamarckian GA parameters were optimized when computational time was minimized 

while still acquiring satisfactory docking results. A large population size (750 
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individuals) produced results that best represented the crystal structure. Grid spacing was 

reduced from 0.325 Å to 0.225 Å, and the size of the grid box was altered to include 

residues which are important for receptor-ligand interactions. Final CPU time was ~20 

minutes per GA run. 

 3C-2. Docking of Acylated Doripenem 

 Fig. 29 shows a comparison between the crystallographic acyl-doripenem, and the 

docked conformation. Table 11 details important interactions between acyl-doripenem 

and the OXA-24 active site. 

                                                   
Fig. 29: Comparison of Acyl-Doripenem Structures. A: Structure drawn in Licorice 

and colored purple is the acyl-doripenem from 3PAE. The RMSD between the docked 

acyl-doripenem and the crystallographic acyl-doripenem is 1.4 Å. B-D: Structure drawn 

as ball-and-sticks is the docked acyl-doripenem. Residue hydrogens not present in crystal 

structure. 

Ser81 

A 

Arg261 

Trp221 

Leu168 

Ser128 
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C 
D 
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 The predicted (docked) orientation of the ligand is correct with respect to the 

binding of the carboxylate to Arg261, and the 6’ carbon/Leu168 interaction. This is a 

very positive outcome as the carboxylate group likely serves as the positioning anchor for 

the antibiotic with respect to the catalytic residues.  

 Among the differences between the docked acyl-doripenem and the 

crystallographic structure is that the 6’-oxygen atom has shifted to hydrogen bond with 

Ser128’s backbone oxygen (Fig. 29D) instead of being oriented towards Tyr112. The 2 Å 

difference in the distance from Ser81 to the cleaved β-lactam carbonyl carbon may be a 

result of the lack of the enzyme-antibiotic covalent bond, as this could not be modeled 

using AutoDock4.  

 3C-3. Docking of Doripenem Michaelis Complex 

To be able to compare the calculated binding energy with the experimental Km for 

doripenem, an un-acylated version was docked to WT OXA-24. Unfortunately, the 

Michaelis-complex of doripenem and OXA-24 has never been determined using X-ray 

crystallography, so a direct comparison of the docked results to a crystal structure is not 

possible. Fig. 30 shows the docked doripenem structure in the OXA-24 active site. 

Fig. 30: Docked Michaelis Complex of Doripenem. 

Ser128 

Arg261 

Trp221 

Leu168 Ser81 
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 Ser81 Oγ to 

β-lactam 

Carbonyl 

Carbon (Å)  

Leu168 

to 6-

carbon 

(Å) 

Trp221 

Backbone 

Nitrogen to β-

lactam Carbonyl 

Oxygen (Å) 

Arg261 Side-chain 

Nitrogens to 

Doripenem 

Carboxylate 

Oxygens (Å) 

Docked Acyl-

Doripenem 

Structure 

3.3 3.7 3.3 2.7, 2.7 

Docked 

Doripenem 

Structure 

2.7 3.5 2.6 2.7, 4.3 

PDB 3PAE 1.3 3.2 2.7 2.9, 2.8 

Table 11: Docked Doripenem Comparison in WT OXA-24. Values given are distances 

between specified atoms. 

 

 A number of interactions present in the crystallographic acyl-doripenem structure 

are also present in the docked Michaelis complex (Table 11). Namely the 6’ carbon and 

Leu168, and the interaction between Trp221 and the carbonyl oxygen on the β-lactam 

ring. The distance between the catalytic serine and the β-lactam carbonyl carbon has also 

decreased. Interestingly, one of the carboxylate oxygen atoms of doripenem has hydrogen 

bonded to Ser128’s side-chain oxygen (2.7 Å; Fig. 30, left) instead of Arg261 as seen in 

the crystal structure. The calculated Km is 0.032μM; the experimental Km of OXA-24 for 

doripenem is 0.024 ±0.003μM (Kaitany 2013). 
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 Since key interactions were observed in both the docking of the acyl-doripenem 

and the Michaelis complex with good agreement, we proceeded to select unique 

structures in both the WT and P227S trajectories for the docking of the doripenem 

Michaelis complex. Although the previous RMSD-based analysis of conformational 

clusters provided interesting insights into the dynamics of the β5-β6 loop, we decided to 

pursue a different analysis (of distribution of Φ and Ψ values) that would allow us to 

identify more precisely unique structures to serve as docking target frames. 

 3C-4. Selection of Structures using Φ/Ψ Analysis 

 The selection of the WT and P227S structures based on the β5-β6 loop Φ and Ψ 

angles revealed which residues contributed the most to the structural differences of the 

loop structure between the two enzymes. Gly222, Met223, Gly224, Val225, Thr226, and 

Gln228 were found to occupy similar dihedral ranges in both enzymes (Fig. 31).  
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Fig. 31: Φ vs. Ψ Angles of Non-Contributing β5-β6 Residues. 

 Because residues in Fig. 31 adopted the same ranges dihedral angles in WT and 

P227S, conformational changes in the β5-β6 loop are unlikely to be caused by these 

residues. Further analysis of these distributions would be carried out to confirm this. 

However, Trp221, and Pro/Ser227 were found to adopt unique dihedral angles (Fig. 32).  
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Fig. 32: Φ vs. Ψ Angles of Contributing β5-β6 Residues. Top graphs: Trp221 dihedral 

ranges; Bottom graphs: Pro/Ser227 dihedral ranges. WT values colored blue, P227S 

values colored red. Right graphs shows P227S data on top; left shows WT on top. 

 

Thus, we were able to determine which residues in the loop adopt different 

conformations in P227S versus WT. We also identified some unique frames in P227S 

with Φ/Ψ values not observed in the WT, and vice versa that served as preliminary 

targets for our comparative docking tests. Given the preliminary nature of this part of our 

study the choice of unique frame was not rigorous. Further work including correlation 

analysis will be required to fully determine a much larger number of docking frames. 

