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Abstract 

 

Motion artifact strongly corrupts heart rate measurements in current pulse oximetry systems.  In 

many, almost any motion will greatly diminish the system’s ability to extract a reliable heart rate. 

The artifact is most likely present due to normally non-pulsatile components of the body, such as 

venous blood and tissue fluid, which become pulsatile during motion. This paper presents a 

motion artifact reduction method using an accelerometer that attempts to recover a usable heart 

rate sensor signal that has been corrupted by motion. The method was developed for a wrist pulse 

oximeter sensor and was adapted for a ring sensor, both of which were very susceptible to arm 

motion. An accelerometer was paired with the pulse oximeter to detect the motion. This motion 

signal was then used to recover the corrupted heart rate signal. The correlation between the 

acceleration and the heart rate signals was analyzed and two adaptive filter models were created 

to relate the corrupted signal to the acceleration.  These filters were partially successful in 

removing the motion artifact. The results show that the wrist sensor was much more susceptible 

to motion in any direction, while the ring sensor was mainly susceptible to motion in the same 

direction as the digital artery.  
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1 INTRODUCTION 

Pulse oximetry is a technique that is used to non-invasively monitor both arterial oxygen 

saturation and heart rate (1). It is widely used in clinics and hospitals throughout the 

world, mainly because it has the ability to monitor several physiological signals that are 

of great use when monitoring a patient, including oxygen saturation, heart rate, heart rate 

variability, and respiration rate. While it is widely used, it does suffer from some serious 

limitations. The most severe is likely its susceptibility to motion artifact which is the 

reason that it is most useful in patients with limited mobility. For this project, we will 

investigate the ability to use pulse oximetry to obtain accurate heart rate information in 

mobile patients using a device designed by Twisthink, LLC for AFrame Digital: the heart 

rate watch.  

 

This pre-existing watch monitors patients for falls using an on-board accelerometer.  The 

company wanted to augment its functionality by incorporating a heart rate measurement 

using pulse-oximetry without the need for an accessory attachment, such as a finger 

sensor. In essence, it would be the first single electrode, unipolar, estimate of heart rate, 

which is usually estimated using a differential signal necessitating bipolar electrodes.  

This led to the use of flex strips that contains light emitting diodes (LEDs) and 

photodiodes connected to the main watch.  The design has resulted in an ability to obtain 

a heart rate in a patient that is relatively still but it is very susceptible to motion artifact. 



 

 

Notionally, motion of the limb associated with the measuring circuit should correlate 

with the interference.  This leads to the thought that by sensing the motion of the arm that 

is wearing the circuit, it should be possible to adaptively cancel the motion artifact.  

Preliminary techniques yielded mixed results. The accelerometer data was streamed 

along with the heart rate signal. These signals were then analyzed using Matlab’s 

Simulink Software. Several different filtering methods were employed, none of which 

resulted in a very clean heart rate signal. These methods were all digital and included low 

pass filters, Least Mean Squares (LMS) adaptive filters and a matched filter. These 

techniques were performed on whole signals, rather than windows of motion corruption. 

It was confirmed that the accelerometer signal, resulting from motion of the arm, did 

correlate to the heart rate signal but none of the filters were successful at producing a 

clean enough signal to reliably extract a heart rate. This research will further explore the 

use of accelerometer signals being used to cancel motion artifact, while also potentially 

incorporating other methods for cancellation, such as Kalman filtering and wavelet 

analysis. All of these techniques are commonly used to filter physiological signals, 

especially electrocardiograms (ECG). If successful, a product using the filtering 

technique described could be of great value to not only hospitals but also athletes, and the 

general public, who want to have the ability to continuously monitor key vital signs even 

while exercising or moving that may be incorporated into a simple device with a single 

electrode. Heart rate and heart rate variability could play a major role in the prevention 

and detection of overtraining in athletes. 
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2 BACKGROUND 

2.1 History of Oximetry and Pulse Oximetry 

Photoplethysmography (PPG), more commonly known as pulse oximetry, is a way of 

monitoring vital body signs such as heart rate and blood oxygenation (SpO2). A pulse 

oximeter is a medical device that indirectly monitors oxygen saturation and changes in 

blood volume, generally from a finger or ear lobe.  The modern, portable pulse oximeter 

is used in almost every hospital and can be purchased at many stores worldwide. 

 

2.2 Oximetry 

Oximetry is the measurement of percent saturation of oxygen in hemoglobin and is 

directly correlated with the partial pressure of oxygen in hemoglobin (2).  Hemoglobin is 

a protein that carries oxygen from the lungs to the tissues and is transported by red blood 

cells (3).  This partial pressure of hemoglobin determines how well oxygen is delivered to 

the cell tissue (2). The basic concept is to transmit light through blood and have the blood 

absorb a certain amount of light depending on the concentration of oxygenated and 

deoxygenated hemoglobin (2).  

 

2.3 Principle of Pulse Oximetry 

Pulse oximeters are used to non-invasively monitor both arterial oxygen saturation and 

heart rate (1). These values are calculated based on the transmission, absorption and 

dispersion of light as it passes through hemoglobin (2).This principle is based on the 

different light absorbing characteristics of oxyhemoglobin (HbO2) and deoxyhemoglobin 

(reduced hemoglobin, Hb) at two different wavelengths, red and infrared and relies on the 
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pulsatile nature of arterial blood flow (4). These characteristics are shown in Figure 2-1 

(4)  and Figure 2-2 (4). In Figure 2-1, the different extinction coefficients are shown for 

the different types of hemoglobin. These extinction coefficients are representative of the 

absorption coefficients that will have a major role in determining how much light is 

absorbed. Figure 2-2 shows how the two different light components, as described earlier, 

are divided (4). This indicates that the AC signal of the pulsing arterial blood sits on top 

of a DC component that is composed of venous blood, bone, fat, muscle, and other body 

tissues (4).  Component A is the transmitted light intensity that occurs during systole, 

which is contraction of the heart, and is a result of pulsations of oxygenated arterial blood 

(4).  Component B is transmitted light during diastole. This means that component A can 

be used to determine the heart rate of the patient, as it coincides with the heart beat 

because the arterial blood vessels expand and contract with each heart beat (3).  With 

each heartbeat, a new surge of blood fills the arteries to carry more hemoglobin and 

oxygen to the peripheral tissues and will result in a spike in the oximetry signal, as more 

blood is present during the transmission of the light (3).  
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Figure 2-1: Transmitted Light Absorbance Coefficients for Different Hemoglobin 

Species (4)  

 

 

Figure 2-2: Components of Light Absorption By Material In Pulse Oximetry (4)  
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In most systems, two light emitting diodes (LEDs) at two different wavelengths, red and 

infrared, are used in conjunction with a photodetector that transduces the light intensity 

into an electrical signal.  It is the different levels of absorption at these two wavelengths, 

along with pulsatile changes, that provides the information necessary to determine the 

oxygen saturation and calculate the heart rate (1).  The red to infrared ratio is calculated 

and then compared to a table that consists of empirical formulas that convert the ratio to 

an oxygen saturation value (5). As mentioned previously, the pulsing of the light 

transmission due to changing arterial blood volume is used to calculate the heart rate.  

The magnitude of the signal is a function of the amount of blood that is ejected from the 

heart during systole, the light absorption of the blood and other components, and the 

wavelengths used to transmit the light (5). During diastole, the volume of blood in the 

vascular tissue bed is decreased, which increases the amount of light that is transmitted 

through (5). This period is the rising portion of the signal (5). During systole, this volume 

increases causing more light to be absorbed and reducing the intensity of the light 

measured by the photodetector (5).  

2.4 Oxygen Saturation Calculation 

The pulse oximeter signal consists of two components: a pulsatile part, referred to as the 

AC component, and a non-pulsatile part, referred to as the DC component. This DC 

component is due to light absorption by skin, tissue, venous blood, bone, and non-

pulsatile arterial blood. The AC component is caused by light absorption of pulsatile 

arterial blood.   
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2.5 Heart Rate Calculation 

There are two different methods that are commonly used to extract the heart rate from the 

PPG signal, peak to peak intervals and monitoring the frequency content. The first 

method identifies the peaks of the PPG signal and calculates the time between each one. 

The heart rate is the reciprocal of this time. The second method identifies the frequency 

of the pulses though the use of a transform, such as the Fourier Transform. This 

transform will yield a large spike at the frequency of the heart rate. 

