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Winnability of The Group Labeling Lights Out Game
on Complete Bipartite Graphs

Christian J. Miller∗ Darren B. Parker†

September 7, 2019

Abstract

For an arbitrary graph, we can play Lights Out on it if we assign a number label
to each of the vertices of a graph G, representing states of on/off in the original
Lights Out game, with the edges connecting those vertices representing the buttons
that are adjacent to each other. This project is focused on a slightly modified version
of the game’s original rules, with the labels for the vertices coming from the group
Zn. It is not always possible to win the game. We will be investigating the values of
n for which this group labeling ”Lights Out!” game is always winnable when played
on complete bipartite graphs.

1 Introduction

The game Lights Out! was originally a hand-held, electronic game made by Tiger Elec-
tronics. The game consisted of a 5x5 grid of buttons that have two light states, on and
off. We can think of each of these states as having a number label, 0 for off and 1 for on.
If you push/toggle a button, it will cause the pushed button and all its adjacent buttons
(buttons directly to the right/left and up/down from the button) to change their states.
For example, pushing a button labeled 1 will change it to 0, and if the button had a
neighbor with a label of 0, it would change to a label of 1. To win the game, we must be
able to turn off all the lights, or in other words, to change the state of each of the buttons
to 0.

The standard grid version of the game has been well studied,and mathematicians have
used concepts from linear algebra as well as other methods to explore the winnability of
the game[7, 4, 2]. As it turns out, the rules of this grid Lights Out game can be easily
represented using graph theory. For any graph G with vertex set V (G) and edge set
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E(G), we can play Lights Out on it if we let all of the vertices represent buttons from our
original game, each with a vertex label that represents the different states of the buttons.
Additionally, the edges in our graph correspond to adjacent buttons. Toggling a vertex
v ∈ V (G), has the effect of changing the label of that vertex that was toggled, as well as
the label of all of the vertices that are adjacent to it. To show an example of this game,
consider the following graph G in Figure 1.

Figure 1: An arbitrary graph G, with vertices v1, v2, v3, v4, v5, v6 ∈ V (G)

If we assign a vertex label to each of the vertices of G, then we can play the standard
game of Lights Out on that graph. Figure 2 on the next page shows how the game is
played with an arbitrary vertex labeling of G by toggling vertex v4, which is denoted with
a black box.

Figure 2: Graph G before and after toggling v4

One variant of Lights Out game that has been studied is known as the neighborhood
game.[4, 7] This variant follows of the rules of the standard game, but instead of dealing
with labels of 1 or 0, representing on and off states, the labels can now come from Zk.
In this version of the game, toggling a vertex v ∈ V (G) has the effect of adding 1 to the
label of that vertex that was toggled, as well adding 1 to the label of all of the vertices
that are adjacent to it.

A paper by Giffen and Parker[4] laid out alot of the background research for defining
this neighborhood variant of the game. Another paper, by Arangala, also defined a
multi-state variant of the lights out game[1, 2]. The Giffen paper also investigated the
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winnability of the neighborhood game when played on paths, cycles and complete bipartite
graphs[4].

This paper will be focused on different variant of Lights Out known as the group
labeling version of the game. In this version, we use labels from an algebraic group, H.
There has been previous work done on the winnability of the group game when dealing
with labels coming from H = Zk[5]. In terms of how the game is played, we utilize the
same basic idea as before, where toggling a vertex will affect the label of that vertex and
its adjacent vertices, but the way that the labels are affected is a bit different. In the
group labeling game, the labels are changed by adding whatever the label of the button
that was pressed was. Figure 3 below shows how this game is played using labels from Z4

Figure 3: This figure shows how toggling in the group game works with Z4.We can see
that toggling v4 adds 3 to its label, which gives us a label of 3 + 3 = 6mod(4) = 2.
Additionally, all of the vertices that are adjacent to the toggled vertex also have 3 added
to their labels

Previously, there was been some work done looking into the winnability of this group
game on path and cycle graphs [3], but there are still many classes of graphs for which
the winnability conditions of the group game are still unknown.

The main research question of this paper is to investigate the winnability conditions
of the group labeling Lights Out game on a class of graphs known as complete bipartite
graphs. In section 2 of this paper, we will investigate the winnability of the game when
using labels from Z2k on the complete bipartite graph Km,n. More specifically, we will be
proving a theorem that states the Z2k game is always winnable on Km,n if either m or n
is even. We will also try to prove that the game is not always winnable when both m and
n are odd and set up some lingering questions for further research.

