
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Undergraduate Research Mathematics Department

2014

Ordinary Generating Functions of Context-Free Grammars Ordinary Generating Functions of Context-Free Grammars

Tanner Swett
Grand Valley State University

Edward Aboufadel
Grand Valley State University, aboufade@gvsu.edu

Follow this and additional works at: https://scholarworks.gvsu.edu/mathundergrad

ScholarWorks Citation ScholarWorks Citation
Swett, Tanner and Aboufadel, Edward, "Ordinary Generating Functions of Context-Free Grammars" (2014).
Undergraduate Research. 3.
https://scholarworks.gvsu.edu/mathundergrad/3

This Article is brought to you for free and open access by the Mathematics Department at ScholarWorks@GVSU. It
has been accepted for inclusion in Undergraduate Research by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/mathundergrad
https://scholarworks.gvsu.edu/math
https://scholarworks.gvsu.edu/mathundergrad?utm_source=scholarworks.gvsu.edu%2Fmathundergrad%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/mathundergrad/3?utm_source=scholarworks.gvsu.edu%2Fmathundergrad%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE

GRAMMARS

TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

1. Introduction

A context-free grammar is a mathematical construct that classifies strings (se-
quences of symbols) as either “valid” or “invalid”, by specifying a set of “produc-
tion rules” which determine the ways in which valid strings can be formed. A
“language” (that is, a set of strings) generated by a context-free grammar is known
as a context-free language.

According to Sipser ([4] p. 99):

Context-free grammars were first used in the study of human lan-
guages. One way of understanding the relationship of terms such
as noun, verb, and preposition and their respective phrases leads to
a natural recursion because noun phrases may appear inside verb
phrases and vice versa. Context-free grammars can capture impor-
tant aspects of these relationships.

Although context-free grammars were initially used to study human language,
this paper investigates context-free languages in a more theoretical context. Specif-
ically, we are interested in “counting sequences”: given a language, its counting
sequence is a sequence of natural numbers stating how many strings of each length
are elements of the language.

The ordinary generating function of a sequence is the power series whose coef-
ficients are the elements of the sequence. This paper investigates the properties of
ordinary generating functions of counting sequences of context-free languages.

We will begin by defining a context-free grammar and an ordinary generat-
ing function, and discussing some examples. We will then discuss the Chomsky–
Schützenberger Theorem, an important theorem about the generating functions of
context-free languages. Finally, we will extend the notion of a context-free grammar
by defining integer-labeled context-free grammars, where each rule has a (possibly
negative) label indicating the multiplicity of that rule. We will prove that an
extended version of the Chomsky–Schützenberger Theorem also holds for integer-
labeled context-free grammars.

2. Context-free grammars and their generating functions

2.1. Context-free grammars. We will now define a context-free grammar.
This definition is based on the definition of a context-free grammar found in Sipser
([4] p. 100).

Date: June 3, 2014.
Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts at Grand

Valley State University.

1

2 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

The purpose of a CFG is to define a language, that is, a set of “words” (strings,
or sequences of symbols). Words can be formed by applying “production rules”; a
word is in the language if and only if there is some way of forming it by applying
these rules, starting with the “start symbol”. A language which can be defined by
a context-free grammar is a context-free language.

The main component of a context-free grammar is the set of its production rules,
which are of the form A→ x, where A is a “nonterminal symbol” and x is a string
of symbols (either “terminal” or “nonterminal”). The meaning of this rule is that
while forming a word, you may replace the symbol A with the string x. A terminal
symbol is one that will appear in the final string, and a nonterminal symbol is one
that must be replaced using a production rule.

Here is an example of a context-free grammar from Sipser [4]:

A→ 0A1

A→ B

B → #

One string that can be generated by this grammar is 000#111. This string can
be generated using the following steps:

A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111

We start with the string A, and replace A with 0A1 three times; then we replace
A with B, and, finally, we replace B with #.

Formally, a context-free grammar is a tuple (V,Σ, R, S), where

• V is a finite set, called the variables or the nonterminal symbols;
• Σ is a finite set (disjoint from V), called the terminal symbols or the alpha-
bet ;

• R is a finite set of rules of the form A → x, where A is a nonterminal
symbol and x is a string of symbols; and

• S is an element of V , the start symbol.

