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Helicobacter pylori colonizes the stomachs of greater than 50% of the world’s human population making it arguably one of the
most successful bacterial pathogens. Chronic H. pylori colonization results in gastritis in nearly all patients; however in a subset
of people, persistent infection with H. pylori is associated with an increased risk for more severe disease outcomes including
B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma) and invasive adenocarcinoma. Research aimed at
elucidating determinants that mediate disease progression has revealed genetic differences in both humans and H. pylori which
increase the risk for developing gastric cancer. Furthermore, host diet and nutrition status have been shown to influenceH. pylori-
associated disease outcomes. In this review we will discuss how H. pylori is able to create a replicative niche within the hostile
host environment by subverting and modifying the host-generated immune response as well as successfully competing for limited
nutrients such as transitionmetals by deploying an arsenal ofmetal acquisition proteins and virulence factors. Lastly, we will discuss
how micronutrient availability or alterations in the gastric microbiome may exacerbate negative disease outcomes associated with
H. pylori colonization.

1. H. pylori Infects the Human Stomach

Helicobacter pylori is a Gram-negative member of the Epsi-
lonproteobacteria class. Over 50% of the global human
population is colonized with H. pylori, which inhabits the
gastric niche of human hosts and is commonly acquired early
in life. Furthermore, evidence indicates that H. pylori has
colonized human hosts and coevolved for at least a thousand
centuries [1–4]. The human stomach provides numerous
nutritional opportunities and challenges for an invading
prokaryote. To colonize the stomach successfully, H. pylori
must survive the acidic pH in the lumen of the stomach,move
through themucus lining of the gastric tissue via chemotactic
flagellar-mediated motility, attach to gastric epithelial cells
using a repertoire of adhesins, and deploy cytotoxins to alter
the gastric environment and create a hospitable niche for
bacterial proliferation [3]. These bacterial toxins promote
necrosis, autophagy, and proinflammatory signaling cascades
[4, 5]. However, H. pylori persists in the stomach despite

a robust inflammatory response, indicating that this organ-
ism has evolved elaborate mechanisms to circumnavigate the
onslaught of host immunity [4–6].

2. H. pylori Infection and Disease Outcomes

Virtually all hosts infected with H. pylori experience gas-
tritis while a smaller subset of these patients develop more
serious outcomes such as peptic or duodenal ulcer, MALT
lymphoma, or gastric adenocarcinoma. Nearly 75% of all
gastric cancer and 5.5% of all malignancies worldwide can
be attributed to H. pylori [4]. H. pylori infection is the
strongest risk factor for developing gastric cancer [5]. It
is proposed that the profound proinflammatory signaling
initiated by H. pylori infection leads to atrophic gastritis,
intestinal metaplasia, dysplasia, and finally gastric cancer
[6]. This process, termed the “Correa pathway” is predicated
on the chronic inflammation of the gastric mucosa which
fosters a cascade of genotypic perturbations that ultimately
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lead to carcinogenesis [6–9]. It is increasingly appreciated
that carcinogenesis is established due to a constellation of
factors including host genetics, environment, and bacterial
strain differences [6–10]. A better understanding of how these
factors intersect to promote disease progression could yield
novel preventative or therapeutic strategies to ameliorate the
global disease burden, which costs hundreds of thousands
of human lives each year [10]. In this review we consider
how nutrition, or the process by which an organism derives
cofactors and metabolic precursors, impacts the progression
of H. pylori-associated disease outcomes and gastric home-
ostasis. Furthermore, we discuss howhostmicronutrients can
alter bacterial growth and virulence and ultimately influence
pathogenesis.

H. pylori has an ancient association with human beings
[1]. Although H. pylori strains exhibit remarkable genetic
diversity, phylogenetic analyses have revealed that strains can
be classified into distinct phylogeographic clades indicative of
their origin [2, 3]. These results indicate thatH. pylori strains
have coevolved with their hosts, observations which are
supported by results indicating that H. pylori has undergone
reductive evolution during its association with man [11].
However, prolonged coevolution is commonly associated
with commensal adaptation and concurrent loss of virulence
[12, 13]. Because H. pylori exhibits strain-specific virulence
and potential to cause disease, this supports amodel in which
the coevolution of H. pylori and its cognate human host has
been perturbed [2, 3].

