Grand Valley State University ScholarWorks@GVSU

Monthly Buoy Report

Offshore Wind Project

6-2013

Lake Michigan Wind Assessment Project Data Summary and Analysis: June 2013

Lake Michigan Offshore Wind Assessment Project

Follow this and additional works at: https://scholarworks.gvsu.edu/windbuoyreports

ScholarWorks Citation

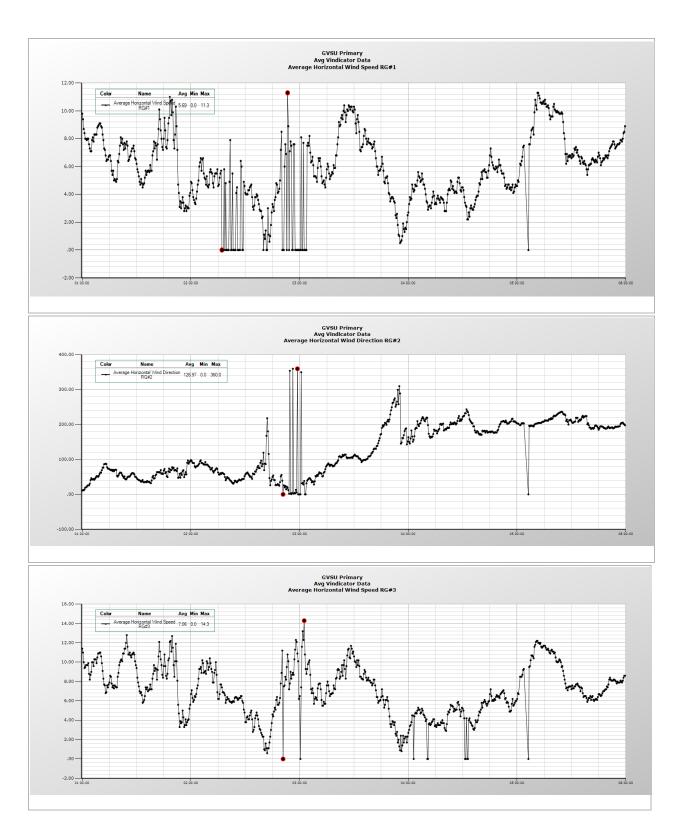
Lake Michigan Offshore Wind Assessment Project, "Lake Michigan Wind Assessment Project Data Summary and Analysis: June 2013" (2013). *Monthly Buoy Report*. 9. https://scholarworks.gvsu.edu/windbuoyreports/9

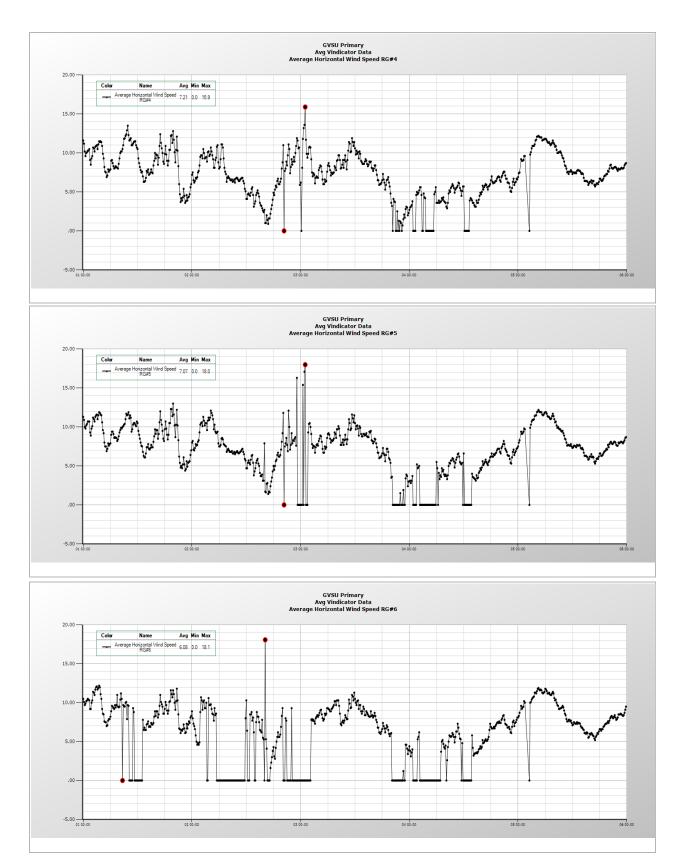
This Article is brought to you for free and open access by the Offshore Wind Project at ScholarWorks@GVSU. It has been accepted for inclusion in Monthly Buoy Report by an authorized administrator of ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