2 Winnability of Group Labeling Game on Complete

Bi-Partite Graphs

We want to investigate how the Zk group game plays on complete bipartite graphs. More
specifically, we want to know if and when the group game is can be won on complete
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bipartite graphs. We can start by defining a few terms that will help us throughout the
paper.

Definition. A complete bi-partite graph, denoted as Km,n, can be defined as a graph
with two partitions, T and B, of the vertex set V (Km,n). Part T having m vertices in its
partition and part B having n vertices in its partition. Then the edge set of this graph
can be defined as E(G) = {vw : v ∈ T,w ∈ B} where v and w are vertices of the graph.

Definition. We will define a vertex labeling of a graph G as an assignment of numbers,
or labels, to each v ∈ V (G). In our case, a labeling can be defined as a function π :
V (G)→ Zk

Furthermore, we can define a labeling as winnable if we are able to toggle the vertices
of the graph in some way such that all of the vertex labels are equal to 0. The group
labeling game on a graph G is considered always winnable if every possible labeling of
that graph is winnable.

We want to look into the when the graph Km,n is always winnable. In a paper by
Zadorozhnyy, it was shown that if we are investigating when the group game is always
winnable using Zk, then we only have to look at the cases where k is a power of 2. This
is expressed in the following theorem from that paper.[5]

Theorem 2.1. For the group labeling Lights Out game on a graph G with labels in Zn,

1.) If n is odd, then the only winnable labeling is the zero labeling.

2.) If n = 2kd where d is odd, then there is a one-to-one correspondence between the
winnable labelings of G with labels in Zn and winnable labelings of G with labels in Z2n ,

This means that for the rest of this paper, we will only be focused on the Z2k group
game when looking at the winnability on complete bipartite graphs

To investigate the winnability, the general idea is that we will first show that we can
get any initial labeling of a complete bipartite graph to labeling that is easier to work
with, which we we will denote as a standard labeling, and then see what conditions are
needed for the standard labeling to be always winnable. We will revisit the idea of a
standard labeling further on, but, to provide some background context for the standard
labeling we first need to investigate what happens when we focus on toggling just one of
the vertices. Ideally, we want to explore what happens to some initial label on a vertex
after pressing it a certain amount of times. The following lemma helps us answer this
question.

Lemma 2.2. Assume we have complete bipartite graph Km,n and we pick a vertex v from
the graph with an initial label denoted as `. If we press the button q times, where q ∈ N,
repeatedly, we will end up with a label of 2q(`)
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Proof. Assume we have a vertex v with an initial label denoted as `. We will prove that
pressing the button q times will turn that label to 2q(`) using induction.

To begin, we will first look at the basis step with q=1 and prove that our lemma holds
for this case. If we press a button once, we will have a label of `+` = 2` = 21`. Therefore,
we have proved that pressing a vertex 1 time will turn that vertex’s label to 21(`). Thus,
our lemma is correct for q = 1.

For our induction step, we will assume that the lemma is correct for q = n. We will
prove that the theorem also holds for q = n+ 1, that is, that pressing a vertex n+ 1 times
will give a labeling of 2n+1`. If we press an arbitrary label of `, n times, we will end up
with a a label of 2n(l) according to our induction hypothesis. If we press the button once
more, we will add 2n(l) to our vertex label , so we will have a label of 2n(l) + 2n(`). Since
2n(l) + 2n(`) = 2n+1` ,we have proven the lemma holds for q = n+ 1

As stated before, in terms of looking for when the group labeling game is always
winnable, it only makes sense to think about the question using labels from Z2k . Thus,
we can apply Lemma 2.2 to a vertex using labels from Z2k to arrive at the following
lemma.

Lemma 2.3. Assume we have complete bipartite graph Km,n and we pick a vertex v from
the graph with an initial label denoted as `. If we are dealing with labels from Z2k , then
pressing the vertex k times will give a labeling of 0.

Proof. According to Lemma 2.2, toggling the vertex v, q times will give a final label of
2q(`). So if we let q = k, or in other words, if we toggle our vertex k times, then we will
have a label of 2k(`). Since 2k = 0 in Z2k , our final label becomes 2k(`) = 0(`) = 0. This
completes the proof.

