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ABSTRACT 

Laparoscopic Surgery, also known as Minimally Invasive Surgery, is a surgical technique where 

surgeons perform surgery through small incisions in the patient’s abdomen using a camera to 

monitor the movements of the instruments inside the patient.  In order for the surgery to be 

performed, the surgeon must possess a unique set of skills obtained through training using a 

variety of techniques.  Simulators are the preferred method of training for laparoscopic surgery 

since they provide medical residents with real world scenarios as well as a tremendous amount of 

feedback on what he/she did wrong or right.  However, due to the high cost associated with 

laparoscopic simulators, laparoscopic box trainers are more commonly used, but fail to provide 

trainees with the necessary feedback to create an effective training experience.  The Electronic 

Laparoscopic Trainer (ELT) is a low cost device that provides users with a virtual reality like 

experience using a laparoscopic box trainer, but fails to accurately track the motion of the 

laparoscopic instruments.  This paper describes and validates an optical tracking system to 

monitor the laparoscopic instruments inside of the laparoscopic box trainer that can be added to 

the ELT to increase its effectiveness during training.  The algorithm performs a series of steps 

that are taken a frame at a time to obtain the 3D real world tracking point of the laparoscopic 

instrument, which are used to calculate quantitative values for various aspects of the user’s 

performance that represent how effective, controlled, and safe the user’s movements were.  

Testing confirmed that the algorithm can accurately track the distance traveled and direction of 

up to two laparoscopic instruments in 3D real space and is capable of differentiating between 

users of varying skill levels by using performance metrics such as the amount of time each 

instrument is in the field of view and path length.   
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I.  INTRODUCTION 

Laparoscopic Surgery, also known as Minimally Invasive Surgery, is a surgical technique 

where surgeons perform invasive procedures through small incisions in the patient’s abdomen.  

Surgeons must view their movements with the instruments on a two-dimensional screen using a 

camera inside the patient.  In order for the surgery to be performed safely and effectively, the 

surgeon must possess a unique set of skills acquired through a specialized system of training 

developed for laparoscopic surgery.  This training is typically comprised of laparoscopic box 

trainers and/or virtual reality trainers, animal experiments, and operating room experience (1).  

However, when a surgeon is able to master the skills required to successfully perform 

laparoscopic surgery through training, his/her patients will experience less pain and a faster 

recovery time due to the smaller incisions when compared to conventional open surgery.    

 

A.  Laparoscopic Training 

Surgical residents typically train for laparoscopic surgery in a 4 to 5 year program with 

basic surgical techniques being taught in the first year, laparoscopic box training and/or virtual 

reality training in the second year, animal model training in the third year, and operating room 

experience being obtain during the remaining years (2).  Animal labs are considered to be the 

most effective training method before a medical resident enters the operating room, but are also 

the most expensive.  Since animal labs are expensive to run and maintain, it is important that 

surgical residents obtain all the cognitive and psychomotor skills necessary to perform 

laparoscopic surgery before moving onto animal labs.  Laparoscopic virtual reality and box 

training methods allow residents to practice and hone their skills before attending animal labs   
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However, the amount of time a surgical resident is able to train using a laparoscopic box 

trainer and/or virtual reality trainer is limited since the training institution owns and controls 

access to the equipment.  Surgical residents are excused from clinical duties to attend training 

sessions, but have little to no extra time to visit the training facility to practice.  Therefore it is 

vital that a resident gains as much as possible each time he/she trains using a box trainer or 

virtual reality trainer.  Controlled trials have been performed to validate the effectiveness of 

various laparoscopic box trainers as well as virtual reality trainers to determine the most efficient 

training method.  Box trainers are currently the standard for laparoscopic skills training and 

assessment, but there has been a growing call for virtual reality trainers to play a greater role 

because of their perceived increased realism and ability to collect data (3).  Both the similarities 

and differences between laparoscopic virtual reality trainers and box trainers have been well 

characterized by the variety of studies performed on the topic (4,5). 

 

B.  Laparoscopic Box (Lap Box) Trainers 

Laparoscopic box trainers come in various forms as to provide surgical residents with 

different training experiences.  They can be organ specific or more generic, accommodate real-

tissue specimens, and may even be used by multiple people at a time (6).  No matter what the 

form, box trainers are considered the least effective for of training, but are also the lowest cost.  

Box trainers are so simple that they can be made at home using a plastic storage box and HD 

webcam, which explains why the are low cost (7).  The typical box trainer includes an enclosed 

cavity where the training tasks are performed, openings in the shell through which the 

instruments may be inserted, and a built-in camera that displays the work field in the enclosed 

cavity. 
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Normally surgeons performing laparoscopic surgery work in teams with one moving the 

camera to provide a more dynamic field of view.  So a fixed camera with a chosen focal lens is 

not realistic for surgery, but allows a surgical resident to train without assistance from another 

person (6).  This way, residents only have to worry about finding time to train in their own 

schedule rather than also having to coordinate with another resident’s schedule.  The only 

advantage to box trainers that require two people is that it allows the residents to practice moving 

the camera and working as a team, which is a more realistic setting than a single person box 

trainer.  For this project, the single person Fundamental of Laparoscopic Surgery (FLS) box 

trainer, shown in Figure 1 below, was used since it is the most common one used today. 

 

 

Figure 1: Ready to Use FLS Box Trainer (6) 

 

FLS is a committee formed in the late 1990s by the Society of American Gastrointestinal 

Surgery (SAGES) that developed an educational program in 2004 to “educate surgeons in the 

underlying principles and basic skills of laparoscopic surgery” as well as to “document 

competency in surgical practice” (8).  Since its introduction, the FLS program has been validated 
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from both a metrics standpoint and by beta field-testing with general surgeons (8-10).  The FLS 

program is now endorsed by the American College of Surgeons (ACS) and as of 2010 is required 

by the American Board of Surgery (ABS) for a general surgery resident to qualify for the 

American Board of Surgery certifying examination (11).  The FLS program includes a hands-on 

skills training component that requires surgical residents to perform 5 different tasks inside the 

FLS box trainer. 

 

The FLS program uses all 5 training exercises for both training and assessment.  

Originally, 7 tasks were developed for the hands-on portion of the FLS program, but were 

reduced to 5 since studies showed that “2 of the exercises failed to contribute any additional 

discriminatory value to the training or assessment” (8).  The 5 tasks include peg transfer, 

precision cutting, suturing with an intracorporeal knot, suturing with an extracorporeal knot, and 

ligating loop.  Figure 2 shows each task as being performed inside the FLS box trainer. 

 

                     
A          B         C 

           
     D         E 

Figure 2: (A) Peg transfer, (B) precision cutting, (C) intracorporeal suture, (D) extracorporeal 
suture, and (E) ligating loop FLS tasks as they are performed inside FLS box trainer 
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All tasks are scored using a combination of time and accuracy measures.  High scores 

will result from tasks performed efficiently and without error.  Penalties are assessed for errors 

and a lack of precision, which are specific to each task. The user must also complete each task 

under the maximum time limit set for each specific task in order to receive a score.  However, 

completing the task under the maximum time limit does not mean the user will receive a passing 

score. 

 

When a resident uses a laparoscopic box trainer he/she only knows how long it took 

him/her to complete the FLS program task and whether or not they made any obvious errors.  

Not only does this encourage inefficient movements and less practice time, but also fails to 

provide residents with significant information about how effective, controlled, and safe their 

movements were.  An expert surgeon is able to judge the accuracy and efficiency of the 

resident’s performance using the laparoscopic box trainer, which is how certification tests 

involving box trainers are quantitatively scored (2).  However, expert surgeons are not always on 

hand to provide effective and immediate feedback.  Laparoscopic virtual reality trainers can 

provide feedback to surgical residents they would otherwise only obtain from an expert surgeon. 

 

C.  Laparoscopic Virtual Reality Trainers 

Laparoscopic virtual reality trainers, such as the one shown in Figure 3, provide surgical 

residents with an improved training experience compared to box trainers by increasing realism 

and assessing a greater number of performance metrics.  Such additional performance metrics 

include path length, economy of movement, average speed, average acceleration, smoothness of 

motion and a total score based on all others, which is all provided quantitatively to the resident in 
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real time.  This creates a more effective laparoscopic training experience since it allows residents 

to gain more from each individual training session.  Studies have shown that virtual reality 

training not only improves effectiveness, but also is able to shorten the learning curve for 

surgical residents to transition earlier from simulation to surgery (12,13). 

 

 

 

Figure 3: Simendo System (4) 

 

 

One of the many aims of virtual reality based laparoscopic training is to reduce cost by 

reducing the training time of surgical residents while keeping surgical errors to a minimum (12).  

However, the initial high cost associated with laparoscopic virtual reality trainers limits the 

likelihood that they will be able to reach this goal.  Training facilities will continue to use the 

less costly and less effective laparoscopic box trainers as a result.  Hence, it is desirable to 

incorporate a virtual reality system into an existing laparoscopic box trainer that can provide 

better feedback at a lower cost.  
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D.  Electronic Laparoscopic Trainer (ELT) 

The Electronic Laparoscopic Trainer (ELT) is a low cost device that provides users with 

a virtual reality like experience using a laparoscopic box trainer (14).  The ELT, shown in Figure 

4, is a device that fits in a laparoscopic box trainer and has 24 independently illuminating touch 

sensitive tiles that the surgical resident interacts with to complete tasks.  Tasks performed using 

the ELT including Random Squares, Press and Hold, Two Hands, Circle, and Force Test require 

the user to tap or hold tiles once they are illuminated using the instrument in a specific hand.  

Currently, the ELT uses an accelerometer attached to one of the two instruments to determine 

which hand is being used to tap or hold the illuminated tile.  As the accelerometer is only able to 

detect movement, it only works to detect which hand is being used when the instrument with the 

accelerometer is completely motionless when not being used.  Testing demonstrated that the ELT 

is capable of increasing the rate of laparoscopic skill development as is, but a better instrument 

tracking system will increase the effectiveness of training with the ELT by providing the user 

with even more feedback. 

 

 

Figure 4:  Electronic Laparoscopic Trainer (ELT) 
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E.  Electronic Tracking of Laparoscopic Instruments 

Automated electronic tracking of laparoscopic instruments allows a system to determine 

key values describing the quality of the user’s performance as they perform laparoscopic box 

trainer tasks, such as the ones for the FLS program.  A variety of methods exist to determine the 

location of laparoscopic instruments inside a box trainer with some being better than others.  

