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Abstract 

  Brook trout (Salvelinus fontinalis) are a cold water ectotherm whose native distribution 

includes most of eastern Canada, the upper Midwestern United States, and the eastern and mid-

Atlantic United States as far south as Georgia. The native range of brook trout in the United 

States has been reduced as a result of interspecific interactions with introduced species, and 

anthropogenic land use changes that drive water temperature changes in many of their native 

watersheds. Anthropogenic land-use changes tend to increase thermal regimes of aquatic 

systems, affecting brook trout physiology and limiting them to colder, headwater reaches. The 

threat of thermal disturbance to brook trout distribution is most pertinent in systems that 

experience temperatures near 19°; the upper margin of the species’ optimal range. Cedar Creek, 

located in Kent Co. Michigan, contains a self-sustaining population of introduced brook trout 

and experiences temperatures >19°C during the summer. Cedar Creek presents a novel system to 

understand brook trout growth at the upper limits of their preferred temperature range, and 

predict how their growth may change under further thermal disturbance. I conducted a study to 

examine the foraging habits and growth of brook trout in Cedar Creek between June and August, 

2015, and used a bioenergetics model to predict how brook trout growth would change if water 

temperatures were to increase during summer. Brook trout limited their activity during summer 

by remaining sedentary, and consumed energy dense terrestrial invertebrates, especially late in 

summer. But, the growth rate of trout that were recaptured was negative on average, and the 

bioenergetics model predicted that brook trout would lose body mass if the thermal regime of 

Cedar Creek were to warm. The major takeaway from this study is that riparian canopy, to cool 

the stream and promote terrestrial energy subsidies to brook trout diets, should be conserved in 

cool and coldwater streams. Although Cedar Creek is outside the native range of brook trout, I 
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believe that this study has provided insight into brook trout growth, and the potential impact of 

increased water temperature on thermally-stressed populations. 
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Chapter I 

Introduction 

Scientists and resource managers face the task of understanding the effects of 

anthropogenic disturbance to aquatic ecosystems. Long-term anthropogenic disturbance, such as 

carbon emissions, combined with more immediate anthropogenic threats, such as land-use 

changes, threaten the natural regimes of aquatic systems and their biota (Wiley et al. 2010). 

Combined impacts of long, and short term, anthropogenic disturbances on surface waters 

potentially will drive shifts in fish species distributions resulting in altered fish communities 

(Ficke et al. 2007; Buisson et al. 2013). Stream dwelling salmonids have already experienced 

shifts in distributions and the impact of thermal change on salmonid populations (distribution 

and abundance) has received considerable attention (McCullough et al. 2009). Model predictions 

suggest that stream-dwelling salmonids could continue to be impacted by disrupted aquatic 

regimes, particularly altered thermal and flow regimes associated with disturbance (Nakano et al. 

1996; Wenger et al. 2011).   

Native to cold North American rivers, the brook trout Salvelinus fontinalis has faced 

range reduction throughout the United States due to increased stream temperatures that have 

been linked to anthropogenic disturbance (Hudy et al. 2008; Stranko et al. 2008). As a coldwater 

ectotherm, brook trout physiology is driven by water temperature, which plays a substantial roll 

in their distribution; this is in spite of the fact that brook trout can persist in systems that range 

from 5-20°C (Power 1980). However, due to the relationship among temperature, metabolism, 

and prey consumption, brook trout growth is highest between 10 and 19°C (Hartman and Sweka 

2003). Exposure to temperatures lower than 10°C reduce brook trout growth rates, but exposure 

to temperatures that approach, or exceed, 20°C cause brook trout to experience energetic 
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changes, rapidly reducing body condition (Hartman and Sweka 2003). Therefore, increases in 

water temperature subjecting brook trout populations to temperatures at, or above, their upper 

optimum threatens individual condition factors and could potentially influence species 

distribution. 

 Fish bioenergetics models allow investigators to apply the mass balance equation 

governing energy intake and expenditure of a species, and have become a popular tool in  

fisheries biology to address questions at multiple ecological scales (Chipps and Wahl 2008; 

Hartman and Kitchell 2008). By integrating temperature, diet, and growth data, bioenergetics 

models present the most effective strategy to evaluate how changes in water temperature may 

impact fish condition factors and ultimately distributions. For example, previous applications of 

bioenergetics models have predicted that increased temperatures would reduce brook trout 

growth and fecundity (Xu et al. 2010) as well as available summer habitat (Ries and Perry 1995). 

Both studies utilized growth as a key predictive metric but not diet. In an effort to refine model 

predictions, Hartman and Cox (2008) developed a bioenergetics model designed specifically for 

brook trout. The Hartman and Cox (2008) model not only provides a brook trout specific model 

that quantifies temperature driven changes in growth, but also incorporates diet estimates that 

relate energy consumption to growth, which enhances interpretation of model outputs. This 

modeling approach will be especially important in systems where the combination of high 

existing temperatures during the summer and anthropogenic thermal threats exists. 

The Rogue River Watershed, located in west central Michigan, lies in close proximity to 

the Grand Rapids metropolitan area and provides a range of recreational opportunities. Although 

the Rogue River is managed for a coldwater fishery, warm headwater sources, warmed urban 

runoff, and water withdrawal were identified in the Rogue River Watershed Management Plan 
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(AWRI 2001) as threats to the Rogue River and its tributaries. In 2010, the Rogue River was 

recognized in the Trout Unlimited National Home Rivers Initiative, and consequent management 

decisions in the watershed have aimed at improving brook trout habitat. One tributary in 

particular, Cedar Creek, supports a self-sustaining population of brook trout and is an important 

source of cold water to the Rogue River. However, July water temperatures >20°C have been 

recorded at several locations in Cedar Creek (MDEQ 2009). Because Cedar Creek already 

reaches temperatures above the upper optimum for brook trout growth, and faces thermal threats 

from anthropogenic disturbance, it presents an excellent opportunity to understand the effects of 

increased water temperature on brook trout growth.  

Purpose 

This research addresses several objectives. Foremost, I quantified the potential impact 

increased water temperature may have on brook trout growth. To accomplish this goal, I 

collected length-weight data and diet samples of brook trout to quantify existing temporal trends 

in brook trout prey consumption, energy sources, and growth. These data were used to estimate 

brook trout prey consumption between June and August using a bioenergetics model, and helped 

determine the important dietary energy sources for brook trout in Cedar Creek during these 

months. The growth data and consumption estimates derived from the model then served as a 

baseline to compare model predictions of brook trout growth for both warmer and colder water 

temperature regimes in Cedar Creek. Additionally, to gain insight into specific prey selection I 

quantified the macroinvertebrate prey base of Cedar Creek and compared it with the diets of 

trout sampled throughout the study. Through collaboration with Schrems West Michigan Chapter 

of Trout Unlimited this data will also contribute to the broader objective of conserving brook 

trout, and ultimately coldwater habitat, in the Rogue River Watershed.  
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Scope 

The current study focused on Cedar Creek (Kent Co., MI), a small second order stream 

that faces urban and agricultural development in its headwaters. The mix of urban and 

agricultural land use is common throughout watersheds in Michigan, and is a source of thermal 

disturbance influencing brook trout distribution throughout their native range in the United States 

(Hudy et al. 2008).  Urbanization increases impervious surface area resulting in increased 

stormwater runoff and decreased groundwater recharge, which compromises a streams ability to 

buffer increases in water temperature (Paul and Meyer 2001). Agricultural practices, such as 

center-pivot irrigation systems and clearing  the riparian corridor can have similar effects on 

water temperature (Allan 2004). Currently, Cedar Creek approaches, and even exceeds, the upper 

optimal temperature limit for brook trout growth during the summer. Hartman and Sweka (2003) 

suggested that land-use changes in watersheds where this is the case could be particularly 

detrimental to brook trout populations if thermal refugia are not available. Consequently, this 

study, in a stream facing anthropogenic threats that reaches temperatures above the upper 

optimum for brook trout growth, will have implications throughout the geographic range for 

brook trout; particularly in systems where land-use practices present similar challenges to 

coldwater fisheries.   

Assumptions 

Analysis and interpretations from this work relies on the assumption that length and 

weight data, as well as prey consumption data that I recorded on brook trout during the study is 

representative of the population. Several of my analyses included data taken from fish that were 

captured by backpack electrofishing multiple times throughout the study. This introduces the 

potential for injury or a behavioral shift by trout due to electroshocking and human handling that 
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could alter growth rates, influencing experimental error. However, several studies reported the 

effects of electrofishing on salmonid growth rates to be negligible (Ainslie et al. 1998; Carline 

2001). Additionally, to reduce the probability of changes in fish behavior caused by handling-

induced stress, fish were anesthetized using the recommended concentration of AQUI-S 20E 

(AQUI-S New Zealand LTD, Lower Hutt, New Zealand) while they were handled for data 

collection. I also assumed that other chemical and physical parameters are generally similar to 

previous and future conditions. 

Hypotheses 

Based on my existing knowledge of Cedar Creek, several inferences regarding potential 

results of the study could be made. I knew that July temperatures recorded in Cedar Creek 

approached the upper optimal limit for brook trout growth during the summer (MDEQ 2009). 

Combining this baseline knowledge with information from similar studies  (Ries and Perry 1995; 

Xu et al. 2010), I hypothesized that the bioenergetics model would predict a decrease in the 

condition factor of trout with increases in water temperature. 

I also developed hypotheses regarding prey consumption and important energy sources 

based on the literature. A temporal decrease in brook trout prey consumption from spring to fall 

has been noted by several authors (Allan 1981; Utz and Hartman 2006). And, Sotiropoulos et al. 

(2006) suggested that brook trout adopt a low-risk, low-reward strategy regarding prey 

consumption when water temperature becomes high and prey availability becomes low. Thus, I 

hypothesized that brook trout would have more prey items in their diets during June than in July 

or August. Finally, terrestrial invertebrates contribute substantially to the diet and energy intake 

of brook trout during the summer (Allan 1981; Utz and Hartman 2007; Sweka and Hartman 

2008; Wilson et al. 2014). However, much of this work took place in Appalachia, and although I 
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hypothesized that terrestrial invertebrates would contribute energy to brook trout diets I was 

unsure how important they would be to the overall energy intake of brook trout in Cedar Creek. 

Significance 

My bioenergetics analysis will contribute to ongoing management efforts to conserve 

brook trout, and overall coldwater habitat, in the Rogue River Watershed; a system of local 

recreational value. Cedar Creek is one of five major coldwater tributaries to the Rogue River. 

The results from this study regarding management recommendations to preserve coldwater 

habitat have the potential to be applied to other coldwater tributaries in the Rogue River 

Watershed as well as in other cold and coolwater systems throughout the upper Midwestern 

United States (Lyons et al. 2009). In addition, quantifying temporal trends in brook trout prey 

consumption, energy sources, and growth during summer months will contribute to the broader 

body of literature that has been compiled on this subject. Brook trout diets have been studied in 

southern Appalachia (e.g. Utz and Hartman 2006; Utz and Hartman 2007; Petty et al. 2014), the 

northeastern United States (e.g. Forrester et al. 1994; Sotiropoulos et al. 2006), and the western 

United States (e.g. Allan 1981; Duffeild and Nelson 1998). These studies have led to conclusions 

about temporal trends in prey consumption and the importance of terrestrial energy contributions 

to brook trout populations in these areas. However diet studies of brook trout and quantitative 

estimates of terrestrial energy contributions in the upper Midwestern United States appear 

limited in the literature (Elwood and Waters 1969; Miller 1974). This study should contribute to 

the understanding of brook trout ecology by quantifying brook trout diets and growth patterns in 

a small midwstern stream where they have been introduced and experience temperatures near the 

upper limit of their preferred range.  
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Definitions 

 The variables quantified, analyzed, and interpretated in Chapter II of this manuscript are 

subsequently defined and explained, including mathematical formulas. 

Strauss’ Linear Index (Li) 

 I used a modified version of Strauss’ Linear Index (Strauss 1979) to compare the diet of 

brook trout sampled throughout the study with the invertebrate prey items collected in drift 

samples on corresponding sample dates. Li is calculated as: 

𝐿𝑖 =  𝑟𝑖 −  𝑝𝑖 

where ri and pi represent the percentage of prey taxon i in the diet of brook trout and the 

percentage of taxon i in the drift, respectively. Based on this formula, Li can range from -100 to 

100. Positive Li values indicate that a taxon represented a higher percentage in the diet than in 

the drift, and negative Li values indicate a taxon was more highly represented in the drift than in 

the diet. 

Instantaneous Growth Rate (G) 

 The instantaneous growth rate of each trout recaptured during the study was calculated 

as: 

𝐺 =  
[ln(𝑊𝐹) − ln(𝑊𝐼)]

𝛥𝑡
 

Where WF is the wet weight of the fish (g) at final capture and WI is the wet weight of the fish 

when initially captured, and Δt represents the number of days between capture events. 

Instantaneous growth rate represents the number of grams gained or lost by a fish per gram of its 

own body weight over a given time interval, and is reported in units per day (d-1). Brook trout 

display seasonal trends in instantaneous growth rate. Utz and Hartman (2009) reported highest 
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growth rates in June (> 0.001 d-1), potentially negative growth rates in late summer (≤ 0.0 d-1), 

and slightly positive growth throughout the winter (> 0.0 d-1). 

Fulton’s Condition Factor (K) 

 Fulton’s condition factor is: 

𝐾 = (
𝑊

𝐿3
) · 1000 

where W is the wet weight (g), and L is total length (mm), of the fish. High K values are 

indicative of good condition, while low values indicate poor condition 

Consumption (CT, P-CMAX) 

 Using a  bioenergetics modeling package (Deslauriers and Chipps 2016) developed in 

Program R (R Core Team 2016), the amount of prey consumed by each recaptured trout over the 

study period was estimated. The model estimates prey consumption parameters using the fish’s 

initial and final weight, the temperature experienced by the fish over the interval of interest, and 

the proportion of prey taxa in the diet of the fish. The basic form of the consumption function 

used in the model is: 

𝐶 = 𝐶𝑀𝐴𝑋 · 𝑃˗𝐶𝑀𝐴𝑋 · 𝑓(𝑇). 