These two results tell us that if we toggle a single vertex enough times, precisely k
times when dealing with labels from Z2k then we should be able to turn that vertex off.
Since vertices in a complete bipartite graph are not connected to the other vertices in the
same part, then this means that we should be able to use this result to be able to turn off
all of the vertices in one of the parts of the graphs. This result will help us get our initial
labeling to a standard labeling. The basic idea is that from Lemma 2.3, we will be able to
turn off all of the lights in one of the parts, and then turn of all of the lights in the other
part, since all of the vertices in the same part are not connected. Doing this will give us
a labeling with one part of vertices with all the same label, and the other part of vertices
all having a label of 0. As we will see later, this standard labeling will make investigating
the winnability of the group game easier. For now, we can focus on the following lemmas
that show how we can achieve a standard labeling.

Lemma 2.4. If we are playing the Z2k group game on the complete bipartite graph
Km,n, with two parts, T denoting the part with m vertices and B denoting the part with
n vertices, then we can get to a standard labeling with all of the vertices in the part T
having the same label, and with all of the vertices in part B having the label of 0.
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Proof. Let’s consider an initial labeling π : V (G) → Zk of the graph Km,n with labels
coming from Z2k with k being some integer. Let each of the vertices in the part T have
labels of a1, a2, a3...am and each of the vertices in part B having a labeling of b1, b2, b3...bn.
If we start with the vertex labeled b1,we can turn this button off by applying Lemma ??.
Each of our vertices from part T will now have some new label as a result of how many
times we pushed our b1 vertex to get it to be 0 .We can use this idea again on each of the
vertices in part B until we have every label equal to 0. We can now apply Lemma 2.3 to
turn off all of the vertices of part T . Since all of the part B labels started as 0 this time,
and were all affected by the pressing of each of the buttons from part T in the same way,
we know that they must all have the same label. Since we have one part of our complete
bipartite graph with a label of 0 for all of the vertices, and the other part having the same
label for all of the vertices in that part, we have proven that we can reach a a standard
labeling from any initial labeling of Km,n.

Now that we have shown that we can get any initial labeling to a standard labeling, we
now have to show that this standard labeling is indeed easier to deal with, and will allow
us to more easily investigate the winnability of the group game. The following lemmas
explore the effect that toggling a vertex k times has on its adjacent vertices. We will
later use this this to show that if we turn off all the vertices in the part of our standard
labeling that have a label other than 0, we will get a new standard labeling, with all of
the vertices that previously had a label of 0 getting an new label and all of the vertices
that had a nonzero label changing to a label of 0.

Lemma 2.5. Assume are using labels from Z2k and we have the complete bipartite graph
Km,n, If we pick a vertex v from the graph with an initial label denoted as `, then toggling
the vertex k times will add a label of 2k − 1` to all of the vertices adjacent to v.

Proof. If we apply Lemma 2.3, then we know that toggling a vertex k times will give that
vertex a label of 2k`, which is equal to 0 using labels from Z2k . Since that vertex started
with a label of `, we know that toggling that vertex k times had the effect of adding
(2k − 1)` to the original label since (2k − 1)` + ` = 2k` = 0. We know that toggling any
vertex will have the effect of adding it’s own label to itself, as well as adding it’s label to
all of the vertices that are adjacent to it. This means that since, after k toggles, we added
(2k − 1)` to the label of our toggled vertex, we must also have added (2k − 1)` to all of
the vertices that are adjacent to that vertex. This completes the proof.

The following lemma is broken into two parts that show that if we turn off all of the
vertices in the part of our standard labeling that has vertices with non-zero labels, we
arrive at another standard labeling, but with different labels that will help us when trying
to get to a winning labeling.

Lemma 2.6. 1. Assume that we have a standard labeling as in Lemma 2.4 of a graph
Km,n, with one part, B having n vertices with vertex labels of 0 and the opposite
part, T having m vertices with vertex labels of c, and we are using labels from Z2k .
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Then we can toggle the vertices to get to a new labeling with all of the vertices in
part T having a label of 0 and all of the vertices in part B having a label of −mc.