Previous studies have successfully proved that magnets may be used to perform motion tracking 

of laparoscopic instruments (15,16).  The electromagnetic technique uses a series of magnets 

placed in specific locations around the laparoscopic box trainer to produce a magnetic field, 

which can then be used to determine the instrument’s location in 3D space.  Another method 

uses an accelerometer and gyroscope combination, which was only able to roughly determine the 

instrument location (17).  Both methods require additional hardware to be added to the 

laparoscopic box trainer or instruments, which is not ideal. 

   

The method determined to work the best for tracking the motion of laparoscopic 

instruments was optical, which uses the box trainer’s built-in camera.  Various articles 

demonstrate that using cameras to optically track laparoscopic instruments during training can be 

successfully implemented (18,19).  The Endoscopic Video Analysis (EVA) tracking system is an 

existing laparoscopic instrument tracking system that includes a series of 5 steps to obtain an 

accurate 3D location of each laparoscopic instrument in a given frame (19).  The 5 steps include 

camera distortion correction, image processing, determination of a 2D tracking point, 

determination of tracking window, and determination of point in real space.  It is this EVA 

system that was used as a model for the development of an instrument tracking algorithm to be 

implemented with the ELT to increase its effectiveness during training. 
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II.  SYSTEM DESIGN 

The algorithm for instrument tracking was developed using MATLAB to analyze video 

from the existing camera built into the laparoscopic box trainer.  The algorithm is based on the 

EVA tracking system, but does vary in some ways.  Just like the EVA tracking system, it follows 

a series of steps to obtain the 3D real world locations, relative to the built in camera, of the left 

and right instruments (19).  The steps for this algorithm are each taken a frame at a time and 

include contrast stretching, color-based segmentation, Erosion, Instrument Isolation, Dilation, 

Canny edge detection, Hough transform, identifying 3D tracking point, and finally, identifying 

3D real world tracking point. By obtaining the 3D real world points through instrument tracking, 

the algorithm is able to determine important performance metrics such as the number of times 

each instrument left the field of view, path length, and average speed that represent how 

effective, controlled, and safe the user’s movements were.    

 

 

A.  Obtaining Video and Determining Length, Frame Rate, and Size 

The first thing the algorithm does is obtain the recorded video of a medical resident using 

the lap box trainer using the VideoReader function in MATLAB.  The algorithm uses other 

MATLAB functions to determine the length, frame rate, and size of the video, which are used 

throughout the algorithm.  It then goes through the video an image at a time, such as the one 

shown in Figure 5, performing the steps specified above and described below.  Example figures 

are provided with each step description and root off of the original frame image shown in Figure 

5. 
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Figure 5: Original Image 

 

B.  Contrast Stretching 

The first image-processing technique performed as a step toward obtaining 3D points in 

real space of two laparoscopic instruments is contrast stretching.  Contrast stretching will expand 

the range of intensity levels in an image so that it spans the full intensity range of the recording 

medium or display device.  A piecewise-linear transformation function is used to perform 

contrast stretching of the original image, which results with the image as seen in Figure 6, below.  

The resulting image, shown in Figure 6, does not vary much from the original as the original 

image, shown in Figure 5, already has a large contrast.  Contrast stretching would have a greater 

affect on an image with a low contrast. 
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Figure 6: Contrast stretched image 

C.  Color-Based Segmentation 

Once the original frame image has been contrast stretched, the algorithm goes through 

each pixel in the image to determine if it is black, which by definition is considered thresholding.  

A new image is created, which illustrates all identified black pixels from the contrast stretched 

image as white and all other pixels as black.  An example of this new black and white image can 

be seen below, Figure 7.  This removes any object that is not black, but as Figure 7 shows, there 

are a lot of black objects in the image that need to be removed in order to isolate the instruments.  

 

 

Figure 7: Color-based segmented image 
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D.  Erosion 

Erosion is an image processing technique that can be used to remove unwanted smaller 

objects from an image.  In this case, it is used to remove any of the smaller black objects in the 

image, shown as white in the color based segmented image, Figure 7.  As seen in Figure 8, most 

of the objects from Figure 7 have been successfully removed using the MATLAB function 

imerode.  However, both the left and right instruments have shrunk or become smaller as a 

result, which can be fixed through dilation.  But first, steps are taken to isolate each instrument. 

 

 

Figure 8: Eroded image 

 

E.  Isolating Left and Right Instruments 

The eroded image, shown in Figure 8, is used to isolate the left and right instruments 

through a series of steps.  First, the algorithm identifies all the white pixels along the edges of the 

eroded image.  All white pixels located along the left and left half of the bottom edges are placed 

into one new image to isolate the left instrument.  While the white pixels located along the right 

and right half of the bottom edges are placed into another to isolate the right instrument.  Next, 
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the algorithm determines which of the pixels that border the ones found in the previous step are 

white.  It then repeats this step until all the white pixels connected to the original ones on the 

edge are found.  All the identified pixels are turned white in either the left or right instrument 

image.  The result is two images, each containing a white object representing the left or right 

shrunken laparoscopic instrument.  These two images can be seen in Figure 9. 

 

 

  

Figure 9: Isolation of left and right instruments 

 

F.  Dilation 

In order to restore the instruments back to their original size, the images have to be 

dilated by the same structuring element in which they were eroded.  As seen in Figure 10, each 

instrument has been restored to its original size through dilation, which is done by using the 

MATLAB function imdilate.  The algorithm has isolated and identified each instrument at its 

original size, now it needs to create an outline of each. 
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Figure 10: Dilated images 

 

G.  Canny Edge Detection 

The Canny edge-detecting image processing technique uses a multi-stage algorithm to 

detect a wide range of edges in images.  The developed algorithm uses the Canny edge detection 

function in MATLAB to create an outline of the laparoscopic instruments as shown in Figure 11, 

below.  By isolating the instruments first, only the edges of the instruments are obtained instead 

of all edges in the entire original frame image.  The next step is to characterize the 2 sides of 

each laparoscopic instrument using this new resulting image from canny edge detection. 

 

 

  

Figure 11: Canny edge detected images 
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H.  Hough Transform 

In order to characterize the two edges of each laparoscopic instrument, the Hough 

transform is used.  The Hough transform is used in image processing to identify lines in an image 

as well as arbitrary shapes such as circles or ellipses.  In this case the Hough transform is used to 

detect only lines. An example Hough transform of the canny edge detected image using the 

MATLAB function hough can be seen in Figure 12.  The image is mostly black, but does have 

white spots illustrating lines in the image.  Once the Hough transform is obtained, the eight 

longest lines can be determined by finding the points of highest intensity, which are marked in 

Figure 12 as small squares.  The algorithm uses the MATLAB function houghpeaks to find the 

points of highest intensity and houghlines to obtain the end points of each line. 

 

  

   

Figure 12: Hough Transforms 
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The eight longest lines are obtained instead of two because it is likely that one edge of the 

instrument may produce the two longest lines.  By obtaining eight lines and performing a set of 

checks, the algorithm has a greater chance of properly identifying each edge of the two 

laparoscopic instruments.  An example of the lines obtained from the Hough transform can be 

seen on the contrast stretched image in Figure 13.  From the indicated lines, a total of two will be 

identified from each image by relative location analysis to characterize the edges of the two 

instruments and used to identify 3D tracking points of the instruments. 

 

 

  

   

Figure 13: Hough lines on contrast stretched image 
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I.  Identify 3D Tracking Point 

Once the edges of each instrument are characterized by line equations, a midline can be 

created between the two edges of an individual instrument.  This midline is used along with the 

dilated image to determine the location of a point along that line where it goes from white to 

black.  This point is considered the 2D tracking point of the instrument and is combined with the 

determined diameter of the instrument at that point, distance between lines characterizing the 

edge of the instrument at the 2D tracking point, to make up the 3D tracking point.  Figure 14, 

below, illustrates the instrument edges, midline, and 2D tracking point of each instrument on the 

contrast stretched image. 

 

  

Figure 14: Image showing 2D tracking point of the left and right laparoscopic instruments 

 

J.  Identify 3D Real World Tracking Point 

The last and final step involved in determining the location of each laparoscopic 

instrument is calculation of the 3D real world tracking point, which is done using the 3 

developed Equations below.  Equation 1 is used to determine the real world x-axis point, while 

Equation 2 and 3 are used to determine that of the x and z-axis.  Equation 3 is a line equation 
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derived using the instrument’s diameter in pixels when it was at two different and known 

distances away from the camera, which were determined through testing. 

 

!"#$! = !"#$%&%!!!
!"#$%&%!!"#$%

∙ !"#$%! − !"#$%&"#'!
!       (1) 

 
Where: 
 !"#$%&%!! is actual diameter of the instrument in millimeters (5 mm) 
 !"#$%&%!!"#$% is diameter of the instrument in pixels 
 !"#$%! is x-axis pixel location 
 !"#$%&"#'ℎ is width of the video frame in pixels 
 
 
!"#$! = !"#$%&%!!!

!"#$%&%!!"#$%
∙ !"#$%! − !"#$%&$"'!!

!       (2) 

Where: 
 !"#$%&%!! is actual diameter of the instrument in millimeters (5 mm) 
 !"#$%&%!!"#$% is diameter of the instrument in pixels 
 !"#$%! is y-axis pixel location 
 !"#$%&$"'ℎ! is height of the video frame in pixels 
 
 
!"#$! = −0.16262 ∙ !"#$%! + 11.773       (3) 

Where: 
 !"#$%! is z-axis pixel location 
 

 

K.  Performance Metrics 

The last thing the algorithm does is utilize the obtained instrument tracking points to 

calculate quantitative values for various aspects of the users performance using the lap box 

trainer, as are defined in Table 1.  All the resulting performance metrics, shown in Table 1, 

represent how effective, controlled, and safe the user’s movements were with the laparoscopic 

instruments.      
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Table 1: Quantitative performance values that will be obtained from developed tracking system 

Performance Metric Units Definition 

Time In s Total amount of time instrument is in field of view 

Time Out s Total amount of time instrument is out of field of view  

Times Out of View - Total number of times the instrument exits the field of view 

Path Length 2D pixels Total distance of instruments path in 2D 

Path Length 3D m Total distance of instruments path in 3D 

Average Speed 2D pixels/s Average speed of instrument in 2D 

Average Speed 3D m/s Average speed of instrument in 3D 
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III.  STUDY DESIGN 

A.  Step 1 

To test how well the algorithm works to optically track laparoscopic instruments, an 

instrument was moved a specific distance along each axis.  The actual distance moved by the 

instrument was compared to the distance determined by the algorithm.  First, the instrument was 

moved approximately 4 inches right along the x-axis.  The next time the instrument was moved 2 

inches up along the y-axis.  Finally, the instrument was moved 2 inches away from the camera 

along the z-axis.  Once this was completed and the algorithm was verified to successfully track a 

single instrument in the laparoscopic box trainer, it had to be tested using two instruments.  So 

two instruments were used inside of the lap box trainer to confirm that the algorithm can track 

both of them.  However, further validation was required to show the system is capable of 

differentiating between users of various skill levels. 

