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ABSTRACT 

 Adult neurogenesis, formation of new neurons, has been determined to be a part 

of the normal physiology in all species of animals studied to date. There have been 

several factors observed to increase the number of newly formed cells; the most potent of 

these factors being exercise. Though exercise has a strong effect on neurogenesis by 

increasing proliferation and new cell survival it has not been extensively studied in many 

model organisms. This study is the first to look at the effect of exercise on neurogenesis 

in an invertebrate through the use of crayfish, Orconectes propinquus. Experimental 

designs, drying protocols and equipment troubleshooting developed here will guide 

future studies of invertebrate neurogenesis and its relationship to exercise. 
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STUDYING NEUROGENESIS 

It was originally believed that the formation of new neurons, i.e. neurogenesis, 

was limited to embryonic development. However, in 1962 Joseph Altman made a 

discovery that began a line of evidence leading to the now supported concept that new 

neurons are born in adulthood as a part of the normal physiology. Altman was looking for 

gliogenesis following brain trauma using the marker for new cells, Thymidine- H3. He 

found, unexpectedly, that in regions not associated with brain lesions new cells were 

being generated (Altman, 1962). To date, neurogenesis has been established as a major 

part of the adult brains’ plasticity in all organisms studied (reviewed in Ehninger, & 

Kemperman, 2007; Reviewed in Lindsey & Tropepe, 2006). 

Though the concept of adult born neurons had the potential to be a 

groundbreaking and exciting area for research, the field of adult neurogenesis did flourish 

until the 1990’s, when the technology became available to confirm the newly formed 

cells were, in fact, neurons (reviewed in Ma, Ming, Gage, & Song, 2008). Research in 

adult neurogenesis began to flourish when a synthetic thymine named 5-bromo-2-

deoxyuridine (BrdU) entered the scene in 1989. BrdU is incorporated into the DNA in 

place of thymine during the S-phase of the cell cycle. This synthetic thymine is only 

found in cells which undergo mitosis while BrdU is available to the organism. Knowing 

the timeline of administration, and taking tissue samples at different times allow for the 
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determination of proliferation rates, cell survival, and the quantification of newly formed 

cells (Nowakowski, Lewin, & Miller, 1989).  

To identify cells that uptake BrdU, a BrdU antibody (anti-BrdU) is administered 

to prepared tissue. With application of anti-BrdU newly formed cells will visually differ 

from the other cells in the sample (Schmidt, & Derby, 2011). Since the antibody is all 

that is used to determine the identity of the newly generated cells, it did not take 

researchers long to start adding a secondary antibody to determine cell type as they 

became available. Secondary glial and neuronal markers are used to observe 

differentiation of the proliferating cells since both lineages may be derived from one cell 

type (Lois, & Alvarez-Bully, 1993). The most commonly used markers for identification 

of cells that have become mature neurons include: neuron specific enolase (NSE), 

microtubule-associated protein (MAP-2) and neuronal specific neuclear protein (NeuN). 

For identification of glial fate, researchers commonly use 2,3, cyclic nucleotide (CNP), 

calcium binding proteins such as S100β, and glial fibrillary acid protein (GFAP) markers 

(reviewed in Abrous, Koehl, & Moal, 2005).  

The use of BrdU has become standard practice for neurogenesis studies in the past 

20 years. Currently, further advances in research methods have allowed the morphology 

of the newly formed cells to be observed by using a retroviral vector, expressing green 

fluorescent protein (GFP). GFP like BrdU will label only newly formed cells, in addition   
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GFP can fills the entire cell. Seeing the neurons branching allows researchers to make 

observations of its integration into the current circuitry (van Praag et al., 2002).  

As the technology grows, so does the amount of obtainable information on adult 

born neurons. Each year, more research is compiled on how neurons are generated, 

neurogenic locations, and factors which affect rates of proliferation and survivability. 

Researchers continue to look for more markers that identify specific populations of neural 

progenitors, and ways to generate new neurons in non-neurogenic brain regions. It has 

yet to be determined how far clinical applications associated with adult born neurons will 

reach, but it is clear that the potential positive impacts are immense. 

 

NEUROGENESIS IN ADULTHOOD VS DEVELOPMENT 

As researchers began to understand adult neurogenesis, it became clear that it is 

not just a continuation of embryonic neural development, but is its own separate process. 

Both adults and developing embryos have their own stem cell populations with different 

characteristics. Stem cells are characterized by their ability to generate many different 

cell types while maintaining the ability to self-renew through asymmetric division. 

Specific to the nervous system stem cells, formation of glia and neurons are possible 

from these cells (McKay, 1997). 
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As the central nervous system (CNS) develops in utero, the stem cell that gives 

rise to both glia and neurons are radial glial cells, which are located throughout what will 

become the brain and spinal cord (reviewed in Pollard, & Conti, 2007). The neuroblasts 

generated from the radial glia migrate to their destination, guided by either radial glia or 

axon fibers (Edmondson & Hatten, 1987). However, in adult neurogenesis both the stem 

cells and migration are different than in embryonic brain development. The stem cell for 

adult neurogenesis is a specialized astrocyte.  This astrocyte-like stem cell is so similar to 

other astrocytes of the CNS, that there are no markers to date that can differentiate 

between the two (reviewed in Imayoshi, Sakamoto, Ohtsuka, & Kageyama, 2009). These 

adult stem cells, like the radia glia, can yield both neurons and glia (Lois, & Alvarez-

Buylla, 1993). Neuroblasts arising from these specialized astrocytes reach their target 

through chain migration within a channel of similarly specialized astrocytes (Jankovski, 

& Sotelo, 1996).  

In adult neurogenesis the rate of new cell formation is much slower than in utero, 

and continues to decline with age (Altman & Das, 1965; Kuhn, Dickinson-Anson, & 

Gage, 1996). One of the biggest differences between embryonic and adult neurogenesis is 

that adult neurogenesis is greatly limited in its anatomical location, and the types of 

neurons it can generate. Unlike embryonic development that occurs throughout the CNS, 

adult neurogenesis is compartmentalized into regions known as neurogenic niches, or 
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stem cell niches. Stem cell niches provide the surrounding support for stem cells. They 

function to protect and maintain stem cell populations throughout life, as well as provide 

signals to the stem cells located within their microenvironments (reviewed in Jones & 

Wagers, 2008; Morrison & Spradling, 2008). 

Depending on the animal species, the number of stem cell niches varies. 

Evolutionary older organisms tend to have a greater number of proliferating zones, with 

the teleost fish possessing the most (reviewed in Lindsey, 2006). Mammals only have 

two zones that have the specialized conditions to generate adult born neurons; the 

subgranular and subventricular zones (reviewed in Zhao, Deng & Gage, 2008; reviewed 

in van Praag, 2006).  

 

ADULT NEUROGENESIS IN MAMMALS  

 

Subgranular Zone 

The subgranular zone (SGZ) is located within the dentate gyrus, which is part of 

the hippocampus in the mammalian brain. Proliferation, the generation of new cells, in 

this zone can lead to either new glial cells or neurons destined to become hippocampal 

granular cells (Lois, & Alvarez-Bulla, 1993).  
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The stem cells of this zone have been identified as type 1 cells, which have a 

triangular shape, with their soma located below the granular layer, and posses an apical 

process that reaches into the molecular layer of the dentate gyrus [Figure 1] (reviewed in 

Ming, & Song, 2011; reviewed in Ehinnger, & Kempermann, 2007). They are identified 

by their expression of nestin, an intermediate filament found in progenitors in association 

with astrocytic features. The type 1 cells have many similarities to adult astrocytes, and 

may even be a specialized subtype of these glial cells. Both astrocytes and type 1 cells are 

marked with glial fibrillary acidic protein (GFAP), and have a highly branching 

morphology. However, the type 1 cell does differ from the mature astrocyte by not 

forming an immune reaction with S100β, which is often used as a marker for astrocytes, 

indicating that the two groups of astrocytes are not identical (Filippov et al., 2003). 