For this project, two structures were selected from the trajectories corresponding 

to unique Trp221 dihedral angles. A WT structure with Φ/Ψ values of -163.5°/85.1° was 

chosen to represent the range of dihedral values that the WT enzyme primarily occupied 

Trp221 Trp221 

Pro/Ser227 Pro/Ser227 
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(Fig. 32, upper right graph, Structure A). The corresponding P227S structure (Fig. 32, 

upper left graph) chosen had Φ/Ψ values of -166.1°/128.0° (Structure B). A WT structure 

with Φ/Ψ values of -24.9°/138.8° was chosen to represent the range of dihedral values in 

which the WT enzyme occupies more highly than P227S (Fig. 32, lower right graph, 

Structure C). The P227S structure chosen (Structure D) had Φ/Ψ values of -73.8°/126.0°. 

A number of differences are present between the two structures chosen from the 

Trp221 Φ/Ψ comparison (Fig. 33). 

                           
Fig. 33: Comparison of Structure A to Structure B. WT structure colored blue, P227S 

colored red. 

β5-β6 Loop 

P Loop 

Ω Loop 
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The β5 strand does not end until Met223 in the P227S structure, and it ends 2 

residues earlier in the WT at Trp221. The Ω loop in the WT structure acquires a partial-

helix conformation from residues Phe166-Gly170.  

Differences in the structures selected from the Pro/Ser227 Φ/Ψ analysis 

(Structures C and D) are present as well (Fig. 34). Similar to the Trp221 structures, the P 

loop of the P227S structure has moved away from the β5 strand, and the Ω and β5-β6 

loops have shifted closer to each other. Unlike the Trp221 structures, both β5 strands end 

at the same residue, and the Ω loop does not acquire a partial-helix conformation within 

the WT structure. 

     

Fig. 34: Comparison of Structure C to Structure D. WT structure colored blue, P227S 

structure colored red. 

Ω Loop P Loop 

β5-β6 Loop 



88 
 

Table 12 reiterates the Φ/Ψ analysis, and the differences between the WT and 

P227S structures selected for the docking of the doripenem Michaelis complex. 

Structure Φ (°) Ψ (°) Structure 

Acquired from 

Trajectory 

Residue with 

Unique Φ/Ψ 

Value 

A -163.5 85.1 WT Trp221 

B -166.1 128.0° P227S Trp221 

C -24.9° 138.8° WT Pro227 

D -73.8° 126.0° P227S Ser227 

Table 12: Summary of Structures Acquired from Φ/Ψ Comparison. 

 These 4 structures were utilized with the previously described docking protocol 

(section 3C-1) to determine if unique binding modes would be present between the WT 

and P227S structures. 
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 3C-5. Docking of Doripenem to Selected Structures 

 The previously described 4 structures (A, B, C, and D) subsequently had 

doripenem docked as the Michaelis complex. The docking of doripenem to these 

structures (Fig. 35, Table 13) produced docked complexes which had few similarities to 

the previously acquired Michaelis complex in Fig. 30. To try and acquire the two most 

plausible docked conformations, one was visually selected on the basis of the receptor-

ligand interactions previously seen in the acyl-complex and the Michaelis complex 

(designated via “V.O.” in Fig. 35 and Table 13); another structure was selected which 

had the most similar binding energy to that of the experimentally determined value 

(designated via “B.E.” in Fig. 35 and Table 13). 

 

Arg261 
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Leu168 

Structure C B.E. 
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Fig. 35: Doripenem Docked to Selected Structures. Carboxylate circled in red, β-

lactam ring circled in yellow, 6’-hydroxyethyl circled in green. Not all docked ligand 

complexes are depicted. Ligands shown above illustrate the best orientations acquired 

from the docking. Top: Most similar binding energy to the experimental value. Middle: 

Docked complex with most interactions present to some degree. Bottom: Nearly all 

interactions present, with the best Ser81 Oγ to β-lactam interaction. 
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 Ki (μM) Increase/Decr

ease from 

Experimental 

Binding 

Energy 

(factor) 

Ser81 Oγ to β-

lactam 

Carbonyl 

Carbon (Å)  

Leu168 to 6-

carbon (Å) 

Trp221 

Backbone 

Nitrogen to β-

lactam 

Carbonyl 

Oxygen (Å) 

Arg261 Side-

chain 

Nitrogens to 

Doripenem 

Carboxylate 

Oxygens (Å) 

Ex. OXA-24 0.024 ±0.003 N/A 1.3 3.2 2.7 2.9, 2.8 

OXA-24 M.C. 0.032 1.3x 2.7 3.5 2.6 2.7, 4.3 

Ex. OXA-160 0.014 ±0.003 N/A N/A N/A N/A N/A 

Structure A V.O. 13.62 567.5x 4.9 7.5 3.3 2.6, 3.1 

Structure A B.E. 0.336 14x 8.9 15.8 8.3 2.7, 2.9 

Structure B V.O. 194.76 8115x 3.7 7.8 2.9 2.8, 2.8 

Structure B B.E. 0.209 8.7x 5.1 14.2 5.6 3.2, 4.2 

Structure C V.O. 2.19 91.3x 4.4 6.3 2.9 2.9, 3.0 

Structure C B.E. 0.115 4.8x 6.7 14.5 5.3 3.0, 4.3 

Structure D V.O. 57.48 2395x 3.1 6.4 3.3 3.0, 3.3 

Structure D B.E. 2.14 89.2x 7.4 14.8 6.6 6.5, 6.6 

Table 13: Comparison of Docked Doripenem to WT/P227S Selected Structures. Ex., 

experimental; M.C., Michaelis Complex; V.O., Orientation selected visually; B.E., 

Orientation selected based on binding energy. Binding energies acquired from Mitchell et 

al. (2015). Highlighted orientations are shown in Fig. 35. 

  

 Few of the docked structure resemble the Michaelis complex acquired during the 

docking validation protocol. As we saw in the test runs, the majority of docked structures 

contain the interaction between the doripenem carboxylate and Arg261, in fact the only 

structure that lacks this interaction is the Structure D B.E. However, for this limited 

number of target frames the remaining interactions between the antibiotic and the protein 

binding pocket do not indicate productive binding. For example, the ligand orientation 

with the most similar binding energy to the experimental values - the Structure C B.E. – 

contains the antibiotic in a poor position for hydrolysis (Fig. 35, top). The 6’-
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hydroxyethyl is >14.7 Å from Leu168 and Ser81 is ~7 Å from its target atom on the β-

lactam ring. The sulfonamide tail of doripenem is also positioned on the opposite side of 

the active site, near the Ω and β5-β6 loops. 