 

B.  Step 2 

In order to verify that the laparoscopic instrument tracking system may differentiate 

between users of varying skill levels, videos provided by Grand Rapids Medical Education 

Partners (GRMEP) of 15 first and 12 second year surgical residents performing the peg transfer 

task from the FLS program were analyzed using the developed algorithm.  The first year 

residents, a novice group, had no prior hands-on training experience with laparoscopic 

instruments.  In contrast the second year residents, the experienced group, had completed their 

laparoscopic training at GRMEP and were ready for the FLS examination.  The recorded videos 

were obtained from the built in camera inside the FLS box trainer as the resident performed the 
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task.  Before starting, each participant was shown how to successfully complete the peg transfer 

exercise by his or her instructor. 

 

According to the FLS program, the peg transfer exercise starts with six colored objects 

aligned on the six pegs on the side of the board corresponding to the user’s non-dominant hand.  

To complete this task, the user must lift one of the six objects at a time, first with their non-

dominant hand, and transfer it in midair to their dominant hand, which is used to place the piece 

on one of the six pegs on the opposite side of peg board.  Once all six pieces are transferred to 

the dominant hand side, the user must reverse the process to move all the objects back to the 

non-dominant side.  The user has 300 seconds to complete the task with the timer starting when 

the first object is touched and ends upon the release of the last object.  A penalty is assessed if an 

object is dropped outside the field of view or if the user can no longer retrieve the object. 

$

Each video was analyzed using the developed algorithm to obtain both the tracking points 

as well as the performance metrics included in Table 1.  Performance metrics between the novice 

and experienced groups were compared using the Student’s t-test, which examines whether the 

mean of two samples is different.  If the t-test determined a performance metric to be 

significantly different across the two groups, the algorithm may successfully differentiate 

between users of various skill levels using that performance metric. 

$
$
!

!

!
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IV.!!RESULTS!

A.  Step 1 

The first step in the validation process for the developed algorithm was to confirm it 

could accurately track 2 laparoscopic instruments inside of the laparoscopic box trainer.  Figure 

15 graphically shows the algorithm results when the instrument was moved approximately 4 

inches to the right along the x-axis.  The plots indicate that the instrument moved approximately 

4 inches to the right along the x-axis. 

 
 

  
 

(A) (B) 
 

Figure 15: Plots of (A) movement along the x-axis only and (B) 2D movement when instrument 
was moved approximately 4 inches to the right 

 
 

 The algorithm results when the instrument was moved approximately 2 inches up along 

the y-axis resulting can be seen in the plots shown in Figure 16.  As one can see, the plots 

produced by the algorithm show a 2 inch movement upward of the instrument along the y-axis.   
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(A) (B) 
 

Figure 16: Plots of (A) movement along the y-axis only and (B) 2D movement when instrument 
was moved approximately 2 inches up 

 
 
 

 Figure 17, below, shows the plots produced when the instrument was moved 2 inches 

away from the camera along the z-axis.  The figure indicates that the instrument moved 2 inches 

along the z-axis. 

 

 
 

Figure 17: Plot of movement along the z-axis only when the instrument was moved 
approximately 2 inches further away from the camera 
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Figure 18 illustrates 2D and 3D plots produced by the algorithm when two instruments 

were used in the laparoscopic box trainer. 

 

 
 

(A) (B) 
 

Figure 18: 2D and 3D plots of instrument (A) 1 and (B) 2 while used simultaneously inside the 
lap box trainer 

$

$

B.  Step 2 

The performance metrics obtained from the second part of the study were broken down 

within each experimental group by handedness, dominant hand and non-dominant/other hand.  

Mean and standard deviation values were calculated for each performance metric within each 

experimental group obtained from tracking the instrument in the resident’s dominant hand, non-

dominant hand, and an average of the two.   The t-test was used to compare the same grouping of 

values for each performance metric across each experimental group.  
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Time In and Time Out 

The first quantitative performance values obtained from the algorithm are the amount of 

time in which each instrument was in and out of the field of view.  Table 3, below, shows the 

results from the mean, standard deviation (SD), and t-test calculations.   

 

Table 2: Time In and Out Results 

 
Time In (s) Time Out (s) 

Dominant 
Hand 

Other 
Hand Average Dominant 

Hand 
Other 
Hand Average 

Novice 
Group 

Mean 146.62 149.34 147.98 9.59 8.55 9.07 

SD 63.02 74.81 68.7 10.52 6.28 5.96 

Experienced 
Group 

Mean 63.02 74.81 68.7 7.53 3.41 5.47 

SD 25.31 28.28 26.13 8.67 4.29 4.33 

t-Test Results (p) 0.0007 0.003 0.0015 0.291 0.009 0.041 
 

 
The results of the t-test, shown in Table 2, indicate that the amount of time in which each 

instrument was in the field of view across the Novice and Experienced groups were significantly 

different (p = 0.0007, p = 0.003, p = 0.0015).  In general, the Experienced group had the 

instruments in the field of view for less time than the Novice group did, which is illustrated in 

the Box Plot shown in Figure 19.  The amount of time in which each instrument was out of the 

field of view was found to be significantly different across the two groups for the instrument in 

the non-dominant hand (p = 0.009) and the average of the two instruments (p = 0.041) according 

to the t-test results.  It was not significantly different for the instrument in the dominant hand (p 

= 0.291).  The box plot shown in Figure 20 represents the data obtained from the algorithm for 

the amount of time in which each instrument was out of the field of view. 
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Figure 19: Box Plot of Time In Results 

 

 

 

Figure 20: Box Plot of Time Out Results 
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Times Out of View 

Another performance metric obtained from the algorithm is the number of times each 

instrument leaves the field of view.  Table 4, below, shows the results from the mean, standard 

deviation (SD), and t-test calculations.   

 

Table 3: Times Out of View Results 

 
Times Out of View 

Dominant 
Hand 

Other 
Hand Average 

Novice 
Group 

Mean 15.73 24.67 20.2 

SD 12.44 11.8 10.34 

Experienced 
Group 

Mean 17.92 14.75 16.33 

SD 18.52 12.61 12.28 

t-Test Results (p) 0.365 0.024 0.197 
 

 

The results of the t-test, shown in Table 3, indicate that the number of times the 

instrument in the non-dominant hand left the field of view was significantly different between 

the experimental groups (p = 0.024).  However, it was not significantly different for the 

instrument in the dominant hand (p = 0.365) or the average of the two instruments (0.197).  The 

box plot shown in Figure 21 represents the data obtained from the algorithm for the number of 

times each instrument left the field of view. 
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Figure 21: Box Plot of Times Out of View Results 

 

Path Length 

The next performance metrics obtained from the algorithm is the total path length of each 

instrument in 2D (pixels) and 3D (m).  Table 4, below, shows the results from the mean, standard 

deviation (SD), and t-test calculations.   

 

Table 4: Path Length Results 

 
Path Length 2D (pixels) Path Length 3D (m) 

Dominant 
Hand 

Other 
Hand Average Dominant 

Hand 
Other 
Hand Average 

Novice 
Group 

Mean 34065 33800 33933 1.47 1.22 1.34 

SD 24325 47501 31113 1.32 1.14 1.01 

Experienced 
Group 

Mean 16139 16053 16096 0.77 0.85 0.81 

SD 8604 6274 6614 0.44 0.53 0.43 

t-Test Results (p) 0.008 0.087 0.023 0.036 0.139 0.041 
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Both the 2D and 3D path lengths of the instrument being used in the dominant hand were 

found to be significantly different across the two experimental groups (p = 0.008 and p = 0.036) 

based on the t-test results shown in Table 4.  Neither was significantly different for the 

instrument in the non-dominant hand (p = 0.087 and p = 0.139).  The average path lengths in 2D 

and 3D of the two instruments were found to be significantly different across the Novice and 

Experienced groups (p = 0.023 and p = 0.041).  In general, the path length in 2D and 3D of the 

instruments used by the Novice group was longer than that used by the Experienced group, as 

illustrated in the Box Plots shown in Figure 22 and 23. 

 

 

 

 

Figure 22: Box Plot of Path Length 2D Results 
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$  

Figure 23: Box Plot of Path Length 3D Results 

 

Average Speed 

The final performance metrics obtained from the algorithm is the average speed of each 

instrument in 2D (pixels/s) and 3D (m/s).  Table 5, below, shows the results from the mean, 

standard deviation (SD), and t-test calculations.   

 

Table 5: Average Speed Results 

 
Average Speed 2D (pixels/s) Average Speed 3D (mm/s) 

Dominant 
Hand 

Other 
Hand Average Dominant 

Hand 
Other 
Hand Average 

Novice 
Group 

Mean 219 177 198 9.65 7.37 8.38 

SD 97 112 81 5.31 3.56 3.38 

Experienced 
Group 

Mean 203 208 205 9.65 10.67 10.16 

SD 75 101 74 4.72 6.55 4.55 

t-Test Results (p) 0.314 0.229 0.404 0.49 0.062 0.142 
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According to the results of the t-test, the average speed in 2D and 3D for each instrument 

was not significantly different across the Novice and Experienced groups (p = 0.314, p = 0.229, 

p = 0.404, p = 0.49, p = 0.062, p = 0.142).  The box plots shown in Figures 24 and 25 show the 

there is not much variation between the two groups in regards to average instrument speed in 2D 

and 3D. 

 

 

 

 

 

 

Figure 24: Box Plot of Average Speed 2D Results 
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$  

Figure 25: Box Plot of Average Speed 3D Results 
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V.  DISCUSSION 

A.  Step 1 

The plots in Figures 15-17 show that the algorithm correctly identifies the distance in 

which the instrument traveled along each axis.  Therefore, the algorithm successfully tracks a 

laparoscopic instrument along each axis and produces accurate real world values that describe 

the movements.  Not only does the algorithm correctly identify travel distances of the instrument 

along each axis, but also the direction as illustrated in Figures 15-17.  It was also confirmed that 

the algorithm is able to track 2 instruments being used at a single time in a laparoscopic box 

trainer, as seen in Figure 18. 

 

B.  Step 2 

 The algorithm succeeded in differentiating between the Novice and Experienced groups 

of residents even though differences were not observed for all performance metrics.  It was 

expected that some of the performance metrics may be similar across the two groups, but as long 

as significant differences exist that make sense the algorithm would be a valid method to 

differentiate between users of varying skill levels. 