In some geographical settings, such as Asia, H. pylori
infection and gastric cancer rates are correlative. However,
in other areas, such as Africa, Malaysia, India, and Costa
Rica, infection rates are high and gastric cancer rates are
low [14–17]. These are collectively referred to as “enigmas”
because the protective mechanisms in these populations are
obscure. It is proposed that H. pylori potentially coevolves
with its host to dampen pathogenic effects and promote
immunological tolerance which facilitates protection against
numerous autoimmune diseases including allergic airway
disease [18, 19]. However, the role of geography, nutrition, and
host genetics remains ill-defined in this model. Furthermore,
regions within a single country, such as Colombia, experience
differential disease outcomes [20]. Recent assessments of
genetic variations in both host and H. pylori strain by
multilocus sequence typing analyses (MLST)were performed
to ascertain how the coevolutionary relationships between
hosts and pathogens were shaping development of gastric
cancer [2]. This work demonstrated that low-risk coastal
Colombians exhibit phylogenetic variations consistent with
an admixture of Amerindian, European, and African pop-
ulations. Similarly, H. pylori strains recovered from these
individuals primarily represented an African lineage of H.
pylori that was concordant with the host genetic background
[2, 3]. Conversely, mountain-dwelling Colombians exhibit
phylogenetic variations consistent with Amerindian heritage
and their H. pylori strains predominantly were associated
with a European phylogenetic clade [2, 3]. The authors
conclude that infection with a strain of H. pylori that is
discordant with host phylogenetic background is predictive
for increased risk of gastric cancer [2].

3. H. pylori Virulence Factors

Besides phylogenetic differences between host and pathogen,
there are specific strain differences that have been associated
with increased risk of gastric disease. H. pylori strains that
harbor a 40 kb genomic island termed the “cag-pathogenicity
island” (cag-PAI) have been associated with increased risk
of gastric disease outcome [21]. The cag-PAI encodes a type
IV secretion system (cag-T4SS) which is a macromolecular
nanomachine that spans both the inner and outer membrane
of H. pylori. The cag-T4SS functions to transport substrates,
such as peptidoglycan, and effector molecules, such as the
oncogenic cytotoxin CagA, from the bacterial cytoplasm into
the host epithelial cell. The activity of the T4SS has multiple
effects on the host including nuclear factor 𝜅B activation, IL-
8 chemokine secretion, host cytoskeletal rearrangement, and
recruitment of innate immune cells to the site of infection
[22–25]. In addition to the cag-T4SS cytotoxin secretion,
H. pylori also secretes a pore-forming cytotoxin, VacA [26].
VacA is an 88-kDa protein that is secreted through type
V, or autotransporter secretion pathway [27]. It causes a
variety of alterations in target cells including vacuolation,
depolarization ofmembrane potential, permeabilization, dis-
ruption of endosomal and lysosomal trafficking, autophagy,
programmed necrosis, and immune modulation including
inhibition of T cell activation and proliferation. Interestingly,
VacA andCagA appear to have antagonistic properties: CagA
is highly proinflammatory, while VacA is immunosuppres-
sive, and VacA induces CagA degradation via autophagic
pathways [22, 27, 28]. Interestingly, both VacA and CagA
are often coregulated in response to nutritional signals,
indicating that H. pylori has evolved to utilize both of these
toxins in concert under certain nutritional stresses [29].
Together, these two cytotoxins promote H. pylori-dependent
pathogenesis.