Proof. If we are dealing with labels from Z2k , we know from Lemma 2.3 that pressing
each of the vertices in part T k times will turn them to 0. By applying Lemma 2.5,
we know that after toggling each vertex of part T k times, we will be adding(2k−1)c
to the vertices of part B. There are m vertices in part T , so after turning off all of
them, we will add m multiples of (2k − 1)c to the vertices of B. In other words we
will get a final label of m(2k − 1)c for each vertex in part B. Since we are dealing
with labels from Z2k , (2k−1) = −1 so m(2k−1)c = −mc. This completes our proof
for this part of the lemma.

Once we get to this ”new” standard labeling, we can use the same principles for
the next part of the lemma to see what happens when we turn off all of the labeled
vertices. This time, if we turn off all of the buttons in the labeled part, we will now
get back to having labels on the vertices of the part that originally had the label of
c, but now, we have a multiple of n and m which come from the amount of vertices
in each of the parts.

2. Assume we are using labels from Z2k . If we have a labeling for our Km,n graph with
n vertices in part B being labeled with −mc and m vertices in part T being labeled
with 0, then we can get to a labeling with all of the vertices in part B being labeled
with 0 and all of the vertices in part T having a label of nmc.

Proof. If we press each of the part B vertices k times, then by applying Lemma 2.3,
we know that the labels of these vertices will go to 0. Furthermore, by applying
Lemma 2.5, after k toggles of each of the part B vertices, we will add (2k−1)(−mc)
for each of the n vertices in part B. This means that the labels on the part T
vertices after k toggles of each of the part B vertices will be n(2k − 1)(−mc). Since
(2k − 1) = −1 when using labels from Z2k , our label becomes n(−1)(−mc) = nmc.
This completes the proof.

We saw before that carrying out Lemma 2.6 gets us to a labeling where we have a
multiple of the number of vertices in each of the part multiplied by our original label.
The following lemma shows that doing this process multiple times will just multiply the
original label by another multiple of n and m each time.

Lemma 2.7. If we turn apply Lemma 2.6 q times on a Km,n graph with all of the vertices
in one part having a label of c and all of the vertices in the other part having a label of
0, then we will end up with all of the vertices in one part having a label of nqmqc and all
of the vertices in the other part having a label of 0.
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Proof. We will prove that carrying out Lemma 2.6 q times on a standard labeling will
give a final labeling of with all of the vertices in one part having a label of nqmqc and all
of the vertices in the other part having a label of 0 using induction.

Basis case: q=1. If we apply Lemma 2.6 once to a standard labeling with one part
having a label of c and the other part having a label 0, then we will get to a labeling where
one part has a label of nmc and the other part has a label of 0. Since nmc = n1m1c, our
lemma holds true for q=1.

Induction Step: Assume that our Induction hypothesis is true for q=w. We will prove
that it is also true for q=w+1, or in other words, we will prove that applying Lemma
2.6 and w + 1 times to a standard labeling with one part having a label of c and the
other part having a label 0, then we will get to a labeling where one part has a label of
nw+1mw+1c and the other part has a label of 0. From our Induction hypothesis, we know
that applying Lemma 2.6 w times to a standard labeling will give a final labeling with
one part of vertices having a label of nwmwc. If we know let this label be the label for
a new standard labeling where all of the vertices in one part have a label of c′ = nwmwc
and all of the vertices in the other part have a label of 0, then applying Lemma 2.6 again
will give a labeling of nmc′ = nm(nwmwc) = nw+1mw+1c. Thus, we have proved that
applying Lemma 2.6 q times will give a labeling with all of the vertices in one part having
a label of nqmqc and all of the vertices in the other part having a label of 0

Pulling everything together, we can see that using these lemmas allow us to get a final
labeling that is a multiple of nq and mq. This helps us when we consider that if either
of m or n are even, then our final label will be a multiple of 2q. Which means that if we
have labels from Z2k , all we have to do is carry out Lemma 2.6 k times to get a label of
0 for all of our vertices. This results in the following theorem.

