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The “Lights Out!” Game on Threshold
Graphs

Troy Conlay, Darren B. Parker

August 1, 2024

Abstract

The ‘Lights Out’ game was originally played on a 5×5 grid of buttons
that started as either on or off. Pressing the buttons flips the state of
the button pressed and the directly adjacent buttons, the goal being
to have all of the lights out. We can play ‘Lights Out’ on a graph if
we assign 0 or 1 to each of the vertices on the graph, analogous to on
and off in the original game, and switch the labels of a vertex and its
neighbors from 0 to 1 and vice versa when the vertex is toggled. This
paper studies a modified version of the game, where instead of labels
coming from integers modulo 2, they come from integers modulo k.
To win the game, a player toggles the vertices so that eventually all
vertices have label 0 at the same time. For certain graphs and certain
starting configurations, the game is not winnable. We investigate
under what conditions the game can be won when applied to threshold
graphs.∗

∗This research was funded by the Ronald E. McNair Post-Baccalaureate Achievement
Program.
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1 Introduction

The ‘Lights Out!’ game, developed by Tiger Electronics in 1995, involves
a 5 × 5 grid of buttons that have two states, on and off. In the original
game, pressing a button flips the state of the button pressed and the buttons
directly adjacent to it. The states of the buttons can be equally represented
as having states of 0 for off and 1 for on. The goal is to turn off all lights
starting from any configuration. This game has been generalized to arbitrary
graphs, where vertices represent buttons and edges represent the adjacency
between them [5]. The game was further generalized to be played with any
number of states, k [3, 4].

The generalization goes as follows. Let G be a graph with an initial
labeling π : V (G) → Zk for k ≥ 2 ∈ N. When a vertex is toggled, it
and every adjacent vertex has it’s label increased by 1 mod k. We define
a labeling to be k-winnable when there exists a sequence of toggles to the
vertices of a graph that reduces the label for all vertices to 0. It is possible
to have a graph structure or number of colors that makes it possible that an
initial labeling cannot be won. The case where all of the initial labelings of
the vertices are k-winnable is referred to as always winnable, or AW. We say
a graph is always winnable with k colors as k-AW.

The mathematical exploration of the ‘Lights Out!’ game on graphs
has revealed connections to linear algebra, graph theory, and domination
theory. Anderson and Feil used linear algebra over Z2 to classify winnable
configurations on n × n grids [2]. Sutner demonstrated that winnability
in ‘Lights Out!’ is equivalent to determining the reachability problem in
finite cellular automata [5]. Amin and Slater developed the concept of parity
domination for graphs labeled with 0 and 1. The parity dominating sets
studied correspond to winning strategies in the ‘Lights Out’ game. They
identified winnable configurations in specific graph classes such as paths,
spider graphs, and caterpillar graphs [1].

Building on these foundations, Giffen and Parker and Arangala et al.
independently extended the game to graphs with vertices having k states,
represented by elements of Zk. Arangala et al. called the game “multi-state
lights out” and Giffen/Parker referred to the game as “neighborhood lights
out.” They both established conditions for when many families of graphs are
always-winnable (AW) in Zk, and connected these conditions to domination

2



theory in multi-colored ‘Lights Out’ puzzles [3, 4].

This paper focuses on the ‘Lights Out!’ game on threshold graphs. We
investigate the conditions under which the ‘Lights Out!’ game is k-AW on
threshold graphs. We define a threshold graph as follows:

Definition 1 (Threshold Graphs). Let a bit string B = (b1, b2, . . . , bn), where
bi ∈ Z2 for 1 ≤ i ≤ n.

• A graph G is a threshold graph associated with B when
V (G) = {v1, v2, . . . , vn} and vivj ∈ E(G) only if bi = 1 and 1 ≤ i <
j ≤ n.

• Let W = {w1, w2, . . . , wm} ⊆ V (G) be the set of vertices such that they
correspond to the 1s in B, listed in the same order as their correspond-
ing bits in the string. Let L0 be the set of vertices before w1. Let Li

be the set of vertices after wi but before wi+1 where 1 ≤ i ≤ m. Let
ℓi = |Li|.

