
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Funded Articles Open Access Publishing Support Fund

2-27-2014

Doorstop: Text-Based Requirements Management Using Version Doorstop: Text-Based Requirements Management Using Version

Control Control

Jace Browning
jacebrowning@gmail.com

Robert Adams
Grand Valley State University, adams@cis.gvsu.edu

Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles

ScholarWorks Citation ScholarWorks Citation
Browning, Jace and Adams, Robert, "Doorstop: Text-Based Requirements Management Using Version
Control" (2014). Funded Articles. 32.
https://scholarworks.gvsu.edu/oapsf_articles/32

This Article is brought to you for free and open access by the Open Access Publishing Support Fund at
ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/oapsf_articles
https://scholarworks.gvsu.edu/oapsf
https://scholarworks.gvsu.edu/oapsf_articles?utm_source=scholarworks.gvsu.edu%2Foapsf_articles%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/oapsf_articles/32?utm_source=scholarworks.gvsu.edu%2Foapsf_articles%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Journal of Software Engineering and Applications, 2014, 7, 187-194
Published Online March 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.73020

How to cite this paper: Browning, J. and Adams, R. (2014) Doorstop: Text-Based Requirements Management Using Version
Control. Journal of Software Engineering and Applications, 7, 187-194. http://dx.doi.org/10.4236/jsea.2014.73020

Doorstop: Text-Based Requirements
Management Using Version Control
Jace Browning, Robert Adams
School of Computing and Information Systems, Grand Valley State University, Allendale, USA
Email: jacebrowning@gmail.com, adams@cis.gvsu.edu

Received 24 January 2014; revised 20 February 2014; accepted 27 February 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Effectively managing the requirements and traceability in a complex software project can be a
challenging task. Many tools exist to support the initial creation and management of changes to
text-based requirements. The most popular commercial solutions use a centralized server to host
a database with a front-end desktop or web interface. Some downsides to this approach include
user interface bloat, server costs, and an inherent disconnection from the project’s source files. To
provide an alternative to traditional requirements management, Doorstop was created as a tool to
allow requirements to be stored as text files in version control. This solution allows a project to
utilize its existing development tools to manage versions of the requirements using a lightweight,
developer-friendly interface.

Keywords
Requirements Management; Version Control; Software Tools

1. Introduction
The primary goal of a “requirements management” tool is to capture requirements in a structured fashion and
provide a means to create, edit, link, and baseline requirements collaboratively. While software requirements
exist in many forms, the scope of the tool described by paper is the textual requirements used to define pre-
scribed and proscribed behavior of a system and its subsystems. This is the style of requirements used by most
aerospace, medical, automotive, and other industrial projects.

Within this scope, a “requirement” typically exists as one or more sentences where keywords such as “shall”,
“should”, and “may” are given specific meanings to define the behavior of a system. A collection of require-
ments is often organized in outline form to create a document structure. Other documents might contain test
cases or references in source code files. Items within a document are “linked” to items in another document to

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.73020
http://dx.doi.org/10.4236/jsea.2014.73020
http://www.scirp.org
mailto:jacebrowning@gmail.com
mailto:adams@cis.gvsu.edu
http://creativecommons.org/licenses/by/4.0/

J. Browning, R. Adams

188

convey fulfillment of implementation or testing. These links are ultimately used in a verification phase to meas-
ure the accuracy of requirements decomposition and test coverage. A sample collection of documents is shown
in Figure 1.

This figure shows a software requirements document (SRD), high-level test document (HLT), software design
document (SDD), low-level test document (LLT), and source code document (SC). The SRD contains the main
requirements for the product. The HLT items will link to the items in the SRD to trace testing, while the SDD
items will link to the SRD to trace design. The SDD contains the design requirements. The LLT items will link
to the SDD items to trace testing, while the SC items will link to the SDD items to fulfill implementation. A
sample linking hierarchy can be seen in Figure 2.

Effectively tracking the linkages between requirements, design, implementation, and test is important to the
success of a program and requires a good tool. Inadequate tool support can have a costly impact on an organiza-
tion’s development and maintenance efforts [1]. The motivation to create a new text-based requirements man-
agement tool stems from the perceived inadequacies of existing tools used to manage textual requirements. Tra-
ditional requirements management tools have redundant and disconnected functionality from the tools used to
manage source code. Many exiting solutions are also cumbersome to use and expensive to purchase and main-
tain.

This paper presents a new approach to managing text-base requirements called Doorstop. The hallmarks of
Doorstop are its utilization of existing version control systems and usage of tools developers are already familiar
with (namely, the command line and text editors). Section 2 outlines the necessary features of any requirements
management solution. Section 3 provides an overview of existing requirements management tools and their cur-
rent limitations. Based on that review, Section 4 discusses the design of Doorstop to overcome these limitations,
and Section 5 covers some implementation details. Section 6 provides an initial evaluation of the tool, and Sec-
tion 7 concludes with areas where the tool can still be improved.

