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Abstract 

Our research team engaged in the validation of a Laser Wind Sensor (LWS) unit scheduled for 

later deployment in Lake Michigan. This was done through comparison with wind speed 

measurements made by anemometer cups mounted on a traditional meteorological tower on land 

against those made by the LWS mounted on a flowing platform in Muskegon Lake about 423m 

away. Because these two gauges are not co-located and may not always be measuring the same 

wind, the paired-t method was employed to study the series of differences in wind speed 

measurements with differences less than 0.1 m/s the considered to be not operationally 

significant. Wind speed was measured each second and ten-minute averages computed and used 

in the analysis. The average differences for wind speed less than 6.7 m/s at the cup anemometers 

were found to be not operationally significant. The same result was obtained for higher wind 

speeds not during storms. Data from storm periods is still under study. A prior study comparing 

two other LWS units, one land mounted and the other on the same type of floating buoy 

platform, was extended using the paired-t methods. Results confirmed that the only differences 

in 10-minutes average occurred during periods of different wind direction at the two gauges 

validating the motion compensation features of the Laser Wind Sensor unit. The buoy was 

deployed at Lake Michigan’s mid-lake plateau, 35 miles from shore in 45 m of water, for the 

2012 field season. Analysis of those data is ongoing. 

Introduction 

Wind resource assessment is a critical initial step toward a successful wind energy project. For 

decades, the industry has relied on meteorological (“met”) masts with cup anemometers to record 

wind speed and direction. While met masts are relatively easy to install on terrestrial sites, 

installation at offshore locations can be prohibitively difficult. Offshore met towers range in 

price from $2.5 million for installation in relatively shallow water (e.g. Cape Wind, 

Massachusetts) to more than $10 million for one in deeper water up to 30 m (e.g. FINO 1, 

Germany) [1]. Met towers in water in excess of 30 m may not be cost effective. Fixed met masts 

cannot be easily moved to support other projects. In many cases, a fixed platform requires 

permits and/or bottomland leases from regulatory authorities. Obtaining such permits can be a 

lengthy process. As turbines increase in hub height, building a met tower to support such hub-

height measurements becomes more costly and difficult. 

As project developers evaluate constructing taller turbines in deeper waters, they are considering 

alternative resource assessment technologies. The US National Buoy Data Center operates a 

network of anemometer-equipped buoys. These buoys, however, measure wind speeds at 5 m 

above the water surface and are unsuitable for wind energy resource assessment [2]. Dedicated 

platforms and sensors will be required to support offshore wind energy development. 

In its report Large Scale Offshore Wind Power in the United States, the National Renewable 

Energy Laboratory noted a need for tools that can measure wind speeds at multiple locations and 
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determine wind shear profiles up to hub height. The report authors also identified a need for 

stable buoy platforms to support the aforementioned assessment tools [2]. Of course, the cost 

needs to be less than that of a similarly equipped met tower. 

A number of remote sensing technologies have emerged as potential alternatives to tower-based 

cup anemometers, such as light detection and ranging (LiDAR), sound detection and ranging 

(SoDAR) and airborne synthetic aperture radar (SAR) sensors [3] (Hasanger et al. 2008). LiDAR 

and SoDAR operate similarly in that a signal (light or sound of a particular frequency) is emitted 

by the unit, the signal reflects off dust particles in the atmosphere, and the sensor captures and 

records the return signal. As the signal reflects of the moving dust particles, its frequency 

decreases (the Doppler effect). As wind speeds increase, so do the speeds of atmospheric 

particles. A large decrease in signal frequency is associated with faster wind speed [3]. 

