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Abstract 
 

Phosphorus (P) is often implicated as a contributing factor to algal blooms. Attention has 

been focused on P in surface runoff, but agricultural tile drains also can be a source. Lake 

Macatawa is a hypereutrophic lake located in west Michigan, and the watershed is dominated by 

row crop agriculture. Further research is needed to understand the influence of bioavailable P 

originating from tile drains on water quality in Lake Macatawa. The objectives of this study were 

to 1) conduct a tile drain effluent sampling survey to assess their importance as a source of P in 

the Macatawa Watershed; 2) investigate the change in tile drain P concentrations spatially and 

temporally over a one-year period; and 3) use growth chamber algal bioassays and the ratio of 

soluble reactive phosphorus to total phosphorus (SRP:TP) to assess tile drain P bioavailability. 

During March 2015 – February 2016, P concentrations varied significantly among sample sites, 

and the highest P loads occurred during the non-growing season. The SRP:TP ratio measured at 

the tile drain outlets had a positive correlation with acreage drained by the tile system. Four of 

six bioassays resulted in a positive relationship between SRP and algal growth, but results from 

only one bioassay were statistically significant. There was a clear change in the algal community 

structure when incubated in tile drain water, and dominance was by diatoms, not cyanobacteria 

as expected. Based on these results, there is a need to quantify the tile drained area in the 

Macatawa watershed and manage for high P loads during the non-growing season. 
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Chapter I 

Nonpoint vs. Point Source Pollution 

 Several well-known environmental disasters of the 1960’s including Lake Erie nuisance 

algal blooms (Dolan 1993) and the Cuyahoga River fires (Tuckerman and Zawiski 2007) 

prompted stricter control on pollutant discharge to US waterways. Among growing public 

concern for surface water quality, the federal Clean Water Act was passed in 1972 to regulate 

pollution sources (USEPA 2016b). The Act targeted wastewater effluent from industrial 

processes, and it became illegal to discharge pollutants via discrete, point sources such as man-

made ditches or pipes into navigable waterways without a permit. Overseen by the US 

Environmental Protection Agency (EPA), the National Pollutant Discharge Elimination System 

(NPDES) regulates the permits and has effectively reduced pollution from point sources (USEPA 

2016b). 

 However, pollution also travels to water bodies via precipitation-induced runoff. In 

contrast to point sources, nonpoint pollution originates from non-specific, diffuse sources 

(USEPA 2016a). The quantity and type of non-point pollution is influenced by land use. For 

instance, agricultural operations are the primary nonpoint source of pollution impacting US 

streams, the second leading source to wetlands, and the third leading source to lakes (USEPA 

2016a). When a water body is too degraded to meet water quality standards, it is listed under 

section 303(d) of the Clean Water Act (USEPA 2016c). After listing, specific pollutants are 

identified and a plan to limit pollutant loads to the waterway is developed. This type of plan, 

called a Total Maximum Daily Load (TMDL), identifies both point and nonpoint pollution 

sources (USEPA 2016c), and allocates load reductions to each of the sources. Relative to point 

sources, measuring and regulating nonpoint sources presents a significant challenge to 
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addressing degraded waterways in the US. Unlike point sources of pollution, nonpoint sources 

are not permitted and the assumption is that once best management practices are implemented to 

address pollutants, load reductions will occur.  

 

Phosphorus & Eutrophication 

An often-limiting nutrient for plant growth, phosphorus (P) is frequently implicated as a 

contributing factor to algal blooms (Daniel et al. 1998). P occurs naturally in the environment in 

the form of phosphate rock deposits. Under most natural conditions, the amount of dissolved 

phosphorus in fresh water that comes from weathered rock formations is in low concentrations 

relative to the amount needed for growth by algae. However, industrial and agricultural activities 

have modified the global P cycle by mining phosphate rock and redistributing it as P-based 

fertilizer (Gilbert 2009). As autotrophs, algae require both P for DNA synthesis and nitrogen (N) 

for proteins, so excess supply of these nutrients can trigger blooms of algae (Conley et al. 2009; 

Elser et al. 2007). Classic empirical studies have demonstrated that P in particular controls algal 

growth in freshwater systems (Schindler et al. 1997). P and N transport via agricultural and 

urban runoff are major sources of nutrients to freshwater lakes and streams and cause 

degradation of water quality, including algal blooms (Carpenter et al. 1998).   

Blooms of algae can impair aquatic ecosystems because they can: 1) be toxic; 2) decrease 

dissolved oxygen concentrations upon mineralization; and 3) disrupt food webs (Conley et al. 

2009). Addressing point sources of P through the NPDES permit system initially reduced P loads 

to water bodies. For example, Lake Erie algal blooms decreased after establishing the Clean 

Water Act (Makarewicz 1993). The annual total phosphorus (TP) load to Lake Erie was reduced 

from 25,000 metric tons to the target load of 11,000 metric tons during the 1980s. However, the 
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more bioavailable, dissolved form of P load to the lake has increased since the mid-1990s 

(Scavia et al. 2014). Nonpoint P inputs, especially from agriculture, are still a major source of 

nutrients to Lake Erie, and algal blooms are again a major water quality issue (Michalak et al. 

2013). In fact, agricultural runoff is a key nonpoint source of nutrients in much of the Great 

Lakes basin (Danz et al. 2007). 

The Great Lakes are located within the US Midwest where millions of hectares of 

swamplands were converted to highly productive agricultural lands during the initial installation 

of subsurface tile drains (King et al. 2015). Historically made of clay tile, these drainage systems 

are pipes installed in the soil column beneath farm fields to lower the water table and prevent 

crops from drowning (Fausey et al 1987). An estimated 18 to 28 million hectares of cropland in 

the Midwest region are managed with the use of tile drains (King et al. 2015). Tile drains change 

the hydrology of a field to increase infiltration of water and reduce the amount of overland runoff 

(Reid et al. 2012). Decreasing surface runoff by increasing infiltration is assumed to also reduce 

the loss of P via topsoil erosion. However, the tile drains represent a direct conduit from the field 

to the outlet, and from there directly into the bordering ditch, so nutrients that reach the tile can 

be carried from a much larger area of the landscape than would otherwise be possible (Smith et 

al. 2015; Reid et al. 2012). Traditionally, P leaching to tile drains in agricultural fields was not 

considered a contributor to total phosphorus (TP) export in a watershed (Eastman et al. 2010; 

Sims et al. 1998). Indeed, overland flow is generally the dominant transport mechanism for P, 

but there are situations when significant P transport has occurred through agricultural tile 

drainage (King et al. 2015). However, the amount of P that reaches the tiles cannot be predicted 

by a single parameter. 

 



12 
	

Phosphorus Transport to Tile Drains 

Factors influencing P transport to tile drains include soil type, precipitation, time of year, 

and land management factors such as tillage or crop regime (Fig 1). Soil P saturation, chemical 

reduction or oxidation, and drain depth or spacing also can affect transport (King et al. 2015), but 

these additional factors were not a focus of this study. Soil type influences P transport to tile 

drains primarily by its tendency to form macropores or to promote matrix flow. Soil matrix flow 

is a relatively slow pathway by which solutes have time to interact with soil particles, minerals, 

and organic materials (Reid et al. 2012; Sharpley et al. 2001). Alternatively, P transport through 

soil macropores is a faster and more direct pathway via earthworm burrows, shrinkage fractures, 

or channels from plant roots. Macropores provide a significant route for both dissolved and 

particulate P to artificial drains (Tan and Zhang 2011). Macropores serve as a transport 

mechanism more frequently in clay soils than sandy soils, and conversely, sandy soils promote 

matrix flow. 

Preferential transport through macropores is an important process during precipitation 

and snowmelt, as both processes cause increased flow through the soil column (Macrae et al. 

