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Chapter 4 
 

Conducting Simulation Experiments 
 

4.1 Introduction 
 
This chapter provides the information necessary to design, carry out, and analyze the results of a 
simulation experiment.  Experimentation with a simulation model, as opposed to an exact 
analytic solution obtained using mathematics, is required.  Principle 2 states that simulation 
models conform both to system structure and to available system data.  Conditional logic is 
employed.  Thus, these models usually cannot be solved by analytic methods.  Simulation 
experiments must be properly designed and conducted as would any field or laboratory 
experiment.  The design of simulation experiments leads to the benefits of simulation described 
by principle 3: lower cost and more flexibility than physical prototypes as well as less risk of 
negative consequence on day-to-day operations than direct experimentation with existing, 
operating systems as the plan-do-check-act (PDCA) cycle of lean would do. 
 
The design of a simulation experiment specifies how model processing generates the information 
needed to address the issues and to meet the solution objectives identified in the first phase of 
the simulation process.  An approach to the analysis of results is presented, including ways of 
examining simulation results to help understand system behavior as well as the use of statistical 
methods such as confidence interval estimation to help obtain evidence about performance, 
including the comparison of scenarios. 
 
Prerequisite issues to the design and analysis of any simulation experiment are discussed.  
These include verification and validation as well as the need to construct independent 
observations of simulation performance measures and to distinguish between probability and 
degree of confidence.  
 
Verification and validation are discussed first followed by a discussion of the need to construct 
independent observations of performance measures.  The design elements of simulation 
experiments are explained.  Finally, an approach to the analysis of terminating simulation results 
is given along with an explanation of how probability and degree of confidence are differentiated. 
 
The discussion in this chapter assumes some prior knowledge of data summarization, probability, 
and confidence interval estimation.   
 
4.2 Verification and Validation 
 
This section discusses the verification and validation of simulation models.  Verification and 
validation, first described in principle 6 of chapter 1, have to do with building a high level of 
confidence among the members of a project team that the model can fulfill is objectives.  
Verification and validation are an important part of the simulation process particularly with respect 
to increasing model credibility among managers and system experts. 
 
Verification has to do with developing confidence that the computer implementation of a model is 
in agreement with the conceptual model as discussed in chapter 1.  In other works, the computer 
implementation of the model agrees with the specifications given in the conceptual model.  
Verification includes debugging the computer implementation of the model. 
 
Validation has to do with developing confidence that the conceptual model and the implemented 
model represent the actual system with sufficient accuracy to support making decision about 
project issues and to meet the solution objectives.  In other works, the computer implementation 
of the model and the conceptual model faithfully represent the actual system. 
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As described by many authors (Balci, 1994; Balci, 1996; Banks, Carson, Nelson, and Nicol, 2009; 
Carson, 2002; Law, 2007; Sargent, 2009), verification and validation require gathering evidence 
that the model and its computer implementation accurately represent the system under study with 
respect to project issues and solution objectives.  Verification and validation are a matter of 
degree.  As more evidence is obtained, the greater the degree of confidence that the model is 
verified and valid increases.  It should be remember however that absolute confidence (100%) 
cannot be achieved.  There will always be some doubt as to whether a model is verified and 
validated.   
 
How to obtain verification and validation evidence and what evidence to obtain is case specific 
and requires knowledge of the problem and solution objectives.  Some generally applicable 
strategies are discussed and illustrated in the following sections.  The application studies, starting 
in chapter 6, provide additional examples.  Application problems in the same chapters give 
students the opportunity to practice verification and validation. 
 
Verification and validation strategies are presented separately for clarity of discussion.  However 
in practice, verification and validation tasks often are intermixed with little effort to distinguish 
verification from validation.  The focus of both verification and validation is on building confidence 
that the model can be used to meet the objectives of the project. 
 
A pre-requisite to a proper simulation experiment is verifying and validating the model. 
 
Throughout this chapter, including the discussion of verification and validation, illustrations and 
examples will make use of a model of two stations in a series with a large buffer between the 
stations as well as the industrial example presented in section 1.2.  A diagram of the former is 
shown in Figure 4-1.  A part enters the system, waits in the buffer of workstation A until the 
machine at this workstation is available.  After processing at workstation A, a part moves to 
workstation B where it waits in the buffer until the workstation B machine is available.  After 
processing at workstation B, a part leaves the system.  Note that because it is large, the buffer 
between the stations is not modeled. 
 

 
 
4.2.1 Verification Procedures 
 
Some generally applicable techniques for looking for verification evidence follow. 
 
1. What goes into a model must come out or be consumed. 
 
For example, in the two workstations in a series model, the following ñentity balanceò equation 
should hold: 
 
Number of entities entering the system =  the number of entities departing the system + 

the number of entities still in the system at the 
end of the simulation 
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The latter quantity consists of the number of entities in each workstation buffer (A and B) plus the 
number of entities being processed at workstations A and B.  If the entity balance equality is not 
true, there is likely an error in the model that should be found and corrected. 
 
The number of entities entering the system consists of the number of entities initially there at the 
beginning of the simulation plus the number of entities arriving during the simulation. 
 
For example, for one simulation of the two workstations in a series model, there were 14359 
entities arriving to the model of which 6 were there initially.  There were 14357 entities that 
departed and two entities in the system at the end of the simulation.  One of the two entities was 
in the workstation A operation and the other was in the workstation B operation. 
 
2. Compare the process steps of the computer model and the conceptual model. 
 
The process steps in the model implemented in the computer version of the model and the 
conceptual model should correspond and any differences should be corrected or justified.   
 
The process steps in the two workstations in a series model are as follows: 
 
1. Arrive to the system. 
2. Enter the input buffer of workstation A. 
3. Be transformed by the workstation A operation. 
4. Be moved to and enter the input buffer of workstation B. 
5. Be transformed by the workstation B operation. 
6. Depart the system. 
 
3. Check all model parameter values input to the model. 
 
The model implementation should include the checking required to assure that input parameter 
values are correctly input and used.   
 
For example in the industrial application discussed in section 1.2, customer demand volume is 
input.  The volume of product shipped is output.  Enough information is included in the reports 
generated by the model to easily determine if all of the input volume is shipped or is awaiting 
shipment at the end of the simulation. 
 