We say that a string s yields a string t (written s ⇒ t) if and only if s can be
written in the form uAv, and t can be written in the form uwv, such that A→ w is
a rule of the grammar. Given a sequence s1, s2, . . . , sk, for k ≥ 1, we say that this

sequence is a derivation from s1 to sk (written s1
∗⇒ sk) if s1 ⇒ s2 ⇒ · · · ⇒ sk.

Finally, the language of the context-free grammar is defined as the set of all

strings s such that S
∗⇒ s.

2.2. Generating functions for context-free grammars. A formal power series
is defined as a series of the form

∑∞
j=0 ajx

j , where {aj} is a sequence of complex

numbers. (However, all of the formal power series used in this paper have only
integer coefficients.) An example of a formal power series is

1 + x+ 2! x2 + 3! x3 + 4! x4 + · · · .
We do not particularly care about the fact that this series diverges for all values

of x other than 0; we are more interested in the series itself than in the values it
takes on. However, formal power series are often identified with the functions that
they define; for example, the expression 1

(1−x) is understood to represent the series

1 + x+ x2 + x3 + · · · .

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE GRAMMARS 3

It turns out that formal power series can be useful in studying context-free
grammars. The ordinary generating function of a sequence {aj} is defined as the
series

∑∞
j=0 ajx

j . We define the univariate ordinary generating function of a
language as the ordinary generating function of its “counting sequence”. That is,
the univariate ordinary generating function of a language L is defined as

SL(x) =

∞∑
j=0

∣∣{s : s is a string in L of length j}
∣∣ · xj .

Sometimes, we are interested not only in the length of each string in the language,
but also in the number of instances of each character occurring in each string.
Therefore, we also define the multivariate ordinary generating function of a
language as follows. Suppose that a language L is defined over an alphabet such as
{a, b, c}. The multivariate OGF of L is

SL(a,b, c) =

∞∑
i=0

∞∑
j=0

∞∑
k=0

∣∣{s : s ∈ L, s contains exactly i a’s, j b’s, and k c’s}
∣∣·aibjck.

This definition can be extended to alphabets of any size.

2.3. Example: a language from Du & Ko. We will consider the multivariate
generating function of the context-free language {ambncp : m+ 2n− p ≥ 0}, taken
from Du and Ko ([2] p. 101). (It is not necessarily obvious from the definition that
this language is context-free, but Du and Ko show that it is.) In order to do so, we
will separately consider the cases p ≤ m, m ≤ p, and m = p.

First, we consider the case where p ≤ m. In this case, it is always true that
m − p ≥ 0, and therefore m + 2n − p ≥ 0. Thus, the only constraint on n and
p is that they be nonnegative integers, and the only constraint on m is that it be
an integer greater than or equal to p. So this case is represented by the following
multivariate generating function:

S1(a,b, c) =

∞∑
n=0

∞∑
p=0

∞∑
m=p

ambncp

We perform a change of variables, letting q = m−p, and replacing m with q+p:

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

aq+pbncp

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

aqbn(ac)p

=
1

1− a
· 1

1− b
· 1

1− ac

=
1

(1− a)(1− b)(1− ac)

Second, we consider the case where m ≤ p. Here, the constraint m+ 2n− p ≥ 0
can be written as p ≤ m + 2n. Thus, here, the only constraint on m and n is
that they be nonnegative integers, and the constraint on p is that it be an integer

4 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

between m and m + 2n inclusive. So this case is represented by the following
function:

S2(a,b, c) =

∞∑
m=0

∞∑
n=0

m+2n∑
p=m

ambncp

We will perform a change of variables, representing n and p in terms of new
variables x and y. We will treat m as a constant.

Let x = 2n− (p−m) and y = p−m. Notice that the constraint m+ 2n− p ≥ 0
can be rewritten as 2n − (p −m) ≥ 0, or x ≥ 0, and the constraint m ≤ p can be
rewritten as p −m ≥ 0, or y ≥ 0. Within these constraints, we can make x and
y take on any integer values with x + y even, by letting n = x+y

2 and p = y + m.
Therefore, the constraints here are that m be any nonnegative integer, and that x
and y be nonnegative integers with x+ y even.