2007). Numerous studies have demonstrated that periods of high flow result in increased P loss 

through tile drainage, as well (Algoazany et al. 2007; Ball Coelho et al. 2012; Gentry et al. 2007; 

Morrison et al. 2013). There is a pulse of P export from an agricultural watershed during a high 

flow event, and a review of the literature shows that tile drains are a contributing source to this 

pulse (King et al. 2015). Furthermore, P speciation is affected by rain storm characteristics. 

Vidon and Cuadra (2011) found soluble reactive phosphorus (SRP) to be significantly higher 

during larger storms with more bulk precipitation, yet increases in TP were not statistically 

significant. SRP is often used as a proxy to quantify the dissolved, bioavailable fraction of TP. 
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More importantly, although dissolved P generally composes less than 50% of the TP exported 

from tile drains, it may have a disproportionate influence on biological response because of its 

bioavailability. 

Seasonality of tile flow is yet another factor to consider in P transport through drains. 

Several studies found the majority of nutrient leaching to occur during the winter months 

corresponding with increased flow from tile drains (Kladivko et al. 2004; Laubel et al. 1999; 

Royer et al. 2006). Even if fertilizer and manure are applied just before and during the growing 

season, snowmelt and storm events during the winter are still able to initiate P movement to tile 

drains (Macrae et al. 2007). Other studies have found that the greatest P loss through subsurface 

drains happens during the spring (Vidon and Cuadra 2011). When P fertilizer or manure is 

applied to bare ground lacking crops in the spring, there is a higher risk for P loss to artificial 

drainage (Eastman et al. 2010; Kinley et al. 2007). Typically, tile drains cease to flow during the 

summer months except following rain events (King et al. 2015). 

A large variety of land management factors can affect P transport to tile drains including 

type of fertilizer, tillage, and crop regime. First, long-term application of manure or fertilizer 

increases the risk of leaching as water moves through the P-saturated soil (Laubel et al. 1999; 

King et al. 2015). Several studies agree that use of manure over inorganic fertilizer results in 

more P loss to tile drains, which can supersede the effect of soil texture and may be because 

organic P is less strongly sorbed to soil particles in comparison to inorganic P (Kinley et al. 

2007; North 2013; Sims et al. 1998). Second, both tillage and crop cover influence movement of 

P through the soil column (Kinley et al. 2007). No-tillage management decreases evaporation, 

increases soil permeability, and most importantly decreases runoff and erosion. Conversely, 

tillage disturbs macropores in the topsoil, which reduces the connectivity of the surface to tile 
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drains (Geohring et al. 2001; King et al. 2015). Finally, during the growing season, row crop 

agriculture is known for higher nutrient input to freshwater systems than low-intensity pastures 

for livestock (North 2013). Regardless of crop regime, the presence of plant roots creates 

channels in the soil promoting macropore flow, so the use of winter cover crops promotes 

macropore formation by root channels even during the non-growing season (Vidon and Cuadra 

2011). In conclusion, the loss of P through tile drains in agricultural fields is both temporally and 

spatially variable, and depends heavily on local factors. All of the factors described above 

potentially influence P movement to drains. Because tile drains are a direct connection from field 

to stream, this study was designed to investigate their role in nutrient transport, especially as a 

source of bioavailable P leading to eutrophication in the Great Lakes region. 

 
Figure 1. Vertical cross-section of P transport to agricultural tile drains with A) sandy soil 
promoting matrix flow; B) clay soil promoting preferential flow via macropores; C) tilled soil 
with disturbed macropores; and D) uptake of nutrients by crops. Diagram is not to scale. 
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Study Site 

This study took place in the Macatawa Watershed, which is located in southwestern 

Michigan, and encompasses 450 km2. Nearly 90% of the area’s wetlands in historic Holland, MI 

were lost to development when European settlers drained the soil water and straightened 

tributaries (Hope College 2012). The resulting increased flow of runoff water has led to 

widespread sediment erosion into Lake Macatawa and associated nutrient-rich conditions 

throughout the watershed. Previous stream sediment and nutrient monitoring has shown that 

excess nutrients, including P, originate in the outer sub-basins of the watershed, which are 

dominated by agricultural fields of row crops (MWP 2012). 

Average monthly TP concentrations in Lake Macatawa have exceeded 125µg/L in recent 

years and at times were more than 200µg/L (Holden 2014). The lake and its tributaries are on 

Michigan’s 303(d) list for not attaining water quality standards for warm water fishery and other 

aquatic life, and the lake is currently under a TMDL calling for a reduction in TP concentration 

of 72% (Walterhouse 1999). The relationship between flow and P concentrations in the lake 

shows that the water quality of Lake Macatawa is influenced by nonpoint sources of pollution, 

including agricultural areas during periods of higher flow caused by rain events. Conversely, P 

concentrations in Lake Macatawa are lower after long periods of baseflow (Holden 2014). A 

current 10-year restoration project aims to reduce P loads and meet the TMDL target through 

remediation and implementation of best management practices (MWP 2012). 

 

Objectives 

Lake Macatawa is an important recreational and commercial port for the City of Holland, 

MI.  Eutrophication, and associated harmful algal blooms (HABs), negatively impact the 
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region’s economy and cultural identity.  An overarching goal of this study is to identify the role 

of tile drain runoff in stimulating algal blooms; this information is intended to improve 

management practices, which in turn will lead to improved water quality in both the Macatawa 

Watershed and Lake Macatawa. As a consequence, economic activity, recreation, and 

community pride will be enhanced.  

Given the necessity to dramatically reduce P concentrations in the Macatawa Watershed, 

further research is needed at the individual field level to understand the influence of bioavailable 

forms of P originating from tile drains. The objectives of my study are to: 1) conduct a tile drain 

effluent sampling survey to assess the importance of tile drains as a source of P in the Macatawa 

Watershed; 2) use bioassays and the ratio of SRP:TP to measure the bioavailability of P found 

within the tile drains; and 3) investigate the change in tile drain P concentrations over a one-year 

period. The results will help inform the ongoing restoration project in the watershed. Although 

this study is focused on a particular watershed in Michigan, the results will contribute to the 

wider body of research regarding phosphorus as a cause of eutrophication. 

In addition, as HABs continue to plague the Great Lakes region, it is critical that we 

better understand the mechanisms driving these blooms. Phosphorus loss via tile drains 

correlates with elevated flow. According to most general circulation models of future climate, 

there will be an increase in the intensity of storm events, as well as their frequency, in the Great 

Lakes region (Hayhoe et al. 2010). This may cause an increase in phosphorus loss via tile drains, 

especially in concentrated agricultural areas. Therefore, a complete understanding about the 

sources of phosphorus and the subsequent progression to eutrophication and HABs is crucial to 

protecting freshwater quality in the near future. 
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Chapter II 
 

Does Phosphorus from Agricultural Tile Drains Fuel Algal Blooms? 

Introduction 

Among growing public concern for surface water quality, the federal Clean Water Act 

was enacted in 1972 to regulate pollution sources (USEPA 2016). Regulation of discharge 

permits under the National Pollutant Discharge Elimination System (NPDES) has effectively 

reduced pollution from point sources (USEPA 2016). However, inputs from agriculture are still a 

major nonpoint source of nutrient pollution to surface waters (Daniel et al. 1998). An often-

limiting nutrient in freshwater ecosystems, excess P is frequently implicated as a contributing 

factor to algal blooms (Elser et al. 2007; Schindler et al. 1977). Blooms of algae can impair 

aquatic ecosystems because they can: 1) be toxic (Carmichael 2001); 2) decrease dissolved 

oxygen concentrations upon mineralization (Scavia et al. 2014); and 3) disrupt food webs 

(Conley et al. 2009).  