4. Check all entity creations. 
 
The time between arrivals is specified as part of the model.    The average number of arrivals can 
be computed given the ending time of the simulation.  In addition, the number of arrivals during 
the simulation run is usually automatically reported.  These two quantities can be compared to 
assure that entities are being created as was intended. 
 
For example, suppose model of the two stations in a series was simulated for 40 hours with an 
average time between arrivals of 10 seconds.  The expected number of arrivals would be 14400 
(= 40 hours / 10 seconds).  Suppose 20 independent simulations were made and the number of 
arrivals ranged from 14128 to 14722.  Since this range includes 14400, verification evidence 
would be obtained.  How to do the independent simulations is discussed in section 4.3 and 
following. 
 
Alternatively a confidence interval for the true mean number of arrivals could be computed.  If this 
confidence interval includes the expected number of arrivals verification evidence is obtained.  In 
the same example, the 95% confidence interval for the mean number of arrivals is 14319 to 
14457.  Again, verification evidence is obtained. 
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5. Check the results of all logical decisions. 
 
Sufficient checking should be built into the simulation model to assure that all logical decisions 
are correctly made that is all conditional logic is correctly implemented. 
 
For example in the industrial problem discussed in section 1.2, each product could be shipped 
from one of a specified set of loads spots.  Output reports showed the volume of shipments by 
product and load spot combination.  Thus, it could be easily seen if a product was shipped from 
the wrong load spot. 
 
6. Implement the simplest possible version of the model first and verify it.  Add 

additional capabilities to the model one at a time.  Perform verification after each 
capability is added. 

 
Verifying that any complex computer program was implemented as intended can be difficult.  
Implementing the smallest possible model helps simplify the verification task, and perhaps more 
importantly, results in a running model in relatively little time.  Verifying one capability added to an 
already verified model is relatively straightforward. 
 
For example, the model of the industrial problem presented in section 1.2, has been developed 
over a number of years with new capabilities added to support addressing new issues and 
solution objectives. 
 
7. For models developed by multiple individuals, used structured walk-throughs. 
 
Each individual implements an assigned portion of the model, or sub-model.  Each individual 
presents the implementation to all of the other team members.  The team as a whole must agree 
that the implementation faithfully represents the conceptual model. 
 
For example, one strategy is to build and implement an initial model as quickly as possible from 
the specifications in the conceptual model.  If the conceptual model is incomplete, assumptions 
are made to complete model construction and implementation.  The assumptions may be gross 
or inaccurate.  The entire team reviews the initial model, especially the assumptions, and 
compares it to the conceptual model.  The assumptions are corrected as necessary.  This may 
require team members to gather additional information about how certain aspects of the system 
under study work. 
 
8. Use the model builders available in most simulation environments. 
 
Model builders implement the standard modeling constructs available in a simulation language.  
They provide a standard structure for model building and help guard against model building errors 
such as inconsistent or incomplete specification of modeling constructs. 
 
9. Output and examine voluminous simulation results. 
 
Sufficient information should be output from the simulation to verify that the different components 
of the system are operating consistently with each other in the model. 
 
For example in the industrial problem of section 1.2, both the utilization of each load spot and 
summary statistics concerning the time to load each product are reported.  If the load spots 
assigned to a product have high utilization, the average product loading time should be relatively 
long. 
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10. Re-verify the model for each set of model parameter values tested. 
 
A model implementation can be verified only with respect to the particular set of model parameter 
values tested.  Each new set of parameter values requires re-verification.  However after many 
sets of parameter values have been tested, confidence is gained that the implementation is 
correct for all sets of parameter values in the same range.  
 
For example for the industrial problem of section 1.2, verification information is carefully 
examined after each simulation experiment. 
 
4.2.2 Validation Procedures 
 
Some generally applicable techniques for looking for validation evidence follow. 
 
1. Compare simulation model results to those obtained from analytic models. 
 
This is a restatement of principle 11 of chapter 1. For example, the mean number of busy units of 
a resource can be computed easily as discussed in chapter 6.   
 
In the two workstations in a series model, suppose the operation time at the second workstation 
is a constant 8.5 seconds and the mean time between arrivals is 10 seconds.  The percentage 
busy time for workstation B is equal to 8.5 / 10 seconds or 85%.  The simulation of the 
workstation provides data from which to estimate the percent busy time.  The range of 
workstation B utilization over multiple independent simulations is 83% to 87%.  A confidence 
interval for the true mean utilization could be computed as well.  The 95% confidence interval is 
84.4 to 85.4.  Thus, validation evidence is obtained.   
 
2. Use animation to view simulation model dynamics, especially those involving 

complex conditional logic. 
 
Reviewing all the implications of complex decisions using voluminous information in a static 
medium, such as a report, or even in an interactive debugger, is difficult and possibly 
overwhelming.  Animation serves to condense and simplify the viewing of such information. 
 
Consider the following illustration.  In the early 1980ôs, a particular simulation company was 
developing its first commercial animator product.  Having completed the implementation and 
testing, the development team asked an application consultant for an industrial model to animate.  
The consultant supplied a model that included a complex control system for a robot. 
 
The developers completed the animation and presented it to the consultant.  The response of the 
consultant was that there must be something wrong with the new animation software as the robot 
could not engage in the sequence of behavior displayed.   
 
Try as they might, the development team could not find any software error in the animator.  To aid 
them, the team asked the consultant to simulate the model, printing out all of the information 
about the robotôs behavior.  The error was found not in the animator, but in the model.  The 
disallowed behavior pattern occurred in the simulation! 
 
This is not a criticism of the consultant.  Rather it points out how easy it was to see invalid 
behavior in an animation though it was infeasible to detect it through a careful examination of the 
model and output information. 
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3. Involve system experts and managers 
 
System experts should review the model, parameter values and simulation results for consistency 
with system designs and expectations.  Reports of simulation results should be presented in a 
format that is understandable to system experts without further explanation from the modelers.  
Animation can help in answering questions such as: How was the system represented in the 
model?  Inconsistencies and unmet expectations must be resolved as either evidence of an 
invalid model or unexpected, but valid, system behavior. 
 