In this equation C represents the specific consumption rate of the fish between sample dates (g·g-

1·d-1), CMAX is the maximum specific consumption rate (g·g-1·d-1) of the fish based on its mass, 

and f(T) is the temperature dependence function of consumption for the fish species. CMAX and 

f(T) are experimentally derived through laboratory feeding studies on brook trout. The model 

estimates the total mass of prey consumed (CT, g) by the fish between capture events by adding 

the mass consumed on each day based on the estimated specific consumption rate. In addition, 

the model determines what proportion of the fish’s temperature and size-driven maximum 

consumption rate was achieved between capture events based on the estimated C value. This is 
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represented in the model as P-CMAX and can range from 0-1. In the field, P-CMAX values reported 

for salmonids are typically close to 0.3 (Railsback and Rose 1999; Godby et al. 20007), and 

brook trout may consume food at even lower proportions of their maximum value (Hartman and 

Sweka 2003). Both CT and P-CMAX are reported in Chapter II, and the equations representing 

respiration and waste-production in the bioenergetics model, which factor into consumption 

estimates, are discussed in Chapter III. 

Average Specific Consumption Rate (CR) 

 After CT was estimated using the model, I independently calculated the average specific 

consumption rate (CR, g·g-1·d-1) of each trout that was recaptured during the study. CR was 

calculated as: 

𝐶𝑅 =

𝐶𝑇

𝛥𝑡
𝑊𝐴

⁄  

where Δt is the number of days between capture events and WA is the average wet weight (g) of 

the fish calculated using its wet weight at initial and final capture. 
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Chapter II 

Evaluating foraging habits, and estimating prey consumption and growth of brook trout in 

a coolwater Michigan Stream 

Abstract 

 Land use patterns can drive changes in aquatic systems that alter biotic and abiotic 

characteristics. Increased stream water temperature, due to land use changes, has influenced 

brook trout (Salvelinus fontinalis) distribution throughout the United Sates, causing concern 

about the species future. Bioenergetics models present an effective method to predict how 

continued temperature increases may influence brook trout distribution. I conducted a diet study 

on brook trout during the summer of 2015 in Cedar Creek, MI, a small, coolwater stream. I 

quantified prey availability, evaluated brook trout foraging habits, quantified a seasonal temporal 

shift in energy sources, quantified growth and condition, and modeled bioenergetics parameters 

using diet, weight, and temperature data. I found an increase in selection for terrestrial 

invertebrate taxa from June to August, which translated to a shift in energy contribution, from 

aquatic to terrestrial, over the study period. In addition, the number of prey items per trout 

stomach significantly decreased from June to August; however, the availability of aquatic prey 

did not appear to decrease temporally. A significant decrease was observed in the condition of 

fish recaptured during the study, even though the bioenergetics model estimated that trout were 

consuming prey at a rate that is higher than typically reported in the literature. I also used the 

bioenergetics model to predict changes in brook trout growth that may be associated with 

changes in the thermal regime of the system. Model estimates indicate that brook trout in Cedar 

Creek would experience an 11 to 14% decrease in weight with an average temperature increase 

of 1°C over the course of the study. My results suggest that brook trout may lower their activity 
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levels in the summer by consuming fewer prey and capitalizing on conspicuous invertebrates on 

the water surface. I suggest that protection of riparian vegetation, to enhance stream shading and 

promote food-web connectivity, should be a priority to conserve brook trout populations and 

protect the thermal regime of Cedar Creek and other coolwater systems. 
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Introduction 

 Research aimed at understanding the effects of increased water temperature on salmonids 

has become common over recent decades (McCullough et al. 2009). The Brook trout (Salvelinus 

fontinalis) has undergone range reduction throughout much of its native range in the United 

States as a result of increased water temperature driven by land use changes (Hudy et al. 2008; 

Stranko et al. 2015).  Generally, brook trout persist in streams where temperatures range from 5-

20°C (Power 1980). However, Hartman and Sweka (2003) suggested that the optimal water 

temperature range for brook trout growth is between 10 and 19°C. Understanding the 

relationship between temperature and growth can provide insight into a species distribution 

(McCullough et al. 2009). Bioenergetics models present the most effective strategy to understand 

that relationship, and can be used to quantitatively predict the impact of temperature changes on 

fish growth (Hill and Magnuson 1990). Quantifying the effects of increased temperature on 

brook trout growth will be critical in watersheds that already reach temperatures near their upper 

growth optimum in the summer (Hartman and Sweka 2003), especially if those systems face 

threats from land use changes. However, this will require system-specific knowledge, such as 

important prey sources in the diet of brook trout and their growth rates under the current thermal 

regime. 

Brook trout forage on a diverse prey base including aquatic and terrestrial invertebrates 

(Allan 1981; Webster and Hartman 2005). However, several studies have identified terrestrial 

invertebrates as a major source of both biomass and energy in the diet of brook trout, 

contributing substantial portions of energy during the summer (Utz and Hartman 2006; Sweka 

and Hartman 2008; Wilson et al. 2014). For example, terrestrial invertebrates comprised 38-47% 

of annual biomass and 51-68% of annual energy intake of brook trout in several West Virginia 
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streams, and were particularly important in the diet between May and August (Sweka and 

Hartman 2008). The seasonal increase in terrestrial invertebrate consumption by brook trout 

during the summer may be attributable to decreased availability of aquatic prey (Wilson et al. 

2014), but it may also be a result of the conspicuous nature of terrestrial invertebrates as they 

enter the stream (Wilzbach et al. 1986). Additionally, a number of studies have documented a 

decrease in the number of prey items consumed by brook trout during the summer (Allan 1981; 

Sotiropoulos et al. 2006). Lack of prey may limit consumption, and ultimately production, of 

brook trout during the summer (Ensign 1990). But, it has also been suggested that brook trout 

adopt a low-risk, low-reward energy strategy during the summer that could contribute to the 

decrease in prey consumption (Sotiropoulos et al. 2006). 

The purpose of this study was to evaluate brook trout foraging habits and determine how 

thermal disturbance would impact their growth rates; particularly during the summer in a system 

that approaches temperatures above their thermal optimum. More specifically, my objectives 

were to 1) evaluate foraging habits of brook trout throughout the summer, including prey 

selection relative to temporal prey availability, and temporal energy sources; 2) quantify the 

growth and condition of brook trout throughout the summer under the current thermal regime, 

and 3) use a bioenergetics model to estimate prey consumption, as well as predict potential 

changes to growth associated with increased water temperatures. I focused on Cedar Creek, a 

small coolwater stream located in Southwest Michigan. Cedar Creek contains a self-sustaining 

population of brook trout and faces thermal threats in its headwaters from agriculture and 

warmed surface runoff (AWRI 2001). Summer temperatures >20°C have also been recorded in 

Cedar Creek at several locations (MDEQ 2009).   
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Methods 

Study area 

This study was conducted during the summer of 2015 in Cedar Creek, a second order 

tributary of the Rogue River, Kent County, Michigan (Figure 1). As of 2001, the Cedar Creek 

basin consisted of 2,833 hectares of agricultural land, 809 hectares of developed land, and 4,047 

hectares of undeveloped land. Soil in the Cedar Creek basin is predominantly loam and sand, and 

the plant community is dominated by White Pine Pinus strobus (AWRI 2001). In addition to 

brook trout, the Cedar Creek fish community includes brown trout (Salmo trutta), mottled 

sculpin (Cotus bairdii), central mudminnow (Umbra limi), creek chub (Semotilus 

atromaculatus), blacknose dace (Rhinichthys atratulus), white sucker (Catostomus commersoni), 

and one lamprey species (Petromyzontidae) (MDEQ 2004).  

I used two reaches of Cedar Creek. For simplicity, I will refer to the two reaches as 

upstream and downstream. The upstream reach ran through a clear-cut powerline easement that 

is maintained annually, while the downstream reach was heavily forested with abundant 

overhanging vegetation. Average stream width of the two reaches was approximately 6 m, and 

average discharge at base flow was approximately 0.24 m3/s.  Hourly temperature was recorded 

from June 19 to September 1 (ONSET Hobo temperature logger model UTBI-001). The mean 

water temperature in each reach from June 19 to September 1, was 17.12°C and 15.94°C for the 

upstream and downstream reaches respectively. Under the thermal classification scheme 

developed for Midwestern streams by Lyons et al. (2009), the upstream reach is considered a 

coolwater “cold-transition” zone with a mean July temperature of 17.68°C, and the downstream 

reach is considered a coldwater zone with a mean July temperature of 16.18°C.     
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Field Sampling. 

  I collected brook trout on seven dates between June 19 and August 26, 2015 using 

backpack electrofishing equipment (model APB-3, Electrofishing Systems, LLC, Madison, 

Wisconsin).  Each brook trout was anesthetized using AQUI-S 20E (AQUI-S New Zealand LTD, 

Lower Hutt, New Zealand), measured for total length (± 1mm) and wet weight (±0.01g), and gut 

contents were removed using gastric lavage. An additional sample event was conducted on 

September 1, during which only length-weight data was collected. Gastric lavage involved 

flushing a constant flow of water into the stomach of the trout using a 60-cc syringe and vinyl 

tubing, causing gut contents to be regurgitated. All gut contents were filtered through a 250-μm 

sieve and immediately transferred to 70% ethanol. Invertebrate taxa were later enumerated and 

identified to the lowest possible taxonomic level using Burch (1962), Borror et al. (1989), 

Peckarsky (1990), and Merritt et al. (2008). Although I did not estimate the efficiency of the 

gastric lavage procedure, it has been shown to be an effective method of flushing the stomach 

contents of live fish (Foster 1977), and the sampling equipment and technique were consistent 

among all sample dates. During all June and July sample dates, each trout was marked with a 

unique elastomer tag for identification during subsequent sample events. In addition, a subset of 

10 brook trout, captured during the first two sample dates in June, were surgically equipped with 

radio-transmitters (Advanced Telemetry Systems, Isanti, Minnesota) for an ongoing telemetry 

study. The mean instantaneous growth rate of recaptured trout, was -0.0002 d-1 and -0.0019 d-1 

for elastomer and radio-tagged fish respectively. These values were not statistically different (t-

test, P=0.13, t=-1.68), so radio tagged fish were included in all of my analyses. 

 Gut contents were sampled on at least one morning and one evening during each month 

with the intent of representing brook trout prey consumption over a diel cycle. Morning and 
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evening samples did not occur on the same date to avoid stressing fish, but were always within 

one week of each other (Table 2.1).Care was taken to limit unnecessary handling of trout when 

air temperature was >21°C. For this reason, total sample size, and the number of gut samples 

taken on each sample date were not always equal. Due to the downstream migration of several 

fish that were radio-tagged in the upstream reach, I elected to survey the downstream reach twice 

during July to increase probability of recaptures. On August 25, a deliberate attempt was made to 

recapture all radio-tagged trout that had been tracked throughout the duration of the study, and 

for this reason both reaches were electrofished on this date. 

 To quantify prey availability, and evaluate the selectivity of trout for available prey 

items, drift samples were collected for four hours leading up to electrofishing on all sample 

dates, except September 1. Drift samples were collected hourly for four hours using three drift 

nets anchored in a riffle section of the stream spanning the thalweg, so the top of the nets were 

above the water surface. This yielded twelve (n=12) individual drift samples on each sample 

date. The water depth and velocity was recorded in front of each net so the drift density 

(invertebrates/m3) could be quantified on each date. We collected drift during the respective 

crepuscular period, when behavioral drift tends to increase (Elliot 1969), on all morning and 

evening sample dates throughout the study (Table 1). All samples were filtered through a 250-

μm sieve and immediately transferred to 70% ethanol; invertebrates were later enumerated and 

identified to the lowest possible taxonomic level.  

Evaluating Foraging Habits 

A variety of indices can be used to compare the diet of a predator with the prey items that 

are available (Lechowicz 1982). I used a slightly modified version of Strauss’ Linear Index (Li, 

Strauss 1979) to compare the percentage of taxa in the drift to the percentage of taxa in the gut 
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contents of trout, on each sample date. I used the formula Li=ri-pi, where ri and pi are the 

percentage of each taxon in the gut contents and in the drift, respectively. The percentage of each 

taxon in the drift (pi) was calculated by dividing the total number of each taxon collected by the 

total number of invertebrates collected over the four hour sample period and multiplying by 100. 

Similarly, the percentage of each taxon in the gut contents (ri) for each sample date was 

calculated by dividing the total number of invertebrates from each taxon in the gut contents of all 

fish by the total number of invertebrates in the gut contents of all fish and multiplying by 100. 

For the purpose of evaluating selectivity, all parts of invertebrates that could be identified were 

included in the analysis, including head parts, legs, wings, etc. However, to minimize the 

probability that multiple body parts from one partially digested invertebrate were interpreted as 

separate prey items, I matched body parts throughout the enumeration process when possible. 

Growth, Condition, and Modeling Bioenergetics 

I calculated the instantaneous growth rate (G, d-1) for all recaptured trout using the 

formula G = [ln(WF)-ln(WI)]/Δt], where WF, WI are the trout’s final wet weight (g), initial wet 

weight, and Δt is the number of days between capture events. G standardizes for trout size and 

the number of days between capture events, providing a metric to evaluate growth of recaptured 

trout. Fulton’s Condition Factor (K) was calculated for all trout sampled throughout the study 

using the formula K = (W/L3)*1000, where W and L are the wet weight (g) and total length (mm) 

of the trout at the time of the sample.  