 

2.6 Modes of Pulse Oximetry 

Pulse oximeters operate in two different ways, with transmission and reflectance (5). In 

transmission, shown in Figure 2-3, the light sources are on the opposite side of the 

photodetector. In this scenario, the light is transmitted though the medium and detected 

on the other side. In reflectance, shown in Figure 2-4, the photodetectors and LEDs are 

located on the same side of the medium.  The photodetector will detect the light that is 

back-scattered off the tissue, bones, arterial blood, and venous blood. Reflectance will be 

the method used in this study. 
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Figure 2-3: LED and Photodetector placement for transmission mode (5)  

 

Figure 2-4: LED and Photodetector placement for reflectance mode (5)  

2.7 Sensor Placement 

The concept of pulse oximetry began with measurements being taken at the ear until 

Aoyagi discovered the same basic principles could be used at the finger (6). While the 

finger is still the most common location for the sensors, there are numerous other 

locations pulse oximeters can be placed. These locations include the chest, cheek, and 

forehead (5). This study will focus on two locations not commonly used: the wrist, as 

well as the ring finger. 
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2.8 Applications of Pulse Oximetry 

Pulse oximetry is widely used in many clinical settings, including anesthesia, surgery, 

critical care, hypoxemia screening, exercise, and transport from operating room to the 

recovery room (7). Pulse oximeters for personal use are sold at several pharmacies and 

grocery stores. These are generally finger sensors.  They will monitor oxygen saturation 

and heart rates. Other products, including the AquaPulse described in Section 2.13, have 

been designed for use in exercise. These are generally used as heart rate monitors to give 

the athlete feedback on the intensity of the workout. 

 

2.9 Basic Assumptions of Pulse Oximetry 

There are a few major assumptions that are made for pulse oximeters. Under these 

assumptions, they are very accurate (8). The first is that all hemoglobin present is either 

oxyhemoglobin or deoxyhemoglobin (8). This is not entirely accurate, as there are other 

substances in the hemoglobin, including carboxyhemoglobin and methemoglobin, as seen 

in Figure 2-1. However, these forms of hemoglobin do not contribute much to the signal. 

The second assumption is that there are no other absorbers between the light source and 

photodetector (8). This is obviously not true, as there is skin, bone, tissue, and venous 

blood that all contribute to the signal. The third, and possibly most important assumption, 

is that all the blood that pulsates is arterial blood (8). It is this assumption that is most 

violated by motion. 
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2.10 Limitations of Pulse Oximetry 

While pulse oximetry is a widely used and relied upon technology, it does have several 

limitations. One limitation is that it makes the assumption that there are only two 

substances in hemoglobin, oxyhemoglobin and deoxyhemoglobin (2). It can be seen in 

Figure 2-1that there are also other components of hemoglobin, including 

carboxyhemoglobin and methemoglobin.  However, under most circumstances, these 

substances will not affect the reading (2).  A second limitation is the photodector used is 

susceptible to ambient light that can cause misreading.  To correct for this, a form of 

shielding can be used or a measurement of the ambient light can be taken and then 

subtracted from the desired signal. Third, the pulsatile PPG signal is very small compared 

to the DC signal it is riding on (2). This can partially be corrected though the use of 

higher resolution A/D converters or brighter photodiodes (2).  Low peripheral vascular 

perfusion, or a reduced level of blood in the limbs, can cause the signal produced to be 

too small to be reliably processed (7). These four limitations may cause some issues in 

the signal; however, the biggest problem that pulse oximeters are susceptible to is the 

addition of motion artifact to the signal.  This will be covered in the next section, as it is 

the fundamental problem this study will explore, but could be caused from a variety of 

sources, including sensor displacement as a result of the motion. Below is a list of 

limitations that cause problems in pulse oximetry. 

1. Assumption of only two substances absorbing and reflecting light 

2. The photodector is susceptible to ambient light 

3. The pulsatile PPG signal is very small in comparison to the DC signal  

4. Low peripheral vascular profusion can cause the signal to be too small 
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5. Addition of motion artifact 

 

2.11 Motion Artifact 

Motion artifact is the largest contributor to poor signals in pulse oximetry. These poor 

signals may be caused by changes in arterial perfusion or normally non-pulsatile 

components, the B component of Figure 2-2, adding on to the pulsatile components, the 

A component of Figure 2-2. These components include venous blood, tissue fluids, fat, 

and muscle. Another cause may be sensor displacement. 

 

Several studies have been performed to observe the effects of motion on pulse oximeters. 

One, performed by William Kist in 2002, tested two new pulse oximeters, the Nellcor N-

395 and the Masimo ® SET (Signal-Extraction Technology) that claimed to eliminate 

motional artifacts (1). The results demonstrated a strong correlation between the two 

pulse oximeters on oxygen saturation and heart rate under both motion and non-motion 

conditions (1). However, the correlation between the two oximeters on heart rate was 

weaker under motion (1). It was discovered that the weaker correlation under motion was 

due to the Masimo system’s inability to consistently determine heart rate during motion 

(1).  

 

A paper authored by Michael Petterson discussed how motion artifact affects pulse 

oximetry accuracy (8).  Petterson states that if motion is combined with low perfusion at 

the sensor, then the venous blood contributes even more to the pulsatile component and 

will cause even greater error in the signal (8).  He cites a study performed by Tobin that 
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collected data on 35 patients determined a wide range of motions led to error but that 

most errors were generated by intense, aperiodic, random movements that last 30 seconds 

or less (8). The type of motion used in Tobin’s study differs from the motion that will be 

necessary for this study.  For the desired results of this research, periodic motion will also 

need to be effectively cancelled, and this motion would likely last significantly longer 

than 30 seconds and may coincide with the frequency of the heart rate.  The periodicity of 

the interference is due to the general nature of motion that is performed while exercising; 

for example, the swinging of arms while running.  

 

Another review, performed by Larry Mengelkoch and published in 1994, looked at 10 

different studies that evaluated 24 different pulse oximeters that contained data collected 

during exercise (4). The review found that the degree of accuracy of the pulse oximeters 

was variable, even among the same models (4). He found that the studies reported mixed 

results of accuracy, with seven of the 10 studies having demonstrated that the pulse 

oximeters provide accurate results during exercise (4).  Norton et al. found in 1992 that 

under exercise, there were relatively large underestimations of oxygen saturation and also 

cites several other studies that had findings that were in agreement with his (9). 

 

Motion artifact has also been speculated to be caused by sensor displacement (5). Due to 

the rounded surface of skeletal bone, changes in the sensor position could cause changes 

in the backscattered light reaching the photodetector (5). An example of this is shown in 

Figure 2-5. 
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Figure 2-5: Sensor displacement altering backscattered light (5). (A) Typical light 

scattering before motion, (B) motion induced cyclical movement causes changes in 

sensor position, changing the backscattered light. 

 

In work that was done using the system described in Section 2.12, it was found that 

motion greatly reduces the ability to extract a heart rate from the PPG signal. These 

results are in Section 5. 

 

2.12 Current Device Features 

The device used for much of this research was designed by Twisthink, LLC, based in 

Holland, MI. It consists of similar technology to off the shelf pulse oximeters, with one 

major difference: the use of only infrared LEDs. The goal of the device was to just 

monitor heart rate; therefore, a red LED is not necessary. The device utilizes the 

reflectance method described in Section 2.6, and was designed for use in a watch. There 

are four infrared LEDs and four photodiodes, with their power and bias voltages 
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controllable through software. The light produced by the IR LEDs will reflect off the 

blood that pumps through the arteries and will return to the photodiode, which will 

change its output voltage depending on the intensity of light received. The surrounding 

circuitry was standard operational amplifiers and filters currently used in pulse oximetry 

devices. With this design, the system was very susceptible to motional artifact, to the 

point where it could not extract a heart rate. These results will be discussed in Section5. 

 

2.13 Products Currently on the Market: Heart Rate Monitoring Watches 

There are currently several different heart rate watches on the market. However, they 

generally require the use of a chest strap or some other form of accessory.  Several 

companies advertise these watches to athletes, including Polar, Timex, and Garmin. They 

are also generally expensive, with Timex’s Ironman watches being priced around 

$200.00 and Garmin’s being around $400.00. An example of the chest strap these 

watches use is shown in Figure 2-6. Another watch that uses similar technology to the 

chest strap method, but applies it to the arm instead, is Impact Sports Technology’s 

ePulse2, shown in Figure 2-7.  These sensors must be in direct contact with your skin. 

 

Other methods include those used by watches such as the Mio Classic that requires you to 

use two fingers pressed against the watch face to get the heart rate. This is a similar 

method to how most treadmills and larger exercise equipment get a heart rate. An 

example is shown in Figure 2-8. 
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Figure 2-6: Example of a heart rate monitoring watch using a chest strap 

 

 

Figure 2-7: ePulse2 watch that uses chest strap technology on the arm 
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Figure 2-8: Example of heart rate monitoring watch using two fingers to extract a 

heart rate 

A product that uses an infrared sensor to monitor capillary blood flow of the ear lobe to 

report the heart rate is the AquaPulse™, produced by FINIS, INC and released in June 

2011.  A picture of this, taken from the FINIS Inc. website, is shown in Figure 2-9. This 

is similar to the technology that will be used in this research, except the sensor will be at 

the wrist and ring finger instead of the ear. 