For example the development process for the industrial model discussed in section 1.2 was as 
follows.  A first cut model was developed as quickly after the start of the project as possible.  It 
was clear during the development of this model that some components of the system had not 
been identified or had incomplete specifications that is the first draft conceptual model was 
incomplete.  The modelers made gross assumptions about how these components operated.  
The first cut model was reviewed by the entire project team including system experts and 
managers.  Based on this review, tasks for completing the conceptual model were assigned.  
When these tasked were completed, the conceptual model was updated and the implemented 
model was revised accordingly. 
 
4. If some quantities are estimated by system experts and managers, test their effect 

on system outputs. 
 
As discussed in chapter 3, there may be a lack of data available for estimating time delays or 
other quantities needed in a model.  This is common when the simulation model is being used to 
assist in the design of a new system.  For such quantities, it is essential to perform a sensitivity 
analysis.  This involves running the model with a variety of values of each estimated quantity and 
observing the effect on performance measures.  Estimated quantities that greatly effect system 
performance should be identified.  Further study may be necessary to obtain a more precise 
estimate of their value. 
 
For example, there was little data concerning shipping times, the time between when a product 
left the plant and when it arrived at a customer, for the industrial model discussed in section 1.2.  
These times were believed to be directly related to some of the key performance measures 
estimated by the model.  Thus, it was thought to be wise to refine them over time.  Initially, 
shipping times were specified as triangularly distributed with estimates of the minimum, 
maximum, and modal times for all products in general supplied by logistics experts.  Later 
additional data was available so that shipment times were available for each group of products.  
Still later, an analysis of data in the corporate information system was done to provide product 
specific shipping times.  The simulation model was modified to allow any of the three shipping 
time options to be used for any product. 
 
5. Carefully review a trace of a simulation run. 
 
A model specific report of the step-by-step actions taken during a run can be generated by the 
simulation in a format that can be read by system experts and managers.  A careful examination 
of such a report, though tedious, can help assure that the process steps included in the 
simulation model are complete and correctly interact with each other. 
 
For example, the sponsors of an industrial inventory management simulation required such a 
trace to assure that the model correctly captured the response of the actual system to certain 
disturbances.  The trace was carefully examined by the sponsors and other system experts to 
gain confidence that the model was valid. 
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6. Compare performance measure values to system data to see if any operationally 
significant differences can be observed. 

 
The same performance measures computed in the model may be estimated from data collected 
from an existing system.  Summary statistics, such as the average, computed from performance 
measure values may be compared by inspection to summary statistics computed from the data 
collected from an existing system.  If no operationally significant differences are observed, then 
validation evidence is obtained. 
 
Law (2007) discusses the difficulty of using statistical tests to compare performance measure 
values and real world data as well as making some recommendations in this regard. 

 

For example, in the industrial model of section 1.2, system experts believed that empty rail cars 

spent 6 to 7 days in the plant.  Simulation results estimated that empty rail cars spent an average 

of 6.6 days in the plant.  Thus, validation evidence was obtained. 
 
4.3 The Problem of Correlated Observations 
 

Most statistical analysis procedures require independent (and identically distributed) observations 

of performance measure values.  However, the observations in a simulation experiment are 

typically dependent (correlated).  This section illustrates why a simulation experiment generates 

correlated observations.  Approaches to dealing with this issue are presented later in this chapter. 

  

Consider the time the nth part arriving to workstation A in the two stations in a series model would 

spend at the workstation: 

 
Time at workstation An = Time in buffern + Operation timen 

 

The time in the buffer for the nth part is composed of the operation times for the parts that 

preceded it in processing while the nth part was in the buffer.  For example, suppose the fourth 

part to arrive does so while the second part to arrive is being processed.  So the time the fourth 

part spends in the buffer is equal to a portion of the operation time for the second part and the 

entire operation time for the third part: 

 
Time at workstation4 = f(operation time2, operation time3) + Operation time4 

 

Thus, the time spent at the workstation by the fourth part is correlated with the time spent by the 

second and the third parts. 

 
Rather than using correlated performance measure observations directly in statistical analysis 
computations, independent observations are constructed.  How to do this is discussed later in this 
chapter. 
 
The statistical analysis of simulation results is greatly aided by the construction of 
independent observations of the performance measures. 
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4.4 Common Design Elements 

 
The elements common to all simulation experiments are discussed in the following sections.  
These include model parameters and their values, performance measures, and random number 
streams.   
 
4.4.1 Model Parameters and Their Values 
 
Model parameters correspond to system control variables or operational rules whose values can 
be changed to meet the solution objectives defined in the first step of the simulation process.  
Values of model parameters can be quantitative such as the size of a buffer or qualitative such as 
which routing policy to use. 
 
Often in traditional experimental design and analysis, time and cost constraints result in the use 
of only two or three values of each model parameter.  Simulation affords the opportunity to test as 
many values as time and computing resources allow.  For example, various sizes of an inter-
station buffer could be simulated.  A very large size could represent an infinite buffer.  A buffer 
size of one or two would be minimal.  Intermediate buffer sizes such as five and ten could be 
evaluated. 
 
Which values are used may depend on the results of preceding simulations.  For example, results 
of the initial simulations may indicate that a buffer size in the range 10 to 20 is needed.  Additional 
simulations would be run with for buffer sizes between 10 and 20. 
 
Model parameters must be defined and their values specified. 
 
4.4.2 Performance Measures 
 
Performance measures are quantities used to evaluate system behavior.  They are defined in 
accordance with principle 9 of chapter 1: ñSimulation experimental results conform to unique 
system requirements for information.ò  Thus, each simulation experiment could have different 
performance measures.  
 
Possible performance measures for experiments with the two stations in a series model could be 
as follows:   
 
1. The number of items waiting in each buffer. 
2. The percentage of time each workstation is busy. 
3. The percentage of time each workstation is idle. 
4. The time an item spends in the system (lead time). 
5. The total number of items processed by the workstation. 
 
Note that state variable values are used as performance measures along with the time taken by 
entities in one, more than one, or all of the processing steps.  A count of the number of entities 
completing processing is desired as well.  These kinds of performance measures are typical of 
many simulation experiments. 
 
Performance measures must be defined, including how each is computed. 
 
