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Comparison of neurobehavioral effects of methylmercury exposure in older and
younger adult zebrafish (Danio rerio)

Xiaojuan Xu a,*, Daniel Weber b, Michael J. Carvan IIIc, Ryan Coppens a,
Crystal Lamb a, Stefan Goetz a, Lillian A. Schaefer a

a Department of Psychology, Grand Valley State University, Allendale, MI 49401, United States
b Children’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, United States
c School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, United States

1. Introduction

It is widely recognized that the nature and severity of responses
to toxic exposure are age-dependent. Animal studies show that
early life history stage, especially embryonic, exposures to toxic
chemicals are extremely deleterious due to the high sensitivity of
actively developing organ systems (Şiş man, 2010, 2011; Gu et al.,
2010; Meier et al., 2010; Jezierska et al., 2009; Barry et al., 1995). As
animals get older, progressive degeneration of tissue and loss of
organ function have been observed in animals (Anchelin et al.,
2011; Di Cicco et al., 2011; Durán et al., 2010). Thus, age-related
loss of organ function and structural integrity, e.g., DNA
hypomethylation, neurodegeneration, immunodeficiencies, tissue
degeneration and decreases in biochemical activity related to

metabolic detoxification, may also potentiate the harmful effects
of chemical contaminant exposures (Madrigano et al., 2011; Risher
et al., 2010; Bollati et al., 2009; Scheuplein et al., 2002; Moser,
1999; Cory-Slechta, 1990; Lin et al., 1975; Sansar et al., 2011;
Lemire et al., 2010; Peters et al., 2010; Ostachuk et al., 2008; López-
Diazguerrero et al., 2005; Moser, 1999; Barnett, 1997).

Mercury (Hg2+) compounds including methylmercury (MeHg)
induce neurodegeneration, oxidative stress, alterations in gene
expression and declines in immune function, processes that are
often associated with the aging process in aquatic animals and
humans (Lushchak, 2011; Cambier et al., 2010; Houston, 2007;
Monnet-Tschudi et al., 2006; Berntssen et al., 2003; Schmechel
et al., 2006). Several studies have demonstrated that adult
exposures to Hg2+ compounds induce alterations in learning and
memory in humans (Hilt et al., 2009; Yokoo et al., 2003; Smith
et al., 1983). However, there are no data in which there is a direct
comparison on the effects of short-term, adult MeHg exposures vs.
behavioral outcomes influenced by the normal aging process in
any vertebrate species, especially as it relates to learning and
memory. Therefore, due to its continued presence in fish- and
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A B S T R A C T

It is widely recognized that the nature and severity of responses to toxic exposure are age-dependent.

Using active avoidance conditioning as the behavioral paradigm, the present study examined the effect

of short-term methylmercury (MeHg) exposure on two adult age classes, 1- and 2-year-olds to coincide

with zebrafish in relatively peak vs. declining health conditions. In Experiment 1, 2-year-old zebrafish

were randomly divided into groups and were exposed to no MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1,

or 0.3 mM of MeHg (in 0.15% ethanol) for 2 weeks. The groups were then trained and tested for avoidance

responses. The results showed that older zebrafish exposed to no MeHg or EtOH learned and retained

avoidance responses. However, 0.01 mM or higher concentrations of MeHg exposure impaired avoidance

learning in a dose-dependent manner with 0.3 mM of MeHg exposure producing death during the

exposure period or shortly after the exposure but before the avoidance training. In Experiment 2, 1-year-

old zebrafish were randomly divided into groups and were exposed to the same concentrations of MeHg

used in Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The

results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 mM of MeHg learned and

retained avoidance responses, while 0.1 or 0.3 mM of MeHg exposure impaired avoidance learning in a

dose-dependent manner. The study suggested that MeHg exposure produced learning impairments at a

much lower concentration of MeHg exposure and more severely in older adult compared against

younger adult zebrafish even after short exposure times.
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seafood-based diets, it is important to investigate the potential role
of MeHg, the organic and most common environmental form of Hg,
plays in age-related behavioral effects.