An estimated 18 to 28 million hectares of cropland in the Midwest region are managed 

with the use of tile drains (King et al. 2015a). When tile drains are installed, they change the 

hydrology of a field to increase infiltration of water and reduce the amount of overland runoff 

(Reid et al. 2012). While tile drains can reduce surface runoff, and thereby the loss of P via 

topsoil erosion, they also represent a direct conduit from the field to the outlet and bordering 

ditch. Hence, nutrients reaching the surface drainage system not only can derive from an 

expanded area of the landscape (Smith et al. 2015; Reid et al. 2012), they also reach the surface 

waters without the opportunity for assimilation or adsorption through the soil profile. Overland 

flow is generally the dominant transport mechanism for P, but there are situations when 

significant P transport has occurred through agricultural tile drainage (King et al. 2015a). 
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Factors influencing P transport to tile drains include soil type, precipitation, time of year, 

and land management practices such as tillage or crop regime (King et al. 2015a). Soil type 

influences P transport to tile drains primarily by its tendency to form macropores or to promote 

matrix flow. Soil matrix flow is a relatively slow pathway by which solutes have time to interact 

with soil particles, minerals, and organic materials (Reid et al. 2012; Sharpley et al. 2001). 

Alternatively, P transport through soil macropores is a relatively fast, more direct pathway via 

earthworm burrows, shrinkage fractures, or root channels (Laubel et al. 1999). Macropores 

provide a route for substantial amounts of both dissolved and particulate P to artificial drains 

(Tan and Zhang, 2011). Macropores serve as a transport pathway more frequently in clay soils 

than sandy soils, and conversely, sandy soils promote matrix flow (King et al. 2015a). 

Preferential transport through macropores is an important process during precipitation 

and snowmelt, as both events cause increased flow through the soil column (Macrae et al. 2007; 

Smith et al. 2015). Numerous studies have demonstrated that periods of high flow result in 

increased P loss through tile drainage (Algoazany et al. 2007; Ball Coelho et al. 2012; Gentry et 

al. 2007; Morrison et al. 2013). There is a pulse of P export from an agricultural watershed 

during a high flow event, and tile drains can be a contributing source to this pulse (Lam et al. 

2016; King et al. 2015a). Even if fertilizer and manure are applied to a field primarily during the 

growing season, snowmelt and storm events during the winter are still able to initiate P 

movement to tile drains (Macrae et al. 2007). Typically, tile drains cease to flow during the 

summer months except following rain events, and several studies found the majority of nutrient 

leaching to occur during the winter months with increased flow from tile drains (Kladivko et al. 

2004; Laubel et al. 1999; Royer et al. 2006). 
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In addition to climatic variables, a variety of field-specific management practices can 

affect P transport to tile drains including type of fertilizer, tillage, and crop regime. First, long-

term application of manure or fertilizer increases the risk of leaching as water moves through the 

P-saturated soil (Laubel et al. 1999; King et al. 2015a). Several studies agree that use of manure 

over inorganic fertilizer results in more P loss to tile drains, which may be because organic P is 

less strongly sorbed to soil particles in comparison to inorganic P (Kinley et al. 2007; North 

2013; Sims et al. 1998). Second, both tillage and crop cover influence movement of P through 

the soil column (Kinley et al. 2007). No-tillage management decreases runoff and erosion, but 

promotes macropore formation. Conversely, tillage disturbs macropores in the topsoil, which 

reduces the connectivity of the surface to tile drains (Geohring et al. 2001; King et al. 2015a). 

Finally, during the growing season, row crop agriculture is known for higher nutrient input to 

freshwater systems than low-intensity pastures for livestock (North 2013). Regardless of crop 

regime, the presence of plant roots creates channels in the soil promoting macropore flow, so the 

use of winter cover crops promotes macropore formation even during the non-growing season 

(Vidon and Cuadra 2011). In conclusion, the loss of P through tile drains in agricultural fields is 

both temporally and spatially variable, and depends heavily on local factors.  

All of the factors described above potentially influence P movement to drains. Because 

tile drains are a potentially important source of nutrients from the field to downstream receiving 

water bodies, this study was designed to investigate their role as a source of bioavailable P 

contributing to eutrophication in the Great Lakes region. We examined the spatial and temporal 

variability of P in tile drain effluent, and its ecological impacts in the Lake Macatawa watershed. 

This agriculturally-dominated watershed is located in west Michigan, and drains into Lake 

Macatawa, an important recreational and commercial port for Holland, MI. Excess sediment and 
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phosphorus negatively impact the region’s economy and cultural identity. Therefore, the 

objectives of this study were to: 1) conduct a tile drain sampling survey to assess the importance 

of effluent as a source of P in the Macatawa Watershed; 2) investigate the change in tile drain P 

concentrations spatially and temporally over a one-year period; and 3) use algal bioassays to 

measure the bioavailability of P found within the tile drains.  

 

Methods 

Study Site 

The Macatawa Watershed encompasses 450 km2 in southwestern Michigan; the outer 

regions of the watershed are dominated by row-crop agriculture. This type of land use has 

increased the flow of runoff water, led to widespread sediment erosion into Lake Macatawa, and 

caused nutrient-rich conditions throughout the watershed. Previous stream sediment and nutrient 

monitoring has shown that excess nutrients, including P, originate in the watershed’s outer sub-

basins (MWP 2012). Lake Macatawa is hyper-eutrophic, and average monthly TP concentrations 

have exceeded 125µg/L in recent years (Holden 2014). The lake and its tributaries are on 

Michigan’s 303(d) list for not attaining water quality standards for warm water fishery and other 

aquatic life, and the lake is currently under a total maximum daily load (TMDL) calling for a 

72% reduction in TP concentration (Walterhouse 1999). P loading to Lake Macatawa is heavily 

influenced by precipitation events, and lake concentrations of TP are lower after long periods of 

baseflow (Holden 2014). A current 10-year restoration project aims to reduce P loads and meet 

the TMDL target through remediation and implementation of best management practices (PC 

2016). 
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Figure 1. Lake Macatawa watershed boundary showing land use distribution, location of the tile 
drain sampling sites (circles; 1-9), as well as Lake Macatawa sample site (10). See inset for 
location of the Lake Michigan sample site (11). Inset: location of watershed in west Michigan.  
 
 

Tile Drains 

 Our original intent was to sample tile drains distributed throughout the watershed, but 

limited cooperation from agricultural producers resulted in the identification of nine tile drain 

sampling sites (Figure 1). Because the property owners wished to remain anonymous, the exact 

coordinates of each site are not given. Eight of the sites were PVC outlets draining to a ditch, and 

at site 9, plastic tubing (acid-washed) was used to hand-pump water from a depth of ~3m to the 

surface from a tile drain vent. Site 9 was added to the study in June, 2015. Total phosphorus (TP) 

and soluble reactive phosphorus (SRP) were measured monthly for one year (March 2015-
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February 2016) from each site; grab samples were obtained using acid-washed 250mL plastic 

bottles.  A 20-mL subsample was filtered through a 0.45-µm nylon syringe filter (ThermoFisher 

Scientific, Waltham, MA) immediately after sampling for SRP analysis. All samples were 

transported to the laboratory on ice. TP samples were stored at 4°C, and SRP samples were 

frozen at -18°C before analysis with a SEAL Autoanalyzer (SEAL Analytical, Mequon, 

Wisconsin). The ratio of SRP (mg P/L) to TP (mg P/L) (SRP:TP) for each tile drain was 

calculated and is referred to as %SRP. 

Discharge at each outlet was estimated using a 500mL cup and stopwatch during sample 

collection. Some tile outlets were partially submerged by ditch water on a few sample dates, but 

active flow through the outlet allowed for grab samples and P concentration analysis. In those 

cases, discharge could not be measured from partially submerged outlets, so flow was estimated 

based on other non-submerged visually similar sampling dates. SRP and TP load were calculated 

by multiplying concentration values by the corresponding discharge rate. Finally, the land 

management factors of each tile-drained field were recorded (Table 3). Factors included acres 

drained, summer and winter crop regime, fertilizer application, tillage equipment, and dominant 

hydrologic soil type (USDA SSURGO). 

