Introduction to Human Osteology
Chapter 1: Crania

Roberta Hall
Kenneth Beals
Holm Neumann
Georg Neumann
Gwyn Madden

Revised in 1978, 1984, and 2008
Introduction to Osteology

Physical anthropologists study human biological variation in the past and present. They are not only interested in the physical aspect of the body but also how biology, culture and environment interact to produce variation. Part of this variation is found in the bones and teeth. Since these are the hardest parts of the body, they have the greatest chance of being found in the archaeological record. Thus they form the bulk of direct information about the biological course of human evolution.

Structure and Function of Bone

The shape of the skeleton is a reflection of the functions that it performs. Like the steel girders in a skyscraper, it provides a framework and support for the body. Vital organs (such as the brain) are protected by being enclosed in bone. Movement is accomplished by combination with the muscular and nervous system. The muscles attach to the bones and form a system of levers. As the muscles grow, they influence the shape of the skeleton. Most of the projections, nodules, and ridges that you will see were created by the muscles sculpturing areas for attachment. The skeleton is also responsible for the manufacture of blood cells and for the storage of various minerals so that the body can obtain them even if the diet is temporarily deficient.

Bony tissue is about 50% water and 50% solid matter. Most of the solid material is cartilage which has been hardened by the impregnation of inorganic salts, especially carbonates and lime phosphate. As one ages, the proportion of lime increases so that the bones become more brittle and break more easily.

In a living individual, the appearance of bones is very different from skeletonized remains. They are covered with a white fibrous membrane called the periosteum. Cartilage forms the cover around the joints. Muscle fibers interlace with the periosteal fibers to anchor both together. In a growing individual, the inner layer of the periosteum contains the bone forming cells call osteoblasts. Immediately beneath the periostium is a dense layer of compact bone. Under it lies the cancellous bone. It is much less dense and has the appearance of a spidery framework to give it maximum strength with minimum
weight. The extreme inside of the bone is the medullary cavity. It is surrounded by the endosteum, which is a condensed layer of marrow.

Microstructure of Bone

Under magnification the most notable features are concentric rings, holes, and spidery black regions. The latter dark areas called lacunae are the homes of the bone cells (osteocytes). The osteocytes are interconnected with blood vessels and nerves. These blood vessels and nerves run through the Haversian canals, which appear as holes in cross section. The light colored concentric rings are called lamellae. These represent the places of mineral deposit.

Anatomical Directions

A number of terms are used when studying and researching the human skeleton. It is important to memorize these terms as they will be necessary in placing remains in the anatomical position, siding, and general observation.

- Dorsal: Back side of a human, upper side of an animal
- Ventral: Front side of a human, belly side of an animal
- Lateral: The sides, right and left
- Median: The middle
- Peripheral: The part nearest the surface
- Proximal: Near the main mass of the body
- Distal: Away from the main mass of the body
- Medial: Toward the middle
- Cephalic: Toward the head
- Caudal: Toward the tail
- Superior: Toward the head
- Inferior: Toward the feet
A few terms are also important to memorize regarding the movement that individual bones/muscles are involved in.

- **Flexion**: Bending of a limb
- **Extension**: Straightening of a limb
- **Abduction**: Pulling a limb away from midline
- **Adduction**: Pulling a limb toward midline
- **Rotation**: Movement of a limb around its own axis

Several anatomical features have specific technical terms that are used to describe them. Familiarize yourself with the list provided below.

- **Diaphysis**: Shaft of a bone
- **Epiphysis**: Ends or extremities of a bone, where growth takes place
- **Metaphysis**: Line of junction between the diaphysis and epiphysis
- **Tuberosity**: A rounded eminence or bulging of the bone
- **Process**: Marked projection, articulating bone projection
- **Spine**: Slender or pointed projection
- **Tubercle**: Small nodule
- **Linea**: A slight ridge of bone
- **Condyle**: An enlargement bearing an articular surface
- **Foramen**: Short perforation
- **Canal**: Long perforation
- **Aperture**: Opening on surface or space within a bone
- **Meatus**: Outlet
- **Trochanter**: A large prominence for attachment of rotator muscles
- **Sulcus**: A groove
- **Sinus**: A cavity in bone lined with mucous membrane
- **Lip**: Margin of a groove, crest or line
- **Head**: A rounded, smooth eminence for articulation
- **Fossa**: A furrow or depression
- **Ramus**: A branch of bone
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphysis</td>
<td>An almost immovable joint; the line of junction between bones</td>
</tr>
<tr>
<td>Suture</td>
<td>Seam, line of union in an immovable articulation</td>
</tr>
<tr>
<td>Crest</td>
<td>Prominent ridge</td>
</tr>
</tbody>
</table>
The Skull

Handling a Skull
The skulls that you handle while learning osteology were once living humans like yourself, therefore they are deserving of your respect. Handle each skull with great care, using both hands to pick it up. Always place the skull on a bean bag or other padding when putting it down. Do not place your fingers into the eye orbits, nasal cavity, or foramen magnum as these are fragile areas and bone is easily broken. If a cranium has an attached mandible, be extremely gentle when opening and closing the jaw to prevent breakage of the teeth. Be very careful with your pens and pencils; as the skulls used in class will be used by others and it is necessary to keep them as pristine as possible. When taking measurements, very gently place the calipers on the skull; when held too tight on the skull the calipers can scratch the bone.

General Terminology
Skull Skeleton of the head, face, and lower jaw.
Cranium A skull lacking its lower jaw.
Calvarium A skull lacking the lower jaw and face.
Calotte A braincase or skull cap.