 

Time In  

 The amount of time each instrument was in the field of view to complete the peg transfer 

task, as provided by the algorithm, across the Novice and Experienced groups was significantly 

different.  It is also important to note that the algorithm found the amount of time each 

instrument to be in the field of view was on average less for the Experienced group when 

compared to the Novice group. This is no surprise as the Experienced group should be 
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completing the tasks in less time than the Novice group, as they did on average.  So the 

algorithm is able to differentiate between users of varying skills by determining the amount of 

time in which each instrument is in the field of view while completing a task inside of the 

laparoscopic box trainer. 

 

Time Out and Times Out of View 

 Only the instrument with the non-dominant hand showed a significant difference between 

the two groups for both the number of times the instrument left the field of view as well as the 

total amount of time it was out of view.  That means that the instrument in the dominant hand did 

not show a significant difference.  The Experienced group on average had fewer instances of the 

instrument leaving the field of view as expected, but not by much as there was not a significant 

difference.  The algorithm actually provided results that on average had the Experienced group 

exiting the field with the instrument in their dominant hand more than the Novice group, which 

was not expected.  The reason for the unexpected results is likely due to the fact that the 

instrument tip may still be in the field of view, but the algorithm identifies the instrument as 

being out of view as it uses the black shaft to determine instrument location.  That is why these 

performance metrics are not reliable enough to be used as a method for the algorithm to 

differentiate between users are varying skill levels. 

 

Path Length 

 Path length results obtained from the algorithm for the instrument in the dominant hand 

were found to be significantly different between the Novice and Experienced groups.  However, 

it was not significantly different for the non-dominant hand.  Based on the data, the Experienced 
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group moved both instruments a relatively equal amount while the Novice group did not.  A 

possible explanation for this is that the Novice group did not like using their non-dominant hand 

so they moved it as little as possible relying on their dominant hand to do most of the work while 

the Experienced group feels more comfortable using their non-dominant hand since they have 

practiced doing so during training.  This is something that should be investigated in the future to 

determine if a comparison between the two instruments path length could be a valid method for 

differentiating between users of varying skill levels.  For now it seems that the algorithm may 

only use the path length of the dominant hand to differentiate between users of varying skill 

levels. 

 

Average Speed 

 Based on the results, the algorithm was not able to differentiate between the two groups 

using average speed, as there were no significant differences.  The box plots show in Figure 24 

and 25 actually show that the average speed is pretty similar between the two groups as well as 

between the dominant and non-dominant hands.  So average speed is not a valid method for the 

algorithm to use to differentiate between users with varying skill levels. 

 

C.  Future Recommendations 

 Moving forward, the next step would be to implement this designed instrument tracking 

system into the existing ELT so that they work together in real time to provide the surgical 

resident with an improved training experience.  Together the systems will increase the 

effectiveness of training by providing the user with a large amount of feedback on how they can 

improve, which leads to the development of a graphical user interface.  A graphical user 
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interface will allow the user to interact with the system and a way for the system to provide 

feedback to the user.  The laparoscopic instrument tracking system will be able to provide 

feedback to the user pertaining to how much, how fast, and how effective their movements are 

with the instruments as well as whether or not they remained in the field of view.  However, 

testing needs to be done to determine how much, how fast, and how effective a users movements 

should be with the instruments.  It would also be beneficial to develop an algorithm that not only 

tracks the laparoscopic instruments being used in the lap box trainer, but to track the FLS 

program task being performed as well.  That way the final system will have a variety of training 

tasks from the ELT tasks to all five FLS program tasks and be able to provide feedback about the 

users performance while completing each. 

 

 It is important to track the task itself as well as the instruments being used to make sure 

the user is provided with the optimal amount of feedback on their performance to maximize 

training effectiveness.  Attempts were made to create algorithms to track the FLS program 

training tasks, but were unsuccessful.  The main reason for the failed attempts is the high level of 

unpredictability and the lack of limitations or guidance as to how the user should complete the 

task.  By providing the user with more guidance and adding limitations, the level of 

unpredictability will be decreased and an algorithm may be developed that tracks the FLS 

program task being performed.  Examples of additional guidance that would need to be provided 

to the user in order to develop an algorithm to track the task is camera angle, task location in the 

lap box, game pieces/materials used, and instruments used.  It would also be necessary to either 

show the camera or manually input some of the end results such as the final circle cut out during 

the cut test, which are not always seen by the camera in order for the system to analyze and 
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provide results.  However, if the work is done to decrease the unpredictability of the FLS 

program training tasks then an algorithm may be developed to track the tasks and increase 

training effectivity.  To validate such a system a study should be performed comparing an 

individual’s results from the developed algorithm to their actual FLS score. 
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VI.  CONCLUSION 

 In the end, an optical tracking system to monitor laparoscopic instruments while being 

used inside of a laparoscopic box trainer was successfully developed.  The algorithm performs a 

series of steps that are taken a frame at a time to obtain the 3D real world tracking point of the 

laparoscopic instrument.  The algorithm then uses the 3D real world tracking points to calculate 

quantitative values for various aspects of the users performance that represent how effective, 

controlled, and safe the user’s movements were.  Testing confirmed that the algorithm can 

accurately track the distance traveled and direction of up to two laparoscopic instruments in 3D 

real space.  It was also determined that the algorithm is capable of differentiating between users 

of varying skill levels by using performance metrics such as the amount of time each instrument 

is in the field of view and path length.  As the laparoscopic instrument tracking system works as 

expected, the next step would be to implement it with the ELT to create a more effective training 

experience for the trainee.   
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APPENDIX!A:!!Instrument!Tracking!Algorithm!
$
%-------------------------------------------------------------------------% 
% Title: instrumentTracking.m 
% Description: Algorithm that determines the 3D real world tracking points 
% of the left and right laparoscopic instruments during training.  The 
% algorithm also calculates the number of times each instrument leaves the 
% field of view, how long each instrument was out of view, how long the 
% instrument was in view, 2D path length (pixels and m), 3D path length 
% (pixels and m), 2D average speed (pixels/s and m/s), and 3D average speed 
% (pixels/s and m/s). 
%-------------------------------------------------------------------------% 
  
clear all; 
  
%--------------------------------------------------------------------% 
%    OBTAINING VIDEO AND DETERMINING LENGTH, FRAME RATE, AND SIZE    % 
%--------------------------------------------------------------------% 
  
% Reading Video 
video = VideoReader('PRE01.wmv'); 
  
% Determing number of frames in video 
nFrames = video.NumberOfFrames; 
  
% Determining frame rate of video 
framesPerSec = video.FrameRate; 
  
% Determining height and width of video 
vidHeight = video.Height; 
vidWidth = video.Width; 
  
%---------------------------------------------------------------------% 
%    DETERMINING 3D REAL WORLD TRACKING POINTS FOR EACH INSTRUMENT    % 
%---------------------------------------------------------------------% 
  
for i = 1:nFrames 
    % Obtaining ith frame of video 
    img = read(video,i); 
     
    % Calling function to determine 3D location of left instrument 
    [Lx(i),Ly(i),Lz(i)] = leftInstrumentTrack(img,vidWidth,vidHeight); 
     
    % Calling function to determine 3D location of right instrument 
    [Rx(i),Ry(i),Rz(i)] = rightInstrumentTrack(img,vidWidth,vidHeight);  
  
end 
  
% Converting pixels to mm 
for j = 1:i 
    if Lz(j) ~= -1 
        mLx(j) = (5/Lz(j))*(Lx(j)-(vidWidth/2)); 
        mLy(j) = (5/Lz(j))*(Ly(j)-(vidHeight/2)); 
        mLz(j) = ((-0.16262)*Lz(j))+11.773; 
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    else 
        mLx(j) = 'x'; 
        mLy(j) = 'x'; 
        mLz(j) = 'x'; 
    end 
    if Rz(j) ~= -1 
        mRx(j) = (5/Rz(j))*(Rx(j)-(vidWidth/2)); 
        mRy(j) = (5/Rz(j))*(Ry(j)-(vidHeight/2)); 
        mRz(j) = ((-0.16262)*Rz(j))+11.773; 
    else 
        mRx(j) = 'x'; 
        mRy(j) = 'x'; 
        mRz(j) = 'x'; 
    end 
end 
  
%---------------------------------------% 
%    CALCULATING PERFORMANCE METRICS    % 
%---------------------------------------% 
  
% Determining when left instrument first enters field view 
j = 1; 
while Lz(j) == -1 
    j = j + 1; 
end 
leftStart = j;   
  
% Determining when left instrument exits field for last time 
j = i; 
while Lz(j) == -1 
    j = j - 1; 
end 
leftEnd = j; 
  
% Determining when right instrument first enters field of view 
j = 1; 
while Rz(j) == -1 
    j = j + 1; 
end 
rightStart = j; 
  
% Determining when right instrument exits field for last time 
j = i; 
while Rz(j) == -1 
    j = j - 1; 
end 
rightEnd = j; 
     
% Determining number of times the left instrument exited field of view and  
% the total time it was out of view (frames) 
leftOut = 0; 
lTimeOut = 0; 
j = leftStart; 
while j < leftEnd 
    if Lz(j) == -1 
        leftOut = leftOut + 1; 
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        lTimeOut = lTimeOut + 1; 
        j = j + 1; 
        while Lz(j) == -1 
            j = j + 1; 
            lTimeOut = lTimeOut + 1; 
        end 
    else 
        j = j + 1; 
    end 
     
end 
  
% Determining number of times the right instrument exited field of view and  
% the total time it was out of view (frames) 
rightOut = 0; 
rTimeOut = 0; 
j = rightStart; 
while j < rightEnd 
    if Rz(j) == -1 
        rightOut = rightOut + 1; 
        rTimeOut = rTimeOut + 1; 
        j = j + 1; 
        while Rz(j) == -1 
            j = j + 1; 
            rTimeOut = rTimeOut + 1; 
        end 
    else 
        j = j + 1; 
    end 
end 
  
% Determining path length of left instrument in both 2D (pixels) and 3D (m) 
pathLengthL2D = 0; 
pathLengthL3D = 0; 
for j = leftStart:leftEnd-1 
    if Lz(j) ~= -1 && Lz(j+1) ~= -1 
        pathLengthL2D = pathLengthL2D + sqrt((Lx(j)-Lx(j+1))^(2)+(Ly(j)-
Ly(j+1))^(2)); 
        PathLengthL3D = PathLengthL3D + (sqrt((mLx(j)-mLx(j+1))^(2)+(mLy(j)-
mLy(j+1))^(2)+(mLz(j)-mLz(j+1))^(2))/1000); 
    end 
end 
  