 
Bioassay Setup 

 Algal bioassays were used to evaluate the bioavailability of P in tile drain water. Three 

separate bioassays were conducted to assess seasonal effects: spring (April 23), summer (August 

5), and fall (October 26) of 2015. Acid-washed 10L carboys were used to collect water for the 

experiments. Carboys of water also were collected from Lake Macatawa and from Lake 

Michigan (Figure 1) to serve as controls as explained below. Carboys were transported to the lab 

on ice and stored at 4°C. Within 24 hours, tile drain water and lake water samples were filtered 
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through 0.1-µm Graver QMC™ Series Filter Cartridges using a peristaltic pump. Filtering by 

this method did not affect SRP concentrations of the tile or lake water. Prior to bioassay setup, 

water from each carboy was filtered into a 20mL vial using a 0.45-µm glass membrane for SRP 

analysis. 

Two types of bioassays were run simultaneously each season in a Powers Scientific 

Growth Chamber. The first type of bioassay used commercially purchased Selenastrum sp. 

(Carolina Biological®), a green alga, while the second type of bioassay used phytoplankton 

collected from the surface (0-0.5m depth) of Lake Macatawa with a 23-µm plankton net (Figure 

1). The Lake Macatawa phytoplankton sample was transported in an opaque plastic bottle and 

filtered through a 200-µm sieve to prevent zooplankton grazing before use in the bioassay. For 

the first type of bioassay, 90mL of filtered water from each sampling site was placed in an acid-

washed, autoclaved 125mL Erlenmeyer flask, in triplicate, and inoculated with 10mL of 

Selenastrum. The same design was used for the second type of bioassay, but flasks were 

inoculated with 10mL of Lake Macatawa phytoplankton. At the start of the incubation period, 

three initial subsamples from each bioassay were saved for chlorophyll-a analysis as described 

below. 20mL of the Lake Macatawa phytoplankton subsamples were preserved in 1% Lugol’s 

for initial determination of the phytoplankton community. All Selenastrum flasks were incubated 

for seven days on a shaker table set to 175RPM. Three flasks of Lake Michigan water were 

included in this bioassay as a low-SRP control. The Lake Macatawa phytoplankton flasks were 

set up on a shaker table set to 175RPM on the other side of the chamber; this bioassay also 

included the three control flasks of Lake Macatawa phytoplankton in Lake Macatawa water. A 

black, opaque sheet divided the chamber vertically and separated the two treatments, and all 

flasks were stoppered with foam. No attempt was made to keep the conditions axenic.  
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Ambient conditions of Lake Macatawa were measured at the time of water sampling and 

the temperature and light irradiance of the growth chamber were set to mimic lake conditions 

depending on the season. During the spring, summer, and fall, the chamber temperature was set 

to 11.0°C, 26.6°C, and 13.9°C, respectively. The light:dark cycle was set to 13.5:10.5 in the 

spring, 14.5:8.5 in the summer, and 10.5:13.5 in the fall. Irradiance measured as 

photosynthetically active radiation (PAR) remained at 45 µmol/m2/s for all three Selenastrum 

bioassays while the Lake Macatawa phytoplankton side of the chamber was set at 190 in the 

spring, 355 in the summer, and 303 µmol/m2/s in the fall. The Lake Macatawa bioassay PARs 

were based on an average of measurements in Lake Macatawa at 0m, 0.5m, and 1.0m. All 

irradiance measurements were made with a LiCor Li-193SA spherical quantum sensor. Flasks 

were rearranged to random positions on the shaker tables each day to minimize variability in 

irradiance within the chamber. 

 
Bioassay Analysis 

  At the end of the incubation period, all flasks were subsampled for chlorophyll-a and 

SRP, while Lake Macatawa phytoplankton flasks were additionally subsampled for taxonomic 

structure. An aliquot from each flask was filtered using a GF/F filter (Whatman®) and frozen at -

18°C. Each filter was ground and then steeped in 90% buffered acetone in the dark for 24 hours. 

After centrifuging each sample, the chlorophyll-a concentration of the supernatant was analyzed 

using a Shimadzu UV-1601 spectrophotometer (Steinman et al. 2006). A second aliquot from 

each Lake Macatawa phytoplankton flask was preserved in 1% Lugol’s in an opaque, plastic 

bottle for taxonomic analysis. At least 300 phytoplankton units from each sample were identified 

using a Nikon H550L inverted microscope (Utermöhl, 1958) to the division level, and whenever 
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possible, to genus and species. Phytoplankton biovolumes were calculated based on the shape 

and appropriate measurements of 10 units of each taxon (Hillebrand et al. 1999). 

 
Statistical Analysis 

Shapiro-Wilk was used to test for normality of all data. SRP and TP concentrations were 

non-normally distributed and hence, violated the balanced design assumption of a repeated-

measures ANOVA, so a non-parametric Kruskal-Wallis test was used for comparisons when 

grouped by sampling location or date. A Bonferroni post-hoc adjustment revealed individual 

significant differences. Relationships between chlorophyll-a and bioassay SRP concentrations 

were assessed using linear regression. The spring Lake Macatawa phytoplankton bioassay 

chlorophyll-a concentrations were non-normally distributed, so their relationship to SRP was 

based on Spearman’s correlation analysis. Correlation also was used to relate SRP, TP, and 

%SRP concentrations per sampling site to acres drained by the tile system. Statistical analyses 

were conducted with R version 3.1.1 (R Core Team, 2016), and statistical significance was set at 

an alpha value less than or equal to 0.05. 

 
 

Results 
 
Table 1. Summary of lowest, highest, mean, and median concentrations of soluble reactive 
phosphorus (SRP), total phosphorus (TP), and percent SRP for nine tile drain sampling sites 
during March 2015 – February 2016. 

 
low high  mean ±1SE median 

SRP (mg·L-1) <0.005† 0.447 0.093 ± 0.011 0.064 
TP (mg·L-1) 0.010 0.560 0.136 ± 0.013 0.102 

%SRP † 89% 60% ± 3% 69% 
†SRP concentration is below the detection limit. 
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Tile Drain Phosphorus Concentrations 

Tile drain SRP, TP, and %SRP varied both spatially and temporally in the Macatawa 

watershed. SRP concentrations ranged from below detection to 0.447 mg L-1, whereas TP 

concentrations ranged from 10 to 560 mg L-1 (Table 1). Averaged across all sites and sampling 

months, SRP composed a relatively large portion of the TP concentration, as indicated by both 

the mean %SRP (60 ± 3%) and median %SRP (69%) (Table 1). There was no significant effect 

of time on any of the P parameters (Table 2). However, there was a highly significant effect of 

site location on all three P parameters (Table 2). There was a greater number of significant 

differences among sites for SRP and TP concentrations than for %SRP. The P concentrations 

varied the most at site 9 (SRP cv = 0.94; TP cv = 0.77) and the least at site 2 (SRP cv = 0.21; TP 

cv = 0.21). 

 
Table 2. Results of Kruskal-Wallis tests comparing tile drain water soluble reactive phosphorus 
(SRP), total phosphorus (TP), and percent SRP concentrations when grouped by site location or 
sample date. Asterisks (*) indicate statistical significance. 
Phosphorus Fraction Grouping Chi-Square df p-value 

SRP Location 59.834 8 <0.001*** 

 Time 3.4993 11 0.9823 
TP Location 54.53 8 <0.001*** 

 Time 4.737 11 0.9432 
%SRP Location 43.552 8 <0.001*** 

  Time 8.5723 11 0.6613 
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Figure 2. A) Mean soluble reactive phosphorus (SRP) concentration per sample site (X2 = 
59.834, p < 0.001); and B) mean SRP load per sample site (± SE). 
 
 

 
Figure 3. A) Mean total phosphorus (TP) concentration per sample site (X2 = 54.53, p < 0.001); 
and B) load per sample site (± SE). 
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Tile Drain Phosphorus Load 

 Discharge from the tile drain systems varied by sample date and season. All sampling 

sites were actively flowing during March – June 2015, whereas the least number of sites were 

flowing in October 2015. SRP and TP loads were highest during February 2016 and lowest 

during October 2015 (Figure 4). Site 4 consistently flowed during all months and had the highest 

discharge rates while site 2 flowed the least with some of the lowest discharge rates. Overall, the 

highest P loads occurred during and post-snowmelt in both 2015 and 2016 (Figure 4).  