Our main theorem states that a threshold graph is k-AW if gcd(ℓi, k) = 1
for all 1 ≤ i < m . The development of the solution leverages tools from
linear algebra and number theory to establish these conditions.

To toggle a vertex a negative number of times, say −5 times, we toggle
the vertex k − 5 times, and because the vertices operate modulo k, that
expression reduces to −5. In this paper, we define the natural numbers to
be the non-negative integers.

2 Lemmas

To support the main theorem, we need some lemmas. First, we show that
L0 does not affect the winnability of a graph G.

Lemma 1. Let G be a threshold graph with associated bit string B = (b1, b2, . . . , bn).
Assume that bi = 0 for 1 ≤ i ≤ p. Define G′ as a sub-graph of G induced by
the vertices {vp+1, vp+2, . . . , vn}. Let π : V (G) → Zk be the initial labeling of
G and π′ be a restriction of π to G′. If and only if π′ is a k-winnable labeling
in G′, π is a k-winnable labeling in G.

Proof. Assume that π′ is k-winnable on G′.
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If π′ is k-winnable on G′, then there exists a sequence of toggles on the
vertices in G′ that reduce the label of every vertex to 0. This does not include
v1, v2, . . . , vp, which still have an arbitrary label on each vertex, π(vi) for all
1 ≤ i ≤ p because they share no edges with the sub-graph G′ and we did
not toggle any of them. Now we toggle each vi −π(vi) times, reducing all
of their labels to 0. We can do this without considering the other vertices
in v1, v2, . . . , vp and G′ because each vertex in v1, v2, . . . , vp has degree 0 by
construction. We have reduced every vertex to zero, thus π′ is a k-winnable
labeling in G′ and π is a k-winnable labeling in G.

If π is k-winnable on G, then there exists a sequence of toggles on the
vertices in G that reduce the label of every vertex to 0. Because there are no
edges between the first p vertices and the vertices in G′, the same sequence
of toggles that reduces the label of every vertex in G to 0 (π) also reduces
the label of every vertex in G′ (π′). Thus, if π is k-winnable on G, then π′ is
k-winnable on G′, concluding our proof.

After that step, we can assume that L0 = ∅ without a loss of generality.
Next we further reduce the problem by ensuring that the vertices in any
threshold graph associated with a 0 in the bit string can have their labels
reduced to 0 without a loss of generality.

Lemma 2. Assume G is a threshold graph with associated bit string B.
Assume L0 = ∅. Let τ : V (G) → Zk be the initial labeling for G. Then,
we can toggle V (G) such that for every vertex, v ∈ Li for 1 ≤ i ≤ m − 1
associated with a 0 in B, its label is 0.

Proof. If we toggle each v ∈ Li a total of −τ(v) times, their labels are reduced
to 0. The vertices v share no edges between them, so toggling each of them
does not affect the others. We have shown that all vertices in Li can have
their labels reduced to zero, concluding our proof.

The previous lemma applies to every threshold graph, so from here we
assume that the vertices associated with zeros have label zero the graphs in
our following lemmas. Next we are going to toggle the vertices of a threshold
graph in that state to produce a system of linear equations that determine
when the game is k-winnable.
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Lemma 3. Let G be a threshold graph with associated bit string B, and
suppose τ : V (G) → Zk. Let τ(vi) = 0 for every vi in every Li. Assume that
L0 = ∅. Let |Li| = ℓi. Recall that wi is the vertex associated with the i-th 1
in the B. Then, τ is a k-winnable labeling if and only if the following system
of linear equations has a solution.

τ(w1) = x1

(
m−1∑
i=1

ℓi − 1

)
+ x2

(
m−1∑
i=2

ℓi − 1

)
+ . . . + xm−1 (ℓm−1 − 1)− xm

τ(w2) = x1

(
m−1∑
i=2

ℓi − 1

)
+ x2

(
m−1∑
i=2

ℓi − 1

)
+ . . . + xm−1 (ℓm−1 − 1)− xm

...
...