 The ligand orientation in the Structure D V.O. (Fig. 37, middle) is also incorrect. 

Leu168 is 6.4 Å from the 6’-hydroxyethyl carbon, and the 6’-hydroxyethyl oxygen has 

hydrogen bonded with the carboxylated lysine (donor-acceptor distance of 3.1 Å); an 

interaction that is proposed to prevent the deacylation step of catalysis (Schneider 2011). 

Only one ligand orientation has the Ser81 Oγ to β-lactam distance under 3.5 Å: the 

Structure D V.O. None of the docked ligands have the Leu168 and 6’-hydroxyethyl 

within sufficient distance for a hydrophobic interaction to occur. 

 In summary, much more work is needed in order to develop a rigorous method of 

selected a large set of representative frames for docking, as well as to test more carefully 

the potential energy function and distribution of atomic charges in our docking model. 

The latter likely contributes to the problem with intact antibiotic binding. 
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CHAPTER IV 

DISCUSSION 

1. RMSD 

 Based on the RMSD data presented, all three substitutions in the β5-β6 loop 

affects the dynamics of OXA-24. The Ω and β5-β6 loops for the mutants all show less 

structural drift from their initial conformation than the WT, while the P loops show 

increased drift. The mutations also affect the active site of the enzyme. These effects are 

discussed in detail in part 3 (Active Site Dynamics) of this discussion. 

2. Compactness and Volume 

 Based on the Rgyr as a measure of protein compactness, all 3 mutants are less 

compact than the WT. We hypothesized that the radius of gyration may be correlated 

with the active site volume (widening of the cleft between the domains), but it turned out 

not to be the case. Instead the volume calculations show the WT as having the greatest 

average whole active site volume, despite the lower Rgyr. It must be noted, however, that 

we traced the volume of the active site as a fraction of the entire cleft only. Interestingly, 

the volume of the lower portion of the active site increases relative to the WT enzyme, 

which supports the notion that a larger active site will allow the OXA enzymes to 

potentially accommodate and hydrolyze larger antibiotic substrates. This is consistent 

with X-ray data which shows that 3
rd

 generation cephalosporins require additional space 

between the Ω and β5-β6 loops to accommodate bulky substituents in the 6’ position. 

However, a larger active site may not be the only factor necessary to hydrolyze larger 

antibiotics. The G224D mutant also shows an increased lower active site volume relative 
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to both the WT and P227S, yet the mutant has been reported to hydrolyze almost all 

antibiotics less efficiently than WT OXA-24 (Leonard, unpublished data). 

3. Active Site Dynamics 

 The active site is affected by mutations in the β5-β6 loop, despite having the 

majority of the catalytic residues located ~10 Å from the mutations. The M223A 

mutation appears to have the greatest impact on the dynamics of the active site. The 

RMSD drift of the PASTFK, SxV, KSG motif, and Arg261in the M223A mutant show 

the greatest increases over the WT. Conversely, the G224D mutation shows the least 

effects on the dynamics of the PASTFK motif. The Cα drift of the motif in the G224D 

mutant shows a decrease relative to the WT, while M223A and P227S are greater and 

similar, respectively. The average position of the α3 helix bearing the PASTFK motif in 

the G224D mutant is also the most similar to the WT.  

 All the available crystal structures show that the carboxylated lysine (KCX) has a 

strong preference to interact with Trp167. In our trajectories, however, the network of 

hydrogen bonds shifts and KCX bonds to Lys218- while maintaining the hydrogen bond 

with Ser81. The WT enzyme shows the most frequent occurrence of this hydrogen bond, 

with the G224D mutant being the 2
nd

 most frequent, followed by the M223A mutant, and 

the P227S mutant with the KCX-Lys bond forming less frequently. This rearrangement 

of the hydrogen bond network within the active site has not been observed in crystal 

structures. It is unknown whether this interaction is indeed formed in solution, but it 

could potentially affect the carboxylation state of the general base. The environment 

required to encourage carboxylation in OXA-10 is dependent on Trp154 (homologous to 
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Trp167 in OXA-24) (Baurin 2009) and also on Val130 (Buchman 2012). The movement 

of the KCX towards the lysine in the family K[TS]G motif may promote decarboxylation 

if the distance is too great for the carboxyl group to interact with the hydrophobic 

tryptophan. We cannot directly observe the decarboxylation process in the MD 

simulations, so it is not clear what effect(s) the KCX84-Lys218 hydrogen bond would 

have. 

4. Loop Dynamics 

 All three mutations generally result in increased Ω loop flexibility (apart from 

Val169 in the G224D mutant), and P loop flexibility. The M223A mutant is the only 

enzyme in which some regions of the P loop have decreased flexibility. The P loop also 

moves away from the β5-β6 loop consistently across all 3 mutants. The Tyr112Cα-

Met223Cα distance in the WT, M223A, G224D and P227S enzymes are 15.0 ±1.6 Å, 

18.2 ±1.3 Å, 15.9 ±1.9 Å, 16.2 ±1.4 Å respectively. 

 Surprisingly, all three 3 mutations in the β5-β6 loop mutations result in decreased 

flexibility of the loop. All 3 loops with mutations show not only decreased RMSF values, 

but the residue on the loop with the lowest flexibility remains relatively the same: both 

Gly/Asp224 and Val225 have the lowest flexibility across all 3 mutants. This is 

interesting when considering that mutations on either end of the β5-β6 loop affect the 

fluctuations around the same region of the loop. β5-β6 loop flexibility and 

conformational states have been studied in detail for the P227S mutant and the results are 

described in subsection 5. 
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 Decreased β5-β6 fluctuations appear to correlate with increased P and Ω loop 

fluctuations across the mutants in this study. This is an important observation but a more 

extensive study would be necessary to show the motional correlation between the three 

functional loops. The G224D mutation is common amongst the OXA-24 subgroup; it 

appears in OXA-72, OXA-143 (Higgins 2009), OXA-182 (Kim 2010), OXA-253 

(Girlich 2014), and OXA-255 (Zander 2014). It is possible that this mutation results in 

the same dynamic changes in each enzyme, though it is unknown how other β5-β6 

mutations (T226S in OXA-182, T226I in OXA-253) will affect the enzyme’s dynamics 

in combination with the G224D mutation. In addition, longer simulation times are needed 

to sample the proteins’ loop conformations sufficiently in general, and the lone P loop in 

particular.  