Bones of the skull
The human skull is comprised of a total of 22 separate bones (excluding the ear ossicles and hyoid bone).

The cranial vault includes the following 8 bones:

1. Frontal 4. Temporals (2)
2. Parietals (2) 5. Ethmoid
3. Occipital 6. Sphenoid
Skull. Anterior view
Skull. Lateral view
Skull. Inferior view
Skull. Superior view
The face includes the following 14 bones:

1. Lacrimals (2)
2. Zygomatics (2)
3. Maxillae (2)
4. Mandible
5. Palatines (2)
6. Inferior nasal conchae (2)
7. Nasals (2)
8. Vomer

Flat Bones of the Skull: Frontal, Parietal, Occipital, and Temporal

The flat bones of the skull making up the neurocranium or braincase have three basic structural layers. These comprise the outer and inner layers of compact bone and an intervening layer of spongy, cancellous bone called diploe.

The inner and outer layers tend to run parallel to one another and the bones are somewhat rounded with the inner layer being concave. The areas of bone thickening or ridging generally reveal the points of muscle or ligamentous attachment. Each of the flat bones of the skull will now be reviewed individually. You should familiarize yourself with each of their distinguishing morphological features.

1. Frontal Bone

The frontal is a single bone which is comprised of two main parts, a squamous or flat portion which forms the forehead and articulates with the parietal bones and an orbital portion which provides a roof for the two orbits. The supraorbital or brow ridges are bony ridges just above the orbits. These bony ridges are quite well developed in the skulls of some forms of fossil man, but are less pronounced in modern man. The supraorbital notches or foramina are grooves or openings for the passage of neurovascular structures.

A trace of the metopic or frontal suture may be noted in the midsagittal region of this bone. The glabella is a roughened region or a bulging prominence on the frontal bone above the nasal root at about the level of the supraorbital ridges. The frontal eminences are paired prominences in the anterolateral regions of the squamous portion of the frontal bone. These prominences may vary in size and degree of development in
individuals and are also a characteristic of sexual dimorphism. The median crest in the midline of the bone represents an area of muscle attachment and shows variability reflecting muscular robusticity of the individual. The paired temporal lines ascend superiorly and posteriorly from the zygomatic processes and constitute the superior-anterior margin of the temporal fossae. Endocranially, note the frontal crest.

2. Parietal Bones

The parietals are paired bones which form the roof and sides of the calvaria. They articulate with one another medially at the sagittal suture and anteriorly with the frontal bone at the coronal suture. The coronal and sagittal suture intersect at a point called bregma. The bregmatic fontanelle or “anterior soft spot” exists here in infancy. Posteriorly the parietals articulate with the occipital bone at the lambdoidal suture and laterally at its squamous margin with the temporal bones. It should be noted that the lambdoidal suture has a beveled-concave surface on the parietal bones.

The temporal lines continue from the frontal bone onto the parietals, representing areas of muscle attachment. A slight elevation may be present along the sagittal suture, but tends to be poorly developed in modern man. The parietal foramina are present near the midline posteriorly and transmit veins to the sagittal sinus interiorly. Parietal foramina are a non-metric trait and may be present or absent on one or both sides. Additionally, size of the foramina should be noted as enlarged foramina may suggest heredity. Bilateral parietal eminences are prominences located postero-laterally on the parietal bones; they may or may not be present.

On the interior aspect of the parietal bones, depressions are present that are the result of the mid-meningeal arteries. To side the bone, hold the parietal in anatomical position and note that the arteries point superior and posterior; this will aid in identification of fragmentary finds. Also note the transverse sulcus or linear depression located at the inferior-posterior angle of the bone.
3. Temporal Bones

Each of these paired bones can be subdivided anatomically into a thin squamous portion which articulates with the parietal bone, a mastoid portion containing the mastoid sinuses and process, and a heavy-dense petrosal portion that contains the inner ear structure. The external auditory meatus or outer ear canal is readily apparent laterally. Projecting forward from each squama is the zygomatic process which articulates with the temporal process of the zygomatic bone. The zygomatic arch serves as an attachment for some of the muscles of mastication and is comprised of the zygomatic bone and the zygomatic process of the frontal, temporal and maxillary bones. In modern people this arch is delicate and relatively small in size and proportion.

The tympanic part and plate are located in the area surrounding the external auditory meatus. Note the mastoid crest located superior to the meatus.

Prominent, paired styloid processes may be seen projecting inferiorly and anteriorly directly below the mandibular fossae, which are also called the glenoid fossae. The condyles of the mandible articulate with the temporal bone at these fossae. The posterior margin of the mandibular fossa is delimited by a small projection known as the postglenoid process. For siding, position the mastoid process to point inferior with the zygomatic arch pointing anterior. The external auditory meatus is lateral and the petrous process is medial.

4. Occipital Bone

A single occipital bone forms the posterior-inferior aspect of the neurocranium and is divided anatomically into a posterior-superior flat squamous part, and anteriorly projecting inferior basilar part and paired lateral parts or jugular processes. The occipital bone articulates with the two parietal bones at the lambdoid suture. Small islands of bone within this suture are called wormian bones. Lambda is a term used to designate the intersection of the lambdoid and sagittal sutures. Occasionally a transverse suture is found which separates the apex of the squamous portion from the rest of the bone. The separate apical portion is then called an Inca bone; a trait found at an especially high frequency in Peruvian peoples. The Inca bone may be singular, bipartite, or tripartite.
The large opening in the base of the occipital bone is the foramen magnum which permits the emergence of the spinal cord from the skull. The paired, kidney-shaped articular surfaces, called the occipital condyles, are situated anterior and lateral to the foramen magnum. These condyles articulate with the atlas or first cervical vertebra.