% Determining path length of right instrument in both 2D (pixels) and 3D (m) 
pathLengthR2D = 0; 
pathLengthR3D = 0; 
for j = rightStart:rightEnd-1 
    if Rz(j) ~= -1 && Rz(j+1) ~= -1 
        pathLengthR2D = pathLengthR2D + sqrt((Rx(j)-Rx(j+1))^(2)+(Ry(j)-
Ry(j+1))^(2)); 
        PathLengthR3D = PathLengthR3D + (sqrt((mRx(j)-mRx(j+1))^(2)+(mRy(j)-
mRy(j+1))^(2)+(mRz(j)-mRz(j+1))^(2))/1000); 
    end 
end 
  
% Determining total time left instrument was in the field of view (s) and 
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% converting the amount of time it was out of view from frames to s 
timeL = (leftEnd + 1 - leftStart - lTimeOut) / framesPerSec; 
lTimeOut = lTimeOut / framesPerSec; 
  
% Determining total time right instrument was in the field of view (s) and 
% converting the amount of time it was out of view from frames to s 
timeR = (rightEnd + 1 - rightStart - rTimeOut) / framesPerSec; 
rTimeOut = rTimeOut / framesPerSec; 
  
% Calculating average speed of left instrument in both 2D (pixels/s) and  
% 3D (m/s) 
avgSpeedL2D = pathLengthL2D / timeL; 
AvgSpeedL3D = PathLengthL3D / timeL; 
  
% Calculating average speed of right instrument in both 2D (pixels/s) and  
% 3D (m/s) 
avgSpeedR2D = pathLengthR2D / timeR; 
avgSpeedR3D = pathLengthR3D / timeR; 
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APPENDIX!B:!!Left!Instrument!Track!Function!
$
function [ xLocation,yLocation,zLocation ] = leftInstrumentTrack( 
img,vidWidth,vidHeight ) 
%Left Instrument Track: Determines the 3D tracking point of the left 
%laparoscopic instrument in the provided image. 
  
        % Image contrast enhancement 
        imgD = im2double(img); 
        a = max(max(imgD(:))); 
        b = min(min(imgD(:))); 
        img = (imgD - b) / (a-b); 
         
        % Color-based segmentation (black) 
        for k = 1:vidWidth 
            for j = 1:vidHeight 
                if (img(j,k,1)<0.3 && img(j,k,2)<0.25 && img(j,k,3)<0.25) 
                    imgBlack(j,k) = 255; 
                else 
                    imgBlack(j,k) = 0; 
                end 
            end 
        end 
         
        % Erosion of image 
        SE = strel('rectangle',[5 10]);  
        imgBlack = imerode(imgBlack,SE); 
         
         % Creating left instrument image 
        imgLeft(1:vidHeight,1:vidWidth) = 0; 
        imgLeft(1:vidHeight,1) = imgBlack(1:vidHeight,1); 
        imgLeft(vidHeight,1:vidWidth/2) = imgBlack(vidHeight,1:vidWidth/2); 
  
        % Isolating left instrument using color based segmentation 
        for k = 1:vidWidth-1 
            for j = 1:vidHeight 
                if (imgLeft(j,k) == 255) 
                    if j-1 > 0 && k+1 > 0 
                        if (imgBlack(j-1,k+1) == 255) 
                            imgLeft(j-1,k+1) = 255; 
                        end 
                    end 
                    if (imgBlack(j,k+1) == 255) 
                        imgLeft(j,k+1) = 255; 
                    end 
                    if j ~= vidHeight 
                        if (imgBlack(j+1,k+1) == 255) 
                            imgLeft(j+1,k+1) = 255; 
                        end 
                    end 
                end 
            end 
        end 
  
        for k = 1:vidWidth/2 
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            if (imgLeft(vidHeight,k) == 255) 
                if k ~= 1 
                    if (imgBlack(vidHeight-1,k-1) == 255) 
                        imgLeft(vidHeight-1,k-1) = 255; 
                    end 
                end 
                if (imgBlack(vidHeight-1,k) == 255) 
                    imgLeft(vidHeight-1,k) = 255; 
                end 
                if (imgBlack(vidHeight-1,k+1) == 255) 
                    imgLeft(vidHeight-1,k+1) = 255; 
                end 
            end 
        end 
  
         for j = 1:vidHeight-2 
            for k = 1:vidWidth 
                if (imgLeft(vidHeight-j,k) == 255) 
                    if k ~= 1 
                        if (imgBlack(vidHeight-j-1,k-1) == 255) 
                            imgLeft(vidHeight-j-1,k-1) = 255; 
                        end 
                    end 
                    if (imgBlack(vidHeight-j-1,k) == 255) 
                        imgLeft(vidHeight-j-1,k) = 255; 
                    end 
                    if k ~= vidWidth 
                        if (imgBlack(vidHeight-j-1,k+1) == 255) 
                            imgLeft(vidHeight-j-1,k+1) = 255; 
                        end 
                    end 
                end 
            end 
         end 
         
        % Dilation of eroded image 
        imgBlack = imdilate(imgLeft,SE); 
         
        % Isolating the instruments edges and Canny filtering 
        imgCanny = edge(imgBlack,'canny'); 
         
        % Hough transform 
        [H,T,R] = hough(imgCanny); 
         
        P  = houghpeaks(H,5,'threshold',ceil(0.2*max(H(:)))); 
        x = T(P(:,2)); y = R(P(:,1)); 
         
        % Find lines 
        lines = houghlines(imgCanny,T,R,P,'FillGap',5,'MinLength',7); 
         
        % Determing 8 longest Hough lines 
        max_len1 = 0; 
        max_len2 = 0; 
        max_len3 = 0; 
        max_len4 = 0; 
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        max_len5 = 0; 
        max_len6 = 0; 
        max_len7 = 0; 
        max_len8 = 0; 
        xy_long1 = 0; 
        xy_long2 = 0; 
        xy_long3 = 0; 
        xy_long4 = 0; 
        xy_long5 = 0; 
        xy_long6 = 0; 
        xy_long7 = 0; 
        xy_long8 = 0; 
 
        for k = 1:length(lines) 
            xy = [lines(k).point1; lines(k).point2]; 
             
            % Determine the endpoints of the longest 8 line segments 
            len = norm(lines(k).point1 - lines(k).point2); 
            if ( len > max_len1 && length(lines) >= 1) 
                temp_len = len; 
                len = max_len1; 
                max_len1 = temp_len; 
                temp_xy = xy; 
                xy = xy_long1; 
                xy_long1 = temp_xy; 
            end 
            if ( len > max_len2 && length(lines) >= 2 && k > 1) 
                temp_len = len; 
                len = max_len2; 
                max_len2 = temp_len; 
                temp_xy = xy; 
                xy = xy_long2; 
                xy_long2 = temp_xy; 
            end 
            if ( len > max_len3 && length(lines) >= 3 && k > 2) 
                temp_len = len; 
                len = max_len3; 
                max_len3 = temp_len; 
                temp_xy = xy; 
                xy = xy_long3; 
                xy_long3 = temp_xy; 
            end 
            if ( len > max_len4 && length(lines) >= 4 && k > 3) 
                temp_len = len; 
                len = max_len4; 
                max_len4 = temp_len; 
                temp_xy = xy; 
                xy = xy_long4; 
                xy_long4 = temp_xy; 
            end 
            if ( len > max_len5 && length(lines) >= 5 && k > 4) 
                temp_len = len; 
                len = max_len5; 
                max_len5 = temp_len; 
                temp_xy = xy; 
                xy = xy_long5; 
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                xy_long5 = temp_xy; 
            end 
            if ( len > max_len6 && length(lines) >= 6 && k > 5) 
                temp_len = len; 
                len = max_len6; 
                max_len6 = temp_len; 
                temp_xy = xy; 
                xy = xy_long6; 
                xy_long6 = temp_xy; 
            end 
            if ( len > max_len7 && length(lines) >= 7 && k > 6) 
                temp_len = len; 
                len = max_len7; 
                max_len7 = temp_len; 
                temp_xy = xy; 
                xy = xy_long7; 
                xy_long7 = temp_xy; 
            end 
            if ( len > max_len8 && length(lines) >= 8 && k > 7) 
                max_len8 = len; 
                xy_long8 = xy; 
            end     
        end 
  
        % Determining characteristics of 8 longest lines obtained from Hough 
        if xy_long1 > 0 
            % Determing slope and y-intercept 
            m(1) = (xy_long1(1,2) - xy_long1(2,2)) / (xy_long1(1,1) - 
xy_long1(2,1)); 
            b(1) = xy_long1(1,2) - (m(1) * xy_long1(1,1)); 
         
            % Determining point where line intersects border 
            point(1) = (m(1)*1) + b(1); 
            pointAxis(1) = 'y'; 
            if point(1) > vidHeight 
                point(1) = (vidHeight-b(1)) / m(1); 
                pointAxis(1) = 'x'; 
            end 
        else 
            point(1) = -1000; 
            pointAxis(1) = 0; 
        end 
  
        if xy_long2 > 0 
            % Determing slope and y-intercept 
            m(2) = (xy_long2(1,2) - xy_long2(2,2)) / (xy_long2(1,1) - 
xy_long2(2,1)); 
            b(2) = xy_long2(1,2) - (m(2) * xy_long2(1,1)); 
         
            % Determining point where line intersects border 
            point(2) = (m(2)*1) + b(2); 
            pointAxis(2) = 'y'; 
            if point(2) > vidHeight 
                point(2) = (vidHeight-b(2)) / m(2); 
                pointAxis(2) = 'x'; 
            end 
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        else 
            point(2) = -1000; 
            pointAxis(2) = 0; 
        end 
  
        if xy_long3 > 0 
            % Determing slope and y-intercept 
            m(3) = (xy_long3(1,2) - xy_long3(2,2)) / (xy_long3(1,1) - 
xy_long3(2,1)); 
            b(3) = xy_long3(1,2) - (m(3) * xy_long3(1,1)); 
         
            % Determining point where line intersects border 
            point(3) = (m(3)*1) + b(3); 
            pointAxis(3) = 'y'; 
            if point(3) > vidHeight 
                point(3) = (vidHeight-b(3)) / m(3); 
                pointAxis(3) = 'x'; 
            end 
        else  
            point(3) = -1000; 
            pointAxis(3) = 0; 
        end 
  
        if xy_long4 > 0 
            % Determing slope and y-intercept 
            m(4) = (xy_long4(1,2) - xy_long4(2,2)) / (xy_long4(1,1) - 
xy_long4(2,1)); 
            b(4) = xy_long4(1,2) - (m(4) * xy_long4(1,1)); 
         
