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Preface

A Free and Open-Source Linear Algebra Text

Mathematics is for everyone — whether as a gateway to other fields or as background for higher
level mathematics. With linear algebra gaining importance in many applications, we feel that ac-
cess to or the cost of a textbook should not stand in the way of a successful experience in learning
linear algebra. Therefore, we made our textbook available to everyone for free download for their
own non-commercial use. We especially encourage its use in linear algebra classrooms for instruc-
tors who are looking for an inquiry-based textbook or a supplemental resource to accompany their
course. If an instructor would like to make changes to any of the files to better suit your students’
needs, we offer source files for the text by making a request to the authors.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. The graphic

@080

that appears throughout the text shows that the work is licensed with the Creative Commons, that
the work may be used for free by any party so long as attribution is given to the author(s), that the
work and its derivatives are used in the spirit of “share and share alike,” and that no party may sell
this work or any of its derivatives for profit. Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

Goals

Linear Algebra and Applications: An Inquiry-Based Approach provides a novel inquiry-based
learning approach to linear algebra, as well as incorporating aspects of an inverted classroom. The
impetus for this book lies in our approach to teaching linear algebra. We place an emphasis on
active learning and on developing students’ intuition through their investigation of examples. For
us, active learning involves students — they are DOING something instead of being passive learners.

Xvii


http://creativecommons.org/licenses/by-nc-sa/3.0/

XViil Section 0. Preface

What students are doing when they are actively learning might include discovering, processing,
discussing, applying information, writing intensive assignments, engaging in common intellectual
in-class experiences or collaborative assignments and projects. Although it is difficult to capture
the essence of active learning in a textbook, this book is our attempt to do just that.

Our goals for these materials are several.

e To carefully introduce the ideas behind the definitions and theorems to help students develop
intuition and understand the logic behind them.

e To help students understand that mathematics is not done as it is often presented. We expect
students to experiment through examples, make conjectures, and then refine their conjectures.
We believe it is important for students to learn that definitions and theorems don’t pop up
completely formed in the minds of most mathematicians, but are the result of much thought
and work.

e To help students develop their communication skills in mathematics. We expect our students
to read and complete activities before class and come prepared with questions. While in class,
students work to discover many concepts on their own through guided activities. Of course,
students also individually write solutions to exercises on which they receive significant feed-
back. Communication skills are essential in any discipline and we place a heavy focus on
their development.

e To have students actively involved in each of these items through in-class and out-of-class
activities, in-class presentations (this is of course up to the instructor), and problem sets.

Layout

This text is formatted into sections, each of which contains preview activities, in-class activities,
worked examples, and exercises. Most sections conclude with an application project — an applica-
tion of the material in the section. The various types of activities serve different purposes.

e Preview activities are designed for students to complete before class to motivate the upcoming
topic and prepare them with the background and information they need for the class activities
and discussion.

e We generally use the regular activities to engage students during class in critical thinking
experiences. These activities are used to provide motivation for the material, opportunities for
students to develop course material on their own, or examples to help reinforce the meanings
of definitions or theorems. The ultimate goal is to help students develop their intuition for
and understanding of linear algebra concepts.

e Worked examples are included in each section. Part of the philosophy of this text is that
students will develop the tools and understanding they need to work homework assignments
through the preview, in-class activities, and class discussions. But some students express
a desire for fully-worked examples in the text to reference during homework. In order to
preserve the flow of material within a section, we include worked examples at the end of each
section.
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Section 0. Preface X1X

e The Linear Algebra Curriculum Study Group (LACSG) was created in 1990 to “initiate sub-
stantial and sustained national interest in improving the undergraduate linear algebra curricu-
lum”.! Funded by the national science foundation, the group formed a broad based panel
of faculty, and in consultation with client disciplines they produced a document that makes
recommendations for the linear algebra curriculum. One of the recommendations, “Math-
ematics departments should seriously consider making their first course in linear algebra a
matrix-oriented course.” is followed in this text. They suggest that this approach “implies
less emphasis on abstraction and more emphasis on problem solving and motivating applica-
tions.” and that “Some applications of linear algebra should be included to give an indication
of the pervasive use of linear algebra in many client disciplines. Such applications neces-
sarily will be limited by the need to minimize technical jargon and information from outside
the course. Students should see the course as one of the most potentially useful mathematics
courses they will take as an undergraduate.” Also, the 2015 Committee on the Undergradu-
ate Program in Mathematics (CUPM) report to the Mathematical Association of America’
recommends that “Every Linear Algebra course should incorporate interesting applications,
both to highlight the broad usefulness of linear algebra and to help students see the role of
the theory in the subject as it is applied. Attractive applications may also entice students
majoring in other disciplines to choose a minor or additional major in mathematics.” All but
two sections in this text include a substantial application. Each section begins with a short
description of an application that uses the material from the section, then concludes with a
project that develops the application in more detail. (The two sections that do not include
projects are sections that are essentially long proofs — one section that contains formal proofs
of the equivalences of the different parts of the Invertible Matrix Theorem, and the other
contains algebraic proofs of the properties of the determinant.) The projects are independent
of the material in the text — the text can be used without the applications. The applications
are written in such a way that they could also be used with other textbooks. The projects
are written following an inquiry-based style similar to the text, with important parts of the
applications developed through activities. So the projects can be assigned outside of class
as independent work for students. Several of the projects are accompanied by GeoGebra
applets or Sage worksheets which are designed to help the students better understand the
applications.

e Each investigation contains a collection of exercises. The exercises occur at a variety of levels
of difficulty and most force students to extend their knowledge in different ways. While there
are some standard, classic problems that are included in the exercises, many problems are
open ended and expect a student to develop and then verify conjectures.
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XX Section 0. Preface

development of these materials early on through an internal university grant. Finally, we wish to
thank our GVSU colleagues for their support and for being role models in the open source textbook
movement.

To the Student

The inquiry-based format of this book means that you can be in charge of your own learning. The
guidance of your instructor and support of your fellow classmates can help you develop your under-
standing of the topic. Your learning will benefit best if you engage in the material by completing all
preview and in-class activities in order to fully develop your own intuition and understanding of the
material, which can be achieved only by reflecting on the ideas and concepts and communicating
your reflections with others. Don’t be afraid to ask questions or to be wrong at times, for this is how
people learn. Good luck! We will be happy to hear your comments about the book.



Part I

Systems of Linear Equations






Section 1

Introduction to Systems of Linear
Equations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is a linear equation?

What is a system of linear equations?

What is a solution set of a system of linear equations?

What are equivalent systems of linear equations?

What operations can we use to solve a system of linear equations?

Application: Electrical Circuits

Linear algebra is concerned with the study of systems of linear equations. There are two important
aspects to linear systems. One is to use given information to set up a system of equations that
represents the information (this is called modeling), and the other is to solve the system. As an
example of modeling, we consider the application to the very simple electrical circuit. An electrical
circuit consists of

+ -
e one or more electrical sources, denoted by

e one or more resistors, denoted by VYV .

A source is a power supply like a battery, and a resistor is an object that consumes the electricity,
like a lamp or a computer. A simple circuit consists of one or more sources connected to resistors,
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like the one shown in Figure 1.2. The straight lines in the circuit indicate wires through which
current flows. The points labeled P and Q are called junctions or nodes.

8V
.-

!
20
P AN Q

I

I3

+

2Q

AW

4Q

A\

1t
5V

Figure 1.1: A circuit.

The source creates a charge that produces potential energy £ measured in volts (V). Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I3,
15, and I3 be the currents as illustrated in Figure 1.2. The goal is to find the current flowing in each
branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current I, resistance R, and voltage E. There are laws governing electrical circuits that state that
FE = IR across a resistor. Additionally, Kirchoff’s Current and Voltage Laws indicate how current
behaves within the whole circuit. Using all these laws together, we derive the system

IL— b+ I3 =0
511 + 215 =38
215 + 415 =5,

where I, I», and I3 are the currents at the points indicated in Figure 1.2. To finish analyzing the
circuit, we now need to solve this system. In this section we will begin to learn systematic methods
for solving systems of linear equations. More details about the derivation of these circuit equations
can be found at the end of this section.

Introduction

Systems of linear equations arise in almost every field of study: mathematics, statistics, physics,
chemistry, biology, economics, sociology, computer science, engineering, and many, many others.
We will study the theory behind solving systems of linear equations, implications of this theory,
and applications of linear algebra as we proceed throughout this text.

Preview Activity 1.1.

o099
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ey

2)

3)

Consider the following system of two linear equations in two unknowns, x1, Z2:

2.1‘1 — 3.1‘2 =0

1 — $2:1.

One way to solve such a system of linear equations is the method of substitution (where
one equation is solved for one variable and then the resulting expression is substituted into
the remaining equations). This method works well for simple systems of two equations in
two unknowns, but becomes complicated if the number or complexity of the equations is
increased.

Another method is elimination — the method that we will adopt in this book. Recall that the
elimination method works by multiplying each equation by a suitable constant so that the co-
efficients of one of the variables in each equation is the same. Then we subtract corresponding
sides of these equations to eliminate that variable.

Use the method of elimination to show that this system has the unique solution z; = 3 and
x9 = 2. Explain the specific steps you perform when using elimination.

Recall that a linear equation in two variables can be represented as a line in R?, the Cartesian
plane, where one variable corresponds to the horizontal axis and the other to the vertical axis.
Represent the two equations 21 — 3x3 = 0 and 1 —x2 = 1 in R? and illustrate the solution
to the system in your picture.

The previous example should be familiar to you as a system of two equations in two un-
knowns. Now we consider a system of three equations in three unknowns

IL— b+ I3=0 (1.1)
50 + 21 =8 (1.2)
2y +4l5 = 5. (1.3)

that arises from our electrical circuit in Figure 1.2, with currents 1, I, and I3 as indicated in
the circuit. In the remainder of this preview activity we will apply the method of elimination
to solve the system of linear equations (1.1), (1.2), and (1.3).

(a) Replace equation (1.2) with the new equation obtained by multiplying both sides of
equation (1.1) by 5 and then subtracting corresponding sides of this equation from
the appropriate sides of equation (1.2). Show that the resulting system is

IL— Ib+ I3 =0
71, — 513 =8 (1.4)
215 + 415 = 5.

(b) Now eliminate the variable I5 from the last two equations in the system in part (a) by
using equations (1.3) and (1.4) to show that I3 = 0.5. Explain your process.

(¢c) Once you know the value for I3, how can you find I5? Then how do you find /;? Use
your method to show that the solution to this system is the ordered triple (1,1.5,0.5).
Interpret the result in terms of currents.
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Figure 1.2: A circuit.

Notation and Terminology

To study linear algebra, we will need to agree on some general notation and terminology to represent
our systems.

An equation like 4z + x2 = 8 is called a linear equation because the variables (z; and xo
in this case) are raised to the first power, and there are no products of variables. The equation
4x1 + x9 = 8 is a linear equation in two variables, but we can make a linear equation with any
number of variables we like.

Definition 1.1. A linear equation in the variables x1, x2, . . ., T, is an equation of the form
a1r1 + agxe + - - + apx, = b,

where n is a positive integer and a1, as, ..., a, and b are constants. The constants a1, as, ..., an
are called the coefficients of the equation.

We can use any labels for the variables in a linear equation that we like, e.g., I1, x1, 1, and you
should become comfortable working with variables in any form. We will usually use subscripts,
as in x1,x9,Ts,..., to represent the variables as this notation allows us to have any number of
variables. Other examples of linear equations are

1
r+2y=4 and \/53:1—33:2:13334—#.

On the other hand, the equations
1
—+y—2=0 and 2z =+/2—5
x

are non-linear equations.

Definition 1.2. A system of linear equations is a collection of one or more linear equations in the
same variables.

o099
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For example, the two equations

xl—l"Q:l

(1.5)

201 +x2 =95

form a system of two linear equations in variables 1, x2.
Definition 1.3. A solution to a system of linear equations is an ordered n-tuple (s1, s2,. .., S,) of

numbers so that we obtain all true statements in the system when we replace the variable in order
with sq, s9, ..., and s,,.

For example, 1 = 2,29 = 1, or simply (2, 1), is a solution to the above system of linear
equations in (1.5) as can be checked by substituting the variables into each equation. In solving a
system of linear equations, we are interested in finding the set of all solutions, which we will call
the solution set of the system. For the above system in (1.5), the solution set is the set containing
the single point (2, 1), denoted {(2, 1)}, because there is only one solution. If we consider just
the equation 1 — x2 = 0 as our system, the solution set is the line 1 = x5 in the plane. More
generally, a set of solutions is a collection of ordered n-tuples of numbers. We denote the set of all
ordered n-tuples of numbers as R™. So, for example, R? is the set of all ordered pairs, or just the
standard coordinate plane, and R? is the set of all ordered triples, or the three-dimensional space.

Solving Systems of Linear Equations

In Preview Activity 1.1, we were introduced to linear systems and the method of elimination for a
system of two or three variables. Our goal now is to come up with a systematic method that will
reduce any linear system to one that is easy to solve without changing the solution set of the system.
Two linear systems will be called equivalent if they have the same solution set.

The operations we used in Preview Activity 1.1 to systematically eliminate variables so that we
can solve a linear system are called elementary operations on a system of linear equations or just
elementary operations. In the exercises you will argue that elementary operations do not change
the solution set to a system of linear equations, a fact that is summarized in the following theorem.

Theorem 1.4. The elementary operations on a system of linear equations:

(1) replacing one equation by the sum of that equation and a scalar multiple of another equation;
(2) interchanging two equations;

(3) replacing an equation by a nonzero scalar multiple of itself;
do not change the solution set to the system of equations.

When we apply these elementary operations our ultimate goal is to produce a system of linear
equations in a simplified form with the same solution set, where the number of variables eliminated
from the equations increase as we move from top to bottom. This method is called the elimination
method.

D00
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Activity 1.1. For systems of linear equations with a small number of variables, many different
methods could be used to find a solution. However, when a system gets large, ad-hoc methods
become unwieldy. One of our goals is to develop an algorithmic approach to solving systems of
linear equations that can be programmed and applied to any linear system, so we want to work
in a very prescribed method as indicated in this activity. Ultimately, once we understand how the
algorithm works, we will use calculators/computers to do the work. Apply the elimination method
as described to show that the solution set of the following system is (2, —1,1).

T14+x0— 23=0
201 + 10— x3=2

r1 — X2 + 2x3 = 5.

(a) Use the first equation to eliminate the variable x; in the second and third equations.

(b) Use the new second equation to eliminate the variable x5 in the third equation and find the
value of x3.

(¢) Find values of x5 and then x;.

Important Note: Technically, we don’t really add two equations or multiply an equation by a scalar.
When we refer to a scalar multiple of an equation, we mean the equation obtained by equating the
scalar multiple of the expression on the left side of the equation and the same scalar multiple of the
expression on the right side of the equation. Similarly, when we refer to a sum of two equations, we
don’t really add the equations themselves. Instead, we mean the equation obtained by equating the
sum of the expressions on the left sides of the equations to the sum of the expressions on the right
sides of the equations. We will use the terminology “scalar multiple of an equation” and “sum of
two equations” as shorthand to mean what is described here.

Another Important Note: There is an important and subtle point to consider here. When we use
these operations to find a solution to a system of equations, we are assuming that the system has a
solution. The application of these operations then tells us what a solution must look like. However,
there is no guarantee that the outcome is actually a solution — to be safe we should check to make
sure that our result is a solution to the system. In the case of linear systems, though, every one of our
operations on equations is reversible (if applied correctly), so the result will always be a solution
(but this is not true in general for non-linear systems).

Terminology: A system of equations is called consistent if the system has at least one solution. If
a system has no solutions, then it is said to be inconsistent.

The Geometry of Solution Sets of Linear Systems

We are familiar with linear equations in two variables from basic algebra and calculus (through
linear approximations). The set of solutions to a system of linear equations in two variables has
some geometry connected to it.
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Activity 1.2. Recall that we examined the geometry of the system

2%’1 —3%2 =0

Tl — 1‘2:1

in Preview Activity 1.1 to show that the resulting solution set consists of a single point in the plane.

In this activity we examine the geometry of the system

2.1‘1 — T2 = 1 (1 6)
2%1 — 2.%2 = 2. '

(a) Consider the linear equation 2x1 — 2x2 = 2 (or, equivalently 2z — 2y = 2). What is the
graph of the solution set (the set of points (1, 2:2) satisfying this equation) of this single
equation in the plane? Draw the graph to illustrate.

(b) How can we represent the solution set of the system (1.6) of two equations graphically?
How is this solution set related to the solution set of the single equation 2z — 2xy = 27
Why? How many solutions does the system (1.6) have?

(c) There are exactly three possibilities for the number of solutions to a general system of two
linear equations in two unknowns. Describe the geometric representations of solution sets
for each of the possibilities. Illustrate each with a specific example (of your own) using a
system of equations and sketching its geometric representation.

Activity 1.2 shows that there are three options for the solution set of a system: A system can
have no solutions, one solution, or infinitely many solutions.

Now we consider systems of three variables. As an example, let us look at the linear equation
x + y + z = 1 in the three variables z, y, and z. Notice that the points (1,0,0), (0,1,0), and
(0,0, 1) all satisfy this equation. As a linear equation, the graph of x + y + z = 1 will be a plane in
three dimensions that contains these three points, as shown in Figure 1.3. Hence when we consider
a linear system in three unknowns, we are looking for a point in the three dimensional space that
lies on all the planes described by the equations.

Activity 1.3. In this activity we examine the geometry of linear systems of three equations in three
unknowns. Recall that each linear equation in three variables has a plane as its solution set. Use a
piece of paper to represent each plane.

(a) Is it possible for a general system of three linear equations in three unknowns to have no
solutions? If so, geometrically describe this situation and then illustrate each with a specific
example using a system of equations. If not, explain why not.

(b) Is it possible for a general system of three linear equations in three unknowns to have
exactly one solution? If so, geometrically describe this situation and then illustrate each
with a specific example using a system of equations. If not, explain why not.

(c) Is it possible for a general system of three linear equations in three unknowns to have
infinitely many solutions? If so, geometrically describe this situation and then illustrate
each with a specific example using a system of equations. If not, explain why not.

D00
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Figure 1.3: The plane z + y + z = 1.

Examples

What follows are worked examples that use the concepts from this section.

Example 1.5. Apply the allowable operations on equations to solve the system

1+ 220+ w3— T4 =4
— x9— x3+3x4 =06

T +2x3— x4 =1
2x1 — 3xo+ x3+ x4 = 2.

Example Solution. We begin by eliminating the variable x; from all but the first equation. To
do so, we replace the third equation with the third equation minus the first equation to obtain the
equivalent system

T1 + 2T0+T3— T4 =
— x2—x3+3x4= 6
— 2x94x3 =-3
2x1 — 3xotx3+ x4 = 2.

Then we replace the fourth equation with the fourth equation minus 2 times the first to obtain the
equivalent system

T1 + 2x2+T3— T4 =
— Xo—x3+3x4 =
— 2x9+x3 =-3
— Tro—x3+3x4 = —6.

To continue the elimination process, we want to eliminate the x5 variable from our latest third
and fourth equations. To do so, we use the second equation so that we do not reinstate an x;
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variable in our new equations. We replace equation three with equation 3 minus 2 times equation 2
to produce the equivalent system

r1 4 2x0+ 23— T4 = 4
— x9— x3+3x4= 6
3r3—6xy = —15

— Tx9— x3+3x4 = — 6.

Then we replace equation four with equation four minus 7 times equation 2, giving us the equivalent
system

T+ 2209+ x3— x4= 4
— X9— x3+ 314 = 6
3rs3— b6xy = —15
6x3—18x4 = —48.

With one more step we can determine the value of 4. We use the last two equations to eliminate
x3 from the fourth equation by replacing equation four with equation four minus 2 times equation
3. This results in the equivalent system

r1 + 229+ T3— T4 = 4
— To— x3+314 = 6
31‘3—6.%'4 =-15
—6.%'4 = —18.
The last equation tells us that —6x4 = —18, or x4 = 3. Substituting into the third equation

shows that

3x3 —6(3)=—15
3r3 =3

r3 = 1.
The second equation shows that

—22—1+3(3)=6
—SE2=—2

Tro — 2.
Finally, the first equation tells us that
r1+2(2)+1-3=4

1‘1:2.

So the solution to our system is 1 = 2, x2 = 2, x3 = 1, and x4 = 3. It is worth substituting
back into our original system to check to make sure that we have not made any arithmetic mistakes.

D00
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Example 1.6. A mining company has three mines. One day of operation at the mines produces the
following output.

e Mine 1 produces 25 tons of copper, 600 kilograms of silver and 15 tons of manganese.
e Mine 2 produces 30 tons of copper, 500 kilograms of silver and 10 tons of manganese.

e Mine 3 produces 20 tons of copper, 550 kilograms of silver and 12 tons of manganese.

Suppose the company has orders for 550 tons of copper, 11350 kilograms of silver and 250 tons of
manganese.

Write a system of equations to answer the question: how many days should the company oper-
ate each mine to exactly fill the orders? State clearly what the variables in your system represent.
Then find the general solution of your system.

Example Solution. For our system, let z; be the number of days mine 1 operates, x5 be the number
of days mine 2 operates, and x3 be the number of days mine 3 operates. Since mine 1 produces 25
tons of coper each day, in 21 days mine 1 will produce 25z tons of copper. Mine 2 produces 30 tons
of copper each day, so in x2 days mine 2 will produce 30x2 tons of copper. Also, mine 3 produces
20 tons of copper each day, so in x3 days mine 3 will produce 20x3 tons of copper. Since the
company needs to supply a total of 550 tons of copper, we need to have 251 4+ 30z2 +20z3 = 550.
Similar analyses of silver and manganese give us the system
25z1 + 30x2 + 20z3 = 550
600x1 + 500x2 + 550x3 = 11350
1521 + 10x9 + 1223 = 250.

To solve the system, we eliminate the variable xo from the second and third equations by re-
placing equation two with equation two minus 24 times equation one and replacing equation three
with equation three minus % times equation one. This produces the equvalent system

25z1 + 30x2 + 20x3 = 550
— 22029 4+ 7023 = —1850
— 83?2 = —80

We are fortunate now that we can determine the value of z2 from the third equation, which tells us
that o = 10. Substituting into the second equation shows that

—220(10) + 70x3 = —1850
70z3 = 350
T3 = 5.
Substituting into the first equation allows us to determine the value for x:
251 + 30(10) + 20(5) = 550
25x1 = 150
x1 = 6.