Superior to the foramen magnum and in the midsagittal plane is the external occipital protuberance. This process tends to be more prominent in males and reflects muscular robusticity. Extending downward from this projection is the external occipital crest, also called the median nuchal line. Projecting laterally from the external occipital protuberance are the supreme and superior nuchal lines. A pronounced ridge or torus defined by the superior nuchal lines is uncommon in moderns but may be quite pronounced in some forms of fossil hominids. Below the superior nuchal lines the inferior nuchal lines extend laterally. The nuchal musculature has a strong attachment to these ridges of bone and they are therefore usually more pronounced in males; in many modern skulls of bone sexes the lines are not sharply defined and may not be discernible.

The pharyngeal tubercle and fossa are two potential non-metric traits found on the basilar part of the occipital bone. Small foramina, the condylar and hypoglossal canals, allow the passage of neurovascular structures (hypoglossal nerve, etc) through the occipital bone. The condylar canal may be present, absent, or only a fossa on each side. The hypoglossal canal may be divided (internally or externally) or partially divided on each side.

Facial Bones, Sphenoid, Ethmoid, Ear Ossicles, and Hyoid

1. Zygomatic Bones

These paired quadrangularly shaped “cheek bones” are distinguished by their four separate processes. Three of the processes, the temporal, frontal, and maxillary are named according to their articulations. The fourth process which projects posteriorly from the frontal process is named the marginal process. The temporal process of the zygomatic bone and the zygomatic process of the temporal bone form the slender inferior-lateral portion of the zygomatic arches.
Occasionally, a suture separates the lower portion of the zygomatic. When present the inferior aspect of the bipartite zygomatic is termed the Os japonicum.

For siding, the concave surface is anterior, the masseter attachment is inferior, the orbital rim is smooth and rounded, and the sharp zygomatic process points posteriorly, and the long jagged articulation is medial.

2. Maxillary Bones

The paired maxillae contain the upper row of teeth, enclose the nasal cavity, form a portion of the orbital floors and form the anterior roof of the mouth. These bones form the major portion of the upper facial skeleton and, with the exception of the mandible, articulate with all of the other facial bones. The bodies of the maxillae contain the large maxillary sinuses which may be seen on a disarticulated skull specimen.

Four processes extend from the body of the maxillary bone. These comprise the zygomatic processes articulating with the zygomatic bone, the tooth bearing alveolar process (the alveolar arch is formed through the union of the two alveolar processes), the frontal process lateral to the nasal bone and superior to the nasal cavity, and the palatine processes which together form the greater portion of the hard palate. The infraorbital foramen located inferior to the orbit transmits cutaneous nerves to the face. Infraorbital sutures run between the infraorbital foramina and inferior orbital margins. Presence of these sutures is variable, present or absent on either side. The anterior nasal spine, subnasal groove, and nasal sill are all present at the anterior-inferior margin of the nasal cavity.

For siding, the dental arcade is inferior and sharp outline of the nasal aperture medial.

3. Nasal Bones

The thin paired nasal bones form the bridge of the nose and roof of the nasal cavity. They may vary considerably in size and configuration, shape of the suture should always be noted.
4. Inferior Nasal Conchae

These paired structures comprise separate hook-like projections of bone which extend down from the lateral walls of the nasal cavity. The inferior nasal conchae articulate with the ethmoid, lacrimals, maxillae, and palatine bones throughout their extensive attachments.

5. Lacrimal Bones

The paired lacrimal bones are rectangular-shaped, small plates of bone located in the anterior medial aspect of the orbits. As the name implies these bones seat the lacrimal or tear ducts. A fine ridge of bone running superiorly-inferiorly through the central portion of this bone is called the posterior lacrimal crest. The anterior lacrimal crest is a portion of the maxillary bone.

6. Vomer

This single bone is a thin plough-shaped structure which forms the inferior-posterior aspects of the nasal septum. The vomer divides the nasal cavity in the midsagittal plane. Frequently this bone is deviated to one side when viewed anteriorly. The small lateral projections superiorly and posteriorly are the alae or wings of the vomer.

7. Palatine Bones

The paired palatine bones form the posterior portion of the hard palate, a part of the floor and lateral walls of the nasal cavity and a portion of the orbital floor. Characteristic anatomic landmarks are the small, posteriorly projecting posterior nasal spine and the elevated anteriorly projecting bony ridge in the midline of the palate, called the palatine torus.

8. Mandible

The mandible or lower jaw is a large, strong, that articulates with the cranium and works in conjunction with the maxillae to masticate food. Anatomically it can be divided into a parabolically curved body containing the lower teeth and two vertically extending
rami. The ramus on each side is composed of two distinct processes separated by the mandibular notch. The most anterior is the coronoid process which gives attachment to the muscles of mastication. Posteriorly, the condyloid processes project superiorly to articulate with the mandibular fossae of the temporal bone. At the posterior and inferior of the mandible are located the gonial angles where the body and rami join. A mandibular symphysis is apparent during infancy, seen at midline on the anterior aspect of the mandibular body. The two halves of the mandible fuse by six months of age.

Projecting out below the symphysis is the mental tubercle or eminence which is an anatomic structure unique to man. The alveolar part contains the teeth and the paired mental foramina are found perforating the body of the mandible, located on the anterior aspect of the body and lateral to the mental eminence.

