Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute value</td>
<td>135–141</td>
</tr>
<tr>
<td>additive identity</td>
<td>254</td>
</tr>
<tr>
<td>additive inverse</td>
<td>254</td>
</tr>
<tr>
<td>aleph</td>
<td>465</td>
</tr>
<tr>
<td>algebra of sets</td>
<td>245, 278</td>
</tr>
<tr>
<td>antisymmetric relation</td>
<td>387</td>
</tr>
<tr>
<td>arcsine function</td>
<td>349</td>
</tr>
<tr>
<td>arithmetic sequence</td>
<td>208</td>
</tr>
<tr>
<td>arrow diagram</td>
<td>290</td>
</tr>
<tr>
<td>associative laws</td>
<td></td>
</tr>
<tr>
<td>for real numbers</td>
<td>254</td>
</tr>
<tr>
<td>for sets</td>
<td>246, 278</td>
</tr>
<tr>
<td>average</td>
<td></td>
</tr>
<tr>
<td>of a finite set of numbers</td>
<td>300</td>
</tr>
<tr>
<td>axiom</td>
<td>85</td>
</tr>
<tr>
<td>basis step</td>
<td>173, 191, 194</td>
</tr>
<tr>
<td>biconditional statement</td>
<td>39, 103</td>
</tr>
<tr>
<td>forms of</td>
<td>39</td>
</tr>
<tr>
<td>proof of</td>
<td>107</td>
</tr>
<tr>
<td>bijection</td>
<td>312</td>
</tr>
<tr>
<td>Binet’s formula</td>
<td>208</td>
</tr>
<tr>
<td>birthday function</td>
<td>283, 284, 319</td>
</tr>
<tr>
<td>Cantor’s diagonal argument</td>
<td>482</td>
</tr>
<tr>
<td>Cantor’s Theorem</td>
<td>483</td>
</tr>
<tr>
<td>Cantor, Georg</td>
<td>483</td>
</tr>
<tr>
<td>Cantor-Schröder-Bernstein Theorem</td>
<td>484</td>
</tr>
<tr>
<td>cardinal number</td>
<td>455</td>
</tr>
<tr>
<td>cardinality</td>
<td>223, 452, 455, 465, 482</td>
</tr>
<tr>
<td>(S_0)</td>
<td>465</td>
</tr>
<tr>
<td>(e)</td>
<td>482</td>
</tr>
<tr>
<td>finite set</td>
<td>223, 455</td>
</tr>
<tr>
<td>natural numbers</td>
<td>465</td>
</tr>
<tr>
<td>Cartesian plane</td>
<td>258</td>
</tr>
<tr>
<td>Cartesian product</td>
<td>256, 362</td>
</tr>
<tr>
<td>cases, proof using</td>
<td>132, 160</td>
</tr>
<tr>
<td>Cauchy sequence</td>
<td>78</td>
</tr>
<tr>
<td>chain rule</td>
<td>327</td>
</tr>
<tr>
<td>choose an element method</td>
<td>279</td>
</tr>
<tr>
<td>choose-an-element method</td>
<td>231–235, 238</td>
</tr>
<tr>
<td>circular relation</td>
<td>386</td>
</tr>
<tr>
<td>closed interval</td>
<td>228</td>
</tr>
<tr>
<td>closed ray</td>
<td>228</td>
</tr>
<tr>
<td>closed under addition</td>
<td>10, 62</td>
</tr>
<tr>
<td>closed under multiplication</td>
<td>10, 63</td>
</tr>
<tr>
<td>closed under subtraction</td>
<td>10, 63</td>
</tr>
<tr>
<td>closure properties</td>
<td>10–11</td>
</tr>
<tr>
<td>codomain</td>
<td>281, 285</td>
</tr>
<tr>
<td>Cohen, Paul</td>
<td>485</td>
</tr>
<tr>
<td>common divisor</td>
<td>414</td>
</tr>
<tr>
<td>commutative laws</td>
<td></td>
</tr>
<tr>
<td>for real numbers</td>
<td>254</td>
</tr>
<tr>
<td>for sets</td>
<td>246, 278</td>
</tr>
<tr>
<td>commutative operation</td>
<td>77</td>
</tr>
<tr>
<td>complement of a set</td>
<td>216</td>
</tr>
<tr>
<td>complex numbers</td>
<td>224</td>
</tr>
<tr>
<td>composite function</td>
<td>325</td>
</tr>
<tr>
<td>composite number</td>
<td>78, 189, 426</td>
</tr>
<tr>
<td>composition of functions</td>
<td>325</td>
</tr>
<tr>
<td>inner function</td>
<td>325</td>
</tr>
<tr>
<td>outer function</td>
<td>325</td>
</tr>
<tr>
<td>compound interest</td>
<td>211</td>
</tr>
<tr>
<td>compound statement</td>
<td>33</td>
</tr>
</tbody>
</table>

