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How to analyse seed germination data using statistical time-
to-event analysis: non-parametric and semi-parametric methods
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Abstract

Seed germination experiments are conducted in a

wide variety of biological disciplines. Numerous

methods of analysing the resulting data have been

proposed, most of which fall into three classes:

intuition-based germination indexes, classical non-

linear regression analysis and time-to-event analysis

(also known as survival analysis, failure-time analysis

and reliability analysis). This paper briefly reviews all

three of these classes, and argues that time-to-event

analysis has important advantages over the other

methods but has been underutilized to date. It also

reviews in detail the types of time-to-event analysis

that are most useful in analysing seed germination

data with standard statistical software. These include

non-parametric methods (life-table and Kaplan–Meier

estimators, and various methods for comparing

two or more groups of seeds) and semi-parametric

methods (Cox proportional hazards model, which

permits inclusion of categorical and quantitative

covariates, and fixed and random effects). Each

method is illustrated by applying it to a set of real

germination data. Sample code for conducting

these analyses with two standard statistical programs

is also provided in the supplementary material

available online (at http://journals.cambridge.org/).

The methods of time-to-event analysis reviewed

here can be applied to many other types of biological

data, such as seedling emergence times, flowering

times, development times for eggs or embryos, and

organism lifetimes.

Keywords: failure-time analysis, frailty, Kaplan--Meier
estimator, life-table estimator, log-rank test, reliability
analysis, survival analysis

Introduction

Seed germination experiments are conducted in many
different biological disciplines. The diverse appli-
cations of this powerful tool include studies of
physiological processes underlying germination,
types and controls of dormancy, plant life histories,
determinants of invasiveness in plants, genetic and
environmentally induced differences between conspe-
cific populations, seed storage or preparation methods
that maximize germination percentage, and post-
sowing physical and chemical environmental factors
that maximize germination percentage. Baskin and
Baskin (2001) provide a wealth of specific examples
with references to the literature.

Germination experiments typically are conducted
by placing groups of seeds on a moist substrate inside
containers (e.g. filter paper or sand in Petri dishes),
which are then placed randomly in an incubator under
controlled temperature and light conditions. Seeds
are checked for germination (operationally defined,
usually as radicle emergence) on a sequence of
observation days over a fixed period of time, typically
chosen to be long enough so nearly all seeds germinate
that are capable of doing so under the experimental
conditions. On each observation day, seeds found to
have germinated since the previous observation are
counted and removed, yielding a temporal sequence
of germination numbers. An example of such data for
Japanese knotweed [Fallopia japonica (Houtt.) Ronse
Decraene or Polygonum cuspidatum Sieb. and Zucc.]
is shown in Fig. 1.
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To be clear, the term ‘germination’ properly refers
to the physiological and developmental processes
that resume in mature, non-dormant seeds when they
are exposed to appropriate conditions of water
availability, temperature and other physicochemical
factors. In germination experiments, it is actually the
completion of germination that is observed. But to
avoid awkward terminology, we will refer to the
completion of germination simply as germination in
this review. For example, we will refer to the median
time at which seeds complete germination as the
median germination time, and to the temporal pattern
of completion of germination as the temporal pattern
of germination. This convenient usage is common in
the literature and should cause no confusion here,
since we never refer to the actual process of
germination.

In many applications that employ germination
experiments, it is not sufficient merely to determine
the percentage of seeds that germinate by the end of
the experiment. Nor are data plots such as those

shown in Fig. 1 sufficient as a means of communicating
results or as a basis for interpreting them. For example,
Fig. 2 (based on data from Baskin and Baskin, 1983)
shows plots of cumulative germination versus time
for seeds of Veronica arvensis L. incubated at several
different temperatures following storage at 258C for 2
months (panel A), 3 months (panel B) or 4 months
(panel C). Are the curves for 10 and 158C significantly
different in any of the panels? Are the curves for 10 and
208C significantly different in panel C? Which curves
for a given temperature differ significantly between
panels? It is simply not possible to answer questions
like these by examining this figure, and few meaningful
conclusions can therefore be drawn from it. At a
minimum, we require rigorous statistical methods
for testing hypotheses regarding potential differences
in temporal patterns of germination between treatment
groups. And methods for testing hypotheses regarding
potential effects of quantitative covariates like storage
duration and incubation temperature would be highly
desirable, as well.
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Figure 1. An example of germination data for seeds of Japanese knotweed. Data are from Bram and McNair (2004) and are
described in the text. (A) Numbers of newly germinated seeds observed on days 1, 3, 5, . . ., 21 of the experiment. (B) The same
data plotted as cumulative totals. This is the form in which data are usually viewed in the germination literature. (C) The same
data plotted as percent seeds not yet germinated. This is the form in which data are usually viewed in statistical time-to-event
analysis.
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Figure 2. Cumulative germination of Veronica arvensis seeds at four different temperatures (5, 10, 15 and 208C) after storage for
2 months (A), 3 months (B), or 4 months (C) at 258C. Data were digitized from Fig. 3 of Baskin and Baskin (1983).
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But what statistical methods should be used to test
such hypotheses? The problem is complicated by the
fact that germination data differ in important ways
from types of data usually encountered in biology.
For example, data typically are collected by following
cohorts of seeds, so the cumulative percentage of seeds
that have (or have not) germinated on successive days
of observation exhibits serial autocorrelation. Also,
ungerminated seeds typically remain when exper-
iments are terminated, and there is no way to be
certain when these seeds would have germinated if the
experiment had been continued indefinitely. For such
seeds, all that is certain is that the time to germination
is greater than the duration of the experiment. How,
then, can we validly estimate the mean or variance of
the germination time? The presence of such right-
censored observations violates assumptions of many
classical statistical methods, and specialized methods
are therefore required.

Numerous methods have been proposed for
quantifying different characteristics of temporal
patterns of germination like those in Figs 1 and 2.
But as several previous authors have pointed out
(Goodchild and Walker, 1971; Scott et al., 1984; Brown
and Mayer, 1988a), many of these methods are flawed
on conceptual or statistical grounds, or provide
information that is inadequate for many applications
(see below). An important exception is a relatively new
class of statistical methods variously called time-to-
event analysis, survival analysis, failure-time analysis
and reliability analysis. We will refer to these methods
as time-to-event analysis to avoid potentially confus-
ing connotations of the alternative names. These
methods are powerful, flexible and statistically
sound, but they have only rarely been applied to
germination data and are poorly documented in the
biological literature.

We believe that the statistical theory and techniques
of time-to-event analysis provide the most appropriate
and powerful set of methods for analysing germina-
tion data. Several previous authors have noted the
applicability of these methods (Scott and Jones, 1982;
Scott et al., 1984; Gunjača and Šarčević, 2000; Fox, 2001;
Onofri et al., 2010), yet they continue to be under-
utilized. The main reason seems to be simply that most
researchers who conduct germination experiments are
not familiar with these methods or their advantages
over statistical methods with which they are familiar,
such as classical regression analysis and analysis of
variance.

The goals of the present paper are to: (1) briefly
review and assesses the various commonly used
methods of analysing seed germination data; (2)
provide a more-detailed review of the main non-
parametric and semi-parametric methods of modern
time-to-event analysis, including how to apply
them specifically to germination data with standard

statistical software; and (3) illustrate each method by
applying it to real germination data. We restrict our
detailed review to methods that are both appropriate
for germination data and available in standard
statistical software. The main consequence of this
restriction is that we provide only a brief overview of
fully parametric methods. For reasons we will explain,
implementations of these methods currently available
in standard statistical software are not appropriate for
analysing germination data. But even in medical
applications for which these implementations are
appropriate, non-parametric and semi-parametric
methods are by far the most widely used methods of
time-to-event analysis and will suffice for most seed-
germination studies.

Review of quantitative methods commonly
applied to germination data

Historically, three main approaches have been used
for quantitative analysis of seed germination data. The
simplest and oldest approach employs intuition-based
indexes intended to capture useful information about
the temporal pattern of germination. An alternative
approach was later developed that uses classical
regression techniques to fit non-linear parametric
functions to the temporal sequence of cumulative
germination. More recently, various types of time-to-
event analysis have been applied to germination data.
All three of these approaches are currently in use.
We briefly review each of them in this section, then
review time-to-event methods in more detail in
subsequent sections.