Zebrafish (Danio rerio) have become a widely used vertebrate
model system for examining learning and memory (Gómez-Laplaza
and Gerlai, 2010; Sison and Gerlai, 2010; Xu et al., 2007; Salas et al.,
2006; Williams et al., 2002; Xu and Goetz, 2012). The regions in the
teleost brain responsible for directing those behaviors have been
shown to be the dorsolateral telencephalon, critical for spatial
learning (Salas et al., 1996; Dodson, 1988), and dorsomedial
telencephalon, critical for avoidance learning (Portavella and Vargas,
2005; Xu et al., 2003, 2009). Therefore, zebrafish were used to study
the following question: are older adult fish more vulnerable to
waterborne MeHg exposure than younger adult fish? Since zebrafish
live to approximately 2 years of age in the wild (Spence et al., 2008),
the present study examined the effect of short-term MeHg exposure
on two adult age classes, 1- and 2-year-olds to coincide with fish in
relatively peak vs. declining health conditions (Kanuga et al., 2011).
Since life-time accumulation of environmental toxicants can be a
confounder in age-related effects, as well as a result of the aging
process (Bunton et al., 1987), this study used adult exposures only on
test subjects who had previously been raised in a MeHg-free
environment. Our previous work with zebrafish showed that
embryonic exposure to MeHg induced learning deficits when tested
at 4–8 months of age in a spatial alternation task that involves the
dorsolateral telencephalon (Smith et al., 2010), and an active
avoidance task that involves the dorsomedial telencephalon (Xu
et al., 2012). To extend those investigations, the present study
investigated the neurobehavioral effects of late- vs. early-stage adult
zebrafish exposures to MeHg using active avoidance conditioning as
the behavioral paradigm.

2. Material and methods

2.1. Breeding and egg collection

Adult zebrafish (Ekkwill Waterlife Resources, Gibsonton, FL)
were acclimated for several weeks prior to the initiation of
experiments. Fish were maintained at 26–28 8C on a 14-h light
and 10-h dark cycle in a flow-through buffered, dechlorinated water
system at the Aquatic Animal Facility of the University of Wisconsin-
Milwaukee Children’s Environmental Health Sciences Center. All
experimental procedures were approved by the University of
Wisconsin-Milwaukee Animal Care and Use Committee. Zebrafish
were bred in 2-L plastic aquaria with a 1/8 in. nylon mesh false
bottom to protect fertilized eggs from being consumed by the adults.
Eggs were collected �2 h post fertilization and placed into glass
culture dishes (100 mm diameter � 50 mm depth) in E2 medium
(each liter contains 0.875 g NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 g
KH2PO4, and 0.006 g Na2HPO4) with 0.0 mM MeHg. Fry were fed
vinegar eels twice each day until large enough to consume Artemia

nauplii. Juveniles and adults were fed AquarianTM flake food
(Aquarium Pharmaceuticals, Inc., Chalfont, PA) in the morning
and Artemia nauplii in the afternoon.

2.2. Exposure regimen

Methylmercury (MeHg; >98% purity) was obtained from ICN
Biomedicals (Aurora, OH) and dissolved in 0.15% ethanol (EtOH).
Fish were raised in MeHg-free and dechlorinated water for 12 or 24
months at which time they were exposed to a daily pulse of 0.0,
0.01, 0.03, 0.10, or 0.30 mM MeHg or the vehicle 0.15% EtOH for 2
weeks. Each exposure group was visibly healthy (no aberrant
swimming styles, normal eating patterns, normal respiration
activity as monitored by gill opercular movements, no visible
surface fungal growth, etc.) at the start of the exposure.

2.3. Housing during avoidance conditioning

During behavioral experiments, adult zebrafish were kept in
individual compartments of partitioned tanks at 26 � 1 8C with a
12 h light–dark cycle (0700–1900 light) at the fish laboratory of
Grand Valley State University. The behavioral experiments were
conducted during the light cycle and all experimental procedures
were approved by the Grand Valley State University Institutional
Animal Care and Use Committee.