2. Required Features
Regardless of the approach taken, all tools designed to help manage requirements must have certain features,

Figure 1. Sample requirements, test cases, and functions.

Figure 2. Sample linking hierarchy.

J. Browning, R. Adams

189

which can be discussed based on application.

2.1. Composition Features
The tool must provide uniquely identified versioned and linkable sections of text. Items in a requirements docu-
ment must be assigned a permanent identifier to maintain the integrity of links between items when content
changes. The text should support formatting with the option to reference external content outside of pure text.
The requirements management solution must also be expandable. An open architecture allows interfaces to
communicate with other tools and support integration throughout the entire development process [2].

2.2. Presentation Features
The tool must provide a way to represent a set of requirements in a useful fashion. Not all consumers of software
requirements are programmers, so multiple presentation formats must be provided to support the needs of less
technical users. This includes providing the ability to flexibly control filtering based on attributes as well as
viewing the requirements in a more traditional document-oriented manner [3]. The requirements documents are
also used to track changes and analyze impact. The tool must provide an auditable trail of baselines approved
through the development process [4].

2.3. Administration Features
The tool must provide storage of requirements in a permanent and secure manner. It must also handle change
management so that modifications to requirements can be formally requested and reviewed [3]. The ability to
connect requirements change management to existing user accounts provides an added benefit. The tool must be
scalable to support thousands of requirements, but also maintain a lightweight installation option across multiple
sites and platforms [2].

3. Existing Solutions
Many tools exist to facilitate the management of requirements, and fall into a few distinct categories.

3.1. Centralized Tools
By far the most popular solutions for corporate environments are requirements management tools utilizing a
centralized database with a graphical front-end. Commercial examples of this type include Rational DOORS [5],
Dimensions RM [6], and MKS Integrity [7]. Open Source Requirements Management Tool (OSRMT) [8] offers
a less feature-rich, but free option. The users of these tools interact with the requirements document in a tabular
form where linkable items in a document are stored as entries in a centralized database. These tools tend to have
extensive reporting capabilities to publish documents in a desired format.

These kinds of tools have some disadvantages. High user license and server costs make the paid options un-
suitable for smaller companies. All tools in this category require network access to function making them sus-
ceptible to server downtime and remote access issues. Scripting interaction with the database typically involves
using a proprietary DSL (domain-specific language) and hurts interoperability with other tools. Finally, these
kinds of tools have limited connection to the source code making functional tracing more difficult.

3.2. Cloud-Based Tools
Several companies have created websites to serve as hubs for requirements collaboration. Commercial examples
of this type include Accompa [9] and Jama [10]. An open-source option is provided by aNimble Platform [11],
which is compatible with OSRMT. The users of these tools interact with the requirements document using a web
browser, often using a cleaner and more modern interface. Cloud-based solutions also have the added benefit of
letting someone else manage the server infrastructure.

These kinds of tools still have some disadvantages. Many companies have policies restricting any parts of
their software development artifacts from being hosted by a third party. Self-hosting requires dedicated hard-
ware and support. Like the centralized solutions, these types of tools also use proprietary formats and provide

J. Browning, R. Adams

190

limited extensibility and integration with other tools.

3.3. Decentralized Tools
In recent years, several tools have been created that attempt to change the model of requirements management.
These tools avoid requiring a dedicated server by storing requirements as files rather than database entries. File
storage enables much tighter integration between the requirements and source code.

One example is rmtoo [12], which is a pure command-line interface with dependency graph generation. This
tool uses the model of storing requirements as text files. Unfortunately, the tool is not specifically designed to
support Windows and lacks a GUI interface, which may deter less-technical users.

4. Doorstop Model
Doorstop’s model of requirements management is based on text files stored in a version control repository. Each
text file represents one linkable section of text. These “item files” can contain the text of a requirement or test, a
list of other item files they link to, and optionally an external reference to source code or another file. Doorstop
assigns unique, sequentially numbered names to these item files for the purposes of linking and historical re-
view.

Folders (directories) in the filesystem provide the hierarchical organization. Doorstop creates a “document
directory” for the storage of related items files. The tool recognizes the parent-child relationship of these docu-
ment directories and uses this information to map the relationship of documents. The collection of all documents
in a directory forms a document hierarchy or tree. An overview of this model using parts of the documents from
section 1 is shown in Figure 3.

Doorstop creates and validates these document directories and item files. The tool allows users to create new
requirements and tests as item files and establish links between them. Doorstop also provides a mechanism to
publish a collection of items in various document formats.