The accuracy of LiDAR systems has been tested against met masts in onshore and offshore 

settings. Hasanger et al. [4] reported results from three validation experiments in Denmark. At 

the Horns Rev site, LiDAR measurements were compared to three met masts at 63 m and found 

a high level of agreement (R2 = 0.97-0.98). Lang and McKeogh [5] reported high levels of 

agreement at heights up to 80 m between LiDAR and met mast anemometers (R2 = 0.97) and for 

SODAR as well (R2 = 0.98-0.99). The measurement bias ranged from 0.12-0.15 m/s. LiDAR and 

anemometer measurements from the FINO platform also showed a high level of agreement (R2 = 

0.99) and a bias of -0.15 m/s to 0.08 m/s at heights from 70 m to more than 100 m [6]. Kindler 

and colleagues also demonstrated the validity of LiDAR measurements in onshore and offshore 

settings [7]. These and other verification studies show that remote sensing of wind speeds using 

LiDAR produces results nearly identical to those of a traditional met tower. 

Remote sensing technologies such as LiDAR and SODAR depend on accurate measurements of 

Doppler shift. Terrestrial LiDAR sensing applications are relatively straightforward and the 

LiDAR unit is placed on flat ground or fixed to a platform. Moving platforms, such as on a ship 

or buoy, have been shown to induce errors in measurement, including errors in speed due to the 

units velocity or tilting [8]. Pichugina et al. [9] were among the first to document the use of 

shipboard LiDAR sensors with motion compensation. Their preliminary error propagation model 

(not a true validation) suggested a wind speed precision of less than 0.10 m/s for 15-minute 

averaged data. The authors noted that “work is needed, perhaps involving comparisons with 

lidars or tall towers mounted on a fixed offshore platform, to establish how closely the shipboard 

HRDL [LiDAR] system approximates the high precision that is obtainable during land based 

observations” [9, p. 334]. 

All of the LiDAR validation studies to date have used ground-based LiDAR units or those 

mounted on a fixed platform at sea. As such, the LiDAR unit and the gage against which it was 

validated (cup anemometer or another LiDAR unit) were measuring the wind in the same 

location and at the same height. The commonly used measure of comparison was the correlation 

coefficient r or the coefficient of determination R2. 
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None have yet validated a LiDAR sensor mounted on a buoy or other stable, floating platform. A 

floating platform introduces wave motion that could affect wind measurement and must be 

compensated for. Regarding remote sensing units on floating platforms, the National Renewable 

Energy Laboratory report made the following suggestion. 

To gain enough confidence for these systems to replace the conventional met mast, a 

large amount of experience with commercial projects at sea will be needed. This will 

require, in turn, close cooperation among private technology companies, offshore 

developers and operators, and government R&D programs at the US Department of 

Energy (DOE) and BOEM [Bureau of Ocean Energy Management], both in terms of 

taking the data and verifying the results. Once a reliable and proven track record has been 

established, the improved accuracy for wind and energy production measurements will 

remove a significant amount of risk from developers [2, p. 65-66]. 

In this case, the gauge against which the LiDAR unit is compared may not be mounted on the 

same platform. For example, a cup anemometer may be mounted on a met tower on land nearby. 

Furthermore, it may be the case that the LiDAR unit and the comparison gauge, which may have 

existed before the LiDAR unit was located nearby, are not measuring wind at the same height. 

Thus, it is not reasonable to assume that the LiDAR unit and comparison gage are not measuring 

the same wind. This brings into question the use of a single measure of comparison such as r or 

R
2 but rather leads to the idea that some way of understanding the differences in measurements 

made by the two gauges over time must be employed. 

The research team at Grand Valley State University (GVSU), in collaboration with researchers 

from the University of Michigan and Michigan Natural Features Inventory (MNFI), has extended 

the LiDAR validation process. GVSU solicited an open proposal for gathering offshore wind 

data on the Great Lakes. GVSU received 3 responses:  

• A fixed MET tower estimated to cost between $6 and $10 million;  

• A floating MET tower estimated to cost $5-$6 million;  

• A floating buoy platform with LIDAR estimated to cost $1.5 million.  

GVSU selected the AXYS WindSentinel, a NOMAD floating buoy platform with Vindicator 

Laser Wind Sensor technology, based on cost and flexibility. In 2011, GVSU used funds from 

the DOE and other partners to purchase the WindSentinel.  