Germination indexes

Germination indexes have been reviewed by Scott
et al. (1984), Brown and Mayer (1988a) and Ranal and
Santana (2006). There is no shortage of such indexes;
Ranal and Santana (2006) discuss more than 20 of
them. Since germination indexes are so numerous
and have been thoroughly reviewed, we will content
ourselves with a few examples to illustrate the
approach.

A very commonly used index is Germinability,
which is the cumulative percentage of seeds that have
germinated by the end of an experiment. Another
common index is Czabator’s (1962) Germination
Value, which is the product of the ‘peak value’ and
‘mean daily germination’ for seeds that germinate
during an experiment. The peak value is the maximum
of the quotients, computed for all observation times,
of cumulative germination percentage divided by
time since the beginning of the experiment in days.
Mean daily germination is the germination percentage
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at the end of the experiment divided by the duration
of the experiment in days. Maguire’s (1962) Speed of
Germination is the sum over all observation days
of the same quotients used in determining the peak
value. Baskin and Baskin (2001) suggest using a
modified Timson (1965) index given by the sum of
daily cumulative germination percentages observed
during a germination experiment. These and other
indexes are computed separately for each replicate,
and potential differences between groups of seeds
(e.g. different sources, different methods of storage or
preparation) are assessed via analysis of variance.

Germination indexes are still widely used, but
several authors have identified serious conceptual and
statistical problems with them (Goodchild and Walker,
1971; Scott et al., 1984; Brown and Mayer, 1988a). The
paper by Brown and Mayer (1988a) is especially
cogent. The fundamental problem derives from the
fact that there are at least four conceptually distinct
properties of the temporal pattern of germination that
must be quantified in order to fully characterize it:
(1) duration of the initial delay in onset of germination;
(2) percentage of seeds that ultimately germinate;
(3) average speed of germination following onset; and
(4) the temporal pattern of change in germination
speed following onset (Brown and Mayer, 1988a;
Farmer, 1997). Paraphrasing Brown and Mayer
(1988a), we may call these properties the delay, extent,
average speed and variation in speed of germination.
As Brown and Mayer (1988a) note, it is simply not
possible to characterize all of these properties with a
single index, and they will be confounded in any index
that includes information about more than one of
them. For example, Germinability includes information
about only the extent of germination, Germination
Value and Germination Speed confound extent and
speed, and Timson’s index confounds extent, speed
and variation in speed (Brown and Mayer, 1988a).

A potentially serious statistical problem with
germination indexes is that they make only limited
use of the data from an experiment. An extreme case is
Germinability, which utilizes data from only the final
observation day, throwing away the rest. Thus, if two
sets of germination data exhibit radically different
temporal patterns but converge on the last observation
day, this index would lead one to conclude that there
was no difference between them. This is not a problem
in seed technology, since the extent of germination is
the main property of interest, and data waste is
reduced by employing only two observation days
(ISTA, 1985). But in most other applications, differ-
ences in temporal patterns of germination are
important, as Brown and Mayer (1988a) emphasize.
Documenting these patterns requires numerous obser-
vation days, and most of the resulting data are wasted
or poorly used when germination indexes are
employed.

For these reasons, and because of their evident
subjectivity, we concur with Scott et al. (1984) and
Brown and Mayer (1988a) that germination indexes do
not provide an adequate basis for characterizing the
temporal pattern of germination, comparing groups of
seeds or assessing treatment effects, though Germin-
ability certainly is appropriate for characterizing seed
lots in seed technology.

Classical non-linear regression analysis of
cumulative germination data

Beginning in the 1970s, an alternative to the use of
germination indexes was developed in which gener-
alized curve-fitting programs are used to fit non-linear
parametric functions to the temporal sequence of
cumulative germination (Goodchild and Walker, 1971;
Janssen, 1973; Bonner and Dell, 1976; Tipton, 1984;
Brown, 1987; Brown and Mayer, 1988b; Carneiro,
1994). This approach typically yields estimates of two,
three or four function parameters (depending on the
specific function fitted), which are then used in place of
intuition-based indexes to characterize key features
of germination. It has been a common method of
analysing germination data since the 1980s and is still
widely used. Two examples will illustrate the key
features of the approach.

Tipton (1984) fitted three classical three-parameter
growth functions (monomolecular, logistic and Gom-
pertz; for definitions, see Draper and Smith, 1998) to
cumulative germination data for creosote bush (Larrea
tridentata). Each function included a shape parameter,
a temporal scale parameter and a germinability
parameter. For example, the Gompertz growth func-
tion has the following form:

FðtÞ ¼ p expð2a expð2ltÞÞ; ð1Þ

where F(t) is the proportion of seeds that have
germinated by time t, p is the germinability parameter
(proportion of seeds capable of germinating under
the experimental conditions), l is the temporal scale
parameter, and a is the shape parameter. None of the
functions included an initial delay in onset of
germination. Brown (1987) fitted the following four-
parameter Weibull cumulative distribution function to
cumulative germination data for Aristida armata seeds:

FðtÞ ¼ p½1 2 exp ðlaðt 2 tÞaÞ� ð2Þ

where F(t), p, l, and a are defined as in equation (1),
t is a delay parameter representing the initial delay
in onset of germination, and we define F(t) ¼ 0 for
t , t. The four parameters in this model characterize
all four key properties of the temporal pattern of
germination.

Researchers using this approach typically fit their
growth or cumulative distribution functions to
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temporal sequences of observed cumulative germina-
tion using general-purpose non-linear regression soft-
ware. Since parameters in the most commonly used
growth or cumulative distribution models have
reasonably clear biological meanings, they are often
used in a manner similar to germination indexes.
For example, parameters are commonly estimated
separately for each of several replicates, and potential
differences between treatment groups are assessed via
analysis of variance.

A limitation of the classical non-linear regression
approach is that cumulative germination data violate
a basic requirement of standard non-linear regression
models. Because seed germination experiments
involve repeated observations on the same cohort
of seeds, the cumulative number of seeds that have
germinated by day t þ 1 is not independent of the
number that have germinated by day t, resulting in
positive autocorrelation of the residuals (deviations
between observed and expected values) at successive
values of t. But the statistical theory used to
construct confidence intervals and test hypotheses
in standard non-linear regression programs requires
the residuals to be uncorrelated. Therefore, while
these programs may be used to estimate model
parameters (which is the usual practice, outlined
above), all the other information these programs
provide that normally would be of great importance
– confidence intervals for parameters and the fitted
function, hypothesis tests for parameter values, and
comparisons of parameter values for fitted functions
for two or more groups – must be disregarded. This
problem reflects the fact that the regression program
is being applied to data for which the underlying
statistical model is inappropriate. Time-to-event
analysis resolves this problem by focusing on the
fates of individual seeds rather than cumulative
germination.

Time-to-event analysis

As noted in the Introduction, there are three major
types of time-to-event analysis: non-parametric, semi-
parametric and fully parametric. Non-parametric
time-to-event analysis comes in two main flavours: a
traditional approach based on actuarial life-table
methods and a more recent approach based on
modern statistical theory. The semi-parametric
approach consists of the Cox proportional hazards
model and various extensions. The fully parametric
approach includes so-called accelerated life (or
accelerated failure-time) models, as well as many
other parametric models. All three major types of time-
to-event analysis are based on the distribution of
germination times of individual seeds rather than on
cumulative germination.

A few papers in the literature have applied non-
parametric time-to-event analysis to germination data
(Scott and Jones, 1982; Scott et al., 1984; Gunjača
and Šarčević, 2000). All of these employ only classical
life-table methods, which were designed for use with
census data and are rarely used in modern time-to-
event analysis. More recent and more diverse methods
designed for data where exact event times are assumed
to be known have several theoretical advantages over
life-table methods, and for this reason are now by far
the most commonly applied non-parametric methods
in medical applications of time-to-event analysis.
To our knowledge, no review of these modern non-
parametric methods as applied to germination data
is currently available.