2.4. Apparatus for avoidance conditioning

Zebrafish were trained and tested individually in two identical
zebrafish shuttle-boxes connected to a programmer/shocker unit.
The zebrafish shuttle-box consisted of a water-filled tank (18 cm in
length � 7.5 cm in width � 10 cm in height) separated by an
opaque divider (7.5 cm in width � 10 cm in height) into two equal
compartments. The divider was raised 0.6 cm above the floor of the
tank during trials allowing zebrafish to swim freely from one side
of the tank to the other. The crossing movement of zebrafish was
monitored by infrared light beams and their corresponding
detectors located on the long sides of the tank. There was a light
at each end of the tank and there were two stainless steel electrode
plates (6.5 cm in length � 4 cm in height) at each of the long sides
of each compartment.

2.5. Active avoidance paradigm

Zebrafish were placed in the shuttle-boxes for 5 min, and then a
trial began with the onset of the light, the conditioned stimulus
(CS), on the side of the fish’s location and the manually raised
divider 0.6 cm above the floor of the tank. After the light was on for
12 s, a repetitive mild electrical shock (0.73 V/cm AC, pulsed
100 ms on and 1400 ms off), the unconditioned stimulus (US), was
administered, along with the light, for 12 s through the water by
means of electrodes. At the end of 24 s or at a crossing response by
zebrafish during the 24 s, the trial ended with both the light and
electrical shock switched off and the divider lowered. After an
intertrial interval (ITI) ranging from 12 to 36 s, another trial began.

Zebrafish initially swam through the raised divider only after
receiving several shocks. The crossing response made after the
onset of both light signal and electrical shock to escape the
electrical body shock is defined as an escape response. During
the training sessions, zebrafish gradually learned to swim from the
lighted end to the dark end to avoid the electrical body shock. The
crossing response made after the onset of the light signal, but
before the onset of electrical shock to avoid the electrical body
shock, is defined as an avoidance response. The time taken by
zebrafish to make the crossing response following the onset of the
light signal is defined as crossing latency. The measurements were
the number of avoidances and escapes; and crossing latency.
Except the manually raised dividers, all experiments were
automated through the programmer/shocker unit and a Gateway
2000 P5-100 computer that programmed stimuli, monitored and
recorded behavior of zebrafish.

Zebrafish were trained on Behavioral Experimental Day 1, and
tested on Behavioral Experimental Day 3. The training session
consisted of 30 trials, and the testing session consisted of 10 trials.
Percentage of avoidance responses and crossing latency were used
as indicators of learning.

2.6. Experiment 1: the effects of MeHg exposure in 2-year-old

zebrafish

This experiment examined the neurobehavioral effects of MeHg
exposure in older adult zebrafish. Adult zebrafish of 2-year old
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were randomly divided into groups and were exposed to 0.01 mM,
0.03 mM, 0.1 mM, or 0.3 mM of MeHg for 2 weeks. One control
group was exposed to neither MeHg nor the vehicle, while a vehicle
control group was exposed only to the vehicle 0.15% EtOH for 2
weeks. Two to three weeks after the completion of the exposure,
the groups were trained and then tested for avoidance responses.
Percentage of avoidance responses and crossing latency were used
as indicators of learning.

Two-way ANOVAs with one between factor (different groups)
and one repeated measure (training vs. testing) on the results were
carried out first to determine possible significant differences,
followed by one-way ANOVAs to determine any significant
differences among groups and correlated t-tests to determine
any significant differences between training and testing.

2.7. Experiment 2: the effects of MeHg exposure in 1-year-old

zebrafish

This experiment examined the neurobehavioral effects of MeHg
exposure in younger adult zebrafish. Adult zebrafish of 1-year old
were randomly divided into groups and were exposed to the same
concentrations of MeHg used in Experiment 1, i.e., 0.01 mM,
0.03 mM, 0.1 mM, or 0.3 mM of MeHg for 2 weeks. One control
group was exposed to neither MeHg nor the vehicle, while a vehicle
control group was exposed only to the vehicle 0.15% EtOH for 2
weeks. Two to three weeks after the completion of the exposure,
the groups were trained and then tested for avoidance responses.
Percentage of avoidance responses and crossing latency were used
as indicators of learning.