The WindSentinel’s floating platform is commercially available but has not yet been validated 

against a met tower. The team’s initial, primary research goal was to validate the accuracy of the 

buoy-mounted laser sensor. By validate, we mean shown to be reliable in collecting data that can 

be used for decision making. In this case, obtaining data that can be used to estimate the potential 

value of the wind energy in Lake Michigan. Validating the sensor’s operation in field trials could 

pave the way for lower cost, reliable offshore wind resource assessment in multiple locations 

where metrological towers was not feasible due to cost or water depth. This study includes the 



 

5 

 

first deployment of a laser wind sensor over water and the only currently planned deployment in 

a lake or inland sea. 

The laser sensor and buoy platform 

The WindSentinel buoy was equipped with Vindicator laser wind sensor (LWS). The Vindicator, 

made by Catch the Wind, Inc., uses a type of pulsed LiDAR to record wind speed and direction 

at 3-6 range gates from 50 m to 150 m [10]. 

The floating platform is a six meter NOMAD (Navy Oceanographic Meteorological Automatic 

Device) buoy. The buoy accommodates a full complement of sensors and power supply options. 

In addition to the Vindicator LWS, the WindSentinel is equipped with bird and bat acoustic 

detectors, water quality sensors, standard meteorological sensors, and sensors for measuring 

wave height, direction, and period [11].  

The NOMAD buoy’s wave sensors are a critical component to the WindSentinel operation 

because wave motion can affect the measurements made by the LWS. The WindSentinel records 

the wave data and applies a proprietary algorithm to compensate for the motion of the buoy by 

adjusting the raw measurements. The result, in theory, is the equivalent of a stable platform for 

reliably measuring wind speeds at hub height. 

The array of sensors aboard the WindSentinel requires a substantial power supply. The buoy is 

powered by a redundant system of solar panels, a small wind turbine, and a diesel generator, all 

of which are integrated into a battery bank [11] (Figure 1). 

 

Figure 1: The wind monitoring buoy on site in Muskegon Lake. The egg-shaped device mounted above the deck                          

is the Vindicator laser wind sensor. The kayak offers a sense of scale. 
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Validation strategy 

The first validation step is to compare measurements made by co-located LiDAR and met masts 

with cup anemometers. Such studies have been well-documented in the literature [3-8]. These 

validation studies consistently show that LiDAR wind sensors produce wind speed and direction 

measurements that are nearly identical to those of tower-mounted anemometers. In the present 

study, we assumed that previous work sufficiently demonstrated the laser sensor’s validity as 

compared to co-located, fixed platforms.  

The study described here focused on comparing fixed and buoy-mounted LiDAR units as well as 

comparing buoy-mounted LiDAR with a met mast mounted anemometer. The former determines 

the effectiveness of motion compensation technology while keeping constant the measurement 

tool. The latter helps determine the utility of a LWS unit as a data gathering tool for energy 

potential determination studies.  

As previously discussed, the goal of this study is to understand the differences in time of the 

measurements made by a LWS unit mounted on a floating buoy and either a second LWS or cup 

anemometers mounted on a met tower on the shoreline about 400 – 700 meters away. Average 

differences of less than 0.1 m/s, were considered insignificant for our purposes. This value is the 

smallest non-zero measurement made by either gauge. The statistical significance of the average 

difference compared to zero was also determined.  

Validation experiments 

Comparing fixed and buoy mounted laser sensors 

In 2010, buoy manufacturer AXYS Technologies field tested the WindSentinel buoy at Race 

Rocks, British Columbia [unpublished data]. Measurements from the buoy mounted laser wind 

sensor (LWS) were compared to measurements from an identical LWS located on a small island 

(Land Station) about 700 m away. AXYS Technologies provided the research team with the 

field-collected data. The range gates were set with centers at 100 m, 150 m, and 200 m for each 

LWS. 