585
conditional, 33
conditional statement, 5–10, 36
 conclusion, 5, 37
 contrapositive of, 44
 converse of, 44
 forms of, 36
 hypothesis, 5, 37
 logical equivalencies, 45
 negation, 46
 truth table, 6
congruence, 92–94, 147–149, 380
 Division Algorithm, 150
 reflexive property, 98, 149, 167
 symmetric property, 98, 149, 167
 transitive property, 98, 149, 167
congruence class, 392
congruent modulo n, 92
conjecture, 3, 86
conjunction, 33, 36
connective, 33
consecutive integers, 137
constant, 54
construction method, 88
constructive proof, 109–110, 161
continuous, 77
continuum, 482
Continuum Hypothesis, 485
contradiction, 40, 116, 159
contrapositive, 44, 104, 159
converse, 44
coordinates, 256
corollary, 86
countable set, 466
countably infinite set, 466
countably infinite sets
 subsets of, 472–473
 union of, 471
counterexample, 3, 66, 69, 90–91

De Moivre’s Theorem, 199
de Moivre, Abraham, 199
De Morgan’s Laws
 for indexed family of sets, 271
 for sets, 248, 278
 for statements, 45, 48
decimal expression
 for a real number, 479
 normalized form, 480
decomposing functions, 327
definition, 15, 86
 by recursion, 200
denumerable set, 466
dependent variable, 285
derivative, 295
determinant, 305, 323
diagonal, 295
difference of two sets, 216
digraph, 369
Diophantine equation, 441
 linear in one variable, 441
 linear in two variables, 441–445
Diophantus of Alexandria, 441
direct proof, 16, 24–26, 104, 158
directed edge, 369
directed graph, 369
 directed edge, 369
 vertex, 369
disjoint, 236
 pairwise, 272, 395
disjoint sets, 236
disjunction, 33, 36
distributive laws
 for indexed family of sets, 271
 for real numbers, 254
 for sets, 246, 278
 for statements, 48, 49
divides, 82, 367
divisibility test, 407
 for 11, 410
 for 3, 409
Index

for 4, 410
for 5, 409
for 9, 407
Division Algorithm, 143–145
 congruence, 150
 using cases, 146–147
divisor, 82
 properties, 167
Dodge Ball, 476, 482
domain
 of a function, 281, 285
 of a relation, 364
domino theory, 189
element-chasing proof, 238
empty set, 60
 properties, 246, 278
equal functions, 298
equal sets, 55
equality relation, 381
equation numbers, 89
equivalence class, 391
 properties of, 392
equivalence relation, 378
 properties of, 392
equivalent sets, 452, 455
Euclid’s Elements, 431
Euclid’s Lemma, 431
Euclidean Algorithm, 419
even integer, 15, 82
 properties, 31, 166
exclusive or, 34
existence theorem, 110, 111, 161
existential quantifier, 63
Extended Principle of Mathematical Induction, 190, 213
factor, 82
factorial, 188, 201
family of sets, 264
 indexed, 268
 intersection, 265
 union, 265
Fermat’s Last Theorem, 164
Fermat, Pierre, 164
Fibonacci numbers, 202
Fibonacci Quarterly, 204
finite set, 455, 462
 properties of, 455–459
function, 281, 284
 as set of ordered pairs, 336
 bijective, 312
 codomain, 281, 285
 composite, 325
 composition, 325
 domain, 281, 285
 equality, 298
 injective, 310
 inverse of, 338, 373
 invertible, 341
 of two variables, 302
 one-to-one, 310
 onto, 311
 piecewise defined, 322
 projection, 304
 range, 287
 real, 288, 292
 surjective, 311
Fundamental Theorem
 of Arithmetic, 432
 of Calculus, 306
future value, 212
Gödel, Kurt, 485
geometric sequence, 206
geometric series, 206
Goldbach’s Conjecture, 163, 435
greatest common divisor, 414
 half-open interval, 228
Hemachandra, Acharya, 203
idempotent laws for sets, 246, 278
identity function, 298, 319, 331, 345
identity relation, 381
image
 of a set, 351
 of a union, 355, 361
 of an element, 285
 of an intersection, 355, 361
implication, 33
inclusive or, 34
increasing, strictly, 76
independent variable, 285
indexed family of sets, 268
 De Morgan’s Laws, 271
distributive laws, 271
intersection, 269
union, 269
indexing set, 268
inductive assumption, 174
inductive hypothesis, 174
inductive set, 171
inductive step, 173, 191, 194
infinite set, 455, 462
initial condition, 200
injection, 310
inner function, 325
integers, 10, 54, 224
 consecutive, 137
 system, 415
integers modulo n, 402
 addition, 404
 multiplication, 404
Intermediate Value Theorem, 111
intersection
 of a family of sets, 265
 of an indexed family of sets, 269
 of two sets, 216
interval, 228
 Cartesian product, 259
 closed, 228
half-open, 228
open, 228
inverse image of a set, 351
inverse of a function, 338, 373
inverse of a relation, 373
inverse sine function, 349
invertible function, 341
irrational numbers, 10, 113, 122, 224
know-show table, 18–21
 backward question, 19
 forward question, 19
know-show-table, 86
Kuratowski, Kazimierz, 263
Law of Trichotomy, 228
least upper bound, 79
lemma, 86
Leonardo of Pisa, 203
linear combination, 423
linear congruence, 447
linear Diophantine equations, 441–445
logical operator, 33
logically equivalent, 43
Lucas numbers, 210
magic square, 129
mapping, 284
mathematical induction
 basis step, 173, 191, 194
 Extended Principle, 190, 193, 213, 214
 inductive step, 173, 191, 194
 Principle, 173, 213
matrix, 305
 determinant, 305
 transpose, 305
modular arithmetic, 404
modus ponens, 42
multiple, 82
multiplicative identity, 254
Index