Using the Fish Bioenergetics 4.0 application in Program R (Deslauriers and Chipps 2016) 

and a bioenergetics model developed for brook trout (Hartman and Cox 2008), I estimated the 

total consumption (CT, g), and the proportion of maximum consumption (P-CMAX) for each 

recaptured brook trout between sample events. CT represents an estimate of the entire mass (g) of 
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prey consumed by a trout between capture events, and P-CMAX estimates what proportion of the 

trout’s temperature and size-driven maximum consumption rate that was achieved between 

capture events. The combination of growth data and consumption estimates, specifically P-CMAX, 

can provide insight into the limitations placed on fish in a particular system (e.g. is growth 

limited by temperature or prey availability). Bioenergetic model inputs include temperature (°C), 

energy density of brook trout (Joules/g, wet weight), proportion of prey taxa in the diet, by mass, 

and the energy density of prey taxa in the diet (J/g, ww). I elected to use the mean daily water 

temperature from the downstream reach to calibrate the model for two reasons. First, 12 of the 13 

brook trout that were recaptured were found in the downstream reach. Second, using mean daily 

temperature recorded at the downstream reach between June 19 and September 1 yielded a 

model simulation period of 75 days that provided more conservative model predictions of final 

weight due to the cooler temperatures at the downstream reach (compared to the upstream 

reach). The energy density of brook trout was kept constant at 6473.5 J/g-1 (Hartman and Sweka 

2003) throughout the simulation. Because the proportion of prey taxa in the diet is determined 

based on mass, only head capsules and entire prey items were used to calculate the mass of taxa 

in the diet. Dry mass for each taxon was calculated based on published length-mass or head-

capsule width-mass equations (Smock 1980; Sage 1982; Sample et al. 1993; Benke et al. 1999; 

Sabo et al. 2002). For taxa with no published equations, I used invertebrates that had either been 

collected in drift samples for this project, or previously frozen drift samples from nearby streams 

to calculate my own length-mass and head-capsule width-mass equations. Several taxa present in 

trout diets were not found in drift samples (e.g. Oligochaeta, Arionidae, and Gastropoda), so I 

directly dried, and weighed each individual of these taxa found in diet samples to estimate dry 

mass. The total dry mass value for each taxon was then converted to wet mass, for the model, 
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using taxon-specific conversion factors from the literature (Brodman and Reyer 1999; Grey 

2005). I determined the proportion of each prey taxon in the diet by combining the wet mass of 

each taxon that was consumed in the morning and evening samples in each month. This method 

increased the sample size with which prey taxa proportions were estimated for the model, and 

was more representative of consumption over a diel period. Because drift and gut samples were 

not collected on September 1, I assumed that the proportions of prey taxa from August 25 and 26 

were representative of trout diets on the final day of the simulation period. Determining prey taxa 

proportions using this method yielded estimates of the proportion of each taxon in the diet for 

model days 1, 34, and 75. Energy densities of each prey taxon were taken from the literature 

(Cummins and Wuycheck 1971; Grey 2005), and assumed to be constant throughout the 

simulation period. I also assumed that each prey item was completely digestible, which made the 

estimates of P-CMAX and CT conservative. Based on the model estimates of CT for each 

recaptured brook trout, average specific consumption rate (CR, g∙g-1d-1) was calculated by 

dividing CT by the number of days between capture events, and subsequently dividing by the 

average weight of the trout between capture events. Calculating CR standardized for fish size, 

and number of days between capture events, providing a metric to evaluate the consumption rate 

of recaptured brook trout.  

 In addition to estimating P-CMAX and CT for the empirical data, a main objective of this 

study was to determine the metabolic costs to brook trout associated with a range of water 

temperature changes. To predict these metabolic costs I first used linear regression to estimate a 

power function expressing the length-weight relationship for the brook trout population in Cedar 

Creek, based on all of the brook trout sampled during the study (P<0.05, R2
Adj=0.988 ). Using 

this relationship I estimated the mass of a 190.0 mm fish, which was the mean length of all brook 
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trout captured during June, to be 66.5 grams. Maintenance P-CMAX and CT values for a 66.5-g 

brook trout over the 75 day study period were estimated by fitting the model to an initial and 

final weight of 66.5 g. Subsequently, I ran a series of model simulations evaluating the change in 

final weight that would occur with average daily water temperature changes (ΔT) of -2°, -1°, +1°, 

and +2°C assuming that either the estimated maintenance P-CMAX or CT values remained 

constant. The model was fit to the estimated maintenance P-CMAX value across the range of 

average water temperature changes providing 4 predictions of final weight; one for each average 

change in water temperature. Similarly, the model was fit to the estimated maintenance CT value 

across the range of average water temperature changes resulting in 4 different predictions of final 

weight. The two different constant consumption scenarios have different ecological relevance. 

Assuming that P-CMAX remains constant means that the fish will change its consumption relative 

to the change in water temperature during each simulation (e.g. CT will change for each 

simulation at a different temperature). Alternatively, assuming CT remains constant means that 

the fish will not change its consumption relative to the change in water temperature (e.g. P-CMAX 

will change for each simulation at a different temperature).To simulate the desired change in 

average daily water temperature I added, or subtracted, that value from the observed water 

temperature on each study day. For example, to simulate an average water temperature change of 

1°C over the 75 day study, I added 1 to the water temperature value on all 75 days in the model.  

 Lastly, to understand how the energy sources in brook trout diets shift temporally, I 

calculated the energetic contribution of each prey taxon from the diet samples taken in each 

month, and categorized each taxon as aquatic, terrestrial, or non-obligate. The energy density 

(J/g wet weight) of each taxon was multiplied by the combined wet mass (g) of that taxon that 

was consumed during the morning and evening sample event in each month, providing the 
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energy (Joules) contributed by each taxon to the diet of brook trout during each month. For each 

month, the energy contributed by each taxon was then divided by the total energy (Joules) 

consumed by brook trout during that month. This calculation provided the proportion of energy 

contributed by each taxon during the sample dates in each month. Taxa were then categorized 

based on their ecology and life-history information using Borror et al. (1989), and McCafferty 

and Provonsha (1998). Aquatic taxa were those that required water for the completion of a life 

cycle. Taxa were categorized as terrestrial if they did not require water to complete a life cycle. 

Non-obligate taxa were those that rely on aquatic environments for prey (e.g. Hymenopterans) or 

use moist or damp soil throughout their life-cycle (e.g. terrestrial Coleopterans). Additionally, 

partially digested prey items that could only be identified to order were categorized as non-

obligate if their order contained both aquatic and terrestrial families.  

Statistical Analyses 

All statistical computing was performed in Program R version 3.1.3 (R Core Team 2016). 

Data were tested for normality using Shapiro-Wilk normality test, and significance was 

determined at the α=0.05 level. I used a Kruskal-Wallis test to examine difference in invertebrate 

drift density among months based on the morning drift samples taken at the downstream reach. A 

post-hoc, pairwise Wilcoxon test was used to determine significant differences among groups 

when they were detected. After a square-root transformation to meet normality assumptions, a 

one-way ANOVA was used to test for differences in the number of prey items found in the 

stomachs of brook trout among months. Post-hoc comparisons were made using a pairwise t-test 

to determine significant differences among groups when they were detected. A paired, one-tailed 

t-test was used to test the hypothesis that the condition factor (K) of brook trout that were 

recaptured throughout the study would decrease between their initial and final capture events. 
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Results 

Evaluating Foraging Habits 

 Invertebrate drift density was significantly lower in July than in June or August (P=0.05, 

χ2=12.66, d.f.=2, Figure 2.2).The mean (±SE) drift density of drift samples collected on June 22 

between 04:00:00 and 07:00:00 was 1.54 (±0.16) invertebrates/m3. Mean drift density on July 21 

decreased to 1.03 (±0.08) invertebrates/m3 during the same time interval. Mean drift density was 

2.16 (±0.25) invertebrates/m3 on August 25; samples were collected between 05:00:00 and 

08:00:00 because of the later sunrise on this date. The increase in drift density in August was 

primarily due to the increase in the number of Baetis nymphs collected in each 1 hour drift 

sample. The mean (±SE) number of Baetis nymphs in the 12 drift samples collected in June and 

July was 66.16 (±9.64) and 56.83 (±5.59) respectively. In August, mean number of Baetis 

nymphs per sample rose to 147.25 (±30.78). 

 A total of 90 brook trout ranging in total length from 75 to 288 mm, and ranging in wet 

weight from 6.30 to 261.10 g, were captured throughout the study. Of these, 59 trout ranging in 

total length from 121 to 288 mm, and ranging in wet weight from 19.97 to 261.10 g, were 

sampled for gut contents. The mean (±SE) number of prey items per trout stomach was 19.3 

(±4.7) in June, ranging from 0 to 121. In July, the mean number of prey items per stomach was 

8.1 (±2.2), and ranged from 1 to 29. And in August, the mean number of prey items per stomach 

was 6.3 (±2.4), ranging from 0 to 37. An ANOVA performed on square-root transformed prey 

item data showed a significant difference in prey consumption among months (P=0.043, F=3.34, 

Figure 2.3). The number of prey items per stomach was significantly higher in June than in 

August. However, there was no significant difference in the number of prey items per stomach 

between the months of June and July, or between July and August.  
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 Taxa selected by brook trout rarely represented a substantial percentage of the 

corresponding drift (pi), and were often taxa that I’d expect to find on the water surface. In June, 

brook trout selected primarily aquatic taxa, but showed selection for adult aquatic life stages and 

occasionally selected some terrestrial and non-obligate prey. On June 19, adult hydropsychids 

were heavily selected but only comprised 0.42% of the drift, and brook trout showed selection 

for adult dipterans that only made up 0.98% of the drift. Additionally, a family of terrestrial 

gastropods (Arionidae) were the third most selected taxa on June 19, but were not collected in 

the drift (e.g. pi=0) and non-obligate, adult curculionid beetles were the second most selected 

taxa but made up only 0.28% of the drift. Other adult coleopterans were fourth most selected on 

June 19, but comprised only 0.41% of the drift. On June 22, brook trout again showed strong 

selection for taxa on the water surface. Adult Baetis and adult hydropsychids were the top two 

selected taxa and were 0.47 and 0.11% of the drift respectively. Adult dipterans were the fifth 

most selected taxa, making up 0.47% of the drift; and ants (Formicidae) were fourth most 

selected but were only 1.45% of the drift. On June 23, brook trout seemed to select taxa below 

the water surface, including Ceratopsyche larvae, chironomid larvae, Cheumatopsyche larvae, 

and Asellidae, but these taxa only made up 0.26, 1.27, 0.03, and 0.12% of the drift respectively. 

On July 21, brook trout again showed selection for taxa on the water surface. Adult 

hydropsychids, adult Tricorythodes, and adult curculionids were selected for, but only comprised 

2.40, 0.04, and 0.09% of the drift respectively. On July 23, selection for non-obligate and 

terrestrial taxa was high, and brook trout again selected taxa that were likely on the water 

surface. Non-obligate adult beetles were selected for, including adult chrysomelids and adult 

curculionids, which weren’t collected in any drift samples. Brook trout also showed a relatively 

high selection for ants, which were 2.04% of the drift, and selected a family of terrestrial 
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stinkbugs (Pentatomidae) that were not collected in drift samples. In August, brook trout selected 

primarily terrestrial taxa on both sample dates, and these taxa were rare in the drift. On August 

25, terrestrial plant hoppers (Cicadellidae), psocids (Psocoptera), moths (Lyonetidae) and 

hemipterans were all selected for, but none comprised more than 1.50% of the drift. On August 

26, four terrestrial taxa, Flatidae, Cercopidae, Aradidae, and Acrididae, were selected for, but 

none of these taxa were collected in drift samples. 

Alternatively, the five least selected taxa on each sample date were often relatively 

abundant taxa found in drift samples. On June 22 and August 26 the five least selected taxa 

(Table 2.2) represent the five most abundant taxa in the drift. On June 19, June 23, July 23 and 

August 25, the five least selected taxa include four of the five most abundant taxa in the drift. 

Baetis nymphs were the fifth most abundant prey taxa in the drift on June 19 (7.45%) and on 

June 23 (4.10%), but are not represented in the five least selected taxa. On July 23, chironomid 

larvae are the fourth most abundant taxa in the drift (5.67%), but were not represented in the five 

least selected taxa. And on August 25, amphipods were the fifth most abundant taxa the in drift 

(2.94%), but were not represented in the five least selected taxa. The one exception to this trend 

was July 21, when only Baetis nymphs and adult chironomids, the two must abundant taxa in the 

drift, were represented in the five least selected taxa. On this date, chironomid larvae were third 

most abundant in the drift (11.52%); chironomid pupae were fourth most abundant (3.98%) and 

Ceratopsyche larvae were fifth most abundant (3.36%), but none were represented in the five 

least selected taxa.  

Similar to the temporal shift in selectivity, terrestrial taxa became more important as an 

energy source from June to August (Figure 5). In June, aquatic taxa contributed 56.3% of energy 

to the diet of brook trout, terrestrial taxa contributed 29.3%, and non-obligate taxa contributed 
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14.5%. Brook trout obtained 64.7% of their energy from aquatic taxa in July as well as 21.8% 

from terrestrial taxa, and 13.5% from non-obligate taxa. In August, brook trout obtained 6.7% of 

their energy from aquatic taxa, 68.5% from terrestrial taxa, and 24.8% from non-obligate taxa. 

Growth, Condition, and Modeling Bioenergetics 

Water temperature at the upstream reach ranged from 13.30°C to 22.30°C with an 

average temperature of 17.12°C over the study period. Water temperature reached daily 

maximum values >19°C on more than 50% of the days at this reach. At the downstream reach, 

water temperature ranged from 12.48°C to 19.98°C with an average temperature of 15.94°C over 

the study period. Temperature at the downstream reach peaked at >19°C, on 21% of study days.  

 A total of 13 trout were recaptured during the study (Table 2.3). Upon their initial 

capture, the 13 trout ranged in wet weight from 32.34 to 171.43 g, and at their final capture they 

ranged in weight from 32.37 to 160.02 g. Initial K of the 13 recaptured trout ranged from 0.094 

to 0.126 with a mean (±SE) value of 0.103 (±0.002). Final K ranged from 0.085 to 0.101 with a 

mean value of 0.094 (±0.001). K of the 13 recaptured trout decreased significantly between their 

initial and final capture events (P<0.05, t=-3.75, Figure 3). Furthermore, the mean (± SE) G of 

all trout recaptured during the study was -0.0009 (± 0.0005) d-1, and 8 of the 13 trout that were 

recaptured displayed a negative G. Model estimates of P-CMAX for recaptured trout ranged from 

0.322 to 0.493 between capture events, with a mean (± SE) value of 0.410 (± 0.016). Recaptured 

trout displayed CR values ranging from 0.022 g∙g-1∙d-1 to 0.047 g∙g-1∙d-1 with a mean (± SE) value 

of 0.031 (± 0.002) g∙g-1∙d-1.  