Two-way ANOVAs with one between factor (different groups)
and one repeated measure (training vs. testing) on the results were
carried out first to determine possible significant differences,
followed by one-way ANOVAs to determine any significant
differences among groups and correlated t-tests to determine
any significant differences between training and testing.

3. Results

3.1. Results of 2-year-old zebrafish in Experiment 1

All 2-year-old zebrafish that were exposed to 0.3 mM died
before the behavioral experiment started. Fig. 1 shows avoidance
responses of five groups of 2-year-old zebrafish. A two-way
ANOVA with one between factor (5 groups) and one repeated
measure (2 sessions) on the avoidance responses indicated a
significant group difference [F(4, 80) = 13.727, p < 0.01], and a
significant session difference [F(1, 80) = 14.731, p < 0.01]. A one-
way ANOVA with multiple comparisons on the avoidance
responses of the groups during the training session showed that
only the 0.1 mM MeHg group was significantly different from the
vehicle control group [F(4, 80) = 7.922, p < 0.01], while another
one-way ANOVA with multiple comparisons on the avoidance
responses of the groups during the testing session showed
significant differences between the vehicle control and MeHg
groups in a dose-dependent manner [F(4, 80) = 14.612, p < 0.01].
There were no significant differences between the control group
and the vehicle control group. However, compared with the vehicle
control EtOH group, the 0.01 mM MeHg group showed lower
avoidance responses, the 0.03 mM MeHg group showed signifi-
cantly lower avoidance responses (p < 0.05), and the 0.1 mM MeHg
group showed the lowest avoidance responses (p < 0.01) [Fig. 1:
upper panel].

When comparisons between training and testing were made for
each group, correlated t-tests on the avoidance responses of each
group showed that the control fish learned avoidance responses
during training and showed significant increases in avoidance

responses during testing (p < 0.01), the EtOH group also learned
avoidance responses during training and showed significant
increases in avoidance responses during testing (p < 0.05), while
zebrafish exposed to MeHg showed no significant increases in
avoidance responses from training to testing [Fig. 1: lower panel].

The crossing latency results showed the similar pattern [Fig. 2].
A two-way ANOVA with one between factor (5 groups) and one
repeated measure (2 sessions) on the crossing latency indicated a
significant group difference [F(4, 80) = 25.363, p < 0.01], and a
significant session difference [F(1, 80) = 20.387, p < 0.01]. A one-
way ANOVA with multiple comparisons on the crossing latency of
groups during the training session showed that only the 0.1 mM
MeHg group was significantly different from the vehicle control
group [F(4, 80) = 19.579, p < 0.01], while another one-way ANOVA
with multiple comparisons on the crossing latency of groups
during the testing session showed significant differences between
the vehicle control and MeHg groups in a dose-dependent manner
[F(4, 80) = 22.448, p < 0.01]. There were no significant differences
between the control group and the vehicle group. However,
compared with the vehicle control EtOH group, the 0.01 mM MeHg
group showed longer crossing latency, the 0.03 mM MeHg group
showed significantly longer crossing latency (p < 0.05), and the
0.1 mM MeHg group showed the longest crossing latency
(p < 0.01) [Fig. 2: upper panel].

When comparisons between training and testing were made for
each group, correlated t-tests on the crossing latency of each group
showed that the control and EtOH groups learned avoidance
responses during training and showed significantly shortened
crossing latency during testing (p < 0.05), while zebrafish exposed
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to MeHg showed no significant changes in the crossing latency
from training to testing [Fig. 2: lower panel].

There were no significant differences in escape responses
during training among the five groups of 2-year-old zebrafish,
although the 0.03 and 0.1 mM MeHg groups showed slightly more
escape responses than other groups during training. Thus, 2-year-
old zebrafish exposed to the levels of MeHg used in the study were
able to perceive the shock and swim cross the divider to the dark
side to escape the shock.