4.4.3 Streams of Random Samples 
 
One purpose of a simulation experiment is comparing scenarios.  Suppose that no statistically 
significant difference between two scenarios is found.  This could occur because the scenarios do 
not cause distinct differences in system performance.  A second and undesirable possibility is 
that the variance of the observations made during the simulation is too high to permit true 
differences in system observations to be confirmed statistically. 
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Suppose we wished to assess a change in the operation of workstation A in the two stations in a 
series model where the range of the operation time is reduced to uniformly distributed between 7 
and 11 seconds from uniformly distributed between 5 and 13 seconds.  The same arrivals could 
be used in simulating both scenarios.  Thus, the comparison could be made with respect to the 
same set of entities processed by the workstation.  In general, this approach is referred to as the 
method of common random numbers since simulations of the two scenarios have the same 
pattern of arrivals in common.  Each time between arrivals was determined by taking a random 
sample from the exponential distribution modeling this quantity.  How this is done will be 
discussed in the next chapter. 
 
To better understand the effect of common random numbers, consider what happens when they 
are not used.  There would be a different set of arrivals in the simulation of the first scenario than 
in the simulation of the second scenario. Observed differences in performance measure values 
between the two scenarios could be due to the differences in the arrivals or true differences 
between the scenarios.  Thus, the variance associated with summary statistics of differences in 
values, such as the mean lead time, would likely be higher than if common random numbers were 
used.  This higher variance might result in a failure to detect a true difference between the 
scenarios with respect to a given performance measure such as lead time even if such a 
difference existed. 
 
The method of common random numbers requires distinct streams of samples for each quantity 
modeled by a probability distribution.  While this does not guarantee a reduction in the variance of 
the difference, experience has shown that a reduction often occurs.  In practice for most 
simulation languages, this means that the stream of samples associated with each quantity 
modeled by a probability distribution must be given a distinct name. 
 
Law (2007) more details concerning the common random number approach as well as other 
experiment design techniques to control the variance.  Banks, Carson, Nelson, and Nicol (2009) 
discuss these techniques as well.   
 
The quantities modeled by probability distributions in a model must be identified and 
uniquely named the method of common random numbers may be employed. 
 
4.5 Design Elements Specific to Terminating Simulation Experiments 
 
A terminating simulation experiment ends at a specified simulation time or event that is 
derived from the characteristics of the system under study and is stated as a part of the 
experiment design.  This is the distinguishing characteristic of such as an experiment.         
 
This section presents the design elements that are specific to terminating simulation experiments.   
These include setting initial conditions, specifying the number of replications of the experiment, 
and specifying the ending time or event of the simulation. 
 
4.5.1 Initial Conditions 
 
To begin a simulation, the initial values of the state variables and the initial location in the model 
of any entities, along with their attribute values, must be specified.  Together, these are called the 
initial conditions.   
 
In a terminating simulation, the initial conditions should be the same as conditions that occur in 
the actual system (Law, 2007).  The work of Wilson and Pritsker (1978) leads toward using the 
modal or, at least, frequently occurring conditions.  This must be done to ensure there is not a 
statistically significant greater portion of performance measure values in any given range 
gathered from the simulation than would occur in the actual system.  Thus, statistical bias is 
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collecting performance measure values that could not have occurred, or in greater (lesser) 
proportion in one range than could have occurred, in the actual system.   
 
Consider again the two work stations in a series model.  For example, suppose it is known that 
parts are almost always in the buffer of workstation A and of workstation B.  Thus possible initial 
conditions are: 
 
1. The workstation A resource is in the BUSY state processing one part. 
2. The workstation B resource is in the BUSY state processing one part. 
3. Two parts are in the buffer of workstation A. 
4. Two parts are in the buffer of workstation B. 
 
Note that the time spent at either workstation by a part will consist of the time spent in the input 
buffer plus the operation time.  If the simulation experiment begins with no parts in either input 
buffer, the time the first part spends at each workstation is equal to the operation time because 
the time spent in the input buffer will be zero.  The observed lead time for this part will be less 
than for any part processed by the actual system.   
 
Statistical bias is illustrated in Figure 4-2 that shows example histograms of part time in the 
system collected from the actual system and from a simulation.  The simulation has improper 
initial conditions of no parts at the workstation.  Some of the simulation observations are biased 
low.  Calculations of statistics based on statistically biased observations may also be biased and 
inaccurate conclusions about problem root causes or the performance of proposed solutions 
drawn.   
 
The initial conditions must be specified as a part of the experimental design and must be 
actual conditions that occur in the system. 
 

 
Figure 4-2:  Illustration of Statistical Bias 

 
4.5.2 Replicates 
 
This section discusses the idea of replication to construct independent observations of simulation 
performance measures.  Replicates of a simulation experiment differ from each other only in the 
sample values of the quantities modeled by probability distributions.  Replicates are treated as 
independent of each other since the sample values exhibit no statistical correlation. 
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Each replicate is one possibility of how the random behavior of the system actually occurred.  
Multiple possibilities for system behavior should be examined in detail to draw conclusions about 
the effectiveness of system scenarios in meeting solution objectives.  
 
Consider again the two work stations in a series model.  There is a stream of sample values for 
the time between arrivals and another stream for operation times at workstation A.  A replicate is 
defined by the particular samples taken in these two streams.  Examining system performance for 
other streams of the time between arrivals and of service times is necessary.   These other 
streams define additional replicates. 
 
Observations of the same performance measure from different replicates are statistically 
independent of each other.  In addition, performance measure observations from different 
replicates are identically distributed for the same reason.  Thus replication is one way of 
constructing independent observations for statistical analysis.  However, since performance 
measures may be arbitrarily defined, the underlying probability distribution of the performance 
measure observations cannot be determined in general. 
 
During each replicate, one or more observations of the values of a performance measure are 
made.  For example, the number of entities that complete processing in the two work stations in 
series model is incremented each time processing is finished, the lead time is recorded each time 
an entity completes processing, and the number of entities in either workstation buffer is updated 
each time an entity arrives at a workstation as well as each time an entity begins processing. 
 
For the reasons discussed in section 4.3, each replicate can produce only one independent 
sample, xi. This independent sample is often a statistic computed from the observations of a 
performance measure, usually the average, minimum, or maximum.  For example, one average 
of the number in the buffer at a workstation A is computed from all of observations made during 
one replicate.  This average is one independent sample of the average number in the buffer. 
 
Statistical summaries are estimated from the xiôs.  These summaries typically include the 
average, standard deviation, minimum, and maximum.  Confidence intervals are also of interest.   
 