With this change of variables, we can rewrite this summation as follows:

S2(a,b, c) =

∞∑
m=0

 ∞∑
even x=0

∞∑
even y=0

amb(x+y)/2cy+m +

∞∑
odd x=1

∞∑
odd y=1

amb(x+y)/2cy+m

=

∞∑
m=0

(∞∑
even x=0

∞∑
even y=0

amb(x+y)/2cy+m + (bc)

∞∑
even x=0

∞∑
even y=0

amb(x+y)/2cy+m

)

=

∞∑
m=0

(
(1 + bc)

∞∑
even x=0

∞∑
even y=0

amb(x+y)/2cy+m

)

=

∞∑
m=0

(
(1 + bc)

∞∑
x=0

∞∑
y=0

ambx+yc2y+m

)

=

∞∑
m=0

(
(1 + bc)

∞∑
x=0

∞∑
y=0

(ac)mbx(bc2)y

)

=
(1 + bc)

(1− ac)(1− b)(1− bc2)

Third and finally, we consider the case where m = p. In this case (like the first
case), it is always true that m−p ≥ 0, and therefore m+2n−p ≥ 0. Thus, the only
constraints on the quantity m = p and the quantity n is that they be nonnegative
integers. Thus, this case is represented by the multivariate generating function

SΩ(a,b, c) =

∞∑
m=0

∞∑
n=0

ambncm =
1

(1− ac)(1− b)
.

Since the third case describes the overlap between the first two cases, the mul-
tivariate generating function for the original language is the sum of the first two
functions, minus the third:

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE GRAMMARS 5

S(a,b, c) = S1(a,b, c) + S2(a,b, c)− SΩ(a,b, c)

=
1

(1− a)(1− b)(1− ac)
+

(1 + bc)

(1− ac)(1− b)(1− bc2)
− 1

(1− ac)(1− b)

=
1 + bc− abc− abc2

(1− ac)(1− a)(1− b)(1− bc2)
.

2.4. The Dyck language. The Dyck language is the “language of correctly matched
parentheses”: its strings are those admitting a one-to-one correspondence between
opening parentheses and closing parentheses, such that no closing parenthesis pre-
cedes its corresponding opening parenthesis. (An example of such a string is
(())().) The Dyck language has the context-free grammar S → aSbS | ε (us-
ing a and b to represent the parentheses).

We will find the univariate ordinary generating function S of the Dyck language.
Since the language admits exactly one string of length zero, the constant term of
S(x) is 1. For n ≥ 2, each valid string of length n consists of an a, a b, and two valid
strings of length p and q, such that p+q+2 = n. This means that the coefficient of
the xn term of S(x) is the sum of the coefficients of xp and xq, where p+ q = n−2.

Notice, however, that the coefficient of the xn−2 term in the function S(x)2 is
also the sum of the coefficients of xp and xq in S(x), where p+q = n−2. Therefore,
the coefficient of the xn term of S(x), for n ≥ 2, is simply the coefficient of the
xn−2 term of S(x)2, or, in other words, the coefficient of the xn term of x2S(x)2.

We have shown that the constant term of S(x) is 1, and that for n ≥ 2, the
coefficient of the xn term of S(x) is the same as the coefficient of the xn term of
x2S(x)2. Since the constant term of x2S(x)2 is 0, this means that

S(x) = x2S(x)2 + 1.

This equation is quadratic in S(x), meaning that it has the two solutions

S(x) =
1±
√

1− 4x2

2x2
.

Of course, of these two solutions, only one is actually the function S. If we choose
+ for ±, the resulting series contains negative coefficients, so the correct solution
must be the one with −. Thus, we have found that

S(x) =
1−
√

1− 4x2

2x2
= 1 + x2 + 2x4 + 5x6 + 14x8 + · · · .

This series does, in fact, describe the number of strings of each length the Dyck
language admits. For example, the language admits exactly 5 strings of length 6:
namely, aaabbb, aababb, aabbab, abaabb, and ababab. Likewise, the language admits
14 strings of length 8, and so on.

Admittedly, this expression for S(x) looks somewhat uninspiring; it does not
have any obvious connections to interesting properties of the Dyck language. It is
interesting to note, however, that the power series expansion of

√
1− 4x2 has only

integer coefficients (as does the power series expansion of
√

1− 4x).