However, astrocytes cultured from other areas not associated with the adult neurogenic 

niche can be manipulated by administration of transcription factors to behave as neuronal 

progenitor cells themselves (reviewed in Kriegstin, & Alvarez-Buylla, 2009). 

Asymmetric division of type 1 cells gives rise to type 2 cells, which serves as the 

highly proliferative intermediate precursor cell. These intermediate precursors allow for a 

sufficient number of new cells to be formed with minimal divisions necessary from the 

original stem cells (Ehninger, & Kempermann, 2007).  The type 2 cells are 

morphologically distinct from type 1; they lack long processes, have a smaller soma, and 
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possess a round to oval nuclei (Filippov et al., 2003). Type 2 cells can be arranged into 

two sub-categories based upon molecules expressed, type 2a and 2b. Type 2a cells still 

maintain glial markers; however they no longer have the morphology of a glial cell. Type 

2b cells begin to express transcription factors, specific for developing granule cells, 

which will be marked using NeuroD1 (neuronal differentiation 1) and Prox1(prospero 

homeobox 1) (reviewed in Kemperman, Song, & Gage, 2008).  

From the type 2 cells, type 3 cells are derived, which are neuroblasts and 

immature neurons. To track these developing neurons Zhao et al. used retrovirus-

mediated gene transduction in 2006 in the hippocampus of adult mice. They discovered 

four distinct morphological stages during their study. Stage A occurs during migration, 

when developing neurons begin to polarize and grow axons and dendrites. In the next 

stage of development, stage B, dendrites grow to reach into the molecular layer, and the 

axon of each immature neuron reaches into the CA3 area of the hippocampus. Stage C is 

where the spines are initially developed, which will only begin after the axon has 

integrated into the CA3. Stage D is the longest, taking place over several months, where 

spines are continually modified (Zhoa, Teng, Summers, Ming, & Gage, 2006). 

Most new neurons will be eliminated before they form connections with target in 

the CA3 (reviewed in Kempermann, Song, & Gage, 2008). The neurons that survive are 

integrated into the current circuitry, and share many of the same properties as the 
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preexisting neighboring neurons. They have similar threshold and resting potentials, and 

input resistances (van Praag, Schlne, Christie, Tonl, Palmer, & Gage, 2002). Beyond the 

similar functional properties, newly generated cells are morphologically indistinguishable 

from the older cells surrounding it. Without mitotic markers researchers would have no 

way to identify preexisting neurons from adult born (Markakis, & Gage, 1999). 

 As the SGZ continues to generate new neurons, the volume of granular cells 

within the dentate gyrus increases. Researchers have inferred that since these granule 

cells are not created to replace old cells addition to the current circuitry is indicative of a 

functional role for adult neurogenesis (reviewed in Appleby, Kempermann, & Wiskott, 

2011). There are several theories about the function of these new granular cells. The most 

prominent theory is that newly formed neurons are for increasing spatial memory, 

specifically retention and discrimination, since they are being integrated into the dentate 

gyrus, an area essential in the formation of spatial and episodic memories (reviewed in 

Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila 1999).   

An experiment in 2005 by Snyder et al. was the first to show the link between 

new neurons and long-term potentiation. To assess memory formation a Morris water 

maze was used (Morris, 1984). Some rats underwent irradiation to inhibit neurogenesis. 

Without newly formed granule cells the rats were still able to learn the spatial memory 

task with equal efficiency as their non-irradiated counterparts. However, when the rats 
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were re-tested at 2 weeks and 4 weeks post-learning, the irradiated group preformed 

significantly worse. Results suggested that adult neurogenesis is required for the 

formation of long-term spatial memory (Snyder, Hong, McDonald, & Wojtowicz, 2005).  

A study carried out four years later by Clelland et al. (2009) identified an 

association between spatial memory impairments resulting from ablated hippocampal 

neurogenesis with the distance of separation between targets. To impair hippocampal 

neurogenesis mice were exposed to low dose localized x-irradiation. Mice with 

hippocampal neurogenesis ablated performed significantly worse in spatial discrimination 

tasks than non-irradiated mice only when the targets were physically close together rather 

than far apart. Clelland et al. designed two tasks to test their hypothesis on pattern 

separation-dependent memory; one using a radial arm maze (RAM) with eight arms and 

external spatial cues, and the other using a nose stimulated touch screen grid. In the RAM 

test, when the target arm and the starting arm were in close proximity, the irradiated 

group made significantly more wrong arm choices than the non-irradiated group. 

However, when the target arm was further away the two groups scored similarly. With 

the touch screen test, mice were trained to associated objects with a spatial location on a 

screen. When the image appeared at its correct location, the mouse would press its nose 

to it. In trials when the images were only separated by one unlit box, as opposed to three 

unlit boxes, the irradiated group was significantly impaired. These results indicate that 
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adult hippocampal neurogenesis is needed for memory tasks with a lower degree of 

spatial separation (Clelland et al., 2009). 

 

Subventricular Zone 

 The other neurogenic region within the mammalian brain, the subventricular 

zone, is located below the ependymal lining of the lateral ventricles [Figure 2]. This is the 

larger of the two niches and generates glial cells, either astrocytes or oligodendrocytes, 

and olfactory bulb interneurons (reviewed in Lim, Huang, & Alvarez-Buylla, 2008; and 

Lois, & Alvarez-Buylla, 1993). The olfactory bulb fate of the SVZ neuroblasts is still 

maintained, even for grafted cells, as long as they are placed in the SVZ or migratory 

stream extending from the SVZ to the olfactory bulb (Doetsch, & Alvarez-Buylla, 1996). 

Lois and Alvarez-Buylla transplanted SVZ stem cells from one mouse to the lateral 

ventricle of a host mouse. The transplanted SVZ cells migrated to the olfactory bulb to 

generate interneurons with the endogenous neuroblasts (Lois, & Alvarez-Buylla, 1994). It 

has also been found that neuron progenitor cells transplanted to the SVZ from the other 

proliferative zone, the SGZ, will form new neurons. However, the SGZ stem cells from 

the hippocampus will not generate neurons typically seen in the hippocampus, but those 

seen in the olfactory bulb. SGZ cells transplanted to the migratory stream move with the 

endogenous SVZ cells and adopt characteristics of the other newly generated olfactory 
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bulb interneurons. Characteristics which are not found in the hippocampal neurons 

became expressed in the cells grafted, such as production of tyrosine hydroxylase 

(reviewed in Gage, 2000). This indicates that the fate of these progenitors is not 

predetermined, there local extrinsic factors are at work to cause differentiation and 

formation of neuronal subtypes. 

There are three major cell types making up the SVZ, similar to those seen in the 

SGZ. The neuronal stem cells here are labeled as B cells, which are GFAP-expressing 

astrocytes. To verify that the type B cells were the primary precursors of the SVZ adult 

mice were treated with an antimitotic drug known as cytosine-β-D-arabinofuranoside 

(Ara-C) to remove the migrating neuroblasts and intermediate precursors from this zone, 

leaving only the slow dividing type B astrocytes and ependymal cells. Half a day after 

completion of Ara-C treatments, mitosis continued throughout the SVZ, reestablishing a 

pool of intermediate precursors within two days, and neuroblasts two days following that. 

Through the use of retroviral labeling it was determined that it was the B cells, not the 

ependymal cells, from which these new cells derived (Doetsch, Caille, Lim, Garcia-

Verdugo, & Alvarez-Buylla, 1999). 