Scott et al. (1984) apply semi-parametric time-to-
event analysis (Cox proportional hazards model) to
germination data, while Fox (2001) briefly discusses
the method but does not apply it. The descriptions
provided by Scott et al. (1984) and Fox (2001) include
some of the basic ideas behind the proportional
hazards model but are too brief to be useful guides for
applying them.

Fully parametric time-to-event analysis is the most
natural and statistically sound way to implement the
type of detailed analysis that previous investigators
have attempted by fitting non-linear regression
models to cumulative germination data. However,
to our knowledge, all previous papers addressing
applications of time-to-event analysis to germination
data either do not discuss the fully parametric
approach or else discuss special cases that, on
close examination, turn out to be inappropriate for
application to germination data. For example, Scott
et al. (1984) and Onofri et al. (2010) apply the
accelerated life model to data on time to germination,
and Fox (1990, 2001) applies the same model to data
on time to seedling emergence, but the form of the
model these authors discuss (which is the only form
currently available in standard statistical software)
actually is not appropriate for seed germination
or seedling emergence data. The reason is that the
standard version of the accelerated life model cannot
accommodate either delays in the onset of germination
or mixtures of germinable and non-germinable seeds,
whereas germination data typically exhibit both of
these properties.

Terminology, test data and statistical software

Before beginning our review of non-parametric and
semi-parametric methods, we introduce some basic
concepts and terminology that will be required.
We also describe test data and statistical software
that will be used to illustrate application of these
methods to germination data.
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Basic probability functions

Non-parametric and semi-parametric methods of
time-to-event analysis are based mainly on two
probability functions: the survivor function (or
complementary cumulative distribution function)
and the hazard function. Understanding the statistical
methods requires a basic understanding of these
functions, which we therefore briefly review.

The time required for a seed to germinate, or
germination time, is a random variable. The associated
survivor function S(t) is the probability that the
germination time is greater than t. We assume the
germination time is always greater than 0, so S(0) ¼ 1.
As t increases from 0, S(t) typically will remain
constant at a value of 1 for small values of t (due to
the initial delay in onset of germination) and then
begin to decrease. As t becomes large, S(t) will
approach a limiting value which is either 0 (if all seeds
are capable of germinating under the experimental
conditions) or somewhat greater than 0 (otherwise).

The hazard function h(t) is defined such that h(t)dt
is the probability that the germination time lies in
the infinitesimal interval (t, t þ dt ], given that it is
greater than t. We have

hðtÞ ¼
2dS=dt

SðtÞ
¼

f ðtÞ

SðtÞ
; ð3Þ

where f(t) ¼ 2dS/dt is the probability density func-
tion, defined such that f(t)dt is the probability that
the germination time lies in the infinitesimal interval
(t, t þ dt ]. The hazard function tells us how likely it
is that a seed which has not germinated by time t will
germinate shortly after t. It has dimensions of 1/time
and is often called the hazard rate.

The following relationship between the survivor
function and the hazard function is important and
will be used below:

SðtÞ ¼ exp 2

ðt
0

hðtÞdt

0
@

1
A: ð4Þ

Thus, increasing the hazard rate will decease the
survivor function.

Observation schemes and data types

An observation scheme is a temporal pattern of seed
monitoring. A variety of observation schemes are
employed in different applications of time-to-event
analysis (see Lawless, 2003), but two types are
important to know about when analysing germination
data. We call these periodic simultaneous observation and
continuous observation, and we call the corresponding
types of data interval data and exact data.

Periodic simultaneous observation and interval data

The observation scheme employed in standard
germination experiments is illustrated in the left
panel of Fig. 3 and can be described as follows.
All seeds are placed in an incubator at the same
time and are then observed at predetermined times
0 ¼ a0 , a1 , a2 , a3 , · · · , am , 1. At each obser-
vation time ai, all seeds are examined, and those whose
radicles are protruding are recorded as having
germinated in the interval (ai21, ai] and are discarded.
Care is taken to ensure that the amount of time
required to check all seeds is negligible compared to
the length of time ai 2 ai21 between successive
observation times. If any seeds are lost or damaged
between observations ai21 and ai, the number is
recorded and assigned to interval (ai21, ai]. The
number of ungerminated seeds remaining at the
(predetermined) final observation time am is also
recorded. Germination times of these seeds are only
known to exceed am and so are right-censored.

We call this observation scheme ‘periodic simul-
taneous observation’ because seeds are observed
periodically rather than continuously, and because all
observations are, to a good approximation, simul-
taneous. We call the data that are produced ‘interval
data’ because they represent the numbers of germina-
tion events (and sometimes, seed losses) occurring
within the various time intervals.

Continuous observation and exact data

The continuous observation scheme is illustrated
in the right panel of Fig. 3 and can be described as
follows. As with periodic simultaneous observation,
the germination experiment begins by placing all seeds
in an incubator at the same time. Now, however, we
assume that every seed is continuously monitored.
If any seeds are lost during the experiment, we assume
the exact loss times are known. For lost seeds, all we
know regarding germination is that the germination
time is greater than the loss time, so the germination
time is right-censored. Of the seeds not lost, some
might not germinate by the (predetermined) end of the
experiment, so the time to germination will be right-
censored for these seeds, as well. All the remaining
seeds will germinate during the experiment, and we
assume their germination times are known exactly.

For obvious reasons, we call this observation
scheme ‘continuous observation’. And since the data
for seeds that germinate during the experiment
represent exact germination times, we call them
‘exact data’.

While data generated by standard germination
experiments clearly are of the interval type, it is
sometimes necessary or desirable to analyse them
using statistical methods designed for exact data. The
main reason is that most of the methods available in
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current statistical software assume exact data. But as
we will explain below in our review, it is almost always
safe and appropriate to apply methods designed for
exact data to germination data.

Test data

We will illustrate all the main methods of non-
parametric and semi-parametric time-to-event anal-
ysis by applying them to germination data for
Japanese knotweed seeds. These data come from a
study by Bram and McNair (2004), whose main
purpose was to assess the potential for sexual
reproduction by invasive Japanese knotweed popu-
lations growing along streams in south-eastern
Pennsylvania, USA. Methods of seed collection,
preparation and germination testing are described in
detail by Bram and McNair (2004) but, for complete-
ness, we provide a brief overview here.

Seeds from invasive Japanese knotweed popu-
lations were collected weekly from three riparian
study sites (Carroll Park, Friends Hospital and Rising
Sun) in urban forests of Philadelphia, Pennsylvania,
USA from 11 September through 1 November 2000
(collection dates 1–8). Seeds were air-dried, then
stratified in moist, sterile sand in a cold room at
approximately 48C for 30 d. Following stratification,
100 seeds from each site–date combination were

planted in plug flats containing standard potting soil.
One seed was planted in each well, just beneath the
soil surface. Flats were placed in a growth chamber
with alternating periods of light and dark, and high
and low temperatures, simulating conditions in the
field. Flats were surface-watered and monitored for
germination (operationally defined as cotyledon
emergence) on day 1, then every 2 d until day 21.
The duration of the experiment was chosen based on
pilot experiments, in which the cumulative number of
germinated seeds from all collection dates and sites
appeared to approach a plateau by day 21.

Statistical software

Each method of time-to-event analysis discussed
below in our review will be illustrated using R or
SAS software. In most, but not all, cases, both
programs provide the required functionality with
built-in functions or procedures specifically designed
for time-to-event analysis. The examples were com-
puted using R version 2.10.1 under the OpenSUSE 11.1
Linux operating system (R Development Core Team,
2009) and SAS version 9.1.3 under the Windows
XP operating system (SAS Institute Inc., 2004). Most
other widely used statistical programs have modules
for time-to-event analysis that provide similar
functionality.
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Figure 3. Two types of observation scheme assumed in standard methods of time-to-event analysis. Both panels show the fates of
five seeds during a germination experiment. A germination event is indicated by a circle, a censoring time by an ‘x’. The final
censoring time (seed 1) occurs at the end of the experiment, indicating that the seed had not yet germinated. The other censoring
time (seed 4) occurs during the experiment, indicating seed loss. In the left panel, observations are made only at planned times ai.
When a germinated seed is observed at time ai, all that is known is that the germination event (grey circle) occurred sometime
during the interval between observation times ai21 and ai (enclosed by a rectangle). Similarly, when a seed is found to be missing
at observation time ai, all that is known is that the loss (grey ‘x’) occurred sometime between times ai21 and ai. This is the
observation scheme for which life-table methods of time-to-event analysis were originally designed. In the right panel, all
censoring times and uncensored germination times ti* are assumed to be known exactly, while censored germination times are
only known to exceed the censoring time. This is the observation scheme assumed by the Kaplan–Meier estimator of the
survivor function and by most other modern methods of time-to-event analysis.
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Non-parametric time-to-event analysis of
germination data

Two main problems can be addressed with non-
parametric methods: characterizing the temporal
pattern of germination within individual groups of
seeds, and comparing patterns of germination in
different groups. For each problem, two main classes
of methods are available, according as the data are
assumed to be of interval or exact type.