τ(wm−1) = x1 (ℓm−1 − 1) + x2 (ℓm−1 − 1) + . . . + xm−1 (ℓm−1 − 1)− xm

τ(wm) = −x1 − x2 − . . .− xm−1 − xm

Proof. Assume that wi is toggled xi times for all 1 ≤ i ≤ m. Due to the
construction of the graph, a few things occur:

1. Since every wi is adjacent to each other, this toggling adds every xi to

each of them once. This leaves the label for wi as τ(wi) +
m∑

n=1

xn for

every i.

2. Every vertex v in Li is adjacent to every wr for all 1 ≤ r ≤ i. This
implies that after every wr is pressed, the label for every vertex in Li

will be 0 +
i∑

j=1

xj.

Each vertex v in each Li is adjacent to every wr for all 1 ≤ r ≤ i. The
only way to turn the vertices in Li off is to toggle them. The only adjacent
vertices that we could toggle to turn the Li’s off are the wi’s, and as we
toggled those vertices to get the labels onto the vertices in Li, we cannot
toggle the wi’s to turn off each vertex in Li, as we have toggled all the wi’s as
much as they are going to be toggled. There are ℓi vertices in Li, so pressing
all of the vertices in each Li leaves the total label of wr for 1 ≤ r ≤ m as:

τ(wr)+
m∑
i=1

xi−ℓr

(
r∑

i=1

xi

)
−ℓr+1

(
r+1∑
i=1

xi

)
−ℓr+2

(
r+2∑
i=1

xi

)
−. . .−ℓm−1

(
m−1∑
i=1

xi

)

The only way to win the game is if all of these expressions are equal
to zero, as then all of the vertices in the graph would have label 0. We use
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algebra to rearrange this to make the coefficients x:

τ(wr) = x1

(
m−1∑
i=r

ℓi − 1

)
+ x2

(
m−1∑
i=r

ℓi − 1

)
+ . . .

. . .+ xr

(
m−1∑
i=r

ℓi − 1

)
+ xr+1

(
m−1∑
i=r+1

ℓi − 1

)
+ . . .+ xm−1(ℓm−1 − 1)− xm

When we look at the full system of equations we get this:

τ(w1) = x1

(
m−1∑
i=1

ℓi − 1

)
+ x2

(
m−1∑
i=2

ℓi − 1

)
+ . . . + xm−1 (ℓm−1 − 1)− xm

τ(w2) = x1

(
m−1∑
i=2

ℓi − 1

)
+ x2

(
m−1∑
i=2

ℓi − 1

)
+ . . . + xm−1 (ℓm−1 − 1)− xm

...
...

τ(wm−1) = x1 (ℓm−1 − 1) + x2 (ℓm−1 − 1) + . . . + xm−1 (ℓm−1 − 1)− xm

τ(wm) = −x1 − x2 − . . .− xm−1 − xm

Thus, it is possible regardless of the initial labeling to toggle every vertex to
be zero, if and only if this equation has a solution.

Next, we need to find when this system of linear equations has a solution,
and the way to do this simply is to turn this system into a matrix. A solution
always exists if and only if the matrix is invertible, so we find when the
determinant has a multiplicative inverse modulo k, which implies an inverse.

Lemma 4. Let ℓi ∈ N for all 1 ≤ i < m. Then, an m × m matrix of the
form: 

(
m−1∑
i=1

ℓi − 1

) (
m−1∑
i=2

ℓi − 1

)
. . . (ℓm−1 − 1) −1(

m−1∑
i=2

ℓi − 1

) (
m−1∑
i=2

ℓi − 1

)
. . . (ℓm−1 − 1) −1

...
. . . . . .

...
...

(ℓm−1 − 1) (ℓm−1 − 1) . . . (ℓm−1 − 1) −1

−1 −1 −1 −1 −1


is invertible if and only if gcd(ℓi, k) = 1 for all 1 ≤ i < m.
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Proof. Consider this m×m matrix:

(
m−1∑
i=1

ℓi − 1

) (
m−1∑
i=2

ℓi − 1

)
. . . (ℓm−1 − 1) −1(

m−1∑
i=2

ℓi − 1

) (
m−1∑
i=2

ℓi − 1

)
. . . (ℓm−1 − 1) −1

...
. . . . . .