Additionally,H. pylori utilizes a repertoire of outer mem-
brane proteins to facilitate host-pathogen interactions. The
adhesin BabA binds mucosal ABO/Lewis-B blood group car-
bohydrates and consequently facilitates adhesion to gastric
surfaces. Adherence to the gastric mucosa and/or epithelial
surface is a critical first step in colonization and ultimately
aids bacterial virulence by promoting the interaction of the
cag-T4SS with host cells [30, 31]. Another adhesin, SabA,
binds to laminin and sialyl-dimaric-Lewis × glycosphin-
golipid receptor and is a member of the BabA protein family
[32]. Upon binding to the receptor, SabA promotes hemag-
glutination via sialyl-Lex binding, a process that is critical for
survival within the hostile gastric environment [33]. Addi-
tionally, H. pylori outer membrane protein and Hop-family
proteins such as outer membrane inflammatory protein A
(OipA, encoded by hopH) or HopZ protein are both required
for gastric epithelial cell binding [33]. Although the host
receptors for these proteins have not yet been identified,
both proteins have been implicated in inflammation and/or
carcinogenesis [34, 35]. Interestingly, there is a high degree
of variation in the sequence of CagA, VacA, BabA, SabA,
OipA, and HopZ, indicating that H. pylori adapts to its host
bymodifying the repertoire of virulence factors to accommo-
date niche-specific challenges [36].
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4. H. pylori and Nutrition

In addition to host or strain genetic differences, environ-
mental factors, such as host diet, are emerging as important
components of the ecology within the gastric environment. It
is likely that the gastric environment is highly influenced by
host nutrient intake. Epidemiological studies have revealed
that dietary habits such as high intake of green tea, fruits,
or vegetables are protective against gastric cancer risk [37–
39]. Conversely, case-controlled and cohort studies reveal
that high intake of red meat and/or processed meat (which
are high in transition metals) and preserved foods (pickled,
dried, smoked, or salted) which are often high in salt is
associatedwith increased risk of noncardia gastric cancer [40,
41]. Furthermore, the advent of refrigeration has radically
changed the manner in which food is prepared for storage.
Case-controlled population studies have demonstrated that
access to refrigeration is protective against gastric cancer
[42]. This is attributed to the fact that refrigeration leads to
prolonged access to fresh foods such as fruits and vegetables,
which would otherwise be unavailable. It is hypothesized
that carotenoids, folate, vitamin C, and phytochemicals
from fruits and vegetables have a protective role against
carcinogenesis. Conversely, salt and the availability of some
transition metals can alter H. pylori virulence and accelerate
carcinogenesis [43, 44]. The contribution of these individ-
ual micronutrients to H. pylori-dependent diseases will be
reviewed in detail below.

4.1. Salt. Gastric cancer is the third leading cause of death
from cancer worldwide. While large geographic and ethnic
differences in gastric cancer incidence exist, a common
risk factor for gastric cancer development is high levels of
dietary salt intake. A meta-analysis of studies analysing the
association between diets rich in salt and gastric cancer
risk concluded that salt consumption is directly associated
with the risk of gastric cancer [45]. Furthermore, the risk
of developing cancer increases with increased salt ingestion
in a dose-dependent manner [46]. Studies included in this
meta-analysis looked at the association between high salt
diets and gastric cancer across a spectrum of countries
and ethnicities. For example, the meta-analysis included
studies which found a correlation between consumption
of salty foods, such as miso soup, pickled vegetables, and
salted fish within Japanese people, and a study conducted in
Norway evaluating the risk of total salt intake and gastric
carcinoma. Also included in this meta-analysis are studies
which show no correlation between excessively salted foods
and cancer; however the strain of H. pylori endemic to these
regions lacks cagA and is associated with a decreased risk
of gastric cancer as compared to strains harboring cagA.
Additional studies indicated that the association between salt
consumption and gastric cancer risk was highest amongst
individuals who were habitual consumers of high salt foods
[45]. The rationale for this association between heavy salt
intake and gastric cancer is multifaceted and includes that
salt perturbs the integrity and viscosity of gastric mucosa and
promotes colonization by H. pylori both of which ultimately
contribute to increased inflammation and subsequent gastric

cell proliferation and endogenous DNA mutations [47–49].
One such study compared gastric tissue morphology of mice
maintained on a standard diet compared to mice sustained
on a high salt diet and found that animals within the high salt
cohort had increased gastric epithelial cell hyperplasia and
concomitant loss of parietal cells [49].