6 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

2.5. The Chomsky–Schützenberger Theorem. Notice that the equation that
we came up with for the univariate ordinary generating function of the Dyck lan-
guage looks quite similar to the context-free grammar for the Dyck language:

S → aSbS | ε

S(x) = x2S(x)2 + 1

It looks as if the equation for S(x) could have been obtained from the grammar
simply by replacing S with S(x), a and b with x, ε with 1, the | operator with the
+ operator, and the → symbol with the = symbol. Indeed, this is, in fact, the
case: the Chomsky–Schützenberger Theorem states that given any unambiguous
context-free grammar, it is possible to transform the grammar in this way into
a set of polynomial equations describing its (univariate or multivariate) ordinary
generating function. 1

The general idea is that it is possible to find an ordinary generating function for
each of the nonterminal symbols in a grammar, and the grammar’s production rules
describe how these functions relate to each other. As expected, when a nonterminal
symbol has multiple alternative rules, these alternatives are simply added together.
The important realization is that, because of the way that multiplication of power
series works, concatenation of two components corresponds to multiplication of the
corresponding generating functions.

Later in this paper, we present a proof of an extended version of the Chomsky–
Schützenberger theorem.

2.6. Examples from Flajolet. The contrapositive form of the Chomsky–Schüt-
zenberger Theorem is also useful. Namely: given a context-free language, if its
ordinary generating function cannot be described by any set of polynomial equations
(i.e. the function is not algebraic), then the language has no unambiguous context-
free grammar (the language is inherently ambiguous).

Flajolet [3] gives many examples of such languages. One of these examples is the
Goldstine language G6=, consisting of all strings of the form an1ban2ban3b · · · anpb,
such that for some j, nj 6= j. Flajolet shows that the generating function of this
language is an algebraic function minus the function

B(z) =

∞∑
n=1

zn(n+1)/2−1,

which is a “lacunary series”, meaning that its sequence of coefficients contains
arbitrary long strings of 0s. Flajolet cites a theorem stating that a lacunary series
cannot be an algebraic function, which means that B is not algebraic. This, in
turn, means that the generating function of G6= is not an algebraic function, from
which Flajolet concludes that G6= is an inherently ambiguous language.

1This theorem is presented in [1], section 2, “Grammars as Generators of Formal Power Series.”

The theorem as presented in the original paper is actually more powerful than the version given
here, as Chomsky and Schützenberger do not assume that variables in a power series commute

with each other.

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE GRAMMARS 7

3. Integer-labeled context-free grammars

3.1. Definitions. We define an integer-labeled context-free grammar as fol-
lows. This definition, like our definition of a context-free grammar, is based on the
definition of a context-free grammar found in Sipser ([4] p. 100).

An integer-labeled context-free grammar is a tuple (V,Σ, R, S), where

• V is a finite set of symbols, the nonterminal symbols;
• Σ is a finite set of symbols, the terminal symbols, disjoint from V ;
• R is a function from the set V × (V ∪Σ)∗ to the integers, whose value is 0

for all but finitely many inputs; and
• S is an element of V , the start symbol.

For each input (A,w) for which the function R has a nonzero value n, we say
that A → (n)w is a rule of the grammar. Alternatively, we say that A → w is a
rule of the grammar with multiplicity n.

The idea here is that we permit a rule to “count multiple times” (including a
negative number of times). Thus, when counting the number of derivations of a
string, if a derivation uses a rule with a multiplicity other than 1, then we count
the derivation multiple times (specifically, the multiplicity of the derivation is the
product of the multiplicities of the rules it uses). We will now define this notion
more formally.

We define a function Y from the set (V ∪Σ)∗ × (V ∪Σ)∗ to the integers. Given
strings s and t, if Y (s, t) = n, then we say that s left-yields t with multiplicity n
(written s⇒ (n)t). The definition of Y is

Y (s, t) =
∑

(u,v,w)

R(A,w),

where the sum runs over all triples of strings (u, v, w) such that uAv = s, uwv = t,
and u contains no nonterminal symbols.

Given a sequence s1, s2, . . . , sk of strings, for k ≥ 1, we say that this sequence
is a leftmost derivation from s1 to sk with multiplicity n, where n = Y (s1, s2) ·
Y (s2, s3) · · · · · Y (sk−1, sk). (The one-element sequence s1 is always a leftmost
derivation with multiplicity 1.)

Next, we define a partial function D from the set (V ∪Σ)∗× (V ∪Σ)∗ to the set
Z ∪ {+∞,−∞}. For strings s and t, if D(s, t) = n, then we say that s derives t

with multiplicity n (written s
∗⇒ (n)t). The function D(s, t) is defined as the sum

of the multiplicities of all leftmost derivations s1 ⇒ s2 ⇒ · · · ⇒ sk, where k ≥ 1,
such that s1 = s and sk = t. (If this sum has infinitely many positive terms but
only finitely many negative terms, we say that the sum is +∞. Likewise, if the sum
has infinitely many negative terms but finitely many positive terms, we say that
the sum is −∞. If the sum has infinitely many positive terms and infinitely many
negative terms, the sum is left undefined.)