Type B cells can be subdivided into two types, B1 and B2 (Doetsch, Garcia-

Verdugo, & Alvarez-Buylla, 1997). B1 cells have apical processes containing immobile 

cilia which reach into the lateral ventricle, possibly to receive signals from the cerebral 
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spinal fluid. Type B2 cells are located close to the lower striatal parenchyma (Mirzaden, 

Merkle, Soriano-Navarro, Garcia-Verdugo, & Alvarez-Buylla, 2008). The primary 

progenitors, B cells, are slow to divide and will give rise to transient amplifying 

secondary progenitors, known as type C cells, which have a more rapid cell division. 

When C cells divide they give rise to migrating neuroblasts, type A cells (Doetsch, 

Garcia-Verdugo, & Alvarez-Buylla, 1997). These neuroblasts migrate from the area 

below the lateral ventricle to the olfactory bulb through what is known as the rostral 

migratory stream [Figure 2] (reviewed in Ihire, & Alvarez-Buylla, 2011; reviewed in 

Kohwi, Galvao, & Alvarez-Buylla, 2006). 

The rostral migratory stream (RMS) contains neuroblasts moving through chain 

migration within a sheath made of type B cells. The RMS begins as the polysialated 

glycoprotein neuronal cell adhesion molecule (PSA-NCAM)-positive chains of 

neuroblasts located in the SVZ start to arrange in parallel and converge along the 

longitudinal axis (Doetsch, & Alvarez-Buylla, 1996). NCAM deficient mutant mice still 

maintained the ability to form the RMS; however, there was a decrease in efficiency for 

migration of neuroblasts to the olfactory bulb without the adhesion molecules, resulting 

in smaller olfactory bulbs (Chazal, Durbec, Jankovski, Gougon, & Cremer, 2000).  

Once in the RMS, neuroblast chain migration is directed though the use of 

chemorepulsion from the ventricular zone and chemoattraction from the olfactory bulb 
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(reviewed in Sun, Kim, & Moon, 2010).  The primary repulsive factor for SVZ 

neuroblast migration is the protein Slit. There are three types of Slit proteins, two of 

which are expressed in the adult mammalian brain, Slit 1 and Slit 2. The choroid plexus 

will release Slit 2 while the septum, which is located caudally to the SVZ, will secrete 

both Slit 1 and Slit 2 (Wu et al., 1999; Hu, 1999). The receptors for Slit, roundabout 

(Robo), are located on migrating type A cells. Specifically, Robo 2 and Robo3/Rig-1 

receptors can be found highly expressed on the membrane of these neuroblasts.  To 

confirm slit-robo signaling is essential for chemorepulsion of type A cells, Nguyen-Ba-

Charvet et al. (2004) developed Slit1/Slit2 null mutated mice. The mice lacked 

expression of Slit from the septum and choroid and, as a result, no longer possessed 

repulsive activity, resulting in abnormalities in migration of the neuroblasts (Nguyen-Ba-

Charvet et al. 2004). Though Slit has an important role for migration of neuroblasts, it 

does not appear to be the only factor needed and may be only needed for initiating 

migration. Shortly after the neuroblasts begin their journey the cells will be out of the 

effective range for this protein (Wu et al., 1999).  

Once migration is initiated other signals start to take effect on the migrating chain 

since a single signal directing the cells away from the SVZ is not specific enough to 

prevent these cells from entering other areas of the cerebral cortex (Hu, 1999). To 

account for cells being directed all the way to their target researchers believe that the 
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olfactory bulb is releasing attractant factors. Prokineticin-2 and Netrin-1 are some of the 

proposed molecular attractants being released from the olfactory bulb (reviewed in 

Kohwi, Galvao, & Alvarez-Buylla, 2006). 

The rates at which type A cells travel through the RMS depends on maturation, 

with older neuroblast moving significantly faster than younger ones. Migratory speeds in 

rodents have been found to vary between 52-71µm (Nam et al., 2007). Rates observed in 

primates are significantly slower than in the rodent brain, even when accounting for the 

increase in distance the neuroblasts must travel (Kornack, & Rakic, 2001).  

More than 30,000 type A cells leave the rodent RMS each day (reviewed in 

Lledo, Alonso, & Grubb, 2006). Of these thousands of cells making the trip the majority 

will not reach maturity, and out of those adult generated mature neurons only half will 

survive more than a month (reviewed in Lledo, Alonso, & Grubb, 2006). Survival rates 

can be increased, however, with the enhanced odor enrichment (Rochefort, Gheusi, 

Vincent, & Lledo, 2002). 

Upon reaching the olfactory bulb neuroblast must be separated from their chain 

mates and radially migrate toward their target areas. The molecule Reelin, which is 

expressed by olfactory bulb mitral cells, serves as the detachment signal which initiates 

the release of neighboring cells at the end of the RMS. However, Reelin has not been 

shown to give guidance cues for the radial migration observed in the olfactory bulb 
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(Hack, Bancila, Loulier, Carroll, & Cremer, 2002). To direct the detached neuroblasts to 

their correct positions on the outer layer of the olfactory bulb, Saghatelyn et al. (2004) 

determined that the molecule Tenascin-R was required. Tenascin-R is generated by 

granule cells in the deeper layers of the bulb. Its expression, or lack of, has no effect on 

proliferation rates, tangential chain migration orientation or speed, differentiation ratios, 

or cell apoptosis. However, what Tenascin-R deficiency did affect was the local 

migration of cells released from the RMS. Neuroblasts in mice without Tenascin-R 

expression travel normally through the migratory stream but upon reaching the olfactory 

bulb the cells would cluster together, forming an accumulation of new cells at that 

junction (Saghatelyan, Chevigny, Schachner, & Lledo, 2004). 

Once the neuroblasts reach their target they will then differentiate into two types 

of interneurons: granule cells or periglomerular cells. These new cells enter into the 

current circuitry to replace old cells that underwent apoptosis (reviewed in Kohwi, Galvo, 

& Alvarez-Buylla, 2006). Both interneuron types develop receptors for the brains 

primary inhibitory neurotransmitter GABA and function as local inhibitors due to this 

property. It has also been demonstrated that the periglomerular cell will sometimes 

respond to dopamine as well (reviewed in Ming, & Song, 2011).  

It has been hypothesized that the turnover of new cells in the olfactory bulb may 

be to enhance odor differentiation through pattern separation since they are inhibitory 
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interneurons (reviewed in Shay, Wilson, & Hen, 2011). An experiment done by Gheusi et 

al. showed reduction in adult born olfactory interneurons is associated with a decrease in 

ability to discriminate odors (Gheusi, Cremer, McLean, Chazal, Vincent, & Lledo, 2000). 

The ability to change olfactory bulb interneurons provides extra plasticity, allowing 

organisms to make adjustments to ever-changing olfactory environment.  

 

ADULT NEUROGENESIS IN OTHER ORGANISMS 

 

Birds 

As mentioned previously, adult neurogenesis is not unique to mammals; it has 

been found in all animals studied to date (reviewed in Ehninger, & Kemperman, 2007; 

reviewed in Lindsey & Tropepe, 2006). One of the most extensively studied organisms 

for adult neurogenesis is the canary (Alvarez-Buylla, Garcia-Verdugo, Mateo, & 

Merchant-Lorios, 1998). In birds the location receiving the greatest contribution of adult 

formed neurons is in the area for learned song production, the high vocal center or HVC 

(reviewed in Doetsch, & Scharff, 2001).  

Canaries, in addition to other songbirds, will annually modify their song, with 

peaks and lulls in the number of sounds they can produce, called syllables. In 1967, 

Arnold and Nottenbohm identified a sex difference in the size of the HVC. Male canaries 
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have more complex songs and have a HVC three to four times larger than that of females. 

However, when females were given testosterone the volume of their HVC doubled and 

new cells formed connections with the robustus archistriatalis (RA) nucleus, mimicking 

their male counterparts (reviewed in Nottenbohm, 1989). A 12 month survey of the HVC 

size and song production by Kirn et al. (1994) showed that the fluctuations in syllables, 

which naturally occur throughout the year and number of newly formed neurons are 

closely correlated. The number of new neurons observed in the HVC and the syllable 

range fall substantially at the end of the breeding. These syllables will be regained before 

the next breeding season, which has been associated with the replenishment of HVC cells 

through adult neurogenesis (Kirn, Loughlin, Kasparin, & Nottenbohm, 1994).  