While high levels of salt consumption in the absence of
H. pylori infection are associated with gastric cancer, the
alterations to the gastric tissue mediated by high salt intake
are further exacerbated by H. pylori colonization and drive
disease progression. Studies aimed at elucidating the molec-
ular mechanisms responsible for this increased susceptibility
to cancer development have revealed a complex relationship
whereby increased salt ingestion potentiates H. pylori car-
cinogenesis. In addition to promoting H. pylori colonization
of the gastric mucosa high dietary salt exacerbates H. pylori
induced inflammation. Studies performed in a Mongolian
gerbil model determined that H. pylori infected animals
maintained on a high salt diet had increased inflammation
when compared to infected animals maintained on a normal
diet [50]. The increase in inflammation was assessed using
both histological examination of gastric tissue and comparing
levels of the proinflammatory cytokine, IL-1𝛽. Importantly,
this increase in inflammationmediated by high salt levels was
CagA dependent, and animals infected with a cagA deficient
strain of H. pylori had significantly less inflammation, even
in the context of high salt [50]. Studies investigating the
regulation of cagA have found that its expression is increased
in response to multiple environmental changes including
increases in environmental salt concentrations [51]. In fact,
this increase in cagA expression was detected in vivo, using
RT-PCR on gastric tissue samples from infected animals.
Accompanying the increase in inflammation, infected ani-
mals on a high salt chow were found to have augmented
dysplasia and invasive gastric adenocarcinoma [50]. Con-
comitant with this disruption in tissue architecture and
inflammation is an increase in H. pylori induced hypochlo-
rydia in animals fed excessive salt [50]. Alterations in salt
concentration also enhance production of several H. pylori
outer membrane proteins notably, including HopQ, which
is upregulated in response to high salt stress, and VacA
which is upregulated in low salt conditions [52]. Together
these studies indicate that increases in salt consumption
result in alterations to both the host and H. pylori and this
constellation of changes stimulates carcinogenesis.

4.2. Iron. Iron is an essential nutrient for nearly every living
organism including H. pylori [53]. Iron is frequently used as
an enzymatic cofactor and plays a critical role in respiration
and electron transport [54]. To prevent bacterial growth,
the human body exploits this need for iron by limiting
bacterial access to this vital metal and sequestering iron
intracellularly in a process referred to as nutritional immunity
[55].Themajority of iron within the human body is localized
within erythrocytes in the form of heme, a tetrapyrrole
ring with a coordinated iron center. Heme is then further
complexed within hemoglobin [56]. Any extracellular iron
is rapidly removed by high-affinity iron binding proteins
such as lactoferrin and transferrin [57]. Nutritional immunity
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is a dynamic process capable of responding to pathogenic
assaults on the host. Iron absorption and distribution are
regulated through the hepatic peptide hormone, hepcidin.
During the infectious process, inflammation can mediate
increases in hepcidin leading to a hypoferremic response
that depletes even further the available iron present within
the host [58]. Together lactoferrin, transferrin, hepcidin, and
numerous other proteins ensure that the human body has an
inhospitably low level of iron available to invading bacteria.

While the human stomach is a unique organ in that
it experiences large influxes of iron during digestion, the
specific niche occupied by H. pylori is within the gastric
mucosa, an area predicted to have little available iron [59].
H. pylori has evolved sophisticated mechanisms to circum-
vent the host’s sequestration of iron and responds to the
scarcity of this metal with a coordinated upregulation of
iron acquisition systems and virulence factors [59–66]. One
way that H. pylori mediates gene regulation in response to
low environmental iron levels is through the global ferric
uptake regulator (Fur), a transcriptional regulator [61–63].
H. pylori Fur is unique in that it can bind DNA sequences
both when complexed to ferric iron and in its apo form [60].
Consequently, H. pylori Fur can regulate gene expression in
response to conditions of both high and low iron. Many of
the Fur regulated genes that are transcriptionally upregulated
upon iron starvation facilitate the acquisition and trafficking
of iron within the bacterial cell [60–62]. For example, when
iron availability is low H. pylori increases the transcription
of the high-affinity iron transporters feA1, fecA2, frpB1, and
feoB facilitating an influx of iron into the cytoplasm [60–65].
Additionally,H. pylori increases binding of the host chelating
proteins, lactoferrin and transferrin, upon iron starvation,
both of which can be used as a source of nutrient iron. This
increase in lactoferrin and transferrin binding is presumably
through increasing transcription of the receptors for these
proteins [59]. Together this coordinated upregulation of iron
acquisition genes allows H. pylori to respond to and survive
the iron deplete environment of the human host.