multiplicative inverse, 254
natural numbers, 10, 54, 223
necessary condition, 37
equation, 38
neat, 38
natural numbers, 10, 54, 223
necessary condition, 37
negation, 33, 36
of a conditional statement, 46, 69
of a quantified statement, 67–69
neighborhood, 78
normalized form
of a decimal expression, 480
number of divisors function, 292, 293, 319
octagon, 295
odd integer, 15
properties, 31, 166
one-to-one correspondence, 452
one-to-one function, 310
only if, 37
onto function, 311
open interval, 228
open ray, 228
open sentence, 56
ordered pair, 256, 263
ordered triple, 263
ordinary annuity, 212
outer function, 325
pairwise disjoint, 272, 395
partition, 395
pentagon, 295
perfect square, 70, 439
piecewise defined function, 322
Pigeonhole Principle, 459, 461
polygon, 294
diagonal, 295
regular, 295
power set, 222, 230, 478
cardinality, 230
predicate, 56
preimage

of a set, 351
of a union, 356, 361
of an element, 285
of an intersection, 356, 361
prime factorization, 427
prime number, 78, 189, 426
prime numbers
distribution of, 434
twin, 435
Principle of Mathematical Induction, 173, 213
projection function, 304, 320
proof, 22, 85
biconditional statement, 107
by contradiction, 116–118, 159
constructive, 110, 161
contrapositive, 104, 159
direct, 16, 24–26, 104, 158
element-chasing, 238
non-constructive, 111, 161
using cases, 132, 160
proper subset, 218
proposition, 1
propositional function, 56
Pythagorean Theorem, 26
Pythagorean triple, 29, 102, 128, 163, 164
quadratic equation, 29, 98
quadratic formula, 29
quadrilateral, 295
quantifier, 63, 70
existential, 63
universal, 63
quotient, 144
range, 287
of a relation, 364
rational numbers, 10, 54, 113, 122
ray
closed, 228
open, 228
real function, 288, 292
real number system, 10
real numbers, 54, 224
recurrence relation, 200
recursive definition, 200
reflexive, 375, 377
regular polygon, 295
relation, 364
antisymmetric, 387
circular, 386
divides, 367
domain, 364
equality, 381
equivalence, 378
identity, 381
inverse of, 373
range, 364
reflexive on, 375, 377
symmetric, 375, 377
transitive, 375, 377
relative complement, 216
relatively prime integers, 428
remainder, 144
ring, 77
roster method, 53
Second Principle of Mathematical Induction, 193, 214
sequence, 200, 301
arithmetic, 208
transpose, 305, 323
geometric, 206
set
complement, 216
difference, 216
equality, 55
intersection, 216
power, 222
proving equality, 235
relative complement, 216
twin prime conjecture, 435
roster method, 53
union, 216
set builder notation, 58
set equality, 55
set of divisors function, 293
solution set, 58, 363
statement, 1, 3
biconditional, 103
compound, 33
conditional, 5–10
subset, 55
proper, 218
sufficient condition, 37
sum of divisors function, 284, 319
surjection, 311
syllogism, 42
symmetric, 375, 377
tautology, 40, 116
theorem, 86
transitive, 375, 377
triangle, 295
Triangle Inequality, 137
truth set, 58, 254, 363
truth table, 6
universal quantifier, 63
uncountable set, 466
undefined term, 85
union
of a family of sets, 265
of an indexed family of sets, 269
of two sets, 216
unique factorization, 433
universal quantifier, 63
universal set, 54
properties, 246, 278
Index

upper bound, 79

variable, 54
 dependent, 285
 independent, 285
Venn diagram, 217
vertex, 369

Wallis cosine formulas, 183
Wallis sine formulas, 183
Well Ordering Principle, 423
Wiles, Andrew, 283
writing guidelines, 22–24, 73, 89, 94–95, 105, 108, 119, 176, 492–496

zero divisor, 77