So the company should run mine 1 for 6 days, mine 2 for 10 days, and mine 3 for 5 days to meet
this demand.
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Summary

In this section we introduced linear equations and systems of linear equations.

e Informally, a linear equation is an equation in which each term is either a constant or a
constant times a variable. More formally, a linear equation in the variables x1, x2, . . ., Ty, 1S
an equation of the form

a1x1 + agwe + - - + apx, = b,

where n is a positive integer and a1, ao, . . ., a, and b are constants.

e A system of linear equations is a collection of one or more linear equations in the same
variables.

o Informally, a solution to a system of linear equations is a point that satisfies all of the equa-
tions in the system. More formally, a solution to a system of linear equation in n variables
Z1, T2, ..., Tp is an ordered n-tuple (s, s2,...,s,) of numbers so that we obtain all true
statements in the system when we replace x; with s1, x2 with sa, .. ., and x,, with s,,.

e Two linear systems are equivalent if they have the same solution set.
e The following operations on a system of equations do not change the solution set:
(1) Replace one equation by the sum of that equation and a scalar multiple of another equa-
tion.

(2) Interchange two equations.

(3) Replace an equation by a nonzero scalar multiple of itself.

Exercises

(1) In the method of elimination there are three operations we can apply to solve a system of
linear equations. For this exercise we focus on a system of equations in three unknowns 1,
x9, and x3, but the arguments generalize to a system with any number of variables. Consider
the general system of three equations in three unknowns

4r1 —4ao +4x3 =0
41 + 229 =8
21‘2 + 5£L‘3 =09.

The goal of this exercise is to understand why the three operations on a system do not change
the solutions to the system. Recall that a solution to a system with unknowns x1, x2, and x3 is
a set of three numbers, one for x1, one for x3, and one for x5 that satisfy all of the equations
in the system.

(a) Explain why, if we have a solution to this system, then that solution is also a solution
to any constant k times the second equation.

(b) Explain why, if we have a solution to this system, then that solution is also a solution
to the sum of the first equation and k times the third equation for any constant k.
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(2) Alice stopped by a coffee shop two days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee and two muffins for which she paid $6.87. The
next day she bought two cups of coffee and three muffins (for herself and a friend). Her bill
was $11.25. Use the method of elimination to determine the price of a cup of coffee, and the
price of a muffin. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

(3) Alice stopped by a coffee shop three days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee, a muffin and a scone for which she paid $6.15.
The next day she bought two cups of coffee, three muffins and a scone (for herself and
friends). Her bill was $12.20. The last day she bought a cup of coffee, two muffins and two
scones, and paid $10.35. Determine the price of a cup of coffee, the price of a muffin and
the price of a scone. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

@ (a) Find an example of a system of two linear equations in variables z, y for each of the
following three cases:

i. where the equations correspond to two non-parallel lines,
ii. two parallel distinct lines,
iii. two identical lines (represented with different equations).

(b) Describe how the relationship between the coefficients of the variables of the two
equations in parts (ii) and (iii) are different than the relationship between those coef-
ficients in part (i) (Note: Please make sure your system examples are different than
the examples in the activities, and that they are your own examples.)

(5) In a grid of wires in thermal equilibrium, the temperature at interior nodes is the average of
the temperatures at adjacent nodes. Consider the grid as shown in Figure 1.4, with z1, x2,
and z3 the temperatures (in degrees Centigrade) at the indicated interior nodes, and fixed
temperatures at the other nodes as shown. For example, the nodes adjacent to the node
with temperature x; have temperatures of xo, 200, 0, and 0, so when the grid is in thermal
equilibrium x; is the average of these temperatures:

2 +200+0+0
Tr1 = 1 .

200° 0°

X1

Figure 1.4: A grid of wires.
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(a) Determine equations for the temperatures x and z3 if the grid is in thermal equi-
librium to construct a system of three linear equations in x1, x2, and x3 that models
node temperatures in the grid in thermal equilibrium.

(b) Use the method of elimination to find a specific solution to the system that makes
sense in context.

(6) We have seen that a linear system of two equations in two unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of three equations in two unknowns with no solutions.
(b) A linear system of three equations in two unknowns with exactly one solution.
(c) A linear system of three equations in two unknowns with exactly two solutions.

(d) A linear system of three equations in two unknowns with infinitely many solutions.

(7) We have seen that a linear system of three equations in three unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of two equations in three unknowns with no solutions.
(b) A linear system of two equations in three unknowns with exactly one solution.
(c) A linear system of two equations in three unknowns with exactly two solutions.
(d) A linear system of two equations in three unknowns with infinitely many solutions.
(8) Find a system of three linear equations in two variables u, v whose solution is u = 2, v = 1.
(9) Consider the system of linear equations
1+ hxo =2
3r1+ dbro =1

where h is an unknown constant.

(a) Determine the solution(s) of this system for all possible & values, if a solution exists.
(Note: Your answers for the variables will depend on the h.)

(b) How do your answers change if the second equation in the system above is changed
to 3x1 + d5x2 = 67

(10) Suppose we are given a system of two linear equations

T1+2x0— x3= 1 (1.7)
31+ xo+ 2x3 = —1. (1.8)
Find another system of two linear equations £ and F» in the variables z1, x2, and x3 that

are not multiples of each other or of equations (1.7) or (1.8) so that any solution (x1, x2, x3)
to the system (1.7) and (1.8) is a solution to the system F; and Ej.
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True/False Questions

In many sections you will be given True/False questions. In each of the True/False questions, you
will be given a statement, such as “If we add corresponding sides of two linear equations, then
the resulting equation is a linear equation.” and “One can find a system of two equations in two
unknowns that has infinitely many solutions.”. Your task will be to determine the truth value of the
statement and to give a brief justification for your choice.

Note that a general statement is considered true only when it is always true. For example,
the first of the above statements, “If we add corresponding sides of two linear equations, then the
resulting equation is a linear equation.”, is a general statement. For this statement to be true, the
equation we obtain by adding corresponding sides of any two linear equations has to be linear. If
we can find two equations that do not give a linear equation when combined in this way, then this
statement is false.

Note that an existential statement is considered true if there is at least one example which makes
is true. For example, the latter of the above statements, “One can find a system of two equations
in two unknowns that has infinitely many solutions.”, is an existential statement. For this statement
to be true, existence of a system of two equations in two unknowns with infinitely many solutions
should suffice. If it is impossible to find two such equations, then this statement is false.

To justify that something always happens or never happens, one would need to refer to other
statements whose truth is known, such as theorems, definitions. In particular, giving an example of
two linear equations that produce a linear equation when we add corresponding sides does not justify
why the sum of any two linear equations is also linear. Using the definition of linear equations,
however, we can justify why this new equation will always be linear: each side of a linear equation
is linear, and adding linear expressions always produces a linear sum.

To justify that there are examples of something happening or not happening, one would need
to give a specific example. For example, in justifying the claim that there is a system of two
equations in two unknowns with infinitely many solutions, it is not enough to say “An equation
in two unknowns is a line in the xy-plane, so there can be two equations with the same line as
their solution.”. In general, you should avoid the words “can”, “possibly”, “maybe”, etc., in your
justifications. Instead, giving an example such as “The linear system x + y = 1 and 2z + 2y = 2
of two equations in two unknowns has infinitely many solutions since the second equation gives the

same line as the first in the zy-plane.” provides complete justification beyond a reasonable doubt.

Each response to a True/False statement should be more than just True or False. It is important
that you provide justification for your responses.

(1) (a) True/False The set of all solutions of a linear equation can be represented graphically
as a line.

(b) True/False The set of all solutions of a linear equation in two variables can be rep-
resented graphically as a line.

(c) True/False The set of all solutions of an equation in two variables can be represented
graphically as a line.

(d) True/False A system of three linear equations in two unknowns cannot have a unique
solution.
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(e) True/False A system of three linear equations in three unknowns has a unique solu-
tion.

Project: Modeling an Electrical Circuit and the Wheatstone Bridge
Circuit

Mathematical modeling, or the act of creating equations to model given information, is an important
part of problem solving. In this section we will see how we derived the system of equations

IL— L+ I3 =0
511 + 215 =38
215 + 415 =5,

to represent the electrical current in the circuit shown in Figure 1.2. Recall that a circuit consists of

+ -
e one or more electrical sources (like a battery), denoted by

e one or more resistors (like any appliance that you plug into a wall outlet), denoted by

—MWWA\N—

The source creates a charge that produces potential energy F/ measured in volts (V). No sub-
stance conducts electricity perfectly, there is always some price to pay (energy loss) to moving
electricity. Electrical current I in amperes (A) is the flow of the electric charge in the circuit. (A
current of 1 ampere means that 6.2 x 10'® electrons pass through the circuit per second.) Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I}
be the current flowing through the upper branch, I the current through middle branch, and 75 the
current through the lower branch as illustrated in Figure 1.2. The goal is to find the current flowing
in each branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current, resistance, and potential. Three basic principles govern current low in a circuit.

(1) Resistance R in ohms (£2) can be thought of as a measure of how difficult it is to move a
charge along a circuit. When a current flows through a resistor, it must expend some energy,
called a voltage drop. Ohm’s Law states that the voltage drop F across a resistor is the
product of the current I passing through the resistor and the resistance R. That is,

E=1R.

(2) Kirchoff’s Current Law states that at any point in an electrical circuit, the sum of currents
flowing into that point is equal to the sum of currents flowing out of that point.

(3) Kirchoff’s Voltage Law says that around any closed loop the sum of the voltage drops is equal
to the sum of the voltage rises.

D00



18 Section 1. Introduction to Systems of Linear Equations

To see how these laws allow us to model the circuit in Figure 1.2, we will need three equations
in I, I, and I3 to determine the values of these currents. Let us first apply Kirchoff’s Current Law
to the point P. The currents flowing into point P are I; and I3, and the current flowing out is I5. This
produces the equation I} + Is = I, or

L —LL,+13=0.

Project Activity 1.1. Apply Kirchoff’s Current Law to the point () to obtain an equation in [y, Io,
and /3. What do you notice?

We have three variables to determine, so we still need two more equations in I, Is, and I3.
Next we apply Kirchoff’s Voltage Law to the top loop in the circuit in Figure 1.2. We will assume
the following sign conventions:

e A current passing through a resistor produces a voltage drop if it flows in the direction of
loop (and a voltage rise if the current passes in the opposite direction of the loop).

e A current passing through a source in the direction of the loop produces a voltage drop if it
flows from + to — and a voltage rise if it flows from — to +, while a current passing through
a source in the opposite direction of the loop produces a voltage rise if it flows from + to —
and a voltage drop if it flows from — to +.

(The directions chosen in Figure 1.2 for the voltage flow are arbitrary — if we reverse the flow then
we just replace voltage drops with voltage rises and obtain the same equations. If a solution shows
that a current is negative, then that current flows in the direction opposite of what is shown.)

If we move in the counterclockwise direction around the top loop in the circuit in Figure 1.2,
there is a voltage rise through the source of 8 volts. This must equal the voltage drop in this loop.
The current I; passing though the resistor of resistance 2 €2 produces a voltage drop of 2/; volts.
Similarly, the current I; passing through the resistor of resistance 32 produces a voltage drop of
311 volts. Finally, the current /5 passing through the resistor of resistance 2 €2 produces a voltage
drop of 215 volts. So Kirchoff’s Voltage Law applied to the top loop in the circuit in Figure 1.2
gives us the equation 217 + 31; + 21, = 8 or

511 + 21, = 8.

Project Activity 1.2. Apply Kirchoff’s Voltage Law to the bottom loop in the circuit in Figure 1.2
to obtain an equation in [, I, and I3. Compare the three equations we have found to those in the
introduction.

Project Activity 1.3. Consider the circuit as shown in Figure 1.5, with a single source and five
resistors with resistances R, Ro, R3, R4, and Ry as labeled.

(a) Assume the following information. The voltage F is 13 volts, Ry = Ry = R3 = R5 = 112,
and R4 = 2€). Follow the directions given to find the currents Iy, I, I, I3, I4, and I5.

i. Use Kirchoff’s Current Law to show that [ = I1 + I, I3 = I} — Is,and Iy = I>+ I5.
Thus, we reduce the problem to three variables.
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Figure 1.5: A Wheatstone bridge circuit.

ii. Apply Kirchoff’s Voltage Law to three loops to show that the currents must satisfy
the linear system

26 — Iy =13 (L.9)
31y + 215 =13 (1.10)
ILh— b+ Is= 0. (L.11)

iii. Solve the system to find the unknown currents.

(b) The circuit pictured in Figure 1.5 is called a Wheatstone bridge (invented by Samuel Hunter
Christie in 1833 and popularized by Sir Charles Wheatstone in 1843). The Wheatstone
bridge is a circuit designed to determine an unknown resistance by balancing two paths
in a circuit. It is set up so that the resistances of resistors 21 and Rp are known, R3 is a
variable resistor and we want to find the resistance of R4. The resistor Rs is replaced with
a voltmeter, and the resistance of R3 is varied until the voltmeter reads 0. This balances
the circuit and tells the resistance of resistor [24. Show that if the current 5 in Figure 1.5
is O (so the circuit is balanced), then Ry = R}%—IF (which is how we calculate the unknown
resistance R4). Do this in general and do not use any specific values for the resistances or
the voltage.
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Section 2

The Matrix Representation of a Linear
System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

What is a matrix?
How do we associate a matrix to a system of linear equations?

What row operations can we perform on an augmented matrix of a linear
system to solve the system of linear equations?

What are pivots, basic variables, and free variables?
How many solutions can a system of linear equations have?
When is a linear system consistent?

When does a linear system have infinitely many solutions? A unique solu-
tion?

How can we represent the set of solutions to a consistent system if the
system has infinitely many solutions?

Application: Simpson’s Rule

You may recall that Simpson’s Rule from calculus (% of the midpoint approximation plus % of the
trapezoid approximation) is a formula that can be used to approximate definite integrals. One the
one hand, Simpson’s Rule is a weighted average of the midpoint and trapezoid sum, but that does
not completely explain why Simpson’s Rule is so much better than either the midpoint or trapezoid

21



22 Section 2. The Matrix Representation of a Linear System

sum. While the midpoint and trapezoid sums use line segments to approximate a function on an
interval, Simpson’s Rule uses parabolas. In order to use Simpsons Rule, we need to know how
to exactly fit a quadratic function to three points. More details about this process can be found
at the end of this section. This idea of fitting a polynomial to a set of data points has uses in
other areas as well. For example, two common applications of Bézier curves are font design and
drawing tools. When fitting a polynomial to a large set of data points, our systems of equations
can become quite large, and can be difficult to solve by hand. In this section we will see how to
use matrices to more conveniently represent systems of equations of any size. We also consider
how the elimination process works on the matrix representation of a linear system and how we can
determine the existence of solutions and the form of solutions of a linear system.

Introduction

When working with a linear system, the labels for the variables are irrelevant to the solution — the
only thing that matters is the coefficients of the variables in the equations and the constants on the
other side of the equations. For example, given a linear system of the form

as— a1+ ag =2
ar+ ay+ag=206 2.1)
4as + 2a1 + ag = 5,
the important information in the system can be represented as

1 =
1 1

—_

1

\S]
—_—
[V, B N )

where we interpret the first three numbers in each horizontal row to represent the coefficients of the
variables a, b and ¢, respectively, and the last number to be the constant on the right hand side of
the equation. This tells us that we can record all the necessary information about our system in a
rectangular array of numbers. Such an array is called a matrix.

Definition 2.1. A matrix is a rectangular array of quantities or expressions.

We usually delineate a matrix by enclosing its entries in square brackets []. For the system in
(2.1), there are two corresponding matrices:

1 -1 1
1 11
4 2 1
The matrix on the left is the matrix of the coefficients of the system, and is called the coefficient
matrix of the system. The matrix on the right is the matrix of coefficients and the constants, and is

called the augmented matrix of the system (where we say we augment the coefficient matrix with
the additional column of constants). We will separate the augmented column from the coefficient
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matrix with a vertical line to keep it clear that the last column is an augmented column of constants
and not a column of coefficients.'

Terminology. There is some important terminology related to matrices.

Any number in a matrix is called an entry of the matrix.

The collection of entries in an augmented matrix that corresponds to a given equation (that
is reading the entries from left to right, or a horizontal set of entries) is called a row of the
matrix. We number the rows from top to bottom in a matrix. For example, [ 1 —1 1 |is
the first row and [ 1 11 ] is the second row of the coefficient matrix of the system (2.1).

The set of entries as we read from top to bottom (or a vertical set of entries that correspond to
one fixed variable or the constants on the right hand sides of the equations) is called a column

1
of the matrix. We number the columns from left to right in a matrix. For example, | 1 | is
4
1
the first column and | 1 | is the third column of the coefficient matrix of the system (2.1).
1

The size of a matrix is given as m X n where m is the number of rows and n is the number of
columns. The coefficient matrix above is a 3 x 3 matrix since it has 3 rows and 3 columns,
while the augmented matrix is a 3 x 4 matrix as it has 4 columns.

Preview Activity 2.1.

ey

2

3)

Write the augmented matrix for the following linear system. If needed, rearrange an equation
to ensure that the variables appear in the same order on the left side in each equation with the
constants being on the right hand side of each equation.

—x3+ 34+ 219 = —11
—3 4 213 = —x9 (2.2)
—2x94+ 11 =323 —7
Write the linear system in variables x1, 2 and 3, appearing in the natural order that corre-

sponds to the following augmented matrix. Then solve the linear system using the elimination
method.

11 —-1] 4
1 2 2| 3
2 3 =311

Consider the three types of elementary operations on systems of equations introduced in
Section 1. Each row of an augmented matrix of a system corresponds to an equation, so
each elementary operation on equations corresponds to an operation on rows (called row
operations).

"You should note that not every author uses this convention — when they do not, it is important that you be careful to
understand if the matrix has an augmented column or not.
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24 Section 2. The Matrix Representation of a Linear System

(a) Describe the row operation that corresponds to interchanging two equations.

(b) Describe the row operation that corresponds to multiplying an equation by a nonzero
scalar.

(c) Describe the row operation that corresponds to replacing one equation by the sum of
that equation and a scalar multiple of another equation.

Simplifying Linear Systems Represented in Matrix Form

Once we have stored the information about a linear system in an augmented matrix, we can perform
the elementary operations directly on the augmented matrix.

Recall that the allowable operations on a system of equations are the following:
(1) Replacing one equation by the sum of that equation and a scalar multiple of another equation.
(2) Interchanging the positions of two equations.

(3) Replacing an equation by a nonzero scalar multiple of itself.

Recall that we use these elementary operations to transform a system, with the ultimate goal of
finding a simpler, equivalent system that we can solve. Since each row of an augmented matrix cor-
responds to an equation, we can translate these operations on equations to corresponding operations
on rows (called row operations or elementary row operations):

(1) Replacing one row by the sum of that row and a scalar multiple of another row.
(2) Interchanging two rows.
(3) Replacing a row by a nonzero scalar multiple of itself.

Activity 2.1. Consider the system

as— a1 +ag=2
as+ a1 +ayg=06
4das + 2a1 + a9 =5

with corresponding augmented matrix

[T S
N = =
— = =
ot O N

(a) As afirst step in solving our system, we might eliminate as from the second equation. This
means that the corresponding entry in the second row and first column of the augmented
matrix will become 0. Find a row operation that adds a multiple of the first row to the
second row to achieve this goal. Then write the system of equations that corresponds to
this new augmented matrix.
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(b) Now that we have eliminated the as terms from the second equation, we eliminate the as
term from the third equation. Find an appropriate row operation that does that, and write the
corresponding system of linear equations that corresponds to the new augmented matrix.

(c) Now you should have a system in which the last two rows correspond to a system of 2 linear
equations in two unknowns. Use a row operation that adds a multiple of the second row to
the third row to turn the coefficient of a; in the third row to 0. Then write the corresponding
system of linear equations.

(d) Your simplified system and its augment matrix are in row echelon form and this system is
solvable using back-substitution (substituting the known variable values into the previous
equation to find the value of another variable). Solve the system.

Reflection 1. Do you see how this standard elimination process can be generalized to any linear
system with any number of variables to produce a simplified system? Do you see why the process
does not change the solutions of the system? If needed, can you modify the standard elimination
process to obtain a simplified system in which the last equation contains only the variable ag, the
next to last equation contains only the variables a1, a9, etc.? Understanding the standard process
will enable you to be able to modify it, if needed, in a problem.

Activity 2.1 illustrates how we can perform all of the operations on equations with operations
on the rows of augmented matrices to reduce a system to a solvable form. Each time we perform an
operation on the system of equations (or on the rows of an augmented matrix) we obtain an equiv-
alent system (or an augmented matrix corresponding to an equivalent system). For completeness,
we list the operations on equations and the corresponding row operations below that can be used
to solve our polynomial fitting system. Throughout the process we will let £, E5, and E3 be the
first, second, and third equations in the system and R;, Ra, and Rj the first, second, and third rows
of the augmented matrices. The notation £ + F» placed next to equation F» means means that we
replace the second equation in the system with the sum of the first two equations. We start with the
system

as— a1+ ag =2
ax+ a;+ag=>6
4ao + 2a1 +ap =5

On the left we demonstrate the operations on equations and on the right the corresponding
operations on rows of the augmented matrix.

ag — a1+a0:2 1 — 2
Ey — E1 — E3 2aq =4 Ry — Ry — Ro 0 2
das +2a1+ap =5 4 2 1|5

1 -1 1 2
2a, _ 0 2 0
6a; — 3ap = —3 R3;—4R; » Rz | 0 6 —3|-3

a2 — a1+ ag=

E3—4E, — Es
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26 Section 2. The Matrix Representation of a Linear System

as — a1+ ag= 2 I -1 1 2
2, _ 4 0 2 of 4

B3 —3E; — B —3ap = —15 By —sm— Ry | 0 0 =3 ] —15

Now we can solve the last equation for a to find that ag = 5. The second equation gives us
a1 = 2.2 Finally, using the first equation with the already determined values of ag and a; gives us
as = —1. Thus we have found the solution to the polynomial fitting system to be ax = —1, a; = 2,
and ag = 5.

We summarize the steps of the (partial) elimination on matrices we used above to solve a general
linear system in the variables x1, za, . . ., .

(1) Interchange equations if needed to ensure that the coefficient of x; (or, more generally, the
first non-zero variable) in the first equation is non-zero.

(2) Use the first equation to eliminate z; (or, the first non-zero variable) from other equations by
adding a multiple of the first equation to the others.

(3) After x; is eliminated from all equations but the first equation, focus on the rest of the equa-
tions. Repeat the process of elimination on these equations to eliminate x5 (or, the next
non-zero variable) all but the second equation.

(4) Once the process of eliminating variables recursively is finished, solve for the variables in
a backwards fashion starting with the last equation and substituting known values in the
equations above as they become known.

This elimination method where the variables are eliminated from lower equations is called the
forward elimination phase as it eliminates variables in the forward direction. Solving for variables
using substitution into upper equations is called back substitution. The matrix representation of a
linear system after the forward elimination process is said to be in row echelon form. We will define
this form and the elimination process on the matrices more precisely in the next section.

Linear Systems with Infinitely Many Solutions

Each of the systems that we solved so far have had a unique (exactly one) solution. The geometric
representation of linear systems with two equations in two variables shows that this does not always
have to be the case. We also have linear systems with no solution and systems with infinitely many
solutions. We now consider the problem of how to represent the set of solutions of a linear system
that has infinitely many solutions. (Systems with infinitely many solutions will also be of special
interest to us a bit later when we study eigenspaces of a matrix.)