In summary, each simulation experiment consists of n replicates.  Within each replicate and for 
each performance measure, one or more observations are made.  From the observations, one or 
more statistics are typically computed.  Each such statistic is the independent observation, x i, 
produced by the replicate. 
 
For example, a simulation experiment concerning the two work stations in a series model could 
consist of 20 replicates.  The number of entities in the workstation A buffer could be observed.  
Each time the number in the buffer changes an observation is made.  The average number in the 
buffer as well as the maximum number in the buffer is computed.  There are 20 independent 
observations of the average number in the buffer as well as 20 independent observations of the 
maximum number in the buffer. 
 
The number of replicates initially made is generally determined by experience and the total 
amount of real (ñclockò) time needed to compute the simulation.  Most of the time, this number is 
in the range 10-30.  More replicates may be needed if the width of a confidence interval 
computed from the performance measure observations is considered to be too wide.  Confidence 
interval estimation is discussed later in this chapter. 
 
The number of replications of the simulation experiment must be specified. 
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4.5.3 Ending the Simulation 
 
This section discusses the time or condition that determines when to end a replicate.   
 
An ending time for a replicate arises naturally from an examination of most systems.  A 
manufacturer wants to know if its logistic equipment will suffice for the next budget period of one 
year.  So the end of the budget year becomes the simulation ending time.  A fast food restaurant 
does most of its business from 11:30 A.M to 12:30 P.M.  Thus the simulation ending time is one 
hour.  The experiment for a production facility model could cover the next planning period of three 
months.  After that time, new levels of demand may occur and perhaps new production strategies 
implemented.  The simulation experiment for a production facility could end when 100 parts are 
produced. 
  
4.5.4 Design Summary 
 
The specification of design elements for a terminating simulation experiment can be 
accomplished by completing the template shown in Table 4-1. 
 

Table 4-1:  Terminating Simulation Experiment Design 
 

Element of the Experiment Values for a Particular Experiment 

Model Parameters and Their Values  

Performance Measures  

Random Number Streams  

Initial Conditions  

Number of Replicates  

Simulation End Time / Event  

 
Consider a terminating simulation experiment for the two workstations in a series model.  The 
time between arrivals and the operation time at workstation A are modeled using probability 
distributions.  Performance measures include the number in the buffer at each workstation, the 
state of the each workstation (BUSY or IDLE), and entity lead time.  The model parameter is the 
machine used at workstation A, either the current machine with operation time uniformly 
distributed between 5 and 13 seconds or a new machine with operation time uniformly distributed 
between 7 and 11 seconds.  The initial conditions are two items in each buffer and both 
workstations busy.  Twenty replicates will be made for the planning horizon of one work week.  
The experimental design is shown in Table 4-2. 
 

Table 4-2:  Simulation Experiment Design for the Two Workstations in Series Model 
 

Element of the Experiment Values for a Particular Experiment 

Model Parameters and Their Values Workstation A Machine:  Current vs. New 

Performance Measures Number in the buffer at each workstation 
State of each workstation 
Lead Time  

Random Number Streams Time between arrivals 
Operation Time 

Initial Conditions Two entities in each buffer 
One entity in service at each workstation 
(State of each workstation resource is 
BUSY) 

Number of Replicates 20 

Simulation End Time / Event 1 week (40 hours) 
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4.6 Examining the Results for a Single Scenario 

 
This section presents a strategy for examining the simulation results of a single system scenario 
as defined by one set of model parameter values.  Results are examined to gain an 
understanding of system behavior.  Statistical evidence in the form of confidence intervals is used 
to confirm that what is observed is not just due to the random nature of the simulation model and 
experiment and thus provides a valid basis for understanding system behavior. 
 
Simulation results are displayed and examined using graphs and histograms as well as summary 
statistics such as the mean, standard deviation, minimum, and maximum.  Patterns of system 
behavior are identified if possible.  Animation is used to display the time dynamics of the 
simulation.  This is in accordance with principle 8: Looking at all the simulated values of 
performance measures helps. 
 
How the examination of simulation results is successfully accomplished is an art as stated in 
principle 1.  Thus, this topic will be further discussed and illustrated in the context of each 
application study. 
 
The discussion in this session is presented in the context of the two work stations in a series 
model. 
 
4.6.1 Graphs, Histograms, and Summary Statistics 
 
Observed values for each performance measure can be examined via plots, histograms, and 
summary statistics.  To illustrate, each of these will be shown for the number of entities in the 
buffer of workstation A in the two workstations in a series model. 
 
A plot of the observed values of the number in this buffer from replicate one of the simulation 
experiment defined in Table 4-2 is shown in Figure 4-3.  The x-axis is simulated time and the y-
axis is the number in the buffer of workstation A.  Note from the plot that most of the time the 
number in the buffer varies between 0 and 10.  However, there are several occasions that the 
number in the buffer exceeds 20.  This shows high variability at workstation A. 
 

 
 

Figure 4-3:  Plot of the Number of Entities in the Workstation A Buffer 
 
A histogram of the same observations is shown in Figure 4-4.  The percent of time that a certain 
number of entities is in the buffer is shown on the y-axis.  The number of entities is shown on the 
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x-axis.  Note that about 91% of the time there are 10 or less entities in the buffer of workstation A.  
However about 9% of the time there are more than 10 entities in the buffer. 
 
It would be wise to examine these same graphs from other replicates to see if the same pattern of 
behavior is observed.  If the software capability is available, a histogram combining the 
observations from all of the replicates would be of value. 
 

 
 

Figure 4-4:  Histogram of the Number of Entities in the Workstation A Buffer 
 
Summary statistics can be computed from the observations collected in each replicate.  However, 
these observations are likely not independent, so their standard deviation is not very useful.  The 
average, minimum, and maximum of the observations of the number in the buffer of workstation A 
from replicate 1 are given in Table 4-3.  The average number of entities is relatively low but the 
maximum again shows the high variability in the number in the buffer. 
 