There are many similarities between avian and mammalian adult neurogenesis. 

The primary neurogenic niche is still located within the walls of the lateral ventricle. 

However, in birds the progenitors are not located below the ependymal layer, but rather 

have direct interaction with the ventricle. Because of this spatial relationship the niche in 

birds is referred to as the ventricular zone (VZ), rather than the subventricular zone. Cells 

in the VZ are named similarly to their mammalian counterparts; progenitors are labeled 

as B cells, young migrating neurons are still identified as type A cells, and the niche is 

still surrounded by ependymal cells. Birds, however, lack the type C cells transient 

amplifying cells observed in mammals (Alvarez-Buylla, Garcia-Verdugo, Mateo, & 
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Merchant-Larios, 1998). Type C cells are not needed because the B cells are, themselves, 

capable of generating both glia, including radial glia, and neurons (Goldman, Zukhar, 

Barami, Mikawa, & Niedzwikecki, 1996). Another significant difference between the B 

cells seen in birds and those in mammals is that the primary progenitors in birds are more 

accurately described as radial glia that are preserved into adulthood, rather than 

differentiating into astrocytes (reviewed in Doetsch, & Scharff, 2001). 

 Many of the adult generated neurons, as previously mentioned, are added to the 

HVC to replace older neurons. To determine the role of adult neurogenesis in repair, an 

experiment was carried out by Scharff et al. (2000) with directed cell death. Through 

chromophore-targeted neuronal degeneration specific cell types were killed in the HVC. 

In one group of birds the cell death was targeted to a location which normally undergoes 

cell replacement, and in another group of birds cells were killed within an area that does 

not receive adult-born neurons. The cell death that was generated in the areas accustomed 

to gaining neurons throughout adulthood recruited replacement cells and recovered 

neuron volume and singing ability after two months. Birds with cell death in areas not 

normally associated with neurogenesis did not experience this recovery (Scharff, Kirn, 

Grossman, Macklis, and Nottebohm, 2000). Like mammals, neurogenesis in birds was 

determined to occur only in specific areas of the brain. 



EXERCISE AND NEUROGENESIS IN CRAYFISH 19 

New neurons are also added to the hippocampus of the avian brain, and as with 

mammals, this addition has been tied to spatial memory. A study with 29 different 

species of bird showed that the birds which store and retrieve their food have larger 

hippocampuses, even when accounting for variations between each species brain size. 

Researchers determined that the increase in hippocampal size was associated with the 

spatial memory needs of the food storing birds (Krebs, Sherry, Healy, Perry, & 

Vaccarino, 1989). Later researchers would observe that birds, and other animals which 

store food, have an increase in hippocampal size during food storing seasons because of 

the spatial memory required for this task (van Praag, Christie, Sejnowski, & Gage, 1999). 

 

Crustaceans 

Adult neurogenesis is not just isolated to vertebrates. Crustaceans are a commonly 

studied invertebrate model for the nervous system. The first observation of neurogenesis 

in decapod crustaceans occurring after embryological development was in 1996 using 

BrdU to look at new neuron formation in spider crabs from larval to juvenile stages of 

development. During the beginning stages of development neuroblasts are highly active 

but as the crab progresses through developmental stages proliferation decreases. By the 

time second metamorphosis is reached proliferation across the brain has terminated 
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leaving only one location to retain mitotic activity, the olfactory lobe (Harzsch & Dawirs, 

1996). 

To date, all crustaceans studied for neurogenesis have at least one proliferative 

zone throughout life [Figure 3] (reviewed in Schmidt, 2007). The proliferation zone 

common to all crustaceans is known as the lateral soma cluster, also known as cluster 10 

(Schmidit, & Harzsch, 1999). Cluster 10 is located laterally to the olfactory and accessory 

lobes (Sandeman, & Sandeman, 2000). Cluster 10 contains the somata of projection 

neurons, which provide output to the neighboring accessory and olfactory lobes 

(Schmidt, & Derby, 2011; Sandeman, & Sandeman, 2000).  

Some crustaceans, such as lobsters and crayfish, posses a secondary proliferative 

zone known as the medial cluster, or cluster 9 [Figure 4] (Schmidt, & Harzsch, 1999; and 

Sandeman, & Sandeman, 2000). Cluster 9 lays ventral and medial to the olfactory bulb 

with its soma belonging to local interneurons (Schmidt, & Harzsch, 1999; Sandeman, & 

Sandeman, 2000). Though cluster 9 is located on the opposite side of the olfactory bulb 

to cluster 10 they are connected by fibrous strands located on the ventral surface of the 

brain (Song, Johnstone, Edwards, Derby, & Schmidt, 2008).  

Neurons generated from either of these neurogenic zones have a similar fate; they 

will become olfactory interneurons (Zhang, Allodi, Sandeman, & Beltz, 2009). The 

precursor cells which will derive these olfactory projection neurons are isolated inside a 



EXERCISE AND NEUROGENESIS IN CRAYFISH 21 

clump of small glial-like cells which form the stem cell niches of clusters 9 and 10 

(reviewed in Schmidt, 2007). In 2011 Schmidt and Derby proposed a model on the cell 

lineage within decapod crustaceans to summarize years of research. They proposed that 

the adult neuroblasts located within the stem cell niches divide asymmetrically with one 

daughter cell staying anchored to the niche and the other becoming a neuron progenitor. 

The progenitor cell migrates down the attached duct to a neighboring proliferation zone. 

These migrating daughter cells appear to be transit amplifying intermediate progenitors 

accounting for the continual replenishment of stem cells, known as ganglion mother cells, 

in the proliferation zones with minimal divisions of the adult neuroblasts within the niche 

(Schmidt, & Derby, 2011). 

There are several similarities between neurogenesis in mammals and crustaceans. 

Each experiences lifelong neurogenesis accompanied by an age dependent decline in its 

rate (Kuhn, Dickinson-Anson, Gage, 1996; Hansen, Schmidt, 2004). There also exists an 

anatomical similarity in the arrangement of the stem cell niches. Both have progenitor 

cells surrounded by smaller glial cells with extended processes providing association with 

brain vasculature. The precursor identity however is a varied for the two groups. In 

mammals, the precursor cells are specialized astrocytes; in crustaceans, they are 

neuroblasts with undifferentiated cell phenotypes. Precursors in each group will divide 

asymmetrically to form transit amplifying cells. The neuroblasts formed from the primary 
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division will travel through ducts formed from glia, similar to those around the niche, in 

both animal groups (Schmidt, & Derby, 2011; Sullivan, Benton, Sandeman, & Beltz, 

2007). Such similarities are what allow researchers to extrapolate results discovered in 

these invertebrate models and apply them to mammals.  

 

Insects 

Another invertebrate group which has been studied for life-long neurogenesis is 

hexapoda, insects. The proliferative zone has been identified within the corpora 

pedunculata, also known as the mushroom bodies. The mushroom bodies are the main 

associative center in insects. It is the apex of the mushroom body where neuroblasts 

generate new neurons. The newly formed neurons will become interneurons known as 

Kenyon cells. The Kenyon cells form connections with either the alpha or beta lobes of 

the association center (Cayre, Strambi, Charpin, Augier, Meyer, Edwards, & Strambi, 

1996; reviewed in Cayre, Malaterre, Scotto-Lomassese, Strambi, & Strambi, 2002). 

As shown by this small sampling of organisms, adult neurogenesis is a common 

theme across many different animal lineages (reviewed in Ehninger, & Kemperman, 

2007; review in Lindsey & Tropepe, 2006). By looking at organisms of different phyla, 

researchers have found that there are many similarities in neurogenic niche arrangement, 
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types of cells generated, and effectors. These parallels observed may be indicative of 

either homology or convergent evolution (Sullivan, Benton, & Sandeman, 2007).  