 
Figure 4. Mean soluble reactive phosphorus (SRP ± SE) load and mean total phosphorus (TP ± 
SE) load per sample date. Daily rain accumulation is also shown (National Climate Data Center 
– Tulip City Airport). 
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Land Management Factors 

 The majority of sampling sites drained fields containing corn, whereas a few contained 

soybeans (Table 7). In addition, inorganic P fertilizer was generally applied during planting at 

the beginning of the growing season with the exception of sites 1 and 7. The smallest field, site 1, 

drains only 7 acres and is unique because it is a community farm growing a wide variety of crops 

with the use of fish emulsion fertilizer. The majority of sites were classified as hydrologic type C 

soil, which has low-moderate infiltration rates (USDA SSURGO). 

  Percent SRP and acres drained by the tile system were significantly and positively 

correlated (Figure 5). Site SRP and TP concentrations also were positively related with acres 

drained, but were not statistically significant. No other relationship between tile drain P 

concentrations and a specific land management factor was apparent. 
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Table 3. Land management factors per sample site. 

Site Acres 
Drained Crops Winter 

Cover Crops Fertilizer Tillage Dominant Soil 
Hydrologic Type†† 

1 7 Variety No Fish emulsion for 
some crops No-tillage A/D  

2 65 
Primarily corn 

with some 
soybeans 

No Inorganic fertilizer 
at spring planting No-tillage C 

3 80 Corn No 
Inorganic fertilizer 
at spring planting; 
manure in the fall 

Disc-tilled at 
planting C 

4 65 Corn No 
Inorganic fertilizer 
at spring planting; 
manure in the fall 

Disc-tilled at 
planting A/D, B 

5 22 Corn No 
Inorganic fertilizer 
at spring planting; 

manure late summer 

Disc-tilled at 
planting C 

6 36 Corn No Inorganic fertilizer 
at spring planting No-tillage C 

7 30 Soybeans No No P-containing 
fertilizers 

Vertical tillage 
before 

planting 
B 

8 50 Corn No 
Inorganic fertilizer 
at spring planting, 
manure in the fall 

Disc-tilled at 
planting & fall 

tillage sub-
soiler 

C 

9 39 Corn Yes: radish, 
oats, clover 

Inorganic fertilizer 
at spring planting 

Vertical till 
twice during 

planting 
C 

††Obtained from USDA SSURGO database. 
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Figure 5. Spearman correlation comparing mean percent soluble reactive phosphorus (%SRP) at 
each tile drain outlet to acreage drained by the tile system (p = 0.0262). 
 

 

Bioassay Chlorophyll-a Concentrations 

 Due to lack of flow from some tile outlets, not all sampling sites were used in each 

bioassay. Bioassays conducted in the spring used water from sites 1-8; those in the summer used 

sites 3, 4, 5, 7, 8, and 9, and bioassays in the fall used sites 1, 3, 4, 8, and 9. Contrary to 

expectations, only four of the six sets of bioassays revealed a positive relationship between tile 

water SRP concentration and mean change in chlorophyll-a concentration (Table 4). The only 

significant relationship was found during the spring Selenastrum bioassay (Table 4, Figure 6). 
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Table 4. Results of linear regression or Spearman correlation testing the relationship between 
soluble reactive phosphorus (SRP) concentration and mean (n = 3) change in chlorophyll-a for 
all seasonal bioassays. Asterisk (*) indicates statistical significance. 

Season Algae Inoculum Statistical Test Regression 
Equation Test Statistic p-value 

Spring Selenastrum Linear 
Regression y = 4217x + 316 R2

adj = 0.478 0.0236* 

 
Lake Mac 

Phytoplankton 
Spearman 

Correlation  rho = -0.267 0.4933 

Summer Selenastrum Linear 
Regression y = 12335x + 232 R2

adj = 0.289 0.1227 

 
Lake Mac 

Phytoplankton 
Linear 

Regression y = 132x + 9 R2
adj = -0.145 0.6446 

Fall Selenastrum Linear 
Regression y = -1510x + 385 R2

adj = -0.159 0.6060 

 
Lake Mac 

Phytoplankton 
Linear 

Regression y = 46x - 2 R2
adj = -0.202 0.7104 

 
 
 

 
Figure 6. Linear regression comparing tile water soluble reactive phosphorus (SRP) to mean 
change in chlorophyll-a (± SE) during the spring Selenastrum bioassay. 
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Bioassay Algal Communities 

 The dominant algal taxa changed over the 7-day incubation during all three seasonal 

Lake Macatawa phytoplankton bioassays (Figure 7-9). The spring bioassay inoculum was 

dominated by the diatom (Bacillariophyta) genera Asterionella and Aulocoseira. Asterionella 

increased its dominance after incubation in tile drain water, but not to the same extent in the 

Lake Macatawa control flasks (Figure 7). During the summer bioassay, filamentous Oscillatoria 

(Cyanobacteria) was the dominant genus in the inoculum. However, after incubation in tile drain 

water dominance shifted to Synedra (Bacillariophyta). Oscillatoria remained dominant in the 

Lake Macatawa water controls along with larger populations of Synedra and Pediastrum 

(Chlorophyta) (Figure 8). Similarly, the initial community of the fall bioassay primarily 

consisted of Oscillatoria, and the filamentous cyanobacteria remained dominant after incubation 

in tile drain water with an increase in Aulocoseira. There was little change in the fall bioassay 

community when incubated in Lake Macatawa water (Figure 9). With the exception of 

Oscillatoria in the fall bioassay, there was little response from potential producers of 

cyanotoxins, such as Microcystis or Anabaena. Microcystis was present in some initial 

community samples, but its proportion in the community did not increase under any treatment 

(data not shown). 
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Figure 7. Lake Macatawa phytoplankton community based on calculated biovolume before and 
after the spring bioassay. A) Mean biovolumes of initial community at the start of incubation; B) 
mean biovolumes of phytoplankton incubated in all tile drain water flasks; C) mean biovolumes 
of the community after incubation in Lake Macatawa water (control flasks). 
 

 
Figure 8. Lake Macatawa phytoplankton community based on calculated biovolume before and 
after the summer bioassay. A) Mean biovolumes of the initial community at the start of 
incubation; B) mean biovolumes of phytoplankton incubated in all tile drain water flasks; C) 
mean biovolumes of the community after incubation in Lake Macatawa water (control flasks). 
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Figure 9. Lake Macatawa phytoplankton community based on calculated biovolume before and 
after the fall bioassay. A) Mean biovolumes of initial community at the start of incubation; B) 
mean biovolumes of phytoplankton incubated in all tile drain water flasks; C) mean biovolumes 
of the community after incubation in Lake Macatawa water (control flasks). 
 

 

Discussion 

Based on SRP and TP concentrations measured at the tile drain sampling sites, these 

subsurface drainage systems can discharge effluent with very high concentrations of bioavailable 

P to the drainage ditches in the Macatawa Watershed. Percent SRP measurements frequently 

exceeded 50% at the majority of sampling sites, with SRP concentrations 1-2 orders of 

magnitude greater than what is measured in Lake Macatawa (Holden 2014). The %SRP did not 

vary significantly over time, suggesting that bioavailable P was being transported from the tile 

drains to drainage ditches and likely further downstream throughout the year. Despite its year-

round availability, it is unclear how much of this bioavailable P reaches Lake Macatawa given 

the opportunity for assimilation and/or adsorption; uptake lengths of P in these particular 

agricultural ditches have not yet been calculated. Retention in streams can occur via uptake by 

algae, sorption onto Fe or Al hydroxides, assimilation by microbes, and sedimentation of 

particulate matter on flood plains (Gelbrecht et al. 2005; Reddy et al. 1999). Deposition of 
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particle-bound P on floodplains is an important aspect of ditch management. Using two-stage 

ditches in agricultural channels is an area of ongoing research and implementation of best 

management practices to increase P retention (Davis et al. 2015). However, because the factors 

influencing P retention and cycling vary spatially and temporally, extrapolating to a watershed 

scale is a complicated task. 