Characterizing the temporal pattern of
germination

Non-parametric methods of time-to-event analysis
allow one to obtain quantitative estimates of the
survivor function without assuming a particular
functional form. Information that can be obtained
with standard statistical software includes, for
example, the estimated survivor function and point-
wise confidence intervals.

Interval data

Long before the emergence of time-to-event analysis as
a statistical discipline in its own right, methods for
estimating the survivor function for human popu-
lations were developed by actuaries as part of the
procedure for constructing life tables. These methods
employed census data and therefore assumed periodic
simultaneous observation and interval data. Because
of its origin, the most commonly used method of this
type for estimating the survivor function is usually
called the life-table or actuarial estimator, which we
now describe.

The observation scheme for interval data is
illustrated in the left panel of Fig. 3. Let the initial
number of seeds be N. Given observation times
0 ¼ a0 , a1 , a2 , · · · , am , 1, let the intervals
between observations be Ij ¼ (aj21, aj] for j ¼ 1, 2, 3,
. . ., m. We assume the Ij are long enough relative to
the rate at which germination events occur so that
multiple events commonly occur within an interval.
Let Dj be the number of germination events occurring
within interval Ij. We assume Dj is known but the exact
event times are not. Finally, let Ni be the number of
seeds at risk of germination (i.e. not yet germinated
or lost) at the beginning of interval Ii, with N1 ¼ N.

If no seeds are lost before the end of the experiment,
then the standard life-table estimator ŜðajÞ of the
survivor function at the observation times ai is given by

ŜðajÞ ¼
Yj

i¼1

ð1 2 Di=NiÞ: ð5Þ

On the other hand, if seed losses do occur before the end
of the experiment, it is necessary to adjust the Ni to
account for the fact that because lost seeds cannot

contribute to the observed number of germination
events during an interval, they effectively reduce the
number of seeds at risk below Ni. Letting Ni

0 denote
the adjusted or effective number of seeds at risk, the
resulting estimator of the survivor function is

ŜðajÞ ¼
Yj

i¼1

ð1 2 Di=Ni
0Þ; ð6Þ

where it remains to specify Ni
0. The traditional choice

of Ni
0, and the one implemented in standard statistical

software, is

Ni
0 ¼ Ni 2 0:5Wi; ð7Þ

where Wi is the number of losses during interval Ii.
Derivations of the above formulas are straightforward
and can be found in, for example, Elandt-Johnson and
Johnson (1980), Lawless (2003), and Lee and Wang
(2003).

Equations (5), (6) and (7) tell us how to estimate the
survivor function at the observation times, but how do
we estimate its value at intermediate times? Recalling
that the observation times are chosen in such a way
that multiple events will occur in many of the intervals
between observations, it is most reasonable to assume
events occur more or less uniformly during each
interval Ii and therefore to estimate S(t) for ai , t , aiþ1

simply by linearly interpolating between Ŝ aið Þ and
Ŝ aiþ1

� �
. This is the result obtained by plotting the

estimated survivor function Ŝ aið Þ versus observation
times ai and choosing the graphics option to connect
each pair of successive points with a straight line.

Methods are available in standard statistical soft-
ware for estimating various other functions of interest,
including the probability density function, hazard
function and corresponding point-wise 95% confi-
dence limits. Neither R nor SAS currently reports the
median or other quantiles for the life-table estimate of
the survivor function, but the required methods are
straightforward (see Lee and Wang, 2003).

Figure 4 shows life-table estimates of survivor
functions computed for the three study sites in the
test data using R function lifetab() from the
KMsurv package. Examples are plotted for collection
dates 3 and 8, without (panels A and B) and with
(panels C and D) point-wise 95% confidence intervals.
lifetab() creates an object whose components
include estimates and point-wise standard errors of
the survivor function, probability density function and
hazard function. Plots like those of Fig. 4 must be
created from this object using the default R plot
function. Various types of point-wise 95% confidence
intervals can be constructed using the Greenwood
standard errors created by lifetab(). Those in Fig. 4
assume a normal distribution of ŜðaiÞ: ŜðaiÞ^ 1:96 SEi,
where SEi is the standard error of ŜðaiÞ.
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The SAS procedure lifetest also allows one to
estimate life-table survivor functions, but it is
important to note that it does so incorrectly for
interval data generated by periodic simultaneous
observation unless the data or observation times are
adjusted so that the values entered as event times are
slightly less than the observation times (see the online
supplementary material, available at http://journals.
cambridge.org/).

Sample R and SAS code for estimating the survivor
function using methods for interval data is provided
in the supplementary material.

Exact data

Estimates of the survivor function when event times
are assumed to be exact (but with ties permitted) are
usually obtained with the Kaplan–Meier estimator.
The origin of this estimator can be traced back to the
product-limit estimator of Böhmer (1912) in the
actuarial literature. It is sometimes called the pro-
duct-limit estimator in the statistical literature, but

Kaplan and Meier (1958) provided the first derivation
based on modern statistical concepts.

The Kaplan–Meier estimator of the survivor
function is designed for exact data produced by a
continuous monitoring scheme, as illustrated in the
right panel of Fig. 3. Let t1

*, t2
*, t3

*, . . ., tN
* denote the times

at which the N initial seeds either germinate or are
censored (including censoring by termination of the
experiment and seed loss), and let d1, d2, d3, . . ., dN be
status variables that tell us whether the corresponding
ti

* values are germination times (di ¼ 1) or censoring
times (di ¼ 0). (Note: in data files used for analysing
data that are treated as exact, every seed is represented
by its pair of ti

* and di values.) We allow the possibility
that some of the ti

* are identical, in which case the
data contain ties. Let t1 , t2 , t3 , · · · , tk (k # N) be
the distinct times at which germination events occur,
and let dj be the number of germination events that
occur at tj. Finally, let ni be the number of seeds
that were at risk of germination immediately prior to ti.
Then the Kaplan–Meier estimator ŜðtÞ of the survivor
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Figure 4. Life-table estimates of survivor functions for Japanese knotweed seeds collected from three study sites on collection
dates 3 (left panels) and 8 (right panels), computed by R function lifetab() from the KMSurv package. The lower panels are
the same as the upper panels, except that point-wise 95% confidence intervals (thin lines) have been added. Confidence intervals
are based on a normal approximation using Greenwood standard errors computed by lifetab(); see text for details.
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function is given by

ŜðtÞ ¼
i:ti,t

Y ni 2 di

ni

� �
¼

i:ti,t

Y
ð1 2 di=niÞ; ð8Þ

where i is the index of the observed germination times.
(For derivations, see Cox and Oakes, 1984; Lawless,
2003.) Note that ŜðtÞ is a step function that changes
(decreases) only at values of t at which germination
events occur, and that the effect of seed loss is to
reduce nj.

How do the Kaplan–Meier and life-table estimates
of the survivor function compare when they are
applied to the same germination data? For standard
germination experiments, the data will be of interval
rather than exact type, so we apply the Kaplan–Meier
estimator by treating the actual observation times ai as
if they were infinitesimally greater than the unknown
germination times ti for intervals in which germination
events occurred. We also treat the known number Di

of germination events in interval Ii as if it were the
number di of (tied) events occurring at distinct event
time ti, and we treat the known number Ni of seeds at
risk at the beginning of interval Ii as the number ni

at risk immediately prior to event time ti. At the
actual observation times, then, the Kaplan–Meier
estimator is

ŜðajÞ ¼
i:ti,aj

Y ni 2 di

ni

� �
¼

Yj

i¼1

ð1 2 Di=NiÞ: ð9Þ

Comparing equation (9) with equation (8), we see
that the values of the Kaplan–Meier and life-table
survivor functions will be identical at the observation
times when there are no seed losses. When seed losses
occur, the two estimators will differ (because they
account for losses differently), but numerical examples
suggest that they will be very similar at the
observation times if the proportion of seeds lost is
less than roughly 5%. This is not much of a restriction,
since 5% seed loss would normally be considered
unacceptable for other reasons and the experiment
would be repeated.