5. Thermostability of G224D Mutant 

 Based on our trajectories, we were not able to explain the reasons for the 

increased thermostability of the G224D mutant. While the differences in Rgyr between 

WT and G224D are statistically significant (p < 2.2x10
-16

), the increased Rgyr of G224D 

does not indicate a more thermostable enzyme. It is likely that calculating solvent 

accessible area (via Generalized Born/Surface Area model) would be a more appropriate 

method. Another stability factor would be the introduction of hydrogen bonds, which has 

caused increased thermostability in other enzymes (Zhang 2007). But Asp224 does not 

form any hydrogen bonds with the protein throughout the entire trajectory. While the 

backbone nitrogen atoms present on the Ω loop could be possible donors, the presence of 

Leu168 and Val169 makes Asp224’s side chain rotation toward the Ω loop unfavorable. 

We also considered decreased flexibility as a contributor to thermostability; many 



97 
 

thermostable enzymes, or enzymes found in thermophilic organisms are less flexible than 

enzymes found in non-thermophiles (Vihinen 1987). The G224D enzyme indeed shows 

decreased flexibility relative to the WT in the β5-β6 loop, and, uniquely, Val169 on the Ω 

loop. However, it also has the greatest number of residues with increased fluctuations 

relative to the WT when compared to M223A and P227S. Therefore, based on our current 

trajectory data we are unable to explain the phenomenon, and the increased 

thermostability of the G224D mutant remains an open question. 

6. Effects of Ser227-Glu251 Hydrogen Bond 

 The substitution of proline by serine introduces not only an increased 

conformational freedrom for the C-terminus of the loop, but also a new hydrogen bond 

center. The formation of the Ser227-Glu251 hydrogen bond rearranges the hydrogen 

bond network around the site of the mutation, resulting in Lys253, Arg72, and Gln52 

interacting less with Glu251. The hydrogen bond also affects the conformations of the 

β5-β6 loop. The P227S mutant’s β5- β6 loop occupies two main conformational clusters. 

These two distinct clusters show less variability than those of WT OXA-24. The RMSD 

range of the conformations in the P227S mutant span about 0.3-3.1 Å, whereas the WT 

spans 0.3-4.6 Å. The Tyr112-Met223 hydrophobic bridge is also wider in the majority of 

these conformations, likely helping accommodate larger antibiotic substrates into the 

active site. Thus, in the case of the P227S mutant, the decreased flexibility of the β5-β6 

loop is likely caused by a new hydrogen bond, and a change in the conformational 

ensemble. 
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7. Concluding Remarks 

 The results in this work shed light on how the class D β-lactamases achieve 

substrate profile changes with single amino acid mutations. Our trajectories showed the 

conformational and dynamics changes caused by three specific mutations, each affecting 

the substrate selectivity of the enzyme. In particular, we proposed a mechanism through 

which the P227S mutant is able to expand its catalytic profile for 3
rd

 generation 

cephalosporins through active site volume changes, and a shift in the conformational 

equilibrium of the β5-β6 loop. 

 The limitation of the work is the absence of the ligand. The binding of ligands can 

drastically affect a protein’s conformation and function (Shaanan 1983; Fermi 1984), and 

simulations of an acyl-enzyme complex will illustrate more accurately how class D 

enzyme accommodate various antibiotics, and highlight associated changes in dynamics. 

Particularly, the question of the carboxylated lysine’s variable hydrogen bond network 

will likely be resolved through simulations of an enzyme-substrate complex. 

 These enzymes will continue to evolve and adapt to the pressures of new and old 

drug therapies alike, But, understanding how mutations affect one subgroup can not only 

help our understanding of all class D enzymes, but it can save lives as well as further 

work will hopefully lead to the development of improved treatments for pathogens 

producing these enzymes. 
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APPENDIX A 

KCX TOPOLOGY AND PARAMETERS 

The topology and force-field entries for the carboxylated  lysine (Simakov and 

Wymore, unpublished data) are detailed as follows: 

KCX CHARMM Topology 

PRES   KCX    -1.00 ! Patch for carboxylated Lysine, ns 

GROUP 

ATOM CE   CT2     0.060 

ATOM HE1  HA      0.090 

ATOM HE2  HA      0.090 

ATOM NZ   NECA   -0.810 

ATOM HZ1  H       0.300 

ATOM CX   CC      0.690 

ATOM OQ1  OC     -0.710 

ATOM OQ2  OC     -0.710 

DELETE ATOM HZ2 

DELETE ATOM HZ3 

BOND NZ CX 

BOND  CX OQ1 

BOND CX OQ2 

IMPR  CX NZ OQ1 OQ2 

 

KCX CHARMM Force-field Parameters 

Bond Parameters 

CT2     NECA 380.00 1.4300 

H     NECA 440.00 1.0280 

CC     NECA 320.00 1.4617 

Angle Parameters 

CT3     CT2     NECA 67.70 110.93 
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CT2     CT2     NECA 67.70 110.93 

HA     CT2     NECA 51.50 107.50 

CC     NECA     CT2 50.00 115.00 

CT2     NECA     H 60.00 110.00 

CC     NECA     H 60.00 110.00 

NECA     CC     OC 80.00 110.00 

Torsional Parameters 

HA     CT2     CT3     HA 0.1600 3 0.00 

HA     CT3     CT2     NECA 0.0400 3 0.00 

HA     NECA     CT2     CT3 1.1000 1 180.00 

CC     NECA     CT2     CT3 0.2000 3 0.00 

CC     NECA     CT2     CT2 1.1000 1 180.00 

CC     NECA     CT2     CT2 0.2000 3 0.00 

H     NECA     CT2     HA 0.0000 1 0.00 

CC     NECA     CT2     HA 0.0000 1 0.00 

CT2     NECA     CC     OC 2.2000 2 180.00 

CT3     CT2     NECA     H 0.2000 3 0.00 

CT2     CT2     NECA     H 0.2000 3 0.00 
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H     NECA     CC     OC 1.9250 2 180.00 

Improper Parameters 

CC     NECA     OC     OC 96.0000 0.0000 

Non-bonded Parameters (L-J, ε, Rmin/2) 

NECA                                                      0.000000 -0.200000 1.850000 
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APPENDIX B 

TCL SCRIPTS 

 All syntax is presented in size 11 Courier New, single-spaced font. All scripts are 

inputted as directed into the VMD Tk Console unless otherwise specified. Location 

within the syntax where user-specified variables are defined are highlighted yellow. 