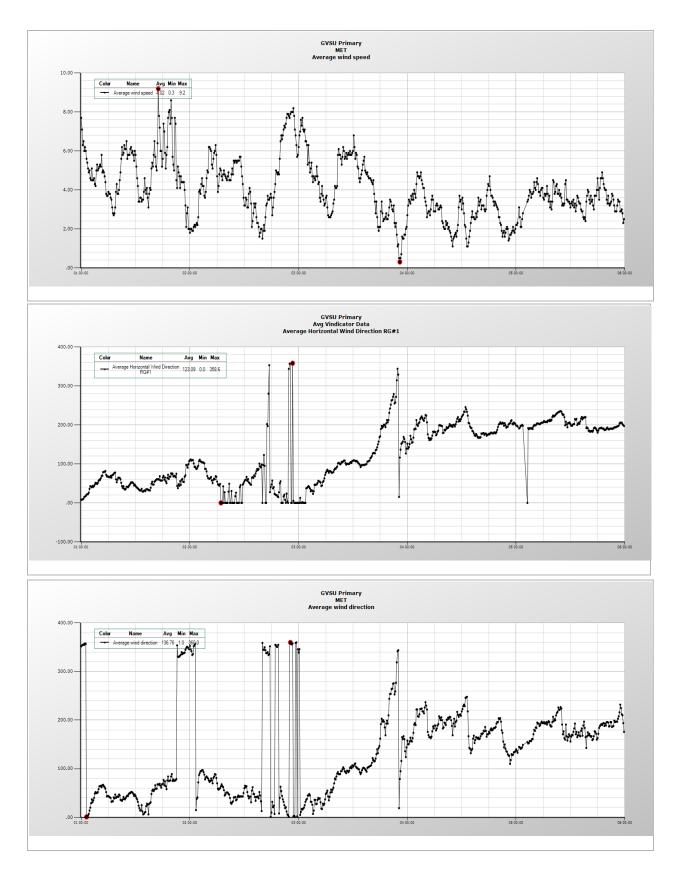
Lake Michigan Wind Assessment Project

Data Summary and Analysis

May 2013


Part I – 2013 Data


This report summarizes the data collected by the Laser Wind Sensor (LWS) #8 with collection information as follows.


Location:	Lake Michigan – Near Muskegon (4316.542N, 8630.347W)
Date:	June 1 through June 30, 2013 (UTC)
Range Gates 1-6:	75, 90, 105, 125, 150, 175 meters
Cup Anemometer:	3 meters mounted on the buoy
Observations:	10-minute averages
Number of Observation	ns: 30 days at 6 observations per hour = 4320 observations
Missing Observations:	None
Good Observations:	4320
Notes:	
0	Range Gate 6 (175 meters) is a test range gate to observe the performance of
	the sensor at the extreme operating height limit for this configuration. Thus,
	performance degradation was expected.
0	All high resolution 1 second data for all wind speeds is stored onboard the buoy

Graphs for wind speed for all ranges as well as the cup anemometer follow. Graphs of the horizontal wind direction at the cup anemometer and range gate 1 are included as well.

and can be used for further detailed post processing as required.

Summary statistics for wind speed by range gate and for the cup anemometer are shown in the following tables. Good observations are 10-minute averages consisting of at least 300 one-second observations. There were 4320 observations of 10-minute averages in total.