Table 4-3:  Summary Statistics for the Number of Entities in the Buffer of Workstation A ï 

Replicate 1 
 

Statistic Value 

Average   4.1 

Minimum   0 

Maximum 26 

 
As was previously discussed, one independent observation each of the average, minimum, and 
maximum is generated by each replicate.  Suppose the average and maximum number in the 
buffer of workstation A are of interest.  The average corresponds to the average work-in-process 
(WIP) at the workstation and the maximum to the buffer capacity needed at the workstation.  
Table 4-4 summarizes the results for 20 replicates.  The average ranges from 3.1 to 6.6 with an 
overall average of 4.4.  This shows that the average number in the buffer has little variability.  The 
maximum shows significant variability ranging from 21 to 43 with an average of 31. 
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Table 4-4:  Summary Statistics for the Number of Entities in the Buffer of Workstation A ï 
Replicate 1 through 20 

 

Replicate Average Number in 
the Workstation A 

Buffer 

Maximum Number in 
the Workstation A 

Buffer 

1 4.1 28 

2 4.6 27 

3 4.1 30 

4 3.2 24 

5 3.8 24 

6 4.3 29 

7 4.0 25 

8 4.4 34 

9 4.3 40 

10 4.1 28 

11 4.1 26 

12 4.5 38 

13 4.5 31 

14 4.3 30 

15 4.8 37 

16 4.2 28 

17 5.2 40 

18 4.3 38 

19 4.3 26 

20 4.4 36 

Average 4.3 31.0 

Std. Dev. 0.39 5.4 

Minimum 3.2 24 

Maximum 5.2 40 

 
4.6.2 Confidence Intervals 
 
One purpose of a simulation experiment is to estimate the value of a parameter or characteristic 
of the system of interest such as the average or maximum number in the buffer of workstation A.  
The actual value of such a parameter or characteristic is most likely unknown.  Both a point 
estimator and an interval estimator are needed. The point estimator should be the center point of 
the interval.   
 
The average of the set of independent and identically distributed observations, one from each 
replicate, serves as a point estimator.   For example, the values in the ñaverageò row of Table 4-4 
are point estimators, the first of the average WIP in the buffer of workstation A and the second of 
the needed buffer capacity.    
 
The confidence interval estimation procedures recommend by Law (2007) will be used to provide 
an interval estimator.  The t-confidence interval given by equation 4-1 is recommended. 
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where t1-a/2,n-1 is the 1-a/2 percentage point of the Studentôs t distribution with n-1 degrees of 

freedom, n is the number of replicates, X is the average (the values on the ñaverageò row of 
Table 4-4 for example), and s is the standard deviation (the values on the ñstd. dev.ò row of Table 
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4-4 for example).  The ºsign means approximately.  The symbolmrepresents the actual but 

unknown value of the system parameter or characteristic of interest. 
 
The result of the computations using equation 4-1 is the interval shown in equation 4-2: 
 

(lower bound ¢ m ¢ upper bound) with 1-a confidence     (4-2) 
 
where  

lower bound = 
n

s
tX

n
*

1,2/1 --
-

a
         (4-3) 

upper bound = 
n

s
tX

n
*

1,2/1 --
+

a
       (4-4) 

 
Equations 4-1 and 4-2 show the need to distinguish between probability and confidence.  
Understanding this difference may require some reflection since in everyday, non-technical 
language the two ideas are often used interchangeably and both are expressed as a percentage.   
 
A probability statement concerns a random variable.  Equation 4-1 contains the random variables 

X and s  and thus is a valid probability statement.  The interpretation of equation 4-1 relies on 

the long run frequency interpretation of probability and is as follows:  If a very large number of 
confidence intervals are constructed using equation 4-1, the percentage of them that include the 

actual but unknown value of m is approximately 1-a.  This percentage is called the coverage. 
 
The interval expressed in equation 4-2 contains two numeric values: lower bound and upper 

bound plus the constant m whose value is unknown.  Since there are no random variables in 
equation 4-2, it cannot be a probability statement.  Instead, equation 4-2 is interpreted as a 

statement of the degree of confidence (1-a) that the interval contains the value of the system 

parameter or characteristic of interest.  Typical values for (1-a) are 90%, 95%, and 99%.  A 

higher level of confidence implies more evidence that the interval contains the value of m. 
 
Some thoughts on how to interpret the level of confidence with respect to the kind of evidence 
provided is worthwhile.  Keller (2001) suggests the following, which will be used in this text. 
 

Table 4-5. Interpretation of Confidence Values 
   

Confidence (1-a) Range Interpretation 

(1-a) ² 99% Overwhelming evidence  

95% ² (1-a) > 99% Strong evidence 

90% ² (1-a) > 95% Weak evidence 

90% > (1-a) No evidence 

 

Note that the higher the level of confidence the greater the value of 
1,2/1 -- n

t
a

 and thus the wider 

the confidence interval.  A narrow confidence interval is preferred so that the value of m is more 
precisely bounded.  However, it is clear that a high level of confidence must be balanced with the 
desire for a narrow confidence interval. 
 
Why equation 4-1 is approximate and not exact is worthy of discussion.  For equation 4-1 to be 
exact, the observations on which the confidence interval computations are based must come from 
a normal distribution as well as being independent and identically distributed.  As was previously 
discussed, the latter two conditions are met by the definition of a replicate while the first condition 
cannot be guaranteed since the performance measures in a simulation are arbitrarily defined.  
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Thus, equation 4-1 is approximate.  Approximate means that the coverage produced using 

equation 4-1 will likely be less than 1-a.   
 
Given that equation 4-2 provides only an approximate (not exact) level of confidence (not a 
probability), it is natural to ask why it should be used.  Law (2007) concludes that experience has 
shown that many real-world simulations produce observations of the type for which equation 4-1 

works well, that is the coverage produced using equation 4-1 is close enough to 1-a to be useful 
in conducting simulation studies.  In the same way, Vardeman and Jobe (2001) state that 
confidence intervals in general have great practical use, even though no probability statement 
can be made as to whether a particular interval contains the actual value of the system 
characteristic or parameter of interest.  Since confidence intervals seem to work well in general 
and in simulation studies, they will be used throughout this text. 
 
As an example, Table 4-6 contains the 99% confidence intervals computed from equation 4-2 for 
the average and maximum number of entities in the buffer of workstation A based on the results 
shown in Table 4-4. 
 