            % Determining point where line intersects border 
            point(4) = (m(4)*1) + b(4); 
            pointAxis(4) = 'y'; 
            if point(4) > vidHeight 
                point(4) = (vidHeight-b(4)) / m(4); 
                pointAxis(4) = 'x'; 
            end 
        else 
            point(4) = -1000; 
            pointAxis(4) = 0; 
        end 
  
        if xy_long5 > 0 
            % Determing slope and y-intercept 
            m(5) = (xy_long5(1,2) - xy_long5(2,2)) / (xy_long5(1,1) - 
xy_long5(2,1)); 
            b(5) = xy_long5(1,2) - (m(5) * xy_long5(1,1)); 
         
            % Determining point where line intersects border 
            point(5) = (m(5)*1) + b(5); 
            pointAxis(5) = 'y'; 
            if point(5) > vidHeight 
                point(5) = (vidHeight-b(5)) / m(5); 
                pointAxis(5) = 'x'; 
            end 
        else 
            point(5) = -1000; 
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            pointAxis(5) = 0; 
        end 
  
        if xy_long6 > 0 
            % Determing slope and y-intercept 
            m(6) = (xy_long6(1,2) - xy_long6(2,2)) / (xy_long6(1,1) - 
xy_long6(2,1)); 
            b(6) = xy_long6(1,2) - (m(6) * xy_long6(1,1)); 
             
            % Determining point where line intersects border 
            point(6) = (m(6)*1) + b(6); 
            pointAxis(6) = 'y'; 
            if point(6) > vidHeight 
                point(6) = (vidHeight-b(6)) / m(6); 
                pointAxis(6) = 'x'; 
            end 
        else 
            point(6) = -1000; 
            pointAxis(6) = 0; 
        end 
  
        if xy_long7 > 0 
            % Determing slope and y-intercept 
            m(7) = (xy_long7(1,2) - xy_long7(2,2)) / (xy_long7(1,1) - 
xy_long7(2,1)); 
            b(7) = xy_long7(1,2) - (m(7) * xy_long7(1,1)); 
             
            % Determining point where line intersects border 
            point(7) = (m(7)*1) + b(7); 
            pointAxis(7) = 'y'; 
            if point(7) > vidHeight 
                point(7) = (vidHeight-b(7)) / m(7); 
                pointAxis(7) = 'x'; 
            end 
        else 
            point(7) = -1000; 
            pointAxis(7) = 0; 
        end 
  
        if xy_long8 > 0 
            % Determing slope and y-intercept 
            m(8) = (xy_long8(1,2) - xy_long8(2,2)) / (xy_long8(1,1) - 
xy_long8(2,1)); 
            b(8) = xy_long8(1,2) - (m(8) * xy_long8(1,1)); 
             
            % Determining point where line intersects border 
            point(8) = (m(8)*1) + b(8); 
            pointAxis(8) = 'y'; 
            if point(8) > vidHeight 
                point(8) = (vidHeight-b(8)) / m(8); 
                pointAxis(8) = 'x'; 
            end 
        else 
            point(8) = -1000; 
            pointAxis(8) = 0; 
        end 
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        % Determining distance of instrument along edge 
        j = 1; 
        wOne = [0,0]; 
        wTwo = [0,0]; 
        while (wOne(2) == 0 && j <= vidHeight) 
            if imgBlack(j,1) == 255 
               wOne = [j,1]; 
            end 
            j = j + 1; 
        end 
        if wOne(2) == 1 
            j = j + 1; 
            while (wTwo(2) == 0 && j <= vidHeight)  
                if imgBlack(j,1) == 0 
                    wTwo = [j,1]; 
                end 
                j = j + 1; 
            end 
            if wTwo(2) == 0 
                j = 1; 
                while (wTwo(2) == 0 && j <= vidWidth/2) 
                    if imgBlack(vidHeight,j) == 0 
                        wTwo = [vidHeight,j]; 
                    end 
                    j = j + 1; 
                end  
            end 
        else 
            j = 1; 
            while (wOne(2) == 0 && j <= vidWidth) 
                if imgBlack(vidHeight,j) == 255 
                    wOne = [vidHeight,j]; 
                end 
                j = j + 1; 
            end 
            while (wTwo(2) == 0 && j <= vidWidth) 
                if imgBlack(vidHeight,j) == 0 
                    wTwo = [vidHeight,j]; 
                end 
                j = j + 1; 
            end 
        end 
        if wOne(2) == 1 && wTwo(2) == 1 
                wDiff = abs(wTwo(1) - wOne(1)); 
            elseif wOne(1) == vidHeight && wTwo(1) == vidHeight 
                wDiff = abs(wOne(2) - wTwo(2)); 
            elseif wOne(2) == 1 && wTwo(1) == vidHeight 
                wDiff = sqrt((vidHeight-wOne(1))^(2) + (wTwo(2)-1)^(2)); 
            else 
                wDiff = 0; 
        end 
         
        % Determining which lines combine to outline each instrument 
        a1C = 0; 
        a2C = 0; 
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        for j = 1:length(b) 
            if pointAxis(j) == 'y' 
                if sqrt((1-wOne(2))^(2)+(point(j)-wOne(1))^(2)) < sqrt((1-
wTwo(2))^(2)+(point(j)-wTwo(1))^(2)) && sqrt((1-wOne(2))^(2)+(point(j)-
wOne(1))^(2)) <= wDiff-(wDiff*0.4) %&& m(j) < -0.1 && m(j) > -0.9 
                    a1C = a1C + 1; 
                    a1(a1C) = j; 
                elseif sqrt((1-wTwo(2))^(2)+(point(j)-wTwo(1))^(2)) <= wDiff-
(wDiff*0.4) %&& m(j) < -0.1 && m(j) > -0.9 
                    a2C = a2C + 1;                     
                    a2(a2C) = j; 
                end 
            elseif pointAxis(j) == 'x' 
                if sqrt((point(j)-wOne(2))^(2)+(vidHeight-wOne(1))^(2)) < 
sqrt((point(j)-wTwo(2))^(2)+(vidHeight-wTwo(1))^(2)) && sqrt((point(j)-
wOne(2))^(2)+(vidHeight-wOne(1))^(2)) <= wDiff-(wDiff*0.4) && m(j) < -0.1 && 
m(j) > -0.9 
                    a1C = a1C + 1; 
                    a1(a1C) = j; 
                elseif sqrt((point(j)-wTwo(2))^(2)+(vidHeight-wTwo(1))^(2)) 
<= wDiff-(wDiff*0.4) && m(j) < -0.1 && m(j) > -0.9 
                    a2C = a2C + 1;                     
                    a2(a2C) = j; 
                end 
            end 
        end 
         
        a(1:2) = 0; 
        if a1C ~= 0 && a2C ~= 0 
            if a1(a1C) > a2(a2C) 
                for j = 1:a1C 
                    for k = 1:a2C 
                        if (abs(point(a1(j))-point(a2(k))) > wDiff-
(wDiff*.25) && abs(point(a1(j))-point(a2(k))) < wDiff+(wDiff*.25)) && a(1) == 
0 && ((pointAxis(a1(j)) == 'y' && pointAxis(a2(k)) == 'y') || 
(pointAxis(a1(j)) == 'x' && pointAxis(a2(k)) == 'x')) 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        elseif (sqrt((point(a1(j))-vidHeight)^(2)+(1-
point(a2(k)))^(2)) > wDiff-(wDiff*0.25) && sqrt((point(a1(j))-
vidHeight)^(2)+(1-point(a2(k)))^(2)) > wDiff-(wDiff*0.25)) && a(1) == 0 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        end 
                    end 
                end 
            else 
                for k = 1:a2C 
                    for j = 1:a1C 
                        if (abs(point(a1(j))-point(a2(k))) > wDiff-
(wDiff*0.25) && abs(point(a1(j))-point(a2(k))) < wDiff+(wDiff*0.25)) && a(1) 
== 0 && ((pointAxis(a1(j)) == 'y' && pointAxis(a2(k)) == 'y') || 
(pointAxis(a1(j)) == 'x' && pointAxis(a2(k)) == 'x')) 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        elseif (sqrt((point(a1(j))-vidHeight)^(2)+(1-
point(a2(k)))^(2)) > wDiff-(wDiff*0.25) && sqrt((point(a1(j))-
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vidHeight)^(2)+(1-point(a2(k)))^(2)) > wDiff-(wDiff*0.25)) && a(1) == 0 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        end 
                    end 
                end 
            end 
        end 
             
        % Determining two points at midlines between edges of instruments 
        x1 = 0.25 * vidWidth; 
        x2 = 0.75 * vidWidth; 
        if a(1) > 0 
            y1 = (((m(a(1))*x1 + b(a(1))) - (m(a(2))*x1 + b(a(2)))) / 2) + 
(m(a(2))*x1 + b(a(2))); 
            y2 = (((m(a(1))*x2 + b(a(1))) - (m(a(2))*x2 + b(a(2)))) / 2) + 
(m(a(2))*x2 + b(a(2))); 
        end 
  
        % Determing slope and y-intercept of midline 
        if a(1) > 0 
            mMid1 = (y1 - y2) / (x1 - x2); 
            bMid1 = y1 - (mMid1*x1); 
        end 
  
        % Determining 2D tracking point of left instrument 
        if a(1) > 0 
            for x = 1:vidWidth 
                y = (mMid1*x) + bMid1; 
                y = round(y); 
                if (y > 0 && y < vidHeight) 
                    if (imgBlack(y,x) == 0) 
                        xLocation = x; 
                        yLocation = y; 
                        break; 
                    end 
                else 
                    xLocation = 0; 
                    yLocation = 0; 
                end 
            end  
        end 
  
        % Determining points on lines closest to 2D tracking point of 
        % instrument 1 
        if a(1) > 0 
            minX1 = 0; 
            minY1 = 0; 
            minX2 = 0; 
            minY2 = 0; 
            minDist1 = 1000; 
            minDist2 = 1000; 
            for y = 1:vidHeight 
                x1 = (y - b(a(1))) / m(a(1)); 
                x1 = round(x1); 
                x2 = (y - b(a(2))) / m(a(2)); 
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                x2 = round(x2); 
                dist1 = sqrt((x1-xLocation)^(2) + (y-yLocation)^(2)); 
                dist2 = sqrt((x2-xLocation)^(2) + (y-yLocation)^(2)); 
                if dist1 < minDist1 
                    minDist1 = dist1; 
                    minX1 = x1; 
                    minY1 = y; 
                end 
                if dist2 < minDist2 
                    minDist2 = dist2; 
                    minX2 = x2; 
                    minY2 = y; 
                end 
            end 
        end 
  
        % Calculating diameter of instruments at tracking points (distance 
        % between the two determined points) 
        x = 0; 
        if a(1) > 0 
            diameter = sqrt((minX1-minX2)^(2) + (minY1-minY2)^(2)); 
            x = 1; 
        end 
  
        % Determining if Instrument point exists 
        if a(1) > 0 && x == 1; 
            zLocation = diameter; 
        else 
            xLocation = -1; 
            yLocation = -1; 
            zLocation = -1; 
        end 
  
end 
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APPENDIX!C:!!Right!Instrument!Track!Function!
$
function [ xLocation,yLocation,zLocation ] = rightInstrumentTrack( 
img,vidWidth,vidHeight ) 
%Right Instrument Track: Determines the 3D tracking point of the right 
%laparoscopic instrument in the provided image. 
  