	N001S007 P006 Cup Anemome	N001S009 P083	N001S009 P084	N001S009 P085	N001S009 P086	N001S009 P087	N001S009 P088
Statistic	ter	75m	90m	105m	125m	150m	175m
Good Obs.	4318	3642	4008	4109	4106	3758	2917
% of Total (4320)	100	84.3	92.8	95.1	95	87	67.5
Average	4.2	6.7	7.1	7.5	7.6	7.6	8
Std. Dev.	2.2	3.7	4.0	4.2	4.3	4.2	3.7
Coeff. of Variation	0.52	0.55	0.56	0.56	0.57	0.55	0.46
Minimum	0.0	0.5	0.3	0.3	0.2	0.3	0.3
Quartile 1	2.6	4.1	4.1	4.4	4.4	4.3	5.3
Median	3.8	5.9	6.1	6.5	6.7	6.8	7.3
Quartile 3	5.2	8.6	9.2	9.8	10	10	10.3
Maximum	14.2	22.2	27.1	24.7	24.9	23	20.5
99% Cl– Lower Bound	4.1	6.5	6.9	7.3	7.4	7.4	7.8
99% Cl Upper Bound	4.3	6.9	7.3	7.7	7.8	7.8	8.2

Table 1: Horizontal Wind Speed (meters per second) Statistics by Range Gate

Table 2: Wind Speed Frequencies by Range Gate – Percent of Time in Each Wind Speed Range

Wind Speed Range (m/s)	N001S007 P006 Cup Anemome ter	N001S009 P083 75m	N001S009 P084 90m	N001S009 P085 105m	N001S009 P086 125m	N001S009 P087 150m	N001S009 P088 175m
0-4	53.4	23.4	22.7	21.3	20.1	21.1	12.5
4-8	39.8	46.2	43.3	40.4	39.9	39.2	44.1
8-12	6.2	19.4	20.2	22.6	23.5	23	26.7
12-16	0.6	9.2	9.4	10	10.8	0	13.6
16-20	0	1.7	4.1	4.8	4.8	16.2	3.1
20-24	0	0	0.3	0.8	0.9	0.5	0.1
24-28	0	0	0	0	0	0	0
28-32	0	0	0	0	0	0	0

Wind Direction Range (Degrees)	N001S009P089 Average Horizontal Wind Direction RG#1	N001S009P083 Average Horizontal Wind Speed RG#1
0 – 45 (NNE)	14.2	5.5
45 – 90 (NE)	9.1	5.3
90 – 135 (SE)	12.9	6.5
135 – 180 (SSE)	10.6	5.6
180 – 225 (SSW)	24.2	8.7
225 – 270 (SW)	7.7	6.0
270 – 315 (NW)	4.8	4.7
315 – 360 (NNW)	16.6	7.5

Table 3: Wind Direction Frequencies by Range Gate – Percent of Time in Each Wind Direction Range

Table 4 contains the summary statistics shown in table 1 for the subset of times when every range gate had a good observation that is there were 300 one-second observations for each range gate.

Table 4: Horizontal Wind Speed (meters per second) Statistics by Range Gate – All Range Gates with
Good Observations (2867/4320 = 66.4%)

	N001S009	N001S009	N001S009	N001S009	N001S009	N001S009			
	P083	P084	P085	P086	P087	P088			
Statistic	75m	90m	105m	125m	150m	175m			
Average	7.1	7.6	7.9	8.1	8.1	8.0			
Std. Dev.	3.8	4.1	4.2	4.2	4.1	3.7			
Coeff. of									
Variation	0.54	0.54	0.53	0.52	0.51	0.46			
Minimum	0.5	0.3	0.4	0.4	0.3	0.3			
Quartile 1	4.3	4.6	4.7	4.8	4.8	5.3			
Median	6.2	6.7	7.1	7.3	7.4	7.3			
Quartile 3	9.1	9.9	10.5	10.7	10.7	10.3			
Maximum	18.9	20.9	21.2	22	22	20.5			
99% CI-									
Lower									
Bound	6.9	7.4	7.7	7.9	7.9	7.8			
99% CI									
Upper									
Bound	7.3	7.8	8.1	8.3	8.3	8.2			

Table 5 shows the 99% confidence intervals for the mean difference in average wind speed between adjacent range gates for example between the range gates centered at 175 meters and 150 meters. The difference is higher range gate – lower range gate. The confidence intervals are computed using the paired t method. An observation time is included in the difference if the number of observations for each of the two range gates was at least 300.