Observations were made at one-second intervals. Using industry standards, 10-minutes averages 

were computed from these observations. Any 10-minute average observation that consisted of 

fewer than 300 one-second observations (50%) was eliminated, leaving 3022 observations of 

wind speed and corresponding wind direction. 

The series of differences in these averages between the gauges was computed using the 

following formula. 

����������� = 
������
����� − �����
�
����  
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Large differences in wind speed correlate in time with large differences in wind direction 

indicating that at certain times the winds measured by the Wind Sentinel and Land Station were 

different. Some left-side skewness with long tails were noticed in the histograms for all range 

gates (Figure 2). The long tails may be due to these high speed differences. 

 

Figure 2. Normality histogram for the 100 m range gate. Histograms for other range gates were similar. 

Results from the paired t-test (Table 1) indicate that the mean differences for the 150 m and 200 

m range gates were less than 0.1 and therefore not operationally significant. The mean 

difference, however, for the 100 m range gate was 0.13 m/s. The difference, strictly speaking, is 

operationally significant, but small and is of the order of 0.1 m/s. The mean differences for all 

three range gates were statistically significant, an indication of low variance in the difference 

values. 

Table 1: Paired t-test results for the Race Rocks data. 

Range gate Mean Difference (m/s) 

Standard 

Deviation (m/s) 

Number of 

differences (n) p-value 

100m 0.1301 0.4812 3022 2.2e-16 

150m 0.0761 0.4838 3022 2.2e-16 

200m 0.0740 0.4787 3022 2.2e-16 
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The experiment shows that there is no meaningful difference in operation between the buoy-

mounted laser sensor and the sensor on the island, particularly for the 150 m and 200 m range 

gates. Given the 700 m distance separating the two sensors, it is plausible that the observed 

operational difference at the 100 m level is attributable to actual differences in wind conditions, 

particularly the wind direction differences noted when large differences in wind speed were 

observed. This experiment provides validation evidence concerning the NOMAD buoy’s motion 

compensation system and its application in laser wind sensing. 

Comparing buoy-mounted laser sensor and met mast measurements 

The next experiment compared the measurements made by the LWS unit mounted on the buoy to 

those made by cup anemometers mounted on a met mast on the shore line. 

The WindSentinel buoy and Vindicator laser wind sensor used for this experiment are not the 

same items used in the Race Rocks experiment. The technology, however, is the same as that 

used in the Race Rocks experiment. 

Buoy and met mast locations 

Grand Valley took possession of the WindSentinel buoy in September 2011 and deployed it in 

Muskegon Lake from 7 October 2011 to 3 November 2011. The buoy was positioned about 400 

m offshore from a 50 m onshore met mast at the east end of the Muskegon Lake (Figure 3). The 

location of each sensor was as follows: 

 

Figure 3. Location of the met mast and WindSentinel buoy in Muskegon Lake, Michigan, USA. 
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Sensor Site Coordinates Elevation 

(AMSL) 

Sensor height 

above lake level 

Laser sensor Muskegon 
Lake 

43o 14’ 55” N; 86o 14’ 55” 
W 

176 m 57.85 m 

Met mast Open field 43° 14’ 46” N; 86° 14' 41” 
W 

178 m 50.5 m 

 

The Vindicator laser sensor employed in this experiment had six range gates, the lowest of which 

was at 55 m above the lens. The sensor was mounted on the buoy an additional 2.85 m above the 

lake level. The corrected Vindicator lens height for the lowest range gate was 57.85 m above the 

surface of Muskegon Lake. 

The onshore met mast contained two calibrated (ISO/IEC 17025:2005) cup anemometers (NRG 

#40C). Both anemometers were located at 48.5 m above ground level with one anemometer 

facing northwest and the other southeast. The maximum wind speed of the two anemometers was 

used for the data analysis. Using the maximum, as opposed to the average, eliminates any 

erroneous data due to either A) one anemometer entering a failure mode; or B) differences in 

speed measurements due to differences in wind direction. The met mast site was 2.0 m above the 

lake level. This put the anemometers an effective 50.5 m above Muskegon Lake. 