 Model estimates of the maintenance P-CMAX and CT values for a 66.5-g brook trout were 

0.421 and 153.247 g respectively. A maintenance P-CMAX value of 0.421 is only slightly higher 

than the mean P-CMAX value observed for the 13 trout recaptured during the study (0.410). 
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Similarly, based on maintenance CT, the maintenance CR of a 66.5-g brook trout between June 19 

and September 1 was approximately 0.031 g∙g-1∙d-1, which is the same as the mean CR value of 

the 13 recaptured trout. Growth of a 66.5-g brook trout would increase with a decrease in water 

temperature over the simulation period, and growth would be negative with an increase in water 

temperature over the simulation period (Figure 2.5).  Holding maintenance CT constant, a 66.5-g 

brook trout would increase in weight by approximately 26% to 83.5 g with a decrease in average 

water temperature of 2°C, and decrease in weight by approximately 20% to 53.4 g under the 

opposite scenario. Final weight would increase by approximately 12% to 74.7 g with a decrease 

in average water temperature of 1°C, and final weight would decrease by 11% to 59.2 g if 

average water temperature increased by 1°C and CT remained constant. The effect of a change in 

temperature on the final weight of a 66.5-g brook trout over the study period is slightly amplified 

when maintenance P-CMAX is held constant at 0.421. Under this scenario a 2°C decrease in water 

temperature will result in a 29% increase in final weight to 85.9 g, and a 2°C increase in water 

temperature will yield a 26% decrease in final weight to 49.5 g. Average water temperature 

changes of -1°C and 1°C would yield final weight values of 76.3 g and 57.2 g; a 15% increase 

and 14% decrease respectively when P-CMAX is held constant. 

Discussion 

 Coldwater fisheries will continue to face changing environmental conditions due to shifts 

in land use, groundwater resources, and regional climates. Evaluating the impacts of these 

changes on populations at the margins of their native range may offer one way to develop 

predictions for future changes in populations of coldwater species.  Alternatively, systems like 

Cedar Creek that support introduced populations, but are near the upper temperature limits for 

species such as brook trout provide a natural experiment, particularly to study the influence of 
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temperature change. The reduction in the condition factor of brook trout in Cedar Creek during 

the current study provides insights into the physiological state of thermally stressed populations 

and offers a partial explanation of how thermal disturbance may impact these populations.  

 Brook trout in Cedar Creek consumed a variety of prey items over the course of the 

study, including aquatic and terrestrial taxa. Substantial diversity in brook trout diets has been 

reported elsewhere (Allan 1981; Forrester et al. 1994). However, Allan (1981) found that taxa 

common in brook trout diets were often correspondingly abundant in the drift. My results show 

the opposite trend; on all seven dates that diet samples were collected, selected prey taxa rarely 

represented more than 2% of the corresponding drift. This was driven by a disproportionate 

selection for taxa that I’d expect to find on the water surface, but were rarely captured in drift 

samples. For example, adult hydropsychids, adult Baetis, and adult dipterans as well as several 

adult, non-obligate beetle families were selected by brook trout throughout the study. In addition, 

brook trout selected terrestrial taxa, particularly during August, including several families of 

homopterans, psocids, orthopterans, and hemipterans. Because my drift nets were anchored in 

the stream so that the top of the net was above the water surface, I would expect to capture 

invertebrates drifting on the water surface. One reason I may not have captured more terrestrial 

and non-obligate taxa is that my drift nets were always centered about the thalweg, which was 

often close to the center of the stream channel and not near the margin where these invertebrates 

fall into the water. However, the adult aquatic life stages that were selected by brook trout were 

also rarely captured in drift nets. I would expect adult aquatic invertebrates to be distributed 

across the entire surface of the stream, but be concentrated in the thalweg where the nets were 

placed. Several authors have reported the selection for taxa on the water surface by cutthroat 

trout due to the conspicuous nature of these prey items, and also noted that surface invertebrates 
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account for low proportions of the drift relative to their proportion in trout diets (Wilzbach et al. 

1986; Young et al. 1997). This supports my observation of selection for taxa on the water surface 

by brook trout, despite the fact that these taxa were rare in the drift, and suggests that brook trout 

may target conspicuous prey items drifting on the surface during the summer.  

The shift in selection, from aquatic to terrestrial, translated to brook trout in Cedar Creek 

deriving approximately 69% of their energy from terrestrial taxa in August. Webster and 

Hartman (2005) noted that brook trout consistently consumed aquatic prey, particularly Diptera 

larvae that remained abundant throughout the summer, but that terrestrial prey items contributed 

approximately 75% of biomass consumed by brook trout in September. My data suggests a 

similar trend; brook trout selected for chironomid pupae on August 25 and adult dipterans on 

August 26, but 69% of the energy consumed by brook trout came from terrestrial sources in 

August. Utz and Hartman (2007) also observed substantial energy contributions from terrestrial 

sources to the diet of brook trout in several West Virginia streams. Terrestrial energy 

consumption in their study was highest in May and June, and remained greater than aquatic 

energy consumption throughout most of the year. Sweka and Hartman (2008) modelled energy 

inputs of brook trout and noted terrestrial energy contributions between 51 and 63% on an annual 

scale, and terrestrial energy contributed almost 70% to overall brook trout energy intake during 

May. I observed the highest terrestrial energy contribution to brook trout diets in August, but my 

study was limited to three months and my sample size was small relative to Utz and Hartman 

(2007) and Sweka and Hartman (2008). Had I sampled over a longer temporal scale, or during 

multiple years, I may have seen higher energy contributions from terrestrial sources throughout 

the summer as well as into the fall. Nonetheless, my estimates of substantial terrestrial energy 

contributions to brook trout diets during the summer are comparable to those reported in the 
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studies listed above, and lend support to the importance of terrestrial invertebrates in brook trout 

diets. 

Interestingly, terrestrial invertebrate consumption by brook trout was linked to a decrease 

in the availability of aquatic prey during the summer by Wilson et al. (2014), and other 

investigators have suggested that decreased prey consumption during the summer may also be 

due to decreased aquatic prey availability (Allan 1981, Ensign 1990). After observing increased 

terrestrial invertebrate consumption and decreased prey consumption by brook trout from June to 

August, Sotiropoulos et al. (2006) suggested that these trends may be due to brook trout adopting 

a low-risk, low-reward energy strategy under low-flow, high-temperature conditions. The low-

risk, low-reward strategy involves brook trout reducing energy expenditure by remaining 

sedentary in deeper pools, and consuming fewer prey items when water temperature is high and 

drift density is low. Sotiropoulos et al. (2006) reported that drift density decreased from June to 

August and ranged from 0.04 to 0.84 invertebrates/m3. In Cedar Creek, drift density remained 

high in August (>2.0 invertebrates/m3), but brook trout may adopt a similar low-risk, low-reward 

energy strategy by consuming fewer prey items and targeting conspicuous surface invertebrates. 

There are several elements that may be driving the adoption of a low-risk, low-reward strategy 

by brook trout in Cedar Creek, despite relatively high drift densities. First, evidence suggests that 

the size-distribution of aquatic invertebrate communities decreases from May to August 

(Mittelbach 1981). This is driven by the completion of invertebrate life cycles as water 

temperatures warm throughout summer, and results in an aquatic community that is comprised of 

early-instar, small invertebrates when water temperature peaks late in summer. Second, 

terrestrial taxa are more energetically dense than aquatic taxa (Cummins and Wuycheck 1976; 

Grey 2005) and, in general, taxa on the water surface may be more conspicuous than those below 
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the surface (Wilzbach et al. 1986). Combining these two elements, it seems energetically 

advantageous for brook trout to lower their activity levels, when water temperatures are high, by 

remaining sedentary and targeting conspicuous invertebrates on the water surface, rather than 

actively foraging on inconspicuous aquatic invertebrates. Water temperatures throughout Cedar 

Creek regularly approached 19.0°C, which would cause thermal stress and drive the basic 

metabolic rate of brook trout up. Brook trout in Cedar Creek consumed fewer prey items and 

targeted conspicuous invertebrates on the water surface throughout summer, especially during 

August when drift density was highest. And, the increase in drift density in August was driven by 

increased abundance of Baetis nymphs, a relatively small aquatic invertebrate. Consequently, it 

seems like brook trout in Cedar Creek attempted to limit the negative energetic impacts of high 

water temperatures by consuming fewer prey items and targeting conspicuous surface 

invertebrates rather than consuming smaller, abundant aquatic prey (e.g. a low-risk, low-reward 

energy strategy). 

The mean estimate of P-CMAX (0.410) for all trout recaptured throughout the study is 

relatively high compared to commonly reported values (≈0.300 reported by Allan 1981; 

Railsback and Rose 1999; Godby et al. 2007) and does not correspond to the decreased prey 

consumption, the negative average G, or the decrease in body condition that I observed. Sources 

of error that could contribute to inaccurate estimates of consumption by bioenergetics models 

include consumption-dependent error, changes in fish activity levels due to prey base, and 

physiological adaptations (Chipps and Wahl 2008). Consumption dependent error results in the 

overestimation of consumption for fish feeding at low rations (see Chipps and Wahl 2004) and is 

the result of modeling consumption dependent terms in the bioenergetics model as fixed 

proportions of energy consumed, rather than accounting for ration size. The bioenergetics model 



45 
 

I used accounts for ration size when modeling egestion and excretion using the equation 

produced by Elliot (1976). However, a decrease in specific dynamic action associated with low 

feeding rates could contribute to model inaccuracy. For example, a depression in specific 

dynamics action of western mosquitofish (Gambusia affinis) fed low rations yielded higher than 

expected consumption estimates using a traditional bioenergetics model like the model used here 

(Chipps and Wahl 2004). Brook trout in Cedar Creek seemed to consume prey at low rations 

throughout most of the summer, so a decrease in specific dynamic action could have contributed 

to the high consumption estimates produced by the model.  

Changes in predator activity levels that result from prey population dynamics could also 

yield model inaccuracy. Predator activity levels can vary with prey size and morphology (Selch 

and Chipps 2007), as well as prey composition and abundance (Rennie et al. 2005). Selch and 

Chipps (2007) noted that largemouth bass (Micropterus salmoides) fed large bluegill (Lepomis 

macrochirus) had increased activity levels, associated with capturing larger prey, which 

contributed to underestimation of prey consumption by a bioenergetics model. Rennie et al. 

(2005) identified differences in the growth rate of two populations of yellow perch (Perca 

flavescens) in lakes with different prey bases. Interestingly, the lake where yellow perch grew 

faster they consumed fewer prey, but had much lower activity levels associated with finding prey 

because invertebrate density was higher. It seems that brook trout in Cedar Creek adopted a low-

risk, low-reward energy strategy to lower their activity levels when water temperatures were 

high, and aquatic prey size distribution decreased. This explanation provides an additional source 

of error that may have contributed to high consumption estimates by the model. 

My results emphasize the importance of terrestrial prey items in the diet of brook trout 

during the summer. Energetically-dense, terrestrial taxa seem to provide essential meals for 
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brook trout when they may adopt behavioral shifts due to high temperatures and decreased prey 

size-distribution. Despite consumption of energy-dense, terrestrial taxa, recaptured trout had a 

negative average G, suggesting energy supplementation by terrestrial invertebrates was 

insufficient to meet temperature-driven metabolic demands during the summer of 2015. I should 

note that Utz and Hartman (2009) also reported negative brook trout growth rates in August; 

however, my average G of -0.0009 d-1 was less than the lower limit of their 95% confidence 

interval (≈ -0.0005 d-1) of reported growth rate values. Although I did not evaluate the 

relationship between CR and G statistically, it seemed as though recaptured brook trout with 

higher CR values grew at a faster rate. Also, I observed wide variation in the foraging habits of 

individual brook trout that were sampled throughout the study. For example, on June 23, the 

average number of prey items consumed by brook trout was 20.7, which included two trout with 

0 prey items in their stomachs and one trout with 121 prey items in its stomach. Similarly, Utz 

and Hartman (2006) observed the majority of sampled trout consuming few prey items while 

several trout that consumed many prey items drove up the mean value of prey items present in 

trout stomachs. I suspect that the variability associated with individual foraging habits resulted in 

values of G ranging from -0.00433 to +0.00239 /d. These data suggest that although mean values 

indicate negative trends in growth, some fish in the population may consume prey at high rates, 

and exhibit positive growth. 

 A main objective of this study was to evaluate the potential consequences of altered 

thermal regimes on the growth of brook trout to aid watershed management efforts. When 

maintenance consumption values were held constant and temperature was increased by only 1°C, 

the model predicted a decrease in weight between 11 and 14% for a 66.5-g brook trout over the 

course of the study. Because prey consumption is partially, temperature-driven, I’d expect brook 
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trout to consume prey at a similar P-CMAX, and change their CT, if water temperatures were 

altered. But, I saw that brook trout seemed to limit their energy expenditure by consuming fewer 

prey items when water temperature was high; a strategy that would be exacerbated under an 

increased thermal regime (e.g. they would achieve a lower P-CMAX at higher temperatures but CT 

would remain similar). Thus, the hypothetical scenario that held CT constant may provide a more 

realistic expectation of how brook trout growth would respond to increased water temperature in 

the summer. Other studies have also suggested that warmer stream temperatures will negatively 

impact brook trout growth (Ries and Perry 1995, Xu et al. 2010) and fecundity (Xu et al. 2010). 