When viewing the posterior aspect of the mandible, several distinctive features can be seen. The mandibular foramen is located posterior and superior on the internal aspect of the mandible. Anterior to the mandibular foramen is the lingula, represented by a small tongue of bone. Rough, ridge-like attachments for the pterygoid muscles are found in the region of the inner aspect of the gonial angles. The mylohyoid ridge courses from posterior to anterior on the inner aspect of the mandibular body. Finally, the mental spine can be seen projecting posteriorly from the region of the symphysis where the two halves of the mandible articulate anteriorly.

9. Sphenoid

The single sphenoid bone is situated deep in the facial skeleton. This bone separates the face from the neurocranium and provides a seat called the sella turcica (or Turkish saddle) for the pituitary gland. The median or central part of this bone is called the body of the sphenoid. Extending laterally from the body are two sets of wings. The small wings form the posterior portions of the orbits while the large wings form the inferior and lateral portions of the orbits. Note that the lateral surface of the sphenoid also makes up part of the cranial vault, located just anterior to the temporal bones. On the inferior aspect of the sphenoid are projecting pointing downward called the pteryoid processes. These processes comprise lateral and medial plates; the most inferior “hook”
Mandible. Top anterior view, middle posterior view, bottom lateral view.
of the medial plate is called the hamulus of the pterygoid. Additionally, the medial plate comprises part of the nasal walls.

Perforating the root of the large wing inferiorly are three foramina. These foramina are the foramen rotundum (for the maxillary nerve), the foramen ovale (for the mandibular nerve), and the foramen spinosum (for the middle meningeal artery). The foramen rotundum in the most medial and anterior of the three; ovale is the second most medial (and oval in shape), and the spinosum is the most lateral (and round in shape). The optic foramen (for the optic nerve) perforates the body of the sphenoid. Between the large and small wings the large superior orbital fissures are apparent.

10. Ethmoid

This single bone is essentially spongy in character and is located at the anterior aspect of the base of the neurocranium, between the two orbits. The ethmoid can be divided into four main parts: the perpendicular plate, horizontal plate, and two lateral masses. The perpendicular plate forms the upper portion of the nasal septum while the horizontal or cribriform plate is situated at a right angle to the perpendicular plate and the roof of the nasal cavity. Many small perforations pass through the cribriform plate which allows passage for branches of the olfactory (smell) nerve. An extension called the crista galli (cocks comb) is located centrally on the superior aspect of the cribriform plate. The paired lateral masses contain the conchae and the ethmoidal sinuses, as well as making up the postero-medial portion of the orbits.

11. Ear Ossicles

The three small bones of the middle ear are frequently lost during the excavation process of archaeological remains. These three bones are the incus (anvil in shape), malleus (hammer like in shape), and the stapes (stirrup shaped).

12. Hyoid

This single horseshoe-shaped bone floats freely in the soft tissue of the neck just above the larynx. The hyoid bone has no bony articulations but gives support and attachment to the stylohyoid ligaments and pharyngeal musculature. This bone is divided
anatomically into a central body and paired major and minor cornua or horns. If found broken in the area of the greater horns, strangulation or hanging are suggested.

Cranial Sutures

Sutures are the fine, irregular lines of junction between articulating cranial bones. The bones of the skull originate through intramembranous or endochondral bone formation. Ossification gradually progresses until only the suture lines with their thin layer of interposing fibrous tissue remain. Fontanels or “soft spots” (membranous areas) in an infant represent areas where ossification of the cranial bones has not yet occurred.

Throughout adult life the sutures gradually undergo closure and are bridged by bone union. The rates of closure are fairly constant in time of occurrence and sequence, though the age ranges are broad. Still, the determination of suture closure is one of the basic methods of assessing skeletal age in adult specimens. There are many regionally defined sutures in the skull, as follows:

1. Coronal suture, runs laterally across the top of the skull separating the frontal and parietal bones.
2. Sagittal suture, runs longitudinally across the skull from the occipital to the frontal bone and separates the parietal bones from one another.
3. Lambdoid suture, is an inverted “V” in shape and separates the occipital bone from the parietals. This suture terminates laterally on each side at the temporal bone.
4. Squamosal sutures, roughly semicircular in configuration and separate the parietal bones from the superior portion of the temporal bones. These sutures extend from the sphenoid bone anteriorly to the supra-mastoid crest posteriorly.
5. Parieto-mastoid sutures, continuous posteriorly with the squamosal suture, separating the parietal bone from the mastoid region of the temporal bone.
6. Occipito-mastoid sutures, separate the occipital bones from the mastoid regions of the temporal bones.
7. Spheno-temporal sutures, separate the sphenoid and temporal bones.
8. Spheno-occipital suture (also called the basilar suture), separates the sphenoid and occipital bones.
9. Spheno-parietal sutures, separates the sphenoid and parietal bones.
10. Spheno-frontal sutures, separates the sphenoid and frontal bones.
11. Fronto-nasal suture, separates the frontal and nasal bones.
12. Internasal suture, separates the two nasal bones from one another.
13. Fronto-zygomatic suture, separates the frontal and zygomatic bones.

Non-Metric Traits of the Skull

Cranium

Apical bone
Accessory bone located at the intersection of the sagittal and lambdoidal sutures (lambda).

Asterionic bone
Accessory bone located at the intersections of the lambdoidal and squamosal sutures.

Auditory exostosis
Bony nodule located in the external auditory meatus. Note if the nodule occludes ¼, ½, ¾, or the entire meatus.

Bipartite occipital condyles
Division of the occipital condyles in the area of fusion between the basilar aspect of the occipital and the squamous portion of the occipital.

Bregma bone
Accessory bone located at the intersection of the coronal and sagittal sutures (bregma).