Finally, we define the multiplicity of a string s in the language as D(S, s). (Note
that we are not yet defining the language of an integer-labeled context free grammar
as a set.)

As an example, consider the integer-labeled context-free grammar

S → (2)aS | (3)Sb | (1)ε.

8 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

We will calculate the multiplicity of the string ab. This string has two derivations:
S ⇒ aS ⇒ aSb⇒ ab, and S ⇒ Sb⇒ aSb⇒ ab.

First, we consider the first derivation, S ⇒ aS ⇒ aSb ⇒ ab. The string S
only yields the string aS via one rule, namely S → aS, so Y (S, aS) is simply
the multiplicity of this rule, which is 2. Likewise, aS only yields aSb via the rule
S → Sb, so Y (aS, aSb) is the multiplicity of this rule, or 3. Finally, aSb only yields
ab via the rule S → (1)ε, so Y (aSb, ab) is 1. Putting this together, we find that the
multiplicity of this derivation is 2 · 3 · 1 = 6.

The second derivation, S ⇒ Sb ⇒ aSb ⇒ ab, is the same, except that the
rules are applied in a different order. This does not affect our multiplication; the
multiplicity of this derivation is again 3 · 2 · 1 = 6.

Finally, the multiplicity of the string ab is the sum of the multiplicities of all of
its derivations: D(S, ab) = 6 + 6 = 12. The significance of this number, essentially,
is that it is the number of leftmost derivations the string ab would have in a context-
free grammar containing two copies of the rule S → aS and three copies of the rule
S → Sb, if context-free grammars were allowed to contain the same rule multiple
times.

We will now define the language of an integer-labeled context-free grammar as
a set. Clearly a string with positive multiplicity should be included, and a string
with zero multiplicity should be excluded, but it is not clear whether a string with
negative or undefined multiplicity should be included or excluded. Therefore, we
will focus on grammars where every multiplicity is nonnegative:

A nonnegative integer-labeled context-free grammar (or nilCFG) is an integer-
labeled context-free grammar where the multiplicity of each string is defined and
nonnegative. The language of a nilCFG is defined as the set of all strings with
positive multiplicity.

We then define an unambiguous nilCFG as a nilCFG in which the multiplicity
of each string is either 0 or 1. Note that a string in an “unambiguous” nilCFG may
still have multiple leftmost derivations, as long as their multiplicities sum to 1.

3.2. Example from Du & Ko revisited. Recall the language from Du and Ko
[2] we discussed earlier, namely, L = {ambncp : m+ 2n− p ≥ 0}. We will create an
unambiguous nilCFG for this language.

Again, we separately consider the cases p ≤ m, m ≤ p, and m = p.
First, we consider the case where p ≤ m. In this case, it is always true that

m+ 2n− p ≥ 0. Thus, the only constraint on n and p is that they be nonnegative
integers, and the constraint on m is that it be greater than or equal to p.

It is straightforward to come up with an unambiguous context-free grammar
describing this case. Essentially, someone who wishes to build a string satisfying
this grammar is permitted to add as many as and bs as they like; they may also
add as many cs as they like, but for each c they add, they must add an a as well.
The grammar describing this is

T → aT | U
U → bU | V
V → aV c | ε.

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE GRAMMARS 9

We then consider the case where m ≤ p. Now the only constraint on m and n is
that they be nonnegative integers, and the constraint on p is that it be an integer
between m and m+ 2n inclusive.

Again, creating an unambiguous context-free grammar describing this case is not
too difficult. We will say that a person is allowed to use as many as and bs as they
wish. For each a that they add, they must also add a c. For each b that they add,
they may add zero, one, or two cs; however, to avoid ambiguity, they may only use
the “add one c” option once. The grammar which describes all of these rules is

W → aWc | X
X → Y | bY c
Y → bY | Z
Z → bZcc | ε.

Finally, we consider the case where m = p. In this case, the inequality m+ 2n−
p ≥ 0 simplifies to 2n ≥ 0. Thus, the only constraint, apart from m = p, is that
all variables be non-negative. To create an unambiguous CFG for this case, we will
say that a person may add as many as and bs as they wish, as long as for each a,
they add exactly one c.