However, Ries and Perry (1995) point out that the true advantages and disadvantages that brook 

trout may experience as a result of thermal disturbance are highly dependent on the existing 

thermal regime of the system. My predictions suggest that growth during the summer would be 

negatively impacted if water temperatures were to rise, particularly in streams that may already 

approach temperatures near the upper optimal limit for brook trout. Increased water temperature 

could potentially increase growth rates during winter and spring, but Xu et al. (2010) suggested 

that these gains would likely be negated by the decreases in growth rate that would occur during 

summer and autumn. 

A disadvantage of the bioenergetics model employed here is that it does not allow for 

error associated with its outputs to be easily quantified. Maintenance P-CMAX and CR values for a 

66.5-g brook trout over the study period were similar to the observed values for all recaptured 

trout. However, brook trout seemed to lower their activity levels by consuming fewer prey items, 

which may have caused the consumption estimates to be slightly high. The bioenergetics model 

was calibrated under several assumptions, including the assumption that all prey were digestible, 

and that all fish experienced the cooler thermal regime of the downstream reach. Although 12 of 



48 
 

the 13 recaptured trout were recaptured in the downstream reach, I confirmed that brook trout 

remained in the upstream reach throughout summer, based on August electrofishing samples. It 

is likely that brook trout throughout the system experience a broader thermal regime which 

would translate to greater variation in estimated parameters, especially predicted growth. My 

assumptions and model parameters probably provide the most conservative predictions of the 

impacts of thermal disturbance on brook trout growth in Cedar Creek.   

Though it is difficult to accurately predict how potential changes in climate may impact 

the temperature of Cedar Creek, the data presented here suggests protecting Cedar Creek’s 

thermal regime from increases in temperature associated with land-use should be a priority. 

Empirical growth rate data and hypothetical model predictions suggest that the current thermal 

regime in Cedar Creek may be sub-optimal for brook trout during the summer, and any increase 

in the thermal regime would be detrimental to brook trout growth. Additional incentive to protect 

Cedar Creek’s thermal regime should come from the fact that Cedar Creek is a valuable 

coldwater source to the Rogue River; a popular coldwater fishery that faces anthropogenic 

disturbance. In addition, the importance of terrestrial invertebrates in the diet of brook trout 

demonstrated here, and in the literature, deserves consideration when managing for brook trout. 

Conservation and enhancement of riparian vegetation and groundwater should be treated as an 

important management action to conserve brook trout habitat at the watershed scale, particularly 

in coldwater and cold-transition streams (Lyons et al. 2009). The important role riparian 

vegetation plays in stream shading, to enhance thermal habitat, has been demonstrated in other 

Midwestern streams (Cross et al. 2013). Additionally, riparian vegetation provides habitat for 

terrestrial invertebrates that contribute substantial amounts of energy to brook trout diets, 

particularly during thermally-stressful, summer months.  
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Tables 

Table 2.1. The number of fish sampled for total length and wet weight (N), total number of gut 

samples taken (n), sample reach (D=downstream, U=upstream) and the interval when drift 

samples were collected (Time). Both reaches were electrofished on 8/25/2015, but drift samples 

were collected at the downstream reach. 

Date Reach Time N n 

6/19/2015 U 04:00:00-07:00:00 14 14 

6/22/2015 D 04:00:00-07:00:00 6 6 

6/23/2015 D 19:00:00-22:00:00 11 10 

7/21/2015 D 04:00:00-07:00:00 8 8 

7/23/2015 D 18:00:00-21:00:00 7 6 

8/25/2015 Both 05:00:00-08:00:00 11 11 

8/26/2015 U 15:00:00-18:00:00 4 4 

9/1/2015 D NA 29 0 
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Table 2.2. Mean Strauss’ Linear Index (Li) value and corresponding percentage of taxa in the 

drift (pi) for the five most selected prey taxa and least selected prey taxa on each sample date. Li 

values were calculated for all taxa using the percentage of prey items in the diet of each trout. 

The mean Li value for taxa are reported. 

Date Taxa 

Mean Strauss 

(Li) 

Total Drift 

Percentage (pi) 

 

Adult HydropsychidaeA 33.96 0.42 

 

Adult CurculionidaeN 12.38 0.28 

 

ArionidaeT 9.05 0.00 

 

Adult ColeopteraN 5.29 0.14 

6/19/2015 

(n=14) 

Adult DipteraA 1.73 0.98 

Chironomidae larvaeA -6.95 10.13 

 
Chironomidae pupaeA -7.03 7.03 

 
Adult ChironomidaeA -7.53 8.44 

 

Perlidae Perlesta nymphA -10.6 16.03 

 

Pleidae NeopleaA -18.14 18.14 

 

Adult Baetidae BaetisA 13.34 0.47 

 

Adult HydropsychidaeA 11.07 0.11 

 

Lepidostomatidae LepidostomaA 8.37 0.18 

 

FormicidaeT 7.76 1.45 

6/22/2015 

(n=6) 

Adult DipteraA 6.11 0.47 

Leptohyphidae Tricorythodes nymphA -2.97 3.26 

 

Pleidae NeopleaA -3.47 3.47 

 

Chironomidae pupaeA -4.28 4.94 

 

Baetidae Baetis nymphA -25.53 28.82 

 

Adult ChironomidaeA -37.89 37.89 

 

Hydropsychidae Ceratopsyche larvaeA 15.20 0.26 

 

Chironomidae larvaeA 12.74 1.27 

 

Hydropyschidae Cheumatopsyche larvaeA 11.08 0.03 

 

Adult CurculionidaeN 3.40 0.46 

6/23/2015 

(n=10) 

AsellidaeA 2.78 0.12 

SciaridaeN -2.19 2.19 

 

Chironomidae pupaeA -2.89 4.82 

 

Adult EmpididaeA -3.60 4.56 

 

Adult Baetidae BaetisA 8.63 15.88 

 

Adult ChironomidaeA -43.48 43.48 
A Denotes aquatic taxa 

T Denotes terrestrial taxa 

N Denotes non-obligate taxa 
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Table 2.2 Continued. 

 

Date Taxa 

Mean Strauss 

(Li) 

Total Drift 

Percentage (pi) 

  Adult HydropsychidaeA 12.81 2.4 

 

Adult Leptohyphidae TricorythodesA  8.65 0.04 

 

AsellidaeA 7.88 0.82 

 

Hydropsychidae Ceratopsyche larvaeA 5.34 3.36 

7/21/2015 

(n=8) 

Adult CurculionidaeN 4.26 0.09 

Elmidae larvaeA -2.04 2.04 

 
Simuliidae larvaeA 2.31 2.31 

 
Leptohyphidae Tricorychodes nymphA -3.22 3.22 

 

Baetidae Baetis nymphA -22.23 30.93 

  Adult ChironomidaeA -22.5 29.02 

 

Adult DipteraA 7.94 0.88 

 

FormicidaeT 6.77 2.05 

 

Adult ColeopteraN 5.49 0.39 

 

Hydropsychidae larvaeA 4.71 1.17 

 

Adult ChrysomelidaeN 4.41 0 

 

Adult CurculionidaeN 4.41 0 

7/23/2015 

(n=6) 

PentatomidaeT 4.41 0 

SciaridaeN -3.71 3.71 

 
CollembolaA -4.5 4.5 

 
Adult Baetidae BaetisA  -12.2 18.08 

 

Adult ChironomidaeA -14.27 14.27 

 

Baetidae Baetis nymphA -16.72 16.72 

  CicadellidaeT 7.56 0.28 

 

PsocopteraT 6.34 1.5 

 

Chironomidae pupaeA 5.07 2.77 

 

Adult Leptohyphidae TricorythodesA  3.92 0 

 

Adult LyonetidaeT  3.92 0 

 

Adult HydropsychidaeA 3.89 0.03 

 

Aquatic GastropodaA 3.89 0.03 

 

Terrestrial HemipteraT 3.89 0.03 

8/25/2015 

(n=11) 

Trichoptera larvaeA 3.89 0.03 

Hydropsychidae Ceratopsyche larvaeA -1.73 1.73 

 

Simuliidae larvaeA -1.95 3.91 

 

Chironomidae larvaeA -2.03 3.99 

 

Adult ChironomidaeA -18.08 22 

  Baetidae Baetis nymphA -42.19 50.03 
A Denotes aquatic taxa 

T Denotes terrestrial taxa 

N Denotes non-obligate taxa 
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Table 2.2. Continued 

Date Taxa 

Mean Strauss 

(Li) 

Total Drift 

Percentage (pi) 

 

FlatidaeT 18.18 0 

 

CercopidaeT 15.91 0 

 

AradidaeT 11.36 0 

 

Adult DipteraA 10.61 0.75 

8/26/2015 

(n=4) 

AcrididaeT 4.55 0 

Baetidae Baetis nymphA -6.02 6.02 

 

SciaridaeN -6.02 6.02 

 

Chironomidae pupaeA -6.48 6.48 

 

Adult ChironomidaeA -7.68 7.68 

 

CollembolaA -18.37 18.37 

 

Chironomidae larvaeA -18.98 18.98 
A Denotes aquatic taxa 

T Denotes terrestrial taxa 

N Denotes non-obligate taxa 
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Table 2.3. Observed growth rates and consumption estimates from the bioenergetics model for 

each individual trout that was recaptured throughout the study. The arbitrary number (Fish #), 

and the initial day (Day I) and final day (Day F) of capture are listed for each trout. Initial weight 

(WI, g) and final weight (WF, g) of each trout were used to calculate its instantaneous growth rate 

(G, d-1). The bioenergetics model estimated the proportion of each trout’s maximum 

consumption (P-CMAX) and its total consumption (CT, g) over the study period. To calculate the 

average specific consumption rate (CR, g·g-1·d-1) of each trout, its estimated CT was divided by 

its average weight between capture events, and subsequently divided by the number of days 

between capture events. 

Fish # Day I Day F WI (g) WF (g) G (d-1) P-CMAX CT (g) 
CR  

(g·g-1·d-1) 

42 5 75 50.67 60.03 0.00239 0.466 140.25 0.036 

44 5 35 32.34 32.37 0.00003 0.493 47.561 0.047 

41 5 35 52.26 48.56 -0.0024 0.439 57.59 0.037 

5* 4 68 66.19 68.66 0.00056 0.458 149.026 0.034 

6* 4 68 171.43 160.02 -0.0011 0.427 262.516 0.024 

9* 4 68 98.8 82.05 -0.0029 0.374 150.681 0.026 

8* 4 68 90.04 77.82 -0.0022 0.39 149.007 0.027 

3* 1 68 80.99 60.35 -0.0043 0.341 120.778 0.025 

22 1 68 64.25 71.59 0.00159 0.486 165.478 0.036 

45 33 75 103.2 97.76 -0.0013 0.348 95.002 0.022 

31 5 75 71.2 67.99 -0.0007 0.403 144.039 0.029 

55 33 75 50.88 52.58 0.00076 0.383 69.269 0.031 

54 33 75 77.82 70.2 -0.0024 0.322 70.86 0.022 
* Indicate fish with a surgically implanted telemetry tags 
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Figures 

 

Figure 2.1. Map of Cedar Creek, Kent County, Michigan. Red star indicates the study site. 
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Figure 2.2. Mean (±SE) invertebrate drift density of drift samples collected at the downstream 

reach in the morning during each month (n=12). Lowercase letters indicate significant 

differences determined by a pairwise Wilcoxon test. For specific collection times and dates, see 

Table 2.1.  



57 
 

 

Figure 2.3.  The number of prey items (range and quartiles) consumed by brook trout that were 

sampled during June (n=30), July (n=14), and August (n=15). Lowercase letters indicate 

significant differences in the number of prey items consumed by brook trout among months, 

determined by a pairwise t-test performed on square-root transformed data.  
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Figure 2.4.  Initial and final condition (range and quartiles) of trout recaptured throughout the 

study. Final condition was significantly lower than initial condition (T-test, P=0.001, t=-3.75, 

d.f.=12). 
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Figure 2.5. Estimated change in weight of a 66.5-g brook trout under altered thermal regime 

scenarios when CT is held constant (153.247 g), and when P-CMAX is held constant (0.421).  
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Figure 2.6. Percentage of energy contributed from aquatic, terrestrial, and non-obligate taxa to 

brook trout diets during each month.  
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Chapter III 

Extended Literature Review 

Introduction 

The brook trout (Salvelinus fontinalis) is a coldwater fish species that thrives in streams 

draining pristine, heavily-forested watersheds (Kanno et al. 2015). As a result of anthropogenic 

disturbance, brook trout have undergone range reduction throughout much of their native range 

in the United States (Hudy et al. 2008), and projections under future disturbance scenarios 

suggest continued habitat loss for the species (Flebbe et al. 2006; Wiley et al. 2010). The 

observed habitat loss has been primarily attributed to deforestation, causing increases in stream-

water temperature (Stranko et al. 2008). Because brook trout are ectotherms, with limited ability 

to moderate body temperature, increases in stream-water temperature drive changes in their 

physiological rates at the individual level that effect populations (McCullough et al. 2009). For 

example, brook trout metabolism, food consumption, and waste production, all physiological 

processes that contribute to growth rate, are temperature-dependent. The relationship among 

temperature and the three physiological processes listed above limits the species’ optimal growth 

range to temperatures between 10° and 19°C (Hartman and Sweka 2003). Using bioenergetics 

models, the relationship among temperature and the physiological processes controlling growth 

can be examined quantitatively. Given a fish’s thermal history, prey base, and mass, specific 

questions about energy consumption or growth over a given timeframe can be answered 

(Hartman and Kitchell 2008). This method has the potential to provide insight into individual 

growth rates that may help explain species distribution (McCullough et al. 2009). However, 

effectively transferring knowledge gained through bioenergetic modeling to management 

decisions requires a broad understanding of the species’ ecology and the utility of such models. 
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Herein, the general ecology of brook trout, as well as the development and utility of fish 

bioenergetics models will be reviewed to provide context for the use of bioenergetics modeling 

techniques as a tool to aid brook trout population management. 

Brook Trout Ecology 

Brook trout were naturally distributed throughout eastern Canada, the upper portions of 

the Midwestern United States, and in the Mid-Atlantic states as far south as Georgia. However, 

the species has been transplanted and is now naturalized in many watersheds in the Western 

United States and Canada (MacCrimmon and Campbell 1969). 