Doorstop expects that item files and document directories are stored in a version control system (VCS), which
handles the responsibility of managing the history and change management of the requirements and tests. After
item files are created, they can be committed to the version control repository for storage. Baselines of the re-
quirements and tests can be created using the VCS’s tagging mechanism. Branching and merging are used to
isolate requirements changes still under review. Existing user credentials are associated with changes to lines of
text by the VCS. Utilizing a distributed version control system (DVCS) to store the item files enables Doorstop
to be scalable to users in multiple locations and provide offline access. The VCS can also display the differences
between different versions of the requirements and tests throughout history.

5. Implementation Details
Python 3 [13] was chosen as the implementation language so that Doorstop can run on multiple platforms and be

Figure 3. Doorstop’s requirements model.

J. Browning, R. Adams

191

easily extensible. Each text file controlled by Doorstop contains data in the YAML format [14], which is easily
read by humans and parsed with a Python library. The Markdown language [15] is used for blocks of text in the
YAML files. Markdown mimics standard conventions for formatting plain text and can be translated into many
other markup languages for presentation.

5.1. Project Structure
The users of Doorstop designate a location to store the items of each document. These document directories can
exist anywhere in the version control working copy. A sample project structure can be seen in Figure 4.

This figure shows a possible project structure for the example project described in earlier sections. Doorstop
creates a “doorstop.yml” in each location selected to be a document directory. In this example, there are four
documents: a software requirements document (SRD), high-level tests document (HLT), software design docu-
ment (SDD), and low-level tests document (LLT). In the figure, each of the document directories contains a
couple of item files, which were sequentially named by Doorstop using the document’s designated prefix.

5.2. Text Format
When Doorstop creates a new item file in a document directory, it is assigned a unique, sequentially numbered
filename. The tool populates the item file with fields to store the text of a requirement or test along with addi-
tional metadata. A sample item file can be seen in Figure 5.

This figure shows the standard attributes for an item file. The “level” field indicates the presentation order of
the item within its document. Any number of outline depths can be used. Links are represented as a list of item
file IDs (filename without the extension) or an empty list. The item’s text is stored in a multi-line format so that
line breaks are preserved. Item files can also include external text references as shown in Figure 6.

This figure shows an item file with an external reference to the string “test_check_std_args”. During docu-
ment validation and publishing, Doorstop will confirm this external reference is found in the version control
working copy. External references provide Doorstop with a simple mechanism for linking to source code or oth-
er text files. When an external reference is defined, the item file’s text becomes optional.

5.3. User Interfaces
Currently, Doorstop has two main interfaces: command-line and scripting. The command-line interface is used
to create document directories, add item files, and create links between items. It can also validate the document
hierarchy and provide warnings about common issues such as missing links or text. A selection of the available
commands is shown in Figure 7.

In this sequence of commands, the SRD document is created first. Next, an item is added to the SRD docu-
ment and opened for editing. After that, the HLT document is created with SRD as its parent. Finally, an item is
added to the HLT document, which is then linked to an item in the SRD document.

The Doorstop Python package can also be used to interact with the document structure. After importing the
“doorstop” package, item files can be manipulated and validated using the classes and functions provided. A
sample script is shown in Figure 8.

Figure 4. Sample project
structure.

J. Browning, R. Adams

192

Figure 5. Sample item file.

Figure 6. Sample item file with external
reference.

Figure 7. Doorstop command-line interface.

Figure 8. Doorstop scripting interface.

This script builds the document tree from the current working directory and locates the document with the

“SRD” prefix. It then iterates through the items in the document and displays their IDs if the item contains the
word “shall”.

5.4. Interaction with the VCS and Other Tools
In addition to the change management features described in earlier sections, storing requirements as text in ver-
sion control provides additional benefits not possible with other methods of requirements management. Version
control tools are able to provide line-by-line diffs of the item files’ contents throughout history. They also track

J. Browning, R. Adams

193

individual modifications to lines in these item files and record both the author of each change and reason for the
change. The development of requirements benefits from having access to this powerful concept, which is al-
ready used frequently while developing source code.

Because the item files are stored in an easily parsable format, other tools can be used to manipulate the files
Doorstop creates. Popular command-line tools such as grep, sed, and awk can be used to locate and manipulate
patterns of text. The item files can be opened in any text editor. Doorstop will adjust formatting of the item files
and report syntax errors when it validates the document hierarchy.

6. Evaluation
Doorstop meets all requirements identified in Section 2. The composition of item files and the links between
them is accomplished using the tool along with whatever editor the user is comfortable with. The presentation of
requirements is provided through Doorstop’s storage of text in a format that can be translated to a variety of
formats. The administration of document directories and item files is handled by the version control system.

