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Communication: Multi-state analysis of the OCS ultraviolet absorption
including vibrational structure

J. A. Schmidt,1,a) M. S. Johnson,1 G. C. McBane,2 and R. Schinke3,b)

1Department of Chemistry, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark
2Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
3Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), D-37077 Göttingen, Germany

(Received 28 February 2012; accepted 22 March 2012; published online 5 April 2012)

The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and
transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Ex-
citation of the 2 1A′ state is predominant except at very low photon energies. It is shown that the
vibrational structures in the center of the band are due to excitation of the 2 3A′′ triplet state, whereas
the structures at very low energies are caused by bending excitation in the potential wells of states
2 1A′ and 1 1A′′. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701699]

Carbonyl sulfide (OCS) is the most abundant sulfur com-
pound in the atmosphere and has a significant affect on at-
mospheric chemistry. UV photolysis of OCS in the strato-
sphere is the main source of stratospheric sulfate.1 Many lab-
oratory studies2–6 have been performed to unravel the appar-
ently complex photodissociation dynamics of OCS in the first
absorption band (222 nm).7, 8 Despite the numerous experi-
ments several open questions remain, including the role of
the 1A′′ states5 and the origin of the vibrational structures
of the absorption spectrum. The very few existing theoreti-
cal analyses3, 9 were helpful to explain the coarse dissocia-
tion dynamics, but a comprehensive understanding in terms
of quantum dynamics on accurate potential energy surfaces
(PES) including several states is overdue.

OCS has 16 valence electrons and is isoelectronic with
CO2 and N2O. The photodissociation of the latter has been
comprehensively unraveled by means of quantum mechani-
cal calculations using global PESs and transition dipole mo-
ment (TDM) functions.10–14 The low-lying electronic states
and the corresponding PESs of OCS (Refs. 3 and 9) are very
similar to those of N2O (Ref. 10) and so are the dissocia-
tion dynamics: The fragmentation is fast and proceeds mainly
via the bent 2 1A′ state with high rotational excitation of the
molecular fragment.2, 3 Nevertheless, there are significant dif-
ferences which only full-dimensional quantum mechanical
calculations on several PESs are able to resolve.

This communication is the first report of a theoretical
study on the UV photodissociation of OCS. The focus here is
the absorption spectrum, namely the contributions of the var-
ious excited states and the vibrational structures at the center
of the band around 220 nm (Ref. 8) and at its onset around
280 nm.7 We show that these structures have different elec-
tronic and vibrational origins than in the electronic spectrum
of N2O.

We calculated global three-dimensional PESs for the four
lowest singlet states (letters in parentheses denote abbrevia-

a)Electronic mail: johanalbrechtschmidt@gmail.com.
b)Electronic mail: rschink@gwdg.de.

tions used below, see Table I)—1 1A′ (X), 2 1A′ (A), 1 1A′′ (B),
and 2 1A′′ (C), — and the four lowest triplet states—1 3A′ (a),
2 3A′ (d), 1 3A′′ (b), and 2 3A′′ (c)—at basically the same level
of electronic structure theory as for N2O (Refs. 10 and 13):
multi-configuration reference internally contracted configura-
tion interaction (MRCI) theory based on wave functions ob-
tained by state-averaged full valence complete active space
self consistent field (CASSCF) calculations. In the MRCI cal-
culations, the number of active and core orbitals were 12
and 7, respectively. The augmented correlation consistent po-
larized valence quadruple zeta (aug-cc-pVQZ) basis set was
used. The Jacobi coordinates R (distance from S to the center
of mass of CO), r (CO bond length), and γ (angle between
R and r) were used. The grid for the PESs was defined by
3.2 a0 ≤ R ≤ 10 a0, 1.8 a0 ≤ r ≤ 3.6 a0 (1.9 a0 ≤ r ≤ 2.6 a0

for the triplet states), and 0 ≤ γ ≤ 180◦. In what follows, en-
ergies are normalized with respect to the equilibrium of the
X state.