Standard statistical software also provides methods
for estimating various other quantities and functions
associated with the distribution of germination time,
such as the median, probability density function and
hazard functions, plus corresponding confidence
intervals. Since the Kaplan–Meier estimator produces
a step function, there typically will not be an estimated
value that exactly corresponds to the median (or other
quantile). The usual estimate of the median is the
smallest event time ti such that ŜðtiÞ , 0:5.

Figure 5 shows Kaplan–Meier survivor functions
computed for the three study sites in the test data
using R function survfit() from the survival
package. These functions are shown for collection

dates 3 and 8 without (panels A and B) and with
(panels C and D) point-wise 95% confidence intervals.
The survfit() function also creates tabular output
that is stored in an object whose fields include
estimates of the median and 95% confidence limits of
the time to germination, as well as the survivor
function and its point-wise standard errors and 95%
confidence limits. SAS procedure lifetest also can
be used to plot Kaplan–Meier survivor functions and
to create corresponding tabular output.

Sample R and SAS code for estimating the survivor
function using methods for exact data is provided in
the online supplementary material.

Comparing groups

The estimated survivor functions with point-wise
confidence intervals in Figs 4 and 5 suggest that the
temporal pattern of germination is different for all
three study sites for seeds collected on date 3. For
seeds collected on date 8, however, the figures suggest
that the pattern is the same for sites 1 and 3 but
different for site 2. Time-to-event analysis provides
several non-parametric techniques for rigorously
testing such hypotheses regarding potential group
differences in the temporal pattern of germination.
One can test for homogeneity of a set of three or more
groups, or conduct pairwise tests to determine
whether specific pairs of groups are statistically
significantly different, all without assuming a para-
metric form for the survivor function.

Interval data

At the time of this writing, neither R nor SAS provides
interval-data methods for comparing life-table survi-
vor functions. For this reason, we relegate discussion
of these methods to the supplementary material. We
note, however, that both R and SAS include an exact-
data version of the Mantel–Haenszel test (the main
interval-data test; see the supplementary material) that
is usually called the log-rank test. When applied to
standard germination data, the log-rank test will give
the same results as the Mantel–Haenszel test if there
are no seed losses. When a small proportion of seeds
are randomly lost, the values of the test statistics
usually will remain very similar. Therefore, provided
seed loss is absent or rare (e.g. roughly 5% or less), the
R or SAS log-rank test can be used for comparing
groups in germination experiments, even though the
data are of interval rather than exact type.

Several other common methods for comparing
groups with exact data are straightforward extensions
of the log-rank test. Because of their fundamental
similarity to the log-rank test, we argue that it is also
appropriate to analyse germination data using these
other exact-data tests, which we describe next.

J.N. McNair et al.86



Exact data

A good discussion of methods for comparing groups
when the data are assumed to be exact is provided by
Klein and Moeschberger (2003). To keep our review
reasonably non-technical, we confine our presentation
to a brief summary of the basic ideas behind these tests
and a brief discussion of specific tests available in R
and SAS.

Suppose there are K $ 2 groups, and let
t1 , t2 , t3 , · · · , tD be the distinct event times
when data from all groups are combined. Let Oij be
the observed number of germination events at time ti

in group j, and let Eij be the corresponding expected
number of germination events under the null
hypothesis that the groups do not differ at any of the
event times. The most commonly used non-parametric
tests for comparing groups in time-to-event analysis
are based on statistics Zj(t

0) given by

Zjðt
0Þ ¼

XD

i¼1

wðtiÞðOij 2 EijÞ; ð10Þ

where j ¼ 1, 2, 3, . . ., K are the K groups being
compared, t0 is the largest time at which there is at least
one seed at risk in every group, and w(ti) is a weight
function that can be chosen to place equal, increasing
or decreasing emphasis on successive event times. The
actual test statistic Q that is used to assess the null
hypothesis is a quadratic form constructed from any
K 2 1 of the Zj(t

0) (the full set sums to zero, so only
K 2 1 of them are independent). Two facts about Q are
important. First, Q increases as the weighted differ-
ences w(ti)(Oij 2 Eij) between observed and expected
numbers of germination events increase. And second,
the distribution of Q in large samples is approximately
chi-squared with K 2 1 degrees of freedom, so the null
hypothesis will be rejected if Q is sufficiently large (for
additional details, see Klein and Moeschberger, 2003).

The various tests based on quadratic form Q differ
only in the choice of weight function w(t0i). The most
common tests and associated weight functions are
listed in Table 1. Note that the log-rank test weights all
event times equally, while all other tests except
Fleming–Harrington place heavier weight on early
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Figure 5. Kaplan–Meier estimates of survivor functions for the same data as in Fig. 4, computed by R function survfit() from
the survival package. The lower panels are the same as the upper panels, except that point-wise 95% confidence intervals (thin
lines) computed by survfit() have been added.
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event times (for which there are the most data) than on
late event times. The Fleming–Harrington test is very
flexible and is the only test capable of weighting late
event times more heavily than early event times. It is
convenient to refer to all these tests as generalized log-
rank tests. They are best viewed as tests for differences
in hazard rate, since the number of seeds at risk in each
group at each event time is regarded as fixed.

Methods for comparing the survival patterns for
two or more groups with data assumed to be exact (but
with ties allowed) are available in both R (function
survdiff() in package survival) and SAS
(procedure lifetest), and sample code for both
software programs is provided in the supplementary
material. At the time of this writing, R function
survdiff() provides only the Fleming–Harrington
test with b ¼ 0, which specializes to the log-rank test
when a ¼ 0 and is similar (but not identical) to the
Peto–Peto test when a ¼ 1. (Parameters a and b are
defined in Table 1.) SAS procedure lifetest
currently provides all the tests listed in Table 1.

Table 2 shows examples of results computed with
SAS procedure lifetest for collection dates 3 and 8
in the test data. For each collection date, results are
shown for tests of homogeneity of the three sites,
followed by results of the three possible pair-wise
tests. Note that, as suggested by Fig. 5, and regardless
of which test is employed, the three sites are
statistically significantly different from each other on
collection date 3, whereas sites 1 and 3 differ from site
2 but not from each other on collection date 8.

The issue of replicates

It will be noted that we did not mention experimental
replicates in connection with any of the non-
parametric methods discussed above. The reason is

that replication is not necessary for rigorous time-to-
event analysis and, indeed, is almost never used in
medical applications. If replicates are employed, the
data normally would be combined within treatments
when using non-parametric methods of time-to-event
analysis. An extension to semi-parametric and fully
parametric methods allows one to assess random
variation among replicates using so-called frailty
models (discussed below), but these models are
parametric and thus incompatible with non-para-
metric methods.

Semi-parametric time-to-event analysis of
germination data

The main benefit of semi-parametric methods of time-
to-event analysis is that they allow one to assess
potential effects of multiple covariates, including both
categorical and quantitative covariates, while still not
requiring one to assume a fully parametric form for the
survivor function. In medical applications of time-to-
event analysis, the semi-parametric Cox model ‘has
become by a wide margin the most used procedure for
modeling the relationship of covariates to a survival
or other censored outcome’ (Therneau and Grambsch,
2000, p. 39), and it is the only semi-parametric
approach that is well supported by standard statistical
software. For these reasons, the Cox model is the only
semi-parametric method we will discuss.

The Cox model is robust, flexible, extensible and
reasonably powerful; it can accommodate categorical
and quantitative covariates with fixed effects, it can
accommodate random effects and it requires few
parametric assumptions. We therefore think it has
great potential as a tool for statistical analysis of
germination data. We treat this method at greater
length than the others, because applying the Cox
model requires more steps, and the manner in which
results of the analysis are interpreted will be
unfamiliar to most biologists.