 

 

Figure 2-9: AquaPulse Heart Rate Monitor using infrared sensor at the ear lobe 
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2.14 Current Techniques to Reduce Motion Artifact 

This section will focus on studies that have used the techniques described to reduce 

motion artifact. A more in depth look at the specific filter types that are commonly used 

in biomedical signal processing can be found in Section 2.15. 

 

2.14.1 Hardware 

Analog filters with cutoff frequencies that are representative of potential heart rates 

should be used. A heart rate could be anywhere from 0 to 300 beats per minute, but most 

are between 50 and 150 beats per minute, or 0.83 to 2.5 Hz, unless there are extenuating 

circumstances. This will allow for the filtering of high and low frequency noise prior to 

the signals digitization.  

 

2.14.2 Software 

There are several techniques that are commonly used to “solve” the noise problem that 

pulse oximeters exhibit. Many of these techniques are applied with the hope of avoiding 

false alarms in hospitals (8). One technique is data averaging, in which the sampling time 

is increased so that the effect of motion is minimized (8). While this is a simple approach, 

it would not be applicable to motion that is period and extended, such as that of a runner. 

Another technique commonly used is data holding, which sees pulse qualified and only 

those fitting certain criteria are used in a calculation (8). Both of these techniques result 

in a loss of a significant amount of information (8).  
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At least two companies, Masimo and Philips, claim to have motion tolerant algorithms, 

however, these are highly proprietary (8). Masimo’s SET technology “reads through 

motion” using several signal processing techniques including their proprietary Discrete 

Saturation Transform (8). It is comprised of a reference signal generator, an adaptive 

filter, and a peak picker (8). These are used to generate a power spectrum of the incoming 

signal (8). Philip’s FAST SpO2 (Fourier Artifact Suppression Technology) depends on a 

frequency based algorithm that first identifies the frequency components of the incoming 

signal that is at the pulse rate for both the red and infrared wavelengths (8). It is this 

component that is used to calculate oxygen saturation (8). 

 

Another technique implemented by Hayes proposes that, through the use of a signal 

processing method based upon inversion of a physical artifact model, the effects of 

motion can be greatly diminished (10).  He states that many of the approaches used to 

reduce corruption are based on signal processing techniques that make assumptions about 

the expected signals, usually frequency related, statistical properties of the signal, or the 

degree of correlation with the signal and those signals from another transducer (10). 

Hayes goes on to state that he believes all of these signal processing methods suffer from 

the generality of the assumption that the artifact presents itself as an additional signal 

component that does not affect the physiological measurement (10).  He proposes that 

instead of using the linear assumptions that most methodologies employ, there should be 

a shift to a nonlinear artifact reduction method (10).  This system will change the 

calibration technique for oxygen saturation (10).  A description of this technique was 

published by the same author a few years prior to the study mentioned above (11).  It is 
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argued that the linear model used to attempt to cancel motion artifact is inaccurate for 

certain motions, especially those that alter the distance between the source and detector 

(11).  In this publication, it is demonstrated that by altering the normally linear model 

used for PPG signal, a nonlinear response characteristic can be used to renormalize the 

signal so that it can be easily interpreted (11). Through the use of this new model, the 

motion artifact model is also changed into an additive form that is more easily removed 

(11). 

 

Another study, performed by Meltem Izzetoglu, proposes the cancellation of motion 

artifact through the use of discrete Kalman filtering (12).  It was found that the 

performance of the Kalman filter achieved a better signal to noise ratio than the adaptive 

filtering technique used by Izzetoglu in a previous study and results were comparable to 

Wiener filtering (12). Izzetoglu studied the effects of using Wiener filtering using the 

same data used in the Kalman filtering study (13).  For the adaptive filter, accelerometer 

data were used to successfully suppress motion artifact except for the first data points in 

which the filter could not adapt itself because of a lack of information on the data (13). 

Wiener filtering on the same data set yielded better signal to noise ratios (13). However, 

one major problem using the Wiener filter is that it worked offline, meaning that the 

whole data set had to be collected prior to filtering (13). 

 

In a 2005 study performed by Yong-sheng Yan, it was proposed that the use of a 

smoothed pseudo Wigner-Ville distribution could be used to reduce motion artifact on 

wearable pulse oximeters (14). The difference between this method and a normal 
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Wigner-Ville distribution is that it accounts for “cross-term interference” by 

incorporating two windowing functions (14). When it was compared with a weighted 

moving average approach and a fast Fourier Transform approach, the Wigner-Ville 

distribution approach showed a significant improvement in the pulse rate estimation 

when the subjects were in motion (14). He determined that the Wigner-Ville distribution 

had a much higher time-frequency resolution and can therefore be used more easily than 

other techniques to obtain a cardiac frequency, or heart rate (14). In 2008, Yan described 

a minimum correlation discrete saturation transform (MCDST) that showed to be more 

accurate and robust than the Masimo discrete saturation transform (15). This technique 

was designed for a wearable pulse oximeter and makes the claim that it is more 

computationally efficient because it uses linear algebra instead of adaptive filtering (15). 

This method employed a new ratio of ratios for both arterial and venous blood oxygen 

saturation (15).  The algorithm first collects both red and infrared signals and calculates 

the normalized pulsatile signals of each, calculated the constrained relationship between 

the new ratios, synthesized the reference pulsatile signal and motion artifact, and then 

obtained the MCDST spectrum and identified local minimums in the spectrum to 

determine the values of oxygen saturation (15). 

 

In 2005, Peter Gibbs presented a technique for reducing motion artifact in wearable 

biosensors by using accelerometers for active noise cancellation (16). Gibbs paired an 

accelerometer with a finger ring PPG sensor and used an adaptive filter under two 

different assumptions: the motion artifact was additive and the motion artifact was 

multiplicative (16). A large correlation between the accelerometer signal and the PPG 
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signal was found (16). Data was sent through a recursive least squares (RLS) adaptive 

filter algorithm and the corrupted PPG signal was successfully reconstructed for both the 

additive and multiplicative models using one axis of the accelerometer (16). He 

concluded that active noise cancellation using accelerometers is an effective method to 

produce motion tolerant wearable sensors (16). This study will attempt to confirm 

Gibbs’s conclusion. 

 

2.15 Filtering Techniques 

This section will cover the most commonly used filtering techniques used in pulse 

oximetry. 

2.15.1 Adaptive Filtering 

Adaptive filters have been used repeatedly in the efforts of noise cancellation in 

electrocardiograms (ECG) and electroencephalograms (EEG), among many other 

biomedical signals (13). There are several different algorithms, such as least mean square 

(LMS), normalized least mean square (NLMS), frequency domain and sub-band adaptive 

filters and recursive least squares (RLS) filters (13). Due to its simplicity, LMS adaptive 

filters became the standard adaptive filter used (12). This filter has two inputs, the 

primary input, which consists of the desired signal plus the noise, and the reference input, 

which is a correlated signal with the noise present in the primary input (13). The 

reference signal is obtained from a separate measurement (13). The filter coefficients are 

updated at each time point by using the two inputs to estimate the signal (13). The output 

is an estimate of the noise in the primary signal, meaning that the original signal is the 
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primary input minus the output of the filter (13).  Figure 2-10 shows the block diagram 

for an adaptive filter. 

 

Figure 2-10: Adaptive Filter Block Diagram (17) 

 

2.15.2 Wiener Filtering 

The basic concept of a Wiener filter is to minimize the difference between the filtered 

output and some desired output (18).  It does this by minimizing the mean-square error 

(MSE) with the goal of filtering out noise that has corrupted a signal through the use of 

the least-mean-square approach, which adjusts the filter coefficients to reduce the square 

of the difference between the desired output and the filtered output (18). The input signal 

contains both the signal and the noise that is needed to be cancelled (18). This type of 

filtering operates under the assumption that the signal and noise are stationary linear 

processes with a known spectral content (13). A stationary system is one that has a 

probability distribution that does not change when the process is shifted in time or space. 

It is this that separates it from being an adaptive filter.  One large issue with this type of 

filtering is that it cannot be done in not real-time, meaning that the whole data set must be 

collected prior to filtering it (13). Figure 2-11shows the block diagram for a Wiener filter. 
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Figure 2-11: Wiener Filter Block Diagram 

 

2.15.3 Kalman Filtering 

Kalman filtering uses a state space representation and least squares estimation methods 

for the recursive estimation of signals of interest that are buried in noise (12). This 

algorithm has been widely used in navigation and guidance systems, radar tracking, sonar 

ranging and satellite orbit determination (12). Kalman filtering produces estimates of the 

true values of a corrupted measurement and their associated calculated values by 

predicting a value, estimating the uncertainty of the predicted value, and computed a 

weighted average of the predicted value, and computing a measured value.  The recursive 

nature of the filter makes it very appealing compared to other techniques because the 

practical implementations are much more feasible (12). However, the practical 

implementations are still not as feasible as an LMS algorithm. Figure 2-12 shows the 

block diagram for a Kalman filter. 