        % Image contrast enhancement 
        imgD = im2double(img); 
        a = max(max(imgD(:))); 
        b = min(min(imgD(:))); 
        img = (imgD - b) / (a-b); 
         
        % Color-based segmentation (black) 
        for k = 1:vidWidth 
            for j = 1:vidHeight 
                if (img(j,k,1)<0.3 && img(j,k,2)<0.25 && img(j,k,3)<0.25) 
                    imgBlack(j,k) = 255; 
                else 
                    imgBlack(j,k) = 0; 
                end 
            end 
        end        
         
        % Erosion of image 
        SE = strel('rectangle',[5 10]); 
        imgBlack = imerode(imgBlack,SE); 
         
        % Creating right instrument image 
        imgRight(1:vidHeight,1:vidWidth) = 0; 
        imgRight(1:vidHeight,vidWidth-1:vidWidth) = 
imgBlack(1:vidHeight,vidWidth-1:vidWidth); 
        imgRight(vidHeight,vidWidth/2:vidWidth) = 
imgBlack(vidHeight,vidWidth/2:vidWidth); 
  
        % Isolating right instrument using color based segmentation 
        for k = 1:vidWidth-1 
            for j = 1:vidHeight 
                if (imgRight(j,vidWidth-k) == 255) 
                    if j-1 > 0 && vidWidth-k-1 > 0 
                        if (imgBlack(j-1,vidWidth-k-1) == 255) 
                            imgRight(j-1,vidWidth-k-1) = 255; 
                        end 
                    end 
                    if vidWidth-k-1 > 0  
                        if (imgBlack(j,vidWidth-k-1) == 255) 
                            imgRight(j,vidWidth-k-1) = 255; 
                        end 
                    end 
                    if j ~= vidHeight && vidWidth-k-1 > 0 
                        if (imgBlack(j+1,vidWidth-k-1) == 255) 
                            imgRight(j+1,vidWidth-k-1) = 255; 
                        end 
                    end 
                end 
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            end 
        end 
  
        for k = vidWidth/2:vidWidth 
            if (imgRight(vidHeight,k) == 255) 
                if (imgBlack(vidHeight-1,k-1) == 255) 
                    imgRight(vidHeight-1,k-1) = 255; 
                end 
                if (imgBlack(vidHeight-1,k) == 255) 
                    imgRight(vidHeight-1,k) = 255; 
                end 
                if k ~= vidWidth 
                    if (imgBlack(vidHeight-1,k+1) == 255) 
                        imgRight(vidHeight-1,k+1) = 255; 
                    end 
                end 
            end 
         end 
  
         for j = 1:vidHeight-2 
            for k = 1:vidWidth 
                if (imgRight(vidHeight-j,k) == 255) 
                    if k ~= 1 
                        if (imgBlack(vidHeight-j-1,k-1) == 255) 
                            imgRight(vidHeight-j-1,k-1) = 255; 
                        end 
                    end 
                    if (imgBlack(vidHeight-j-1,k) == 255) 
                        imgRight(vidHeight-j-1,k) = 255; 
                    end 
                    if k ~= vidWidth 
                        if (imgBlack(vidHeight-j-1,k+1) == 255) 
                            imgRight(vidHeight-j-1,k+1) = 255; 
                        end 
                    end 
                end 
            end 
         end       
         
        % Dilation of eroded image 
        imgBlack = imdilate(imgRight,SE); 
          
        % Isolating the instruments and Canny filtering 
        imgCanny = edge(imgBlack,'canny'); 
         
        % Hough transform 
        [H,T,R] = hough(imgCanny); 
         
        P  = houghpeaks(H,5,'threshold',ceil(0.2*max(H(:)))); 
        x = T(P(:,2)); y = R(P(:,1)); 
         
        % Find lines 
        lines = houghlines(imgCanny,T,R,P,'FillGap',5,'MinLength',7); 
  
        % Determing 8 longest Hough lines 
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        max_len1 = 0; 
        max_len2 = 0; 
        max_len3 = 0; 
        max_len4 = 0; 
        max_len5 = 0; 
        max_len6 = 0; 
        max_len7 = 0; 
        max_len8 = 0; 
        xy_long1 = 0; 
        xy_long2 = 0; 
        xy_long3 = 0; 
        xy_long4 = 0; 
        xy_long5 = 0; 
        xy_long6 = 0; 
        xy_long7 = 0; 
        xy_long8 = 0; 
 
        for k = 1:length(lines) 
            xy = [lines(k).point1; lines(k).point2]; 
             
            % Determine which lines are longest 
            len = norm(lines(k).point1 - lines(k).point2); 
            if ( len > max_len1 && length(lines) >= 1) 
                temp_len = len; 
                len = max_len1; 
                max_len1 = temp_len; 
                temp_xy = xy; 
                xy = xy_long1; 
                xy_long1 = temp_xy; 
            end 
            if ( len > max_len2 && length(lines) >= 2 && k > 1) 
                temp_len = len; 
                len = max_len2; 
                max_len2 = temp_len; 
                temp_xy = xy; 
                xy = xy_long2; 
                xy_long2 = temp_xy; 
            end 
            if ( len > max_len3 && length(lines) >= 3 && k > 2) 
                temp_len = len; 
                len = max_len3; 
                max_len3 = temp_len; 
                temp_xy = xy; 
                xy = xy_long3; 
                xy_long3 = temp_xy; 
            end 
            if ( len > max_len4 && length(lines) >= 4 && k > 3) 
                temp_len = len; 
                len = max_len4; 
                max_len4 = temp_len; 
                temp_xy = xy; 
                xy = xy_long4; 
                xy_long4 = temp_xy; 
            end 
            if ( len > max_len5 && length(lines) >= 5 && k > 4) 
                temp_len = len; 
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                len = max_len5; 
                max_len5 = temp_len; 
                temp_xy = xy; 
                xy = xy_long5; 
                xy_long5 = temp_xy; 
            end 
            if ( len > max_len6 && length(lines) >= 6 && k > 5) 
                temp_len = len; 
                len = max_len6; 
                max_len6 = temp_len; 
                temp_xy = xy; 
                xy = xy_long6; 
                xy_long6 = temp_xy; 
            end 
            if ( len > max_len7 && length(lines) >= 7 && k > 6) 
                temp_len = len; 
                len = max_len7; 
                max_len7 = temp_len; 
                temp_xy = xy; 
                xy = xy_long7; 
                xy_long7 = temp_xy; 
            end 
            if ( len > max_len8 && length(lines) >= 8 && k > 7) 
                max_len8 = len; 
                xy_long8 = xy; 
            end     
        end 
  
        % Determining characteristics of 8 longest lines obtained from Hough 
        if xy_long1 > 0 
            % Determing slope and y-intercept 
            m(1) = (xy_long1(1,2) - xy_long1(2,2)) / (xy_long1(1,1) - 
xy_long1(2,1)); 
            b(1) = xy_long1(1,2) - (m(1) * xy_long1(1,1)); 
  
            % Determining point where line intersects border 
            point(1) = (m(1)*vidWidth) + b(1); 
            pointAxis(1) = 'y'; 
            if point(1) > vidHeight 
                point(1) = (vidHeight-b(1)) / m(1); 
                pointAxis(1) = 'x'; 
            end 
        else 
            point(1) = -1000; 
            pointAxis(1) = 0; 
        end 
  
        if xy_long2 > 0 
            % Determing slope and y-intercept 
            m(2) = (xy_long2(1,2) - xy_long2(2,2)) / (xy_long2(1,1) - 
xy_long2(2,1)); 
            b(2) = xy_long2(1,2) - (m(2) * xy_long2(1,1)); 
  
            % Determining point where line intersects border 
            point(2) = (m(2)*vidWidth) + b(2); 
            pointAxis(2) = 'y'; 
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            if point(2) > vidHeight 
                point(2) = (vidHeight-b(2)) / m(2); 
                pointAxis(2) = 'x'; 
            end 
        else 
            point(2) = -1000; 
            pointAxis(2) = 0; 
        end 
  
        if xy_long3 > 0 
            % Determing slope and y-intercept 
            m(3) = (xy_long3(1,2) - xy_long3(2,2)) / (xy_long3(1,1) - 
xy_long3(2,1)); 
            b(3) = xy_long3(1,2) - (m(3) * xy_long3(1,1)); 
  
            % Determining point where line intersects border 
            point(3) = (m(3)*vidWidth) + b(3); 
            pointAxis(3) = 'y'; 
            if point(3) > vidHeight 
                point(3) = (vidHeight-b(3)) / m(3); 
                pointAxis(3) = 'x'; 
            end 
        else  
            point(3) = -1000; 
            pointAxis(3) = 0; 
        end 
  
        if xy_long4 > 0 
            % Determing slope and y-intercept 
            m(4) = (xy_long4(1,2) - xy_long4(2,2)) / (xy_long4(1,1) - 
xy_long4(2,1)); 
            b(4) = xy_long4(1,2) - (m(4) * xy_long4(1,1)); 
  
            % Determining point where line intersects border 
            point(4) = (m(4)*vidWidth) + b(4); 
            pointAxis(4) = 'y'; 
            if point(4) > vidHeight 
                point(4) = (vidHeight-b(4)) / m(4); 
                pointAxis(4) = 'x'; 
            end 
        else 
            point(4) = -1000; 
            pointAxis(4) = 0; 
        end 
  
        if xy_long5 > 0 
            % Determing slope and y-intercept 
            m(5) = (xy_long5(1,2) - xy_long5(2,2)) / (xy_long5(1,1) - 
xy_long5(2,1)); 
            b(5) = xy_long5(1,2) - (m(5) * xy_long5(1,1)); 
  