Many pathogenic bacteria coordinate the expression of
virulence factors to the detection of changes in iron availabil-
ity and H. pylori is no exception. Two of the most important
virulence factors expressed by H. pylori, VacA and CagA
toxin, are transcriptionally regulated in part by iron [63, 64].
Similar to VacA, once inside the cytoplasm, CagA mediates
a cascade of changes within the cell including changes to cell
morphology and immune signaling. Importantly, the activity
of CagA in concert with VacA has been shown to initiate a
perturbation in the inner leaflet of the cell membrane which
results in the rerouting of transferrin receptors to the apical
surface, ostensibly making all bound transferrin available
to the bacterium [67]. Similarly, the human antimicrobial
protein lactoferrin, which serves as an iron source for H.
pylori, has been shown to repress the expression of both
cagA and vacA, indicating that the human antimicrobial
response can directly alter H. pylori virulence by altering the
micronutrient gradient available to this bacterial pathogen
[59, 68]. Recently, our work has indicated that the biogenesis
and activity of the cag-T4SS increase upon iron starvation
[65, 66]. Together these findings indicate that regulation of

H. pylori toxin secretion is mediated by iron availability and
that both toxins play a critical role in iron homeostasis.

Iron availability not only modulates expression and
deployment of both vacA and cagA-T4SS in vitro but recent
research utilizing a Mongolian gerbil infection model indi-
cates that dietary iron levels augment disease progression
and cancer development in vivo. In this infection model
gerbils weremaintained on iron replete and iron deplete diets
beginning two weeks prior to infection and were maintained
on these diets throughout the duration of the infection.
Analysis of animals treated with a low iron diet revealed
that they had markedly less hepatic iron present, as well as
significantly less iron binding proteins, ferritin and hemo-
globin, within their serum [66]. Iron levels within gastric
tissue were also measured using Inductively Coupled-Plasma
Mass-Spectrometry (ICP-MS) which demonstrated that iron
concentrations within the replicative niche of H. pylori were
drastically reduced upon subjection to an iron deplete diet
[66]. Together these results confirm that an iron poor diet
results in a global decrease in iron stores throughout the
body, including the stomach. Within the same study, when
comparing the disease outcome of animals fed an iron
deficient diet to that of animals maintained on an iron
sufficient diet, it was clear that the animals with decreased
iron had greater immune cell infiltrate to the site of infection,
a more rapid onset of gastritis, and a higher rate of cancer
development, compared to the animals maintained on an
iron rich diet [66].Themechanisms driving these differences
in inflammation and cancer development were found to be
similar in vivo as they are in vitro, in the fact that the
increased inflammation and disease severity are attributable
to the deployment of the cagT4SS pili [65, 66]. The number
of pili found in animals maintained on low iron diets versus
high iron diets was determined using SEM to visualize and
subsequently enumerate the amount of pili formation under
both conditions. Consistent with this finding, strains har-
vested from iron deplete animals translocated a greater
amount of CagA into host cells than strains from animals fed
an iron rich diet. Together these data demonstrate that the
diet of the host, specifically iron intake, has a large impact
on the availability of nutrients for invading pathogens and
consequently influences disease outcomes.

The correlation between reduced dietary iron and
increased disease severity demonstrated in an animal model
is mirrored within the human population. Individuals with
low serum levels of the iron binding protein, ferritin, have
more severe disease outcomes in the context of an H. pylori
infection than individuals with adequate ferritin serum levels
[69]. The mechanisms by which iron deficiency can arise
are varied and include not only diets lacking necessary iron
but also blood loss. Some strains of H. pylori are associated
with hemorrhagic gastritis which may contribute to blood
loss and successive iron deficiency. Furthermore, chronic
H. pylori infection is associated with hypochlorhydria, an
increased stomach pH, whichmay impede iron absorption as
iron is more soluble at lower pHs. Importantly, case control
studies have shown an inverse relationship between dietary
iron intake and gastric cancer suggesting that iron deficiency
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arising from both dietary factors and blood loss contributes
to cancer progression during an H. pylori infection [70, 71].