In addition to the PESs, the TDMs with the ground state
X were also calculated at the MRCI level of electronic struc-
ture theory. Spin-orbit (SO) coupling was necessarily taken
into account in the calculation of the TDMs of the triplet
states. The sum over the three TDMs of the individual SO
states for each triplet state was considered.13 All electronic
structure calculations were performed with the MOLPRO suite
of programs.15

Absorption cross sections were calculated separately for
all of the seven excited states by three-dimensional wave
packet calculations in the time domain.11 The initial wave
packet at t = 0 in the excited state was defined as a prod-
uct of a vibrational wave function in the ground state and
the modulus of the transition dipole moment function with
the absorbing electronic state. The absorption cross sections
were determined by Fourier transformation of the autocor-
relation functions.16 Temperature dependent cross sections
were calculated by Boltzmann averaging over initial states
(0,0,0), (0,1,0), (0,2,0), (0,3,0), (1,0,0), and (1,1,0). As in
the calculations for N2O,10, 11 the total angular momentum
was zero and the non-adiabatic couplings between the states
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TABLE I. Excited electronic states included in the analysis.

Cs C∞v Abbrev. Type Ev
a TDMb σmax

c

2 1A′ 11� A disso. 5.82 5.7(-2)d 1.73
1 1A′ ′ 11�− B disso. 5.73 1.4(-2) 7.26(-2)
2 1A′ ′ 11� C bound 5.88 7.1(-3) 9.30(-3)
1 3A′ 13�+ a disso. 5.05 9.3(-4) 2.92(-4)
2 3A′ 13� d bound 5.45 2.7(-3) 3.35(-3)
1 3A′ ′ 13� b disso. 5.42 5.8(-3) 9.06(-3)
2 3A′ ′ 13�− c bound 5.76 3.1(-2) 1.29(-1)

aVertical excitation energy Ev (eV) at R = 4.2 a0, r = 2.2 a0, and γ = 5◦.
bTransition dipole moments |μ| (atomic units) at R = 4.2 a0, r = 2.2 a0, and γ = 5◦.
cAbsorption cross section at the maximum in units 10−19 cm2.
dNumbers in parentheses indicate powers of ten.

(see below) were neglected. Details of the electronic structure
and the dynamics calculations will be published elsewhere.

Figure 1 shows cuts through the lowest four singlet and
lowest four triplet PESs vs. dissociation coordinate R. The
cusps for the adiabatic potentials C and c are caused by
avoided crossings with higher states of the same symmetry.
The singlet states correlate with the singlet channel CO(1�+)
+ S(1D) while the triplet states a, b, and c correlate with the
triplet channel CO(1�+) + S(3P). States A and C and states
b and d are degenerate at the OCS linear configuration and
form Renner-Teller pairs (Table I). States B and C interact via
nonadiabatic coupling and the same applies to a/d and b/c. In
principle, all states are also coupled by SO coupling, which is
larger than for N2O.

All seven excited states depicted in Fig. 1 have excita-
tion energies in the range of the first absorption band. Ta-
ble I summarizes the vertical energies Ev and the TDMs at an
approximate Franck-Condon (FC) point close to the ground
state equilibrium. Also tabulated are the maximum absorp-
tion cross sections σ max calculated for initial state (0,0,0); the
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FIG. 1. Cuts through the lowest singlet (black) and triplet (red) PESs for
r = 2.2 a0 and γ = 5◦. The arrow illustrates excitation at 223 nm, the center
of the band.
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FIG. 2. Contour representations of the A- and the c-state PESs for fixed r
= 2.20 a0. The highest contour is 8 eV and the spacing is 0.25 eV. The dots
mark the approximate Franck-Condon point and the dashed lines represent
classical periodic orbits for E = 4.5 eV (upper panel) and 6 eV (lower panel).

data for the bound states were obtained from low-resolution
spectra. Excitation of the A state makes by far the main
contribution. The cross section of B is about 25 times smaller
at the maximum and plays only a minor role. Excitation of
the B state becomes significant only at very low photon en-
ergies, where its contribution eventually exceeds that of the
A state (see below). This finding is in accord with the analy-
sis of Brouard et al.5 of the anisotropy parameter β at several
wavelengths.