In contrast to the absence of significant temporal variation in tile drain P concentrations, 

spatial variation of SRP and TP concentrations was significantly different in the Macatawa 

Watershed. Each tile system drained an agricultural field with varying land management 

practices, and there was a significant correlation between %SRP measured at the tile outlet and 

number of acres drained. Nine sampling sites, many of which are clustered in one area of the 

watershed, compose a relatively small representation of the watershed, and the total area of tile-

drained land remains unquantified. Yet, it is estimated that 25-35% of the watershed’s land area 

contains functional tile drains (Macatawa Area Coordinating Council, personal communication). 

Under this assumption, using only the lowest annual TP load measured at a sample site in this 

study (Drain 2), all tile drains would contribute 85-199 lb yr-1 to the watershed. In contrast, using 

the highest annual TP load (Drain 4), tile drains would contribute 8238-11,533 lb yr-1. Given that 

the TMDL for Lake Macatawa set a goal of reducing nonpoint TP sources to 35,000 lb annually, 

tile drains could potentially contribute almost 33% of the allotted nonpoint source TP load, 

assuming none of it was retained before reaching Lake Macatawa. These load-per-acre 

calculations are coarse estimates based on instantaneous measurements, but the additional 

positive relationships found between both SRP and TP concentrations and acres drained provides 

a motive for quantifying the tile drains in the watershed, to better estimate the overall 

contribution of P by these systems.  
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Furthermore, the discharge rates and corresponding loads did differ by month. Tile drain 

discharge rates were higher during the winter and spring, resulting in higher SRP and TP loads 

during those seasons. These results correspond with other studies that measured tile drain P 

loading. For instance, Lam et al. (2016) observed the majority of P loss through tile drains in 

Ontario between October and May during snowmelt. In addition, the review by King et al. 

(2015a) lists several studies correlating tile drain P loss to elevated flow. The 2015-2016 study 

period in the Macatawa Watershed was a relatively dry summer with few precipitation events. 

The few rain storms in the summer or fall were relatively small and did not induce flow through 

the consistently dry tile drain sampling sites. Future summer rain events of greater intensity, as 

predicted by climate models (Hayhoe et al. 2010) may produce a different result and merit 

further investigation in this watershed. Indeed, Bettez et al. (2015) found that both climate 

variation and land use change have significant effects on N retention.  

Management to address high P loads from tile drains during the non-growing season 

deserves more attention in the Macatawa Watershed. In other agricultural watersheds, 

construction of wetlands to receive tile drain outflow (Kynkäänniemi et al. 2013) or installation 

of drainage control structures have shown some success in limiting P transport (Frey et al. 2013). 

In contrast to passively flowing drains, controlled tile systems can limit nutrient loads by 

restricting flow when field drainage is not crucial. Also, in one study by Nash et al. (2015), 

soluble P concentrations were lower in controlled tile drains than passively flowing drains 

regardless of discharge rate. Moreover, time of sample collection in the Macatawa Watershed 

was not compared to stream hydrographs. P concentrations have been found to peak early during 

a precipitation event and slightly before hydrograph peaks (Tomer et al. 2010; Smith et al. 2015). 
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If this is true of the Macatawa Watershed, a top priority should be mitigating the “first flush” of 

P from tile drains at the onset of a precipitation event. 

 The seasonal bioassays allowed us to investigate the link between tile drain SRP and 

algal growth. A positive relationship was expected between SRP concentration and change in 

chorophyll-a in all bioassays given that P is often viewed as the limiting resource in freshwater 

systems (Dillon and Rigler 1974, Schindler 1977), although this paradigm has received 

considerable challenges of late (Conley et al. 2009, Harpole et al. 2011). However, the spring 

Lake Macatawa phytoplankton bioassay and the fall Selenastrum bioassay revealed a negative, 

albeit non-significant, relationship. It is possible the phytoplankton used in the bioassays were 

already P-saturated and therefore would not respond positively to additional SRP inputs. Xu et al. 

(2010) experienced a similar situation conducting bioassays in hypereutrophic Lake Taihu, China. 

During the summer and fall, excess available P stimulated phytoplankton growth only when N 

also was in excess, making P the secondarily limiting nutrient. Despite our unexpected results, 

the mean biovolume per bioassay flask did increase during incubation in tile drain and Lake 

Macatawa water, suggesting the algae were responding positively to something in the ambient 

water, possibly a micronutrient.  

The most notable response during the Lake Macatawa bioassay algal community was by 

diatoms (Bacillariophyta). Because Lake Macatawa has a history of potentially harmful algal 

blooms (HABs), we anticipated potentially toxin-producing cyanobacteria, such as Microcystis, 

to grow in response to the tile effluent water, especially in the summer. Microcystis thrives on 

high SRP concentrations and warmer water temperatures in comparison to other phytoplankton 

taxa (Michalak et al. 2013). There are several reasons why this cyanobacterium may have been 

absent from the bioassays. The phytoplankton sample was collected relatively close to the mouth 
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of the Macatawa River, so currents and wind may have pushed any concentrated HAB away 

from our lake sample site, resulting in low numbers in the inoculum. Moreover, filtering the 

phytoplankton sample through 200µm to remove zooplankton may have reduced the abundance 

of colonial phytoplankton forms, such as Microcystis. Lastly, the bioassays were conducted on 

shaker tables, and calm conditions with limited water column mixing has been known to 

facilitate Microcystis dominance in a phytoplankton bloom (Chen et al. 2003; Michalak et al. 

2013). 

While the results of this study do not rule out the possibility that SRP originating from 

agricultural tile drains helps fuel HABs in Lake Macatawa, it does suggest that other factors may 

also be involved. Small scale bioassays may not accurately reflect all processes of a lake 

ecosystem (Schindler et al. 2008). Future research should focus on the potential effects of 

nitrogen (N), which is commonly included in inorganic and organic fertilizers, the N:P ratio in 

the water column, internal loading of P from the lake sediments, micronutrients, and light 

penetration through the water column. 

 The results presented in this study are a snapshot of a one-year period, so further 

investigation is necessary to better our understanding of P transport to tile drains in the 

Macatawa Watershed.  Even if effective nutrient management practices limit P application 

during the growing season, SRP and TP loads are highest during the non-growing season. P 

retention on agricultural fields during the winter and spring is crucial to reducing nutrient loss 

through tile drains. Because tile drains contribute bioavailable P to the Macatawa Watershed 

with the potential to fuel algal growth, limiting P transport by this route should be integrated into 

restoration efforts in the watershed. 
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Chapter III 

Conclusions and Synthesis 

The federal Clean Water Act was passed to regulate pollution sources among growing 

public concern for surface water quality (USEPA 2016b). Under the Act, the National Pollutant 

Discharge Elimination System (NPDES) has effectively reduced pollution from point sources 

(USEPA 2016b); however, pollution also travels to water bodies via nonpoint sources originating 

from non-specific, diffuse sources (USEPA 2016a). Relative to point sources, measuring and 

regulating nonpoint sources presents a significant challenge to addressing degraded waterways in 

the US. Unlike point sources of pollution, nonpoint sources are not subject to permits, and 

measuring pollution transport relies on selective monitoring and extrapolation through modeling. 

The quantity and type of nonpoint pollution is influenced by land use, and in much of the Great 

Lakes basin, agricultural runoff is a key nonpoint source of nutrients (Danz et al. 2007). 

Phosphorus (P) transport via agricultural runoff can cause degradation of water quality, including 

algal blooms (Carpenter et al. 1998). Classic empirical studies have demonstrated that P in 

particular controls algal growth in freshwater systems (Schindler et al. 1997), although this 

paradigm has received considerable challenges of late (Conley et al. 2009, Harpole et al. 2011). 