Theorem 2.8. The group labeling ”Lights Out” game is always winnable on the complete
bipartite graph Km,n when m or n are even when using labels from Z2k

Proof. From Lemma 2.4, we know that regardless of the initial labeling of the graph,
we can get to a standard labeling with part T having labels of c and part B having
labels of 0 for each of the vertices. From Lemma 2.7, we know that we can get from our
standard labeling to a labeling with a label of nqmqc for our vertices in the part T and
a label of 0 for the vertices in part B . Let’s assume that m is even. This means we can
write m as 2w where w is some integer. Thus, our labeling after applying Lemma 2.7is
nq(2w)qc = nq2qwqc. If we let q=k, then we get a labeling of nk2kwkc. Since 2k is equal
to 0 in Z2k , this labeling must also be 0, and since the labels in set B were already 0, all
of the labels in our graph are now 0, and we have won the game. Thus, if either m or n
is even, we know that the group labeling Z2k Lights Out game is always winnable.

We have investigated the winnability of the group labeling Zk game on the graph Km,n

when either m or n are even, but we must also consider the case where m and n are both
odd numbers. From the using the standard labeling method, it seemed that in the case
where m and n are odd, that the game is not always winnable. However, this intuition is
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not sufficient enough proof to tell us that the game is not always winnable when m and n
are odd since it would only tell us that we will not be able to always win the game following
that specific method. Luckily, we can attack the problem from a different perspective.
We can start by looking into the winnability of the standard neighborhood game on Km,n

and seeing if there is a relationship between the winnability of the neighborhood game
and the group game. Below is a result from [6] that will lead us in the direction of proving
that the odd case is not always winnable when playing the Z2k on Km,n.

Lemma 2.9. Let G be a graph with labels from Zk. The neighborhood Lights Out game
on Km,n is always winnable in Zk if and only if the gcd(k,mn− 1) = 1.

We can use this result and apply it to the case where k = 2 and where m and n are
both odd.

Lemma 2.10. The neighborhood Lights Out game is not always winnable on the complete
bipartite graph Km,n when m and n are both odd when using labels from Z2

Proof. We will prove that the neighborhood Lights Out game is not always winnable when
played on the graph Km,n when m and n are both odd using labels from Z2 by applying
Lemma 2.9. If we have k = 2 and m and n both be odd numbers, then the Lemma states
that the neighborhood game should always be winnable if the gcd(2,mn − 1) is equal
to 1. If m and n are both odd numbers, mn − 1 will be an even number, which means
the gcd(2,mn− 1) will not be equal to one. This means that the Z2 game is not always
winnable when m and n are odd. This completes the proof.

Lemma 2.10 tells us that there exists at least one labeling that is not winnable for the
Z2 neighborhood game when m and n are odd. We would like to be able to extend this
fact to the Z2k group game somehow. We can do this by first showing that the group
Z2 game is a more restrictive version of the Z2 game, so if there exists a labeling in the
neighborhood game that is not winnable, then the same should be true for the Z2 group
game. To provide some context for this idea, we note that the set of possible toggles
in the group Z2 game is a subset of the set of possible toggles in the neighborhood Z2

game. This is because in the neighborhood Z2 game, we have two possible labels for each
vertex, either 1 or 0. We are allowed to toggle each of the these vertices with the effect of
switching the label of the toggled vertex and the label of vertices adjacent to that vertex.
In the group Z2 game, we also only have two possible labels, 1 or 0. Since in the group
game, toggling a vertex adds the label of the toggled vertex to itself and the label of its
adjacent vertices, toggling a vertex labeled with 1 in the group game will have the same
effect as toggling a vertex labeled with 1 in the neighborhood game. Toggling a vertex
labeled with 0 in the group game will have no effect at all since it will be adding 0 to the
label of itself and the labels of all of the adjacent vertices.

Lemma 2.11. Assume we have the graph Km,n. If there exists a labeling that is not
winnable in the neighborhood Z2 game, then that labeling is also not winnable in the
group Z2 game.
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Proof. We will prove that if there exists a labeling that is not winnable in the neighbor-
hood Z2 game, then that labeling is also not winnable in the group Z2 game by using the
fact that the set of possible toggles in the group Z2 game is a subset of the set of possible
toggles in the neighborhood Z2 game. If there exists a labeling that is not winnable in the
neighborhood game, then it means that there is no possible combination of toggles that
would allow you to get all of the vertices of the graph to have a label of 0. Since the set
of toggles in the group game is a subset of the set of toggles in the neighborhood game,
this means that there is also no possible combination of toggles in the group game that
would be able to get all of the vertices of the graph have a label of 0. This completes the
proof

We can use this lemma to prove the following lemma.