            % Determining point where line intersects border 
            point(5) = (m(5)*vidWidth) + b(5); 
            pointAxis(5) = 'y'; 
            if point(5) > vidHeight 
                point(5) = (vidHeight-b(5)) / m(5); 
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                pointAxis(5) = 'x'; 
            end 
        else 
            point(5) = -1000; 
            pointAxis(5) = 0; 
        end 
  
        if xy_long6 > 0 
            % Determing slope and y-intercept 
            m(6) = (xy_long6(1,2) - xy_long6(2,2)) / (xy_long6(1,1) - 
xy_long6(2,1)); 
            b(6) = xy_long6(1,2) - (m(6) * xy_long6(1,1)); 
  
            % Determining point where line intersects border 
            point(6) = (m(6)*vidWidth) + b(6); 
            pointAxis(6) = 'y'; 
            if point(6) > vidHeight 
                point(6) = (vidHeight-b(6)) / m(6); 
                pointAxis(6) = 'x'; 
            end 
        else 
            point(6) = -1000; 
            pointAxis(6) = 0; 
        end 
  
        if xy_long7 > 0 
            % Determing slope and y-intercept 
            m(7) = (xy_long7(1,2) - xy_long7(2,2)) / (xy_long7(1,1) - 
xy_long7(2,1)); 
            b(7) = xy_long7(1,2) - (m(7) * xy_long7(1,1)); 
  
            % Determining point where line intersects border 
            point(7) = (m(7)*vidWidth) + b(7); 
            pointAxis(7) = 'y'; 
            if point(7) > vidHeight 
                point(7) = (vidHeight-b(7)) / m(7); 
                pointAxis(7) = 'x'; 
            end 
        else 
            point(7) = -1000; 
            pointAxis(7) = 0; 
        end 
  
        if xy_long8 > 0 
            % Determing slope and y-intercept 
            m(8) = (xy_long8(1,2) - xy_long8(2,2)) / (xy_long8(1,1) - 
xy_long8(2,1)); 
            b(8) = xy_long8(1,2) - (m(8) * xy_long8(1,1)); 
  
            % Determining point where line intersects border 
            point(8) = (m(8)*vidWidth) + b(8); 
            pointAxis(8) = 'y'; 
            if point(8) > vidHeight 
                point(8) = (vidHeight-b(8)) / m(8); 
                pointAxis(8) = 'x'; 
            end 
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        else 
            point(8) = -1000; 
            pointAxis(8) = 0; 
        end 
  

  % Determining distance of instrument along edge 
        j = 1; 
        wOne = [0,0]; 
        wTwo = [0,0]; 
        while (wOne(2) == 0 && j <= vidHeight) 
            if imgBlack(j,vidWidth) == 255 
               wOne = [j,vidWidth]; 
            end 
            j = j + 1; 
        end 
        if wOne(2) == vidWidth 
            j = j + 1; 
            while (wTwo(2) == 0 && j <= vidHeight)  
                if imgBlack(j,vidWidth) == 0 
                    wTwo = [j,vidWidth]; 
                end 
                j = j + 1; 
            end 
            if wTwo(2) == 0 
                j = vidWidth; 
                while (wTwo(2) == 0 && j >= vidWidth/2) 
                    if imgBlack(vidHeight,j) == 255 
                        wTwo = [vidHeight,j]; 
                    end 
                    j = j - 1; 
                end  
            end 
        else 
            j = vidWidth; 
            while (wOne(2) == 0 && j >= vidWidth/2) 
                if imgBlack(vidHeight,j) == 255 
                    wOne = [vidHeight,j]; 
                end 
                j = j - 1; 
            end 
            while (wTwo(2) == 0 && j >= vidWidth/2) 
                if imgBlack(vidHeight,j) == 0 
                    wTwo = [vidHeight,j]; 
                end 
                j = j - 1; 
            end 
        end 
        if wOne(2) == vidWidth && wTwo(2) == vidWidth 
            wDiff = abs(wTwo(1) - wOne(1)); 
        elseif wOne(1) == vidHeight && wTwo(1) == vidHeight 
            wDiff = abs(wTwo(2) - wOne(2)); 
        elseif wOne(2) == vidWidth && wTwo(1) == vidHeight 
            wDiff = sqrt((vidHeight-wOne(1))^(2) + (vidWidth-wTwo(2))^(2)); 
        else 
            wDiff = 0; 
        end 
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        % Determining which lines combine to outline each instrument 
        a1C = 0; 
        a2C = 0; 
        for j = 1:length(b) 
            if pointAxis(j) == 'y' 
                if sqrt((vidWidth-wOne(2))^(2)+(point(j)-wOne(1))^(2)) < 
sqrt((vidWidth-wTwo(2))^(2)+(point(j)-wTwo(1))^(2)) && sqrt((vidWidth-
wOne(2))^(2)+(point(j)-wOne(1))^(2)) <= wDiff-(wDiff*0.4) && m(j) > 0.1 && 
m(j) < 0.9 
                    a1C = a1C + 1; 
                    a1(a1C) = j; 
                elseif sqrt((vidWidth-wTwo(2))^(2)+(point(j)-wTwo(1))^(2)) <= 
wDiff-(wDiff*0.4) && m(j) > 0.1 && m(j) < 0.9 
                    a2C = a2C + 1;                     
                    a2(a2C) = j; 
                end 
            elseif pointAxis(j) == 'x' 
                if sqrt((point(j)-wOne(2))^(2)+(vidHeight-wOne(1))^(2)) < 
sqrt((point(j)-wTwo(2))^(2)+(vidHeight-wTwo(1))^(2)) && sqrt((point(j)-
wOne(2))^(2)+(vidHeight-wOne(1))^(2)) <= wDiff-(wDiff*0.4) && m(j) > 0.1 && 
m(j) < 0.9 
                    a1C = a1C + 1; 
                    a1(a1C) = j; 
                elseif sqrt((point(j)-wTwo(2))^(2)+(vidHeight-wTwo(1))^(2)) 
<= wDiff-(wDiff*0.4) && m(j) > 0.1 && m(j) < 0.9 
                    a2C = a2C + 1;                     
                    a2(a2C) = j; 
                end 
            end 
        end 
         
        a(1:2) = 0; 
        if a1C ~= 0 && a2C ~= 0 
            if a1(a1C) > a2(a2C) 
                for j = 1:a1C 
                    for k = 1:a2C 
                        if (abs(point(a1(j))-point(a2(k))) > wDiff-
(wDiff*.25) && abs(point(a1(j))-point(a2(k))) < wDiff+(wDiff*.25)) && a(1) == 
0 && ((pointAxis(a1(j)) == 'y' && pointAxis(a2(k)) == 'y') || 
(pointAxis(a1(j)) == 'x' && pointAxis(a2(k)) == 'x')) 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        elseif (sqrt((point(a1(j))-vidHeight)^(2)+(vidWidth-
point(a2(k)))^(2)) > wDiff-(wDiff*0.25) && sqrt((point(a1(j))-
vidHeight)^(2)+(vidWidth-point(a2(k)))^(2)) > wDiff-(wDiff*0.25)) && a(1) == 
0 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        end 
                    end 
                end 
            else 
                for k = 1:a2C 
                    for j = 1:a1C 
                        if (abs(point(a1(j))-point(a2(k))) > wDiff-
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(wDiff*.25) && abs(point(a1(j))-point(a2(k))) < wDiff+(wDiff*.25)) && a(1) == 
0 && ((pointAxis(a1(j)) == 'y' && pointAxis(a2(k)) == 'y') || 
(pointAxis(a1(j)) == 'x' && pointAxis(a2(k)) == 'x')) 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        elseif (sqrt((point(a1(j))-vidHeight)^(2)+(vidWidth-
point(a2(k)))^(2)) > wDiff-(wDiff*0.25) && sqrt((point(a1(j))-
vidHeight)^(2)+(vidWidth-point(a2(k)))^(2)) > wDiff-(wDiff*0.25)) && a(1) == 
0 
                            a(1) = a1(j); 
                            a(2) = a2(k); 
                        end 
                    end 
                end 
            end 
        end 
 
        % Determining two points at midlines between edges of instruments 
        x1 = 0.25 * vidWidth; 
        x2 = 0.75 * vidWidth; 
        if a(1) > 0 
            y3 = (((m(a(1))*x1 + b(a(1))) - (m(a(2))*x1 + b(a(2)))) / 2) + 
(m(a(2))*x1 + b(a(2))); 
            y4 = (((m(a(1))*x2 + b(a(1))) - (m(a(2))*x2 + b(a(2)))) / 2) + 
(m(a(2))*x2 + b(a(2))); 
        end 
  
        % Determing slope and y-intercept of midline 
        if a(1) > 0 
            mMid2 = (y3 - y4) / (x1 - x2); 
            bMid2 = y3 - (mMid2*x1); 
        end 
         
        % Determining 2D tracking point of instrument 2 
        if a(1) > 0 
            for x = 1:vidWidth 
                y = (mMid2*(vidWidth-x)) + bMid2; 
                y = round(y); 
                if (y > 0 && y < vidHeight) 
                    if (imgBlack(y,vidWidth-x) == 0) 
                        xLocation = vidWidth-x; 
                        yLocation = y; 
                        break; 
                    end 
                else 
                    xLocation = 0; 
                    yLocation = 0; 
                end 
            end 
        end 
  
        % Determining points on lines closest to 2D tracking point of 
        % instrument 2 
        if a(1) > 0 
            minX3 = 0; 
            minY3 = 0; 
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            minX4 = 0; 
            minY4 = 0; 
            minDist3 = 1000; 
            minDist4 = 1000; 
            for y = 1:vidHeight 
                x1 = (y - b(a(1))) / m(a(1)); 
                x1 = round(x1); 
                x2 = (y - b(a(2))) / m(a(2)); 
                x2 = round(x2); 
                dist1 = sqrt((x1-xLocation)^(2) + (y-yLocation)^(2)); 
                dist2 = sqrt((x2-xLocation)^(2) + (y-yLocation)^(2)); 
                if dist1 < minDist3 
                    minDist3 = dist1; 
                    minX3 = x1; 
                    minY3 = y; 
                end 
                if dist2 < minDist4 
                    minDist4 = dist2; 
                    minX4 = x2; 
                    minY4 = y; 
                end 
            end 
        end 
         
        % Calculating diameter of instruments at tracking points (distance 
        % between the two determined points) 
        x = 0; 
        if a(1) > 0  && yLocation > 1 
            diameter = sqrt((minX3-minX4)^(2) + (minY3-minY4)^(2)); 
            x = 1; 
        end 
  
        % Determining if Instrument point exists 
        if a(1) > 0 && x == 1 
            zLocation = diameter; 
        else 
            xLocation = -1; 
            yLocation = -1; 
            zLocation = -1; 
        end 
  
end 
  
$
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