 

Figure 2-12: Kalman Filter Block Diagram 
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2.15.4 Wigner-Ville Distribution 

The Wigner-Ville distribution of a signal is calculated using the instantaneous 

autocorrelation function and the distribution is invariant to shifts in time and frequency 

(18).  To obtain the distribution, the Fourier transform of the instantaneous 

autocorrelation function is taken, but only along the lag dimension. The output of this 

distribution is a function of both time and frequency (18).   

 

2.15.5 Wavelet Transform 

The Wavelet Transform (WT) provides a good representation of the signal with both 

good frequency and time resolutions (19). The WT can be used to describe properties of a 

waveform that change over time (19). The transform is a signal decomposition from a set 

of basis functions obtained by dilations, contracts and shifts of a unique function, which 

is the wavelet prototype (19).  The WT basis functions have a frequency dependent width 

that gives it the ability to zoom in on local phenomena (19). Such zooming could be 

advantageous to filtering motion artifact that does not present itself over an extended 

period of time.  The discrete wavelet transform uses groups of filters to divide the signal 

in to various spectral components (18). These filter banks consist of varying responses, 

such as low and high pass, that divide the signal intodifferent components that can later 

be added back to reconstruct the original signal (18). This technique was used by 

Balasubramaniam as a noise cancellation algorithm on an ECG signal and was used for 

detection of heart rate, amplitude and timings of the ECG (20).  By using the Daubechies 

DB4 wavelet, a noisy ECG signal was filtered to contain significantly less noise (20). 

Figure 2-13 shows the block diagram for a wavelet transform. 
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Figure 2-13: Wavelet Transform Block Diagram 

 

2.15.6 Weighted Moving Average 

This method is useful for evaluating signals that have valleys but no sharp peaks in its 

frequency content (18).  This model has only the feed-forward filter coefficients and has 

the same defining equation as an FIR filter (18). 
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3 SPECIFIC AIMS 

Motion artifacts strongly corrupt heart rate measurements in current pulse oximetry 

systems.  In many, almost any motion will greatly diminish the system’s ability to extract 

a reliable heart rate. The artifact is most likely present due to normally non-pulsatile 

components of the body, such as venous blood and tissue fluid, which become pulsatile 

during motion. Displacement of the sensor is also a major cause of the artifact. Through 

the use of hardware, software, and signal processing techniques, a wearable heart rate 

monitor that is less susceptible to motional artifact will be investigated. The final goal 

will be to attempt to design a device that can reliably extract the subject’s heart rate 

despite the presence some level of motion artifact. The following steps will be followed 

in the attempt to reach the goal: 

 

1. Collect data using the pulse oximetry device described in Section 2.12.  

a. Include data from 3-4 subjects 

b. Collected data for a resting signal 

c. Collecte data for aperiodic motion: such data will consist of motion that is 

seemingly random and not in a cyclical form. 

d. Collecte data for periodic motion: Due to the desire to be able to use this 

device during exercise, data consisting periodic motion, such as the 

swinging of arms while running, needs to be collected. 

2. The data collected in step 1 will then be filtered. The first test filter is an LMS 

adaptive filter with the two input signals being the PPG signal with any additional 

noise and signals obtained from using an accelerometer. The output of the filter 
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should be a reconstruction a clean heart rate signal. If the noise is not significantly 

cancelled, other filter techniques, including RLS adaptive filters, Kalman and 

Wigner-Ville, may be explored. 

3. Once the data is filtered, analysis will be performed to determine the effectiveness 

of the filter. Such analysis will consist of determining the signal to noise ratio and 

the extent to which the filtering method improves it. If it is not sufficient, step 2 

will be repeated with a new filtering technique. 
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4 METHODS  

4.1 Integrated Pulse Oximeter and Accelerometer Wrist and Finger Sensor 

The device described in Section 2.12 was used for much of this research was designed by 

Twisthink, LLC, based in Holland, MI. With this design, the system was very susceptible 

to motional artifact, to the point where it could not extract a heart rate with only small 

amounts of unidirectional motion. The device was then modified to include an 

accelerometer and two red LEDs. The accelerometer detects the motion that corrupts the 

heart rate measurement. Figure 4-1 shows the new device. The flexible circuit board 

connected to the device wraps around the wrist to illuminate the arteries travelling 

through the arm. The flexible circuit board was also wrapped around a finger like a ring 

for more testing.  

 

Figure 4-1: Prototype with integrated accelerometer and heart rate detector 

 

4.2 Data Gathering 

Data were gathered through the use of two devices, one for a reference signal and one for 

the corrupted signal, and a computer based user interface.  The two devices were each 

placed on either wrist of the subject. Data were also gathered from ring fingers as a 

comparison to the wrist sensor. One arm was kept still so that it could be used as a 
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reference while the other was allowed to move with multiple degrees of freedom during 

the experiment.  The data was acquired through a UART to USB data line. Figure 4-2 

shows results from one experiment. The bottom signal is z-axis of the accelerometer, as it 

was the main axis of motion and the top signal is the corrupted heart rate signal. In the 

figure, the y-axes are the representative amplitude values for the signals: voltage for the 

heart rate and acceleration (G’s) for the accelerometer. Both the signals were 10 bits, 

meaning that they had values from 0 to 1023. For the heart rate, these values correlated to 

a voltage between 0 and 3 volts. The accelerometer signal represented acceleration 

between -4G and +4G. The data were read in by a program written in National 

Instruments LabWindows CVI and functioned as the user interface, shown in Figure 4-3. 

It allows for changing of the LED and photodiode selection, photodiode bias, and LED 

power. Data sample rate is also adjustable using this interface. To assist display, the data 

were low-pass filtered to remove high frequency noise inherent in the accelerometer and 

heart rate signals. Finally, data were written to text files for later analysis.   



29 

 

 

Figure 4-2: Results from motion: The top plot is the corrupted heart rate signal and 

the bottom plot is the z-axis of the accelerometer 

 

Figure 4-3: Screen capture of the user interface used to collect the signals 
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4.3 Additive Distortion Model 

The pulse measurement is distorted by motion and any sensor attempting to measure that 

signal will be measuring a combination of the desired signal and an interference signal. 

The simplest way to model this situation is to assume that the two signals are additive 

(16). Figure 4-4 shows the principle of this in a block diagram. The true, uncorrupted 

signal is labeled as h0, the measured signal is labeled as h, and the distorted signal as w. 

The body motion is detected by an accelerometer, a, and an adaptive filter will estimate 

the distorted signal, ŵ. The estimated distorted signal is then subtracted from the 

measured signal, leaving an estimate of the pulse signal as the filter output. There is an 

inherent assumption of linearity in an additive distortion model: the measured 

interference signal is linearly related to the corrupted heart rate signal, allowing it to be 

derived through an iterative algorithm. Assumptions for this model are discussed further 

in Section 4.5.3. 

 

Figure 4-4: Block diagram of the additive distortion model adaptive filter 

 

4.4 Correlation Analysis 

Once the data were collected, the next step was to determine if there was actually a 

correlation between the motion artifact in the heart rate signal and the accelerometer 

signal. It is known that bio rhythms tend to align and become correlated, especially a 

whole-body repeated motion, such as a swinging arm in a jogger (21). In particular, 
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human strides, including hand motion, synchronize with the heart pulsation when the 

frequencies of each signal are near each other, which is a common case while walking or 

jogging (21). This alignment could cause a problem in which the heart rate signal is 

filtered out with the interference signal. 

 

 Referring back to Figure 4-2, it is clear that the corrupted heart rate signal differs greatly 

from what a normal heart rate looks like.  The two signals have first peaks that do not 

occur at exactly the same time. This non-alignment implies that there is some form of 

delay that occurs between the acceleration and its effect on the heart rate signal. This 

delay is vital to know so that the inputs to the adaptive filter can be modified prior to 

filtering, allowing the filter to converge on a solution quicker. To determine the delay, the 

correlation of these signals is calculated.  The corrupted heart rate signal is h and the 

correct heart rate signal is h0.  Using the additive distortion model, the distortion signal 

can be modeled as: 

ŵ       

The above model assumes that the reference heart rate signal measured is approximately 

equal to the correct heart rate signal from the moving arm had it been stationary. 