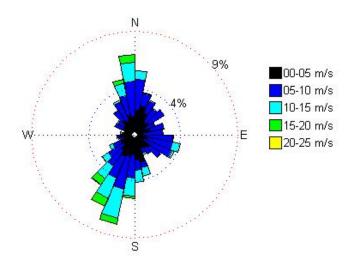

	175m –	150m-	125m-	105m-	90m-
Statistic	150m	125m	105m	90m	75m
Good Obs.	2915	3753	4069	3982	3625
% of Total					
(4896)	67.5	86.9	94.2	92.2	83.9
Average	-0.071	0.003	0.12	0.34	0.50
99% CI-					
Lower					
Bound	-0.12	-0.02	0.10	0.31	0.47
99% CI					
Upper					
Bound	-0.02	0.02	0.14	0.36	0.52

Table 6 shows the energy generated for each range gate. The amount of energy generated depends on the turbine employed in this case the Gamesa Elioca G58 850kW. The energy estimate was computed assuming that the turbine will always face the wind.

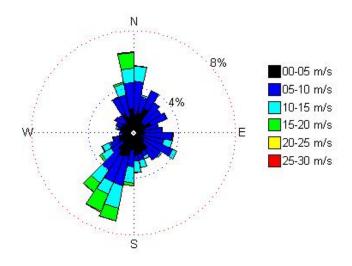
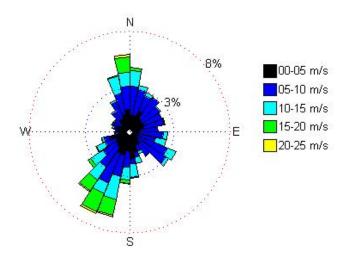
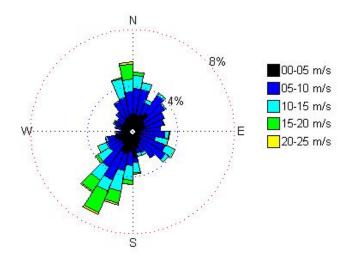
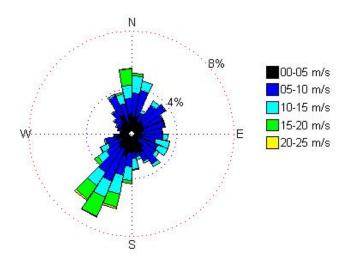
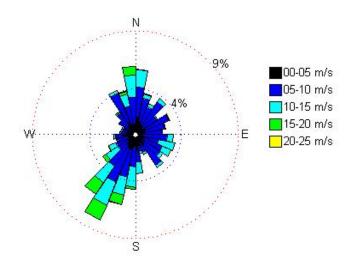

_		
Range Gate	Average Power (MW)	Average Daily Energy (MWh)
1	0.282	6.77
2	0.303	7.28
3	0.333	8.00
4	0.344	8.25
5	0.347	8.33
6	0.386	9.27
Buoy Cup	0.152	3.65

Table 6: Energy (kWh/time unit) by Range Gate


The wind rose graphs show the wind speed by direction as well as the percent of time the wind was blowing in each direction.


Range Gate 1: Average Wind Speed and Percent Time by Direction


Range Gate 2: Average Wind Speed and Percent Time by Direction


Range Gate 3: Average Wind Speed and Percent Time by Direction

Range Gate 4: Average Wind Speed and Percent Time by Direction

Range Gate 5: Average Wind Speed and Percent Time by Direction

Range Gate 6: Average Wind Speed and Percent Time by Direction

Buoy Cup Anemometer: Average Wind Speed and Percent Time by Direction

Notes:

- The average wind speed at 75m and above is notably more than the average wind speed on the buoy deck. This conclusion is supported by the statistics in table 1, particularly the average and the median. Further, the data in table 2 show that over 90% of the time the wind speed on the buoy deck is 8m/s or less. For heights 75m and above, this is true about 55%-70% of the time.
- 2. The average wind speed increases notably from 75m to 90m as well as from 90m to 105m, slowly or not at all from 105m to 150m, and drops slights from 150m to 175m as shown in table 4. Each difference, except from 125m to 150m, is statistically significant ($\alpha = 0.01$) as shown in table 5. These data are inconsistent with the idea that power generation potential increases with turbine height. Instead the data suggest that a turbine height between 105m and 150m, perhaps closer to 105m than 150m, would provide a good balance between power generation and cost. This idea is consistent with the average daily energy values shown in table 6.
- 3. The highest frequency of wind direction as well as wind speed is SE through SSW, about 48% of the time as shown in table 3. In addition, the wind is from the NNW or NNE about 31% of the time.