 

UPREGULATING ADULT NEUROGENESIS 

It has been observed that neurogenesis is not a static process; it can be 

manipulated through both extrinsic and intrinsic factors. Through increasing proliferation 

rates, promoting survival of new neurons, favoring adaptation of neural fate over glial, or 

a combination of these, organisms may increase circuitry within the hippocampus and 

olfactory bulbs. Further understanding of how to manipulate neurogenic rates and 

survival of newly formed neurons has great potential for future clinical applications 

particularly in areas associated with memory. 

 

Extrinsic Factors 

The major external modifiers of neurogenesis are learning, enriched environment, 

and physical activity. All three factors result in an increase in new cell survival rates. 

However, only physical activity has shown to consistently increase proliferation (Gould, 

Beylin, Tanapat, Reeves, & Shors, 1999; Kempermann, Kuhn, & Gage 1998; Kim, Ko, 

Kim, Shin, & Cho, 2010; Sandeman, & Sandeman, 2000; van Praag, Schlne, Christie, 

Tonl, Palmer, & Gage, 2002).  
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Experiments which used learning as the dependent variable showed that mice 

which learned a specific task have an associated increase in the number of new neurons 

in the dentate gyrus (reviewed in Luikart, Perederiy, & Westbrook, 2012). Work done by 

Gould et al. (1999) determined that general learning does not significantly increase new 

neuron survivability; instead, it is learning which relies on hippocampal activation 

leading to greater survival of neurons formed just prior to learning (Gould, Beylin, 

Tanapat, Reeves, & Shors, 1999). Increased new neuron survivability associated with 

hippocampal learning has been observed to be limited to one proliferative location, the 

subgranular zone (Kempermann, Song, & Gage, 2008; Gould, Beylin, Tanapat, Reeves, 

& Shors, 1999).  

It should be noted, however, that tasks which utilize hippocampal memory also 

involve physical activity, which has shown to increase neurogenesis independently (van 

Praag, Kempermann, & Gage, 1999). Another factor which has been shown to increase 

cell survival, that also may have confounding effects from physical activity, is living in 

enriched environments. Enriched environments are composed of larger space with more 

obstacles to move around, increased possibilities for social interaction, and in the case of 

rodent based experiments, they are provided with a running wheel (van Praag, 

Kempermann, & Gage, 1999; Kempermann, & Gage 1999). Each of these factors may 

contribute to increased physical activity of the enriched group. 
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In experiments where mice were housed in enriched or impoverished 

environments, subjects in the enriched environment had a significant increase in newly 

formed neurons (Kempermann, Kuhn, & Gage, 1998). Similar results were found in 

experiments using crayfish. Crayfish housed in larger tanks with other crayfish 

experienced greater survival rates and increased proliferation when compared to crayfish 

housed in isolation (Sandeman & Sandeman, 2000). To further examine this relationship 

crayfish raised in a lab housed in laboratory aquaria for extended lengths of time were 

compared to wild crayfish. Those from large outdoor ponds had significantly larger 

clusters 9 and 10, even though they had the same carapace length (Sandeman & 

Sandeman, 2000).  

The effects of both enriched environment and physical activity are specific to only 

one of the neurogenic zones, the subgranular zone. So far, neither has proven to be an 

effector for subventricular zone neurogenesis (Brown, et al., 2003). The only major factor 

observed to cause an up-regulation in subventricular zone neurogenesis is enriched odor 

exposure (Rochefort, Gheusi, Vincent, & Lledo, 2002). 

When the effects that exercise and enriched environment have on neurogenesis 

were directly compared both yielded similar numbers of neurons and both significantly 

increased cell survival. However, only exercise significantly increases proliferation rates 

(reviewed in Olson, Eadie, Ernst, & Christie. 2006; van Praag, Kempermann, & Gage, 
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1999). Exercise is a strong stimulating factor for cell proliferation in the hippocampus, 

promoting neurogenesis and survival of new neurons (Kempermann, Song, & Gage, 

2008; Lucassen, Oomen, van Dam, & Czeh, 2008). Exercise also increases spine 

densities and the complexity and length of dendrites, as well as affecting the 

cytoarchitecture surrounding the hippocampus (Eadie, Redila, & Christie, 2005).  

Exercise has its most potent effect on neurogenesis when the activity is of a low 

intensity (Lou, Lin, Chang, & Chen, 2008). The lack of a linear relationship between 

activity intensity and neurogenesis may be more of a response of the exercise becoming a 

stressor with the greater intensity, and stress has been shown to be an antagonist for new 

neuron development in the adult CNS (Lucassen, Oomen, van Dam, & Czeh, 2008). 

Strananhan et al. (2006) looked at the relationship between stressors and running-induced 

neurogenesis. They found that the stressor of daily BrdU injections caused a large decline 

in neurogenesis in the running group and when the experiment was carried out with only 

one injection, at the end of the trial, the decline was no longer present. They also found 

that when rats are housed together there is an associated increase in neurogenesis.  When 

housed in social isolation the benefits of physical activity on neurogenesis was 

significantly delayed and the trials needed to be carried out longer to demonstrate an 

increase in new born cells (Stranahan, Khalil, & Gould, 2006). 
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Exercise has also been shown yield increased cognitive function and to facilitate 

recovery from brain injury (van Praag, Kemperman, and Gage, 1999). An experiment in 

2010 by Sung-Eun Kim et al. looked at the effect of exercise with age-related memory 

loss in Sprague-Dawley rats. The rats in the old aged exercise group performed better in 

both short-term and spatial memory tasks than those in the old age control group without 

exercise; they also showed an increase in neurogenesis in the dentate gyrus not observed 

in the control (Kim et al., 2010).  

Similar benefits between memory retention and exercise have been observed in 

humans. In a 31 year cohort study patients who exercised through midlife had a 

significant reduction in odds of dementia and Alzheimer’s disease (Andel, Crowe, 

Pedersen, Fratiglioni, Johansson, & Gatz, 2008). Also, researchers are finding other 

associations between exercise-induced neurogenesis and depression. Continued exercise 

has shown to be a very potent antidepressant, working even better than medications at 

preventing depressive relapses (Bjornebekk, Mathe, & Brene, 2005). In the rodent model 

of depression it was discovered that one of the potential causes could be a decline in 

neurogenesis. Depressed rats had much lower proliferation rates in the hippocampus than 

their non-depressed counterparts (Bjornebekk, Mathe, & Brene, 2005). 
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Intrinsic Factors 

 Intrinsic factors which have shown to enhance neurogenesis include several 

different growth factors, some selective signaling molecules, as well as a few proteins 

that influence differentiation. Growth factors which have been established to yield an 

increase in neurogenesis include: brain derived neurotrophic factor (BDNF), fibroblast 

growth factor 2 (FGF-2), insulin-like growth factor 1 (IGF-1), and vascular endothelial 

growth factor (VEGF).  

 Brain derived neurotrophic factor (BDNF) belongs to the neurotophin family of 

growth factors. Barde et al. identified this growth factor in 1982 and observed that it 

increased cell survival within the dorsal root ganglion (reviewed in Binder & Scharfman, 

2004). Infusion of BDNF into the ventricles results in an increase of new neurons within 

the olfactory bulb, parenchyma, septum, thalamus and hypothalamus (Pencea, Bingaman, 

Wiegand & Luskin, 2001; Zigova, Pencea, Wiegand & Luskin, 1998).   