Brook trout display several life history strategies (Power 1980). In southern streams, 

brook trout are typically short lived and remain sedentary. Trout in these populations rarely live 

past age 4+, typically spawn only once, and the population’s egg production comes primarily 

from two year old females. In mountain and northern streams, brook trout have a longer life 

cycle and grow slower. In these populations, females dominate older age classes, but it is 

common for a few males to live long and reach larger size. A third, migratory life history 

strategy can also be found among brook trout populations throughout their native range. 

Migrations may take place from streams to lakes or the sea, and back to streams, allowing trout 

to utilize resources outside their lotic habitat. Access to additional resources yield lower 

mortality, larger fish, and higher fecundity. An additional life history strategy, termed lacustrine, 

is described by Huckins et al. (2008). Lacustrine populations spend their entire lives in lakes, 

including spawning, rather than returning to the stream. 

Age at maturity can vary based on sex and among life history strategies. Becker (1983) 

noted stream-resident, male brook trout in Wisconsin reaching sexual maturity by the end of 

their first summer, while females typically reached maturity as yearlings. Maturity likely occurs 
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somewhat later in resident populations of alpine systems that experience longer life cycles 

(Power 1980). Sexual maturity in migratory populations is often reached at age 3+ (Power 1980; 

Castonguay et al. 1982). 

Brook trout spawn during the fall in gravelly riffles of streams, or on lake shoals (Power 

1980; Becker 1983). Spawning takes place almost exclusively in areas of high groundwater 

seepage in both lentic and lotic environments (Witzel and MacCrimmon 1983; Blanchfield and 

Ridgway 1996). In migratory populations, spawning typically occurs annually, but if trout 

experience a low growth year they may skip spawning; this is more commonly observed in 

northern populations (White 1940, cited by Power 1980). After spawning occurs, between 

October and November, brook trout alevin emerge from gravel between January and May 

(Becker 1983). 

Brook trout thrive in pristine, relatively undeveloped watersheds (Kanno et al. 2015). At 

the watershed scale, extensively forested land cover increases the likelihood of brook trout 

occurrence (Hudy et al. 2008; Stranko et al. 2008). Forested land cover and brook trout 

occurrence are linked because decreases in forested land cover yield increases in surface-water 

runoff that translate to higher stream-water temperatures (Stranko et al. 2008). A low percentage 

of agricultural land inside a watershed also increases the likelihood of brook trout occurrence, 

but a basin’s ability to support brook trout is likely dependent upon the interaction between these 

major, watershed-scale variables and smaller, system-specific attributes (Hudy et al. 2008).  

In general, McKenna and Johnson (2011) identified high elevation, steep slope, and small 

stream size, variables common to headwater streams, as characteristics of good brook trout 

habitat. At the reach scale, brook trout are influenced by abiotic factors, including watershed 

position, temperature, pH, and sediment regime. The upper lethal temperature for the species is 
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approximately 25°C (Fry et al. 1946). More specifically, Wherly et al. (2007) noted that 

exposure time must be taken into consideration when evaluating thermal tolerance limits. Based 

on data from 285 streams in the upper Midwestern United States, they estimated that seven days 

of exposure to maximum mean daily water temperatures of 23.3°C, and seven days of exposure 

to maximum daily water temperature of 25.4°C are the tolerable limits for brook trout in the 

field. Elsewhere in their native range, brook trout occurrence has been negatively correlated with 

the number of stream temperature readings >20°C (Stranko et al. 2008). Additionally, pH plays 

an important role at the reach scale. The lethal pH limits for the species are approximately 3.5 

and 9.0 (Daye and Garside 1975, cited by Power 1980), but brook trout have been found at low 

pH values in the field, relative to other coldwater species (Carline et al. 1994; Baldigo and 

Lawrence 2000). Lastly, significant amounts of fine sediment can decrease brook trout survival 

by embedding gravelly substrate and choking early life stages of oxygen (Argent and Flebbe 

1999). 

Sympatric relationships with other salmonids also influence brook trout distribution. 

Brown trout Salmo trutta have been heavily stocked in streams throughout the native range of 

brook trout, and often dominate when the two species co-occur. Fausch and White (1981) 

observed a shift in the resting location of brook trout after brown trout were removed from a 

reach of the East Branch of the Au Sable River, Michigan. This shift resulted in more profitable 

resting positions for brook trout, indicating an ecological release with brown trout removal; a 

symbol of interspecific competition. The release points to the dominance by brown trout over 

brook trout when the two species coexist. Yet, the authors appropriately point out that additional 

elements including angling mortality, predation, and environmental factors interact with 

competition to control sympatric populations of the two species. The combination of these 
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factors has led to an inverse relationship between the abundance of brook and brown trout 

throughout a substantial portion of the brook trout’s historic range (Wagner et al. 2013). 

The threat to brook trout populations from rainbow trout Oncorhynchus mykiss is less 

straightforward. In a laboratory study, young-of-year rainbow trout outgrew young-of-year brook 

trout over an eight week period when the two species were co-stocked (Isley and Kempton 

2000). The faster growth rate of co-stocked rainbow trout held true at low, medium, and high 

ration levels even though raceway temperatures were maintained at 12°C; a temperature that 

should favor brook trout. In the field, rainbow trout have been observed outgrowing brook trout 

once they reach age 1+, translating to higher production by rainbow trout than by brook trout in 

sympatric populations (Whitworth and Strange 1983). But interestingly, Strange and Habera 

(1998) observed no net loss in the amount of stream distance occupied by brook trout in a 

sympatric population with rainbow trout over a five year period in several Tennessee streams. 

They suggest that the replacement of brook trout by rainbow trout in the field may be a dynamic 

process that requires additional environmental factors such as natural catastrophe. 

When stocked outside their native range, brook trout pose significant threats to native 

salmonids. In Finland, Korsu et al. (2007) documented the replacement of brown trout by brook 

trout in the headwaters of the Upper Kemijoki River. The replacement yielded species 

distribution patterns similar to those observed in the Northeastern United States where brown 

trout have been introduced. In the Western United States, introduced brook trout threaten native 

cutthroat trout (Oncorhynchus clarki) and bull trout (Salvelinus confluentus). Brook trout 

dominance over cutthroat trout stems from their adverse effects on early cutthroat trout life 

stages (Peterson et al. 2004; McGrath and Lewis 2007). The  ability of brook trout to outcompete 

cutthroat trout can lead to abundance and production values higher than those displayed by 
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cutthroat trout. For instance, Benjamin and Baxter (2010) recorded brook trout densities 2.4 

times greater, biomass 1.7 times greater, and production 2.5 times greater than cutthroat trout 

when brook trout invaded areas where cutthroat trout had previously been dominant. Brook trout 

also interact asymmetrically with bull trout, reducing their feeding and growth as well as forcing 

them into colder, headwater streams (McMahon et al. 2007). 

Brook trout display common habitat use trends that vary over multiple temporal scales, 

and across age classes. Generally, they prefer locations with reduced water velocity, maximum 

available depth, and physical cover (Johnson 2008; Ecret and Mihuc 2013; Mollenhauer et al. 

2013). However, on a diel scale, brook trout have been observed using areas with significantly 

less cover at night than during the day, and deeper, slower habitat is typically occupied by older 

age classes (Johnson et al. 2011). Habitat use may also vary on a seasonal scale. For example, 

Mollenhauer et al. (2013) observed the selection for deep pools during early fall (September), 

selection for shallow pools in late fall (October and November) by larger brook trout during 

spawning, and a shift back to selection for deep pools in winter. And during the summer, when 

ambient water temperature is higher than preferred, brook trout use tributary confluences, 

groundwater seeps, and deep pools to thermoregulate (Baird and Krueger 2003; Petty et al. 

2012). Thermoregulation during the summer helps brook trout maintain body temperatures 

cooler than ambient water temperature, reducing temperature-driven metabolic expenses. 

Similar to habitat use, brook trout foraging trends vary over multiple temporal scales. 

Allan (1981) detailed both diel and seasonal trends in prey consumption and selection. During 

the summer, diel peaks in prey consumption were observed during crepuscular periods, 

corresponding with peaks in invertebrate drift. Peaks in prey consumption were much less 

defined during the fall, and brook trout displayed a seasonal decrease in the amount of prey items 
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consumed, which correlated with the seasonal decrease in invertebrate drift density. In general, 

prey taxa were selected relative to their abundance in the drift, and a positive relationship existed 

between a prey taxon’s dry weight and selection for that taxon. Subsequent diet studies on brook 

trout have supported Allan (1981). For instance, Forrester et al. (1994) reported considerable 

variation in brook trout prey consumption over a diel cycle, with the majority of foraging 

occurring during the evening and early morning. Brook trout also selected for larger prey items. 

The seasonal decrease in prey consumption observed by Allan (1981) also was reported by Utz 

and Hartman (2006) who documented a decrease in the number of prey items consumed by 

brook trout from spring to winter. 

The diet of brook trout during thermally-stressful, summer months is influenced by prey 

availability, temperature, and population density. Ensign (1990) listed availability of food 

sources as a factor potentially limiting prey consumption during the summer, which could help 

explain the consistent observation of decreased prey consumption throughout summer that was 

discussed previously in this chapter. However, Sotiropoulos et al. (2006) used diet analysis 

combined with microhabitat data to suggest that brook trout adopt a low-risk, low-reward energy 

strategy with respect to prey consumption during summer, when prey availability becomes low. 

Their data suggests that brook trout use locations where prey is not abundant if these locations 

allow them to reduce energy expenditure driven by warm water temperatures. But, population 

density also factors into the summer foraging strategy of brook trout. Based on an inverse 

relationship between trout density and mean prey consumption during the summer, Utz and 

Hartman (2006) suggested larger reaches, with low trout density, are important areas for feeding. 

This concept was expanded by Petty et al. (2014) who proposed the temperature-productivity 

squeeze as a theory describing the constraints placed on brook trout during summer. The 
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temperature-productivity squeeze can be described as a continuum between productive main 

stem habitats where appropriate thermal habitat is limiting, and non-productive small tributaries 

where thermal habitat is abundant. Brook trout able to compete for appropriate thermal habitat in 

the main stem of the river profit from high food availability, increasing their production. 

Conversely, in tributary streams, where thermal habitat is more readily available, food 

availability is low. The habitat continuum results in high densities of trout in cool, less-

productive tributaries where consumption is low, and low densities of trout in the warm, 

productive main stem where consumption is high. 

Lastly, terrestrial prey items contribute heavily to the diet of brook trout during summer. 

Utz and Hartman (2007) collected gut content samples over 2 years and estimated that terrestrial 

energy contributions to brook trout diets were higher than aquatic contributions between April 

and September. Terrestrial invertebrates contributed as much as four times the amount of energy 

as aquatic invertebrates in May and June, and terrestrial energy inputs remained twice as high as 

aquatic inputs from July to September. These authors also used a bioenergetics model to show 

that trout feeding above maintenance rations during the summer fed on significantly higher 

proportions of terrestrial Coleopterans and Lepidopterans than trout feeding below maintenance 

rations. Similarly, Sweka and Hartman (2008) modeled energy inputs and documented brook 

trout receiving >50% of their annual energy from terrestrial sources. The model showed that if 

terrestrial invertebrates were removed from their diet, brook trout would have to increase 

consumption of aquatic invertebrates by approximately 130% to maintain the same growth. Both 

of these studies were conducted in West Virginia watersheds, but high inputs of terrestrial 

invertebrates to brook diets have been observed elsewhere. Terrestrial invertebrates contributed 

>50% of the biomass in brook trout diets in 8 of 12 streams sampled in New Hampshire during 
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July and August (Wilson et al. 2014). And, in Colorado the proportion of terrestrial invertebrates 

in brook trout diets ranked second among 25 prey taxa during sample dates in August and 

September (Allan 1981). Wilson et al. (2014) suggested two reasons for increased consumption 

of terrestrial invertebrates during the summer: the availability of aquatic prey decreases, and 

terrestrial invertebrates are probably conspicuous when entering the stream from above. 

Bioenergetics Models 

Bioenergetics is defined as the way in which animals dispose of the energy they acquire 

(Ney 1993). That said, a bioenergetics model can be thought of as an energy budget relating 

energy gained with energy spent using mathematical equations, and Winberg (1956, cited by 

Ney 1993) was one of the first to produce a budget for fish. In its simplest form, the equation 

representing the energy budget of a fish can be written as 

Consumption = Respiration + Waste Losses + Growth. (1) 

However, the respiration term can be broken into subcomponents including standard metabolism 

(RS), activity (RA), and digestion of food (RD) while the waste losses term includes egestion (F), 

and excretion (U). Including these terms in the original equation with consumption (C) and 

growth (G), yields a slightly more detailed energy budget equation 

C = RS +RA +RD + F + U + G.  (2) 

Kitchell et al. (1974, 1977) expanded on the early bioenergetics model, producing a version 

referred to as the Wisconsin Model, which allows investigators to estimate consumption as a 

proportion of a temperature and size driven maximum. This model served as the template for 

bioenergetics software packages produced by Hewett and Johnson (1987, 1992, cited by Ney 

1993), as well as a more recent version of the software package titled Fish Bioenergetics 3.0 
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(Hanson et al. 1997). The nuts and bolts of the energy budget used in Fish Bioenergetics 3.0 

remains relatively unchanged from equation 2 and can be written 

C = (R+A+S) + (F+U) + (ΔB+G). (3) 

Here, consumption (C) is equal to the sum of respiration (R), active metabolism (A), and specific 

dynamic action (S), plus the sum of egestion (F) and excretion (U), plus the sum of somatic 

growth (ΔB) and gonad production (G). Consumption and respiration of fish species are both 

temperature and size dependent, while waste losses can be thought of as either a constant 

proportion of consumption, or temperature, size, and ration dependent (Hanson et al. 1997). The 

major advantage of Fish Bioenergetics 3.0 is that it allows investigators the possibility to choose 

from specific equations produced in the primary literature (Elliot 1976; Kitchell et al. 1977; 

Thornton and Lessem 1978; Stewart et al. 1983) to represent the major model terms 

(consumption, respiration, and waste losses). Consumption can be represented in the model by 

one of three equations including an exponential equation (Stewart et al. 1983); a temperature 

dependent equation for warmwater species (Kitchell et al. 1977), or a temperature dependent 

equation for cool and coldwater species (Thornton and Lessem 1978). Similarly, investigators 

can choose to represent respiration with an exponential equation that accounts for swimming 

speed (Stewart et al. 1983), or a temperature dependent equation that includes an activity 

multiplier (Kitchell et al. 1977). The waste losses term can be represented by an equation that is 

proportionate to consumption (Kitchell et al. 1977); an equation that is dependent on mass, 

temperature , and ration size (Elliot 1976), or an equation that accounts for mass, temperature, 

ration size, and the amount of indigestible prey in the diet (Stewart et al. 1983). Fish 

Bioenergetics 3.0 provides investigators with 33 bioenergetics models representing 26 species. 