The Cox proportional hazards model

The Cox model is based on the hazard function rather
than the survivor function. The basic idea behind the
model is that the hazard function h(tjx) at time t, given
a vector x ¼ [xi] of covariates, can be expressed as the
product of a baseline hazard function that depends
only on time, and a modifier function that depends
only on the covariates. That is,

hðtjxÞ ¼ h0ðtÞcðb
TxÞ

¼ h0ðtÞ expðb1x1 þ b2x2 þ · · · þ bkxkÞ; ð11Þ

where h0(t) is the baseline hazard function (whose
form need not be specified; see below), xi is the i-th

Table 1. Common non-parametric tests for determining
whether two or more survival functions are statistically
significantly different (modified from Table 7.3 of Klein and
Moeschberger, 2003). The associated weight function is
shown for each test. Notation: ni is the total number of seeds
at risk immediately prior to distinct event time ti, Ŝ is
Kaplan–Meier estimator (equation 8) of the text, ~S is the
same except that product terms 1 2 di/ni are replaced by
1 2 di/(ni þ1) where di is the total number of observed
germination events at ti, and a and b are non-negative
parameters

Test Weight function, w(ti)

Log-rank 1.00
Gehan ni

Tarone–Ware
ffiffiffiffi
ni

p

Peto–Peto ~SðtiÞ

Modified Peto–Peto ~SðtiÞni=ðni þ 1Þ
Fleming–Harrington Ŝðti21Þ

a½1 2 Ŝðti21Þ�
b
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covariate, bi is the slope coefficient for the i-th
covariate, b and x are the vectors [bi] and [xi], and c

is a function that typically is taken to be the
exponential function, as in equation (11). An important
advantage of the Cox model over non-parametric
methods is that it permits quantitative covariates.
Categorical covariates are also permitted, and these are
coded using indicator (or ‘dummy’) variables, as in
ordinary least-squares regression.

The bi coefficients in equation (11) capture
information about the relationship between the
corresponding covariates and the hazard function.
One can see that this model has a feel similar to an
ordinary regression model. It is called semi-parametric
because no parametric assumptions are made about
the baseline hazard function, while the covariate
portion does depend on parameters. In this most basic
form of the Cox model, it is assumed that none of the bi

or xi depends on time, though this assumption can be
relaxed in extensions of the model (see Cox and Oakes,
1984; Therneau and Grambsch, 2000; Klein and
Moeschberger, 2003; Lawless, 2003).

Just as in ordinary regression, the goal is to estimate
the bi and then test to see if they are significantly
different from 0. Estimation of the bi is done through a
process called partial likelihood, which is similar to the
more traditional likelihood approaches seen in other
contexts. In its pure form, this process assumes strict
continuous observation and exact data and therefore
does not accommodate tied event times. However,
even in medical applications for which the Cox model
was originally developed, tied event times are very
common, and modifications of partial likelihood
estimation have therefore been developed to accom-
modate them. Standard statistical software typically
includes at least two such modifications: the Breslow
method and the Efron method (see Therneau and

Grambsch, 2000). For germination data, where ties are
created by the observation scheme, we recommend the
Efron method, which provides a good combination of
accuracy and computational speed.

A highly desirable feature of the Cox model is
that the bi have an easily understood interpretation.
They are related to what is commonly called the
hazard ratio. To understand the interpretation,
consider a categorical covariate x1 with two levels,
coded as 1 and 0. Suppose we have an estimate of
the corresponding slope coefficient b1, denoted by b̂1.
Then the hazard ratio (HR) for one group relative to
the other is

HR ¼
hðtjx1 ¼ 1Þ

hðtjx1 ¼ 0Þ
¼

h0ðtÞ exp ðb̂1�1Þ

h0ðtÞ exp ðb̂1�0Þ

¼ exp ðb̂1Þ: ð12Þ

Suppose that exp ðb̂1Þ ¼ 2. This means that the
hazard function for the first group is twice as large
as that for the second group. Therefore, a seed that
has not germinated by time t is twice as likely to
germinate in the next short interval of time if it
comes from group 1 than if it comes from group 2.

Note that the baseline hazard function cancels
from the hazard ratio in equation (12). The hazard ratio
therefore is constant with respect to time, which is why
the Cox model is called the proportional hazards
model. This is an important assumption of the Cox
model and should be checked. There are a variety of
ways to do so, including graphical methods as well as
formal tests (e.g. see Andersen et al., 1993; Therneau
and Grambsch, 2000; Klein and Moeschberger, 2003;
Lawless, 2003). We prefer graphical methods for
several reasons. Most importantly, because the
proportional hazards (PH) assumption will always

Table 2. Results of group (site) comparisons for seeds collected on dates 3 and 8, illustrating the six tests listed in Table 1. Tests
were performed with SAS procedure lifetest using the default parameter values for the Fleming–Harrington test (a ¼ b ¼ 1).
The three p values for each pairwise test are Holm-adjusted for multiple comparisons

Collection
date

All 3 sites Sites 1 and 2 Sites 2 and 3 Sites 1 and 3

Test x2 df P x2 df P x2 df p x2 df p

3 Log-rank 41.3592 2 ,0.0001 13.2885 1 0.0005 42.4257 1 ,0.0001 8.5253 1 0.0035
Gehan 36.7898 2 ,0.0001 12.9392 1 0.0006 38.0188 1 ,0.0001 6.4840 1 0.0109
Tarone–Ware 39.2321 2 ,0.0001 13.1408 1 0.0006 40.3715 1 ,0.0001 7.5672 1 0.0059
Peto–Peto 37.0767 2 ,0.0001 13.1667 1 0.0006 38.5764 1 ,0.0001 6.2002 1 0.0128
Modified Peto–Peto 37.0556 2 ,0.0001 13.1640 1 0.0006 38.5451 1 ,0.0001 6.1864 1 0.0129
Fleming–Harrington 36.7898 2 ,0.0001 12.9392 1 0.0006 38.0188 1 ,0.0001 6.4840 1 0.0109

8 Log-rank 87.2988 2 ,0.0001 62.6100 1 ,0.0001 67.6390 1 ,0.0001 0.6469 1 0.4212
Gehan 68.3086 2 ,0.0001 49.7664 1 ,0.0001 58.1806 1 ,0.0001 1.3391 1 0.2472
Tarone–Ware 78.7124 2 ,0.0001 56.4034 1 ,0.0001 63.6780 1 ,0.0001 1.1937 1 0.2746
Peto–Peto 64.5875 2 ,0.0001 47.5383 1 ,0.0001 55.3658 1 ,0.0001 1.3544 1 0.2445
Modified Peto–Peto 64.4563 2 ,0.0001 47.4295 1 ,0.0001 55.2718 1 ,0.0001 1.3578 1 0.2439
Fleming–Harrington 68.3086 2 ,0.0001 49.7664 1 ,0.0001 58.1806 1 ,0.0001 1.3391 1 0.2472
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be a simple approximation to a pattern that is more
complex in reality, it is virtually certain that this
assumption will be rejected by a formal test if the
sample size is sufficiently large, even if it provides a
reasonable approximation (as Klein and Moeschber-
ger, 2003, point out). On the other hand, a formal test
can easily accept the PH assumption if the sample size
is small, even if it provides a poor approximation,
since the null hypothesis is that the assumption is met.

A common graphical method of testing the PH
assumption, available in both R and SAS, is to plot
2logð2logðSðtjxÞÞÞ versus t or log(t) for different
values of covariate vector x (restricted to values of
t such that 0 , S(t) , 1), where S(t) is a life-table or
Kaplan–Meier survivor function. Under the PH
assumption, different covariate values will produce
functions with the same shape but different elevations
(see the supplementary material). The Cox model is
reasonably robust, so it is only necessary to worry
about clear departures from proportionality, as
indicated by decisive crossing of the functions for
two or more covariates in the diagnostic plot.

When clear violations of the PH assumption are
detected, various remedies are available in standard
statistical software that may resolve the problem and
still permit use of the Cox model. These include
converting covariates with non-proportional effects
into stratification factors or time-dependent covariates,
and dividing the time axis into discrete segments and
analysing data for one or more of the segments
separately (see Therneau and Grambsch, 2000).