Recently it has been observed that with age there is a decline in circulating 

BDNF. This decrease in BDNF is accompanied by a similar decline in newly formed 

adult neurons. This may be one of the underlying factors for memory impairments 

associated with increased age (Hattiangady, Muddanna, Shetty & Shetty, 2005). Kim et 

al. in 2010 ran an experiment which looked at the association between exercise, BDNF 

expression and memory task performance with two age groups, young and old rats. They 

observed that the older rat group had less BDNF expression which was also associated 

with poorer performance on short term and spatial memory tasks compared to the young 

rat group. When they explored the effect exercise has on this relationship they found that 

BDNF was up-regulated in the rats subjected to treadmill running for 30 minutes each 
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day for 6 weeks. In the older rats this increase in BDNF was also accompanied by an 

increase in both short term and spatial memory task performance (Kim et al., 2010). 

 Other growth factors which effect neurogenesis have also been observed to 

increase in relationship to physical activity. Levels of both fibroblast growth factor 2 

(FGF-2) and insulin-like growth factor 1 (IGF-1) elevate when subjects are exposed to 

physical activity (Gómez-Pinilla, Dao & So, 1997; reviewed in Kramer & Hillman, 

2006). Exercise nearly doubles IGF-1 serum levels but does not result in significant 

changes in hippocampal levels. However, blocking the IGF-1 with antibodies does result 

in diminished hippocampal memory and exercise induced neurogenesis. LLorens- Martin 

et al. (2010) demonstrated that the dependence on IGF-1 for exercise induced 

neurogenesis varied by developmental stage of the cells. Serum levels of IGF-1 appears 

to effect only precursors and post-mitotic immature neurons but not pre-mitotic immature 

neurons, which are considered to be the intermediate stage in neuron development 

(LLorens-Martin, Torres-Aleman& Trejo, 2010). Blocking FGF-2 also has shown to 

reduce hippocampal neurogenesis. Through the administration of FGF-2 neutralizing 

antibodies, Tao et al. (1997) observed a 63% reduction hippocampal DNA synthesis in 

newborn rats indicating that this molecule is essential for hippocampal neurogenesis 

(Tao, Black & DiCicco-Bloom, 1997).  

 

CONCLUSION 

There are several factors which have shown to increase adult neurogenesis. 

Intrinsic factors which promote new cell survival such as enriched environment, spatial 

learning, and exercise have a common underlying factor, they all involve physical 
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activity. Enriched environments are composed of larger space with more obstacles to 

move around, and in the case of rodent based experiments, they are provided with a 

running wheel, all of these factors are contributing to increased physical activity of the 

enriched group (van Praag, Kempermann, & Gage, 1999). Spatial memory is formed as 

organisms move around their environment also utilizing physical activity (Edie, Redila, 

& Christie, 2005; Holmes et al., 2004, LLorens, Torres-Aleman, & Trejo, 2010; Lou, Lin, 

Chang, & Chen, 2008; van Praag, Kempermann, & Gage, 1999). Therefore, the increase 

in survival observed through these two factors may be a result of exercise rather than the 

learning or the environment.  

This important relationship between exercise and adult neurogenesis has only 

been examined in a few species to date, none of which were invertebrates. Looking at this 

association in the more simplistic invertebrate model will help to establish if there is a 

direct relationship between exercise and neurogenesis, or if there is something else 

leading to this association in the more complicated mammalian system. It could also 

provide insight to the evolutionary significance of this relationship. Research on exercise 

induced neurogenesis using crayfish has begun at Grand Valley State University. 

Exploring exercise and how it directly affects the nervous system in an 

invertebrate model will allow for greater understanding of how exercise may be used in a 

clinical setting. Also with increased knowledge of the molecular forces behind this 

relationship molecules that elicit proliferation could possibly manipulated to induce 

neurogenesis. If neurogenesis continued to be stimulated and new neuron survivability 

improved, then some of the cognitive decline associated with age might be reduced, and 

there could potentially be a greater clinical application in treatment of neurodegenerative 
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diseases (van Praag, 2008; Zhang, Allodi, Sandeman, & Beltz, 2009; Zhao, Deng, & 

Gage, 2008). 

Exercise has been shown to delay onset and progression of dementia and 

Alzheimer ’s disease, serves as a potent antidepressant, leads to greater improvement in 

cognition following brain injury and reduces age-related decline of neurogenesis (Eisch, 

Cameron, Encinas, Meltzer, Ming, & Overstreet-Wadiche, 2008; Gresbach, Hovda, 

Molteni, Wu, & Gomez-Pinilla, 2004; Teri, Logsdon, & McCurry, 2008; Wolf et al., 

2006). Physical activity is already being looked at as a possible mode of treatment for 

patients with depression, dementia, schizophrenia, Alzheimer’s disease, and alcoholism 

(Faulkner, & Biddle, 1999; Teri, Logsdon, & McCurry, 2008; Wolf et al., 2006).  

Exploring exercise and how it directly affects neurogenesis in an invertebrate model 

will allow for greater understanding of this intricate relationship in humans. And greater 

understanding of the relationship between exercise and its associated physiological 

changes may allow for expansion of exercise as a treatment and possibly lead to more 

clinical applications than those that are currently being explored.  
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INTRODUCTION 

Neurogenesis, the formation of new neurons from neural stem cells, occurs 

throughout adulthood in a wide variety of animals, including humans (Ehninger, & 

Kempermann, 2007; Imayoshi, et al., 2009). Progenitor cells located in specific regions 

of the adult brain can generate not only glial cells but neurons which may become 

integrated into the current circuitry (Kornack, & Rakic, 2001; Lois, & Alvarez-Buylla, 

1993; Rochefort, et al., 2002). While adult neurogenesis has great retentive potential, it is 

limited in location. There are only two locations in the mammalian central nervous 

system with the correct conditions for post-embryonic neurons to form, the 

subventrticular zone (SVZ) and the subgranular zone (SGZ).  

The SVZ lies beneath the ependymal cell lining of the lateral ventricles. This zone 

yields neuroblasts which will migrate through the rostral migratory stream to the 

olfactory bulb [Figure 2]. Once neuroblasts reach the olfactory bulb they will mature into 

new olfactory interneurons, resulting in an increased ability to recall and differentiate 

odors (Kornack, & Rakic, 2001; Lois, & Alvarez-Buylla, 1993; Rochefort et al., 2002; 

Zhao, Deng, & Gage, 2008). The other proliferative location, the SGZ, is located in the 

part of the hippocampus known as the dentate gyrus [Figure 1].  Neurogenesis in the SGZ 

is associated with spatial and short term memory (Altman, 1965; Gage, 2000; Snyder, et 

al., 2005).  

 There are several extrinsic factors that have shown to increase SVZ neurogenesis 

in adults; learning, enriched environment, and physical activity. When the effects each of 

these three factors has on neurogenesis are directly compared, it is voluntary exercise 

which yields the greatest impact (van Praag, Kempermann, & Gage, 1999). The finding 
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that exercise greatly enhances cell proliferation in mammals has been verified by several 

experiments over the last 10 years (Eadie et al., 2005, van Praag, Kempermann, & Gage, 

1999; Kempermann, 2008; van Praag 2006). Exercises that last longer and are of a lower 

intensity tend to generate the greatest increase in proliferation (Holmes et al., 2004; 

Kempermann, 2008; Lou et al., 2008; Lucassen, et al., 2008). 

 Beyond enhancing proliferation, exercise has been shown to increase spine 

density and increase dendritic length and complexity on neurons within the dentate gyrus 

(Eadie, Redila, & Christie, 2005). Physical activity’s cardiovascular effect extends to the 

brain by increasing blood flow in the cerebrum and inducing angiogenesis, formation of 

new capillaries, near the motor cortex (Swain et al., 2003). Exercise has also been linked 

to a reduction in stress and depression as well as ameliorating age associated declines in 

memory (Eadie, Redila, & Christie, 2005; Ernst et al., 2005; Kim et al., 2010). 