R→ aRc | Q
Q→ bQ | ε

A context-free grammar for the entire language L is simply S → T | W (along
with the above production rules, of course). However, since the case described by
T and the case described by W overlap, this grammar is not unambiguous. But we
can construct an unambiguous nilCFG for L simply by subtracting out the overlap:
S → T |W | (−1) R.

We can now derive the multivariate generating function for this language by
solving the following system of (linear) polynomial equations:

S = T + W + (−1)R

T = aT + U

U = bU + V

V = aVc + 1

W = aWc + X

X = Y + bYc

Y = bY + Z

Z = bZcc + 1

R = aRc + Q

Q = bQ + 1

Omitting the algebraic details, we find that

10 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

T =
1

(1− ac)(1− a)(1− b)

W =
(1 + bc)

(1− ac)(1− b)(1− bc2)

R =
1

(1− ac)(1− b)

S =
1

(1− ac)(1− a)(1− b)
+

(1 + bc)

(1− ac)(1− b)(1− bc2)
− 1

(1− ac)(1− b)

=
1 + bc− abc− abc2

(1− ac)(1− a)(1− b)(1− bc2)

As we can see, this method of deriving an ordinary generating function can be
simpler than the method we used for this language earlier.

3.3. The power of nilCFGs? Since nilCFGs are a generalization of context-free
grammars, one may expect nilCFGs to be more powerful. However, the author
has not been able to prove or disprove the existence of languages that can be
(unambiguously or otherwise) described by a nilCFG but not by a CFG. The “best
case” is that there exist languages which can be described by unambiguous nilCFGs,
but cannot be described even by ambiguous CFGs. We conjecture that this is the
case.

One seemingly promising approach is to find an unambiguous context-free lan-
guage L whose complement is not a context-free language. If such a language is
found, then the complement of L will be an unambiguous nilCFG, which can be con-
structed from the original unambiguous CFG by adding a new rule S′ → A | (−1)S
(where A is a nonterminal which generates every string exactly once, and S is the
start symbol of the original CFG), and using S′ as the new start symbol.

There does not seem to be any obvious reason to believe that no such language
L exists. After all, in general, the complement of a context-free language is not a
context-free language; there is no clear reason that requiring L to be unambiguous
would force the complement of L to be context-free. However, we have not been
able to find an example of such a language L.

3.4. Chomsky–Schützenberger Theorem, extended. Recall that the Chom-
sky–Schützenberger Theorem states that given an unambiguous context-free gram-
mar, the grammar can be transformed into a set of polynomial equations describing
the language’s multivariate ordinary generating function. We will show that the
same is true of unambiguous nilCFGs.

This proof is based on the proof found in Chomsky and Schützenberger ([1] pp.
126–127).

Suppose that we have an unambiguous nilCFG G. We will begin by “normal-
izing” G, in order to create another nilCFG G′ that generates the same language
(except that G′ will not generate ε regardless of whether or not G generates ε).

(In the below process, at any point where we would create a rule of the form
A → (p)s, where the rule A → (q)s already exists, we instead replace the latter
rule with the rule A→ (p+ q)s.)

First, suppose that there is a cycle A1, A2, . . . , Aq of nonterminals, such that
A1 → (n1)A2, A2 → (n2)A3, . . . , Aq−1 → (nq−1)Aq, and Aq → (nq)A1 are all rules

ORDINARY GENERATING FUNCTIONS OF CONTEXT-FREE GRAMMARS 11

of G. Then every nonterminal in the cycle is unreachable, because if a nonterminal
in the cycle were reachable, then any derivation involving this nonterminal could
be extended to create infinitely many derivations of the same string (by repeating
the cycle arbitrarily many times). But an unambiguous nilCFG can’t derive the
same string infinitely many times. Since all of the nonterminals in the cycle are
unreachable, we delete every rule mentioning any of these nonterminals. We repeat
this process until no such cycles remain.

Next, suppose that there is a pair (A,B) of nonterminals in G such that A →
(n)B is a rule of G. Of all such pairs, select one such that B does not have any
rules of the form B → (n)C where C is a nonterminal. (There must exist such a
pair; the only way such a pair could fail to exist is if A→ (n)B were part of a cycle,
but all cycles have been deleted.) We delete the rule A→ (n)B, and then for every
rule of the form D → (p)sAt, we add an additional rule D → (p)sBt. We repeat
this process until no such pairs (A,B) remain.