In applications of the Cox model, there typically
will be several covariates that are viewed as potentially
important prior to analysing the data. But how do
we rigorously assess the actual importance of these
covariates? In other words, how do we determine
which covariates should be included in the Cox model
and which should be excluded?

We suggest a model-building procedure similar
to ones employed with ordinary multivariable
regression models. As an initial exploratory technique,
we suggest using a non-parametric method (e.g.
Kaplan–Meier) to estimate and plot survivor functions
for different values of the covariates, as shown in Figs 4
and 5 for three study sites and two collection dates in
the Japanese knotweed data. Next, the PH assumption
should be assessed for different values of the
covariates, and any remedies required by clear
violations should be applied. An example for the
Japanese knotweed test data is shown in Fig. 6, where
2logð2logðSðtjxÞÞÞ versus log(t) is plotted for different
study sites (left panel) and for early versus late
collection dates (right panel), based on Kaplan–Meier
survivor functions. These plots show no evidence of
decisive crossing of the transformed survivor func-
tions, so the PH assumption is plausible for all
covariates. Potential multicollinearity of the covariates

should also be assessed in the initial phase of analysis,
using the same methods (e.g. variance inflation factor)
that are used in standard multiple regression analysis
(Ryan, 1997; Draper and Smith, 1998; Montgomery
et al., 2001; Belsley et al., 2004; Kutner et al., 2004).

For the model-building process, categorical covariates
are coded using indicator variables, while quantitative
covariates are used unchanged. For example, in the
Japanese knotweed data, study site is categorical with
three categories, so we may define two indicator
variables, x1 and x2, as follows:

x1 ¼
1; if site ¼ Friends

0; otherwise:

(
x2 ¼

1; if site ¼ RisingSun

0; otherwise:

(

ð13Þ

(Note that x1 ¼ x2 ¼ 0 implies that site ¼ Carroll.)
Collection date is a quantitative variable and therefore
can be inserted in the Cox model as a single covariate,
x3. Model building begins by putting one covariate at a
time into the Cox model and checking the reported
p value for the null hypothesis that bi ¼ 0. Covariates
for which p is sufficiently small (e.g. p , 0.05) are
candidates for use in building up a multivariable
model. This is done in exactly the same manner as in
ordinary multivariable regression, using an automatic
selection procedure (though we do not advocate using
these by themselves), the Akaike Information Criterion
(AIC), p values and so forth. Interaction terms can also
be added to the model, provided there is a meaningful
basis for them. Ultimately, one arrives at a Cox model
that may have multiple covariates in it, and the hazard
ratios can be interpreted.

For the Japanese knotweed test data, a forward-
selection procedure based on p values produces a final
Cox model that includes all three covariates (x1, x2, x3)
but no pair-wise interactions. Table 3 summarizes the
model, including the estimated values of coefficients
b1, b2 and b3. The hazard function has the form

hðtjxÞ ¼ h0ðtÞexpð21:276x1 þ 0:144x2 þ 0:330x3Þ;

ð14Þ

where covariates x1 and x2 are indicator variables for
study sites Friends and Rising Sun, and x3 is collection
date.

We illustrate interpretation of this model by
considering the effect of study site Friends. (A
complete interpretation of the model is provided in
the supplementary material.) To assess the effect of
study site Friends on germination time while control-
ling for (or removing) effects of collection date, we
consider the ratio of the hazard function with x1 ¼ 1,
x2 ¼ 0 and x3 taking on any admissible value (in the
numerator), to the hazard function with x1 ¼ x2 ¼ 0
and x3 constrained to the same value as in the
numerator (in the denominator). The resulting hazard
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ratio is

HR ¼ expð21:276Þ ¼ 0:28: ð15Þ

Choosing x1 ¼ 1 and x2 ¼ 0 for any x3 implies that the
numerator applies to the Friends site for any chosen
collection date, while choosing x1 ¼ 0 and x2 ¼ 0 with
the same value of x3 implies that the denominator
applies to the Carroll site for the same collection date.
Thus, the hazard ratio in equation (15) indicates that
for any given collection date, seeds from the Friends
site have a hazard function for germination that is 0.28
times (28%) as large as the hazard function for seeds
from the Carroll site. This shows that the slope
coefficient for Friends implicitly specifies the effect of
Friends relative to Carroll. Recalling equation (4), this
result indicates that for any given collection date, the
survivor function for seeds from Friends will be
greater than the survivor function for seeds from
Carroll, and therefore seeds from Friends will tend to
germinate later than seeds from Carroll.

Both R and SAS include dedicated modules for
implementing the Cox model. The main function in R
is coxph() in the survival package; the main
procedure in SAS is phreg. Code examples for R and
SAS are provided in the supplementary material,
along with an example illustrating all the steps in
building a multivariate Cox model for the Japanese
knotweed test data.

Including random effects

The non-parametric and semi-parametric methods we
have considered until now assume that covariates
have fixed effects. But just as in ordinary least-squares
regression, it is often desirable to include a random
effect in the Cox model. For reasons that are somewhat
arcane, random effects are called frailty effects in time-
to-event analysis.

The most common situation in germination studies
where inclusion of a frailty effect may be desirable is
where there are subgroups within treatment groups,
such that seeds within a subgroup have approximately
the same hazard function while seeds in different
subgroups of a treatment group may have slightly
different hazard functions. An example is experiments
with replicates, where conditions experienced by seeds
in the same replicate (e.g. the same Petri dish) may
be more similar than those experienced by seeds in
different replicates, resulting in random differences in
germination properties among replicates. Another
example is experiments in which the subgroups within
treatment groups consist of seeds from the same
individual plant, which might be more similar than
seeds from different individual plants. This type of
frailty is often called shared frailty, because all
individuals in the same subgroup share the same
level of frailty.

5 10 15 20 5 10 15 20

0

1

2

3

4

t (days) t (days)

–l
og

(–
lo

g(
S

(t
))

)
Site 2 

Site 3 

Site 1 

0

1

2

3

4

–l
og

(–
lo

g(
S

(t
))

)

Early

Late

Figure 6. Diagnostic plots for assessing the proportional-hazards assumption of the Cox model. Both panels show plots of
2logð2logðSðtjxÞÞÞ versus t, with t on a logarithmic scale. The left panel shows Kaplan–Meier curves for the three study sites,
with data for all eight collection dates combined. The right panel shows curves for early and late collection dates (dates 1–4 and
5–8), with data for all sites combined.

Table 3. Summary table of the final Cox model for the Japanese knotweed test data,
as produced by R function coxph() in package survival. SE denotes the
standard error

Covariate, xi Coefficient, bi exp(bi) SE of bi z p

x1 (Friends) 21.276 0.279 0.0784 216.27 ,0.00001
x2 (Rising Sun) 0.144 1.154 0.0610 2.36 0.01847
x3 (Collection Date) 0.330 1.391 0.0126 26.18 ,0.00001
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The most common method of including frailty in
the Cox model is the same, regardless of the number of
covariates. In the case of shared frailty with a single
quantitative covariate, the Cox model for the i-th
subgroup can be written as

hðtjx;aiÞ ¼ aih0ðtÞexpðbxÞ; ð16Þ

where ai is the (random, unobserved) level of the
frailty for the i-th subgroup. We assume that ai is
sampled from some probability distribution but is
constant over time.

Unlike the case in ordinary least-squares
regression, the frailty effect is assumed to be multi-
plicative rather than additive, as equation (16) shows.
This means that among individuals with the same
value of covariate x, those in subgroups with ai . 1 are
at increased risk of experiencing the event relative to
those in subgroups with ai , 1. We therefore choose a
distribution for the frailty effect that has a mean of 1
rather than 0, so that ai ¼ 1 corresponds to ‘average
frailty’. The most common choice is a gamma
distribution, though any distribution defined on
(0, 1) and having mean 1 can be used if it is supported
by software.

Frailty levels for subgroups or individuals are
assumed to be sampled from a probability distribution
and therefore typically are not estimated. Instead, we
take the variance of the frailty distribution to be an
unknown parameter to be estimated, and we test the
null hypothesis that the variance parameter is equal to
zero. If the null hypothesis is not rejected, then there is
no strong evidence of variability in frailty levels and
the frailty effect is not retained in the model.