Lemma 2.12. Assume we have the graph Km,n with m and n being odd numbers. Then
the Z2 group game is not always winnable.

Proof. To prove that the group Z2 game is not always winnable on Km,n when both
m and n are odd numbers, we want to show that there exist some labeling that is not
winnable. If we look at Lemma 2.11, it tells us that if there exists a labeling that is
not winnable in the neighborhood Z2 game, then this labeling is also not winnable in
the Z2 group game. From Lemma 2.10, we know that the neighborhood Z2 game is not
always winnable when played on the graph Km,n when m and n are both odd numbers.
This means that by Lemma 2.10, the Z2 group game is also not always winnable. This
completes the proof.

Now that we know that the Z2 group game is not always winnable we would like to
extend this idea to proving that the Z2k group game is also not always winnable. We can
do this by showing that there is some correspondence between the Z2k game and the Z2

game. For a labeling in the Z2 group game, there is also a corresponding labeling in the
Z2k group game when we use labels of 0 and 2k−1 as the labels for the vertices that were
labeled with 0 and 1, respectively, in the Z2 game. Furthermore, the winnability of these
corresponding labelings should be the same. If we press a vertex labeled with 0 in either
game, the label of all of the vertices of the graph will remain unaffected. If we press a
vertex labeled 1 in the Z2 game, then it will flip the state of its label to 0 and add 1 to
all of the labels of its adjacent vertices. If those adjacent vertices have a label of 0, then
the label will go to 1. If the adjacent vertex label is already a 1,then that label will go
to 0 after the toggle. Similarly, If we press a vertex labeled 2k−1 in the Z2k game, then it
will flip the state of its label to 0 and add 2k−1 to all of the labels of its adjacent vertices.
If those adjacent vertices have a label of 0, then the label will go to 2k−1. If the adjacent
vertex label is already 2k−1, then that label will go to 0 after the toggle. This means that
the toggles needed to win a labeling in the Z2 game are the same as the toggles need
to win in the corresponding labeling in the Z2k game as long as each vertex labeled 1 in
the Z2 labeling corresponds to a vertex labeled with 2k−1 in the Z2k labeling and vertices
labeled with 0 are in the Z2 labeling are also labeled with 0 in the Z2k labeling. We will
use this correspondence to prove the following theorem.
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Theorem 2.13. Assume we have the graph Km,n where m and n are both odd, then if
the Z2 group labeling game is not always winnable, then the group Z2k game is also not
always winnable.

Proof. To prove that if the Z2 group labeling game is not always winnable, then the group
Z2k game is also not always winnable, we will use the fact that if there is a combination
of toggles in the Z2 game that is winnable, then that same set of toggles will win the Z2k

game using labels of 0 and 2k−1 . We can do this if every time we would toggle a vertex
labeled with 1 in the Z2 game, we make the same toggle on the corresponding vertex
labeled with 2k−1 in the Z2k game. Since the combination of toggles needed to win are the
same in each game, it means that if there exists a labeling that is not winnable in the Z2

game, then there must also be a corresponding labeling that is also not winnable in the
Z2k game. From Lemma 2.12, we know that if m and n are both odd, that the Z2 group
game on the graph Km,n is not always winnable, which means that there is at leas one
labeling that is not winnable in the Z2 group game. Thus, because of the correspondence
between the Z2 game and the Z2k game, we know that the Z2k game is also not always
winnable. This completes the proof.

3 Future Directions

After investigating the winnability of the group game on complete bipartite graphs, we
have begun to explore using similar strategies on complete tripartite graphs and have
arrived at the following conjecture.

Conjecture 3.1. The complete tripartite graph Km,n,o is always winnable when using
labels from Z2k when at least two of m,n, o are even.

By getting the tripartite graph to a ”standard” labeling, where all of the vertex labels
of two of the parts are 0 and all of the vertex labels of the last part are all the same
value, c, then it should be possible to prove that this conjecture is true and this method
could also possibly be applied to any multipartite graph, but it remains to be seen how
much of the complete bipartite proofs would generalize. Another future direction would
be to explore the winnability of the group game when played with labels from different
groups other than Zk, as the winnability of the game is highly dependant on the nature
of the group and operation used for the labels. Finally, another direction would be to
investigate the winnability of the Zk

2 group game on other families of graphs, such as a
spider graph.
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