Next, suppose that there is some nonterminal A in G such that A → (n)ε is a
rule of G. We create a new nonterminal A′ that has the same rules as A, except
that the rule A → (n)ε is removed. Then, for each rule of the form B → (p)sAt,
we replace this rule with a pair of rules B → (p)sA′t and B → (np)st; observe that
this does not change the behavior of B. (If a rule has multiple As on the right hand
side, then we will continue performing this replacement until A no longer appears
on the right hand side of any rule.) We then delete the original nonterminal A and
all of its rules. (This process may introduce rules of the form B → (p)C, so at this
point, we repeat the above two paragraphs.) We repeat this process until no rules
of the form A→ (n)ε remain.

It is possible that in the above paragraph, we deleted the start symbol S and
replaced it with a new symbol S′, perhaps multiple times. If this is the case, we
simply use the new symbol as the new start symbol for G′; the only potential
difference is that G′, perhaps unlike G, does not generate ε.

As a final modification, we delete every nonterminal A such that A does not
derive any terminal strings.

We now have an unambiguous nilCFG G′ with the property that the right-hand
side of each rule contains at least one terminal or at least two (not necessarily dis-
tinct) nonterminals. Now, for each nonterminal A in G′, we can write the equation

A =
∑

A→(n)s

(n · s),

where s is the product of the variables x for each terminal symbol x in the string
s. These equations describe the multivariate ordinary generating function of G′ by
(possibly recursively) writing the generating function for each nonterminal symbol
in terms of the generating functions for itself and the other nonterminal symbols.

We can now define a sequence of polynomials S0,S1, . . ., defined by letting S0 =
S, and letting Sn+1 be the polynomial formed from Sn by replacing every occurrence
of a nonterminal variable A with the right-hand side of its corresponding equation.

Define the “string-degree” of a term as the number of nonterminal variables in
the term, plus twice the number of terminal variables in the term. We will now
show, using induction, that for all nonnegative integers n, every term of string-
degree less than or equal to n in Sn consists entirely of terminal variables. In the

12 TANNER SWETT AND EDWARD ABOUFADEL, ADVISOR

base case, n = 0, so we are considering S0 = S. This polynomial has no terms of
string-degree 0, so the property is vacuously true.

For the inductive step, we will assume that (for some specific n) every term of
string-degree less than or equal to n in Sn consists entirely of terminal variables,
and we will show that the same is true for n + 1 and Sn+1. We know that, in
Sn, every term containing nonterminal variables has string-degree at least n + 1.
When we form Sn+1, in each new term, either a nonterminal is replaced with at
least a terminal (increasing the string-degree), or a nonterminal is replaced with at
least two nonterminals (also increasing the string-degree). So every new term in
Sn+1 must have string-degree at least n+ 2. Since every old term in Sn+1 consists
entirely of terminals (otherwise it would have been replaced), we can conclude that
every term of string-degree less than or equal to n + 1, being an old term, must
consist entirely of terminals.

We now know that we can construct the limit G′ of this sequence by taking
all the terms of string-degree n from Sn, for each nonnegative integer n, and the
result will be a solution to our system of polynomial equations, and thus will be
the multivariate ordinary generating function for G′.

Finally, since the only possible difference between the languages of G′ and G
is that G′ does not contain ε whereas G may, the generating function G for G is
either G′ (if G does not contain ε) or G′ + 1 (if G does contain ε).

Acknowledgements

This paper is a senior thesis submitted in partial fulfillment of the requirements
for the degree of Bachelor of Arts at Grand Valley State University. I would like
to thank my advisor, Prof. Edward Aboufadel, for his support and advice, without
which this paper would not have been possible.

References

[1] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
P. Braffort and D. Hirschberg, editors, Compuer Programming and Formal Systems, pages

118–161. North-Holland, 1963.

[2] Ding-Zhu Du and Ker-I Ko. Problem Solving in Automata, Languages, and Complexity. John
Wiley & Sons, 2001.

[3] Philippe Flajolet. Analytic models and ambiguity of context-free languages. In Theoretical

Computer Science, pages 283–309. North-Holland, 1987.
[4] Michael Sipser. Introduction to the Theory of Computation, Second Edition. Thomson Course

Technology, second edition, 2006.

	Ordinary Generating Functions of Context-Free Grammars
	ScholarWorks Citation

	tmp.1406232887.pdf.npt2Z