Script 1: AnimateTRJs 

 proc animatetrjs {start end fileformat} { 

  set filename [format $fileformat [expr $start]] 

  incr start 

  puts "Reading initial frame in TRJ sequence $filename" 

  mol load dcd $filename 

 

  puts "Reading TRJ files as an animation..." 

  for {set i $start} {$i <= $end} {incr i 1} { 

    set filename [format $fileformat [expr $i]] 

    animate read dcd $filename 

  } 

} 

 Use: To load .trj files consecutively into VMD. Copy and paste entire script into 

VMD TK console. Trajectory files must be located within the current directory. 

 User-specified variables: N/A 

 Example Input: animatetrjs 5 50 “oxa24-wt-sys1-dyn%d.trj” 

The above example loads all frames from oxa24-wt-sys1-dyn5.trj through, and including, 

oxa24-wt-sys1-dyn50.trj. 

 Example Output: N/A 
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Script 2: Load every other frame: 

proc eo_frame {start end fileformat} { 

  set filename [format dcd [expr $start]] 

  for {set i $start} {$i <=$end} {incr i 1} { 

    set filename [format $fileformat [expr $i]] 

    mol addfile $filename type dcd step 2 

  } 

} 

 Use: Similar to Script 1, except loads every other frame of the defined range of 

trajectory files. 

 User-specified variables: N/A 

 Example Input: eo_frame 5 50 “oxa24-wt-sys1-dyn%d.trj” 

 Example Output: N/A 

Script 3: Whole protein Cα RMSF 

set outfile [open filename.dat w] 

set sel [atomselect top "protein and name CA"] 

set rmsf "[measure rmsf $sel]" 

for {set i 0} {$i < [$sel num]} {incr i} { 

  puts $outfile "[expr {$i+1}] [lindex $rmsf $i]" 

}    

close $outfile 

 Use: Measures RMSF of all Cαs throughout the loaded frames, and prints the 

residue-RMSF data into a .dat file within the current directory. Script must be pasted, in 

its entirety, into the VMD Tk Console. 

 User-specified variables: 

 outfile  File to which all data will be outputted; named “filename.dat.” 
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 sel  Atomic selection for which RMSF will be calculated. 

 Example Input: N/A. Code runs automatically when copied and pasted into 

VMD Tk Console. 

 Example Output: Script outputs two columns in the user-specified file. The first 

column is the residue number, the second is the RMSF value in Å. 

Example: 

1 1.345243 

2 1.190847 

3 1.055538 

4 0.868406 

5 0.954798 

 

Script 4: Radius of gyration 

set mol [molinfo top] 

set out [open filename.dat w] 

set sel [atomselect top "protein and not hydrogen"] 

for {set i 0} {$i <= 96000} {incr i} { 

$sel frame $i 

$sel update 

puts $out "$i [measure rgyr $sel]" 

} 

close $out 

 

 Use: Measures the radius of gyration (not including hydrogens) throughout the 

loaded frames, and prints the frame-Rgyr data into a .dat file. The user must specify the 

filename to which the information is to be written [filename.dat]; and the number of 

frames loaded 

 User-specified variables: 
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 out The file to which Rgyr data will be outputted; named “filename.dat.” 

 sel  Atomic selection for which Rgyr will be calculated. 

 Example Input: N/A. Code runs automatically when copied and pasted into 

VMD Tk Console. 

 Example Output: 

1 17.70242 

2 17.75708 

3 17.78677 

4 17.82501 

5 17.84038 

 

Script 5: Average Structure 

set var [atomselect top "protein"] 

set averagestructure [measure avpos $var] 

set newvar [atomselect top "protein"] 

$newvar set {x y z} $averagestructure 

$newvar writepdb filename.pdb 

 

 Use: Determines the average structure from the loaded frames, and outputs a PDB 

file containing the corresponding coordinates. Script is run line by line in the VMD TK 

Console. 

 User-specified variables: 

 var The selection to which average coordinates are to be determined. 

Selections are defined using standard VMD syntax. 
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 filename.pdb  The filename to which the average coordinates will be 

outputted in PDB format; named “filename.pdb.” 

 Example Input: N/A. Run code line by line in VMD TK Console. 

 Example Output: N/A. Output is a PDB file which can be opened normally in 

VMD. 

Script 6: Heatmap Generator 

#  Format the data into R matrices 

row.names(matrix1) <- matrix1$Atom 

row.names(matrix2) <- matrix2$Atom 

matrix1_2 <- matrix1[,2:#1] 

matrix2_2 <- matrix2[,2:#2] 

m1dm <- data.matrix(matrix1_2) 

m2dm <- data.matrix(matrix2_2) 

# Create color palette 

myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) 

# Create Heatmaps 

heatmap.2(MATRIX, Rowv=NA, Colv=NA, col=myPalette, 

breaks=seq(0,20,by=0.1), symm=TRUE, trace="none", 

dendrogram="none") 

matrix1_heatmap <- levelplot(m1dm, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

matrix2_heatmap <- levelplot(m2dm, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

testmat <- m2dm – m1dm 

diff_heatmap <- levelplot(testmat, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

 

Use: Code produces heatmaps similar to Figs. 19-24. Requires the 

following packages: gplots, Lattice, RColorBrewer. Script written by Brian 

Mullen. 

User-specified variables: 
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 #1  Input n-1 total matrix observations. In Example Input, wt2 had 76 total 

observations, so 76-1=75. 

 #2  Input n-1 total matrix observations. In Example Input, p227s2 had 76 total 

observations, so 76-1=75. 