4.3. Zinc. Similar to iron, zinc is gaining appreciation as a
micronutrient that exerts great influence at the host-pathogen
interface. Zinc is required for cellular processes in all domains
of life, and the mammalian host exploits this requirement
by chelating nutrient zinc within host innate immune
S100A-family proteins, including EN-RAGE (calgranulin C,
S100A12) or calprotectin (MRP-8, S100A8/A9) [72, 73]. This
process, termed “nutritional immunity,” tightly regulates zinc
availability in response to infection and essentially starves
the invading prokaryote. Both EN-RAGE and calprotectin
are significantly elevated in H. pylori infected gastric tissues
compared to uninfected tissues, and these proteins primarily
localize to polymorphonuclear cells (neutrophils) recruited
to the site of infection [72, 73]. The severity of inflammation,
specifically the infiltration of neutrophils in response to
H. pylori infection, was inversely proportional to mucosal
zinc levels [74]. The authors conclude that low zinc levels
could enhance inflammation, but it is equally plausible that
the S100A-family proteins deposited by neutrophils at the
site of infection could be contributing to the chelation and
subsequent removal of zinc from the gastric mucosa.

H. pylori has a strict nutritional requirement for zinc to
grow and both calprotectin and EN-RAGE have been shown
to inhibit H. pylori growth and viability via zinc sequestra-
tion activity [72, 73]. In response to zinc sequestration (by
calprotectin or synthetic chelators),H. pylori forms tenacious
biofilms and alters its lipid A structure [75].The alterations in
lipid A structure under conditions of zinc starvation indicate
that LpxF, LpxL, and LpxR enzyme functions are diminished
[75]. This results in the presence of a lipid A structure which
is penta-acylated and contains both a phosphoethanolamine
residue at 1-position and a 4-phosphate which decorates the
outer membrane [75]. These alterations in lipid A structure
confer decreased cell surface hydrophobicity which enhances
bacterial fitness in the presence of calprotectin. These results
indicate that H. pylori modifies its lipopolysaccharide endo-
toxin production in response to nutrient zinc availability to
circumnavigate the host immune response [75].

Interestingly, H. pylori exposure to EN-RAGE or cal-
protectin prior to coculture with gastric epithelial cells
also results in diminished cag-T4SS activity including CagA
translocation into host cells and proinflammatory IL-8
chemokine secretion. Additionally, the downregulation of
cag-T4SS activity is associated with abrogation of cag-T4SS
pilus deployment, results that were reversed by the addition
of an exogenous source of nutrient zinc [65, 72, 73]. Together,
these results indicate that H. pylori senses nutrient zinc in
the gastric environment and has evolved to deploy the cag-
T4SS in response to the presence of this transitionmetal. Epi-
demiological data supports a model in which zinc enhances
the carcinogenic cag-T4SS activity, as high zinc intake has
been associated with gastric noncardia adenocarcinoma [76].
Concordantly, high serum zinc levels and high zinc intake
have been associated with H. pylori infection and anti-
body response, respectively [77]. Similar studies in pediatric
patients have revealed no association between H. pylori and

iron or zinc nutritional status but significant association
between H. pylori infection status and copper nutritional
status as determined by serummetal concentrations [78, 79].

Besides regulating endotoxin and cytotoxin secretion,
zinc has also been implicated as an important cofactor for
urease and nickel-iron hydrogenase (Ni, Fe-hydrogenase),
enzymes that are critical for H. pylori survival in the low pH
of the stomach [80–82]. Zinc is required for dimerization of
the chaperone UreG, which participates in nickel trafficking
to promote urease activation. The accessory protein UreE
utilizes either nickel or zinc as a cofactor which is critical
for activity [83]. The metallochaperone, HypA, binds zinc for
appropriate structural stabilization and interacts with HypB
to deliver nickel to both urease and Ni, Fe-hydrogenase,
indicating that zinc is critical for bacterial physiology in vivo
[84–86].