However, movement of the one arm will affect the blood flow through the rest of the 

body, including the stationary, reference arm. To quantify the delay, a normalized 

correlation between the accelerometer signal and the distorted heart rate signal was 

calculated using the equation below, where μ, σ are the mean and standard deviation of 

each of the signals, and d is the time delay. In the equation, N is the length of each signal 

and m is maximum delay length. 
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The model of Figure 4-4 has limitations in practice. The peaks of the heart rates retrieved 

from both arms occur at different times, making it difficult to subtract one from the other 

to rid the corrupted signal of the pulsing of the heart rate. This could be due to the sensors 

not being exactly the same or slight differences in the physiology and anatomy of each 

wrist or finger. Also, local vascular control has the ability to regulate the artery blood 

flow differently in each finger (21). The differences can be seen in Figure 4-5. These two 

signals were acquired at the same time from sensors with the exact same design. It is 

evident that the signals have different amplitudes but there is also a time delay between 

the two that is inconsistent. When performing the subtraction at the point of highest 

correlation between the two signals, the resulting signal still has significant peaks 

because of the inconsistent offset, as seen in Figure 4-6. Given this evidence, it was 

decided to just use the corrupted heart rate signal in the correlation analysis, even though 

it has the pulsatile component from the heart beating still present. 
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Figure 4-5: Comparison of heart rate signals from opposite arms 

 

 

Figure 4-6: Subtraction of heart rates from the left and right arm 
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Due to the failure of the additive distortion model, a custom algorithm was developed 

which utilized five second windows of data. The correlation of each window was then 

calculated. A step size of 1 second was used, meaning that the first section of data was 0 

through 5 seconds; the second was 1 through 6 seconds and so on. This was done for the 

whole data set and for every data set. This algorithm discovered the five second window 

in the data set that had the highest correlation between the corrupted heart rate signal and 

the main axis of motion on the accelerometer. The time lag of the maximum correlation 

reveals the ideal time delay between the heart rate signal and the accelerometer signal. 

The window with the highest correlation was then adaptively filtered. It is important to 

note that each signal was shifted to have a mean of zero for the time period.  

 

4.5 Adaptive Filter Model 

Based on the correlation analysis, an adaptive filter model was created that would predict 

the distortion of the heart rate signal in response to the acceleration. The window with the 

highest correlation was utilized and the accelerometer signal was delayed to the ideal 

time to match the heart rate signal. The resulting model is a Finite Impulse Response 

(FIR) filter with the specific time window having a high correlation with the acceleration 

signal. Two types of FIR filters were used: Least Mean Squares (LMS) adaptive filter and 

Recursive Least Squares (RLS) adaptive filters. Both of these filter types attempt to 

minimize error signals and were chosen because they are commonly used in biomedical 

signal processing. An LMS algorithm would be simpler to implement in a real time 

system but an RLS algorithm will converge on a solution faster.  The filter was 

constructed in MATLAB and source code for the algorithms is given in Appendix A. 
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4.5.1 Least Mean Squares Adaptive Filter 

The goal of an LMS adaptive filter is to minimize the least mean square of the error 

signal, which is the difference between the desired signal and the actual signal. This filter 

has two inputs, the primary input, which consists of the desired signal plus the noise, and 

the reference input, which is a correlated signal with the noise present in the primary 

input (13). The reference signal is obtained from a separate measurement (13). The filter 

coefficients are updated at each time point by using the two inputs to estimate the signal 

(13). This output is an estimate of the noise in the primary signal, meaning that the 

original signal is the primary input minus the output of the filter (13).  Referring back to 

Figure 4-4, a is the accelerometer signal and is the reference input; h is the measured 

signal from the heart rate sensor and consists of the heart rate signal and the interference 

signal; ŵ is the filter’s estimation of the interference signal; and the recovered signal is 

the filter’s error signal.   

 

Two parameters had to be set for the filter: the length, or number of coefficients or taps of 

the filter, and the step size. The step size must be chosen carefully. If it is too small, the 

time the filter takes to converge on the correct coefficients increases. A step size that is 

too large can cause the filter to become unstable and not converge on the correct 

coefficients. Due to the relatively short window, a higher step size must be chosen.  

 

4.5.2 Recursive Least Squares Adaptive Filter 

The goal of an RLS adaptive filter is to minimize the sum of error squares. In an RLS 

filter, the signals are assumed to be deterministic, meaning that there is no randomness 

and it likely has some periodicity to it. An LMS filter assumes the signals are stochastic, 
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or random. Like the LMS filter, two parameters need to be set: the length of the filter, 

which will determine the number of coefficients and the forgetting factor of the filter. 

This will determine how many previous error calculations are held in memory. The LMS 

filter only looks at the current error value.  For this study, the forgetting factor was left at 

1, meaning the filter had infinite memory of the previous error values. The length of the 

filter was chosen to be the same as the LMS filter to maintain consistency across the two 

techniques. 

 

4.5.3 Model Assumptions 

There are assumptions that must be made for the filter model. The corruption model 

presented in Section 4.3 implicitly makes two assumptions about the corruption in the 

heart rate signal. 

1. Linearity: motion in the heart rate artifact responds linearly to the motion 

inputs 

2. Additivity: the motion artifact adds to the heart rate induced light intensity to 

create the corrupted signal that is measured 

Linearity is desired so the filter can create an accurate model. If the system is not linear, 

the filter will be unable to model it. However, in the system, which is governed by the 

Beer-Lambert law, the measured light intensity actually varies exponentially with the 

distance it travels through the absorbing material. It is also unknown exactly how the 

motion affects changes in measured blood volume (21). 

 

The additive characteristic is important because if the motion does not present itself by 

adding to the heart rate signal, the model will not accurately model the system. For 
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instance, Gibbs suggests that it could have a multiplicative or logarithmic effect on the 

measurement (16).  It is also unknown how the arterial walls and the surrounding tissues 

respond to the movement or how the blood is redistributed (21). How these effects are 

superimposed on the actual heart rate signal is thus unknown (21). If either of these 

assumptions does not hold true, the model will likely fail. 

 

4.5.4 Filter Resolution 

As mentioned previously, the sampling rate for both the accelerometer and the heart rate 

was 240 Hz. The average heart rate will be between 0 and 5 Hz at a maximum, which 

would correlate to 0 and 300 beats per minute. The motion of the arm will be in this same 

range. With these two frequencies considered, the Nyquist Frequency would be 10 Hz. 

The 240 Hz sampling rate is 24 times higher and is sufficient for this system. Dividing 

the sampling rate by the length of the filter will give a filter resolution of 24 Hz per 

coefficient. This means that each coefficient will account for 0.04 seconds.  

 

A normal resting heart rate will be approximately 1 Hz. With the system used, 1 Hz 

cannot be resolved. For a filter to be able to resolve this, it must have 100 taps. Increasing 

the number of taps to 100, which is 10 times the number used, would greatly increase the 

time the filter takes to converge. It would not be able to start calculating the output until 

0.4 seconds of data were processed. This is 8% of the data in the five second window 

used. 
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5 RESULTS 

5.1 Data Collection Analysis 

Data were collected from two different places. The first was the wrist and the data was 

very easily corrupted from motion along any axis. Differing from the wrist, data collected 

from the ring finger was corrupted from mainly one axis of motion: the axis that is 

parallel to the digital artery in the finger. The vascular anatomy of the arm and hand is 

shown in Figure 5-1.  

 

Figure 5-1: Vascular anatomy of the arm and hand 

 

At the wrist, motion on any axis corrupted the signal. This could be due to a more 

complicated anatomy of the region, which contains more bone, muscle and tissue than the 

finger does. Figure 5-2 through Figure 5-4 show how, in the same orientation, the sensor 

can be corrupted by motion in any direction. This is in sharp contrast to the sensor at the 

finger, which can be subjected to a significant amount of motion in two axes. However,  

very little motion in the axis that is parallel with the digital artery will corrupt the heart 

rate signal. This is shown in Figure 5-5 and Figure 5-6.  
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Figure 5-2: Motion corruption on the wrist in the x-axis 

 

Figure 5-3: Motion corruption at the wrist on the y-axis 
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Figure 5-4: Motion corruption on the wrist on the z-axis 

 

Figure 5-5: A lack of motion corruption at the ring finger despite significant motion 

on the x-axis 
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Figure 5-6: Motion corruption in the axis parallel to the digital artery at the ring 

finger 

 

5.2 Correlation Analysis 

The maximum correlation window for each data set had a varied result and a varied lag 

time. There were 18 data sets collected at the wrist and 11 at the finger. Each data set 

went through the correlation analysis. The five second window with the maximum 

correlation was found and that maximum, along with its lag time, were recorded. The sets 

were then separated by the type of motion that was performed in each set: longitudinal, 

motion in the parallel axis of the arteries, and side to side, or motion perpendicular to the 

axis with the arteries. The correlation for the whole data set was calculated, although it 

has been determined that this is largely not useful, as the correlation is very low and the 

lag time is too long. For this reason, the windowing system described in Section 4.4 was 

implemented. The mean correlations for each type of motion, along with the mean lag 

times, were calculated. This data is shown in Table 5-1 and Table 5-2.  
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Table 5-1: Correlation data for the wrist data sets: Averages (include standard 

errors) 