Activity 2.2. Consider the system
T1+2x9 — x3=1
1+ a9 —3x3=0
2x1 + 3x9 — 4x3 = 1.

%If there had been an ag term in the second equation, we could have substituted ag = 5 and solved for a1
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(a) Without explicitly solving the system, check that (—1,1,0) and (4, —1, 1) are solutions to
this system.

(b) Without explicitly solving the system, show that 1 = —1 + 5, xo = 1 — 2¢, and x3 = t is
a solution to this system for any value of ¢. What values of ¢ yield the solutions (—1,1,0)
and (4, —1,1) from part (a)? The equations 1 = —1 + 5t, z9 = 1 — 2¢, and x3 = t form
what is called a parametric solution to the system with parameter t.

(c) Part (b) shows that our system has infinitely many solutions. We were given solutions in
part (b) — but how do we find these solutions and how do we know that these are all of the
solutions? We address those questions now.

If we apply row operations to the augmented matrix

1 2 —-1|1
11 =30
2 3 —4|1

of this system, we can reduce this system to one with augmented matrix
1 2 —-1|1
01 2|1
00 010

i. What is it about this reduced form of the augmented matrix that indicates that the
system has infinitely many solutions?

ii. Since the system has infinitely many solutions, we will not be able to explicitly de-
termine values for each of the variables. Instead, at least one of the variables can be
chosen arbitrarily. What is it about the reduced form of the augmented matrix that
indicates that x3 is convenient to choose as the arbitrary variable?

iii. Letting x3 be arbitrary (we call x5 a free variable), use the second row to show that
x9 = 1 — 223 (so that we can write z9 in terms of the arbitrary variable x3).

iv. Use the first row to show that x1 = 5x3 — 1 (and we can write x1 in terms of the
arbitrary variable x3). Compare this to the solutions from part (b).

After using the elimination method, the first non-zero coefficient (from the left) of each equation
in the linear system is in a different position. We call each such coefficient a pivor and a variable
corresponding to a pivot a basic variable. In the system

a2 — a1+ ag= 2
2&1 = 4
—3ag = —15

the basic variables are aq, a1, ag for the first, second, and third equations, respectively. In the
system,
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T1+2x9— x3=1
To +2x3 =1
0=0

the basic variables are x1 and xo for the first and second equations, respectively, while the third
equation does not have a basic variable. Through back-substitution, we can solve for each variable
in a unique way if each appears as the basic variable in an equation. If, however, a variable is free,
meaning that it is not the basic variable of an equation, we cannot solve for that variable explicitly.
We instead assign a distinct parameter to each such free variable and solve for the basic variables
in terms of these parameters.

Definition 2.2. The first non-zero coefficient (from the left) in an equation in a linear system after
elimination is called a pivot. A variable corresponding to a pivot is a basic variable and while a
variable not corresponding to a pivot is a free variable.

Activity 2.3. Each matrix is an augmented matrix for a linear system after elimination. Identify
the basic variables (if any) and free variables (if any). Then write the general solution (if there is a
solution) expressing all variables in terms of the free variables. Use any symbols you like for the
variables.

10 21
(a) 3 100
100 0|0
10 —1]1
(b) 0 112
00 0]0
102 -1 1|1
01 0 2|1
© 100 0o0lo
(00 00]0

Reflection 2. Does the existence of a row of 0’s always mean a free variable? Can you think of
an example where there is a row of 0’s but none of the variables is free? How do the numbers of
equations and the variables compare in that case?

Linear Systems with No Solutions

We saw in the previous section that geometrically two parallel and distinct lines represent a linear
system with two equations in two unknowns which has no solution. Similarly, two parallel and
distinct planes in three dimensions represent a linear system with two equations in three unknowns
which has no solution. We can have at least four different geometric configurations of three planes
in three dimensions representing a system with no solution. But how do these geometrical configu-
rations manifest themselves algebraically?
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Activity 2.4. Consider the linear system

T1— X9+ 3= 2
T1+x9—3r3=1

31’1—1‘2— Tr3 = 6.

(a) Apply the elimination process to the augmented matrix of this system. Write the system of
equations that corresponds to the final reduced matrix.

(b) Discuss which feature in the final simplified system makes it easy to determine that the
system has no solution. Similarly, what features in the matrix representation makes is easy
to see the system has no solution?

We summarize our observations about when a system has a solution, and which of those cases
has a unique solution.

Theorem 2.3. A linear system is consistent if after the elimination process there is no equation
of the form 0 = b where b is a non-zero number. If a linear system is consistent and has a free
variable, then it has infinitely many solutions. If it is consistent and has no free variables, then
there is a unique solution.

Examples

What follows are worked examples that use the concepts from this section.

Example 2.4. Consider the linear system

Tl — T2 +2x4 =1
2x1 + 319 — 223+ 54 =4
r1— X9+ x3— x4=0
4x1+ x9 — 3+ 64 = 5.

(a) Set up the augmented matrix for this linear system.
(b) Find all solutions to the system using forward elimination.

(c) Suppose, after forward elimination, the augmented matrix of the system

T — T2 +2z4 =1
221+ 3x9 — 203 + Dy = 4
T1— X9+ x3— x4 =20
4x1+ x9 — x3+6x4 = h.
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has the form
-1 0 2 1

1

0 5 -2 1 2
0 0 1 =3 -1
0 0 0 O0|h-=5

For which values of i does this system have:

1. No solutions?
ii. A unique solution? Find the solution.

iii. Infinitely many solution? Determine all solutions?

Example Solution.

(a) The augmented matrix for this system is

1 -1 0 2|1
2 3 -2 5|4
1 -1 1 =110
4 1 -1 6|5

(b) We apply forward elimination, first making the entries below the 1 in the upper left all
0. We do this by replacing row two with row two minus 2 times row 1, row three with
row three minus row 1, and row four with row four minus 4 row one. This produces the
augmented matrix

-1 0 2| 1

1
0
0o 0 1 =-3|-1
0 5 -1 =2 1

Now we eliminate the leading 5 in the fourth row by replacing row four with row four
minus row two to obtain the augmented matrix

When we replace row four with row four minus row three,

1 -1 0 2| 1
0 5 -2 1| 2
0 0 1 -3|-1
0 0 1 —3|-1]

1 -1 0 2 1
0 5 — 1] 2
0o 0 1 =-3|-1
0 0 0 O

we wind up with a row of zeros:

We see that there is no pivot in column four, so x4 is a free variable. We can solve for the
other variables in terms of x4. The third row shows us that

:E3—3:E4: -1

:ZJ3:3:L'4—1.



Section 2. The Matrix Representation of a Linear System 31

The second row tells us that

99 — 2x3+ x4 = 2
9xg = 2x3 — x4 + 2
bro =2(3w4 —1) — x4 +2
Sr9 = Dy

Ty = 4.
Finally, the first row gives us

r1—x9+2x4 =1
r1 =x9 — 224+ 1
T1 =24 — 224+ 1
T = —x4 + 1.

So this system has infinitely many solutions, with 1 = —x4 + 1, 2 = x4, 3 = 324 — 1,
and x4 is arbitrary. As a check, notice that

(—a:4+1)—:c4+2:c4:1

and so this solution satisfies the first equation in our system. You should check to verify
that it also satisfies the other three equations.

(¢) 1. The system has no solutions when there is an equation of the form 0 = b for some
nonzero number b. The last row will correspond to an equation of the form 0 = A —5.
So our system will have no solutions when h # 5.

ii. When h # 5, the system has no solutions. When h = 5, the variable x4 is a free
variable and the system has infinitely many solutions. So there are no values of h for
which the system has exactly one solution.

iii. When h = 5, the variable x4 is a free variable and the system has infinitely many
solutions. The solutions were already found in part (a).

Example 2.5. After applying row operations to the augmented matrix of a system of linear equa-
tions, each of which describes a plane in 3-space, the following augmented matrix was obtained:

(a) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 2.

(b) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 6.
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(c) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 1
and b = 12.

Example Solution. Throughout, we will let the variables x, y, and z correspond to the first, second,
and third columns, respectively, of our augmented matrix.

(a) When a = 0 and b = 2 our augmented matrix has the form

1 00 2
0 2 2|4
0 0 2 1
This matrix corresponds to the system
T = 2
20+ 2z =—-4
2z = 1.

There are no equations of the form 0 = b for a nonzero constant b, so the system is con-
sistent. There are no free variables, so the system has a unique solution. Algebraically, the
solutionis x = 2, z = %, and y = —%. Geometrically, this tells us that the three planes
given by the original system intersect in a single point.

(b) When ¢ = 0 and b = 6 our augmented matrix has the form

1 0 0] 2
0 2 6|4
0 00 1

The last row corresponds to the equation 0 = 1, so our system is inconsistent and has no
solution. Geometrically, this tells us that the three planes given by the original system do
not all intersect at any common points.

(¢) When a = 1 and b = 12 our augmented matrix reduces to

11 0| 2

1
00 1|1
00 0| 0

There are no rows that correspond to equations of the form 0 = ¢ for a nonzero constant
¢, so the system is consistent. The variable y is a free variable, so the system has infinitely

many solutions. Algebraically, the solutions are y is free, is z = —%, andrz = 2 —y.
Geometrically, this tells us that the three planes given by the original system intersect in
the line with z = —%, andx =2 —y.
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Summary

A matrix is just a rectangular array of numbers or objects.

Given a system of linear equations, with the variables listed in the same order in each equa-
tion, we represent the system by writing the coefficients of the first equation as the first row
of a matrix, the coefficients of the second equation as the second row, and so on. This creates
the coefficient matrix of the system. We then augment the coefficient matrix with a column of
the constants that appear in the equations. This gives us the augmented matrix of the system.

The operations that we can perform on equations translate exactly to row operations that we
can perform on an augmented matrix:

(1) Replacing one row by the sum of that row and a scalar multiple of another row.

(2) Interchanging two rows.

(3) Replacing a row by a nonzero scalar multiple of itself.

The forward elimination phase of the elimination method recursively eliminates the variables
in a linear system to reach an equivalent but simplified system.

The first non-zero entry in an equation in a linear system after elimination is called a pivot.

A basic variable in a linear system corresponds to a pivot of the system. A free variable is a
variable that is not basic.

A linear system can be inconsistent (no solutions), have a unique solution (if consistent and
every variable is a basic variable), or have infinitely many solutions (if consistent and there is
a free variable).

A linear system has no solutions if, after elimination, there is an equation of the form 0 = b
where b is a nonzero number.

A linear system after the elimination method can be solved using back-substitution. The free
variables can be chosen arbitrarily and the basic variables can be solved in terms of the free
variables through the back-substitution process.

Exercises

ey

Consider the system of linear equations whose augmented matrix is
2 0] i
2 h| k
where h and k are unknown constants. For which values of h and k& does this system have
(a) aunique solution,

(b) infinitely many solutions,

(c) no solution?
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(2) Consider the following system:
T—2y+ z= —1
—r+ y—3z=
r+hy— z=

Check that when i = —3 the system has infinitely many solutions, while when ~» # —3 the
system has a unique solution.

(3) If possible, find a system of three equations (not in reduced form) in three variables whose
solution set consists only of the point 1 = 2,20 = —1,23 = 0.

(4) What are the possible geometrical descriptions of the solution set of two linear equations in
R3? (Recall that R? is the three-dimensional 2y z-space — that is, the set of all ordered triples
of the form (z, y, 2)).

(5) Two students are talking about when a linear system has infinitely many solutions.

Student 1: So, if we have a linear system whose augmented matrix has a row of
zeros, then the system has infinitely many solutions, doesn’t it?

Student 2: Well, but what if there is a row of the form [00 ... 0|b] with a non-
zero b right above the row of 0’s?

Student 1: OK, maybe I should ask “If we have a consistent linear system whose
augmented matrix has a row of zeros, then the system has infinitely many solu-
tions, doesn’t it?”

Student 2: I don’t know. It still doesn’t sound enough to me, but I'm not sure why.

Is Student 1 right? Or is Student 2’s hunch correct? Justify your answer with a specific
example if possible.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A system of linear equations in two unknowns can have exactly five
solutions.

(b) True/False A system of equations with all the right hand sides equal to O has at least
one solution.

(c) True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

(d) True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

(e) True/False A consistent system of two equations in three unknowns cannot have a
unique solution.

(f) True/False If a system with three equations and three unknowns has a solution, then
the solution is unique.
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(g) True/False If a system of equations has two different solutions, then it has infinitely
many solutions.

(h) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a system has no free variables, then the system has a unique solution.

(k) True/False If a system has a free variable, then the system has infinitely many solu-
tions.

Project: A Polynomial Fitting Application: Simpson’s Rule

As discussed in the introduction, Simpson’s Rule for approximating a definite integral models the
integrand with a quadratic polynomial on each interval. To better understand this method, we
consider how to fit a quadratic to three points.

Suppose we are given a collection of three points in the plane: (z1,y1), (z2,y2) and (x3,y3).
There is exactly one quadratic polynomial p(x) which goes through these points, i.e. there is exactly
one quadratic p(x) such that for each x;, p(x;) = y;. This is an example of polynomial curve fitting.

Suppose our given points are (—1,2), (1,6), (2,5). To fit a quadratic to these points, consider
a general quadratic of the form p(x) = a2x? + a12 + ag. By substituting the = value of each of the
given points and setting that equal to the y value of that point, we find three equations

(-1)%az—a1+ap=2, as+ai+ay=6, (2)%az+2a1+a9=5
that give us a system of three equations in the three unknowns as, a1, and ag:

as— ar+ag=2
az+ a;+ag =06
4a2+2a1+a0:5.

This system is the example we considered in Preview Activity 2.1, whose solution is as = —1,
a1 = 2, and ag = 5. A graph of ¢(z) = —2% + 2z + 5 along with the three points (—1,2), (1, 6),
(2,5) is shown in Figure 2.1.

Project Activity 2.1. In this activity we model the sine function on the interval [a, b], where a =
—% and b = 7 with a collection of quadratics. Let f(x) = sin(x). We partition the interval [a, b]
using 6 partition points. Let xg = —5, 71 = —7, 22 = 0,23 = 7,24 = 5, 75 = %’T, and
x¢ = 7. We need 3 points to determine a quadratic, so the interval [a, b] will be partitioned into 3
subintervals: [xg, z2], 22, z4], and [x4, z¢].

(a) Setup a system of linear equations to fit a quadratic ¢; () = 7122+ 512+t to the 3 points
(xo, f(z0)), (z1, f(z1)), and (z2, f(x2)). (The solution to this system to 3 decimal places
is7r1 ~ 0.336, s;1 ~ 1.164, and t; = 0.)
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1 12
Figure 2.1: A quadratic fit to the points (—1,2), (1,6), (2,5).

(b) Set up a system of linear equations to fit a quadratic go(z) = 7222 + sox + 2 to the 3 points
(2, f(x2)), (x3, f(x3)), and (x4, f(x4)). (The solution to this system to 3 decimal places
is 79 &= —0.336, s ~ 1.164, and t5 = 0.)

(c) Setup a system of linear equations to fit a quadratic ¢3(z) = r3x? 4+ s3x +t3 to the 3 points
(x4, f(z4)), (x5, f(x5)), and (26, f(x6)). (The solution to this system to 3 decimal places
is rg = —0.336, s3 =~ 0.946, and ¢35 ~ 0.343.)

(d) Plot the three quadratics on their intervals against the graph of f. Explain what you see.

Project Activity 2.1 illustrates how we can model a function on an interval using a sequence
of quadratic functions. Now we apply this polynomial curve fitting technique to derive the general
formula for Simpson’s Rule for approximating definite integrals. The Simpson sum S(n) is found
by using parabolic arcs to approximate the graph of f on each subinterval rather than line segments.
This allows Simpsons’s Rule to more closely approximate the value of the definite integral with a
smaller number of subintervals, although Simpson’s Rule requires more calculations. Recall that
to approximate a definite integral of a function f on an interval [a, b], we partition [a, b] into equal
length subintervals. For Simpson’s Rule, we partition [a,b] into n = 2m subintervals of equal
length Ax = bfT“. (Note that we need an even number of subintervals since we have to use three
points for each parabola.) For each k we let x;, = a + kAx and y = f(xr). We approximate f
on each subinterval using a quadratic. So we need to find the quadratic Q(z) = c22? + 12 + co
that passes through two consecutive end points as well as the midpoint of a subinterval. That is,
we need to find the coefficients of @ so that () passes through the points (xg, yx), (Zk+2, Yk+2),
and the midpoint (g1, yr+1) on the interval [z, zx12] (so that we have three points to which to
fit a parabola). Note that the length of the interval [z, 2k o] is 2Az. To make the calculations
easier, we will translate our function so that our leftmost point is (—r, yx). Then the middle point
is (0, yx+1) and the rightmost point is (7, yxt2), where r = Ax.

Project Activity 2.2.

(a) Setup a linear system that will determine the coefficients co, c1, and cg so that the polyno-
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mial Q(z) = cox? + 17 + ¢ passes through the points (—7, yx), (0, yx+1), and (7, Yr12)
with 7 # 0. Remember that the unknowns in this system are ca, c¢1, and cg.

2
e —r 1y
(b) We apply row operations to the matrix | 0 0 1 yk41 | and obtain the matrix
r? ol Yk

r2 —r 1 Yk

0 2r 0 yr+2—yr |- Use these matrices to show that co =

0 01 Yk+1

Ye4+2—Yk J—
A, and cg = Ypy1-

Y —2Yk+11+Yr+2

202 ,» C1 =

(c) Our goal is to ultimately approximate f; f(x) dx by approximating f with quadratics on
each subinterval. Use the fact that

Thk+2 Th+2 r
| twis [T @i [ Qs
T T —r
to show that

Th42 1
/ f(z)dz = 3 (ke + 4Yrt1 + Yry2) A

Tk

(d) Now we can derive Simpson’s Rule. Use an additive property of the definite integral to
show that

[ e s,

where

Ax
S(n) = (yo+4y1 +2y2 +4ys +2ys + - - 2yn—2 + 4Yn—1 + Yn) 5

3
is the Simpson’s Rule approximation.

Notice that we can rewrite the Simpson’s Rule approximation as

1
= (yo+4y1 +2y2 +4y3 +2ys + - + 2yn—2 + 4Yn—1 + yn) Az

3
2

25[2(y1+y3+"'+yn—1)]A33
2 (yo+y2 Y2+ s Yn—2 + Yn
z coo T2 T In ) A
+3< 5 5t 5 x
1

:g[(yl+y3+“'+yn71)(2A$)]
1 /yo+y2  yo+ua Yn—2 + Yn
- e T2 T IR Y 9A
+3< 5 t—o  tot 5 (2Ax)
2M(n) 4+ T'(n)

— ; :
where M (n) is the midpoint sum and 7'(n) is the trapezoid sum using n subdivisions of the interval

2M (n)+T(n)
3

[a, b]. Therefore, the weighted average of the midpoint and trapezoid sums gives an

approximation using quadratic functions.






Section 3

Row Echelon Forms

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is the row echelon form of a matrix?

What is the procedure to obtain the row echelon form of any matrix?

‘What is the reduced row echelon form of a matrix?

What is the procedure to obtain the reduced row echelon form of any ma-
trix?

What do the echelon forms of the augmented matrix for a linear system tell
us about the solutions to the system?

Application: Balancing Chemical Reactions

Linear systems have applications in chemistry when balancing chemical equations. When a chem-
ical reaction occurs, molecules of different substances combine to create molecules of other sub-
stances. Chemists represent such reactions with chemical equations. To balance a chemical equa-
tion means to find the number of atoms of each element involved that will preserve the number of
atoms in the reaction. As an example, consider the chemical equation

CoHg + O — CO2 4+ HO. 3.1

This equation asks about what will happen when the chemicals ethane (CoHg) and oxygen (O2),
called the reactants of the reaction, combine to produce carbon dioxide (COz) and water (H20),
called the products of the reaction (note that oxygen gas is diatomic, so that oxygen atoms are
paired). The arrow indicates that it is the reactants that combine to form the products. Any chemical
reaction has to obey the Law of Conservation of Mass that says that mass can neither be created
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nor destroyed in a chemical reaction. Consequently, a chemical reaction requires the same number
of atoms on both sides of the reaction. In other words, the total mass of the reactants must equal
the total mass of the products. In reaction (3.1) the chemicals involved are made up of carbon
(C), hydrogen (H), and oxygen (O) atoms. To balance the equation, we need to know how many
molecules of each chemical are combined to preserve the number of atoms of C, H, and O. This can
be done by setting up a linear system of equations of the form

2371 — I3 =0

6z — 224

209 —2x3 — x4 = 0,

where 1, 2, 3, and x4 represent the number of molecules of CoHg, Oz, CO2, and H5O, respec-
tively, in the reaction and then solving the system. Specific details can be found at the end of this
section.

Introduction

In the previous sections, we identified operations on a given linear system with corresponding equiv-
alent operations on the matrix representations which simplify the system and its matrix representa-
tion without changing the solutions of the system. Our end goal was to obtain a system which could
be solved using back substitution, such as

T — x2+23=0

6$2—x3:8

xr3 = 1.
The augmented matrix for this system is
1 -1 110
0 6 —-1]|8
0 0 1)1

The matrices of linear systems which can be solved via back substitution are said to be in row
echelon form (or simply echelon form). We will define the properties of matrices in this form
precisely in this section. Our goal will be to prescribe a precise procedure for converting any
matrix to an equivalent one in row echelon form without having to convert back to the system
representation.

Preview Activity 3.1. We want to determine a suitable form for an augmented matrix that can be
obtained from row operations so that it is straightforward to find the solutions to the system. We
begin with some examples.

(1) Write the linear system corresponding to each of the following augmented matrices. Use the
linear system to determine which systems have their variables eliminated completely in the
forward direction, or equivalently determine for which systems the next step in the solution
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process is back substitution (possibly using free variables). Explain your reasoning. You do
not need to solve the systems.

(1 -1 2| -2 11 0|-2
o 121 i. 010 3
0 0 3| 1 000 0
(101 1|2 [0 1 1| 2
i |12 22 iv. |00 3| 3
00 2|2 00 —2| -2

(2) Shown below are two row reduced forms of the system

2.731 — I3 =0
6.%‘1 — 2.%'4 =0

2x2—2x3— Ty = 0

Of the systems that correspond to these augmented matrices, which is easier to solve and

why?
1
20 -1 0]o0 100 —31]0
0 2 -2 =110 010 =10
00 3 —-21]0 001 -2 0

The Echelon Forms of a Matrix

In the previous sections we saw how to simplify a linear system and its matrix representation via
the elimination method without changing the solution set. This process is more efficient when
performed on the matrix representation rather than on the system itself. Furthermore, the process
of applying row operations to any augmented matrix is one that can be automated. In order to write
an algorithm that can be used with any size augmented matrix to the extent that it can be applied
even by a computer program, it is necessary to have a consistent procedure and a stopping point for
the simplification process. The two main properties that we want the simplified augmented matrix
to satisfy are that it should be easy to see if the system has solutions from the simplified matrix, and
in cases when there are solutions, the general form of the solutions can be easily found. Hence the
topic of this section is to define the process of elimination completely and generally.