H. pylori has clearly evolved to experience zinc stress in
the gastrointestinal environment due to evidence that this
pathogen encodes multiple proteins involved in zinc efflux
in its genome. CadA, CznABC, CrdB, and CzcAB proteins
protect H. pylori from zinc toxicity [87–89]. CznABC efflux
function is required for colonization in a gerbil model of H.
pylori infection.These studies underscore the critical role that
detoxification strategies play in bacterial metal homeostasis
during pathogenesis. It is likely that H. pylori encounters
transition metals including zinc in the micromolar range
from the host diet [89]. Studies on short term supplementa-
tion with zinc sulfate reveal that cohorts maintained on zinc
supplementation exhibit less gastritis than cohorts without
zinc supplementation. However, bacterial burden was not
altered by this addition of zinc, as would be expected with
increased zinc toxicity within the bacterial cell [90]. The
numerous epidemiological studies of dietary zinc intake and
zinc supplementation have yielded heterogeneous results,
and a recent meta-analysis concluded that no firm conclu-
sions about dietary zinc could be reached at this time [91]. It
is interesting to note that, of the studies which have shown
a correlation between zinc intake and H. pylori-dependent
disease progression, most have been on populations in Asia,
which are commonly associatedwith cag-PAI-positive strains
of H. pylori [16].

4.4. Nickel. In addition to zinc and iron, H. pylori requires
the transitionmetal nickel for full virulence.H. pylori exploits
nickel-containingmetalloenzymes such asNiFe-hydrogenase
and urease to circumnavigate the low pH environment of
the human stomach [92]. Urease, one of the most abundant
enzymes in H. pylori proteome requires 24 nickel atoms
for activity [93]. However, excess nickel in the bacterial
cell results in mismetallation of cellular enzymes, which
can abrogate physiological activity. Consequently, H. pylori
manages its cellular nickel economy by tightly controlling
both nickel import and export functions [94]. Nickel is
transported into the bacterial cell in Helicobacter spp. via a
NixA permease, and the FrpB4 outer membrane protein in
a TonB-dependent fashion [95–98]. Nickel efflux is achieved
by the promiscuous CznABC transporter, which promotes
nickel resistance in H. pylori cells [89]. It is likely that H.
pyloriwill encountermicromolar concentrations of transition
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metals such as nickel from host diet, which could ultimately
influence the activity of these critical enzymes and nickel
homeostasis functions [89]. Recent work by Campanale et al.
indicates maintenance of patients on a nickel-free diet
enhancedH. pylori eradication rate, supporting the essential-
ity of nickel for H. pylori pathogenesis [92].

5. Microbiome

Chronic H. pylori colonization leads to dramatic changes
within the gastric environment including a reduction in
parietal cells and subsequent increases in stomach pH and
altered nutrient availability and local immune responses.
Together, these H. pylori mediated changes in gastric phys-
iology and immunology likely induces perturbations in
the microbiome composition. While H. pylori-associated
changes in microbiome structure are not fully understood,
recent advances in both DNA sequencing and computational
analysis have revealed an exceptionally complex microbiota
in the human stomach. H. pylori colonization in specific
pathogen-free female BALB/c mice leads to a decrease in the
quantity of Lactobacillus species within the gastricmicrobiota
when compared to noninfected mice [99]. In contrast H.
pylori infection did not significantly alter the overall stom-
ach microbiota composition within female C57BL/6N mice.
Infection models using Mongolian gerbils found that H.
pylori colonization altered both the number and localization
of indigenous gastric microbiota ultimately leading to more
severe gastritis [100]. Analysis of the microflora following a
12-week infection found dramatic differences in composition
including the appearance of S. aureus and Enterococci and
a decrease in number of Lactobacilli as well as an increase in
number ofBacteroides [100]. Furthermore, gerbil studies have
shown that H. pylori infected animals had alterations in the
distribution of Bifidobacteria which was greater in the corpus
than the antrum when compared to uninfected animals.
Similarly, Aebischer et al. found that the stomachs from H.
pylori-positive animals were colonized by bacterial species
typically confined to the lower gastrointestinal tract [99].
Underscoring the complex relationship that exists betweenH.
pylori and the indigenous microflora are studies indicating
that some resident microbes may inhibit H. pylori growth,
specifically Lactobacilli spp. [101, 102]. Discrepancies between
studies may be because the ability of H. pylori to alter the
stomach microbiome is influenced by the species of animal
used, genetic background of the animal, specific strain of
H. pylori, and length of infection. Together these findings
indicate that H. pylori mediates changes to the host both
directly as discussed previously and indirectly by altering the
composition and distribution of its natural microbiota.