Most notable is the large TDM and therefore the large
cross section of the bound triplet state c. Close to linearity (γ
< 7◦), c and A are almost degenerate which leads to strong
mixing through the SO interaction13 and a significant peak
of the c-state TDM near 5◦. Beyond this maximum it rapidly
diminishes.

In Fig. 2, we show contour representations of the two
most important excited states, A (largest cross section) and
c (origin of vibrational structures), as functions of R and γ .
Like the corresponding PES for N2O, the A-state PES has a
bent potential minimum around 48◦; the energy is slightly be-
low the (classical) dissociation threshold. The B-state PES has
a very similar shape; its minimum occurs at slightly smaller
angles. The c state has its minimum near linearity with a low
barrier at γ = 0. It consists of a bound part and a repulsive
part, separated by a high barrier caused by the avoided cross-
ing with a higher 3A′′ PES. Unlike N2O, the gradient of the
A and B PESs with respect to the CO stretching coordinate
is very small, near the FC point as well as along the entire
fragmentation path.

The absorption cross sections for state A do not show
any vibrational structures, neither for (0,0,0) shown in Fig. 3,
nor for the other initial states. All initial-state resolved cross
sections for B are also structureless. This result came as a
surprise since the corresponding cross sections for N2O do
show such structures.10, 17 The A and B-state PESs of OCS
have the same general topography as the corresponding PESs
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FIG. 3. Comparison of the measured cross section8 (red) and the calculated
total cross section (blue, summed over all seven electronic states and scaled
by 1.3) for 170 K; they are shifted upward by 0.5 and 0.25 units, respectively.
Also shown are the (unscaled) cross sections of states A and c and initial state
(0,0,0); the corresponding B-state cross section is not presented because of
its small amplitude. The numbers over the peaks of the c-state cross section
refer to the polyad quantum numbers P.

of N2O, so the differences in the absorption spectra must be
caused by differences in the detailed fragmentation dynamics.
A small part of the N2O wave packet is temporarily trapped
by the bent potential well around 50◦, which leads to a small
recurrence in the autocorrelation function.16 However, simul-
taneous elongation of the NN bond is the prerequisite because
the well depth and thus the probability for being trapped in-
creases with r ; the cross section for fixed r is structureless. It
is the combined large-amplitude bending and NN stretching
motion that causes the recurrence and consequently the weak
vibrational structures in the N2O spectrum. In the dissociation
of OCS, on the other hand, the CO vibrational mode is merely
a spectator and the CO vibrational distribution is very cold. At
energies near the maximum of the spectrum the probability of
CO(v = 1) is ∼0.2 in accord with experiment.2 The lack of
CO stretching causes the wave packet to bypass the large-r
region of the PES where the barrier to dissociation is largest
and therefore the trapping is most efficient.

The triplet state 2 3A′′ (c) is binding and excitation of its
vibrational states leads to a long progression as illustrated
in Fig. 3 for (0,0,0). The spectrum is organized in terms of
polyads P = 0, 1, . . . with P + 1 states per polyad. The pro-
gression starts at Eph ≈ 42 850 cm−1; for comparison, the first
weak structure in the 170 K spectrum8 appears at 42 725 cm−1

(Fig. 3). The three fundamental frequencies (in cm−1) are 522
(bending, for K = 0), 688 (OC–S stretch), and 1711 (CO
stretch). The bending and OC–S stretching modes are strongly
mixed and form the polyads. Representative classical periodic
orbits (PO) shown in Fig. 2 illustrate the underlying motions.
Excitation of the CO stretch is not apparent in the spectrum.
The spacing between the main peaks, averaged over the cen-
tral part of the spectrum, is about 660 cm−1 and agrees per-
fectly with the main spacing in the measured spectrum.
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FIG. 4. Comparison of the measured7 (red) and the calculated (blue) ab-
sorption cross sections for 295 K in the low-energy tail (multiplied by 10 for
clarity). Also shown are the individual 295 K cross sections of the singlet
states A and B (solid lines) and the triplet states a and b (dashed lines).