We begin by discussing the row echelon or, simply, echelon form of a matrix. We know that the
forward phase of the elimination on a linear system produces a system which can be solved by back
substitution. The matrix representation of such a simplified system is said to be in row echelon or
simply echelon form. Note that matrices in this form have the first nonzero entry in each row to the
right of and below the first nonzero entry in the preceding row. Our next step is to formally describe
this form — one that you tried to explain in problem 3 of Preview Activity 3.1.

Definition 3.1. A rectangular matrix is in row echelon form (or simply echelon form) if it has the
following properties:

(1) All nonzero rows are above any rows of all zeros.
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(2) Each pivot (the first non-zero entry reading from left to right) in a row is in a column to the
right of the pivot of the row above it.

A pivot is also called a leading entry of a row. Note that properties (1) and (2) above imply that
all entries in a column below a pivot are zeros. It can be shown that the positions of these pivots,
called pivot positions, are unique and tell us quite a bit about a matrix and the solutions of the
linear system it corresponds to. The columns that the pivots are in, called pivot columns, will also
have useful properties as we will see soon.

Reflection 3. Compare the row echelon form of an augmented matrix to the corresponding system.
Do you clearly see the correspondence between the requirements of the row echelon form and the
properly eliminated variables in the system? Can you quickly come up with a system which will
be in row echelon form when represented in augmented matrix form? Can you modify the standard
row echelon form definition to cover cases where the elimination process eliminates the variables
from last to first? For example, in a system with three equations in three unknowns, the last variable,
say xs, can be eliminated from the second equation, and the last two variables, say x3, x3 can be
eliminated from the last equation. How would you define this modified row echelon form for a
general system with this modified elimination process?

Once an augmented matrix is in row echelon form, we can use back substitution to solve the cor-
responding system. However, we can make solving much easier with just a little more elimination
work.

Row operations are easy to apply, so if we are inclined, there is no reason to stop at the row
echelon form. For example, starting with the following matrix

2 -1 2 2 7
0 1 3 —-1|-1
0 00 2| 4

in row echelon form, we could take the row operations even farther and avoid the process of back
substitution altogether. First, we multiply the last row by 1/2 to simplify that row:

2 -1 2 2 7
0 1 3 —-1|-1
%Rg — R3 0 O 0 1 2

Then we use the third row to eliminate entries above the third pivot:

Ri1 — 2R3 — Ry -1

2 2 013
Ry + R3 — Rz 0 1 3 0|1

0 0 0 1|2
We can continue in this manner (we call this process backward elimination) to make 0 all of the
entries above the pivots (one in the second column, and one in the fourth) with the pivots being 1,
to ultimately obtain the equivalent augmented matrix

o = O

1 1 02
0 3 0|1
0 0 1|2
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The system corresponding to this augmented matrix is

I + x3 =2
T2 + 3x3 =1
Ty = 2

so we can just directly read off the solution to the system: z3 free and 1 = 2 — x3,20 = 1 —
3z3,r4 = 2. This final row reduced form makes solving the system very easy, and this form is
called the reduced row echelon form.

Definition 3.2. A rectangular matrix is in reduced row echelon form (or reduced echelon form)
if the matrix is in row echelon form and

(3) The pivot in each nonzero row is 1.

(4) Each pivot is the only nonzero entry in its column.

In short, the reduced row echelon form of a matrix is a row echelon form in which all the pivots
are 1 and any entries below and above the pivots are 0.

If we use either of these two row echelon forms, solving the original system becomes straight-
forward and, as a result, these matrix forms are stopping points for the row operation algorithm
to solve a system. It is also very easy to write a computer program to perform row operations to
obtain and row echelon or reduced row echelon form of the matrix, making hand computations
unnecessary. We will discuss this shortly.

Reflection 4. Compare the reduced row echelon form of an augmented matrix to the corresponding
system. Do you clearly see the correspondence between the requirements of the reduced row eche-
lon form and the way the variables appear in the equations in the system? Can you quickly come up
with a system which will be in reduced row echelon form when represented in augmented matrix
form?

Note. We have used the elimination method on augmented matrices so far. However, the elimina-
tion method can be applied on just the coefficient matrix, or other matrices that will arise in other
contexts, and will provide useful information in each of those cases. Therefore, the row echelon
form and reduced row echelon form is defined for any matrix, and from now on, a matrix will be a
general matrix unless explicitly specified to be an augmented matrix.

Activity 3.1. Identify which of the following matrices is in row echelon form (REF) and/or reduced
row echelon form (RREF). For those in row and/or reduced row echelon form, identify the pivots
clearly by circling them. For those that are not in a given form, state which properties the matrix
fails to satisfy.

- i - 01 2 3
(a)gé_gg (b)(l)(l) © |0 010
L L . 0105
(1 2 3 4 i -
@ [0 0 0 0 (6)88
1000 0 L :
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Determining the Number of Solutions of a Linear System

Consider the system

r1+2x2 — T3
) — T4 = 2

1133—2:134: 4

The augmented matrix for this system is

12 -1 0]0
01 0 —-1|2
00 1 =24

Note that this matrix is already in row echelon form. The reduced row echelon form of this aug-

mented matrix is
0
-1

o O =

0 0 0
10 2 1. (3.2)
01 -214

Since there are leading 1s in the first three columns, we can use those entries to write x1, o,
and x3 in terms of 4. We then choose x4 to be arbitrary and write the remaining variables in terms
of x4. Let x4 = t. Solving the third equation for x3 gives us x3 = 4 + 2¢. The second equation
shows that xo2 = 2 4+ ¢, and the first that 1 = 0. Each value of ¢ provides a solution to the system,
so our system has infinitely many solutions. These solutions are

1 =0, 29 ==2+4+1t, x3 =4+ 2t, and z4 =1,
where ¢ can have any value.

Activity 3.2. We have seen examples of systems with no solutions, one solution, and infinitely
many solutions. As we will see in this activity, we can recognize the number of solutions to a
system by analyzing the pivot positions in the augmented matrix of the system.

(a) Write an example of an augmented matrix in row echelon form so that the last column of
the (whole) matrix is a pivot column. What is the system of equations corresponding to
your augmented matrix? How many solutions does your system have? Why?

(b) Consider the reduced row echelon form (3.2). Based on the columns of this matrix, explain
how we know that the system it represents is consistent.

(c) The system with reduced row echelon form (3.2) is consistent. What is it about the columns
of the coefficient matrix that tells us that this system has infinitely many solutions?

(d) Suppose that a linear system is consistent and that the coefficient matrix has m rows and n
columns.

i. If every column of the coefficient matrix is a pivot column, how many solutions must
the system have? Why? What relationship must exist between m and n? Explain.
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ii. If the coefficient matrix has at least one non-pivot column, how many solutions must
the system have? Why?

When solving a linear system of equations, the free variables can be chosen arbitrarily and we
can write the basic variables in terms of the free variables. Therefore, the existence of a free variable
leads to infinitely many solutions for consistent systems. However, it is possible to have a system
with free variables which is inconsistent. (Can you think of an example?)

Producing the Echelon Forms

In this part, we consider the formal process of creating the row and reduced row echelon forms of
matrices. The process of creating the row echelon form is the equivalent of the elimination method
on systems of linear equations.

Activity 3.3. Each of the following matrices is at most a few steps away from being in the requested
echelon form. Determine what row operations need to be completed to turn the matrix into the
required form.

(a) Turn into REF: 0 2 (b) Turn into REF: L2

2 1 2 5

(2 0 0 T 1
(c) TurnintoRREF: | 0 3 0 (d) Turn into RREF:

0 1

| 0 0 1 -

11 1 0 -1
(e) Turn into RREF: (f) TurnintoRREF: | 0 1 3

[ 02 0 0 2

The complete process of applying row operations to reduce an augmented matrix to a row or
reduced row echelon form can be expressed as a recursive process in an algorithmic fashion, making
it possible to program computers to solve linear systems. Here are the steps to do so:

Step 1: Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

Step 2: Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

Step 3: Use row operations to create zeros in all positions below the pivot.

Step 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there are no more
nonzero rows to modify.

To obtain the reduced row echelon form we need one more step.

Step 5: Beginning with the rightmost pivot and working upward and to the left, create zeros above
each pivot. If a pivot is not 1, make it 1 by an appropriate row multiplication.
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The algorithm described in steps 1-4 will produce the row echelon form of the matrix. This
algorithm is called Gaussian elimination. When we add step 5 to produce the reduced row echelon
form, the algorithm is called Gauss-Jordan elimination.

0 2 4 1

. . . . 3 0 6
Activity 3.4. Consider the matrix 18 2
1 -3 0 =2

(a) Perform Gaussian elimination to reduce the matrix to row echelon form. Clearly identify
each step used. Compare your row echelon form to that of another group. Do your results
agree? If not, who is right?

(b) Now continue applying row operations to obtain the reduced row echelon form of the ma-
trix. Clearly identify each step. Compare your row echelon form to that of another group.
Do your results agree? If not, who is right?

If we compare row echelon forms from Activity 3.4, it is likely that different groups or individ-
uals produced different row echelon forms. That is because the row echelon form of a matrix is not
unique. (Is the row echelon form ever unique?)

However, if row operations are applied correctly, then we will all arrive at the same reduced
row echelon form in Activity 3.4:

1 06 O
01 20
00 01
0000

It turns out that the reduced row echelon form of a matrix is unique.
Two matrices who are connected by row operations are said to be row equivalent.

Definition 3.3. A matrix B is row equivalent to a matrix A if B can be obtained by applying
elementary row operations to A.

Since every elementary row operation is reversible, if B is row equivalent to A, then A is also
row equivalent to B. Thus, we just say that A and B are row equivalent. While the row echelon
form of a matrix is not unique, it is the case that the reduced row echelon form of a matrix is unique.

Theorem 3.4. Every matrix is row equivalent to a unique matrix in reduced row echelon form.

The reduced row echelon form of a matrix that corresponds to a system of linear equations
provides us with a equivalent system whose solutions are easy to find. As an example, consider the
system

200 +4x3+ x4 =0

—x1 + 322 +6z4 =0
4xo +8x3+2x4 = 0

1 — 322 —2x4= 0
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with augmented matrix

0 24 1|0
-1 3 0 6]0
0 4 8 2|0

1 -3 0 -210

Notice that the coefficient matrix (the left hand side portion of the augmented matrix) of this system
is same as the matrix we considered in Activity 3.4. Since we are augmenting with a column of
zeros, no row operations will change those zeros in the augmented column. So the row operations
applied in Activity 3.4 will give us the reduced row echelon form of this augmented matrix as

106 0]0
01 2 0|0
000 1|0
0 00 0f0

Note that the third column is not a pivot column. That means that the variable z3 is a free variable.
There are pivots in the other three columns of the coefficient matrix, so we can solve for x1, x2, and
x4 in terms of x3. These variables are the basic variables. The third row of the augmented matrix
tells us that x4 = 0. The second row corresponds to the equation x2 + 2x3 = 0, and solving for x5
shows that xo = —2x3. Finally, the first row tells us that x; 4+ 6x3 = 0, so 1 = —6x3. Therefore,
the general solution to this system of equations is

xry = —6xs, x9= —2x3, xzisfree, x4 =0.

The fact that x5 is free means that we can choose any value for x5 that we like and obtain a specific
solution to the system. For example, if x3 = —1, then we have the solution 1 = 6, o = 2,
x3 = —1, and x4 = 0. Check this to be sure.

Activity 3.5. Each matrix below is an augmented matrix for a linear system after elimination with
variables x1, xo, . .. in that order. Identify the basic variables (if any) and free variables (if any).
Then find the general solution (if there is a solution) expressing all variables in terms of the free
variables.

(1 0 217 1 1 0]1 é?_é;i
@ |0 31 (b) 112 (c)
00 0]0 00 0]0 00 0070
L . L 00 000
(1 0 1|17 1 01
d |0 1010 e |0 1|0
|00 02| |0 00

Recall that in the previous section, we determined the criteria for when a system has a unique
solution, or infinitely many solutions, or no solution. With the use of the row echelon form of the
augmented matrix, we can rewrite these criteria as follows:

Theorem 3.5.

(1) A linear system is consistent if in the row echelon form of the augmented matrix representing
the system no pivot is in the rightmost column.
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(2) If a linear system is consistent and the row echelon form of the coefficient matrix does not
have a pivot in every column, then the system has infinitely many solutions.

(3) If a linear system is consistent and there is a pivot in every column of the row echelon form
of the coefficient matrix, then the system has a unique solution.

Figure 3.1: Figures for Activity 3.6.

Activity 3.6.

(a) For each part, the reduced row echelon form of the augmented matrix of a system of equa-
tions in variables z, y, and z (in that order) is given. Use the reduced row echelon form to
find the solution set to the original system of equations.

1 0 0]—1 10 2|-1 10 0] 2
i |01 0| 3 [|i. [0 1 —1| 3 [ii. |0 1 0f-1
0 00| O 00 0] O 0 0 1| 3
iv. Each of the three systems above is represented as one of the graphs in Figure 3.1.

Match each figure with a system.

(b) The reduced row echelon form of the augmented matrix of a system of equations in vari-
ables x, y, z, and ¢ (in that order) is given. Use the reduced row echelon form to find the
solution set to the original system of equations:

13 0 0]-1
001 2| 4
0000 1

Examples

What follows are worked examples that use the concepts from this section.

Example 3.6. Consider the linear system

2x1 + 6x3 =20+ 2
2x3 — 4x1 = 229
To + 4x3 — 2 = 221 + 6.
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(a) Find the augmented matrix for this system.
(b) Use row operations to find a row echelon form of the augmented matrix of this system.

(c) Use row operations to find the reduced row echelon form of the augmented matrix of this
system.

(d) Find the solution(s), if any, to the system.

Example Solution. Before we can find the augmented matrix of this system, we need to rewrite
the system so that the variables are all on one side and the constant terms are on the other side of
the equations. Doing so yields the equivalent system

2x1 — To+6x3= 2
—4x1 — 229 + 223 =0
21+ 0+ 4$3 = 8

Note that this is not the only way to rearrange the system. For example, for the second equation,
could be written instead as 4z; + 2x2 — 223 = 0 to minimize the number of negative signs in the
equation.

(a) The augmented matrix for this system is

2 -1 612
-4 =2 210
—2 1 418

(b) Our first steps to row echelon form are to eliminate the entries below the leading entry in
the first row. To do this we replace row two with row two plus 2 times row 1 and we replace
row three with row three plus row one. This produces the row equivalent matrix

2 -1 6|2
0 —4 14| 4
0 0 10|10

This matrix is now in row echelon form.

(c) To continue to find the reduced row echelon form, we replace row two with row two times
—% to get a leading 1 in the second row, and we replace row three with row three times %
to get a leading 1 in the third row and obtain the row equivalent matrix

2 —1 6| 2
7

0 1 —-I|-1

0 0 1| 1

Now we perform backwards elimination to make the entries above the leading 1s equal to
0, starting with the third column and working backwards. Replace row one with row one

D00



50 Section 3. Row Echelon Forms

minus 6 times row three and replace row two with row two plus % row three to obtain the
row equivalent matrix

2 —1 0| -4

5
0o 10| 3
0 0 1] 1

For the second column, we replace row one with row one plus row two to obtain the row
equivalent matrix

3
2 0 0|3
5
010] 3
00 1| 1

Since the leading entry in row one is not a one, we have one more step before we have the
reduced row echelon form. Finally, we replace row one with row one times % This gives
us the reduced row echelon form

3
I 0 0]—3
5
010 3
0 01 1
(d) We can read off the solution to the system from the reduced row echelon form: x; = —%,

T9 = %, and x3 = 1. You should check in the original equations to make sure we have the
correct solution.

Example 3.7. In this example, a and b are unknown scalars. Consider the system with augmented
matrix

1 2
10
0 1

— o Q

3
b
0
Find all values of a and b so that the system has:

(a) Exactly one solution (and find the solution)

(b) No solutions

(c) Infinitely many solutions (and find all solutions)

Example Solution. Let z;, x2, and x3 be the variables corresponding to the first, second, and third
columns, respectively, of the augmented matrix. To answer these questions, we row reduce the
augmented matrix. We interchange rows one and two and then also rows two and three to obtain
the matrix

1 0 0|b
01 1|0
1 2 al3
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Now we replace row three with row three minus row one to produce the row equivalent matrix

00 b
1 1 0
2 a —-b

O O =

3

Next, replace row three with row three minus 2 times row two. This yields the row equivalent
matrix

0 b
1 0
a—2[3-b

S = O

1
0
0
We now have a row echelon form.

(a) The system will have exactly one solution when the last row has the form [0 0 u v] where
u is not zero. Thus, the system has exactly one solution when a — 2 # 0, or when a # 2.
In this case, the solution is

33—
B Ly

_ _b—2
xQ__xS_a—2
l‘lzb.

You should check to ensure that this solution is correct. The other cases occur when a = 2.

(b) When a = 2 and 3 — b # 0 (or b # 3), then we have a row of the form [0 0 0 ¢], where ¢ is
not 0. In these cases there are no solutions.

(c) When a = 2 and b = 3, then the last row is a row of all zeros. In this case, the system
is consistent and z3 is a free variable, so the system has infinitely many solutions. The
solutions are

xr1 = b
Tro = —X3
x3 is free.

You should check to ensure that this solution is correct.

Summary

In this section we learned about the row echelon and reduced row echelon forms of a matrix and
some of the things these forms tell us about solutions to systems of linear equations.

e A matrix is in row echelon form if

(1) All nonzero rows are above any rows of all zeros.

(2) Each pivot (the first nonzero entry) of a row is in a column to the right of the pivot of
the row above it.
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e Once an augmented matrix is in row echelon form, we can use back substitution to solve the
corresponding linear system.

e To reduce a matrix to row echelon form we do the following:

Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

Use row operations to create zeros in all positions below the pivot.

Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply the preceding steps to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

e A matrix is in reduced row echelon form if it is in row echelon form and

3)
“)

The pivot in each nonzero row is 1.

Each pivot is the only nonzero entry in its column.

e To obtain the reduced row echelon form from the row echelon form, beginning with the
rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot
is not 1, make it 1 by an appropriate row multiplication.

e Both row echelon forms of an augmented matrix tell us about the number of solutions to the
corresponding linear system.

o099

A linear system is inconsistent if and only if a row echelon form of the augmented
matrix of the system contains a row of the form

(000 --- 0+,

where * is not zero. Another way to say this is that a linear system is inconsistent if and
only if the last column of the augmented matrix of the system is a pivot column.

A consistent linear system will have a unique solution if and only if each column but
the last in the augmented matrix of the system is a pivot column. This is equivalent
to saying that a consistent linear system will have a unique solution if and only if the
consistent system has no free variables.

A consistent linear system will have infinitely many solutions if and only if the coeffi-
cient matrix of the system contains a non-pivot column. In that case, the free variables
corresponding to the non-pivot columns can be chosen arbitrarily and the basic variables
corresponding to pivot columns can be written in terms of the free variables.

A linear system can have no solutions, exactly one solution, or infinitely many solutions.
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Exercises

(1) Represent the following linear system in variables x1, z2, z3 in augmented matrix form and
use row reduction to find the general solution of the system.
1+ 19— x3= 4
T+ 229 + 223 = 3
2x1 + 3x0 — 3z3 =11.

(2) Represent the following linear system in variables x1, 2, z3 in augmented matrix form after
rearranging the terms and use row reduction to find all solutions to the system.

xl—x3—2x2:3
203 +2 =21+ 22
4x9 + 221 — 2 = bxs.

(3) Check that the reduced row echelon form of the matrix

1 -1 3 2
-1 2 -4 -1
2 0 6 8

18

1 0 01
01 0 2
0 011

(4) Consider the following system:

r—2y+ z= —1
20 —4z= 6
hy —2z= 1.

(a) Find a row echelon form of the augmented matrix for this system.

(b) For which values of h, if any, does the system have (i.) no solutions, (ii.) exactly one
solution, (iii.) infinitely many solutions? Find the solutions in each case.

(5) Find the general solution of the linear system corresponding to the following augmented

matrix:
1 -1 2 1 2

—1 2 2 —-1|-5
1 1 10 2|-1

(6) What are the conditions, if any, on the a, b, ¢ values so that the following augmented matrix
corresponds to a consistent linear system? How many solutions will the consistent system
have? Explain.

1 2 31la
2 3 710
-1 -4 —-1|c¢
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(7) In this exercise the symbol Bl denotes a non-zero number and the symbol * denotes any real
number (including 0).

(a)

(b)

Is the augmented matrix
B | x
0O M| x
in a form to which back substitution will easily give the solutions to the system?
Explain your reasoning. (Hint: In order to help see what happens in the general case,

substitute some numbers in place of the W’s and *’s and answer the question for that
specific system first. Then determine if your answer generalizes.)

The above matrix is a possible form of an augmented matrix with 2 rows and 3
columns corresponding to a linear system after forward elimination, i.e., a linear
system for which back substitution will easily give the solutions. Determine the other
possible such forms of the nonzero augmented matrices with 2 rows and 3 columns.
As in part (a), use the symbol B to denote a non-zero number and * to denote any
real number.

(8) Give an example of a linear system with a unique solution for which a row echelon form of
the augmented matrix of the system has a row of 0’s.

(9) Come up with an example of an augmented matrix with 0’s in the rightmost column corre-
sponding to an inconsistent system, if possible. If not, explain why not.

(10) Find two different row echelon forms which are equivalent to the same matrix not given in
row echelon form.

(11) Determine all possible row echelon forms of a 2 x 2 matrix. Use the symbol B to denote
a non-zero number and * to denote a real number with no condition on being 0 or not to
represent entries.

(12) Label each of the following statements as True or False. Provide justification for your re-

sponse.

(a)

(b)
(©)
(d)

(e)

(®)

(2

True/False The number of pivots of an m X n matrix cannot exceed m. (Note: Here
m, n are some unknown numbers.)

True/False The row echelon form of a matrix is unique.
True/False The reduced row echelon form of a matrix is unique.

True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

True/False If a row echelon form of the augmented matrix of a system of three
equations in two unknowns has three pivots, then the system is inconsistent.

True/False If the coefficient matrix of a system has pivots in every row, then the
system is consistent.
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(h) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a linear system has no free variables, then the system has a unique
solution.

(k) True/False If a linear system has a free variable, then the system has infinitely many
solutions.

Project: Modeling a Chemical Reaction

Recall the chemical equation
CyHg + Oy — CO2 + HO

from the beginning of this section. This equation illustrates the reaction between ethane (CoHg)
and oxygen (Os),called the reactants, to produce carbon dioxide (CO2) and water (H20O), called the
products of the reaction. In any chemical reaction, the total mass of the reactants must equal the total
mass of the products. In our reaction the chemicals involved are made up of carbon (C), hydrogen
(H), and oxygen (O) atoms. To balance the equation, we need to know how many molecules of each
chemical are combined to preserve the number of atoms of C, H, and O.