Condylar canal
Foramen or canal located posterior to the occipital condyles. Note if the canal is complete or partial. To measure completeness, use a thin pipe cleaner and gently try to insert it into the canal.
Divided hypoglossal canal
Foramen or canal located at the anterior end of the occipital condyles (beneath the condyles). Note if the canal is divided into two canals; there may also be a partial division. When noting division, observe if the bony spicule is within the canal or on the lateral or medial aspects.

Epiteric bone
Accessory bone located at the intersection of the frontal, parietal, sphenoid, and temporal bones.

Foramen ovale
Located on the inferior aspect of each of the greater wings; they are the only holes (foramina) of the sphenoid that are oval in shape.

Foramen rotundum
Most anterior and medial of the sphenoidal foramina; circular holes in each of the cranial fossae of the greater wings.

Foramen spinosum
Located on the inferior aspect of each of the greater wings, these foramina are the most lateral foramina on the sphenoid and generally the smallest of the circular holes in the sphenoid.

Frontal grooves
Supraorbital, shallow grooves which are tracks for vessels and nerves. May be seen running into the supraorbital notch/foramen. May or may not be present.

Inca bone (bipartite, tripartite)
A transverse suture divided the squamous portion of the occipital, creating an accessory bone. The Inca bone is seen at a higher frequency among South American populations. The Inca bone may be singular, bipartite or tripartite. If bipartite an vertical suture will separate the bone into two pieces, if tripartite two vertical sutures will separate the bone into three pieces.
<table>
<thead>
<tr>
<th>Infraorbital foramen</th>
<th>Additional foramen located medially, inferior to the lower margin of the orbit on the maxillary bone. One is always present.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraorbital suture</td>
<td>Accessory suture located medially, inferior to the lower margin of the orbit on the maxillary bone. Generally runs between the margin of the orbit and the infraorbital foramen. May be either complete or partial.</td>
</tr>
<tr>
<td>Inion spike</td>
<td>Ridge or inferiorly projecting hook of bone in the region of the external occipital protuberance; most often seen in males.</td>
</tr>
<tr>
<td>Marginal tubercle</td>
<td>A protuberance in the region of the masseteric muscle attachment on the inferior margin of the zygomas.</td>
</tr>
<tr>
<td>Mastoid foramen</td>
<td>Single or multiple foramina located within the occipitomastoid suture, or near the suture on either the temporal or occipital. Number and location should always be noted during observation.</td>
</tr>
<tr>
<td>Maxillary torus</td>
<td>Bulging protuberance located on the lingual margins of the alveoli near the maxillary molars. Generally, maxillary tori are associated with culture groups that use their teeth as tools.</td>
</tr>
<tr>
<td>Metopic suture</td>
<td>Divides the frontal bone, located at midline. Generally closes by eight years of age. If present, it should be scored as complete or partial. (Mann and Hunt 2005)</td>
</tr>
<tr>
<td>Os Japonicum</td>
<td>Additional suture dividing each zygomatic into two pieces.</td>
</tr>
<tr>
<td>Ossicles or wormian bones</td>
<td>Aberrant growth patterns may be manifested by sutural complexities represented by small islands of bone.</td>
</tr>
</tbody>
</table>
Pacchionian pits
Pits with sharply defined margins located on the frontal and parietals, vary in size from small to large. (Mann and Hunt 2005)

Palatine torus
Bulging protuberance located on the along the lingual aspect of the palatine suture. Generally, a palatine torus is associated with culture groups that use their teeth as tools.

Parietal foramen
Single foramen located on the posterior aspect of the parietal along the sagittal suture near obelion. Each parietal may display a foramen, although the foramen may be either absent or within the suture itself. Very large or misshapen parietal foramen are sometimes observed, and should be recorded.

Parietal notch bone
Extrasutural bone located in the squamosal suture; anterior to asterion. May be unilateral, bilateral, or absent.

Pharyngeal tubercle/fossa
Round depression or smooth projection located in the center of the basilar aspect of the occipital, on the ectocranial surface.

Pterygo-alar bridge/spur
Bridge or spicule of bone originating either on the lateral pterygoid lamina or on the lateral aspect of the foramen ovale.

Pterygo-spinous bridge/spur
Bridge or spicule of bone origination either on the lateral pterygoid lamina or on the medial aspect of the foramen ovale.

Supraorbital foramen
Complete foramina located along the superior margins of the orbits (anterior frontal). Completeness can be measured by passing a thin pipe cleaner through the foramina. Number should be observed for each orbit.
<table>
<thead>
<tr>
<th>Supraorbital notch</th>
<th>Notches located along the superior margins of the orbits (anterior frontal). Number should be observed for each orbit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trochlear spine</td>
<td>Small, sharply-curved bony projection within the orbit; located on the medial aspect of the frontal within the orbit. May also be represented by a notch without the bony projection. Trait may be unilateral, bilateral, or absent (trait is rare). (Mann and Hunt 2005)</td>
</tr>
<tr>
<td>Tympanic dehiscence</td>
<td>Hole perforating the tympanic plate or the temporal bone; located on the inferior aspect of the external auditory meatus. Size should be observed if present. May be bilateral, although presence of the trait is rare. (Mann and Hunt 2005)</td>
</tr>
<tr>
<td>Zygomatico-facial foramen</td>
<td>Single or multiple foramen located on the convex surface of the zygomatics, inferior to the orbital margin. This trait may also be absent; number and size (large or small) should be noted during observation.</td>
</tr>
</tbody>
</table>