Example Input: 

View(`p227s_full`) 

`p227s` <- read.csv("~/Downloads/p227s_VarDistanceMatrix.csv") 

 View(`p227s`) 

wt <- read.csv("~/Downloads/wt_VarDistanceMatrix.csv") 

 View(wt) 

#  Format the data into R matrices 

row.names(wt) <- wt$Atom 

row.names(p227s) <- p227s$Atom 

wt2 <- wt[,2:75] 

p227s2 <- p227s[,2:75] 

wdm <- data.matrix(wt2) 

pdm <- data.matrix(p227s2) 

# Create color palette 

myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) 

# Create Heatmaps 

wt_heatmap <- levelplot(wdm, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

p227s_heatmap <- levelplot(pdm, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

testmat <- pdm - wdm 

diff_heatmap <- levelplot(testmat, col.regions=myPalette, 

scales=list(x=list(rot=90)), ylab = "Y-Label", xlab="X-Label") 

Example Output: See heatmaps in Figs. 19-24. 
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APPENDIX C 

SUPPLEMENTARY DATA 

 

Fig. 36: Secondary Structure Diagram of OXA-24. Secondary structure was assigned 

by Schneider et al. (2011). WT OXA-24 contains a lysine in position 84, this structure 

has an introduced aspartate mutation to prevent substrate deacylation. PDB 3PAE. 

 

α helix 1 β strand 1 β strand 2 

α helix 2 α helix 3 

α helix 4 α helix 5 

α helix 6 

α helix 7 β strand 3 β strand 4 

β strand 5 β strand 6 
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WT M223A G224D P227S WT M223A G224D P227S 

VAL78CG2 VAL78CG2 VAL78CG2 VAL78CG2 GLY220N GLY220N GLY220N GLY220N 

ALA80CA ALA80CA ALA80CA ALA80CA GLY220CA GLY220CA GLY220CA GLY220CA 

ALA80CB ALA80CB ALA80CB ALA80CB GLY220C GLY220C GLY220C GLY220C 

ALA80C ALA80C ALA80C ALA80C GLY220O GLY220O GLY220O GLY220O 

SER81N SER81N SER81N SER81N TRP221N TRP221N TRP221N TRP221N 

SER81CA SER81CA SER81CA SER81CA TRP221CA TRP221CA TRP221CA TRP221CA 

SER81CB SER81CB SER81CB SER81CB TRP221CB TRP221CB TRP221CB TRP221CB 

SER81OG SER81OG SER81OG SER81OG TRP221CG TRP221CG TRP221CG TRP221CG 

LYS84CE LYS84CE LYS84CE LYS84CE TRP221CD1 TRP221CD1 TRP221CD1 TRP221CD1 

LYS84NZ LYS84NZ LYS84NZ LYS84NZ TRP221CD2 TRP221CD2 TRP221CD2 TRP221CD2 

LYS84CX LYS84CX LYS84CX LYS84CX TRP221CE3 TRP221CE3 TRP221CE3 TRP221CE3 

LYS84OQ1 LYS84OQ1 LYS84OQ1 LYS84OQ1 TRP221C TRP221C TRP221C TRP221C 

LYS84OQ2 LYS84OQ2 LYS84OQ2 LYS84OQ2 TRP221O TRP221O TRP221O TRP221O 

TYR112CG TYR112CG TYR112CG TYR112CG GLY222CA GLY222CA GLY222CA GLY222CA 

TYR112CD1 TYR112CD1 TYR112CD1 TYR112CD1 GLY222C GLY222C GLY222C GLY222C 

TYR112CE1 TYR112CE1 TYR112CE1 TYR112CE1 GLY222O GLY222O GLY222O GLY222O 

TYR112CZ TYR112CZ TYR112CZ TYR112CZ MET223N   MET223N MET223N 

TYR112OH TYR112OH TYR112OH TYR112OH MET223CA   MET223CA MET223CA 

TYR112CD2 TYR112CD2 TYR112CD2 TYR112CD2 MET223CB   MET223CB MET223CB 

TYR112CE2 TYR112CE2 TYR112CE2 TYR112CE2 MET223CG   MET223CG MET223CG 

TRP115NE1 TRP115NE1 TRP115NE1 TRP115NE1 MET223SD   MET223SD MET223SD 

TRP115CE2 TRP115CE2 TRP115CE2 TRP115CE2 MET223CE   MET223CE MET223CE 

TRP115CZ3 TRP115CZ3 TRP115CZ3 TRP115CZ3 MET223C   MET223C MET223C 

TRP115CZ2 TRP115CZ2 TRP115CZ2 TRP115CZ2   ALA223N     

TRP115CH2 TRP115CH2 TRP115CH2 TRP115CH2   ALA223CA     

LEU127O LEU127O LEU127O LEU127O   ALA223CB     

SER128CB SER128CB SER128CB SER128CB   ALA223C     

SER128OG SER128OG SER128OG SER128OG GLY224N GLY224N   GLY224N 

SER128C SER128C SER128C SER128C GLY224CA GLY224CA   GLY224CA 

SER128O SER128O SER128O SER128O GLY224C GLY224C   GLY224C 

TRP167CD1 TRP167CD1 TRP167CD1 TRP167CD1     ASP224N   

TRP167NE1 TRP167NE1 TRP167NE1 TRP167NE1     ASP224CA   

LEU168CA LEU168CA LEU168CA LEU168CA     ASP224CB   

LEU168CB LEU168CB LEU168CB LEU168CB     ASP224CG   

LEU168CG LEU168CG LEU168CG LEU168CG     ASP224OD1   

LEU168CD1 LEU168CD1 LEU168CD1 LEU168CD1     ASP224OD2   

LEU168CD2 LEU168CD2 LEU168CD2 LEU168CD2     ASP224C   

LEU168C LEU168C LEU168C LEU168C VAL225N VAL225N VAL225N VAL225N 

LEU168O LEU168O LEU168O LEU168O VAL225CG2 VAL225CG2 VAL225CG2 VAL225CG2 

VAL169CG1 VAL169CG1 VAL169CG1 VAL169CG1 ARG261CZ ARG261CZ ARG261CZ ARG261CZ 

SER219CB SER219CB SER219CB SER219CB ARG261NH1 ARG261NH1 ARG261NH1 ARG261NH1 

SER219OG SER219OG SER219OG SER219OG ARG261NH2 ARG261NH2 ARG261NH2 ARG261NH2 

SER219O SER219O SER219O SER219O 
    Table 15: Atomic Selection of Active Site. Atoms highlighted in yellow represent the 

additional atoms required to model the whole (“upper”) active site. 
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Fig. 37: M-Coffee Multiple Sequence Alignment of Class D CPases. Values at top 
represent percent of residues aligned identically between all multiple sequence alignment 
methods. Individual residues are color-coded accordingly: red indicates perfect alignment 
agreement between all methods, blue indicates the lowest agreement. 