Let x1 be the number of molecules of CoHg, x5 the number of molecules of Os, x3 the number
of molecules of CO3, and =4 the number of molecules of H2O in the reaction. We can then represent
this reaction as

x1CoHg + 2209 — 23C0O9 + 24H50.

In each molecule (e.g., ethane CoHg), the subscripts indicate the number of atoms of each
element in the molecule. So 1 molecule of ethane contains 2 atoms of carbon and 6 atoms of
hydrogen. Thus, there are 2 atoms of carbon in CoHg and 0 atoms of carbon in O, giving us
2x1 carbon atoms in x; molecules of CoHg and O carbon atoms in xo molecules of Oy. On the
product side of the reaction there is 1 carbon atom in CO2 and 0 carbon atoms in H>O. To balance
the reaction, we know that the number of carbon atoms in the products must equal the number of
carbon atoms in the reactants.

Project Activity 3.1.
(a) Setup an equation that balances the number of carbon atoms on both sides of the reaction.

(b) Balance the numbers of hydrogen and oxygen atoms in the reaction to explain why

6(L‘1 = 21‘4

2x9 = 223 + 24.

(c) So the system of linear equations that models this chemical reaction is

2x1 — I3 =0

Il
o

6z — 21y

21’2 —21’3— T4 = 0.

D00
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Find all solutions to this system and then balance the reaction. Note that we cannot have a
fraction of a molecule in our reaction. (Hint: Some of the work needed is done in Preview
Activity 3.1.)

Project Activity 3.2. Chemical reactions can be very interesting.

(a) Carbon dioxide, COs, is a familiar product of combustion. For example, when we burn
p p
glucose, CgH120¢, the products of the reaction are carbon dioxide and water:

CsH1204 + O9 — CO9 + H5O. (3.3)
Use the techniques developed in this project to balance this reaction.

(b) To burn glucose, we need to add oxygen to make the combustion happen. Carbon dioxide
is different in that it can burn without the presence of oxygen. For example, when we
mix magnesium (Mg) with dry ice (COz), the products are magnesium oxide (Mg) and
carbon (C). This is an interesting reaction to watch: you can see it at many websites, e.g.,
http://www.ebaumsworld.com/video/watch/404311/ or https://www.
youtube.com/watch?v=-6dfi8LyRLA.

Use the method determined above to balance the chemical reaction

Mg + COy — MgO + C. (3.4)
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Section 4

Vector Representation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is a vector?
o How do we define operations on vectors?
e What is a linear combination of vectors?

e How do we determine if one vector is a linear combination of a given set
of vectors?

e How do we represent a linear system as a vector equation?
e What is the span of a set of vectors?

e What are possible geometric representations of the span of a vector, or the
span of two vectors?

Application: The Knight’s Tour

Chess is a game played on an 8 x 8 grid which utilizes a variety of different pieces. One piece, the
knight, is different from the other pieces in that it can jump over other pieces. However, the knight
is limited in how far it can move in a given turn. For these reasons, the knight is a powerful, but
often under-utilized, piece.

A knight can move two units either horizontally or vertically, and one unit perpendicular to that.
Four knight moves are as illustrated in Figure 4.1, and the other four moves are the opposites of
these.

The knight’s tour problem is the mathematical problem of finding a knight’s tour, that is a se-
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Figure 4.1: Moves a knight can make.

quence of knight moves so the the knight visits each square exactly once. While we won’t consider
a knight’s tour in this text, we will see using linear combinations of vectors that a knight can move
from its initial position to any other position on the board, and that it is possible to determine an
sequence of moves to make that happen.

Introduction

So far we learned of a convenient method to represent a linear system using matrices. We now
consider another representation of a linear system using vectors. Vectors can represent concepts in
the physical world like velocity, acceleration, and force — but we will be interested in vectors as
algebraic objects in this class. Vectors will form the foundation for everything we will do in linear
algebra. For now, the following definition will suffice.

Definition 4.1. A (real) vector is a finite list of real numbers in a specified order. Each number in
the list is referred to as an entry or component of the vector.

Note: For the majority of this text, we will work with real vectors. However, A vector does not need
to be restricted to have real entries. At times we will use complex vectors and even vectors in other
types of sets. The types of sets we use will be ones that have structure just like the real numbers.
Recall that a real number is a number that has a decimal representation, either finite or repeating
(rational numbers) or otherwise (irrational numbers). We can add and multiply real numbers as we
have done throughout our mathematical careers, and the real numbers have a certain structure given
in the following theorem that we will treat as an axiom — that is, we assume these properties without
proof. We denote the set of real numbers with the symbol R.

Theorem 4.2. Let x, y, and z be real numbers. Then

e v+ y € Rand xy € R (The name given to this property is closure. That is, the set R is
closed under addition and multiplication.)
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e v +y =y + z and xy = yzx (The name given to this property is commutativity. That is
addition and multiplication are commutative operations in R.)

o (x+y)+z=2x+(y+2)and (xy)z = x(yz) (The name given to this property is associativity.
That is, addition and multiplication is associative operations in R.)

o There is an element 0 in R such that x + 0 = x (The element 0 is called the additive identity
inR.)

o There is an element 1 in R such that (1)x = z (The element 1 is called the multiplicative
identity in R.)

o There is an element —z in R such that x + (—z) = 0 (The element —z is the additive inverse
of zinR.)

o Ifx £ 0, there is an element % in R such that x (%) = 1 (The element % is the multiplicative
inverse of the nonzero element x in R.)

e z(y + z) = (zy) + (zz) (The is the distributive property. That is, multiplication distributes
over addition in R.)

Any set that satisfies the properties listed in Theorem 4.2 is called a field. We our vectors are
made from elements of a field, we call those elements of the field scalars.

. . o 1
We will algebraically represent a vector as a matrix with one column. For example, v = [ 9 }

is a vector with 2 entries, and we say that v is a vector in 2-space. By 2-space we mean R?, which
can be geometrically modeled as the plane. Here the symbol R indicates that the entries of v are real
numbers and the superscript 2 tells us that v has two entries. Similarly, vectors in R? have three
1
entries, e.g., 3 |. The collection of column vectors with three entries can be geometrically
-1
modeled as three-dimensional space. If a vector v has n entries we say that v is a vector in R™ (or
n-space). Vectors are also often indicated with arrows, so we might also see a vector v written as
. Itis important when writing to differentiate between a vector v and a scalar v. These are quite
different objects and it is up to us to make sure we are clear what a symbol represents. We will use
boldface letters to represent vectors.

A vector like [ ;

define an addition operation on two vectors of the same size by adding corresponding components,

o[- 1)

Similarly, we can define scalar multiplication of a vector by multiplying each component of the
vector by the scalar. For example,
1 3
La]-[6]

} is called a column vector of size 2 x 1 (two rows, one column). We can
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Since we can add vectors and multiply vectors by scalars, we can then add together scalar multiples
of vectors. For completeness, we define vector subtraction as adding a scalar multiple:

v-u=v+(—1)u.

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

Preview Activity 4.1.
(1) Given vectors
1 0 1
v=| 2| ,u=|1],w=|1],
2 3 4

2

3)

)

determine the components of the vector 3v + u — 2w using the operations defined above.

In mathematics, any time we define operations on objects, such as addition of vectors, we ask
which properties the operation has. For example, one might wonder if u+ v = v + u for any
two vectors u, v of the same size. If this property holds, we say that the addition of vectors is
a commutative operation. However, to verify this property we cannot use examples since the
property must hold for any two vectors. For simplicity, we focus on two-dimensional vectors
u v . .
u= { ul } and v = { vl } . Using these arbitrary vectors, can we say thatu+v = v+u?
2 2

If so, justify. If not, give a counterexample. (Note: Giving a counterexample is the best way
to justify why a general statement is not true.)

One way to geometrically represent vectors with two components uses a point in the plane to

correspond to a vector. Specifically, the vector [ i } corresponds to the point (z,y) in the

plane. As a specific example, the vector [ ; } corresponds to the point (1,2) in the plane.

This representation will be especially handy when we consider infinite collections of vectors
as we will do in this problem.

(a) On the same set of axes, plot the points that correspond to 5-6 scalar multiples of the

5 | Make sure to use variety of scalar multiples covering possibilities with

c>0,c<0,c>1,0<c<1,—1 < c < 0. If we consider the collection of all
possible scalar multiples of this vector, what do we obtain?

[ 1
vector

(b) What would the collection of all scalar multiples of the vector 8 form in the
plane? )
1
(c) What would the collection of all scalar multiples of the vector | 1 | form in the
1

three-dimensional space?

-1
formed as a sum of scalar multiples of u and v.

Letu = [ ; } and v = [ ! } in R?. We are interested in finding all vectors that can be
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(a) On the same set of axes, plot the points that correspond to the vectors u,v,u +
v, 1.5u,2v, —u, —v, —u + 2v. Plot other random sums of scalar multiples of u and
v using several scalar multiples (including those less than 1 or negative) (that is, find
other vectors of the form au + bv where a and b are any scalars.).

(b) If we considered sums of all scalar multiples of u, v, which vectors will we obtain?
Can we obtain any vector in R? in this form?

Vectors and Vector Operations

As discussed in Preview Activity 4.1, a vector is simply a list of numbers. We can add vectors of like
size and multiply vectors by scalars. These operations define a structure on the set of all vectors with
the same number of components that will be our major object of study in linear algebra. Ultimately
we will expand our idea of vectors to a more general context and study what we will call vector
spaces.

In Preview Activity 4.1 we saw how to add vectors and multiply vectors by scalars in R?, and
this idea extends to R"™ for any n. Before we do so, one thing we didn’t address in Preview Activity
4.1 is what it means for two vectors to be equal. It should seem reasonable that two vectors are
equal if and only if they have the same corresponding components. More formally, if we let

(41 U1

u2 V2
u= . and v =

Un Un

be vectors in R", then u = v if u; = v; for every i between 1 and n. Note that this statement
implies that a vector in R? cannot equal a vector in R? because they don’t have the same number of
components. With this in mind we can now define the sum u + v of the vectors u and v to be the
vector in R" defined by

up +v1

U2 + v2
u+v=

Up, + Up
In other words, to add two vectors of the same size, we add corresponding components.
Similarly, we can define scalar multiplication of a vector. If c is a scalar, then the scalar multiple

cv of the vector v is the vector in R" defined by

CU1
CU9
CV =

Ccup,

In other words, the scalar multiple cv of the vector v is the vector obtained by multiplying each
component of the vector v by the scalar c. Since we can add vectors and multiply vectors by scalars,
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we can then add together scalar multiples of vectors. For completeness, we define vector subtraction
as adding a scalar multiple:
v-—u=v+(-1)u

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

After defining operations on objects, we should wonder what kinds of properties these opera-
tions have. For example, with the operation of addition of real numbers we know that 1 4 2 is equal
to 2 4+ 1. This is called the commutative property of scalar addition and says that order does not
matter when we add real numbers. It is natural for us to ask if similar properties hold for the vector
operations, addition and scalar multiplication, we defined. You showed in Preview Activity 4.1 that
the addition operation is also commutative on vectors in R2.

In the activity below we consider how the two operations, addition and scalar multiplication,
interact with each other. In real numbers, we know that multiplication is distributive over addition.
Is that true with vectors as well?

Activity 4.1. We work with vectors in R? to make the notation easier.

. U v . .
Let a be an arbitrary scalar, and u = [ ul } and v = [ vl ] be two arbitrary vectors in R2.
2 2

Is a(u + v) equal to au + av? What property does this imply about the scalar multiplication and
addition operations on vectors?

Similar arguments can be used to show the following properties of vector addition and multi-
plication by scalars.

Theorem 4.3. Let v, u, and w be vectors in R™ and let a and b be scalars. Then
(1) v+tu=u+v

(2) (v+u) +w=v+(utw)

0
(3) The vector z = : has the property that v + z = v. The vector z is called the zero
0
vector.
(4) (—1)v + v = z. The vector (—1)v = —v is called the additive inverse of the vector v.

(5) (a+b)v =av +bv
(6) a(v +u) = av + au
(7) (ab)v = a(bv)

8) v =v.

We will later see that the above properties make the set R™ a vector space. These properties
just say that, for the most part, we can manipulate vectors just as we do real numbers. Please note,
though, that there is no multiplication or division of vectors.
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Geometric Representation of Vectors and Vector Operations

. v | . . .
We can geometrically represent a vector v = [ ul ] in R? as the point (v1,vs) in the plane as
2
U1
we did in Preview Activity 4.1. We can similarly represent a vector v = | vy | in R3 as the
U3

point (v, v, v3) in the three-dimensional space. This geometric representation will be handy when
we consider collections of infinitely many vectors, as we will do when we consider the span of a
collection of vectors later in this section.

U1
U2
the origin to the point (v1, v2) as shown in Figure 4.2 to aid in the visualization.

We can also represent the vector v = [ } in R? as the directed line segment (or arrow) from

o 4

Figure 4.2: The vector [¢] in RZ.

The fact that the vector in Figure 4.2 is represented by the directed line segment from the origin

to the point (4,6) means that this vector is the vector v = [ Zjl ] . If O is the origin and P is the

point (4, 6), we will also denote this vector as 0P —so
P-4
6
In this way we can think of vectors as having direction and length. With the Pythagorean Theorem,

v | . . .
we can see that the length of a vector v = [ vl } is \/v? + v3. This idea can be applied to vectors
2

U1
V2

in any space. If v.= | U3 | isa vector in R", then the length of v, denoted |v]| is the scalar

Un

VIl = /o + 03 + -+ 2.

Thinking of vectors having direction and length is especially useful in visualizing the addition
of vectors. The geometric interpretation of the sum of two vectors can be seen in Figures 4.3 and
4.4.
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(4,6)

u-+v

v (33 72)
(37 _2)

Figure 4.4: Geometric inter-

Figure 4.3: A vector sum. .
pretation.

Letu = { Z}l } and v = [ _2 ] Thenu+v = [ 7 as shown in Figure 4.3. Figure 4.4

4
provides a context to interpret this vector sum geometrically. Using the parallelogram imposed on
the three vectors, we see that if vectors u and v are both placed to start at the origin, then the vector
sum u+ v can be visualized geometrically as the directed line segment from the origin to the fourth
corner of the parallelogram.

In Preview Activity 4.1 we considered scalar multiples of a vector in R?. The arrow representa-
tion helps in visualizing scalar multiples as well. Geometrically, a scalar multiple cv of a nonzero
vector Vv is a vector in the same direction as v if ¢ > 0 and in the opposite direction as v if ¢ < 0.
If ¢ > 1, scalar multiplication stretches the vector, while 0 < ¢ < 1 shrinks the vector. We also saw
that the collection of all scalar multiples of a vector v in R? gives us a line through the origin and
v, except when v = 0 in which case we only obtain 0. In other words, for a nonzero vector v, the
set S = {cv : cis a scalar} is the line through the origin and v in R?.

All of these properties generalize to vectors in R3. Specifically, the scalar multiple cv is a vector
in the same or opposite direction as v based on the sign of ¢, and is a stretched or shrunken version
of v based on whether |c¢| > 1 or |¢| < 1. Also, the collection of all multiples of a non-zero vector
v in R3 form a line through the origin.

Linear Combinations of Vectors

The concept of linear combinations is one of the fundamental ideas in linear algebra. We will use
linear combinations to describe almost every important concept in linear algebra — the span of a set
of vectors, the range of a linear transformation, bases, the dimension of a vector space — to name
just a few.

In Preview Activity 4.1, we considered the sets of all scalar multiples of a single nonzero vector
in R? and in R®. We also considered the set of all sums of scalar multiples of two nonzero vectors.
These results so far gives us an idea of geometrical descriptions of sets of vectors generated by one
or two vectors. Oftentimes we are interested in what vectors can be made from a given collection of
vectors. For example, suppose we have two different water-benzene-acetic acid chemical solutions,
one with 40% water, 50% benzene and 10% acetic acid, the other with 52% water, 42% benzene
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and 6% acid. An experiment we want to conduct requires a chemical solution with 43% water, 48%
benzene and 9% acid. We would like to know if we make this new chemical solution by mixing
the first two chemical solutions, or do we have to run to the chemical solutions market to get the
chemical solution we want.

We can set up a system of equations for each ingredient and find the answer. But we can also
consider each chemical solution as a vector, where the components represent the water, benzene
and acid percentages. So the two chemical solutions we have are represented by the vectors v =

40 52
50 | and vo = | 42 |. If we mix the two chemical solutions with varying amounts of each
10 6
ingredient, then the question of whether we can make the desired chemical solution becomes the
question of whether the equation

40 52 43
c1| 50 | +co| 42 | = | 48
10 6 9

has a solution. (You will determine if this equation has a solution in Exercise 5.)

We might also be interested in what other chemical solutions we can make from the two given

40
solutions. This amounts to determining which vectors can be written in the form ¢; | 50 | +
10
52
co | 42 | for scalars ¢; and co. Vectors that are created from sums of scalar multiples of given
6
vectors are called linear combinations of those vectors. More formally,
Definition 4.4. A linear combination of vectors vy, vo, ..., v, in R" is any vector of the form
C1V] +Cavo + -+ C Vi, “4.1)
where c1, ca, . . ., ¢y, are scalars that we will refer to as the weights.
40 52
In the chemical solutions example, the vector ¢; | 50 | + co | 42 | for scalars ¢; and co
10 6
40 52
is a linear combination of the vectors | 50 | and | 42 | with weights c¢; and cg, and the set of
10 6

linear combinations of the given chemical solution vectors tells us exactly which chemical solutions
we can make from the given ones. This is one example of how linear combinations can arise in
applications.

The set of all linear combinations of a fixed collection of vectors has a very nice algebraic
structure and, in small dimensions, allows us to use a geometrical description to aid our under-
standing. In the above example, this collection gives us the type of chemical solutions we can make
by combining the first two solutions in varying amounts.
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Activity 4.2. Our chemical solution example illustrates that it can be of interest to determine
whether certain vectors can be written as a linear combination of given vectors. We explore that

1 2
idea in more depth in this activity. Letvi = | 1 | and vy = | —1
1 3

(a) Calculate the linear combination of v; and vo with corresponding weights (scalar multi-
ples) 1 and 2. The resulting vector is a vector which can be written as a linear combination
of v and vs.

3
(b) Can w = | 0 | be written as a linear combination of vy and vo? If so, which linear
4

combination? If not, explain why not.

\V)

(c) Can w = 0 | be written as a linear combination of v; and v5? If so, which linear
- 2 -
combination? If not, explain why not.

0
(d) Letw = 6 |. The problem of determining if w is a linear combination of v and v
-2
is equivalent to the problem of finding scalars z; and x2 so that

W = T1V] + T9Va. 4.2)

i. Combine the vectors on the right hand side of equation (4.2) into one vector, and then
set the components of the vectors on both sides equal to each other to convert the
vector equation (4.2) to a linear system of three equations in two variables.

ii. Use row operations to find a solution, if it exists, to the system you found in the
previous part of this activity. If you find a solution, verify in (4.2) that you have found
appropriate weights to produce the vector w as a linear combination of vy and vs.

Note that to find the weights that make w a linear combination of the vectors v; and va, we
simply solved the linear system corresponding to the augmented matrix

[vive | W],

where the vectors vy, vo, and w form the columns of an augmented matrix, and the solution of the
system gave us the weights of the linear combination. In general, if we want to find weights c;, ca,
..., Cm SO that a vector w in R" is a linear combination of the vectors vi, va, ..., V,,, in R, we
solve the system corresponding to the augmented matrix

[Viva vy -+ v | W]

Any solution to this system will gives us the weights. If this system has no solutions, then w cannot
be written as a linear combination of the vectors vy, vo, .. ., vi,. This shows us the equivalence of
the linear system and its vector equation representation. Specifically, we have the following result.
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Theorem 4.5. The vector equation
T1Vl +22Ve +23V3 + -+ TV = W
has the same solution set as the linear system represented by the augmented matrix
[Vi vo vy -+ V| W]

In particular, the system has a solution if and only if w is a linear combination of the vectors
Vi1,V2,V3,..., Vm.

Activity 4.3.

(a) Represent the following linear system as a vector equation. After finding the vector equa-
tion, compare your vector equation to the matrix representation you found in Preview Ac-
tivity 4.1. (Note that this is the same linear system from Preview Activity 3.1.)

—x3+ 34+ 229 = —x1
-3 + 21‘3 = —X2
—2x9+x1 =323 —7

(b) Represent the following vector equation as a linear system and solve the linear system.

1 1 -1 4
1| 1 | +x2| 2 | +x3 2 | = 3
3 -3 11

The Span of a Set of Vectors

As we saw in the previous section, the question of whether a system of linear equations has a
solution is equivalent to the question of whether the vector obtained by the non-coefficient constants
in the system is a linear combination of the vectors obtained from the columns of the coefficient
matrix of the system. So if we were interested in finding for which constants the system has a
solution, we would look for the collection of all linear combinations of the columns. We call
this collection the span of these vectors. In this section we investigate the concept of span both
algebraically and geometrically.

Our work in Preview Activity 4.1 seems to indicate that the span of a set of vectors, i.e., the
collection of all linear combinations of this set of vectors, has a nice structure. As we mentioned
above, the span of a set of vectors represents the collection of all constant vectors for which a linear
system has a solution, but we will also see that other important objects in linear algebra can be
represented as the span of a set of vectors.

Definition 4.6. The span of the vectors vy, va, ..., v, in R” is the collection of all linear combi-
nations of the vectors vi, va, ..., V.
Notation: We denote the span of a set of vectors vi, va, ..., V,, as

Span{vi,va,..., v}
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So
Span{vi,va,...,vip} = {c1vi + cava + - + ¢ Vi i €1, Co, . . ., Gy are scalars}.

The curly braces, { }, are used in denoting sets. They represent the whole set formed by the objects
included between them. So {vi,va,...,v,,} represents the collection of the vectors formed by
Vi, Va,...,V, for an arbitrary number m. Note that m can be 1, meaning that the collection can
contain only one vector v.

We now investigate what the span of a set of one or two vectors is, both from an algebraic and
geometric perspective, and consider what happens for more general spanning sets.

Activity 4.4.
(a) By definition, Span { [ _; } } is the collection of all vectors which are scalar multiples of

1 . . S . .
[ 9 } . Determine which vectors are in this collection. If we plot all these vectors with

each vector being represented as a point in the plane, what do they form?

1 0
() Letv;=| 0 | andveo= | 1 | inR3. By definition,
1 1
1 0
Span 01,
1 1

is the collection of all linear combinations of the form

1 0
Tl 0 + X2 1 R
1 1

where z1 and x7 are any scalars.

i. Find four different vectors in Span{v;, vo} and indicate the weights (the values of
z1 and x2) for each linear combination. (Hint: It is really easy to find 3 vectors in
Span{vy, vy} for any vq, vo.)

ii. Are there any vectors in R? that are not in Span{vy, vo}? Explain. Verify your result.

w1
iii. Setup a linear system to determine which vectors w = | wy | are in Span{vy,va}.
w3
Specifically, which w can be expressed as a linear combination of v; and vo?

iv. Geometrically, what shape do the vectors in Span{vy, vo} form inside R3?
(c) Is it possible for Span{z,z2} to be a line for two vectors z1, z3 in R3?