Bioenergetics models have become popular in fisheries literature, and are commonly used to 
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estimate food consumption or growth of a fish over a given timeframe based on a combination of 

biotic and abiotic variables (Chipps and Wahl 2008; Hartman and Kitchell 2008). The 

compilation of over 100 species-specific models from recent publications, and the development 

of a modeling application in Program R (R Core Team 2016) by Deslauriers and Chipps (2016) 

has the potential to further increase the use of bioenergetics models in fisheries literature. 

Bioenergetics models, however, do have their critiques. Chipps and Wahl (2008) 

summarized comparisons of growth and food consumption estimates derived from bioenergetics 

models with experimentally derived estimates of growth and food consumption. Based on 17 

studies, they reported that the percent disagreement between bioenergetics and experimental 

estimates for these two model outputs ranged from -110 to 770% in laboratory and field studies. 

They also concluded that uncertainty can vary considerably both among and within species, and 

that model error increases when trying to account for variation across seasons and at different 

consumption rates. The authors summarize three potential sources of error in bioenergetics 

estimates: consumption-dependent error, physiological adaptations and additional abiotic effects, 

and the influence of prey dynamics. 

Consumption-dependent error was coined by Bajer et al. (2004) and refers to error in 

model estimates attributed to variation in ration-size. Consumption-dependent error results in the 

overestimation of consumption for fish feeding at low rations, and the underestimation of 

consumption for fish feeding at high rations. This error also occurs when predicting growth rate. 

Growth rate is underestimated for fish growing quickly, and overestimated for fish growing 

slowly. Several explanations for this error have been proposed. Madenjian and O’Connor (1999) 

suggested that underestimation of consumption for lake trout (Salvelinus namaycush) fed ad-

libitum was due to increases in standard metabolic rate, when ad-libitum feeding occurs, that are 
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not accounted for in the model. Similarly, Chipps and Wahl (2004) described metabolic 

compensation; a decrease in the standard metabolism of western mosquitofish (Gambusia affinis) 

feeding at low levels, that they postulated caused the overestimation of prey consumption by the 

bioenergetics model. This error is a result of modeling consumption dependent parameters, such 

as egestion, excretion and specific dynamic action, as constant proportions of energy consumed 

(see the Kitchell et al. (1977) equation for waste losses in Hanson et al. (1997)). Instead, the 

parameters listed above should be modeled as functions of ration-size, but only 8 of the 33 

models available in Fish Bioenergetics 3.0 appropriately do so (Chipps and Wahl 2008). These 

models use equations from Elliot (1976) or Stewart et al. (1983) to represent waste losses as 

functions of ration-size, rather than as a constant proportion of the energy that a fish consumes. 

Chipps and Wahl (2008) discuss several cases where localized physiological adaptations, 

as well as physiological variation associated with variables other than temperature and size, 

influence the accuracy of bioenergetics model estimates. For example, two separate groups of 

white sturgeon (Acipenser transmontanus) in the Upper Columbia River, British Columbia 

displayed differential mass-specific metabolic rates, temperature-dependent feeding rates, and 

seasonal growth patterns that resulted in different age at maturity between the two groups (van 

Poorten and McAdam 2010). Because the thermal regime of the two sites was similar, the 

authors attributed these differences to variation in prey availability between locations occupied 

by the two groups. Munch and Conover (2002) calculated bioenergetics parameters for Atlantic 

silverside (Menidia menidia) from localized populations in Nova Scotia, Canada and South 

Carolina, United States. These authors reported that the dissimilarity between all bioenergetics 

parameters was at least 10% and that, on average, parameters differed by approximately 28%. As 

was the case in van Poorten and McAdam (2010), the mass-dependent parameter of consumption 
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differed substantially (167%) between the two groups of silverside, yielding faster growth rates 

at higher latitudes. Again, localized differences in physiological response were attributed to food 

availability; however, Munch and Conover (2002) could not rule out that temperature also played 

a role in the differences they observed. Additionally, Bioenergetics models may fail to account 

for all abiotic variables that influence fish physiology by only taking into consideration 

temperature and size. Cech et al. (1985) observed a significant increase in the respiration rate of 

mosquitofish at 25°C when dissolved oxygen levels were increased from 150 torr 𝑃𝑂2
 to 300 torr 

𝑃𝑂2
. Sweka and Hartman (2001) showed that turbidity had a significant effect on the activity 

level of brook trout held in flow-through chambers. Brook trout experienced increased activity 

levels while searching for food at high turbidity, significantly decreasing their specific growth 

rate. As a result, bioenergetics model predictions of the fishes’ final weight, based on how much 

food they consumed, were consistently higher than observed values. These examples illustrate 

the influence that localized physiological adaptations and abiotic variable other than water 

temperature and fish size can have on the accuracy of bioenergetics model estimates. 

Lastly, Chipps and Wahl (2008) review the impact that prey dynamics can have a 

predator’s physiology, potentially contributing to model inaccuracy. For instance, Selch and 

Chipps (2007) used lactate dehydrogenase to quantify the foraging activity levels of largemouth 

bass (Micropterus salmoides) fed four different sizes of bluegill (Lepomis macrochirus) (35, 50, 

65, and 80 mm, TL). Capture efficiency of largemouth bass decreased when fed 80-mm bluegill, 

and lactate dehydrogenase levels indicated that foraging activity levels increased in this group as 

well. The authors subsequently compared observed growth of the largemouth bass to growth 

predicted by a bioenergetics model, based on observed prey consumption. For largemouth bass 

fed 65 and 80-mm bluegill, the bioenergetics model consistently underestimated consumption. 
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To account for increased activity in the model, Selch and Chipps (2007) increased the activity 

rate multiplier for respiration from 1 to 2 and 2.5 for largemouth bass fed 65 and 80-mm bluegill, 

respectively. In this case the larger bluegill presented an energetic disadvantage to largemouth 

bass due to increased activity associated with capturing the larger prey. However, Kaufmann et 

al. (2006) used a similar technique to quantify activity levels of walleye (Sander vitreus) in two 

lakes with and without cisco (Coregonus artedi), finding the opposite effect. Walleye eating 

diets of smaller prey had higher activity levels. It is likely that prey morphology, behavior, and 

abundance all contribute to variation in predator activity levels (Chipps and Wahl 2008). 

Interestingly, short-term temporal variation in activity level is difficult to account for 

using bioenergetics models. The activity rate multiplier is a constant in the respiration equation 

of bioenergetics models. Evidence summarized by Chipps and Wahl (2008), and presented 

above, suggests that quantifying a species activity levels over a broad range of prey densities 

may increase the accuracy of bioenergetics model estimates.  

The first bioenergetics model parameterized specifically for brook trout was produced by 

Hartman and Sweka (2003). Using laboratory studies, these investigators determined which of 

the equations commonly used in the Fish Bioenergetics 3.0 program accurately represented 

consumption and respiration for brook trout. Egestion and excretion parameters were assumed to 

be similar to those of brown trout, and the Elliot (1976) equation for waste losses was used in the 

model. Specific consumption rate of brook trout decreased with increasing size. The maximum 

amount a brook trout could consume increased rapidly with temperature until approximately 

21ᵒC before sharply decreasing. Consumption data were best described by the temperature 

dependent equation for coldwater species (Thornton and Lessem 1987). Specific metabolic rate 

of brook trout also decreased with increasing size; however, specific metabolic rate peaked at 
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12.6ᵒC, unexpectedly decreased at 16.5ᵒC, and reached another peak at 21ᵒC. Ultimately, the 

temperature-dependent equation including an activity term (Kitchell et al. 1977) provided the 

best fit for brook trout respiration. In addition to calculating specific parameters for consumption 

and respiration, Hartman and Sweka (2003) attempted to validate their estimates using laboratory 

experiments. The bioenergetics model using their parameters underestimated final weight of 

brook trout by 1.0%, growth rate by 1.4%, and consumption by 19.7% on average. Lastly, based 

on their model they determined that low growth was possible between 4 and 20ᵒC, but that 

growth is highest between 10 and 19ᵒC in the field. However, due to the unexpected decrease in 

specific metabolic rate at 16.5°C noted by Hartman and Sweka (2003), Hartman and Cox (2008) 

re-evaluated brook trout metabolism over a range of temperatures. Their goal was to improve the 

metabolic parameters of the model by estimating a new activity rate multiplier for the respiration 

equation (Kitchell et al. 1977), which they hypothesized yielded the low consumption estimates 

noted by Hartman and Sweka (2003). Hartman and Cox (2008) replicated metabolic studies on 

brook trout in the laboratory and found a consistent increase in specific metabolic rate until it 

peaked at approximately 21°C, rather than the depression at 16.5°C that was observed by 

Hartman and Sweka (2003). They subsequently changed the activity rate multiplier from 1 to 

2.89 and developed new estimates for the rest of the parameters in the respiration equation of the 

model. The new parameter estimates improved model accuracy to predict final weight, growth, 

and consumption all within 2.3%.  

Discussion 

Future management of brook trout populations will include solving a number of problems 

related to their general ecology, for which bioenergetics models may help provide answers. 

Because they thrive in pristine, cold streams, the distribution and abundance of brook trout is 
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influenced by anthropogenic disturbance to the landscape throughout much of their range in the 

United States. In addition, asymmetric interactions with other salmonid species can influence 

brook trout populations. The most up to date fish bioenergetics modeling technology could be 

employed to evaluate system-specific problems in streams where conserving brook trout is a 

priority, as well as those where brook trout threaten native species. However, users of 

bioenergetics models should be aware of the shortcomings associated with this method. 

Bioenergetics estimates tend to poorly agree with experimentally derived estimates when used to 

predict growth and consumption over long periods, particularly when ration levels are variable. 

The sources of error can be numerous, making it imperative that users be conscientious of the 

specific equations used to represent consumption, respiration and waste losses in the model. The 

bioenergetics model produced by Hartman and Cox (2008) models waste losses as a function of 

ration size (Elliot 1976), ideally cutting down on the likelihood of consumption-dependent error. 

In addition, the activity rate multiplier of the model has been experimentally tested and altered to 

minimize disagreement between model estimates and observations. However, this does not 

eliminate the chance that local physiological adaptations, changes in activity levels, and 

additional variables could contribute to model inaccuracy if applied inappropriately. If included 

in the study by Chipps and Wahl (2008), then the <2.3% disagreement between model estimates 

and observed values reported by Hartman and Cox (2008) would be the second most accurate 

model behind only the lake trout (Salvelinus namaycush) model (Madenjian et al. 2000). Thus, 

relative to many species, bioenergetics modeling techniques to aid brook trout management 

strategies can be fruitful when used and interpreted properly.  
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Extended Methods 

Field Procedures 

To quantify prey availability in the form of drifting invertebrates, drift samples were 

collected on all sample dates, except September 1. I collected hourly drift samples for four hours 

before I began the electrofishing process using three drift nets, each 440 mm wide and 280 mm 

tall. The three drift nets were placed in a riffle section of the stream adjacent to one another so 

that the middle net was centered about the thalweg. The drift nets were held in place using metal 

rods driven into the streambed with a hammer. Directly in front of each net, I recorded the water 

depth using a meter stick and water velocity using an OTT MF Pro – Water Flow Meter (OTT 

Hydromet, Loveland, Colorado). The water depth and velocity were used to calculate the 

discharge passing through each net 

 Drift nets were placed in the stream exactly 1 hour before the first collection time. For 

example, on June 19 the drift nets were placed in the stream at 03:00:00 so that they had 

collected drift for one hour when I collected the samples at 04:00:00. The dolphin bucket 

consisted of a piece of PVC tubing fashioned onto the rear of the net, and was removable from 

the net without removing the entire net from the stream. Individually, the collection tray from 

each net was emptied into a 250-μm sieve and stream water was used to rinse excess sediment 

and organic matter from the sample. After the sample had been sieved, it was transferred to a 

250-ml wide-mouth sample bottle (Thermo Fisher Scientific Inc., Rochester, New York) that 

was filled with 70% ethanol. Each sample bottle was marked with the date, site, and net number 

then stored for laboratory processing. This process yielded 12 drift samples on each sample date, 

one sample for each drift net (3) at each collection interval (4).  I always approached the drift 
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nets from the rear during collection to ensure the benthos remained undisturbed upstream of the 

collection nets.  

 In addition to drift samples, I sampled the benthic community using a 0.086 m2 Hess 

sampler. Three Hess samples were taken on each sample date, except September 1. The Hess 

samples were collected from a separate riffle section than the drift samples. The Hess sampler 

was placed in the streambed with the dolphin bucket trailing downstream, and the benthos inside 

the sampler was thoroughly disturbed to dislodge invertebrates into the trailing container. After 

the benthos had been disturbed, without removing the Hess sampler from the streambed, any 

invertebrates that had become fixed on the trailing net were rinsed into the dolphin bucket using 

stream water. The bucket was then emptied into a 250-μm sieve and stream water was used to 

filter fine sediment out of the sample. The sample was transferred to a 250-ml wide-mouth 

sample bottle, filled with 70% ethanol, marked with the date, site and sample number, and then 

stored for laboratory processing. 