Table 4-6:  99% Confidence Intervals for the Number of Entities in the Buffer of 
Workstation A Based on 20 Replicates 

 

 Average Number in 
the Workstation A 

Buffer 

Maximum Number in 
the Workstation A 

Buffer 

Average 4.3 31.0 

Std. Dev. 0.39 5.4 

99% CI ï 
Lower Bound 4.0 27.5 

99% CI ï 
Upper Bound 4.5 34.4 

 
The confidence interval for the average is small.  It would be safe to conclude that the average 
number in the buffer of workstation A was 4 (in whole numbers).  The confidence interval for the 
maximum number in the buffer ranges from 27 to 34 (in whole numbers).  If this range is deemed 
too wide to establish a buffer size additional replicates, say another 20, could be made. 
 
4.6.3 Animating Model Dynamics 
 
As discussed in chapter 1, simulation models and experiments capture the temporal dynamics of 
systems.  However, reports of models and experimental behavior are often confined to static 
mediums such as reports and presentations like those shown in the preceding sections.  The 
simulation process includes system experts and managers who may not be knowledgeable about 
modeling methods and may be skeptical that a computer model can represent the dynamics of a 
complex system.  In addition, complex systems may include complex decision rules.  All 
behavioral consequences resulting from these rules may be difficult to predict. 
 
Addressing these concerns involves answering the question: What system behavior was captured 
in the model?  One very effective way of meeting this requirement is seeing the behavior 
graphically.  This is accomplished using animation.   
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Typical ways of showing simulated behavior using animation follow: 
 
1. State of a resource with one unit: The resource is represented as a graphical object that 

physically resembles what the resource models.  For example, if the resource models a 
lathe, then the object looks like a lathe.  Each state of the resource corresponds to a 
different color.  For example, yellow corresponds to IDLE, green to BUSY, and red to 
BROKEN.  Color changes during the animation indicate changes in the state of the 
resource in the simulation. 

 
2. Entities:  An entity is represented in the frame as a graphical object that physically 

resembles what the entity models.  Different colors may be used to differentiate entities 
with different characteristics.  For example if there are two types of parts, graphical 
objects representing part type 1 may be blue and those representing part type 2 may be 
white. 

 
3. Number of entities in a buffer: A graphical object, which may be visually transparent, 

represents the buffer.  An entity graphical object is placed in the same location as the 
buffer graphical object whenever an entity joins the buffer in the simulation.  The buffer 
graphical object accommodates multiple entity graphical objects. 

 
4. Material transportation: Any movement, such as between workstations, of entities in the 

simulation can be shown on the animation.  The location of an entity graphical object can 
be changed at a rate proportional to the speed or time duration of the movement.  
Movement of material handling equipment can be shown in a similar fashion.  As for 
other resources, a piece of material handling equipment is represented by a graphical 
object that resembles that piece of equipment.  For example, a forklift is represented by a 
graphical object that looks like a forklift. 

 
An animation of the two-stations in a series system should be viewed at this time. 
 
4.7 Comparing Scenarios 

 
This section presents a strategy for determining if simulation results provide evidence that one 
scenario is better than another.  Often one scenario represents current system operations for an 
existing system or a baseline design for a proposed system.  Improvements to the current 
operations or to a baseline design are proposed.  Simulation results are used see if these 
improvements are significant or not.  In addition, it may be necessary to compare one proposed 
improvement to another.  This is an important part of step 3 Identify Root Causes and Assess 
Initial Scenarios as well as step 4 Review and Extend Previous Work of the simulation project 
process.  
 
Often, pair-wise comparisons are made.  This will be the scope of our discussion.  Law (2007) 
provides a summary of methods for ranking and selecting the best from among all of the 
scenarios that are considered.   
 
The job of comparing scenario A to scenario B is an effort to find evidence that scenario A is 
better than scenario B.  This evidence is found first by examining observations of performance 
measures to see if any operationally significant differences or unexpected differences can be 
seen.  If such differences are seen, an appropriate statistical analysis is done to confirm them.  
Confirm means to determine that the differences are not due to random variation in the simulation 
experiment. 
 
Many times a scenario is better with respect to one performance measure and the same or worse 
with respect to others.  Evaluating such tradeoffs between scenarios is a part of the art of 
simulation. 
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Each of the ways of comparing scenarios will be discussed in the context of the simulation 
experiment concerning the two stations in a series model.  This experiment is presented in Table 
4-2.  The primary performance measure of interest will be entity lead time. 
 
4.7.1 Comparison by Examination 
 
Some ways of comparing two scenarios by examination of performance measure observations 
follow. 
 
1. For each replicate (or at least several replicates), graph all observations of a 

performance measure. 
 
For example, the graph of the number in the buffer of workstation A for the scenario for the 
current machine in use at workstation A is shown in Figure 4-3.  This could be compared to the 
graph of the same quantity for the scenario where the new machine is used at workstation A.  If 
the latter graph consistently showed fewer entities in the buffer, then there would be evidence 
that that using the new machine at workstation A is an improvement: less WIP. 
 
Graphing lead time observations is not usually done since lead time is not a state variable and 
does not have a value at every moment in simulation time. 
 
2. For each replicate or over all replicates, compare the histograms of the 

observations of a performance measure. 
 
For example, histograms of lead time can be compared.  If the histogram for the new machine at 
workstation A scenario clearly shows a greater percentage of entities requiring less time on the 
line versus the current machine scenario, then there would be evidence that using the new 
machine at workstation A lowers cycle time. 
 
3. Compare the averages of the sample values, xi, gathered from the replicates.  Note 

whether the difference in the averages is operationally significant. 
 
For example, the average lead time for the current machine scenario is 62.7 seconds and for the 
new machine scenario is 58.5 seconds.  These values are for all replicates of the experiment.  
Thus, the new machine reduces cycle time by about 6%, which is operationally significant. 
 
4. Compare the range [minimum, maximum] of the sample values, xi.  Note whether 

the ranges overlap. 
 
For example, the range of cycle time averages over the replicates of the experiment for the 
current machine scenario is (52.5, 71.7) and for the new machine scenario is (48.8, 68.9).  The 
ranges overlap and thus provide no evidence that the new machine reduces cycle time verses the 
existing machine at workstation A. 
 
4.7.2 Comparison by Statistical Analysis 
 
This section discusses the use of confidence intervals to confirm that perceived differences in the 
simulation results for two scenarios are not just due to random variation in the experiment. 
 