...
...

(ℓm−1 − 1) (ℓm−1 − 1) . . . (ℓm−1 − 1) −1

−1 −1 −1 −1 −1


The matrix A can be row reduced to a lower triangular matrix by sub-

tracting each row from all of the rows above it. Considering that as you go
down the rows, a term gets removed, what remains is the term corresponding
to that row before the diagonal, and after the diagonal it’s 0. For the j-th
row, for 1 ≤ j ≤ m, the row reduction looks like this:

(Rj) :

(
m−1∑
i=j

ℓi − 1

) (
m−1∑
i=j

ℓi − 1

)
. . .

(
m−1∑
i=j

ℓi − 1

) (
m−1∑
i=j+1

ℓi − 1

)
. . . (ℓm−1 − 1) −1

(Rj −Rm) :

(
m−1∑
i=j

ℓi

) (
m−1∑
i=j

ℓi

)
. . .

(
m−1∑
i=j

ℓi

) (
m−1∑
i=j+1

ℓi

)
. . . ℓm−1 0

(Rj −Rm −Rm−1) :

(
m−2∑
i=j

ℓi

) (
m−2∑
i=j

ℓi

)
. . .

(
m−2∑
i=j

ℓi

) (
m−2∑
i=j+1

ℓi

)
. . . 0 0

...

(Rj −Rm − . . .−Rj+1) : ℓj ℓj . . . ℓj 0 . . . 0 0

Thus the first j components of the j-th row are non-zero and the other
components are 0, doing this for all rows leaves the matrix as lower triangular:
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A′ =


ℓ1 0 . . . 0 0

ℓ2 ℓ2
. . .

...
...

...
. . . . . . 0 0

ℓm−1 ℓm−1 . . . ℓm−1 0
−1 −1 −1 −1 −1


These operations do not affect the invertibility of A, because row op-

erations preserve the determinant. The condition for when A is invertible
is when det(A) has a multiplicative inverse modulo k, because we are doing
these operations in Zk. Finding the determinant of A′ is straightforward, as
it is the product of the diagonal entries.

det(A′) = det(A) = −1
m−1∏
i=1

ℓi

This product only has a multiplicative inverse modulo k when each of
the factors are co-prime with k, so we can express the condition that A is
invertible as:

gcd(ℓi, k) = 1
for 1 ≤ i < m and gcd(−1, k) = 1

Note that the statement gcd(−1, k) = 1 is trivially true for all k, so we
can ignore it. This concludes our proof.

3 Main Theorem

Now we have all the tools we need in order to show when threshold
graphs are k-AW.

Theorem. Any threshold graph G, with associated bit string B is k-AW if
and only if for all 1 ≤ i < m, gcd(ℓi, k) = 1, where ℓi is the number of 0s
after the i-th 1 in B.

Proof. Assume that G is k-AW. By definition this means that every initial
labeling τ is k-winnable. Since τ is k-winnable, the system of linear equations
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in Lemma 3 has a solution. This system of equations has a solution when
the matrix it creates is invertible, and in Lemma 4 we find that the matrix is
invertible if gcd(ℓi, k) = 1 for all 1 ≤ i < m. Therefore, when gcd(ℓi, k) = 1
for all 1 ≤ i < m, any threshold graph is G is k-AW.

Assume gcd(ℓi, k) = 1 for all 1 ≤ i < m and τ is an arbitrary initial
labeling for G. If gcd(ℓi, k) = 1 for all 1 ≤ i < m, then Lemma 4 states the
matrix from Lemma 4 is invertible. When the Lemma 4 matrix is invertible,
the system of linear equations in Lemma 3 has a solution. As shown in
Lemma 3, when the system of linear equations has a solution, the initial
labeling τ is k-winnable. Since τ is an arbitrary initial labeling, any threshold
graph G must be k-AW when gcd(ℓi, k) = 1 for all 1 ≤ i < m. This concludes
the proof.
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