 

 

Fig. 38: G224D N-Terminal Outlier 
Structures. Light blue: Reference frame. Dark 
Blue: Peak present at ~5nsec in Figure 9. Red: 
Peak present at ~17nsec in Figure 9. Cα atoms 

of the N-terminal residue are colored yellow. 
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 WT Avg. (Å) M223A Avg. (Å) G224D Avg. (Å) P227S Avg. (Å) 

Ala80Cα - Gly222Cα 6.12 ±0.73 5.17 ±0.27 5.40 ±0.31 5.29 ±0.32 

Ala80Cα - Leu168Cα 4.65 ±0.33 4.50 ±0.34 4.61 ±0.29 4.81 ±0.52 

Ala80Cα - Trp221Cα 7.46 ±0.89 6.24 ±0.30 6.57 ±0.40 6.15 ±0.28 

Ala88Cα - Val201Cα 6.97 ±0.29 7.21 ±0.35 7.13 ±0.43 7.12 ±0.33 

Arg138Cα - Asp164Cα 6.72 ±0.34 6.73 ±0.42 6.67 ±0.37 6.58 ±0.42 

Arg138NH2 - Asp164OD1 3.57 ±0.93 3.64 ±1.00 3.65 ±0.95 3.58 ±0.96 

Asn87Cα - Tyr133Cα 7.16 ±0.22 7.22 ±0.24 7.25 ±0.24 7.26 ±0.24 

Asn87ND2 - Tyr133O 3.17 ±0.26 3.13 ±0.26 3.20 ±0.28 3.25 ±0.31 

Gln134Cα - Asp164Cα 6.04 ±0.42 6.04 ±0.47 5.78 ±0.46 5.94 ±0.40 

Gln134NE2 - Asp164O 3.36 ±0.76 3.48 ±0.88 3.35 ±0.81 3.71 ±1.12 

Glu76Cα - Ile174Cα 5.61 ±0.33 5.12 ±0.27 5.06 ±0.27 5.28 ±0.26 

Glu93Cα - Phe193Cα 6.70 ±0.31 6.56 ±0.27 6.61 ±0.29 6.53 ±0.27 

Glu101Cα - Arg139Cα 14.04 ±0.34 15.48 ±1.14 14.33 ±0.81 13.95 ±0.36 

Ile159Cα - Ile174Cα 12.08 ±0.31 11.90 ±0.31 11.96 ±0.30 12.01 ±0.32 

Ile159Cα - Leu172Cα 5.45 ±0.28 5.39 ±0.29 5.46 ±0.28 5.45 ±0.30 

Fig. 39: M223A Ser128, Val130 Outlier 
Structures. Light blue: Reference frame. Dark 
Blue: Peak present at ~7nsec in Figure 11 Other 
Active Site Residues Cα Atoms. Ser128 Cα 
atoms are colored yellow. Val130 Cα atoms are 
colored red. 
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Ile159Cα - Phe166Cα 5.91 ±0.31 5.92 ±0.36 5.89 ±0.34 5.78 ±0.28 