There are a limited number of studies investigating what
effect H. pylori has on the microbiome within the human
host.One analysis found that themicrobial profiles of patients
infected with H. pylori had increased numbers of non-
Helicobacter Proteobacteria, Spirochetes, and Acidobacteria
as compared to H. pylori-negative patients [103]. However,
another study examining the effect of H. pylori colonization
on the gastric microflora showed that H. pylori infection

causes a shift in the microbiome such that there is an enrich-
ment of Proteobacteria and a decrease in Actinobacteria
[104]. Discrepancies in findings may be attributable to varia-
tions in bacteria surveillance techniques. As sequencing and
analysis technologies improve and become more accessible
the perturbation of host flora caused byH. pylori colonization
will become more clearly defined.

In addition to defining how H. pylori alters the com-
position of the resident microbiome another issue to be
resolved is elucidating what impact H. pylori mediated
dysbiosis has on disease outcome. Specifically, it remains
unclear if the gastric microbiota induces a more virulent
H. pylori or if H. pylori induced changes in gastric flora
promote carcinogenesis. In the transgenic insulin-gastrin
(INS-GAS) mouse model of spontaneous gastric cancer,
H. pylori drove disease progression and the development
of intraepithelial neoplasia. Mice given antibiotics 8 weeks
after infection to eradicate H. pylori had neoplasia signifi-
cantly less than mice who received the antibiotics at 12 and
22 weeks after infection. Interestingly, H. pylori-free mice
given similar antibiotics also displayed a decrease in the
development of neoplasia. Taken together these observations
indicate that gastric atrophy mediated by H. pylori or other
factors predisposes to gastric carcinogenesis. The finding
that earlier antibiotic treatment was more protective against
gastric cancer both in the presence and in the absence of H.
pylori may be attributable to the eradication of additional,
unidentified cancer-potentiating microbes [105]. These find-
ings are further supported by research which showed that
germ-free INS-GAS mice had delayed onset of both gastritis
and neoplasia compared to specific pathogen-free INS-GAS
mice. In the same study H. pylori-monocolonization was
found to accelerate disease progression resulting in early
onset of neoplasia as compared to germ-free mice; however
the gastritis was delayed and less severe than H. pylori
infected mice that maintained a diverse microbiota [106].
The mechanism by which H. pylori-associated dysbiosis
induces disease progression remains poorly defined. One
rationale is that changes in the microbe community include
increases of nitrosylating bacterial species which convert
nitrogen compounds in gastric fluid to carcinogens such as
N-nitrosamines or nitric oxide. Additionally the overgrowth
of some bacteria may result in increases in DNA-damaging
reactive oxygen species and reactive nitrogen species, which
are potent mutagens and can contribute to gastric cancer.
Lastly, the dysbiosis created by H. pylori may promote host
inflammatory responses and accelerate metaplasia, atrophy,
and cancer.

6. Conclusions

The intersection of host genetics, immune response, bac-
terial virulence expression, diet, micronutrient availability,
and microbiome structure and composition undoubtedly
influence the disease outcomes associated with chronic H.
pylori infection. However, the complex relationship that
each of these variables has with each other remains poorly
defined. Future studies will seek to determine how these
dynamic factors influence each other and can be exploited to
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ameliorate disease risk and promote gastric health as the age
of antibiotics begins to wane.
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