3.2. Results of 1-year-old zebrafish in Experiment 2

Fig. 3 shows avoidance responses of the six groups of 1-year-old
zebrafish. A two-way ANOVA with one between factor (6 groups)
and one repeated measure (2 sessions) on the avoidance responses
indicated only the group � session interaction close to a significant
level [F(5, 68) = 2.009, p = 0.09]. A one-way ANOVA with multiple
comparisons on the avoidance responses of the groups during the
training session showed no significant differences among groups,
while another one-way ANOVA with multiple comparisons on the
avoidance responses of the groups during the testing session
showed significant differences between the vehicle control and
MeHg groups in a dose-dependent manner [F(5, 68) = 2.534,
p < 0.05]. There were no significant differences between the
control group and the vehicle control group. However, compared
with the vehicle control EtOH group, the 0.1 mM MeHg group
showed significantly lower avoidance responses (p < 0.05), and the
0.3 mM MeHg group showed the lowest avoidance responses
(p < 0.01) [Fig. 3: upper panel].

When comparisons between training and testing were made for
each group, correlated t-tests on the avoidance responses of each
group showed that the control group learned avoidance responses
during training and showed significant increases in avoidance
responses during testing (p < 0.01); the EtOH and the 0.01 mM
groups also learned avoidance responses during training and
showed significant increases in avoidance responses during testing
(p < 0.05); while the 0.03 mM, 0.1 mM, and 0.3 mM MeHg groups
showed no significant increases in avoidance responses from
training to testing [Fig. 3: lower panel].

The crossing latency appeared to be a more sensitive indicator
of learning [Fig. 4]. A two-way ANOVA with one between factor (6
groups) and one repeated measure (2 sessions) on the crossing
latency indicated a significant group difference [F(5, 68) = 2.488,
p < 0.05]. A one-way ANOVA with multiple comparisons on the
crossing latency of the groups during the training session showed
no significant differences among groups, while another one-way
ANOVA with multiple comparisons on the crossing latency of the
groups during the testing session showed significant differences
between the vehicle control and MeHg groups in a dose-dependent
manner [F (5, 68) = 3.634, p < 0.01]. There were no significant
differences between the control group and the vehicle control
group. However, compared with the vehicle control EtOH group,
the 0.1 mM MeHg group showed significantly longer crossing
latency (p < 0.05), and the 0.3 mM MeHg group showed the longest
crossing latency (p < 0.01) [Fig. 4: upper panel].
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When comparisons between training and testing were made for
each group, correlated t-tests on the crossing latency of each group
showed that the control and 0.01 mM MeHg groups learned
avoidance responses during training and showed significantly
shortened crossing latency during testing (p < 0.01); the EtOH and
the 0.03 mM MeHg groups also showed significantly shortened
crossing latency during testing (p < 0.05); while the 0.1 mM and
0.3 mM MeHg groups showed no significant changes in the
crossing latency from training to testing [Fig. 4: lower panel].

There were no significant differences in escape responses
during training among the six groups of 1-year-old zebrafish. Thus,
1-year-old zebrafish exposed to the levels of MeHg used in the
current study were able to perceive the shock and swim cross the
divider to the dark side to escape the shock.

4. Discussion

The results of Experiment 1 showed that older adult zebrafish
exposed to no MeHg or EtOH learned and retained avoidance
responses, while 0.01 mM or higher concentrations of MeHg
exposure impaired avoidance learning in a dose-dependent
manner with 0.3 mM of MeHg exposure producing death before
the avoidance training started. The results of Experiment 2 showed
that younger adult zebrafish exposed to no MeHg, EtOH, or
0.01 mM of MeHg learned and retained avoidance responses, while
0.1 or 0.3 mM of MeHg exposure impaired avoidance learning in a
dose-dependent manner. Thus, the present study showed that
MeHg exposure produced learning impairments at a much lower
concentration of MeHg exposure and more severely in older adult
compared against younger adult zebrafish.