Part II – Comparison of 2013 Data and 2012 Data

In this section, the data collected from June 1 through June 30, 2012 at the mid-lake plateau (4320.510N, 8707.206W) are compared to data from the same days collected in 2013 as described above. The results are shown in table 7. Homogeneity of variance is assumed. Note that two variables are confounded regarding the comparison:

- Location (mid-lake plateau versus near Muskegon)
- Year (2012 versus 2013)

	N001S007 P006 Cup	N001S009	N001S009	N001S009	N001S009	N001S009	N001S009
Statistic	Anemome ter	P083 75m	P084 90m	P085 105m	P086 125m	P087 150m	P088 175m
2012	ler	75111	9011	105111	125111	120111	1/5/11
Good Obs.	4320	4257	4277	4274	4152	2602	1207
% of Total	1020	1207		, .	1102	2002	1207
(4320)	100	98.5	99.0	98.9	96.1	60.2	27.9
Average	5.1	9.7	9.9	10	9.9	11.2	11.3
2013							
Good Obs.	4318	3642	4008	4109	4106	3758	2917
% of Total							
(4320)	100	84.3	92.8	95.1	95.0	87.0	67.5
Average	4.2	6.7	7.1	7.5	7.6	7.6	8.0
Compare							
Average							
Difference	0.90	3.0	2.8	2.5	2.3	3.6	3.3
Pooled	• •						
Std. Dev.	2.3	4.4	4.5	4.6	4.7	4.6	3.8
99% Cl– Lower							
Bound	0.78	2.7	2.5	2.2	2.0	3.3	3.0
99% CI	0170		2.0		2.0	5.5	5.0
Upper							
Bound	1.0	3.3	3.1	2.8	2.6	3.9	3.6

Table 7: Comparison of 2012 and 2013 Data

Notes:

- 1. The average wind speed at heights 75m through 175m is greater at the mid-lake plateau in 2012 than near to the shore in 2013. All results are statistically significant ($\alpha = 0.01$).
- 2. The average wind speed is greater at the mid-lake plateau in 2012 than near to shore in 2013 on the buoy deck. This result is statistically significant ($\alpha = 0.01$).

Part III – Comparison of April - May 2013 and June 2013 Data

In this section, the data collected from April 28 through May 31 are compared with the data collected from June 1 through June 30. The results are shown in table 8. Homogeneity of variance is assumed.

	N001S007 P006 Cup Anemome	N001S009 P083	N001S009 P084	N001S009 P085	N001S009 P086	N001S009 P087	N001S009 P088
Statistic	ter	75m	90m	105m	125m	150m	175m
May							
Good Obs.	4894	4012	4333	4696	4705	4432	3711
% of Total (4896)	100	81.9	88.5	95.9	96.1	90.5	75.8
Average	5.0	8.6	9	9	9.2	9.3	9.4
June							
Good Obs.	4318	3642	4008	4109	4106	3758	2917
% of Total (4320)	100	84.3	92.8	95.1	95.0	87.0	67.5
Average	4.2	6.7	7.1	7.5	7.6	7.6	8.0
Compare							
Average Difference	-0.80	-1.9	-1.9	-1.5	-1.6	-1.7	-1.4
Pooled Std. Dev.	2.4	4.3	4.5	4.7	4.8	4.8	4.7
99% Cl– Lower							
Bound	-0.93	-2.2	-2.2	-1.8	-1.9	-2.0	-1.7
99% Cl Upper Dound	0.67	1.6	1.6	1 2	1 2	1.4	1 1
Bound	-0.67	-1.6	-1.6	-1.2	-1.3	-1.4	-1.1

Notes:

- 1. The average wind speed at heights 75m through 175m is greater May than in June. All results are statistically significant (α = 0.01).
- 2. The average wind speed is greater in May than in June on the buoy deck. This result is statistically significant ($\alpha = 0.01$).
- 3. In addition, there appears to be a shift of wind direction from May to June. In June, the wind direction is from the SE to SSW about 10% of the time less than in May.