Mandibular

<table>
<thead>
<tr>
<th>Mandibular torus</th>
<th>Bulging protuberance located on the lingual margins of the alveoli near the mandibular molars. Generally, mandibular tori are associated with culture groups that use their teeth as tools.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental Foramen</td>
<td>Foramina located on each side of the labial aspect of the mandible inferior to the second premolar. Usually singular, but may be multiple.</td>
</tr>
<tr>
<td>Mylohyoid bridge</td>
<td>Bony bridge crossing the mylohyoid sulcus; may be partial or complete.</td>
</tr>
</tbody>
</table>
Articulations of the Cranial Bones with One Another

<table>
<thead>
<tr>
<th>Sphenoid</th>
<th>Lacrimal</th>
<th>Vomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomer</td>
<td>Frontal</td>
<td>Sphenoid</td>
</tr>
<tr>
<td>Ethmoid</td>
<td>Ethmoid</td>
<td>Ethmoid</td>
</tr>
<tr>
<td>Frontal</td>
<td>Inferior nasal concha</td>
<td>Palatines</td>
</tr>
<tr>
<td>Occipital</td>
<td>Maxilla</td>
<td>Maxilla</td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygomatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palatine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occipital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphenoid</td>
<td>Maxilla</td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>Nasal</td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphenoid</td>
<td>Mandible</td>
<td>Ethmoid</td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td>Maxilla</td>
</tr>
<tr>
<td>Ethmoid</td>
<td></td>
<td>Palatine</td>
</tr>
<tr>
<td>Lacrimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal</td>
<td>Frontal</td>
<td>Nasal</td>
</tr>
<tr>
<td>Zygomatic</td>
<td>Maxilla</td>
<td>Maxilla</td>
</tr>
<tr>
<td>Maxilla</td>
<td></td>
<td>Frontal</td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occipital</td>
<td>Temporal</td>
<td>Sphenoid</td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td>Ethmoid</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td>Maxilla</td>
</tr>
<tr>
<td>Sphenoid</td>
<td>Maxilla</td>
<td>Inferior nasal concha</td>
</tr>
<tr>
<td>Parietal</td>
<td>Mandible</td>
<td>Vomer</td>
</tr>
<tr>
<td>Zygomatic</td>
<td>Frontal</td>
<td>Palatine</td>
</tr>
<tr>
<td>Maxilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occipital</td>
<td>Sphenoid</td>
<td>Ethmoid</td>
</tr>
<tr>
<td>Parietal</td>
<td>Sphenoid</td>
<td>Maxilla</td>
</tr>
<tr>
<td>Zygomatic</td>
<td>Vomer</td>
<td>Inferior nasal concha</td>
</tr>
<tr>
<td>Mandible</td>
<td></td>
<td>Palatine</td>
</tr>
</tbody>
</table>
Landmarks and Measurements of the Skull

Standardized landmarks and measurements of the skull and post-cranium are necessary in order to compare validity as part of the scientific method. These measurements can be used to determine sex, biological affinity, stature, modernity, and specific facial features in the remains of an unknown individual. Therefore, it is necessary to use agreed upon landmarks on the skull from which the measurements can be taken. To increase reliability, an individual researcher should take the same measurements on an individual(s) several times over the course of a few days to estimate intra-observer error. Research partners should undertake the same process to determine what the error rate may be between researchers, inter-observer error. The following list of landmarks and basic measurements will aid in learning standardized methodology used in osteological research.

Landmarks

<table>
<thead>
<tr>
<th>Landmark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolare</td>
<td>The bony crest located between the central maxillary incisors.</td>
</tr>
<tr>
<td>Alare</td>
<td>Determined using sliding calipers placed on the most lateral margins of the nasal aperture.</td>
</tr>
<tr>
<td>Basion</td>
<td>Point located on the anterior border of the foramen magnum.</td>
</tr>
<tr>
<td>Bregma</td>
<td>The point where the sagittal suture meets the coronal suture anteriorly.</td>
</tr>
<tr>
<td>Dacryon</td>
<td>Located in the medial aspect of the orbits, the point where the maxilla, lacrimal, and frontal meet.</td>
</tr>
<tr>
<td>Ectoconchion</td>
<td>Located at the intersection of the frontal and zygomatic, on the medial aspect.</td>
</tr>
<tr>
<td>Euryon</td>
<td>Determined using spreading calipers placed on the posterior parietals at the greatest breadth.</td>
</tr>
<tr>
<td>Frontotemporale</td>
<td>Located on each of the temporal lines of the frontal in the area of greatest constriction.</td>
</tr>
<tr>
<td>Glabella</td>
<td>The point superior to the nasal bones, between the supraorbital ridges.</td>
</tr>
</tbody>
</table>
Gnathion The central point on the inferior aspect of the mandibular body in the region of the mental eminence.
Infradentale The bony crest located between the mandibular central incisors.
Lambda The intersection point of the lambdoidal suture and the sagittal suture.
Nasion The point located most superiorly where the nasal bones meet.
Nasiospinale The point where the midsagittal plane intersects the inferior margin of the nasal aperture.
Opisthion The most medial point on the posterior aspect of the foramen magnum.
Opisthocranion Most posterior aspect of the skull, excluding the area around the external occipital protuberance.
Orbitale The most inferior point on the lower orbital margin.
Prosthion On the upper alveolar process, this is the most anterior point at midline.
Zygion Determined using spreading calipers placed on the most lateral aspects of the zygomatic arches.