Thus, the laser sensor and cup anemometers measured wind speeds at slightly different heights 

(57.85 m and 50.5 m) and at locations 423 m apart. Like the Race Rocks analysis, these 

conditions are likely to reduce the observed agreement between the two gauges. We assert, 

however, that the acceptable level of agreement is that within the measurement error of the 

devices (operational significance, <0.1 m/s). 

One-second (1 Hz) wind observations from were collected from 7 October 2011 through 3 

November 2011. Ten-minute average wind speeds were computed for non-overlapping periods. 

Wind observations and dataset partitioning 

We hypothesized that the two gauges were measuring, to a reasonable degree, the same wind and 

thus would observe the same wind speed values. For each 10-minute period for each gauge, an 

average wind speed was computed from the observations made each second. The hypothesis can 

be tested by studying the series of differences computed as:  

������������ = ��
���
� − �
�� 

Recall that MetMastt is the maximum of the wind speed averages for the two anemometers. LWS 

refers to the buoy-mounted laser wind sensor. Table 2 shows the number of observations by 

classification. 
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Table 2: Number of observations by classification 

Classification 

Number of 

Observations 

Total number of observation periods 3849 

Number of missing observations 385 

Number of non-missing observations 3464 

Percent of non-missing observations 90.0% 

Number of invalid observations 270 

Number of valid observations 3194 

Percent of valid, non-missing 
observations 

92.2% 

Number of outliers 1 

Number of observations used in study 3193 

Number of observations used in study /  
Number of observation periods 

 
83.0% 

 

The laser sensor reported about 10% of the observations as missing. An invalid 10 minute 

average, according to the industry standard, is one in which more than 300 of the possible 600 

one-second observations were missing. There was one extremely large wind speed value that 

could not be explained and was thus considered an outlier. Thus, 83.0% (5 of 6) of the 10-minute 

averages were considered useable for analysis, well above the industry standard of 60% to 70%. 

A graph of the 3193 pairs of 10-minute averages used in the study is shown in Figure 4. The 

observations made by the two devices track each other well. Some differences are noted at higher 

wind speeds. The blue line is data from LWS #8 (hws55) and the purple line is the data from the 
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met mast anemometer (max48).

 

Figure 4: A comparison of wind speed measurements from the two devices. The blue line represents data from the LWS 

(“hws55”) and the purple line represents data from the met mast anemometer (“max48”). 

The dataset was partitioned into two subsets based on the wind speed measured by the cup 

anemometers on the met mast: ≤ 6.7 m/s and > 6.7 m/s. This was done using a windowing 

technique with window size of one hour. If average wind speed for the current point in time and 

the next 5 points in time for the 10-minute averages was > 6.7 m/s, then all six 10-minutes 

averages in the window were assigned to the > 6.7 m/s dataset. The next 10-minute average 

considered is the one immediately following those in the window. Otherwise, the current 10-

minute average is assigned to the ≤ 6.7 m/s data set and the next 10-minute average in time 

sequence is considered. Table 3 shows the number of observations in each data set resulting from 

this partitioning. 

Table 3: Number of observations in the dataset. 

Classification 

Number of 

Observations 

Number of observations used in study 3193 

Number of observations ≤ 6.7 m/s 2149 

Number of observations > 6.7 m/s 1044 

% of observations ≤ 6.7 m/s 67.3% 

% of observations > 6.7 m/s 32.7% 
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Analysis of the <6.7 m/s dataset 

The average difference in measurements between the LWS unit and the met mast cup 

anemometers was -0.096 m/s with standard deviation of 0.58 m/s. The mean difference was less 

than 0.10 m/s (the precision of the gauge) and therefore not operationally significant. The 

difference was statistically significant (p<0.05). The validation evidence for the buoy-mounted 

laser wind sensor is obtained for wind speeds less than or equal to 6.7 m/s. 