  Full 
Standard 
Deviation 

Lag 
Time 
(sec) 

Standard 
Deviation 

Windowed 
Signal 

Correlation 
Standard 
Deviation 

Lag 
Time 
(sec) 

Standard 
Deviation 

Sample 
Size 

Longitudinal 0.1555 0.0506 14.8862 13.3996 0.6312 0.0657 0.4014 0.3623 9 

Side to Side 0.1785 0.0602 16.9792 11.4816 0.7514 0.0957 0.2292 0.5553 7 

 

 

Table 5-2: Correlation data for the ring finger data sets: Averages 

  Full 
Standard 
Deviation 

Lag Time 
(sec) 

Standard 
Deviation 

Windowed 
Signal 

Correlation 
Standard 
Deviation 

Lag 
Time 
(sec) 

Standard 
Deviation 

Sample 
Size 

Longitudinal 0.1944 0.0804 8.1021 7.0023 0.7753 0.0657 0.1375 0.0887 6 

Side to Side 0.1169 0.0193 8.5603 7.1964 0.6570 0.1086 0.3125 0.4501 5 

 

 

Figure 5-7 shows the output of a window that has a maximum correlation of 0.7215 at 

0.1625 seconds. This implies that the effects of the acceleration do not appear in the heart 

rate signal until 0.1625 seconds after the motion has taken place. As seen in Table 5-1 

and Table 5-2, this lag time is representative of the ring finger data, which had an average 

lag time of 0.1375 seconds. A t-test was performed and the mean correlations for the 

wrist and the ring finger showed no statistical difference, with a p-value of 0.354.  One 

interesting point is that the average lag time for the wrist in the direction of the arteries is 

actually higher than the side to side motion artifact. This is the opposite of the finger, 

where it is almost 3 times shorter in the longitudinal motion. The same holds true for the 

windowed signal correlation. The longitudinal direction has a higher correlation than the 

side to side motion at the ring finger, while it is the opposite for the wrist. 
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Figure 5-7: Example of a correlation output 

 

 

5.3 Adaptive Filter Results 

The LMS and RLS filters described in Section 4.5 were implemented on each window set 

that contained the maximum correlation. Both filters yielded similar results on each data 

set. Through properly choosing the filter characteristics, the filters successfully remove 

large portions of the motion artifact. However, they generally did not leave usable heart 

rate signals. 

 

5.3.1 Wrist Sensor Filter Results 

Below are the plots of the data sets from the wrist that had the highest correlation and 

resulting LMS and RLS filter results. These are representative of how the filters 

functioned for the majority of data sets. Figure 5-8 shows the five second window that 
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will be processed by the LMS and RLS filters. These signals were acquired from the 

wrist sensor. It can easily be seen that there is a high correlation between the heart rate 

sensor output and accelerometer signal. This window was at the end of a segment of 

motion and was chosen because of the high correlation between the heart rate and 

accelerometer signals. 

 

Figure 5-8: The original 5 second window that is going to be filtered 
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Figure 5-9: LMS Output signal vs. Accelerometer Signal 

Figure 5-9 shows the LMS output for the five second window compared to the original 

accelerometer signal. The output of the filter should closely resemble the accelerometer 

input signal. It can be seen that this is the case. The two signals have a maximum 

normalized correlation of 0.8929, suggesting a high similarity. Figure 5-10 shows the 

error signal that is output from the LMS filter. This error signal should be the 

reconstructed heart rate signal that is void of the motion artifact. The signal is void of 

much of the noise but it does not appear to have a fully reconstructed heart rate signal. 

There are three peaks remaining; however, these peaks also occur at the same time as the 

peaks in the corrupted heart rate signal meaning that they cannot reasonably be used to 

calculate an accurate heart rate. This is representative of the LMS filter for much of the 

wrist sensor data. It should be noted that these signals are shifted only for appearance. 
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Figure 5-10: LMS Filter Error signal compared to the original heart rate signal and 

the reference heart rate signal 

 

The signals in Figure 5-8 were also filtered using an RLS adaptive filter. These results are 

shown below. This is once again a representative data set. Figure 5-11 shows the RLS 

adaptive filter output signal, which should resemble the acceleration signal, just as the 

output of the LMS filter does. These two signals have a correlation of 0.8834, which is 

very similar to the output of the LMS filter. 
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Figure 5-11: RLS output signal vs. the original accelerometer signal 

 

Figure 5-12: RLS Adaptive filter error output vs. the heart rate signals 
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Figure 5-12 shows the RLS adaptive filter error output, which should be the 

reconstruction of an uncorrupted heart rate signal, just as the error signal for the LMS 

filter was. It is evident that the error signal is void of much of the noise, but once again, it 

is difficult to determine a heart rate from this signal. Figure 5-13 shows the power 

spectrum of all the signals. The accelerometer has the most power in it and is at the same 

frequency as the corrupted heart rate signal, at just over 2 Hz. In both reconstructed 

signals, labeled as RLS reformation and LMS reformation, a new frequency begins to 

present itself but has a significantly lower power than that of the original signals. 

 

Figure 5-13: Power spectrum of the signals 
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5.3.2 Ring Sensor Filter Results 

Below are the plots of the data sets from the ring finger that had the best correlation and 

resulting LMS and RLS filter results. These are representative of how the filters 

functioned for the majority of data sets. Figure 5-14 shows the five second window that 

will be sent through the LMS and RLS filters. These signals were acquired from the ring 

sensor placed on the left ring finger, with the accelerometer sitting on top of the hand. It 

can easily be seen that there is a high correlation between the heart rate and 

accelerometer signal.  

 

Figure 5-14: Original 5 second window for the ring sensor 
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Figure 5-15: LMS output signal vs. original accelerometer signal 

 

Figure 5-15 shows the LMS output for the five second window. The output of the filter 

should closely resemble the accelerometer input signal. It can be seen that this is the case. 

The two signals have a maximum normalized correlation of 0.7217, suggesting a high 

similarity. Figure 5-16 shows the error signal that is output from the LMS filter. This 

error signal should be the reconstructed heart rate signal minus the motion artifact. It can 

be seen that the signal is void of much of the noise but it does not appear to have a fully 

reconstructed heart rate signal. The peaks in the reconstructed signal occur at the same 

time as peaks in the corrupted signal and there are sections with no peaks. This is 

representative of the LMS filter for much of the ring sensor. It should be noted that these 

signals are shifted only for appearance. 



51 

 

 

Figure 5-16: LMS filter error signal compared to the original corrupted heart rate 

signal 

 

The signals in Figure 5-14 were also filtered using an RLS adaptive filter. These results 

are shown below. Figure 5-17 shows the RLS adaptive filter output signal, which should 

resemble the acceleration signal, just as the output of the LMS filter does. These two 

signals have a correlation of 0.8161.  
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Figure 5-17: RLS output signal vs. the original accelerometer signal 

 

Figure 5-18 shows the RLS adaptive filter error output. It is less evident in this 

reconstruction that the error signal is void of interference. The noise was not cancelled as 

well as in the LMS output and it is still difficult to discern an actual heart rate value. 

Figure 5-19 shows the power spectrum of all the signals. The corrupted heart rate has the 

most power in it and is at the same frequency as the accelerometer signal, at just over 2 

Hz. In both reconstructed signals, labeled as RLS reformation and LMS reformation, a 

new frequency begins to present itself but has a significantly lower power than that of the 

original signals.  
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Figure 5-18: RLS filter error signal compared to the original corrupted heart rate 

signal 
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Figure 5-19: Power spectrum of the signals 

 

5.3.3 Wrist Sensor and Ring Sensor Comparison 

Once the data sets were all collected, a data analysis was performed. The root mean 

square of the mean of each signal was calculated. This will determine if the noise was 

significantly cancelled. The mean correlation of the output and error signals to the 

accelerometer and heart rate signals was also calculated. This data is shown in Table 5-3. 

For the standard deviation and error column, the values that are italicized, the RMS 

calculations, are standard error calculations. The other calculations in that column are 

standard deviations. They are standard error because the RMS calculations are averages 

of averages. The lower sample sizes for the correlation of the error signal to the reference 

signal is due to a lack of a reference signal for some of the data sets. The ring sensor 
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showed high correlations for both the LMS and RLS filter outputs. It also had lower 

standard deviations than the wrist sensor in three of the four correlation calculations.  