Measurements

Basion-Bregma Taken using the spreading calipers; one end of the calipers is placed on the medial aspect of the rim of the foramen magnum (basion) and the other end is placed at intersection of the coronal and sagittal sutures (bregma).
Bizygomatic Taken using the spreading calipers; one end of the calipers goes to the most lateral aspect of each of the zygomatic arches (zygoma to zygoma).
Cranial breadth Taken using the spreading calipers; one end of the calipers goes to the most lateral aspect of each of the parietals (euryon to euryon).
Cranial length
Taken using the spreading calipers; one end of the calipers is placed just superior to the frontonasal suture on the most anterior aspect of the frontal (glabella), while the other is placed at the most posterior aspect of the skull (opisthocranion).

Minimum frontal breadth
Taken using the spreading calipers; one end of the calipers is placed on each of the temporal lines of the frontal in the area of greatest constriction (frontotemporale to frontotemporale).

Nasal breadth
Measurement is taken from alare to alare, to obtain the maximum breadth; use spreading calipers.

Nasal height
Measurement is taken from nasion to nasiospinale; use sliding calipers.

Orbital breadth
Measurement is taken from dacryon to ectoconchion; use spreading calipers.

Orbital height
Measurement is taken perpendicular to the horizontal axis of the orbit; use spreading calipers.

Total facial height
Measurement is taken from nasion to gnathion with teeth in occlusion; use sliding calipers.

Upper facial height
Measurement is taken from nasion to alveolare (does not include height of the mandible); use sliding calipers.

Estimating Age in the Skull

Determining age at death is largely based upon dental eruption, dental calcification, dental wear, suture fusion, epiphyseal union of the postcranial bones, and degenerative changes (i.e. arthritis). Size and general appearance have little utility. In general, the older the individual at the time of death, the less accurate is the age estimate. Determining age requires comparison with tables of developmental norms.

There can be considerable variation in the degree in which individuals vary from the average of development. Tables of norms should thus be regarded only as approximations.
Dental Calcification, Eruption, and Wear

Development of the dentition occurs at approximately 3-7 months in utero and continue until the late teens or early twenties. Radiographic examination of the dentition shows the development of the crown, root, and closure of the root, which can be used to determine age. For further reading on dental calcification see Moorrees et al. (1963), Age Variation of Formation Stages for Ten Permanent Teeth in the Journal of Dental Research, 42:1490-1502.

Eruption of the teeth into the mouth begins to occur around nine months of age. Each tooth has a general age of eruption, but this can vary from a few months to a few years as each child develops along a different trajectory. Ubelaker (1978) prepared a diagram for use in aging children going through dental eruption, this diagram is widely used in the discipline to estimate age at death. A quick table of eruption is listed below.

Dental eruption sequence
1. Deciduous teeth present 8 mon. – 6 years
2. First molar erupted 6 years
3. Second molar erupted 12 years
4. Third molar erupted 18-21 years
5. Medial incisors erupted 6-11 years

Dental wear or attrition occurs as the teeth erupt into the mouth. As an individual chews the topmost layer of tooth is ground off. As an individual ages, the amount of wear increases first through the enamel and then to the dentine. Individuals of advanced age or those eating course foods may wear the teeth to the point the crown is absent, and the root then becomes the masticatory surface. Due to the variability in the texture of foods eaten, dental wear may make an individual appear older or younger. For example, modern populations consuming extremely soft foods will show a much reduced dental wear. Other activities may also be responsible for tooth wear including bruxism and using the teeth as tools. Prehistoric tool use included working hides and doing light
Dental Eruption (Ubelaker 1978)

Dental Wear (Brothwell 1981)
retouch on lithics, while today teeth may be used as tools to open packaging. Brothwell (1981) developed a general system for dental wear that is helpful in aging older individuals.

Aging Adult Remains Through Suture Closure

Once dental eruption is complete, aging of specimens becomes more difficult. Degenerative changes that are visually observable, including arthritis and dental wear, are two of the most effective methods which can be used to determine the age of an adult. Cranial suture closure may also be used, but in general will provide broad ranges into which a specimen will fall. Sutures should be recorded as unobservable, open (no evidence of closure), minimal closure (up to 50% closure observed), significant closure (mostly fused, but not complete), complete obliteration (totally fused) (Buikstra and Ubelaker 1994).

1. Fusion of basilar suture 17-23 years
2. No fusion at sphenoid-temporal joint 17-29 years
3. Fusion beginning at Sphenoid-temporal/sphenoid-parietal joint 29-65 years
4. Sphenoid-temporal/sphenoid-parietal joint fused 65+ years

Degenerative Change in the Skull

A few degenerative changes exist that can be used in aging including biparietal thinning, alveolar resorption, and arthritis of the occipital condyles and mandibular fossae. Biparietal thinning begins on the external table of the lateral and posterior aspects of the parietals. The parietal bosses will appear flattened in nature (Mann and Hunt 2005). This is generally seen in individuals of advanced age, likely 50 years or older. Alveolar resorption is the product of tooth loss, decrease in bone density associated with age, and also periodontal disease. The alveoli shrink, and as teeth are shed the sockets fill in. The two areas where movement occur in the skull are the occipital condyles and mandibular fossae. At these articulation sites osteophytic lipping or erosion may be present, both of which suggest an age of 35 years of older. Lipping is represented by small ridges or spicules of bone within or around the margins of the surface. Erosion is
Cranial Suture Closure
seen as pitting with irregular margins within the surface area, increase porosity will also be seen around and within the erosive area.

Estimating Sex in the Skull

Physical anthropologists are often called upon to identify skeletal remains; this may be for archaeological or forensic remains. Due to substantial individual and populational variation, the reliability of such attempts is rather limited. Moreover, much practice and guidance is required to achieve reliable conclusions. The following is meant to provide only some familiarity with the methods employed.