KCX84Cα - Val130Cα 8.65 ±0.34 8.68 ±0.53 8.98 ±0.50 8.83 ±0.40 

KCX84HZ1 - Val130CG2 3.32 ±0.76 5.32 ±1.23 5.35 ±1.49 4.51 ±0.88 

KCX84OQ1 - Lys218NZ 2.82 ±0.68 3.70 ±1.01 2.81 ±0.56 6.31 ±1.69 

KCX84OQ1 - Trp167HE1 6.96 ±0.90 8.20 ±1.43 7.70 ±0.98 4.73 ±2.16 

KCX84Cα – Ser219Cα 10.50 ±0.43 9.98 ±0.25 10.72 ±0.43 9.82 ±0.32 

Leu92Cα - Thr197Cα 6.42 ±0.28 6.37 ±0.29 6.59 ±0.43 6.44 ±0.30 

Leu142Cα - Val163Cα 5.41 ±0.29 5.54 ±0.42 5.57 ±0.41 5.33 ±0.26 

Leu168Cα - Arg261Cα 19.78 ±0.94 18.71 ±0.59 18.70 ±0.52 18.80 ±0.56 

Leu168Cα - Glu251Cα 17.55 ±0.48 15.66 ±0.42 15.87 ±0.40 15.92 ±0.38 

Leu168Cα - Gly222Cα 7.94 ±1.07 6.45 ±0.44 6.59 ±0.38 6.71 ±0.37 

Leu168Cα - Gly/Asp224Cα 7.85 ±0.97 6.78 ±0.70 7.05 ±0.47 6.68 ±0.78 

Leu168Cα - Met/Ala223Cα 9.36 ±1.09 8.18 ±0.52 8.25 ±0.36 8.13 ±0.47 

Leu168CD2 - Arg261NH2 12.87 ±1.31 12.42 ±1.39 11.74 ±0.86 13.75 ±1.36 

Lys75Cα - Thr175Cα 5.65 ±0.21 5.56 ±0.21 5.58 ±0.23 5.59 ±0.21 

Met/Ala223Cα - Arg261Cα 14.88 ±0.48 14.70 ±0.46 14.67 ±0.46 14.68 ±0.50 

Met/Ala223Cα - Gln228Cα 5.38 ±0.35 5.08 ±0.32 5.34 ±0.32 5.35 ±0.34 

Met/Ala223Cα - Glu251Cα 10.71 ±0.37 10.31 ±0.33 10.67 ±0.37 10.55 ±0.37 

Phe83Cα - Trp167Cα 6.69 ±0.24 6.76 ±0.30 6.68 ±0.23 6.94 ±0.35 

Phe154Cα - Ile159Cα 10.23 ±0.32 10.31 ±0.34 10.25 ±0.33 10.32 ±0.32 

Phe154Cα - Leu168Cα 15.02 ±0.40 15.11 ±0.40 14.74 ±0.37 15.26 ±0.43 

Phe154Cα - Phe166Cα 13.09 ±0.37 13.26 ±0.38 12.95 ±0.38 12.99 ±0.32 

Phe154Cα - Trp167Cα 11.52 ±0.40 11.74 ±0.40 11.25 ±0.38 11.79 ±0.39 

Phe154Cα - Val163Cα 15.56 ±0.38 15.79 ±0.48 15.50 ±0.44 15.60 ±0.37 

Phe166Cα - Ile174Cα 12.24 ±0.27 12.52 ±0.29 12.26 ±0.27 12.43 ±0.26 

Phe166Cα - Leu172Cα 6.36 ±0.34 6.34 ±0.36 6.20 ±0.35 6.22 ±0.26 

Pro79Cα - Leu172Cα 7.45 ±0.25 7.52 ±0.25 7.53 ±0.24 7.44 ±0.27 

Pro/Ser227Cα - Glu251Cα 6.99 ±0.35 7.01 ±0.28 7.20 ±0.34 7.06 ±0.27 

Pro/Ser227CB - Glu251CD 4.29 ±0.56 4.27 ±0.47 4.56 ±0.63 4.15 ±0.45 

Pro227CG - Glu251OE1 4.84 ±0.84 4.91 ±0.89 5.20 ±1.05 N/A 
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Pro227CG - Glu251OE2 4.71 ±0.80 4.85 ±0.88 5.15 ±0.99 N/A 

Ser81Cα - Gly220Cα 4.87 ±0.25 4.70 ±0.24 4.83 ±0.20 4.61 ±0.25 

Ser81Cα - Ser128Cα 7.90 ±0.52 8.77 ±0.48 8.09 ±0.43 7.51 ±0.82 

Ser81Cα – Tyr112Cα 16.20 ±0.91 17.21 ±0.96 17.22 ±1.79 15.79 ±0.96 

Ser81CA - Val130Cα 8.60 ±0.54 8.72 ±0.52 8.74 ±0.57 8.55 ±0.46 

Ser81Cα - Val130CB 8.21 ±0.59 8.23 ±0.70 8.50 ±0.74 8.32 ±0.62 

Ser81HG1 - KCX84OQ2 2.91 ±1.42 4.64 ±1.06 1.89 ±0.38 3.69 ±1.12 

Ser128Cα - Ser219Cα 8.74 ±0.57 10.66 ±0.77 9.41 ±0.64 9.65 ±0.71 

Ser128OG - Ser219OG 6.77 ±0.88 8.63 ±1.33 7.72 ±0.82 7.35 ±1.27 

Ser219Cα - Arg261Cα 7.68 ±0.38 7.88 ±0.42 7.40 ±0.38 7.82 ±0.41 

Ser219CB - Trp221CB 7.49 ±0.29 7.34 ±0.28 7.60 ±0.27 7.28 ±0.28 

Ser219OG - Arg261NH2 3.57 ±0.58 3.68 ±0.68 3.52 ±0.59 3.60 ±0.68 

Ser227HG1 - Glu251OE1 N/A N/A N/A 3.04 ±1.13 

Ser227HG1 - Glu251OE2 N/A N/A N/A 3.03 ±1.08 

Ser227OG - Glu251OE1 N/A N/A N/A 3.85 ±1.01 

Ser227OG - Glu251OE2 N/A N/A N/A 3.84 ±0.97 

Thr51OG1 - Glu251O 2.77 ±0.15 2.76 ±0.15 2.80 ±0.19 2.79 ±0.16 

Trp167Cα - Ile174Cα 9.66 ±0.27 10.07 ±0.30 9.74 ±0.25 10.08 ±0.25 

Trp167Cα - Leu172Cα 5.96 ±0.39 5.86 ±0.39 5.74 ±0.38 5.88 ±0.35 

Tyr77Cα - Ile174Cα 5.49 ±0.15 5.52 ±0.15 5.51 ±0.15 5.54 ±0.14 

Tyr77Cα - Lys173Cα 5.52 ±0.24 5.25 ±0.22 5.17 ±0.21 5.33 ±0.23 

Tyr77N - Ile174O 2.94 ±0.14 2.96 ±0.15 2.94 ±0.14 2.91 ±0.19 

Tyr77O - Ile174N 2.83 ±0.12 2.89 ±0.13 2.86 ±0.12 2.91 ±0.14 

Tyr112OH - Met114SD 7.87 ±1.20 8.17 ±0.63 8.87 ±2.68 8.33 ±0.90 

Tyr112Cα - Met/Ala223Cα 15.03 ±1.63 18.19 ±1.28 15.85 ±1.92 16.23 ±1.39 

Tyr112Cα - Ser128Cα 10.50 ±0.55 10.47 ±0.59 10.87 ±1.31 10.56 ±0.51 

Tyr112CZ - Ser128CB 8.54 ±1.02 8.69 ±1.14 9.41 ±2.37 8.83 ±0.91 

Tyr112OH - Met223CE 6.35 ±3.13 N/A 8.41 ±3.68 6.89 ±1.80 

Val78Cα - Gly170Cα 6.09 ±0.33 6.12 ±0.39 6.08 ±0.27 5.97 ±0.29 

Val78Cα - Val225Cα 9.11 ±0.89 8.24 ±0.40 8.09 ±0.27 8.17 ±0.34 
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Val130Cα - Leu168Cα 10.00 ± 0.58 11.19 ±0.67 9.88 ±0.51 10.73 ±0.67 

Val130CG2 - Leu168CD2 5.67 ±0.91 7.57 ±1.12 5.48 ±0.73 7.65 ±1.54 

Val163Cα - Ile174Cα 17.34 ±0.27 17.61 ±0.37 17.39 ±0.28 17.66 ±0.36 

Val163Cα - Leu172Cα 11.19 ±0.27 11.31 ±0.33 11.18 ±0.26 11.35 ±0.34 

Val163Cα - Phe166Cα 6.22 ±0.23 6.37 ±0.30 6.36 ±0.22 6.50 ±0.29 

Val163Cα - Gly/Asp224Cα 7.87 ±1.39 6.43 ±0.88 6.42 ±0.39 6.24 ±0.58 

Val163Cα - Val225Cα 8.92 ±1.44 6.61 ±0.83 6.45 ±0.48 6.34 ±0.50 

Val163CG1 - Gly/Asp224CA 7.80 ±2.00 6.43 ±0.88 5.28 ±0.48 4.73 ±0.73 

Table 16: Average Distances of WT & Mutants. Measurements were calculated using a 1 
nsec equilibration period. 
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