Table 5-3: Data Summary for LMS and RLS filters across the wrist and ring 

sensors 

  
Wrist Sensor Ring Sensor 

  

Value 

Standard 

Deviation 

or Error 

Sample 

Size 
Value 

Standard 

Deviation 

or Error 

Sample Size 

LMS 

Adaptive 

Filter 

RMS Mean of Heart Rate 0.3460 0.0080 18 0.4240 0.0651 11 

RMS mean of Filter Reconstruction 0.1726 0.0136 18 0.2096 0.0362 11 

Correlation: Output to 

Accelerometer 0.6737 0.1882 18 0.7317 0.1036 11 

Correlation: Error to reference 0.3430 0.1008 11 0.3808 0.0759 3 

RLS 

Adaptive 

Filter 

RMS Mean of Heart Rate 0.3460 0.0080 18 0.4240 0.0651 11 

RMS mean of Filter Reconstruction 0.2584 0.0238 18 0.2905 0.0381 11 

Correlation: Output to 

Accelerometer 0.8128 0.1609 18 0.8750 0.0700 11 

Correlation: Reconstruction to 

Reference 0.3882 0.1008 11 0.4079 0.1172 3 
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6 DISCUSSION AND CONCLUSION 

6.1 Correlation 

As can be seen in Table 5-1 and Table 5-2, there are windows of five seconds in which 

the heart rate signals have relatively high correlations to the accelerometer signals. This is 

a positive step and one of the most important ones. If the signals are not correlated, the 

motion would not be able to be cancelled using adaptive filtering. This step also helps 

determine the delay between the motion and the appearance of the resulting artifact in the 

heart rate signal. Without this information, the filtering would be much more difficult and 

likely less successful.  

 

While correlations were high at both the wrist and the ring, there was another important 

discovery made. Motion in any direction at the wrist created significant interference in 

the heart rate signal, as demonstrated in Figure 5-2 through Figure 5-4. This was not the 

case for the ring sensor. Figure 5-5 shows that the ring sensor location is significantly less 

susceptible to motion that is not in parallel with the digital artery.  It would likely be 

useful to research this more and possibly develop a device that was to fit on the finger 

like a ring and wirelessly transmit heart rate information. 

 

6.2 Filtering 

Despite the relatively high correlation between the motion artifact and the acceleration 

signal, the use of adaptive filters with the device yielded mixed results. For many of the 

data sets, the filter was able to match the acceleration signal in the heart rate and remove 

a portion of this signal. This is seen by the representative plots of outputs and power 

spectrums in Section 5.3. The power in the filter reconstructions is significantly lower 
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than acceleration and corrupted heart rate signals. This is also represented in Table 5-3. 

The root mean squares of the mean of each signal are lower in both filter outputs. In 

general, the LMS filter was able to remove more of the noise, with each root mean square 

being lower than the equivalent RLS value. The standard error is also lower in the LMS 

results than it is in the RLS results. These two results were true across both the wrist and 

ring sensors. The correlation between the output signals of the filter and the input signals 

of the filer were also higher in the ring sensor than the wrist sensor. This held true for the 

output to acceleration correlation as well as the error, or reconstruction, to reference 

signal correlation. However, it should be noted that the ring sensor had far fewer samples 

for the reference correlation than did the wrist sensor. This is also true for the general 

sample size. 

 

Despite the noise removal being successful, there was not a definitive heart rate signal 

left. This could be due to a variety of reasons.  The first, and possibly most likely, is that 

the harmonics of the accelerometer and corrupted heart rate signals were too similar and 

when cancelling the noise from the accelerometer the true heart rate signal was also 

largely cancelled. It is well known that the heart rate lies in the 0 to 3 Hz range, with the 

upper end leading to a heart rate of 180 beats per minute. As seen in Figure 5-13 and 

Figure 5-19, the majority of the power of both the corrupted heart rate and the 

accelerometer lie in very similar frequency range, both around 2 Hz. Levi Wood 

discusses this and the effect of human rhythms aligning with the rhythmic motion of the 

body, in this case the arm (21). He proposes a filter model that uses Symmetric Adaptive 
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Decorrelation, which can be implemented using either a standard LMS or RLS algorithm 

(21). He performed this using a ring sensor. 

 

This research has determined that adaptive filtering may be a viable technique for 

cancelling motion artifact in a pulse oximeter signal. However, further research is needed 

to develop a more robust algorithm that can successfully recover a heart rate, even if its 

harmonics correspond to the harmonics that are present in the accelerometer signal. 

 

6.3 Future Work 

The development of a ring sensor would be a useful step for future work. It was 

determined that the ring sensor would require fewer degrees of freedom due to its 

insusceptibility to motion in two axes. This does not hold true to the wrist sensor, which 

was affected by motion in any axis. Another future step would be to further investigate 

the methods performed by Wood. By using a technique that better accounts for the 

correlation and similar harmonics, he was successful in reconstructing a heart rate signal 

that was not only accurate in frequency but also in amplitude. This would be vital if the 

sensor were ever to be used as a true pulse oximeter to detect oxygen saturation, as 

amplitude of the signal has a significant role in its calculation. 

 

There are a few other paths that could be taken in the future as well. The first is collecting 

data at a higher sampling rate so that it would be more plausible to use a higher filter 

order. As discussed in Section 4.5.4, the sampling rate used is high enough. However, the 

filter length does not allow for a high enough filter resolution. In order to gain a higher 

resolution, the filter length must be increased, which increases computational time. By 



59 

 

sampling at a higher frequency, the time the filter takes to converge will decrease. The 

second path is using different filtering techniques, including non-linear filters, such as 

Volterra series, Kalman filters, and principal component analysis. These types of filters 

have been used in other studies and may provide a better approach than LMS and RLS 

adaptive filtering, as some would allow for the assumptions discussed in Section 4.5.3 to 

be violated. For example, the Volterra series filter is a non-linear filter and would account 

for motion that causes a non-linear response in the heart rate signal.   
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APPENDIX A: MATLAB CODE 

% Chris Dickson 
% Thesis: Heart Rate Artifact Suppression 

  

  
clear all; 
close all; 

  
HR = load('HRdata.txt'); 
X = load('accelX.txt'); 
Y = load('accelY.txt'); 
Z = load('accelZ.txt'); 

  
HR2 = load('HRdata2.txt'); 
%HR2 = zeros(length(HR),1); 
HR = HR(length(HR)-length(X)+1:end); 
t = 0:(1/240):(length(HR)/240)-(1/240); 
figure(); 
plot(t, X, t, Y, t, Z, t, HR); 
legend('X', 'Y', 'Z', 'HR'); 

  
start = 10; 
HR = HR(start*240:end); 
X = X(start*240:end); 
Y = Y(start*240:end); 
Z = Z(start*240:end); 
HR2 = HR2(start*240:end); 

  
t = 0:(1/240):(length(HR)/240)-(1/240); 
% figure(); 
% plot(t, X, t, Y, t, Z, t, HR); 
% xlabel('Time (sec)'); 
% ylabel('Amplitude'); 
% legend('X-axis', 'Y-axis', 'Z-axis', 'Heart Rate'); 
% title('Original Plots of Heart Rate and Accelerometer Signals'); 

  
FsHR = 240; 
N = length(HR);FsHR = 240; 
nyquistFreq = FsHR/2; 
NFFT = 2^nextpow2(N);  

  
nyquistFreqHR = FsHR/2; 

  
% run accel signal through low pass filter 
WnHR = 5/nyquistFreqHR; 
% need an order of 100 
filt1 = fir1(100, WnHR); 
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t = (1:N)/FsHR; 

  
X = filter(filt1, 1, X); 
Y = filter(filt1, 1, Y); 
Z = filter(filt1, 1, Z); 
HR = filter(filt1, 1, HR); 
HR2 = filter(filt1, 1, HR2); 

  
% Zero mean 
HRzero = HR - mean(HR); 
Xzero = X - mean(X); 
Yzero = Y - mean(Y); 
Zzero = Z - mean(Z); 
HR2zero = HR2 - mean(HR2); 

  
% Calculate the unit signals for each (volts for HR, G's for accel) 
HRv = HRzero.*(3/1024); 
Xg = Xzero .*(8/1024); 
Yg = Yzero.*(8/1024); 
Zg = Zzero.*(8/1024); 
HR2v = HR2zero.*(3/1024); 

  

  

  
figure(); 
subplot(2,1,1); plot(t, HRv); 
xlabel('Time (sec)'); 
ylabel('Voltage (V)') 
legend('Corrupted Heart Rate'); 
title('Heart Rate Signals'); 
subplot(2,1,2); plot(t, Zg); 
xlabel('Time (sec)'); 
ylabel('Acceleration (G)') 
legend('Z-Axis of Accelerometer'); 
title('Accelerometer Signal'); 

  
%% 

  
% accelerometer signal with the most motion 
accel = Yg; 

  

  
maxCorr = 0; 
step = 5;   % number of seconds to increment the window 
start = 0; 
stop = step; 
maxStart = 0; 
maxIndex = 0; 