While virtually all bones display some sexual dimorphism, the pelvis is the most reliable for identification. Using the skull alone is less accurate. In cases of adult crania with which there is neither lower jaw, nor any other part of the skeleton, the diagnosis is about 80 percent reliable. This proportion rises to 90 percent where a well-preserved lower jaw is present; and will reach 96 to 98 percent when a whole skeleton is present. Although there will still remain skeletons which, even though complete, show such ambiguous sexual characteristics that it will be impossible to identify them as either male or female with certainty. The following are cranial traits used in sex assessment:

Overall size – Larger in males; smaller in females.

Muscle attachments – Stronger in males exhibited by roughening; females are generally more smooth overall.

Cranium

External occipital protuberance – More pronounced in males; rounded and smooth in females.

Forehead – Retreating in males; smooth, round, more vertical and better developed frontal eminences in females.

Glabella – Protrudes in males; smooth in females.

Mastoid process – Large in males; small in females.

Palate – Males are larger and broader; females display less depth.

Supra-mastoid crest – Larger and extend past the external auditory meatus in males.

Supraorbital margins – Rounded and thick in males; sharp and thin in females.
Supraorbital ridges – More pronounced in males; flat and smooth in females.

Zygomatic bones – higher, stouter, and rugged in males.

Zygomatic processes – Heavier in males; more slender in females.

Mandible

Mental eminence – Square and broad in males; v-shaped and narrow in females.

Gonial angle – Less obtuse in males (stouter, rougher, and more everted angles); an angle over 125 degrees suggests female sex.

Estimating Biological Affinity in the Skull

Assessing biological affinity in the skeleton cannot be done with a promise of great accuracy. Nonetheless, legal authorities often wish to have as much information for identification as possible. This is especially true when a burial is found, and it is suspected that the person was the victim of foul play.

Bear in mind that in all populations male skulls tend to be more rugged than females, and that this will complicate the assessment. Also remember that these characteristics are merely typical and not diagnostic, as they may be seen at variable frequencies in all human populations.

The following may be used in assessment of biological affinity:

Australian Aborigine

Long cranium, deep set orbits, well developed brow ridges, pronounced post-orbital constriction

San Bushman

Very short face, extremely prominent forehead, gracile skull form

American Indian

Round cranium, nasal overgrowth, shovel-shaped incisors, edge to edge bite, central incisors rotated toward midline, prominent zygomatics, smooth orbits, straight face

American Black

Long cranium, short face, smooth brow ridges, wide nasal aperture, nasal gutter, bregmatic depression, overbite, alveolar prognathism.
Male Skull
Female Skull
Euro-American

Variable cranial shape, variable size, narrow and orthognathic face, nasal sill, narrow nasal aperture, highly angled nasals, overbite, highest frequency of Carabelli’s cusp.

Cranial Deformation & Cranial Trauma

Cranial deformation – Two major types of cranial deformation may be observed: artificial and accidental. Artificial deformation is practiced purposely by a number of cultures globally, and can be meant to show social status, ethnic affiliation, or beauty. Pressure may be placed on the frontal, occipital, or circumferentially. Accidental deformation occurs when an infant is strapped to a cradle board for a long period of time, or if an infant is allowed to lay flat on their back. Both accidental forms are known to create flat spots on the back of the cranium.

Fractures - Depression fractures are most commonly seen in the cranium; bone is pressed inward and may affect any of the three structures of the cranial vault bones.

Gun shot wounds – Circular holes with distinct edges. The entry wound smaller and has a beveled inner table. The exit wound is larger, has beveling of the outer table, and frequently has small fragments associated. Fractures will likely be seen radiating away from the wound, but will end at the cranial sutures. A solid diagnosis would include a use of a radiograph that should show small fragments of metal embedded in the bone (Aufderheide and Rodriguez-Martin 1998).

Trephination – Early form of cranial surgery. Purpose is unknown, but speculation includes decreasing cranial pressure and allowing detrimental spirits to escape. Two forms are common, scraping and cutting. Users of the scraping method employ a sharp surface and scrape across the cranium until a hole is made. A sharp tool is also employed in the cutting method, however instead of scraping the individual will make linear cuts creating a square fragment of bone that is popped out after perforating the full thickness of the bone. In either method, it is necessary to not penetrate too deeply to protect the dura which aids in holding infection at bay.
Cut marks – Sharp weapons will leave sharply defined margins, and may be observed as elongated v-shaped marks (Aufderheide and Rodriguez-Martin 1998). It is important to note that cut marks occur during excavation and also in the lab during observation. These accidental marks can be differentiated from antemortem/perimortem cut marks on the basis of color. Accidental marks will be lighter in color than the surrounding bone, while the antemortem/perimortem marks will be the same color as the surrounding bone.

Cranial Pathology
Cribra Orbitalia – Appears on the roofs of the orbits as an increase in porosity or expansion of the diploe into the orbital cavity. Cribra Orbitalia is thought to be a general indicator of anemia, although the cause could be a variety of things including malnutrition, parasites, or other physiological illness.
Porotic Hyperostosis – May appear ectocranially as increased porosity with an associated thickening of the bone. Can only be confirmed through radiography; a “hair-on-end” appearance of the diploe. Porotic Hyperostosis is thought to be a general indicator of anemia, although the cause could be a variety of things including malnutrition, parasites, or other physiological illness.
Craniosynostoses - Early closure of the cranial vault sutures. Depending on the suture that fuses early, the shape of the cranium will become distorted.
Lateral view of the skull.
Frontal view of the skull.
Inferior view of the skull.

Top – maxillary bone.

Bottom left – lacrimal bone. Bottom right – palatine bone.
Top – ethmoid. Middle – zygomatic.
Occipital Bone
Mandible