As part of the evaluation, Doorstop was used to manage the traceability of test cases during the development
of Doorstop itself. Tight integration between the requirements, source code, and version control allowed the
project to develop rapidly. Validation of the document hierarchy and report generation was easily incorporated
into the build process.

Compared to other solutions, Doorstop has many advantages. The tight integration with source code enables
tracing options not available in tools that maintain requirements in a separate database. Storing requirements in
version control allows offline access and the flexibility to branch and merge the contents. The implementation in
Python provides cross-platform support and scripting capabilities using a well-established language.

7. Future Work
Doorstop provides many desirable features, but users of a traditional requirements management tool might be
hesitant to try Doorstop until it also provides interfaces and formats closer to what they are familiar with. A full-
scale trial will also be required to accurately access these needs. Based on this conclusion, several features are
planned as future work for Doorstop.

Using the existing core code, a GUI will be developed in Python to provide an alternative to command-line
and scripting interfaces. Users comfortable with the text-based interfaces will still be able to use those for ad-
vanced tasks. The GUI should provide enough functionality to be useful as a primary interface.

Commercial tools provide many options for publishing requirements documents. Doorstop will likely be more
attractive if it can produce reports as web pages or standalone documents. This will allow requirements to be
shared with users who might not have access to the source code repository.

Finally, Doorstop will benefit from the ability to import from and export to formats understood by the most
popular requirements management tools today. The import feature will be used to let a user transfer exiting re-
quirements documents into Doorstop. The export feature will exist to provide the user an exit if they wanted to
migrate to a different solution.

References
[1] Gotel, O. and Mäder, P. (2009) How to Select a Requirements Management Tool: Initial Steps. 17th IEEE Internation-

al Requirements Engineering Conference, Atlanta, 31 August-4 September 2009, 365-367.
[2] Zhang, Q. and Eberlein, A. (2003) Architectural Design of an Intelligent Requirements Engineering Tool. Canadian

Conference on Electrical and Computer Engineering, Montreal, 4-7 May 2003, 1375-1378.
[3] Hoffmann, M., Kühn, N., Weber, M. and Bittner, M. (2004) Requirements for a Requirements Management Tools.

Proceedings of the 12th IEEE International Requirements Conference, Kyoto, 6-11 September 2004, 301-308.
[4] Zainol, A. and Mansoor, S. (2011) An Investigation of Requirements Management Tool Elements. 2011 IEEE Confer-

ence on Open Systems, Langkawi, 25-28 September 2011, 53-58. http://dx.doi.org/10.1109/ICOS.2011.6079304
[5] (2012) Requirements Management for Systems and Advanced IT Applications.

http://www-03.ibm.com/software/products/en/ratidoor
[6] (2013) Serena Dimensions RM. http://www.serena.com/index.php/en/products/other-products/dimensions-rm
[7] (2013) PTC Integrity—Accelerating Innovation in Software Intensive Products. http://www.mks.com/platform

http://dx.doi.org/10.1109/ICOS.2011.6079304
http://www-03.ibm.com/software/products/en/ratidoor
http://www.serena.com/index.php/en/products/other-products/dimensions-rm
http://www.mks.com/platform

J. Browning, R. Adams

194

[8] (2013) Open Source Requirements Management Tool. http://sourceforge.net/projects/osrmt
[9] BA & Engineering Teams (2013) Requirements Management Software for Product Management.

http://www.accompa.com
[10] (2013) Jama Requirements Management. http://www.jamasoftware.com/jama-requirements-management
[11] (2009) aNimble Platform. http://nimble.sourceforge.net
[12] (2012) rmtoo. http://www.flonatel.de/projekte/rmtoo
[13] (2013) Python v3.3.3 Documentation. http://docs.python.org/3/
[14] The Official YAML Web Site (2013). http://www.yaml.org/
[15] (2013) Markdown. http://daringfireball.net/projects/markdown

http://sourceforge.net/projects/osrmt
http://www.accompa.com/
http://www.jamasoftware.com/jama-requirements-management
http://nimble.sourceforge.net/
http://www.flonatel.de/projekte/rmtoo
http://docs.python.org/3/
http://www.yaml.org/
http://daringfireball.net/projects/markdown

	Doorstop: Text-Based Requirements Management Using Version Control
	ScholarWorks Citation

	Doorstop: Text-Based Requirements Management Using Version Control
	Abstract
	Keywords
	1. Introduction
	2. Required Features
	2.1. Composition Features
	2.2. Presentation Features
	2.3. Administration Features

	3. Existing Solutions
	3.1. Centralized Tools
	3.2. Cloud-Based Tools
	3.3. Decentralized Tools

	4. Doorstop Model
	5. Implementation Details
	5.1. Project Structure
	5.2. Text Format
	5.3. User Interfaces
	5.4. Interaction with the VCS and Other Tools

	6. Evaluation
	7. Future Work
	References