Analysis of the > 6.7 m/s dataset 

The analysis of the > 6.7 m/s dataset was performed in two parts: observations that were windy 

but not stormy, and observations during three storm periods. Most LiDAR validation studies 

remove observations made under rain conditions from the dataset. During highly turbulent storm 

events, the wind speeds and direction as measured by the devices, which are separated by 400 m, 

are likely to be very different. Thus, we chose to analyze the storm data separately. This kind of 

data partitioning is consistent with other validation studies [12].  

The paired t-test for the >6.7 m/s (but not stormy) dataset indicated that the mean difference 

(SD) was -0.03 m/s (1.09) and was below the threshold for operational significance. The 

difference also was not statistically significant (p > 0.05, n = 416). Because the mean difference 

was not operationally significant or statistically different from zero, we concluded that the buoy-

mounted laser sensor and the met mast produced comparable results for times when the wind 

speed exceeded 6.7 m/s but were not stormy. 

Future Work  

With the validation completed, the buoy was towed to a location four miles offshore in Lake 

Michigan. The buoy recorded wind speed and direction, as well as other wave and 

meteorological data, for an abbreviated deployment from 4 November 2011 to 31 December 

2011. Preliminary analysis of these data show median wind speeds of 9.4 m/s, 9.4 m/s, and 9.3 

m/s at the 90 m, 110 m, and 120 m range gates, respectively. On 7 May 2012, the buoy was 

deployed at Lake Michigan’s mid-lake plateau. This location is 35 miles from shore near the 

Michigan-Wisconsin border and has a water depth of about 45 m. The buoy will collect data on 

site until late fall 2012. Analysis of the Lake Michigan field data, as well as the storm data from 

the Muskegon Lake trial, is ongoing. 
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Summary and Conclusion 

Remote sensing of wind speed using LiDAR has been validated and reported in the literature 

using co-located LiDAR and met masts mounted cup anemometers. The experiments reported 

here extend the validation to buoy-mounted LWS units. This is the first time that a floating LWS 

unit has been validated against cup anemometers mounted on a met mast on shore in the peer-

reviewed literature. The Race Rocks experiment showed that two LWS units, one buoy-mounted, 

the other on a small island, produced wind speed measurements that were not operationally 

different (<0.01 m/s for 150 m and 200 m range gates). This effectively validated the LWS’s 

motion compensation technology.  

The validation was further extended by comparing the buoy-mounted laser sensor to an onshore 

met mast cup anemometer. For wind speeds at anemometers of 6.7 m/s or less, no operationally 

significant differences were found. The same is true for wind speeds > 6.7 m/s in the absence of 

storms. Thus, validation evidence for the buoy-mounted laser wind sensor is obtained: the buoy 

mounted laser sensor is as accurate as the anemometer under a variety of wind conditions, with 

the exception of storms, for the purpose of assessing wind energy potential in Lake Michigan. 

In order to accomplish the validation task, new methods were needed as the LWS unit and the 

met mast were not co-located nor taking measurements at the same height and thus were not 

observing the same wind. This could often be the case as North America currently has very few 

offshore met masts that would be suitable for such a study. Lake Erie, off the coast of Cleveland, 

Ohio, and Nantucket Sound, Massachusetts, are two possible locations. 

Thus a single measure of comparison, the correlation coefficient or the coefficient of 

determination, was not adequate. Instead, we computed a time-series of differences of 10-minute 

average values to study. An average difference of 0.1 m/s or less was deemed to be not 

operationally significant. A paired t-test was used to determine statistical significance of the 

average difference from zero.  

Offshore wind energy development, particularly in deep water, will require new resource 

assessment tools and technologies. The WindSentinel buoy, and potentially other floating remote 

sensing systems, has the potential to deliver reliable, consistent, and cost-effective wind resource 

measurements capable of use at a variety of locations inaccessible by met tower technology by 

using a floating platform and a laser sensor.  
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