When a US water body is too degraded to meet water quality standards, it is listed under 

section 303(d) of the Clean Water Act (USEPA 2016c). After listing, a plan to limit pollutant 

loads to the waterway is developed. This type of plan, called a Total Maximum Daily Load 

(TMDL), allocates load reductions to point and nonpoint sources necessary to attain water 

quality standards (USEPA 2016c). Lake Macatawa and its tributaries, located in southwestern 

Michigan, are on Michigan’s 303(d) list for not attaining water quality standards for warm water 

fishery and other aquatic life, and the lake is currently under a TMDL calling for a reduction in 
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TP concentration of 72% (Walterhouse 1999). My study took place in the Macatawa Watershed 

where nearly 90% of the area’s wetlands were lost to development when European settlers 

drained the soil water and straightened tributaries (Holden 2014). The resulting increased flow of 

runoff water has led to nutrient-rich conditions throughout the watershed. Previous stream 

sediment and nutrient monitoring has shown that excess nutrients, including P, originate in the 

outer sub-basins of the watershed, which are dominated by agricultural fields of row crops 

(MWP 2012). Because subsurface tile drains are a potentially important source of nutrients from 

an agricultural field to receiving water bodies, this study was designed to investigate their role as 

a source of bioavailable P in the Macatawa Watershed. 

 

Tile Drain Total Phosphorus Loads 

Based on the measurements I conducted at the tile drain sampling sites, it is clear that 

these subsurface drainage systems can discharge significant concentrations of soluble reactive 

phosphorus (SRP) and total phosphorus (TP) in the Macatawa Watershed. However, it is not 

clear if they represent a significant load of P in the watershed relative to the other sources.  To 

more thoroughly examine the P contribution of tile drains to the watershed, I performed a series 

of load calculations to compare my own findings to TP load models developed by the Michigan 

Department of Environmental Quality (MDEQ). In 2009, the MDEQ published two reports 

examining pollutant loads and the hydrology of the watershed; Lake Macatawa’s tributaries were 

separated into 55 sub-basins. The Macatawa Watershed Hydrological Study evaluated the 

hydrologic characteristics of each sub-basin including land use and climate data (Fongers 2009a). 

A companion study, the Macatawa Watershed Modeled Pollutant Loads report, used TP 
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concentrations and land use-dependent runoff estimates to calculate the TP load originating from 

each sub-basin (Fongers 2009b).  

 
Table 1. Characteristics of Macatawa Watershed sub-basins where tile drain samples were 
collected in this study. Acres of agriculture calculated based on land use data†. 

Tile Drain Sub-basin 
Number*,† 

Sub-basin Area† 
(acres) 

Agriculture Land 
Use† 

Acres of 
Agriculture 

1 3 1715 65.4% 1122 
2 18 2605 85.1% 2217 
3 11 3424 84.8% 2904 
4 18 2605 85.1% 2217 
5 18 2605 85.1% 2217 
6 17 1440 54.5% 785 
7 25 3046 51.0% 1554 
8 14 2867 95.4% 2735 
9 4 2899 67.5% 1957 

*Fongers (2009b) 
†Fongers (2009a) 
 

 

My tile drain sample sites are located in seven of the sub-basins determined by the 

MDEQ studies (Table 1). Sites 2, 4, and 5 are all located within the same sub-basin. The area of 

the sub-basins containing my sample sites ranged from 1440 to 3424 acres, and land use 

designated as agriculture exceeded 50% in all seven locations (Table 1). In the first comparison 

between my own findings and the DEQ load models, I compared mean TP load from each of my 

tile drain sites to TP load contributed by the corresponding sub-basin. In all tile drain TP load 

calculations, sample site 9 was not included because discharge could not be measured during the 

study period. To calculate TP load for each of the other tile drain sites, I multiplied mean TP 

concentration by mean discharge rate for the tile drain pipe. The lowest tile drain TP load was 

0.2 lb yr-1 and the highest was 18.7 lb yr-1, and overall the loads from tile drains were much less 

than the TP load from each corresponding sub-basin (Table 2). For instance, most sample sites 
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supply less than 1% of the TP load to their corresponding sub-basin. This makes sense because 

one tile-drained field represents a small area of a sub-basin. 

Next, I divided the mean tile drain TP load by the number of acres drained by that system 

to calculate yield from the sub-basins. The lowest tile drain TP yield was 0.003 lb yr-1 acre-1 

while the highest was 0.288 lb yr-1 acre-1 (Table 2). Evaluating area-weighted TP load (yield) at 

each tile drain site and sub-basin is a more telling comparison than simply using the total TP load. 

Although all tile drain yields are below the values modeled for each entire sub-basin (Table 2), 

the tile drain site with the highest yield could be targeted as a large contributor of P to the 

corresponding sub-basin. For example, the yield at sample site 4 is 72% of the yield modeled in 

the sub-basin. Similarly, sub-basins with both high total TP loads and high yields relative to the 

entire Macatawa Watershed could be prioritized as regions needing the most effort toward 

limiting P transport to surface water (cf. Steinman et al. 2006). 

 
Table 2. Mean total phosphorus (TP) loads and yields calculated from my study results compared 
to TP load from the corresponding sub-basin. Tile drain percent of total sub-basin load in 
parentheses. Drain 9 not included because discharge could not be measured during the study 
period. 

Tile 
Drain 

Acres 
Drained 

Sub-basin 
Number* 

Mean Tile 
Drain TP 

Load (lb yr-1) 

Sub-basin TP 
Load* (lb yr-1) 

Mean Tile 
Drain TP Load 
(lb yr-1 acre-1) 

Sub-basin TP 
Load*  

(lb yr-1 acre-1) 
1 7 3 0.4 635 (<1%) 0.060 0.371 (16%) 
2 65 18 0.2 1040 (<1%) 0.003 0.398 (1%) 
3 80 11 2.0 1270 (<1%) 0.025 0.370 (7%) 
4 65 18 18.7 1040 (2%) 0.288 0.398 (72%) 
5 22 18 0.9 1040 (<1%) 0.041 0.398 (10%) 
6 36 17 4.2 509 (1%) 0.116 0.353 (33%) 
7 30 25 0.3 1630 (<1%) 0.009 0.535 (2%) 
8 50 14 7.1 1330 (<1%) 0.143 0.465 (31%) 
9 39 4 N/A 1460 N/A 0.505 

*Fongers (2009b) 
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 The exact land area containing functional tile drains in the Macatawa Watershed is 

currently unquantified. This makes scaling TP loads up from the agricultural field level to the 

sub-basin level, or even to the watershed level, a complicated task. However, the acres of each 

sub-basin used for agricultural operations can be calculated with land use data (Table 1). 

Because the number of acres drained by tile drains is undetermined, I estimated their percent 

load contribution by creating four scenarios with differing percentages of agricultural land 

underlain by a functional drainage system (Table 3). I calculated the TP load from tile drains in 

each corresponding sub-basin assuming all tile drains in that particular basin supply the same TP 

yield as the sample site from my study. Therefore, I multiplied the agricultural acres by the tile 

drain yield. For example, the sub-basin containing tile drain sample site 8 is classified as 95.4% 

agricultural land use. Using the mean TP load from tile drain 8, and assuming 25% of the 

agricultural land in the sub-basin has functional tile drains, the drainage systems would 

contribute 98 lb yr-1 TP (0.143 lb yr-1 acre-1 x 388 acres of agriculture). Conversely, if 100% of 

agricultural land in the same sub-basin contains functional tile drainage systems, they would 

contribute 391 lb yr-1 (Table 3). In comparison, the entire sub-basin TP load calculated by the 

DEQ was 1330 lb yr-1 suggesting that tile drains contribute a substantial amount to the modeled 

P load. 
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Table 3. Total phosphorus load (lb yr-1) contributed to each sub-basin by tile drains under various 
percentages of agriculture area potentially tile drained. Load calculated based on land use data† 
(Table 1). Tile drain percent of total sub-basin load in parentheses. Drain 9 not included because 
discharge could not be measured during the study period. 