As when building a multivariable Cox model
without frailty, there is no single ‘best’ procedure for
building a multivariable model that addresses frailty.
We suggest the following modification of the above
procedure for models without frailty. In the initial
stage of model building, where fixed-effect covariates
are included one at a time, a frailty term should be
included along with each individual covariate. If the
frailty term is found to be statistically significant in any
of these cases, then there is evidence that it is
important and it should be included in all further
steps of the model-building process, regardless of the
subsequent p values reported for the frailty term. On
the other hand, if the frailty term is not found to be
significant with any of the individual covariates, then
it should no longer be considered in further steps of
the model-building process.

Extra care must be taken with interpretation of
hazard ratios in models that include a frailty effect. To
see this, consider a shared-frailty Cox model with a
single quantitative covariate x, and let ai denote the
frailty level for subgroup i (e.g. a replicate). Then the
hazard ratio HR for covariate value x þ 1 in subgroup i

relative to covariate value x in subgroup j is

HR ¼
h tjx þ 1;ai

� �
h tjx;aj

� � ¼
aih0ðtÞexpðbðx þ 1Þ

ajh0ðtÞexpðbxÞ

¼
ai

aj
expðbÞ: ð17Þ

Clearly the hazard ratio depends on the frailty effects
unless ai ¼ aj. But as noted above, we typically will
not have estimates of ai and aj. Therefore, we must
work with the hazard ratio by assuming ai ¼ aj (so the
frailty effects disappear) and interpret it as the effect of
a unit increase in the covariate based on two
subgroups with the same level of frailty.

At the time of this writing, SAS does not provide
built-in procedures or options for including frailty
terms in Cox models. In contrast, the process is simple
in R and is accomplished by using the frailty()
function to specify a frailty term in the model formula
of the coxph() function.

We will use the Japanese knotweed test data to
illustrate the process of building a multivariable Cox
model that includes a frailty term. (Additional details
and code examples can be found in the supplementary
material.) The Japanese knotweed data do not include
replicates, but for purposes of illustration, we created
artificial replicates as follows. Using an R script, we
randomly assigned the 100 seeds in each of the 24
treatment groups (8 collection dates £ 3 study sites) to
5 subgroups of 20 seeds each. These 120 subgroups (24
groups £ 5 subgroups per group) were then uniquely
labelled and treated as replicates.

Applying the modified model-building procedure
outlined above to these data, the first step is to include
the fixed-effect covariates in a Cox model one at a time,
while also including a gamma-distributed shared-
frailty term along with each individual fixed-effect
covariate. Each of the 120 replicates is assumed to be
subject to a separate gamma-distributed random effect
that applies to all 20 seeds. We find that all three
covariates have significant effects ( p , 0.01 in all three
cases), and that the frailty effect is highly significant
( p , 0.000001 in all three cases). We therefore include
the frailty term in all remaining steps of building the
model. We then build a multivariable Cox model in the
same manner as before. The final model is summar-
ized in Table 4. The main difference from the model
summarized in Table 3 is that the covariate represent-
ing the Rising Sun site is no longer included. Recall
that the germination pattern for this site is similar to
that at the Carroll Park site for later collection dates,
and that the site slope coefficients in the model
represent effects relative to Carroll Park. Thus, random
variation among replicates results in a loss of ability to
detect a difference between the Rising Sun and Carroll
Park sites.
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Summary and discussion

The various non-parametric and semi-parametric
methods we have reviewed are summarized in
Table 5. As can be seen by perusing this table, the
most appropriate method depends on the questions of
interest. If one is mainly interested in comparing
groups of seeds, then non-parametric methods are an
appropriate choice. In exchange for reduced statistical
power, these methods have the advantage of avoiding
any dependence on parametric assumptions. If one is
interested in assessing effects of quantitative covari-
ates on germination, such as temperature, duration of
seed storage or duration of stratification (and possibly
comparing groups, as well), then the semi-parametric
Cox model is appropriate. Semi-parametric methods
retain part of the advantage of non-parameteric
methods by avoiding dependence on a fully para-
metric germination – time distribution, but the
inclusion of covariates requires parametric regression-
like assumptions about the form and strength of their
effects. Fully parametric methods (not included in Table
5) are required only if one needs additional statistical
power to detect small effects or wishes to quantify the
shape of the survivor function in detail.

We have noted that data from germination
experiments typically have two properties that
differ from the norm in medical applications of time-
to-event analysis for which most of the modern
statistical methods were developed: a non-negligible
initial delay in the onset of germination and an
unknown mixture of germinable and non-germinable

seeds. Implications of these properties regarding
the validity or interpretation of the various methods
of time-to-event analysis vary, as we now discuss
briefly.

Neither of these properties of germination data
affects the validity of non-parametric methods. They
do, however, constrain the interpretation of any
significant between-group differences that are
detected, since the statistical methods do not indicate
whether the detected differences are due to differences
in initial delay, proportion of non-germinable seeds,
some other aspect of the survivor function’s shape or
some combination of these properties.

Presence of an unknown proportion of non-
germinable seeds does not affect the validity of the
Cox model (Maller and Zhou, 1996), but in the same
way as for non-parametric methods, it constrains the
interpretation of any statistically significant covariate
effects. The delay in onset of germination is
potentially a more serious problem. The PH assump-
tion cannot be strictly true in cases where the
germination delay differs among experimental treat-
ments. But as long as graphical assessment of the PH
assumption does not indicate a clear violation, the
Cox model will provide an acceptable approximation.
The Japanese knotweed example illustrates this point
well (see the supplementary material). If a clear
violation of the PH assumption is evident, one can
resolve the problem by simply removing the delay
from the recorded germination times for each
treatment before applying the Cox model. Otherwise,
the delay should be retained.

Table 4. Summary table of the final shared-frailty Cox model for the Japanese knotweed test
data, as produced by R function coxph() in package survival. SE denotes the standard error,
Chisq denotes chi-squared (x2), and df denotes degrees of freedom

Covariate, xi Coefficient, bi exp(bi) SE of bi Chisq df p

x1 (Friends) 21.395 0.248 0.1220 131 1 ,0.00001
x3 (Collection Date) 0.384 1.469 0.0262 216 1 ,0.00001
Frailty — — — 252 79.7 ,0.00001

Table 5. Summary of the major non-parametric and semi-parametric methods of time-to-event analysis supported by R and SAS

Statistical method Test type Data type Main uses

Estimating the survivor function
Life-table estimator NP Interval Estimate survivor function and point-wise confidence interval
Kaplan–Meier estimator NP Exact1 Estimate survivor function and point-wise confidence interval

Assessing fixed effects of categorical covariates (comparing groups)
Generalized log-rank tests NP Exact1 Homogeneity test for multiple groups, pair-wise comparisons
Cox model SP Exact1 Pair-wise comparisons based on hazard ratio

Assessing fixed effects of quantitative covariates
Cox model SP Exact1 Estimate and assess significance of regression-like effects on hazard rate

Assessing fixed and random effects with categorical and quantitative covariates
Cox model with frailty SP Exact1 Assess significance of random variation among subgroups

1

Ties are permitted; NP, non-parametric; SP, semi-parametric.
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In principle, neither the initial delay in onset
of germination nor the presence of an unknown
proportion of non-germinable seeds is problematic
for fully parametric methods. As in the non-linear
regression approach, these properties are represented
by model parameters whose values must be estimated.
But these properties are fatal problems if one wishes
to analyse germination data with built-in functions or
procedures of standard statistical software, because
each implies a distribution of germination time that is
not a member of the family of distributions permitted
by current software (i.e. distributions that are members
of the location-scale family for some differentiable and
invertible transformation of germination time, such
as log(T)). It is not difficult to construct appropriate
distributions that include an initial delay and an
unknown proportion of non-germinable seeds, but
because such distributions are not accommodated
by standard software, it is necessary to write custom
code in order to estimate model parameters, construct
confidence intervals and test hypotheses. Working
within a statistical programming environment such
as R makes these tasks reasonably straightforward,
but the technical details are beyond the scope of
this review.
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