  
% determine when the motion stops and starts again 
% there are periods of motion and no motion in each set, just want to look 
% at periods of motion 
noMotionIndex = 123; 
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motionStart = 171; 
noMotionIndex2 = 0; 
motionStart2 = 0; 
noMotionIndex3 = 0; 
motionStart3 = 0; 
motionStop = 216; 

  
% Find the 5 second window with the highest correlation 
while stop <= (length(Xg)/240) 

  
    accelShort = accel((start*240)+1:(stop*240)); 
    HRshort = HRv((start*240)+1:(stop*240)); 
    [corrM, lagsShort] = xcorr(accelShort,HRshort, 'coeff'); 
    corrM = corrM((length(accelShort)):end); 
    lagsShort = lagsShort((length(accelShort)):end); 
    [corr, i] = max(corrM); 

  
    if(corr > maxCorr) 
       maxCorr = corr; 
       lags = lagsShort; 
       corrShort = corrM; 
       maxStart = start; 
       maxIndex = i; 
    end   

  
    start = start + 0.1; 
    stop = start + step; 
    if (start >= noMotionIndex) && (start <= motionStart) 
        start = motionStart; 
        stop = start + step; 
    end 
    if (stop > noMotionIndex) && (stop <= motionStart) 
        start = motionStart; 
        stop = start + step; 
    end 
    if (start >= noMotionIndex2) && (start <= motionStart2) 
        start = motionStart2; 
        stop = start + step; 
    end 
    if (stop > noMotionIndex2) && (stop <= motionStart2) 
        start = motionStart2; 
        stop = start + step; 
    end 
    if (start >= noMotionIndex3) && (start <= motionStart3) 
        start = motionStart3; 
        stop = start + step; 
    end 
    if (stop > noMotionIndex3) && (stop <= motionStart3) 
        start = motionStart3; 
        stop = start + step; 
    end 
end 

  
accelShort = accel((maxStart*240)+1:(maxStart*240)+(step*240)); 
HRvshort = HRv((maxStart*240)+1:(maxStart*240)+(step*240)); 
HR2vshort = HR2v((maxStart*240)+1:(maxStart*240)+(step*240)); 
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% Plot the correlation of the 5 second window 
lagsS = lags./240; 
figure(); 
plot(lagsS, corrShort); 
xlabel('Lag Time (sec)'); 
ylabel('Correlation'); 
title('Correlation of the Accelerometer to the Heart Rate'); 

  
% calculate teh correlation for the full signals 
% this calculation is likely not useful 
d = abs(lags(maxIndex)); 
d = d+1; 
maxIndexShort = maxIndex/240; 
[corrFull, lagsFull] = xcorr(accel, HRv, 'coeff'); 
corrFull = corrFull(length(accel):end); 
lagsFull = lagsFull(length(accel):end); 
[maxCorrFull, iFull] = max(corrFull); 
maxIndexFull = (lagsFull(iFull)/240); 

  
% zero pad the signals to account for the delay prior to sending through 
% the filters 
zeropad = zeros(d,1); 
HRpad = padarray(HRvshort, [d 0]); 
HRpad = HRpad(d:end); 
accelPad = padarray(accelShort, [d 0]); 
accelPad = accelPad(1:(end-d+1)); 
HR2pad = padarray(HR2vshort, [d 0]); 
HR2pad = HR2pad(d:end); 

  
% get the RLS filter 
order = 10; 
l = order+1;    % filter length 
lambda = 1;     % RLS forgetting factor 
invcov = 10*eye(l); 
coeffs = []; 
states = []; 
RLSfilt = adaptfilt.rls(l, lambda, invcov); 

  
% get the LMS filter 
l = order; 
step = 0.15; %0.5 good, 0.15 good, 0.7 too high 
leak = 0.5; 
coeffs = []; 
states = []; 
LMSfilt = adaptfilt.lms(l, step); 

  

  
[outRLSshort, errorRLSshort] = filter(RLSfilt, accelPad, HRpad); 
[outRLS, errorRLS] = filter(RLSfilt, accel, HR); 

  
[outLMSshort, errorLMSshort] = filter(LMSfilt, accelPad, HRpad); 
[outLMS, errorLMS] = filter(LMSfilt, accel, HR); 

  
% compute the maximum correlation of the outputs and inputs for both 
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% fitlers 
accelRLScorr = max(xcorr(outRLSshort, accelPad, 'coeff')); 
accelLMScorr = max(xcorr(outLMSshort, accelPad, 'coeff')); 
errorRLScorr = max(xcorr(errorRLSshort, HR2pad, 'coeff')); 
errorLMScorr = max(xcorr(errorLMSshort, HR2pad, 'coeff')); 

  
% compute the RMS value for the signals (error signal) 
rmsErrorRLS = sqrt(mean(errorRLSshort.^2)); 
rmsErrorLMS = sqrt(mean(errorLMSshort.^2)); 
rmsHR = sqrt(mean(HRpad.^2)); 
rmsHR2 = sqrt(mean(HR2pad.^2)); 

  
% compute the frequency power spectrum of it (power should be lower at 
% harmonic of the accelerometer 
% show before and after 
[powAccel, freqAccel] = pwelch(accelPad, [],[],NFFT, FsHR);  
[powHR, freqHR] = pwelch(HRpad, [],[],NFFT, FsHR);  
[powRLS, freqRLS] = pwelch(errorRLSshort, [],[],NFFT, FsHR); 
[powLMS, freqLMS] = pwelch(errorLMSshort, [],[],NFFT, FsHR); 
[powHR2, freqHR2] = pwelch(HR2pad, [],[],NFFT, FsHR);  

  
% Plor the power spectrums of the signals 
figure(); 
plot(freqAccel,powAccel,freqAccel, powHR,freqAccel, powRLS,freqAccel, 

powLMS,freqAccel, powHR2); 
legend('Accelerometer', 'Corrupted Heart Rate', 'RLS Reformation', 'LMS 

Reformation', 'Reference Heart Rate'); 
xlabel('Frequency (Hz)');  
ylabel('Magnitude (dB/Hz)');  
title('Power Spectrum of the Signals'); 

  

  
%% 

  
% Signal Plots 
tshort = 0:(1/240):(length(accelShort)/240)-(1/240); 
figure(); 
[AX,H1,H2] = plotyy(tshort, HRvshort, tshort, accelShort, 'plot'); 
set(get(AX(1),'Ylabel'),'String','Heart Rate (V)')  
set(get(AX(2),'Ylabel'),'String','Acceleration (G)')  
xlabel('Time (sec)'); 
legend('Heart Rate', 'Accelerometer Signal'); 
title('Shortened Signals: Heart Rate vs. Accelerometer'); 

  
tpad = 0:(1/240):(length(accelPad)/240)-(1/240); 
figure(); 
[AX,H1,H2] = plotyy(tpad, HRpad, tpad, accelPad, 'plot'); 
set(get(AX(1),'Ylabel'),'String','Heart Rate (V)')  
set(get(AX(2),'Ylabel'),'String','Acceleration (G)')  
legend('Heart Rate', 'Accelerometer Signal'); 
title('Shortened Plots: Zero-padded'); 

  
% RLS plots 
figure(); 
plot(tpad, outRLSshort, tpad, errorRLSshort); 
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xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('RLS Output', 'RLS Error'); 
title('RLS Adaptive Filter Output vs. Error: Shortened Signals'); 

  
figure(); 
plot(tpad, outRLSshort, tpad, accelPad); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('RLS Output', 'Accelerometer Input'); 
title('RLS Adaptive Filter Output vs. Accelerometer Input: Shortened 

Signals'); 

  
tpad = 0:(1/240):(length(accelPad)/240)-(1/240); 
figure(); 
plot(tpad, errorRLSshort, tpad, HRpad-2, tpad, HR2pad+2); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('RLS Error', 'Corrupted Heart Rate', 'Reference Heart Rate'); 
title('RLS Adaptive Filter Error vs. Corrupted Heart Rate Signal: Shortened 

Signals'); 

  

  
% LMS Plots 
figure(); 
plot(tpad, outLMSshort, tpad, errorLMSshort); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('LMS Output', 'LMS Error'); 
title('LMS Adaptive Filter Output vs. Error: Shortened Signals'); 

  
figure(); 
plot(tpad, outLMSshort, tpad, accelPad); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('LMS Output', 'Accelerometer Input'); 
title('LMS Adaptive Filter Output vs. Accelerometer Signal: Shortened 

Signals'); 

  
tpad = 0:(1/240):(length(accelPad)/240)-(1/240); 
figure(); 
plot(tpad, errorLMSshort, tpad, HRpad-2, tpad, HR2pad+2); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('LMS Error', 'Corrupted Heart Rate', 'Reference Heart Rate'); 
title('LMS Adaptive Filter Output vs. Corrupted Heart Rate Signal: Shortened 

Signals'); 
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