The levels of MeHg exposures from 0.01, 0.03, 0.1 to 0.3 mM
used in older zebrafish all produced impaired learning with 0.03
and 0.1 mM produced significant impairments and 0.3 mM
produced death either during the MeHg exposure period or shortly
after the MeHg exposure but before the avoidance training started.
The two control groups learned to associate the CS of the light with
the US of body shock during training and displayed their learning
through increased avoidance responses and shortened crossing
latency during testing. The 0.01 and 0.03 mM MeHg groups
displayed slightly, but not significantly, increased avoidance
responses from training to testing. The two groups also display
slightly, but not significantly, shortened crossing latency from
training and testing. The 0.1 mM MeHg group displayed signifi-
cantly lower avoidance responses and longer crossing latency
during training, and showed no significant changes in either
avoidance responses or crossing latency from training to testing.
This group of zebrafish displayed a slightly higher level of escape
responses during training compared with the control and EtOH
groups, indicating that this group of zebrafish were able to perceive
the body shock and the opening under the divider, and were able to
swim cross the divider to the dark side to escape the body shock.
However, this group of zebrafish was sometimes lethargic and
observed to swim upside down and backwards or floated on their
sides in their home tanks and during the avoidance conditioning.
Those behavioral deficits were not seen in younger zebrafish in the
study. Thus, the 0.1 mM MeHg exposure also produced more
generally and profoundly behavioral deficits in older zebrafish.

Among the levels of MeHg exposures from 0.01, 0.03, 0.1 to
0.3 mM used in younger zebrafish, only 0.1 and 0.3 mM MeHg
produced impaired learning with three of the twelve 0.3 mM MeHg
fish found died before the avoidance training started. The control
groups and 0.01 mM MeHg group learned avoidance responses as
showed by their increased avoidance responses and shortened
crossing latency during testing. While the 0.03 mM MeHg group in
Experiment 2 showed no significant changes in avoidance
responses from training to testing, the group showed significantly
shortened crossing latency from training to testing. The 0.03 mM
MeHg group displayed much higher avoidance responses during
training. It may not be possible for them to display further
increases in avoidance responses during testing due to the ceiling
effect. Thus, the group may have learned to associate the light with
body shock and displayed learning through significantly shortened
crossing latency during testing.

Learning and memory are sometimes inseparable, and both are
reflected in improved performances. One cannot say that learning
occurred unless the learner remembers what was learned.
Nothing can be remembered unless it was learned in the first
place. Therefore, any improved performance during testing over
the prior training session reflects both learning and memory.
Thus, zebrafish that showed significant increases in avoidance
responses during testing learned and retained avoidance
responses. However, a lack of improved performances during
testing over the prior training session may be due to impaired
learning or impaired memory (Xu, 2002; Xu et al., 2003, 2009). To
determine whether a lack of improved performances is due to
impaired learning or impaired memory, the same experimental
treatment (such as, MeHg exposure) is often given to one group of
animals before training and another group of animals immedi-
ately following training (Xu, 2002). If the experimental treatment
produces a lack of improved performances when given only before
but not after training, then the experimental treatment impairs
learning but not memory. If the experimental treatment produces
the same lack of improved performances when given either before
or after training, then the experimental treatment impairs
memory but not learning (Xu, 2002; Xu et al., 2003, 2009).
However, the 2-week MeHg exposures used in the current study is
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not useful in investigating its post-training effects, because the
slow exposure process may parallel with memory decay over time
and thus confounds the testing results. The training session is
when learning occurs, but whether the results of the training
session show the learning may be debatable (Xu, 1997).
Nevertheless, when the results of the 30 trials during the training
session were grouped into six blocks of five trials, both older and
younger adult zebrafish exposed to MeHg did not show any
increases in avoidance responses from the block of the first five
trials to the block of the last five trials, providing no evidence of
learning. Therefore, the lack of increased avoidance responses or
shortened crossing latency during testing over the prior training
session produced by MeHg exposure was most likely due to
impaired learning.