The benefits derived from exercise maybe due to a combination of several 

molecular factors. Factors such as: brain derived neurotropic factor (BDNF), N-methyl-

D-aspartate receptor (NMDAR), vascular endothelial growth factor (VEGF), Insulin-like 

growth factor-1 (IGF-1), serotonin (5-HT) and β-endorphin are up-regulated with 

exercise and have shown to have a positive effect on neurogenesis in several  model 

organisms (Ernst et al., 2005; Kemperman, 2008; LLorens-Martin, et al., 2010; Lou et al., 

2008; Olson, et al., 2006). Since the nervous system operates under common rules and 

themes in both vertebrates and invertebrates, information can be extrapolated from model 

organisms and applied to humans. The benefits to using an invertebrate model 

specifically is that they provide a more simplified nervous system and show part of the 
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evolutionary significance to traits which have been preserved and refined (Cayre, et al., 

2002). 

An invertebrate model which has been commonly used to study the nervous 

system is the crayfish. As in mammals, the adult born crayfish neurons will travel to the 

olfactory antenna bulb to become interneurons (Zhang et al., 2009). Similarities between 

crayfish and vertebrates with regards to neurogenesis include: progenitor cells having 

both glial and neural properties, the use of a migratory stream to direct the proliferated 

cells, as well as having similar features and arrangements within the neurogenic niches 

(Sullivan, et al., 2007). 

Beyond the cellular similarities, factors that affect neurogenesis in vertebrates 

have also shown the same correlation in crayfish. Sandeman and Sandeman (2000) 

showed that enriched environments will increase neurogenesis in crayfish as it does in the 

mammalian models. Also, there has been a link established between olfactory stimulus 

and rate of neurogenesis (Cayre et al., 2002). However, one of the major factors which 

increase neurogenesis, physical activity, has yet to be tested in crayfish, or any 

invertebrate model to our knowledge. 

Exercise has been shown to delay onset and progression of dementia and 

Alzheimer ’s disease, serves as a potent antidepressant, leads to greater improvement in 

cognition following brain injury and reduces age-related decline of neurogenesis (Eisch, 

et al., 2008; Gresbach, et al., 2004; Teri, et al. 2008; Wolf et al., 2006). Physical activity 

is already being looked at as a possible mode of treatment for patients with depression, 

dementia, schizophrenia, and Alzheimer’s disease, and alcoholism (Faulkner, & Biddle, 

1999; Teri, et al., 2008; Wolf et al., 2006).  Exploring exercise and how it directly 
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affects neurogenesis in an invertebrate model will allow for greater understanding of 

this intricate relationship in humans. And with greater understanding of this relationship 

and its associated physiological changes a larger scope of clinical application may 

become apparent. 

 

MATERIALS AND METHODS 

 

Subjects 

 Forty crayfish of the species Orconectes propinquus were used in the initial 

experiment, 20 for the experimental group, and 20 for the control. Following initial trials 

five additional male crayfish were used to improve sectioning procedures. Ages of the 

crayfish were estimated from length to be between 1-2 years. Control crayfish were on 

average 6.69 grams and 3.85 centimeters from rostrum to tail (reflects all but one 

subject). The experimental group had an average weight of 6.37 grams and was 6.86 cm 

long (averages reflect all but two subjects) [Table 1]. 

Subjects were broken into eight groups. Each group consisted of four males and 

one female. Experimental Group One and Control Group One were sacrificed following 

the first week of trials. Experimental Group Two and Control Group Two were sacrificed 

following the second week of trials. Experimental and Control Groups Three and Four 

were sacrificed following week 3 and week 4 [Table 2]. Staggering the time when 

samples were taken from subjects allows for observation of migration and survival rates 

throughout the experiment. 
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Times of molting were also recorded in addition to any loss of subjects [Table 2]. 

All subjects were housed in isolation to diminish olfactory stimulation since olfactory 

enrichment alone has shown to increase survival of newly formed cells (Rochefort, et al., 

2002). Isolation tanks contained 1L of fresh water, an air stone, and its tubing. Tanks 

were cleaned at the end of each week. All crayfish were fed with the same feeding 

schedule, receiving one rabbit pellet (average size 0.12g) three times a week. Also, 

subjects were housed in the same room with light controlled day and night cycles to 

mimic natural conditions in Michigan ensure similar circadian rhythms and tank 

temperatures. 

 

BrdU Administration 

 In order to quantify cell division within the crayfish brain, specifically clusters 9 

and 10, a synthetic thymine, 5-bromo-2-deoxyuridine (BrdU), was used. Any new cell 

formed while BrdU is available inserts the BrdU into its DNA during mitosis. Cells with 

this synthetic thymine can later be detected through the use of an anti-BrdU marker 

which will attach to the BrdU and stain the cell brown. 

 The BrdU was purchased through Invitrogen and stored at 4
o
C. Crayfish were 

exposed to BrdU three days prior to experimental trials. The BrdU ordered from 

invetrogen was an aqueous solution concentration consisting of 5-bromo-2-deoxyuridine 

and 5-fluoro-2-deoxyuridine in a 10:1 ratio.  Subjects were bathed in a BrdU solution 

containing 0.1L BrdU and 1L water within their isolation tanks. The crayfish were 

exposed to the BrdU solution for 24 hours allowing adequate time for the BrdU to 
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become integrated into newly formed cells. Following the BrdU bath the solution was 

removed and replaced with fresh water. 

 

Experimental Trials 

 Trials were carried out around dawn each day since there has been shown to be a 

link between circadian rhythm and neurogenesis in crustaceans with activity lulling 

during day time (Goergen, Bagay, Rehm, Benton, & Beltz, 2002). Trials were carried out 

for four consecutive days, with three days off between, for up to four weeks.  

Crayfish assigned to the exercise group were placed in a water flume for 30 

minutes. The flume consisted of five separate lanes to prevent interaction and smells from 

other crayfish. Each lane was 36 cm. long, 13 cm. wide, with a water depth of 3.2 cm. 

Flow was constant for the 30 minutes trial to entice the crayfish to move around and 

explore their lane. For consistency, the order each group was placed into their trials was 

rotated each day as well as lane assignment.  

The control group crayfish were handled with the same schedule as the exercise 

group to allow for the elimination of stress as a variable between groups. They were 

removed from their isolation tanks and placed in a separate isolation tank containing 1L 

of fresh water for 30 minutes instead of the flume. It is important to expose both groups 

to similar stressors because stress has been shown to greatly diminish neurogenesis 

(Lucassen, et al., 2008). Behavioral observations were also taken throughout the trials to 

monitor activity levels for both groups. 
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Tissue Preparation 

 The next day following the last trial day, each week, brain samples were taken 

from five crayfish from each group; four males, one female. Brains were removed 

keeping eye stalks intact to help with orientation. In order to preserve the tissue, a 4% 

paraformaldehyde (PFA) fixative was created using a 7.4 pH phosphate buffer, and 

applied to brains. Each brain was placed into its own test tube with 4mL PFA for six 

hours and placed in 4
o
C. Later trials utilized a longer fixative time of 51 hours. Following 

fixation brains were rinsed with a phosphate buffer for 20 minutes three consecutive 

times. 

Brains were then dried following the protocol on table 3. The first time through, 

samples were placed in wax prior to drying, de-waxed then dried. Following samples 

were taken from additional crayfish not in the study to improve upon preparation 

techniques. The improved drying protocol is provided on table 4. Following drying brains 

were embedded in paraffin blocks and stored at 4
o
C until sectioning.  

Using a microtome, 60 µm sections were prepared working from the dorsal aspect 

of the brain. To troubleshoot rolling waxed sections a 40 degree water bath grid was 

created to allow multiple samples to unroll and be placed onto a glass slide. On average 

about 70 sections were obtained from each brain and adhered to slides using heat and 

stored in slide boxes at room temperature. 