Note that the experiment design assures that scenarios share random number streams in 
common.  Thus, the scenarios are not statistically independent.  Furthermore, the same number 
of replicates is made for each scenario.  Thus, an approach that compares the simulation results 
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on a replicate by replicate basis is required and helpful.  This approach is called the paired-t 
method.

1
 

  
Table 4-7 provides the organization to support the paired-t method.  Each row corresponds to a 
replicate.  The difference between the performance measure values for each replicate is shown in 

the fourth column.  These differences are independent observations.   A 1-a confidence interval 
for the population mean of the difference in the fourth column is computed.  If this confidence 
interval does not contain zero, it will be concluded that there is a statistically significant difference 

between the scenarios with confidence 1-a.  This confidence interval is constructed and 
interpreted using the same reasoning as was given in section 4.6.2. 
 
To illustrate, Table 4-8 compares, based on entity lead time, the use of the new machine at 
workstation A versus the current machine using the paired-t method.  A 99% confidence interval 
for the mean difference is constructed: (3.7, 4.7) with 99% confidence.  Thus, with 99% 
confidence the new machine at workstation A reduces mean cycle time in the range (3.7, 4.7) 
seconds.   
 
It is also helpful to examine the data in Table 4-8 on a replicate-by-replicate basis.  Notice that in 
all of the replicates, cycle time was less using the new machine at workstation A.  It should be 
noted however that it is still quite possible that in any particular 40 hour period, the two stations in 
a series line would perform better with respect to cycle time using the current machine at 
workstation A instead of the new machine.  The simulation results show that on the average over 
many 40 hour periods the line will perform better with respect to cycle time using the new 
machine at workstation A. 
 

Table 4-7:  Format of the Paired-t Method 
 

Replicate  Scenario 
A 

Scenario 
B 

Difference (Scenario A ï Scenario 
B) 

1    

2    

3    

4    

. 

. 

. 
 

   

n    

Average    

Std. Dev.    

1-a C. I.  
Lower Bound 

   

1-a C.I.  
Upper Bound 

   

 

                                                           
1
 Law (2007) provides a more in depth discussion of the comparison of alternatives using 

confidence intervals, including the generation of confidence intervals when common random 
numbers are not used. 
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Table 4-8:  Comparison of Scenarios Using the Paired-t Method (1-a = 99%) 
 
Replicate  Current Machine New Machine Difference  

(Current  ï New) 

1 61.1 57.3 3.8 

2 66.0 62.2 3.9 

3 60.6 57.6 3.0 

4 52.5 48.8 3.7 

5 58.3 55.0 3.3 

6 63.4 59.3 4.0 

7 59.7 55.0 4.8 

8 63.9 59.2 4.7 

9 62.7 58.5 4.2 

10 61.1 56.7 4.4 

11 60.7 56.6 4.1 

12 65.2 59.8 5.4 

13 64.7 58.3 6.4 

14 63.6 59.5 4.1 

15 67.3 63.5 3.8 

16 61.7 57.2 4.5 

17 71.7 68.9 2.8 

18 63.3 59.0 4.3 

19 62.3 58.1 4.2 

20 64.6 59.9 4.7 

Average 62.7 58.5 4.2 

Std. Dev. 3.82 3.8 0.8 

99% C. I. Lower Bound 60.9 56.7 3.7 

99% C.I. Upper Bound 64.5 60.3 4.7 

 
 
4.7.2.1 A Word of Caution about Comparing Scenarios 
 
In comparing scenarios, many confidence intervals may be constructed.  For each pair of 
scenarios, several performance measures may be compared.  Many scenarios may be tested as 
well. 
 

The question arises as to the resulting a level for all confidence intervals together, aoverall.  This 

aoverall level is the probability that all confidence intervals simultaneously cover the actual 
difference in value between the scenarios of the system parameter or characteristic each 
estimates.  
 

A lower bound on aoverall is computed using the Bonferroni inequality where a total of k confidence 
intervals are conducted: 

P(all confidence intervals cover the actual value) >= ä-
k

j

j
a1      (4-5) 

and thus: 

ä
=

¢

k

j

joverall

1

aa          (4-6) 

Suppose we compare two scenarios using two performance measures with a = 0.05.  A 
confidence interval of the difference between the scenarios is computed for each performance 
measure.  The lower bound on the probability that both confidence intervals cover the actual 

difference in the performance measures is given by equation 4-5: a overall <= 0.05 + 0.05 = 0.10. 
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Consider comparing two scenarios with respective to 10 performance measures.  Each 

confidence interval is computed using a = 0.05.  Then the probability all confidence intervals 
cover the actual difference in the performance measures might be as low as 0.05*10 = 0.50.  

That is the a error associated with all our work would be 0.5.  Thus, when making many 

comparisons, a small value of aj for each confidence interval is necessary.  For example with all 

aj = 0.01, the overall a error associated with ten comparisons is 0.1, which is acceptably low. 
 
Unfortunately if a large number of performance measures are used or many scenarios are 

compared, aoverall will always be large.  Thus, it is likely that for at least one confidence interval 
that the true difference between the performance measure values will not be covered.  So a 
difference between two scenarios will not be detected. 
 
4.8 Summary 
 
This chapter discusses the design and analysis of simulation experiments.  Elements are defined 
and organized into a design. A method to construct statistically independent observations to avoid 
correlation difficulties is described. 
 
The need to gather evidence that a model is valid and verified is presented.  Possible strategies 
in this regard are given.  Ways to compare scenarios, both through statistical analysis and the 
examination of data, are discussed. 
 
Problems (Similar problems are associated with each of the case studies for further practice). 
 
1. Suppose 4 scenarios were compared in a pair-wise fashion with respect to one 

performance measure.  How many comparisons are made?  If a = 0.01 is used for all 

comparisons, what is the upper bound on the a for all the comparisons made?  What if a 

= 0.05 is used?  Which of the two values for a should be used? 
 
2. Consider the following table of simulation results. 
 

Replicate Workstation % Busy Time ï  
Scenario One  

Workstation % Busy Time ï  
Scenario Two 

1 87 78 

2 80 72 

3 79 71 

4 80 72 

5 78 71 

 
a. Construct 95% confidence intervals for the workstation % busy time for each 

scenario.  
 

b. Construct a paired-t confidence interval, a = 0.05, to compare the percent busy 
time of a workstation for two scenarios.   

 