(d) What do you think are the possible geometric descriptions of a span of a set of vectors in
R?? Explain.

(e) What do you think are the possible spans of a set of vectors in R?>? Explain.
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Examples

What follows are worked examples that use the concepts from this section.

Example 4.7. For each of the following systems,

e express an arbitrary solution to the system algebraically as a linear combination of vectors,
o find a set of vectors that spans the solution set,

e describe the solution set geometrically.

(a)

T + x3=0
2x1 4+ 2 + 3x3 =0
4z — x9 + 33 =0.

(b)

x1 + 229 + 3x3 =0
2x1 + 4xo + 623 =0
41 4+ 8xo + 1223 =0.

Example Solution. In each example, we use technology to find the reduced row echelon form of
the augmented matrix.

(a) The reduced row echelon form of the augmented matrix

1 0 1|0

2 1 3|0

4 -1 310
is

1 0 10

0 1 1]0

0 0 0]0

e There is no pivot in the x3 column, so x3 is a free variable. Since the system is
consistent, it has infinitely many solutions. We can write both 1 and x> in terms
of x3 as xo9 = —z3 and x1 = —z3. So the general solution to the system has the
algebraic form

Il —XI3 -1
xIo = —XI3 = I3 -1
I3 T3 1
So every solution to this system is a scalar multiple (linear combination) of the vector
-1
-1
1



70

Section 4. Vector Representation

-1
e Since every solution to the system is a scalar multiple of the vector | —1 |, the
1
-1
solution set to the system is Span -1
1

o As the set of scalar multiples of a single vector, the solution set to this system is a line

in R? through the origin and the point (—1, —1, 1).

(b) The reduced row echelon form of the augmented matrix

is

12 3]0
4 6|0
4 8 120
(1 2 3]0
0 00
0000

e There are no pivots in the x2 and z3 columns, so x2 and z3 are free variables. Since

the system is consistent, it has infinitely many solutions. We can write x; in terms
of 9 and x3 as x1 = —2x9 — 3x3. So the general solution to the system has the
algebraic form

I —21‘2 — 31‘3 —2 -3
) = T2 = I3 1 + x3 0
T3 T3 0 1
-2
So every solution to this system is a linear combination of the vectors 1 | and
0
-3
0
1
-2
e Since every solution to the system is a linear combination of the vectors 1 | and
0
-3
0 |, the solution set to the system is
1
-2 -3
Span 1], 0
0 1

o As the set of linear combinations of two vectors, the solution set to this system is a

plane in R3 through the origin and the points (—2,1,0) and (—3,0,1).
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s+1
r 4+ 2s
r—3t
r+s+t

Example 4.8. Let W = s, teR

(a) Find three vectors v1, v, and v3 such that W = Span{vy, va, v3}.

—2

(b) Canw = be written as a linear combination of the vectors vy, v, v3? If so, find

-1
0
such a linear combination. If not, justify your response. What does your result tell us about

the relationship between w and W7 Explain.

3
—4 . . .
(c) Canu = 1 be written as a linear combination of the vectors vy, vo, v3? If so, find

-1
such a linear combination. If not, justify your response. What does your result tell us about
the relationship between w and W? Explain.

(d) What relationship, if any, exists between Span{vy, ve, v3} and Span W? Explain.
Example Solution.

(a) Every vector in W has the form

s+t
r 4+ 2s
r— 3t
r+s+t

-3t

e T )

+1

— = = O
+
[\V]
o »
— oON -
+
~~ ~+
_w o = —

0
for some real numbers r, s, and ¢. Thus, W = Span{vy,va,vs} where v; = 1 ,
1
1 1
2 0
Vo = 0l and vy = _3
1 1

(b) To determine if w is a linear combination of v1, vo, and v, we row reduced the augmented
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matrix [v; vo v3 | w]. The reduced row echelon form of the matrix [v] vo vs | w] is

1 0 0] 2
01 0]-3
0 01 1
0 00| O

The system with this as augmented matrix is consistent. If we let x1, x2, and x3 be the
variables corresponding to the first three columns, respectively, of this augmented matrix,
then we see that x1 = 2, x9 = —3, and 3 = 1. So w can be written as a linear combination
of vi, v, and v3 as

w = 2vy — 3vy + V3.

Since W = Span{vy, vo, vs}, it follows that w € .

(c) To determine if u is a linear combination of vy, vo, and vs, we row reduced the augmented
matrix [v; vo v3 | u]. The reduced row echelon form of the matrix [v] vy v3 | u] is

S O O
o O = O
O = O O
— o O O

The last row shows that the system with this as augmented matrix is inconsistent. So u
cannot be written as a linear combination of vi, vo, and vs. Since W = Span{vy, vo, v3},
it follows that u ¢ W.

(d) We know that Span{vy,ve,v3} = W. Now Span W contains the linear combinations
of vectors in W, which are all linear combinations of the vectors vi, vo, and v3. Thus,
Span W is just the set of linear combinations of vy, v, and v3. We conclude that Span W =
Span{vy, vy, v3} = W.

Summary

e A vector is a list of numbers in a specified order.

e We add two vectors of the same size by adding corresponding components. In other words,
if u and v are vectors of the same size and u; and v; are the ¢ components of u and v,
respectively, then u+v is the vector whose ¢th component is u; +v; for each i. Geometrically,
we represent the sum of two vectors using the Parallelogram Rule: The vector u + v is the
directed line segment from the origin to the 4th point of the parallelogram formed by the
origin and the vectors u, v.

e A scalar multiple of a vector is found by multiplying each component of the vector by that
scalar. In other words, if v; is the ¢ component of the vector v and c is any scalar, then cv is
the vector whose ¢ component is cv; for each ¢. Geometrically, a scalar multiple of a nonzero
vector Vv is a vector in the same direction as v if ¢ > 0 and in the opposite direction if ¢ < 0.
If |c| > 1, the vector is stretched, and if |c¢| < 1, the vector is shrunk.
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e An important concept is that of a linear combination of vectors. In words, a linear combi-
nation of a collection of vectors is a sum of scalar multiples of the vectors. More formally,
we defined a linear combination of vectors vy, va, ..., v, in R” is any vector of the form
c1V1 + cavy + - - 4+ ¢ Vi, Where ¢, ca, . . ., ¢y, are scalars.

o To find weights cy, ca, . . ., ¢y, SO that a vector w in R” is a linear combination of the vectors
Vi, Vo, ..., Vi, in R™, we simply solve the system corresponding to the augmented matrix

[Vi Vo vy -+ v | Wl

e The collection of all linear combinations of a set of vectors is called the span of the set of

vectors. More formally, the span of the vectors vy, va, ..., v, in R™ is the set
{e1vi+cova+ -+ Vi : €1,C, ..., Gy are scalars},
which we denote as Span{vy,ve,...,v,,}. Geometrically, the span of a single nonzero

vector v in any dimension is the line through the origin and the vector v. The span of two
vectors vy, v in any dimension neither of which is a multiple of the other is a plane through
the origin containing both vectors.

Exercises
. 1 -1 1. o . —4 .
(1) Given vectors u = 9 and v = o |10 R%, determine if w = | 1 | can be written
as a linear combination of u and v. If so, determine the weights of u and v which produce
w.
1 —2 -1
(2) Given vectors vi = | 2 |, vo = 1 | and vy = 3 | in R3, determine if w =
1 2 3
5
5 | can be written as a linear combination of vy, vy and vs. If so, determine the weights
1

of vi, vo and v3 which produce w. Reflect on the result. Is there anything special about the
given vectors vi, v and vs?

1 —1 w1
B) Letu=| 2 | andv = 1 | in R3. Determine which vectors w = | wy | in R3 can
1 1 w3

be written as a linear combination of u and v. Does the set of w’s include the O vector? If
so, determine which weights in the linear combination produce the 0 vector. If not, explain

why not.
0 1
(4) Consider vectorsu= | 2 | andv= | 1 | inR3.
0 1

(a) Find four specific linear combinations of the vectors u and v.

(b) Explain why the zero vector must be a linear combination of u and v.
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(c) What kind of geometric shape does the set of all linear combinations of u and v have
in R3?

(d) Can we obtain any vector in R3 as a linear combination of u and v? Explain.

(5) Suppose we have two different water-benzene-acetic acid solutions, one with 40% water,
50% benzene and 10% acetic acid, the other with 52% water, 42% benzene and 6% acid.

(a) An experiment we want to conduct requires a solution with 43% water, 48% benzene
and 9% acid. Representing each acid solution as a vector, determine if we can we
make this new acid solution by mixing the first two solutions, or do we have to run
to the chemical solutions market to get the solution we want?

(b) Using the water-benzene-acetic acid solutions in the previous problem, can we obtain
an acid solution which contains 50% water, 43% benzene and 7% acid?

(c) Determine the relationship between the percentages of water, benzene, and acid in
solutions which can be obtained by mixing the two given water-benzene-acetic acid
solutions above.

0 2 -3 1
(6) Isthe vectorb= | 1 | in Span -1 |, 0(,]1 ? Justify your answer.
2 0 -5 0

(7) Describe geometrically each of the following sets.

(a) Span{[ 1},_1 ]}inR2

1 -1 2
(b) Span 1{,]| -11],]0 in R3
1 -1 1

(8) Consider the linear system

2x1 + 3x2 + 3x3 =0
4x + 623+ 6x4 =0
21+ 4x9 + 3x3 — x4 = 0.

(a) Find the general solution to this system.

(b) Find two specific vectors v, and v so that the solution set to this system is Span{vy, va}.

(9) Answer the following question as yes or no. Verify your answer. If u and v are vectors in
R™, then v is in Span{u,u — v}.

(10) Let v, u, and w be vectors in R™ and let a and b be scalars. Verify Theorem 4.3. That is,
show that

@ v+u=u+v

®) (v+u)+w=v+(utw)
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(c) The vectorz = | . | has the property that v + z = v.

@ (~1)v+v=az

(e) (a+b)v=av+bv
() a(v+u) =av+au
(&) (ab)v =a(bv)

(h) 1v=wv.

(11) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A vector in R?, i.e. a two-dimensional vector, is also a vector in R3.

(b) True/False Any vector in R? can be visualized as a vector in R? by adding a 0 as the
last coordinate.

(c) True/False The zero vector is a scalar multiple of any other vector (of the same size).
(d) True/False The zero vector cannot be a linear combination of two non-zero vectors.

(e) True/False Given two vectors u and v, the vector %u is a linear combination of u
and v.

(f) True/False Given any two non-zero vectors u and v in R?, we can obtain any vector
in R? as a linear combination of u and v.

(g2) True/False Given any two distinct vectors u and v in R?, we can obtain any vector
in R? as a linear combination of u and v.

(h) True/False If u can be expressed as a linear combination of v; and vy, then 2u can
also be expressed as a linear combination of v; and vs.

(i) True/False The span of any two vectors neither of which is a multiple of the other
can be visualized as a plane through the origin.

(j) True/False Given any vector, the collection of all linear combinations of this vector
can be visualized as a line through the origin.

(k) True/False The span of any collection of vectors includes the O vector.
() True/False If the span of v; and v is all of R2, then so is the span of vy and v +va.

(m) True/False If the span of v, v and vj is all of R3, then so is the span of vi + vo
and vy + v3.

Project: Analyzing Knight Moves

To understand where a knight can move in a chess game, we need to know the initial setup. A chess
board is an 8 x 8 grid. To be able to refer to the individual positions on the board, we will place the
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board so that its lower left corner is at the origin, make each square in the grid have side length 1,
and label each square with the point at the lower left corner. This is illustrated at left in Figure 4.5.

(0, O, D)2 N3, |4 7)|(5, 7)|(6, T|(7. 7)

(0, 6)[(1, 6)[(2, 6)|(3. 6)](4. 6)[(5. 6)|(6. 6)|(7. 6)

(0, 5)](1, 5)[(2, 5)[(3. 5){ (4. 5)|(5. 5)|(6. 5)|(7. 5)

(0, 9)[(1, 4)[(2, 4)[ (3, 4)|(4, 4)[(5, 4)|(6, 4)|(7, 4)

(0, 3)[(L, 3)](2, 3)[(3, 3)|(4. 3)|(5, 3)|(6. 3)|(7. 3)

©,2)| 2)[ 2)|G. 2)|@ 2)|6, 2|6 2)|. 2) ° )

(0, (I, 1)f(2, (3, 1)[(4, 1)|(5, 1)|(6, 1)|(7, 1)

0, 0)(1, 9| 0)[3, 0)|4. 0)|(5. 0)|(6. 0)|(7. 0) Stgrt

Figure 4.5: Initial knight placement and moves.

Each player has two knights to start the game, for one player the knights would begin in posi-
tions (1,0) and (6,0). Because of the symmetry of the knight’s moves, we will only analyze the
moves of the knight that begins at position (1, 0). This knight has only three allowable moves from
its starting point (assuming that the board is empty), as shown at right in Figure 4.5. The questions
we will ask are: given any position on the board, can the knight move from its start position to that
position using only knight moves and, what sequence of moves will make that happen. To answer
these questions we will use linear combinations of knight moves described as vectors.

Each knight move can be described by a vector. A move one position to the right and two

up can be represented as n; = [ ; ] Three other moves are ny = [ _; ], ng = [ i ], and

_f . The other four knight moves are the additive inverses of these four. Any sequence
of moves by the knight is given by the linear combination

ng =

1N + Tong + r3ng + Tr4N4.

A word of caution: the knight can only make complete moves, so we are restricted to integer (either
positive or negative) values for x;, x2, x3, and 4. You can use the GeoGebra app at https:
//www.geogebra.org/m/dfwtskr ] to see the effects the weights have on the knight moves.
We should note here that since addition of vectors is commutative, the order in which we apply our
moves does not matter. However, we may need to be careful with the order so that our knight does
not leave the chess board.

Project Activity 4.1.

(a) Explain why the vector equation

1 5
[0 ] + x1ny + xono + r3ng + rang = [ 2}


https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj
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will tell us if it is possible for the knight to move from its initial position at (1,0) to the
position (5,2).

(b) Find all solutions, if any, to the system from part (a). If it is possible to find a sequence
of moves that take the knight from its initial position to position (5, 2), find weights x1,
x2, 3, and x4 to accomplish this move. (Be careful — we must have solutions in which
x1, T2, T3, and x4 are integers.) Is there more than one sequence of possible moves? You
can check your solution with the GeoGebra app at https://www.geogebra.org/m/
dfwtskri.

Project Activity 4.1 shows that it is possible for our knight to move to position (5,2) on the
board. We would like to know if it is possible to move to any position on the board. That is, we
would like to know if the integer span of the four moves ni, ng, n3, and ny will allow our knight
to cover the entire board. This takes a bit more work.

Project Activity 4.2. Given any position (a,b), we want to know if our knight can move from its
start position (1, 0) to position (a, b).

(a) Write a vector equation whose solution will tell us if it is possible for our knight to move
from its start position (1, 0) to position (a, b).

(b) Show that the solution to part (a) can be written in the form

1
r1= 7 (=5x3+3z4 +b+2(a—1)) 4.3)
1
T = 1(3$3 —b5x4+b—2(a—1)) (4.4)
x3 1is free
x4 18 free.

To answer our question if our knight can reach any position, we now need to determine if we can
always find integer values of x3 and x4 to make equations (4.3) and (4.4) have integer solutions.
In other words, we need to find values of x3 and x4 so that —5x3 4+ 324 + b + 2(a — 1) and
3x3 — 5x4 + b — 2(a — 1) are multiples of 4. How we do this could depend on the parity (even or
odd) of a and b. For example, if a is odd and b is even, say a = 2r + 1 and b = 2s for some integers
r and s, then

x1 = = (—Hx3 + 324 + 25 + 47)

| |

x9 = - (3w3 — bxy + 25 — 4r).

4
With a little trial and error we can see that if we let x3 = 4 = s, then x1 = r and x9 = —7r is
a solution with integer weights. For example, when ¢ = 5 and b = 2 we have r = 2 and s = 1.
This makes z1 = 2, x93 = —2, x3 = 1 = x4. Compare this to the solution(s) you found in Project
Activity 4.1. This analysis shows us how to move our knight to any position (a, b) where a is odd
and b is even.

Project Activity 4.3. Complete the analysis as above to determine if there are integer solutions to
our knight’s move system in the following cases.


https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj

78 Section 4. Vector Representation

(a) a odd and b odd
(b) a even and b even
(c) aeven and b odd.

Project Activity 4.3 shows that for any position on the chess board, using linear combinations of
move vectors, we can find a sequence of moves that takes our knight to that position. (We actually
haven’t shown that these moves can be made so that our knight always stays on the board — we

leave that question to you.)
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Section 5

The Matrix-Vector Form of a Linear

System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

How and when is the matrix-vector product Ax defined?

How can a system of linear equations be written in matrix-vector form?
How can we tell if the system Ax = b is consistent for a given vector b?
How can we tell if the system Ax = b is consistent for every vector b?

What is a homogeneous system? What can we say about the solution set to
a homogeneous system?

What must be true about pivots in the coefficient matrix A in order for the
homogeneous system Ax = 0 to have a unique solution?

How are the solutions to the nonhomogeneous system Ax = b related to
the solutions of the corresponding homogeneous system Ax = 0?

Application: Modeling an Economy

An economy is a very complex system. An economy is not a well-defined object, there are many
factors that influence an economy, and it is often unclear how the factors influence each other.

Mathematical modeling plays an important role in attempting to understand an economy.

In 1941 Wassily Leontief developed the first empirical model of a national economy. Around

1949 Leontief used data from the U.S. Bureau of Labor Statistics to divide the U.S. economy into
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500 sectors. He then set up linear equations for each sector. This system was too large for the
computers at the time to solve, so he then aggregated the information into 42 sectors. The Harvard
Mark II computer was used to solve this system, one of the first significant uses of computers for
mathematical modeling. Leontief won the 1973 Nobel Prize in economics for his work.

With such large models (Leontief’s models are called input-output models) it is important to find
a shorthand way to represent the resulting systems. In this section we will see how to represent any
size system of linear equations in a very convenient way. Later, we will analyze a small economy
using input-output models.

Introduction

There is another useful way to represent a system of linear equations using a matrix-vector product
that we investigate in this section. To understand how this product comes about, recall that we can
represent the linear system

x1 +4xs + 223 +4xy =1
201 — To —dr3— x4 =2
3r1 4+ Txo+ a3+ 714 =3

as a vector equation as

1 4 2 4 1
z1| 2 | +22| -1 | +23| =5 | +za| -1 | =] 2 |. (5.1)
3 7 1 7 3

We can view the left hand side of Equation ( 5.1) as a matrix-vector product. Specifically, if

1 4 2 4 i L
A=12 -1 -5 -1 | andx = 2 |, then we define the matrix-vector product Ax as
3
3 7 1 7
T4

the left hand side Equation (5.1). So the matrix vector product Ax is the linear combination of the
columns of A with weights from the vector x in order.

With this definition, the vector equation in (5.1) can be expressed as a matrix-vector equation

as
1 4 2 4 1 1
2 -1 -5 —1 22:2
3 7 1 7 3 3
T4

We call this representation the matrix-vector form of the system. Note that the matrix A in this
expression is the same as the coefficient matrix that appears in the augmented matrix representation
of the system.

We can use the above definition of the matrix-vector product as a linear combination with any
matrix and any vector, as long as it is meaningful to use the entries in the vector as weights for the
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4

— =N

1
columns of the matrix. For example, for A = | 3
1

be the linear combination of the columns of A with We_ights 3 and 4:

1 2] 11
Av=3|3 | +4| 1| =] 13
1 1 7

3
and v = , then we can define Av to

However, note that if v had three entries, this definition would not make sense since we do not have
three columns in A. In those cases, we say Av is not defined. We will later see that this definition
can be generalized to matrix-matrix products, by treating the vector as a special case of a matrix

with one column.

Preview Activity 5.1.

(1) Write the vector equation

1 1 -1 4
z1 | 1 | +a9| 2 | + 23 2 = 3
2 3 -3 11

in matrix-vector form. Note that this is the vector equation whose augmented matrix repre-
sentation was given in Problem 2 in Preview Activity 2.1. Compare your matrix A and the
right hand side vector to the augmented matrix. Do not solve the system.

(2) Given the matrix-vector equation

1 2 -1 -3
0 1 2 |x= 3
1 -2 -3 -7

represent the system corresponding to this equation. Note that this should correspond to the
system (or an equivalent system where an equation might be multiplied by (—1)) in Problem
1 of Preview Activity 2.1.

(3) Find the indicated matrix-vector products, if possible. Express as one vector.

S

1 0 2 2
1y 5 3)[1)

: 1
6 -2 1
©1 2 - 1] _i’

(4) As you might have noticed, systems with all the constants being 0 are special in that they
always have a solution. (Why?) So we might consider grouping systems into two types:
Those of the form Ax = b, where not all of the entries of the vector b are 0, and those of the
form Ax = 0, where O is the vector of all zeros. Systems like Ax = b, where b contains
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at least one non-zero entry, are called nonhomogeneous systems, and systems of the form
Ax = 0 are called homogeneous systems. For every nonhomogeneous system Ax = b there
is a corresponding homogeneous system Ax = 0, and there is a useful connection between
the solutions to the nonhomogeneous system and the corresponding homogeneous system.
For example, consider the nonhomogeneous system

Ax =D
with
X1
11 2 0
A—[l 5 1],){- 97;2 ,andb—[_2]. (5.2)
3

The augmented matrix representation of this system is [A | b]. If we reduce this augmented

matrix, we find
1 0 3 2
01 —1|-21]"°

From this RREF, we immediately see that the general solution is that x5 is free, xo = x3 — 2,
and z1 = 2 — 3z3. In vector form, we can represent this general solution as

T 2 — 3x3 2 -3
r9 | = | x3—2 = =2 | +a3 1. (5.3)
3 T3 0 1

The rightmost expression above is called the parametric vector form of the solution.

If we had a system where the general solution involved more than one free variable, then we
would write the parametric vector form to include one vector multiplying each free variable.
For example, if the general solution of a system were that xo and z3 are free and r1 =
2 + x9 + 3z3, then the parametric vector form would be

24 x0 + 3x3 2 1 3
X = o = O [+x2| 1 +x3| 0
T3 0 0 1

Note that the parametric vector form expresses the solutions as a linear combination of a
number of vectors, depending on the number of free variables, with an added constant vector.
This expression helps us in interpreting the solution set geometrically, as we will see in this
section.

(a) Find the general solution to the homogeneous system
Ax =0

with A and x as in (5.2) and compare it to the solution to the nonhomogeneous
system in (5.3). What do you notice?