 

Analysis 

 In order to quantify BrdU labeled cells a BrdU antibody is used to stain the cells 

with BrdU. In order to apply the antibody samples must first be de-waxed. Sections from 
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this first trial with the new equipment were consistently tearing. The most likely cause for 

the shredding of the tissue observed is the use of a dull microtome blade. Due to the 

sections on the slides being fragile the samples from the experiment will be saved until 

the appropriate de-waxing procedure can be determined.  

Once brains are de-waxed with then the antibodies may be applied to mark BrdU 

cells. According to the procedure listed by Paul, Goergen, and Beltz (2002) the brains 

will need to be incubated in rabbit anti-serotonin and rinsed with phosphate buffer prior 

to the administration of the primary antibody. Rat anti-BrdU has been established as a 

primary antibody that will work in crustacean brains to detect BrdU. It would be 

administered to the brains for 2.5 hours in a 1:50 dilution with a 0.1M phosphate buffer. 

Following three 20 minute rinses with the phosphate buffer a secondary antibody, goat 

anti-rat, will be applied overnight, also with a 1:50 dilution with 0.1M phosphate buffer. 

After three more 20 minute rinses of the buffer the brains can then be mounted in a 

medium and observed using a confocal microscope. Areas of the brain which underwent 

neurogenesis will be determined based on amount of BrdU labeling. If exercise did cause 

increased proliferation and survivability, as hypothesized, these brains will have greater 

antibody staining (Paul, Georgen, & Beltz, 2002). 

 

RESULTS AND CONCLUSION 

The results on neurogenesis in association with physical activity in crayfish are 

pending. However, procedural protocols were refined, laboratory techniques were 

improved and new equipment was acquired to allow future work on adult crustacean 

neurogenesis at Grand Valley State University. There are very few labs looking a 
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neurogenesis in invertebrates and no other labs to date looking at the effect exercise has 

on invertebrate neurogenesis. The experimental design developed here has potential 

application for future branches of study. With slight modification future experiments can 

look at aspects such as ideal exercise durations, intensities, time of day of physical 

activity, gender differences, and molecular fluctuations with exercise. 

Looking at this association in the more simplistic invertebrate model will help to 

establish if there is a direct relationship between exercise and neurogenesis and look 

more closely at factors which may optimize its effect. Since exercise is the most potent 

enhancer of neurogenesis it shows the most potential for development of treatments for 

the reduction of cognitive decline associated with age and potentially for some 

neurodegenerative diseases as well (van Praag, 2008; Zhang, Allodi, Sandeman, & Beltz, 

2009; Zhao, Deng, & Gage, 2008). 
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Figure 1: Subgranular Zone 

 

The figure above adapted from Lledo, Alonso, and Grubb (2006) depicts the cell lineage 

of the subgranular zone in mammals. The stem cells of the subgranular zone are referred 

to as type 1 cells. The type 1 cells are triangular in shape and have their cell bodies below 

the granular cell layer (GCL) and their apical processes reaching to the molecular layer 

(ML). Type 1 cells will give rise to type 2 cells (green) which serve as transient 

amplifying cells. The division of the type 2 cells led to the formation of neuroblasts, type 

3 cells (red) that integrate into the current circuitry. Brain abbreviations: DG- dentate 

gyrus; LV- lateral ventricle; Hipp- hippocampus; OB- olfactory bulb; RMS- rostral 

migratory stream; SVZ- subventricular zone. 
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Figure 2:  Subventricular Zone  

The diagram above adapted from Ihrie and Alvarez-Buylla (2011) shows the lineage of 

the adult born neurons of the subventricular zone. The Tyep B cells (in blue) are the 

primary progenitors which are subdivided to those with a primary cilium in the ventricle 

(B1) and those without (B2). The B cell gives rise to the transient amplifying type C cell 

(in green). The C cells will then divide to form neuroblasts, type A cells, which migrate 

to the olfactory bulb through the rostral migratory stream. 
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Figure 3: Neurogenesis in Decopod Crustaceans 

Location of newly formed adult cells (BrdU positive cells) in various species of decapod 

crustaceans are shown in this image adapted from Schmidt and Harzsch (1999). Species 

names as well as common names are provided. The medial cluster (MC) represents newly 

formed olfactory deutocerebral interneurons which are consistently observed in spiny 

lobsters, clawed lobsters, and crayfish. Common to all decapod crustaceans is the 

presence of new olfactory projection neurons in the lateral cluster (LC). Adult born 

interneurons have also been discovered in the hemiellipsoid body cluster (HBC) of crabs. 
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Figure 4: The Crayfish Brain  

Graphic representation of the crayfish brain adapted from Sandeman et al. (1992). 

Dashed circles denote location of neurogenesis, clusters 9 and 10. Abbreviations used: 

AcN – Accessory lobe; AMPN- Anterior medial protocerebral neuropil; AnN- Antenna II 

Neuropil; CB- Central Body; LAN- Lateral antenna I neuropil; MAN- Median antenna I 

neuropil; OGT – Olfactory globular tract; OGT N- Olfactory globular tract neuropil; ON- 

Olfactory Lobe; PB- Protocerebral Bridge; PMPN- Posterior medial protocerebral 

neuropil; TN- Tegmentary neuropil.  
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Table 1: Subject Measurements 

Table 1 contains the weight and length of crayfish in control and experimental groups. 

 

 

 

 

 

 

 

Gender Weight (g) Length (cm) Gender Weight (g) Length (cm)

1 male 1 male

2 male 6.40 4.509 2 male

3 male 8.22 2.794 3 male 5.54 2.54

4 male 9.59 3.099 4 male 5.64 4.06

5 female 4.89 2.718 5 female 4.91 2.57

7.28 3.280 5.36 3.06

6 male 6.11 2.794 6 male 8.76 2.96

7 male 4.35 2.413 7 male 7.23 2.73

8 male 8.66 3.523 8 male 5.60 3.03

9 male 7.81 2.962 9 male 8.17 3.13

10 female 6.28 2.657 10 female 4.60 2.67

6.64 2.870 6.87 2.91

11 male 4.81 2.288 11 male 5.47 2.68

12 male 6.94 2.860 12 male 6.44 2.70

13 male 5.96 2.692 13 male 4.84 2.43

14 male 9.91 2.878 14 male 7.79 3.02

15 female 6.14 2.598 15 female 5.33 2.54

6.75 2.663 5.97 2.77

16 male 8.28 3.287 16 male 9.61 3.06

17 male 7.83 3.025 17 male

18 male 8.42 2.865 18 male

19 male 19 male

20 female 6.47 2.629 20 female 5.65 2.75

7.75 2.951 7.63 2.90
6.69 2.768 6.37 2.86
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Table 2: Subject observations and sacrifice schedule.  

 

Every Monday, Wednesday, and Friday crayfish were fed and observations were made 

and noted on moltings and deaths. 
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Table 3: Tissue Preparation Procedure #1 

 

The drying procedure provided here was carried out on the original 36 samples. The 

increased concentrations of ethanol were used to dry the tissue, and xylene was used as a 

clearing agent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Solution

1 hour 70% ethanol

1 hour 70% ethanol

1 hour 80% ethanol

1 hour 95% ethanol

1.5 hours 100% ethanol

1.5 hours 100% ethanol

1.5 hours 100% ethanol

1 hour xylene

1 hour xylene

1.5 hours paraffin bath

1.5 hours paraffin bath
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Table 4: Tissue Preparation Procedure #2 

 

This tissue preparation procedure was used on follow-up brains in hopes to find a more 

suitable protocol to obtain better sections. The alcohol used was 95% methanol + ethanol, 

and 5% isopropyl alcohol. The drying steps were lengthened compared to tissue 

preparation procedure #1 (Table 3). 

Time Solution

1 hour 70% alcohol

1 hour 70% alcohol

1 hour 80% alcohol

1 hour 95% alcohol

12.5 hours 100% alcohol

3.5 hours 100 % alcohol

1 hour xylene

1 hour xylene

1.5 hours paraffin bath

1.5 hours paraffin bath
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