Because the TDM of the c state is relatively large the
vibrational structures clearly show up in the total cross sec-
tion obtained by summation over all seven electronic states.
The widths and therefore the intensities of the c-state cross
section are affected by coupling to the nearby dissociative
states as well as incoherent rotational broadening. These ef-
fects were not included in the calculations, but were quali-
tatively accounted for by averaging over a moving Gaussian
with a full width at half maximum of 125 cm−1. All cross sec-
tions for electronic state A were shifted by 200 cm−1 to higher
energies, while the cross sections for all other electronic states
were not shifted. Finally, the total cross section was scaled by
an overall factor of 1.3 (1.37 for N2O (Ref. 10)). After these
modifications the calculated thermal cross section for 170 K
agrees satisfactorily with the measured spectrum8 including
the vibrational structures (Fig. 3). The calculations also yield
structures in the high-energy tail, which, however, are absent
in the experimental spectrum.

The 2 1A′′ (C) state is also bound and yields a structured
spectrum similar to that of the c state. However, its calculated
TDM is too small to account for the pronounced vibrational
structures.

At very low excitation energies, where the absorption
cross section is about four orders of magnitude smaller than at
the maximum, the OCS spectrum shows another progression
of vibrational structures7 (Fig. 4). These structures are repro-
duced by the singlet states A and B and reflect excitation of
the bound and quasibound states supported by the potential
wells around 48◦ and 38◦, respectively. The equilibrium an-
gles in X, on one hand, and A and B on the other hand, are
very different and therefore the FC overlap is extremely small.
However, bending excitation in the ground state and/or in the
excited states exponentially increases the overlap and thus the
cross section. With increasing energy, the lifetime of the reso-
nance states decreases, the structures become broader, and the
intensities gradually diminish.
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The origin of this progression is at Eph ≈ 31 000 cm−1

for A and ≈31 100 cm−1 for B and the fundamental fre-
quencies are 602 cm−1 and 590 cm−1, respectively. The es-
sential motion is illustrated by the PO in Fig. 2. The bend-
ing mode has a relatively large anharmonicity and therefore
the energy spacings decrease to about 480 cm−1 in the re-
gion of 34 000 cm−1, compared to ≈450 cm−1 in the mea-
sured spectrum. Because the bending frequency in the X state,
516 cm−1, is similar to the bending frequencies of A and B,
hot bands are coincident with the (0,0,0) absorption maxima;
Boltzmann averaging merely leads to some weak broadening
when the temperature is increased.7 Although the TDM for
state B is much smaller than that for A, the B-state cross sec-
tion is of similar size at very low energies. The ratio is about
1:1 around 35 000 cm−1 (corresponding to 286 nm) as sug-
gested by Brouard et al.5 Because the repulsive triplet states a
and b have excitation energies significantly below the A state,
they exceed the singlet cross sections below 34 000 cm−1 and
partly fill up the gaps between the peaks. The calculated 295 K
absorption cross section in the very red tail of the spectrum
agrees very well with the measured one, concerning both the
absolute value and the vibrational structures. The cross sec-
tions in Fig. 4 were not shifted on the energy axis; however,
the calculated thermal cross section was multiplied by 1.3 as
in Fig. 3. The low-energy tail of the OCS absorption band is
reminiscent of the Huggins band of ozone.18

The present study provides the first realistic account of
the 220 nm absorption spectrum of OCS. The calculations
show that: (1) The main vibrational structures are due to ex-
citation of the bound 2 3A′′ triplet state. (2) The structures at
very low energies reflect bending excitation in the bent po-
tential wells of 2 1A′ and 1 1A′′. The calculations also shed

light on a long-lasting debate: (3) Except for very long wave-
lengths, excitation of state 1 1A′′ is insignificant.
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