(b) Find the general solution to the nonhomogeneous system

Ax =D
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with
T
1 2 -1 -1
A—[Q 4 _2],x— T ,andb—[ 1].
3

and express it in parametric vector form. Then find the general solution to the cor-
responding homogeneous system and express it in parametric vector form. How are
the two solution sets related?

(c) Make a conjecture about the relationship between the solutions to a consistent non-
homogeneous system Ax = b and the corresponding homogeneous system Ax = 0.
Be as specific as possible.

The Matrix-Vector Product

The matrix-vector product we defined in Preview Activity 5.1 for a specific example generalizes
in a very straightforward manner, and provides a convenient way to represent a system of linear
equations of any size using matrices and vectors. In addition to providing us with an algebraic
approach to solving systems via matrices and vectors — leading to a powerful geometric relationship
between solution sets of homogeneous and non-homogeneous systems — this representation allows
us to think of a linear system from a dynamic perspective, as we will see later in the section on
matrix transformations.

The matrix-vector product Ax is a linear combination of the columns of A with weights from
x. To define this product in general, we will need a little notation. Recall that a matrix is made of
rows and columns — the entries reading from left to right form the rows of the matrix and the entries
reading from top to bottom form the columns. For example, the matrix

1 2 3 4
A=|5 6 7 8
9 10 11 12

has three rows and four columns. The number of rows and columns of a matrix is called the size of
the matrix, so A is a 3 by 4 matrix (also written as 3 x 4). We often need to have a way to reference
the individual entries of a matrix A, and to do so we typically give a label, say a;; to the entry in
the ith row and jth column of A. So in our example we have a3 = 7. We also write A = [a;}] to
indicate a matrix whose 4, jth entry is a;;. At times it is convenient to write a matrix in terms of its
rows or columns. If A = [a;;] is an m x n matrix, then we will write

ail ai2 e A1n—1 A1n

a1 a2 e a2n—1 a2n
A=

aml Am2 - Gmn—1 Amn
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or, if we let r, o, ..., r,, denote the rows of the matrix A, then we can write A as'
ry
ry
A =
L)
We can also write A in terms of its columns, ¢, Co, ..., Cy, as
A=lcice -+ ¢y

In general, the product of a matrix with a vector is defined as follows.
x1
o x2
Definition 5.1. Let A be an m X n matrix with columns ¢y, cs, ..., ¢, and let x = . be a

T,
vector in R™. The matrix-vector product Ax is

Ax = x1Co + 22Co + -+ + TpCp.

Important Note: The matrix-vector product Ax is defined only when the number of entries of the
vector x is equal to the number of columns of the matrix A. That is, if A is an m X n matrix, then
Ax is defined only if x is a column vector with n entries.

The Matrix-Vector Form of a Linear System

As we saw in Preview Activity 5.1, the matrix-vector product provides us with a short hand way
of representing a system of linear equations. In general, every linear system can be written in
matrix-vector form as follows.

The linear system

a1121 + a2 + -+ ATy = b1

a21T1 + a90T9 + -+ agpxy = by

Am1T1 + A2m@2 + -+ + ATy = by,

of m equations in n unknowns can be written in matrix-vector form as Ax = b, where

a1 a2 -+ Gln 1 b1

a1 a2 - a2, x2 bo
A= . ) . , X= . , and b=

Aml Am2 *°° Amn Tn bm

!Technically, the rows of A are made from the entries of the row vectors, but we use this notation as a shorthand.
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This general system can also be written in the vector form

ai a2 a1n b1

asy a2 aonp bo
T . + T2 . + -ty . =

Am1 Am2 Amn bm

With this last representation, we now have four different ways to represent a system of linear
equations (as a system of linear equations, as an augmented matrix, in vector equation form, and
in matrix-vector equation form), and it is important to be able to translate between them. As an
example, the system

T, + 4xo + 223 + 4y = 2
2.%'1— .%'2—5.%3— x4:2
3x1+Tro+ a3+ T4 =3

from the introduction to this section has corresponding augmented matrix

1 4 2 411
2 -1 -5 =112 ],
3 7 1 713
is expressed in vector form as
1 4 2 4 1
r1 | 2 | +x2| =1 | +23| =5 | +x24| —1 =121,
3 7 1 7 3
and has matrix-vector form
1 4 2 47|™ P
2 -1 -5 -1 2= 9
3 7 1 7™ 3
T4

Activity 5.1. In this activity, we will use the equivalence of the different representations of a system
to make useful observations about when a system represented as Ax = b has a solution.

(a) Consider the system
12 -1 ] T2
2 1 3| ™| 7|6
3
Write the matrix-vector product on the left side of this equation as a linear combination of

. : : . 2 .
the columns of the coefficient matrix. Find weights that make the vector { ] a linear

6
combination of the columns of the coefficient matrix.
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(b) From this point on we consider the general case where A is an m x n matrix. Use the vector
equation representation to explain why the system Ax = b has a solution if and only if b
is a linear combination of the columns of A. (Note that ‘if and only if” is an expression to
mean that if one side of the expression is true, then the other side must also be true.) (Hint:
Compare to what you did in part (a).)

(c) Use part (b) and the definition of span to explain why the system Ax = b has a solution if
and only if the vector b is in the span of the columns of A.

(d) Use part (c) to explain why the system Ax = b always has a solution for any vector b in
R™ if and only if the span of the columns of A is all of R™.

(e) Use the augmented matrix representation and the criterion for a consistent system to explain
why the system Ax = b is consistent for all vectors b if and only if A has a pivot position
in every row.

We summarize our observations from the above activity in the following theorem.

Theorem 5.2. Let A be an m x n matrix. The following statements are equivalent:

(1) The matrix equation Ax = b has a solution for every vector b in R™.
(2) Every vector b in R™ can be written as a linear combination of the columns of A.
(3) The span of the columns of A is R™.

(4) The matrix A has a pivot position in each row.

In the future, if we need to determine whether a system has a solution for every b, we can refer
to this theorem without having to argue our reasoning from scratch.

Properties of the Matrix Vector Product

As we have done before, we have a new operation (the matrix-vector product), so we should wonder
what properties it has.

Activity 5.2. In this activity, we consider whether the matrix-vector product distributes vector ad-
dition. In other words: Is A(u + v) equal to Au + Av?

We work with arbitrary vectors u, v in R? and an arbitrary matrix A with 3 columns (so that Au
and Av are defined) to simplify notation. Let A = [c; c3 c3] (note that each c; represents a column

Uy U1
of A),u= | us |,and v = | vo |. Use the definition of the matrix-vector product along with
u3 U3

the properties of vector operations to show that

A(u+v) = Au+ Av.

Similar arguments using the definition of matrix-vector product along with the properties of
vector operations can be used to show the following theorem:
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Theorem 5.3. Let A be an m X n matrix, uw and v n X 1 vectors, and c a scalar. Then

(1) Alu+v) =Au+ Av

(2) c(Av) = A(ev)

Homogeneous and Nonhomogeneous Systems

As we saw before, the systems with all the right hand side constants being O are special in that they
always have a solution. (Why?) So we might consider grouping systems into two types: Those
of the form Ax = b, where not all of the entries of the vector b are 0, and those of the form
Ax = 0, where 0 is the vector of all zeros. Systems like Ax = b, where b contains at least one
non-zero entry, are called nonhomogeneous systems, and systems of the form Ax = 0 are called
homogeneous systems. For every nonhomogeneous system Ax = b there is a corresponding
homogeneous system Ax = 0. We now investigate the connection between the solutions to the
nonhomogeneous system and the corresponding homogeneous system.

Activity 5.3. In this activity we will consider the relationship between the solution sets of nonho-
mogeneous systems and those of the corresponding homogeneous systems.

(a) Find the solution sets of the system
Ax=Db

where

T
1 1 2 0
A—[121},x— T ,andb—[_z]

x3

and the corresponding homogeneous system (i.e. where we replace b with 0.)

(b) Find the solution sets of the system

Ax =Db
where
X1
1 2 -1 -1
A—[2 4 _2],x— To ,andb—[ 1}
€3

and the corresponding homogeneous system.

(c) What are the similarities/differences between solutions of the nonhomogeneous system and
its homogeneous counterpart?

As we saw in the above activity, there is a relationship between solutions of a nonhomogeneous
and the corresponding homogeneous system. Let us formalize this relationship. If the general
solution of a system involves free variables, we can represent the solutions in parametric vector
form to have a better idea about the geometric representation of the solution set. Suppose the
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solution is that x3 is free, xo = —2 + 3, and £; = 2 — 3x3. In vector form, we can represent this
general solution as

I 2 — 3%3 2 -3
X9 = T3 — 2 = -2 | +x3 1. 5.4
z3 T3 0 1

From this representation, we see that the solution set is a line through the origin (formed by mul-

-3 2
tiples of 1 |) shifted by the added vector | —2 |. The solution to the homogeneous system
1 0

on the other does not have the shift.

Algebraically, we see that every solution to the nonhomogeneous system Ax = b can be writ-
ten in the form p + vp, where p is a particular solution to Ax = b and vy, is a solution to the
corresponding homogeneous system Ax = 0.

To understand why this always happens, we will verify the result algebraically for an arbitrary
A and b. Assuming that p is a particular solution to the nonhomogeneous system Ax = b, we
need to show that:

e if v is an arbitrary solution to the nonhomogeneous system, then v = p + v, where vy, is
some solution to the homogeneous system Ax = 0, and

e if v, is an arbitrary solution to the homogeneous system, then p + vy is a solution to the
nonhomogeneous system.

To verify the first condition, suppose that v is a solution to the nonhomogeneous system Ax =
b. Since we want v = p + vj,, we need to verify that v — p is a solution for the homogeneous
system so that we can assign v, = v — p. Note that

Av—p)=Av—Ap=b-Db =0,

using the distributive property of matrix-vector product over vector addition. Hence v is of the form
p + v with vy, = 0.

To verify the second condition, consider a vector of the form p+vy,, where vy, is a homogeneous
solution. We have

Alp+vy) = Ap+ Avp =b + 0 = Db,
and so p + vy, is a solution to Ax = b.

Our work above proves the following theorem.

Theorem 5.4. Suppose the equation Ax = b is consistent for some b and p is a solution. Then
the solution set of Ax = b consists of all vectors of the form v = p + v, where vy, is a solution to
Ax = 0.
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The Geometry of Solutions to the Homogeneous System

There is a simple geometric interpretation to the solution set of the homogeneous system Ax = 0
based on the number of free variables that imposes a geometry on the solution set of the correspond-
ing nonhomogeneous system Ax = b (when consistent) due to Theorem 5.4.

Activity 5.4. In this activity we consider geometric interpretations of the solution sets of homoge-
neous and nonhomogeneous systems.

1 -3 2
(a) Consider the system Ax = bwhere A= | —3 9 | andb = | —6 |. The general
—1 3 -2

. . 2 .
solution to this system has the form { 0 } + x9 { ? } , where x5 is any real number.

i. Letv = [ i’ ] . What does the set of all vectors of the form zov look like geometri-

cally? Draw a picture in R? to illustrate. (Recall that we refer to all the vectors of the
form zov simply as Span{v}.)

o | What effect does adding the vector p to each vector in Span{v } have
on the geometry of Span{v}? Finally, what does this mean about the geometry of the
solution set to the nonhomogeneous system Ax = b?

ii. Letp = [ 2

(b) Consider the system Ax = b where A = [ ; 2 :zl)) } and b = [ :2 ] The general
-2 -2 1
solution to this system has the form 0| + a2 1| 423 | 0 |, where zg,x3 are
0 1
any real numbers.
-2 1
i. Letu = 1 |,v= 0 |. Useourresults from Section 4 to determine the geo-
0 1
-2 1
metric shape of Span{u, v}, the set of all vectors of the form x5 1 |+23| 0 |,
0 1
where 2, 3 are any real numbers.
-2
ii. Letp = 0 |. What’s the geometric effect of adding the vector p to each vector
0

in Span{u, v}? Finally, what does this mean about the geometry of the solution set
to the nonhomogeneous system Ax = b?

Our work in the above activity shows the geometric shape of the solution set of a consistent
nonhomogeneous system is the same as the geometric shape of the solution set of the corresponding
homogeneous system. The only difference between the two solution sets is that one is a shifted
version of the other.



90 Section 5. The Matrix-Vector Form of a Linear System

Examples

What follows are worked examples that use the concepts from this section.

Example 5.5. We now have several different ways to represent a system of linear equations.
Rewrite the system in an equivalent form

11z + 420 — bx3 — 224 =63
1521 + 529 + 223 — 224 =68
6x1 + 2220 + x3 — T4 =26
921 + 322 + 223 — x4 =40.

(a) as an augmented matrix
(b) as an equation involving a linear combination of vectors

(c) using a matrix-vector product

Then solve the system.

Example Solution.

(a) The augmented matrix for this system is

11 4 -5 —-2163
15 5 2 -2|68
6 2 1 —1|26
9 3 2 -1|40

(b) If we make vectors from the columns of the augmented matrix, we can write this system in
vector form as

11 4 -5 -2 63
T 15 + x9 0 + 3 2 + 4 T2 _ |68
6 2 1 -1 26
9 3 2 -1 40
11 4 -5 =2
. . . . 15 5 2 =2 .
(c) The coefficient matrix for this system is 6 9 R and the matrix-vector form
9 3 2 -1
of the system is
11 4 -5 =2 1 63
15 5 2 =2 x9 | | 68
6 2 1 -1 x3 | | 26
9 3 2 -1 T4 40
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Using technology, we find that the reduced row echelon form of the augmented matrix for this
system is

1 0 00 3
01 0 O 7
0 01 0|-2
0 0 0 1 4
So the solution to this systemis 1 = 3, x2 = 7, z3 = —2, and x4 = 4.

Example 5.6. Consider the homogeneous system

1 +8x9 — x3 =0
xr1 — Tx9 + 223 =0
3x1 + 4xo + x3 =0.

(a) Find the general solution to this homogeneous system and express the system in parametric
vector form.

1 8 —1 —6 -1
b) LetA=|1 -7 2 |,and letb = 9 |. Show that 0 | is a solution to the
3 4 1 2 5

non-homogeneous system Ax = b.

(c) Use the results from part (a) and (b) to write the parametric vector form of the general
solution to the non-homogeneous system Ax = b. (Do this without directly solving the
system Ax = b.)

(d) Describe what the general solution to the homogeneous system Ax = 0 and the general
solution to the non-homogeneous system Ax = b look like geometrically.

Example Solution.

(a) The augmented matrix of the homogeneous system is

1
1 —
3

B~ 00

-11]0
210 |,
110

and the reduced row echelon form of this augmented matrix is

o = O
|

o vil— ol

o O O

0

Since there is no corresponding equation of the form 0 = b for a nonzero constant b, this
system is consistent. The third column contains no pivot, so the variable x3 is free, o =
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%933 and x; = —32x3. In parametric vector form the general solution to the homogeneous
system is
3 3
T —gﬂj‘g 5
zy | = | taz | =as| 1
3 T3 1
(b) Since
-1 1 8 -1
A O|=C) 1 |+0O]| =7+
) 3 4 1
-1-5 —6
=| —-1+10 | = 91,
-3+5 2
-1
we conclude that 0 | is a solution to the non-homogeneous system Ax = b.
5

(¢) We know that every solution to the non-homogeneous system Ax = b has the form of
the general solution to the homogeneous system plus a particular solution to the non-
homogeneous system. Combining the results of (a) and (b) we see that the general solution
to the non-homogeneous system Ax = b is

_3
ol -1 5
T | = 0 | +z3 i,
I3 5 1

where x3 can be any real number.

= gw

(d) The solution to the homogeneous system Ax = O is the span of the vector

—_

Geometrically, this set of points is a line through the origin and the point (—3,1,5) in
R3. The solution to the non-homogeneous system Ax = b is the translation of the line

-1

through the origin and (—3,1,5) by the vector 0 |. In other words, the solution to
5

the non-homogeneous system Ax = b is the line in R? through the points (—1, 0, 5) and

(—4,1,10).
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Summary
€1
. . . . T2
o If A=|cjcy -+ c,isanm x n matrix with columns ¢y, co, ..., ¢, and if x =
In

is a vector in R™, then the matrix-vector product Ax is defined to be the linear combination
of the columns of A with corresponding weights from x — that is

AX = z1c1 + T2C2 + - - + TpCpy.

e A linear system

a1171 + aipre + -+ a1pTn, = by

911 + agere + -+ agpxn = bo

Am 121 + Qo T2 + - -+ AmnTy = by,

can be written in matrix form as

Ax = b,
where
a1 a2 -+ Gln 1 b1
a1 a2 - a2, x2 bo
A= ] ) ] , X = . , and b=
Aml Am2 - Amn Tn bm

e The matrix equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

e The system Ax = b is consistent for every vector b if every row of A contains a pivot.

e A homogeneous system is a system of the form Ax = 0 for some m X n matrix A. Since the
zero vector in R” satisfies Ax = 0, a homogeneous system is always consistent.

e A homogeneous system can have one or infinitely many different solutions. The homoge-
neous system Ax = 0 has exactly one solution if and only if each column of A is a pivot
column.

e The solutions to the consistent nonhomogeneous system Ax = b have the form p + vy,
where p is a particular solution to the nonhomogeneous system Ax = b and vy, is a solution
to the homogeneous system Ax = 0. In other words, the solution space to a consistent
nonhomogeneous system Ax = b is a translation of the solution space of the homogeneous
system Ax = 0 by a particular solution to the nonhomogeneous system.

Finally, we argued an important theorem.

D00
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Theorem 5.7. Let A be an m x n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in R™.
(2) Every vector b in R™ can be written as a linear combination of the columns of A.
(3) The span of the columns of A is R™.

(4) The matrix A has a pivot position in each row.

We will continue to add to this theorem, so it is a good idea for you to begin now to remember
the equivalent conditions of this theorem.

Exercises

(1) Write the system

1+ 2w + 223+ w4 =1
41 —8x9+3x3 — 924 = 2
T + 6x9 — 4x3 + 1204 = —1

in matrix-vector form. Explicitly identify the coefficient matrix and the vector of constants.

(2) Write the linear combination

wlafenlalenll]

as a matrix-vector product.

(3) Represent the following matrix-vector equation as a linear system and find its solution.

2 3 41| [ 4
1 -2 3|7 | -6

T3

(4) Represent the following matrix-vector equation as a linear system and find its solution.

1 -2 -1 T 1
2 2 =2 To | = | —4
3 1 1 T3 8
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(5) Another way of defining the matrix-vector product uses the concept of the scalar product of
U1

%)
vectors.? Given a 1 X n matrix u = [up ug ... un]3 and an n X 1 vector v = |, we

define the scalar product u - v as
-V =uv + ugv2 + u3zv3 + -+ + UpUp.

We then define the matrix-vector product Ax as the vector whose entries are the scalar prod-

&1
ucts of the rows of A with x. As an example, if A = [ ? _g 3 ] and x = | z9 |,
3

then

Ax — 2x1 4+ 3xo + 43
| 2+ (=22 + 323 |

a

Calculate the matrix-vector product Ax where A = Z ] and x = [ il ] using both
2

methods of finding the matrix-vector product to show that the two definitions are equivalent
for size 2 x 2 matrices.

(6) Find the value of a such that

1 2 2 1 *
1 -1 3 -1 | =] -5
1 2 4 a *
where *’s represent unknown values.
(7) Suppose we have

1 21 2 ; b1

-1 2 3 1 9| = ba
231 a 3 bs

where b;’s represent unknown values.

(a) In order to find the value of a, which of the b;’s do we need to know? Why?
(b) Suppose the b;(s) that we need to know is(are) equal to 9. What is the value of a?

(8) Suppose we are given

tue [ 1] waav=[1]

for an unknown A and two unknown vectors u, v in R3. Using matrix-vector product prop-
erties, evaluate Aw where w = 2u — 3v.

*Note that some authors refer to the scalar product as the dot product.
U1

U2
*We can identify a 1 x n matrix u = [u1 ug ... u,] with the n x 1 vector u = . |, so we ofter refer to

Un
[ui uz ... uy,] as a vector.
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(9) Suppose we are given

1 1
Al 2 :[1}and14 0 :[g]
1 2
-1 1 1
After expressing 6 | asalinear combinationof | 2 [ and | O [,usethe matrix-vector
-5 1 2
-1
product properties to determine A 6
-5
(10) (a) The non-homogeneous system (with unknown constants a and b)

T+ y— z=2
2c+ay+bz=4

has a solution which lies on the x-axis (i.e. y = z = 0). Find this solution.

(b) If the corresponding homogeneous system

z+ y— 2=0
2z +ay+bz =0

0
has its general solution expressed in parametric vector form as z - | 1 |, find the

1
general solution for the non-homogeneous system using your answer to part (a).

(c) Find the conditions on a and b that make the system from (a) have the general solution
you found in (b).

(11) Find the general solution to the non-homogeneous system

r—2y+ z= 3
—2x 4+ 4y — 2z = —6.

Using the parametric vector form of the solutions, determine what the solution set to this
non-homogeneous system looks like geometrically. Be as specific as possible. (Include in-
formation such as whether the solution set is a point, a line, or a plane, etc.; whether the
solution set passes through the origin or is shifted from the origin in a specific direction by a
specific number of units; and how the solution is related to the corresponding homogeneous
system.)

(12) Come up with an example of a 3 x 3 matrix A for which the solution set of Ax = 0 is a line,
and a 3 x 3 matrix A for which the solution set of Ax = 0 is a plane.

(13) Suppose we have three vectors v1, vo and vj satisfying v = 2v; — va. Let A be the matrix
with vectors v, vo and vg as the columns in that order. Find a non-zero x such that Ax = 0
using this information.
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(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If the system Ax = O has infinitely many solutions, then so does the
system Ax = b for any right-hand-side b.

(b) True/False If x; is a solution for Ax = by and x5 is a solution for Ax = bs, then
X1 + X9 is a solution for Ax = by + bs.

(¢) True/False If an m x n matrix A has a pivot in every row, then the equation Ax = b
has a unique solution for every b.

(d) True/False If an m x n matrix A has a pivot in every row, then the equation Ax = b
has a solution for every b.

(e) True/False If A and B are row equivalent matrices and the columns of A span R™,
then so do the columns of B.

(f) True/False All homogeneous systems have either a unique solution or infinitely
many solutions.

(g) True/False If a linear system is not homogeneous, then the solution set does not
include the origin.

(h) True/False If a solution set of a linear system does not include the origin, the system
is not homogeneous.

(i) True/False If the system Ax = b has a unique solution for some b, then the homo-
geneous system has only the trivial solution.

(j) True/False If A is a 3 x 4 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

(k) True/False If A is a 3 x 2 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

Project: Input-Output Models

There are two basic types of input-output models: closed and open. The closed model assumes that
all goods produced are consumed within the economy — no trading takes place with outside entities.
In the open model, goods produced within the economy can be traded outside the economy.