 Brook trout for this project were captured with two APB-3 backpack electrofishing units 

(ETS Electrofishing Systems, LLC, Madison, Wisconsin) using direct current. Each electrofisher 

had a net to capture fish stunned in the electrical field and an additional person carrying a net 

was always in position to capture fish that could not be netted by those electrofishing. Upon 

capture, brook trout were placed into a cooler filled with stream water until electrofishing was 

completed. During periods of extended electrofishing, the water in the cooler was regularly 

replaced with fresh stream water, or electrofishing was stopped and brook trout were returned to 

a dark, in-stream cage. 

 Once electrofishing was completed, data collection was performed at a streamside station 

using a foldup table. Trout were transferred from the in-stream cage to a cooler containing 
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approximately 25 L of water and 3.5 mL of AQUI-S 20E aquatic anaesthetic (AQUI-S New 

Zealand Ltd, Lower Hutt, New Zealand). This concentration falls within the range recommended 

for fish handling (75-150 ml/1000 l of water). Trout in the anaesthetic solution were monitored 

closely and removed for handling when they were unable to maintain equilibrium. No trout 

remained in the anaesthetic solution for more than five minutes. Trout were immediately 

measured to the nearest millimeter using a Wildco measuring board, model #118-E40 (Wildco®, 

Yulee, Florida), then weighed to the nearest ±0.01 gram using an Adventurer Pro AV812 scale 

(Ohaus Corporation, Pin Brook, New Jersey). After length-weight data was recorded, the trout 

was placed into a wooden holding trough coated with moist surgical gauze and gastric lavage 

was performed to expel stomach contents. Approximately 20 cm of polyethylene tubing with an 

8-mm outer-diameter were connected to a 60-cc syringe filled with stream water used to flush 

the stomach contents of the trout into an aluminum pan. Water was forced into the gut of the 

trout until prey were no long being expelled or, for trout that appeared to contain no prey items, 

the 60-cc syringe was emptied at least three times into the gut of the trout. The stomach contents 

and water that accumulated in the aluminum pan were rinsed through a funnel into a specimen 

cup with two holes cut out of the sides that had been covered with 250-μm mesh. Using a wash 

bottle filled with 70% ethanol, the stomach contents were rinsed out of the specimen cup and 

into a 250-ml, wide-mouth sample bottle. Each sample bottle was marked with the trout’s 

individual number, date, and site, then stored for laboratory processing.     

During all sample dates between June 19 and July 23, trout were marked with an 

individual elastomer tag (Northwest Marine Technology, Inc., Shaw Island, Washington) for 

identification during subsequent sample events. The elastomer tagging procedure was performed 

immediately after gastric lavage, and at this point, I filled the wooden trough with fresh stream 
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water until the head and gills of the trout were submerged to start the recovery process. The 

elastomer pigment is a mixture of colored die and curing agent in a 10:1 ratio. Prior to data 

collection on each sample date, the plunger was removed from a 0.3-cc injection syringe and 0.1 

mL of the curing agent was injected into the syringe followed by 1 mL of the colored die. The 

materials were mixed using a toothpick for approximately 1 minute, the toothpick was removed, 

the plunger replaced, and the syringe was stored on ice until it was needed in the field. This 

process follows the recommended procedure provided by Northwest Marine Technology, Inc., 

for mixing small quantities of elastomer solution. Each trout was given an individual, two-digit 

number based on the color and location of their elastomer tag. The first digit represented the 

color and number of marks applied. I used two colors, red and yellow. The second digit 

represented the location of the tag. I tagged trout at the base of one of six fins: the left or right 

pectoral, left or right pelvic, anal, or caudal fins. The system for determining a trout’s individual 

number based on its tag is outlined in Table 3.2. 

 

Table 3.1. The two-digit tagging system used to individually mark trout with elastomer pigment. 

First digit Second digit 

1 = One red mark 1 = Left pectoral fin 

2 = One yellow mark 2 = Left pelvic fin 

3 = Two red marks 3 = Anal fin 

4 = Two yellow marks 4 = Caudal fin 

5 = One red mark + one yellow mark 5 = Right pectoral fin 

6 = Three red marks 6 = Right pelvic fin 

 

For example, a trout given a single yellow mark at the base of its left pelvic fin would be #22 in 

this system. To apply the elastomer tag, the 0.3-cc syringe containing the pigment was inserted 

into the tagging location at an angle approximately parallel to the surface of the skin so that the 

tip of the needle was only slightly below the skin’s surface. A small mark of pigment was 
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injected underneath the skin, the needle was removed and a dry piece of gauze was used to dab 

the area dry. 

 In addition, a subset of 10 brook trout in the study had temperature-sensitive radio-

transmitters (Advanced Telemetry Systems, Inc., Isanti, Minnesota) sutured into their peritoneal 

cavity as part of a concurrent study to examine behavioral thermal regulation. Because data from 

the 10 radio-tagged trout is included in this study, I detail the surgical procedure here. For these 

10 trout, the process of data collection and gastric lavage followed that specified above. 

However, after gastric lavage was completed, a tagging method similar to the one outlined by 

Ross and Kliner (1982) was used to implant radio-transmitters. An incision, approximately 2 cm 

long, was made in front of the pelvic girdle using a surgical scalpel. A small piece of tubing was 

inserted through the incision, past the pelvic girdle, and held firmly against the peritoneal wall. A 

17 gauge needle (Hamilton Company, Reno, Nevada) was then inserted through the peritoneal 

wall, passed through the tubing and out the incision in front of the pelvic girdle. The tag’s 

antenna was fed through the needle and out the pin-hole posterior to the pelvic girdle. The tag 

was placed inside the peritoneal cavity and the original incision was sewn using 6-0 synthetic 

absorbable suture (Ethicon, Inc., Somerville, New Jersey). All surgical equipment was kept in a 

solution of water and Chlorhexidine Gluconate Antiseptic Disinfectant (Aurora Pharmaceuticals, 

LLC, Northfield, Minnesota) throughout the surgery procedure to prevent contamination. A wash 

bottle filled with fresh stream water was used to keep the head and gills of trout moist during the 

data collection and tagging procedure. Between data collection, gastric lavage, and tagging, trout 

never remained fully out of the water for more than 5 minutes. When the tagging process was 

completed, trout were returned to the in-stream cage for recovery and monitored closely by one 

of the investigators until they were able to maintain self-equilibrium. For trout that had 
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undergone the surgical procedure, a 60-cc syringe was used to force aerated water over their 

gills. Additional recovery time was provided in the in-stream while I collected data on the 

remaining trout. On average, I estimate that after trout were handled they were allowed 

approximately 20-30 minutes to recover in the in-stream cage before being released into the 

stream. If I observed that a trout was unable to maintain self-equilibrium, I used the 60-cc 

syringe to force aerated water over its gills until it was able to maintain equilibrium on its own. 

Laboratory Procedures 

 Drift and benthic samples were processed in the laboratory using a Nikon SMZ645 

dissecting scope (Nikon Instruments Inc., Melville, New York). First, the invertebrates, organic 

matter, and sediment were removed from their 250-ml bottle. All invertebrates were separated 

from the sample and placed into a 60-ml wide-mouth sample bottle in 70% ethanol for 

preservation. Each 60-ml sample bottle was labeled exactly the same as the 250-ml sample bottle 

that the invertebrates were separated from. Once the invertebrates from all samples had been 

sorted and excess material had been disposed of, most invertebrates were keyed to the family 

level; however, several of the more prevalent taxa were identified to genus. Invertebrates were 

identified using dichotomous keys in Burch (1962), Borror et al. (1989), Peckarsky (1990), and 

Merritt et al. (2008).  

 For brook trout diet samples, there was no need to separate any excess material from the 

samples. Diet samples were emptied out of their 250-ml bottles, invertebrates were identified to 

the lowest possible taxonomic level, and samples were subsequently transferred to 60-ml sample 

bottles with 70% ethanol for further storage. Because of the digestion process, invertebrates in 

the diet samples were often only identified to family, and sometimes could only be identified to 

order.  
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 After invertebrates in the diet samples were identified, I needed to quantify the mass of 

each prey taxon consumed on all sample dates. To do so, the head-capsule width (HC) and total 

length (TL) of the invertebrates in each diet sample were measured to the nearest 0.01 μm using 

a Nikon SMZ1500 microscope with a digital site attached to NIS-Elements 3.0 software, then 

converted to mm. For many invertebrate taxa, published TL vs. dry mass (DM) or HC vs. DM 

equations already exist (Smock 1980; Sage 1982; Sample et al. 1993; Benke et al. 1999; Sabo et 

al. 2002). However, for several taxa that were present in brook trout diets, there were no 

published equations available. For these taxa, I used invertebrates that had been collected in my 

drift samples, or invertebrates collected in drift samples from nearby streams, to develop my own 

TL vs. DM and HC vs. DM relationships. First, I measured the TL and HC, to the nearest 0.01 

μm, of invertebrates from each taxon that was not quantified in the literature and converted those 

values to mm. Then, a small piece of aluminum foil, approximately 4 cm2, was weighed to the 

nearest ±0.001 mg using a Mettler Toledo microbalance model xs3 DU (Mettler Toledo, LLC, 

Columbus , Ohio) and folded into the shape of a tray. Each individual invertebrate was then 

placed in its own small, aluminum tray and dried for at least 24 hours at 50°C in a Heratherm 

OMH750 drying oven (Thermo Fisher Scientific Inc, Rochester, New York). After drying, the 

invertebrates were removed from the oven and each invertebrate, with the aluminum foil, was 

weighed to the nearest ±0.001 mg and converted to g. The weight of the aluminum foil by itself 

was then subtracted from the weight of the invertebrate and the aluminum foil to determine the 

DM of the invertebrate.  

I used the power function DM = αLβ to relate TL (mm) to DM (g) and HC (mm) to DM. I 

performed a natural logarithm transformation on the DM, TL, and HC data for each taxon, and 

used linear regression to develop a model estimating the relationship between TL and DM, as 
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well as the relationship between HC and DM. This procedure closely follows the methods of 

other studies that have developed length-mass relationships of macroinvertebrates (Smock 1980; 

Sample et al. 1993; Benke et al. 1999; Sabo et al. 2002). Linear regression was performed in 

Program R version 3.1.3 (R Core Team 2016). The equations for the linear models can be 

written: 

ln(𝐷𝑀) = ln(𝛼) +  𝛽 · ln (𝑇𝐿) 

ln(𝐷𝑀) = ln(𝛼) +  𝛽 ·  ln (𝐻𝐶) 

The linear model provides estimates of ln(α) and β. Thus, by measuring the TL, or HC, of 

an invertebrate its DM can be estimated using the equation. The specific taxa, and model 

estimates are listed in Table 3.2 and Table 3.3. I have included the estimates for each taxon that 

yielded a linear model with a statistically significant P-value, whether that model was used to 

quantify invertebrate mass in this study or not. The linear model developed for the relationship 

between HC and DM of Lepidoptera larvae was not statistically significant, but was used to 

quantify the mass of 1 invertebrate in this study, so it is included in the table. 

 

Table 3.2. Estimates of the relationship between total length (TL, mm) and dry mass (DM, g) for 

invertebrate taxa based on linear regression models. Relationships are estimated using the 

equation ln(𝐷𝑀) = ln(𝛼) +  𝛽 · ln (𝑇𝐿) . I report the sample size of each taxon used in the linear 

regression (n), estimates of ln(α) and β with the standard error of each term (SE), the test 

statistics of the linear regression model (P, R2
adj), and the number of times the equation was used 

in my analyses (N) 

Taxon n ln(α) (SE) β (SE) P R2
adj N 

Araena 8 -10.74 (0.27) 2.69 (0.21) <0.05 0.96 0 

Coleopteran adults 15 -10.39 (0.53) 2.43 (0.34) <0.05 0.78 0 

Dipteran adults 31 -10.33 (0.35) 1.53 (0.26) <0.05 0.54 0 



92 
 

       

Table 3.2. Continued 

Taxon n ln(α) (SE) β (SE) P R2
adj N 

Homoptera 11 -11.45 (0.73) 2.82 (0.51) <0.05 0.75 0 

Hymenopteran adults 10 -11.90 (0.54) 2.85 (0.50) <0.05 0.78 0 

Hymenopteran larvae 6 -16.10 (1.27) 3.62 (0.59) 0.004 0.88 0 

Trichopteran adults 44 -12.59 (0.26) 3.13 (0.15) <0.05 0.91 0 

 

Table 3.3. Estimates of the relationship between (HC, mm) and (DM, g) for invertebrate taxa 

based on linear regression models. Relationships are estimated using the equation ln(𝐷𝑀) =

ln(𝛼) +  𝛽 · ln (𝐻𝐶) . Symbols in this table represent the same values as those in Table 3.2. 

 

Taxon n ln(α) (SE) β (SE) P R2
adj N 

Araena 8 -7.76 (0.18) 3.60 (0.42) <0.05 0.91 1 

Coleopteran adults 15 -6.43 (0.23) 2.56 (0.45) <0.05 0.69 4 

Dipteran adults 31 -7.38 (0.31) 1.94 (0.63) 0.005 0.22 4 

Homoptera 11 -7.61 (0.11) 1.97 (0.20) <0.05 0.90 7 

Hymenopteran adults 10 -8.05 (0.24) 2.26(0.38) <0.05 0.80 1 

Hymenopteran larvae 6 -8.07 (0.15) 4.42 (0.34) <0.05 0.97 0 

Lepidopteran larvae 4 -7.83 (0.48) 1.75 (1.04) 0.234 0.39 1 

Trichopteran adults 44 -7.48 (0.06) 3.91 (0.26) <0.05 0.84 76 

 

Several taxa present in the diet of trout were not found in drift samples, so I directly 

dried, and weighed each individual invertebrate of these taxa to estimate DM. Similar to the 

procedure listed above, a small piece of aluminum foil was weighed and the invertebrate was 

placed on the aluminum foil and dried for at least 24 hours at 50°C. The foil, and the invertebrate 

were then weighed together, and the mass of the aluminum foil was subtracted from the mass of 

the foil and the invertebrate to determine DM. 
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