Studies have showed that short-term exposure to high doses of
MeHg or chronic mercury exposure produces sensory and motor
deficits, including impaired color vision and general visual acuity
(Barboni et al., 2009; Feitosa-Santana et al., 2010; Heath et al.,
2010; Neghab et al., 2012). Thus, MeHg exposure in the present
study might impair learning process specifically or by impairing
sensory or motor processes that are necessary for learning to occur.
That is, MeHg exposure might impair the perception of the CS of
the light or the US of the body shock or might impair the motor
coordination of swimming cross the divider as opposed to the
impairment of learning process specifically. Both older and
younger zebrafish exposed to MeHg showed the levels of escape
responses during training similar to those of their control groups
during training, indicating that zebrafish exposed to MeHg were
able to perceive the body shock and the opening under the divider,
and were able to swim cross the divider to the dark side to escape
the shock. Even the 0.1 mM MeHg group of older zebrafish that
showed more general and profound behavioral deficits was able to
perceive the body shock and the opening under the divider, and
was able to swim through the opening under the divider to escape
the body shock as indicated by their higher level of escape
responses during training. Furthermore, visual deficits produced
by MeHg exposure tend to occur following chronic mercury
exposure, and include color vision impairments and diminished
visual acuity (Barboni et al., 2009; Feitosa-Santana et al., 2010;
Neghab et al., 2012). In the present study, the 2-week MeHg
exposure was short-term and a bright light was used as the CS. It is
unlikely that the MeHg exposure in the present study produced
visual deficits that caused zebrafish unable to see the CS of the
bright light as MeHg zebrafish were able to perceive the opening
under the divider to swim through to escape the body shock. Thus,
MeHg exposures in the current study did not impair the sensory or
motor processes necessary for learning to occur. Therefore, MeHg
exposure in the present study was most likely to impair learning
process specifically.

While numerous papers have been published identifying adult
effects on learning after developmental exposures to MeHg, others
have focused on adult-only exposures either through diet or
occupation (e.g., Bourdineaud et al., 2008; Carvalho et al., 2007;
Yokoo et al., 2003; Dolbec et al., 2000; Satoh, 2000; Lebel et al.,
1998). Most of these studies have, however, differentiated between
learning outcomes due to adult-only exposures and adult effects of
gestational, lactational, or lifetime exposures. The majority of
those studies that did make such a distinction involved occupa-
tional exposures to elemental mercury and not MeHg, e.g., dental
workers, chemical production workers or gold miners (Li et al.,
2011; Hilt et al., 2009; Powell, 2000; Ritchie et al., 1995; Smith
et al., 1983). None, however, of those reports compared learning
outcomes due to MeHg exposures at either early-mid or late adult
stages. The importance of such comparisons revolves around
findings that as one ages, neurodegeneration increases and the
ability to protect against neural damage decreases, which results in

greater potential sensitivity to environmental contaminants
(Spencer et al., 2000). The present experiments, therefore, were
designed to provide insights into the interaction between the adult
aging process and the intensity of age-specific learning effects of
short-term, adult-only MeHg exposure; it is to the best of our
knowledge, the first such study. While these data did not directly
compare age-specific differences in brain structure as a result of
short-term, adult exposures to MeHg, they do suggest that further
research into the interaction between the cellular and organismal
changes that occur during the aging process and the increased
susceptibility to environmental contaminants in human and
wildlife populations needs to be investigated.

The present study used zebrafish because of its short generation
times, high number of eggs per female, and ease of breeding. Our
previous studies utilized zebrafish in studying the neurobehavioral
effects of embryonic MeHg exposure (Smith et al., 2010; Xu et al.,
2012). The present study used zebrafish to investigate the age-
dependent neurobehavioral effects of adult MeHg exposure. Our
ongoing studies have utilized zebrafish to explore the transge-
nerational heritability of the neurobehavioral effects of embryonic
MeHg exposure. Zebrafish are also useful in examining whether
short-term MeHg exposure during juvenile stage or early-adult
stage or middle age produces a life-long effect. Thus, due to its
short generation times, high number of eggs per female, and ease of
breeding, zebrafish has become a useful organism for studying the
neurobehavioral effects of environmental contaminants.

5. Conclusion

MeHg exposure produced learning impairments at a much
lower concentration of MeHg exposure and more severely in old
adult compared to young adult zebrafish.
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