Tile 
Drain 

Sub-basin 
Number*,† 

Mean Tile 
Drain TP Load 
(lb yr-1 acre-1) 

25% Tile-
drained 

Area 

50% Tile-
drained 

Area 

75% Tile-
drained 

Area 

100% Tile-
drained 

Area 
1 3 0.060 17 (3%) 34 (5%) 50 (8%) 67 (11%) 
2 18 0.003 2 (0%) 3 (0%) 5 (0%) 7 (1%) 
3 11 0.025 18 (1%) 36 (3%) 55 (4%) 73 (6%) 
4 18 0.288 159 (15%) 319 (31%) 478 (46%) 638 (61%) 
5 18 0.041 23 (2%) 45 (4%) 68 (7%) 91 (9%) 
6 17 0.116 23 (4%) 46 (9%) 69 (13%) 91 (18%) 
7 25 0.009 3 (0%) 7 (0%) 10 (1%) 14 (1%) 
8 14 0.143 98 (7%) 195 (15%) 293 (29%) 391 (29%) 
9 4 N/A N/A N/A N/A N/A 

*Fongers (2009b) 
†Fongers (2009a) 
 

 

Because the Lake Macatawa TMDL addresses nutrient pollution from the entire 

watershed, it is important to examine tile drain TP loads on a watershed-scale as well. Although 

the exact land area containing tile drains is unquantified, it is estimated that 25-35% of the 

watershed’s land area contains functional tile drains (Macatawa Area Coordinating Council, 

personal communication). To address TP load from tile drains on this larger scale, I applied the 

potentially tile-drained area scenarios to the whole watershed (Table 4). The mean TP yield at 

each sample site measured during my study (Table 2) was multiplied by a range of watershed 

area possibly containing functional tile drains (15-40%). Using the lowest tile drain TP yield 

(Drain 2) and the most conservative land area estimate (15%), tile drains would contribute 51 lb 

yr-1 (Table 4). However, under the highest land area scenario (40%) with the highest tile drain TP 

yield (Drain 4), these drainage systems would supply 13,180 lb yr-1 to the Macatawa Watershed 

(Table 4). Given that the TMDL for Lake Macatawa set a goal of reducing nonpoint TP sources 
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to 35,000 lb annually, tile drains could potentially contribute over 37% of the allotted nonpoint 

source TP load, assuming none of it was retained before reaching Lake Macatawa. 

 
Table 4. Tile drain total phosphorus load (lb yr-1) based on potential tile drained area (%) of the 
entire Macatawa Watershed. Drain 9 not included because discharge could not be measured 
during the study period. 

Tile Drain 15% Tile-
drained 

20% Tile-
drained 

25% Tile-
drained 

30% Tile-
drained 

35% Tile-
drained 

40% Tile-
drained 

1 1027 1370 1712 2054 2397 2739 
2 51 68 85 102 119 137 
3 431 574 718 861 1005 1148 
4 4943 6590 8238 9885 11533 13180 
5 704 938 1173 1407 1642 1876 
6 2000 2667 3334 4001 4668 5334 
7 152 202 253 303 354 404 
8 2456 3274 4093 4911 5730 6548 
9 N/A N/A N/A N/A N/A N/A 

 
 

The TP load calculations above are coarse estimates based on instantaneous 

measurements during my study, but they can shed light on potential areas for targeted efforts to 

reduce nutrient transport from agricultural areas in the Macatawa Watershed. Tile drains will not 

play as large of a role in TP load from sub-basins containing a relatively small percentage of 

agricultural land use, such as sub-basin 25, in comparison to sub-basins dominated by agriculture, 

such as sub-basin 14 (Table 1). Overall, the results of this analysis provide a rationale for 

quantifying the tile drained area in the watershed, to better estimate the overall contribution of P 

by these systems. Moreover, I found soluble reactive phosphorus (SRP) makes up a large portion 

of TP coming from tile drains in the watershed. Although load comparisons with the Lake 

Macatawa TMDL focus on TP, I can infer that P transported by tile drains includes considerable 

amounts of bioavailable SRP. Because tile drains contribute bioavailable P to the Macatawa 
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Watershed with the potential to fuel algal growth, limiting P transport by this route should be 

integrated into restoration efforts in the watershed. 

 

Potential Solutions  

Based on the results of my study, P load from tile drain systems should be included in 

efforts to the meet the Lake Macatawa TMDL goal. Tile drain discharge rates were higher during 

the winter and spring, resulting in higher SRP and TP loads during those seasons. These results 

correspond with other studies that measured seasonal tile drain P loading (King et al. 2015; Lam 

et al. 2016). Management to address high P loads from tile drains during the non-growing season 

is a potential area of research in the Macatawa Watershed. In other agricultural watersheds, 

installation of drainage control structures has shown some success in limiting P transport (Frey et 

al. 2013). In contrast to passively flowing drains, controlled tile systems can limit nutrient loads 

by restricting flow when field drainage is not crucial. As demonstrated by my study of the 

Macatawa Watershed, tile drain P loading is highly influenced by discharge rate from the outlet, 

so reducing discharge will simultaneously reduce P load. In addition, the study by Nash et al. 

(2015) found soluble P concentrations were lower in controlled tile drains than passively flowing 

drains regardless of discharge rate. If water flows through the soil column over a longer period of 

time, dissolved P can adsorb onto Fe(III) hydroxides and particulate matter instead of being 

flushed down to tile drains (Gelbrecht et al. 2005). Overall, P retention on agricultural fields 

during the winter and spring is crucial to reducing nutrient loss through tile drains. 

 In my study, the %SRP measured at tile drain outlets did not vary significantly over time, 

suggesting that bioavailable P was being transported from the tile drains to drainage ditches and 

further downstream throughout the year. Regardless of season, construction of wetlands designed 
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to receive tile drain outflow is another management solution used to retain excess P 

(Kynkäänniemi et al. 2013). The main function of a constructed wetland receiving agricultural 

runoff is the settling of sediment-bound P and nutrient uptake by wetland plants (King et al. 

2015). Therefore, most research in this area focuses on overland runoff instead of subsurface tile 

drain effluent (Tanner et al. 2005). Furthermore, there are mixed results from the few studies 

investigating a constructed wetland’s ability to mitigate P load from tile drains (Kovacic et al. 

2000; Mitsch et al. 1995). Soil characteristics and maturity of a wetland following construction 

could influence variable P retention (Tanner et al. 2005). Similar to the functions of a wetland, 

using two-stage ditches in agricultural channels is an area of ongoing research with the purpose 

of increasing P retention by allowing deposition of particle-bound P on constructed floodplains 

(Davis et al. 2015). Implementation of best management practices has the potential to limit P 

transport from tile drains to downstream freshwater systems. 

 

Summary 

 Recognizing tile drains discharge potentially very high concentrations of P to connecting 

ditches in the Macatawa Watershed is an important first step in addressing their overall role as a 

source of P.  Although the TP load calculations are coarse estimates, they indicate tile drains may 

be a significant source of P, and support the need to quantify the tile drained area in the 

Macatawa Watershed. The watershed is dominated by agriculture, and all of the sub-basins 

containing my sample sites exceeded 50% agricultural land use area. Best management practices 

designed to limit P transport from tile drains such as drainage control structures or constructed 

wetlands provide an opportunity to mitigate P load to the Macatawa Watershed. Moreover, 

management of P transport via tile drains can also be used to protect water quality in other 
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agricultural watersheds. Nonpoint sources of P from agricultural drainage are not subject to 

permits. To restore surface water quality, tile drain outlets need to be viewed as more stringently 

controlled point sources rather than passive nonpoint transport routes for nutrient pollution. 
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