To work with a closed model, we use an example (from Input-Output Economics by Wassily
Leontief). Assume a simple three-sector economy consisting of agriculture (growing wheat), man-
ufacturing (producing cloth), and households (supplying labor). Each sector of the economy relies
on goods from the other sectors to operate (e.g., people must eat to work and need to be clothed).
To model the interactions between the sectors, we consider how many units of product is needed as
input from one sector to another to produce one unit of product in the second sector. For example,
assume the following:

e to produce one unit (say dollars worth) of agricultural goods requires 25% of a unit of agricul-
tural output, 28% of a unit of manufacturing output, and 27% of a unit of household output;
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e to produce one unit of manufactured goods requires 20% of a unit of agricultural output, 60%
of a unit of manufacturing output, and 60% of a unit of household output;

e to produce one unit of household goods requires 55% of a unit of agricultural output, 12% of
a unit of manufacturing output, and 13% of a unit of household output.

These assumptions are summarized in Table 5.1.

into\ from Agriculture Manufacture Households
Agriculture 0.25 0.28 0.27
Manufacture 0.20 0.60 0.60
Households 0.55 0.12 0.13

Table 5.1: Summary of simple three sector economy.

This model is said to be closed because all good produced are used up within the economy. If
there are goods that are not used within the economy the model is said to be open. Open models
will be examined later.

The economist’s goal is to determine what level of production in each section meets the follow-
ing requirements:

o the production from each sector meets the needs of all of the sectors and

e there is no overproduction.

Project Activity 5.1. We can use techniques from linear algebra to determine the levels of produc-
tion that precisely meet the two goals of the economist.

(a)

(b)

Suppose that the agricultural output is x; units, the manufacturing output is z2 units, and
I

the household output is 23 units. We represent this data as a production vector | x5 |.To
3

produce a unit of agriculture requires 0.25 units of agriculture, 0.28 units of manufacturing,

and 0.27 units of household. If x; units of agriculture, x5 units of manufacturing, and x3

units of household products are are produced, then agriculture can produce

0.25z1 + 0.28x2 + 0.27x3

units. In order to meet the needs of agriculture and for there to be no overproduction, we
must then have

0.25z1 + 0.2829 + 0.27x3 = 2.

Write similar equations for the manufacturing and household sectors of the economy.

Find the augmented matrix for the system of linear equations that represent production of
the three sectors from part (a), and then solve the system to find the production levels that
meet the economist’s two goals.
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(c) Suppose the production level of the household sector is 200 million units (dollars). Find the
production levels of the agricultural and manufacturing sectors that meet the economist’s
two goals.

In general, a matrix derived from a table like Table 5.1 is called a consumption matrix, which
0.25 0.28 0.27
we will denote as C'. (In the example discussed here C' = | 0.20 0.60 0.60 |.) A consumption
0.55 0.12 0.13
matrix C' = [¢;;], where ¢;; represents the proportion of the output of sector j that is consumed by
sector 1, satisfies two important properties.

e Since no sector can consume a negative amount or an amount that exceeds the output of
another sector, we must have 0 < ¢;; < 1 forall 7 and j.

o If there are n sectors in the economy, the fact that all output is consumed within the economy
implies that ¢y + cgj + - - - + ¢p; = 1. In other words, the column sums of C' are all 1.

x1

In our example, if we let z = | x2 |, then we can write the equations that guarantee that the
T3

production levels satisfy the two economists’ goal in matrix form as

x = Cx. (5.5)

Now we can rephrase the question to be answered as which production vectors x satisfy equation
(5.5). When Cx = x, then the system is in equilibrium, that is output exactly meets needs. Any
solution x that satisfies (5.5) is called a steady state solution.

Project Activity 5.2. Is there a steady state solution for the closed system of Agriculture, Manu-
facturing, and Households? If so, find the general steady state solution. If no, explain why.

So far, we considered the case where the economic system was closed. This means that the
industries that were part of the system sold products only to each other. However, if we want to
represent the demand from other countries, from households, capital building, etc., we need an open
model. In an article in the Scientific American Leontief organized the 1958 American economy
into 81 sectors. The production of each of these sectors relied on production from the all of the
sectors. Here we present a small sample from Leontief’s 81 sectors, using Petroleum, Textiles,
Transportation, and Chemicals as our sectors of the economy. Leontief’s model assumed that the
production of 1 unit of output of

e petroleum requires 0.1 unit of petroleum, 0.2 units of transportation, and 0.4 units of chemi-
cals;

o textiles requires 0.4 units of petroleum, 0.1 unit of textiles, 0.15 units of transportation, and
0.3 units of chemicals;

e transportation requires 0.6 units of petroleum, 0.1 unit of transportation, and 0.25 units of
chemicals;

D00
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e chemicals requires 0.2 units of petroleum, 0.1 unit of textiles, 0.3 units of transportation, and
0.2 units of chemicals.

A summary of this information is in Table 5.2. Assume the units are measured in dollars.

into\ from Petroleum Textiles Transportation Chemicals
Petroleum 0.10 0.00 0.20 0.40
Textiles 0.40 0.10 0.15 0.30
Transportation 0.60 0.00 0.10 0.25
Chemicals 0.20 0.10 0.30 0.20

Table 5.2: Summary of four sector economy.

In the open model, there is another part of the economy, called the open sector, that does
not produce goods or services but only consumes them. If this sector (think end consumers, for

example) demands/consumes d; units of Petroleum, d units of Textiles, d3 units of Transportation,
dq

and d4 units of Chemicals, we put this into a final demand vector d =

An economist would want to find the production level where the demand from the good/service
producing sectors of the economy plus the final demand from the open sector exactly matches
the output in each of the sectors. Let x; represent the number of units of petroleum output, x3
the number of units of textiles output, x3 the number of units of transportation output, and x4
the number of units of chemical output during any time period. Then the production vector is

I
X = ? . So an economist wants to find the production vectors x such that
3
T4
0.102x1 + 0.20x3 + 0.40x4 + d1 = 21
0.40x1 + 0.10x2 + 0.1523 + 0.30x4 + do = o
0.60x1 + 0.10z3 + 0.25x4 + d3 = x3
0.20z1 + 0.1022 + 0.3023 + 0.2024 + dg = x4,
dy
where d = 22 is the demand vector from the open market. The matrix
3
dy

0.10 0.00 0.20 0.40
0.40 0.10 0.15 0.30
0.60 0.00 0.10 0.25
0.20 0.10 0.30 0.20
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derived from Table 5.2, is called the exchange matrix.

Project Activity 5.3.
500
: . 200 .
(a) Suppose the final demand vector in our four sector economy is 400 |- Find the produc-
100

tion levels that satisfy our system.

(b) Does this economy defined by the exchange matrix £ have production levels that exactly
meet internal and external demands regardless of the external demands? That is, does the
system of equations

0.10z4 4+ 0.20x3 + 0.4024 + d1 = 1
0.40x1 + 0.10x3 + 0.1523 4+ 0.30x4 + do = x2
0.60z, + 0.10x3 + 0.25x4 + d3 = x3

0.20z1 + 0.10x9 + 0.30z3 + 0.20x4 + dy = 4

have a solution regardless of the values of dy, d2, d3, and d4? Explain.






Section 6

Linear Dependence and Independence

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What are two ways to describe what it means for a set of vectors in R" to
be linearly independent?

e What are two ways to describe what it means for a set of vectors in R" to
be linearly dependent?

e If S is a set of vectors, what do we mean by a basis for Span S?

e Given a nonzero set .S of vectors, how can we find a linearly independent
subset of S that has the same span as 5?7

e How do we recognize if the columns of a matrix A are linearly indepen-
dent?

e How can we use a matrix to determine if a set {vy, va,..., vy} of vectors
is linearly independent?

e How can we use a matrix to find a minimal spanning set for a set
{v1,va,Vvs,...,vi} of vectors in R"?

Application: Bézier Curves

Bézier curves are simple curves that were first developed in 1959 by French mathematician Paul
de Casteljau, who was working at the French automaker Citroén. The curves were made public in
1962 by Pierre Bézier who used them in his work designing automobiles at the French car maker
Renault. In addition to automobile design, Bézier curves have many other uses. Two of the most
common applications of Bézier curves are font design and drawing tools. As an example, the letter
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“S” in Palatino font is shown using Bézier curves in Figure 6.1. If you’ve used Adobe Illustrator,
Photoshop, Macromedia Freehand, Fontographer, or any other of a number of drawing programs,
then you’ve used Bézier curves. At the end of this section we will see how Bézier curves can be
defined using linearly independent vectors and linear combinations of vectors.

Figure 6.1: A letter S.

Introduction

In Section 4 we saw how to represent water-benzene-acetic acid chemical solutions with vectors,
where the components represent the water, benzene and acid percentages. We then considered
a problem of determining if a given chemical solution could be made by mixing other chemical
solutions. Suppose we now have three different water-benzene-acetic acid chemical solutions, one
with 40% water, 50% benzene and 10% acetic acid, the second with 52% water, 42% benzene and
6% acid, and a third with 46% water, 46% benzene and 8% acid. We represent the first chemical

40 52
solution with the vector vi = | 50 |, the second with the vector vo = | 42 |, and the third with
10 6
46
the vector v3 = | 46 |. By combining these three chemical solutions we can make a chemical
8
solution with 43% water, 48% benzene and 9% acid as follows
! + ! + Ly = i:
PRSI PACIE 2

However, if we had noticed that the third chemical solution can actually be made from the first two,

that is,

1 n 1
—V —_ =
B 1 2V2 V3,

o099



Section 6. Linear Dependence and Independence 105

we might have realized that we don’t need the third chemical solution to make the 43% water, 48%
benzene and 9% acid chemical solution. In fact,

3 1 43
-V + —Vg = 48
4 4 9

(See Exercise 5 of Section 4.) Using the third chemical solution (represented by v3) uses more
information than we actually need to make the desired 43% water, 48% benzene and 9% acid
chemical solution because the vector vg is redundant — all of the material we need to make v3 is
contained in v and vo. This is the basic idea behind linear independence — representing information
in the most efficient way.

Information is often contained in and conveyed through vectors — especially linear combinations
of vectors. In this section we will investigate the concepts of linear dependence and independence
of a set of vectors. Our goal is to be able to efficiently determine when a given set of vectors forms
a minimal spanning set. A minimal spanning set is a spanning set that contains the smallest number
of vectors to obtain all of the vectors in the span. An important aspect of a minimal spanning set
is that every vector in the span can be written in one and only one way as a linear combination of
the vectors in the minimal spanning set. This will allow us to define the important notion of the
dimension of a vector space.

Review of useful information: Recall that a linear combination of vectors v, va, ..., vj in R™ is
a sum of scalar multiples of v, v, ..., vi. That is, a linear combination of the vectors vy, vo, .. .,
v}, is a vector of the form

Cc1V1 + covo + - - + LV,

where c1, co, ..., ¢ are scalars.
Recall also that the collection of all linear combinations of a set {vy, va, ..., vi} of vectors in
R™ is called the span of the set of vectors. That is, the span Span{vy, va, ..., vy} of the set vq, va,

.., v, of vectors in R" is the set

{e1v1 + covay + - -+ + ¢, vi : where ¢q,ca, ...,y are scalars}.
1 0
For example, a linear combination of vectors vi = | 1 | and vy = [ —2 | is2v]; — 3vg =
2 1

2
8 |[. All linear combinations of these two vectors can be expressed as the collection of vectors
1
1
of the form | ¢; — 2cy | where ¢y, ¢y are scalars. Suppose we want to determine whether w =
2c1 + ¢
1

2 | 1is in the span, in other words if w is a linear combination of vy, vy. This means we are
3
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looking for ¢y, ¢z such that

C1 1
c1—2c | = | 2
2c1 + ¢o 3
we solve for the system represented with the augmented matrix
1 0 1
1 -2 2
2 1 3

By reducing this matrix, we find that there are no solutions of the system, which implies that w is
not a linear combination of v, vo. Note that we can use any names we please for the scalars, say
x1, Ta, if we prefer.

2 1 1 0
Preview Activity 6.1. Let v = 1 |,va=1]1|,andvy3=| —1 |,andletb= | 1
-3 0 —6 3

If b is in Span{vy, ve, v3}, we are interested in the most efficient way to represent b as a linear
combination of vy, vg, and vs.

(1) The vector b is in Span{vy, va, v3} if there exist 21, x2, and x3 so that
T1V] + xove 4+ x3v3y = b.

(Recall that we can use any letters we want for the scalars. They are simply unknown scalars
we want to solve for.)

(a) Explain why b is in Span{vy, vo, v3}. (Hint: What is the matrix we need to reduce?)

(b) Write b as a linear combination of v, vo, and v3. In how many ways can b be
written as a linear combination of the vectors vi, vo, and v3? Explain.

(2) In problem 1 we saw that the vector b could be written in infinitely many different ways as
linear combinations of v, vo, and v3. We now ask the question if we really need all of the
vectors v1, va, and v3 to make b as a linear combination in a unique way.

(a) Can the vector b be written as a linear combination of the vectors v; and vs? If not,
why not? If so, in how many ways can b be written as a linear combination of v;
and vo? Explain.

(b) If possible, write b as a linear combination of v; and va.

(3) In problem 1 we saw that b could be written in infinitely many different ways as a linear
combination of the vectors v, vo, and v3. However, the vector b could only be written
in one way as a linear combination of v and vo. So b is in Span{vi, vy, v3} and b is
also in Span{vy, ve}. This raises a question — is any vector in Span{vy, vy, vs} also in
Span{vy, va}. If so, then the vector v3 is redundant in terms of forming the span of vy, va,
and vs. For the sake of efficiency, we want to recognize and eliminate this redundancy.

(a) Can v3 be written as a linear combination of the vectors v; and va? If not, why not?
If so, write v3 as a linear combination of v and vo.

(b) Use the result of part (a) to decide if any vector in Span{vi,vs,v3} is also in
Span{vy,va}.
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Linear Independence

In this section we will investigate the concepts of linear dependence and independence of a set of
vectors. Our goal is to be able to efficiently determine when a given set of vectors forms a minimal
spanning set. This will involve the concepts of span and linear independence. Minimal spanning
sets are important in that they provide the most efficient way to represent vectors in a space, and
will later allow us to define the dimension of a vector space.

In Preview Activity 6.1 we considered the case where we had a set {v1, v, v3} of three vectors,
and the vector v3 was in the span of {v1, va}. So the the vector v3 did not add anything to the span
of {v1, va}. In other words, the set {v1, va, v3} was larger than it needed to be in order to generate
the vectors in its span — that is, Span{vy, ve, vs} = Span{vy, vo}. However, neither of the vectors
in the set {vq, va} could be removed without changing its span. In this case, the set {vq, va} is
what we will call a minimal spanning set or a basis for Span S. There are two important properties
that make {v1, vo} a basis for Span S. The first is that every vector in Span S can be written as
linear combinations of v; and vy (we also use the terminology that the vectors v; and vo span
Span S), and the second is that every vector in Span .S can be written in exactly one way as a linear
combination of v; and vo. This second property is the property of linear independence, and it is
the property that makes the spanning set minimal.

To make a spanning set minimal, we want to be able to write every vector in the span in a unique
way in terms of the spanning vectors. Notice that the zero vector can always be written as a linear
combination of any set of vectors using O for all of the weights. So to have a minimal or linearly
independent spanning set, that is, to have a unique representation for each vector in the span, it will
need to be the case that the only way we can write the zero vector as a linear combination of a set
of vectors is if all of the weights are 0. This leads us to the definition of a linearly independent set
of vectors.

Definition 6.1. A set {vy,va,..., vy} of vectors in R" is linearly independent if the vector equa-
tion
X1V + 2ovy + -+ xpvE =0

for scalars x1, z2, . ..,z has only the trivial solution
Ty =29 =x3=---=x =0.

If a set of vectors is not linearly independent, then the set is linearly dependent.

Alternatively, we say that the vectors v, va, ..., v are linearly independent (or dependent) if
the set {vy,va,..., vy} is linearly independent (or dependent).

Note that the definition tells us that a set {vq, va, ..., vi} of vectors in R is linearly dependent
if there are scalars x1, x9, . .., T,, not all of which are 0 so that

T1V] + T9vy + - +xpvE = 0.

Activity 6.1. Which of the following sets in R? or R? is linearly independent and which is linearly
dependent? Why? For the linearly dependent sets, write one of the vectors as a linear combination
of the others, if possible.
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2 —2 —4
(@) 51 = 01, 8 |, 8
1] [ 1 0
(1] [0
(b) Sy = 21,1 2 . (Hint: What relationship must exist between two vectors if they
1 3

are linear_ly dépen_dent?)

(c) The vectors u, v, and w as shown in Figure 6.2.

)

Figure 6.2: Vectors u, v, and w.

Activity 6.1 (a) and (c) illustrate how we can write one of the vectors in a linearly dependent set
as a linear combination of the others. This would allow us to write at least one of the vectors in the
span of the set in more than one way as a linear combination of vectors in this set. We prove this
result in general in the following theorem.

Theorem 6.2. A set {v1,va,...,Vi} of vectors in R™ is linearly dependent if and only if at least
one of the vectors in the set can be written as a linear combination of the remaining vectors in the
set.

The next activity is intended to help set the stage for the proof of Theorem 6.2.

Activity 6.2. The statement of Theorem 6.2 is a bi-conditional statement (an if and only if state-
ment). To prove this statement about the set .S we need to show two things about .S. One: we must
demonstrate that if .S is a linearly dependent set, then at least one vector in .S is a linear combination
of the other vectors (this is the “only if” part of the biconditional statement) and Two: if at least
one vector in S is a linear combination of the others, then S is linearly dependent (this is the “if”
part of the biconditional statement). We illustrate the main idea of the proof using a three vector set
S = {Vl, V2,V3}.

(a) First let us assume that S is a linearly dependent set and show that at least one vector in S
is a linear combination of the other vectors. Since .S is linearly dependent we can write the
zero vector as a linear combination of vq, vo, and v3 with at least one nonzero weight. For
example, suppose

2vy + 3vy +4v3 = 0. (6.1)
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Solve Equation (6.1) for the vector vy to show that v can be written as a linear combination
of v and v3. Conclude that v is a linear combination of the other vectors in the set .S.

(b) Now we assume that at least one of the vectors in S is a linear combination of the others.
For example, suppose that
V3 =V] + 5V2. (6.2)

Use vector algebra to rewrite Equation 6.2 so that 0 is expressed as a linear combination of
V1, Vo, and vg such that the weight on v3 is not zero. Conclude that the set S is linearly
dependent.

Now we provide a formal proof of Theorem 6.2, using the ideas from Activity 6.2.

Proof of Theorem 6.2. Let S = {vi1,va,..., v} be a set of vectors in R”. We will begin by
verifying the first statement.

We assume that S is a linearly dependent set and show that at least one vector in S is a linear
combination of the others. Since S is linearly dependent, there are scalars x1, xo, . . ., Ty, not all of
which are 0, so that

T1V1 +xave + -+ xp vy = 0. (6.3)

We don’t know which scalar(s) are not zero, but there is at least one. So let us assume that x; is not
zero for some ¢ between 1 and k. We can then subtract x;v; from both sides of Equation (6.3) and
divide by z; to obtain

€1 x2 Ti—1 LTi41 Tit2 Tk
Vi=—Vi+ —Va+ -+ Viel+ —Viy1+ ——Viga + -+ — Vg
Thus, the vector v; is a linear combination of vy, va, ..., V;_1, Vit1, ..., Vi, and at least one of

the vectors in S is a linear combination of the other vectors in S.

To verify the second statement, we assume that at least one of the vectors in S can be written
as a linear combination of the others and show that .S is then a linearly dependent set. We don’t
know which vector(s) in S can be written as a linear combination of the others, but there is at least
one. Let us suppose that v; is a linear combination of the vectors vy, va, ..., Vi1, Vit1, ... Vi
for some ¢ between 1 and k. Then there exist scalars x1, z2, . .., _1, Tj+1, - . ., Tp, SO that

Vi =T1V1+ToVy + -+ X 1Vi—1 + Ti+1Vit1 + Tit2Vip2 + - + T V.
It follows that
0=m1vi +x2va+ -+ xi_1Vvie1 + (=1)Vi + T 1Vig1 + TivaViea + -+ + Tp Vi
So there are scalars there are scalars x1, 9, . . ., x, (With x; = —1), not all of which are 0, so that
T1Vy] + Tovy + - +xpvE = 0.

This makes S a linearly dependent set. |

With a linearly dependent set, at least one of the vectors in the set is a linear combination of the
others. With a linearly independent set, this cannot happen — no vector in the set can be written as
a linear combination of the others. This result is given in the next theorem. You may be able to see
how Theorems 6.2 and 6.3 are logically equivalent.
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Theorem 6.3. A set {vi,Vva,...,Vi} of vectors in R" is linearly independent if and only if no
vector in the set can be written as a linear combination of the remaining vectors in the set.

Activity 6.3. As was hinted at in Preview Activity 6.1, an important consequence of a linearly
independent set is that every vector in the span of the set can be written in one and only one way as
a linear combination of vectors in the set. It is this uniqueness that makes linearly independent sets
so useful. We explore this idea in this activity for a linearly independent set of three vectors. Let
S = {v1, vy, vs} be a linearly independent set of vectors in R™ for some 7, and let b be a vector
in Span S. To show that b can be written in exactly one way as a linear combination of vectors in
S, we assume that
b =z1v1+xavy +23vs and b =y1vi +y2va +ysvs

for some scalars x1, x2, x3, y1, Y2, and y3. We need to demonstrate that 1 = 1, 2 = 2, and
3 = Ys.

(a) Use the two different ways of writing b as a linear combination of v, vy and v3 to come

up with a linear combination expressing 0 as a linear combination of these vectors.

(b) Use the linear independence of the vectors vi, vy and vs to explain why z; = y1, x2 = ¥,
and T3 = Ys3.

Activity 6.3 contains the general ideas to show that any vector in the span of a linearly indepen-
dent set can be written in one and only one way as a linear combination of the vectors in the set. The
weights of such a linear combination provide us a coordinate system for the vectors in terms of the
basis. Two familiar examples of coordinate systems are the Cartesian coordinates in the xy-plane,
and xyz-space. We will revisit the coordinate system idea in a later chapter.

In the next theorem we state and prove the general case of any number of linearly independent
vectors producing unique representations as linear combinations.

Theorem 6.4. Let S = {v1,Va,..., vy} be alinearly independent set of vectors in R™. Any vector
in Span S can be written in one and only one way as a linear combination of the vectors vi, v,
.o Vi

Proof. Let S = {v1,va,...,vi} be a linearly independent set of vectors in R", and let b be a
vector in Span S. By definition, it follows that b can be written as a linear combination of the
vectors in S. It remains for us to show that this representation is unique. So assume that

b=x1vi+zovo+---+xpvy and b=1y1v] +yovo+ -+ ypvy (6.4)
for some scalars x1, xo, ..., g, and y1, y2, . . ., Y. Then
TIVL + T2V + -+ + TV = Y1V1 + Y2V + -+ - + Yp V.
Subtracting all terms from the right side and using a little vector algebra gives us
(1 —y1)vi+ (22 —y2)va + -+ + (2% — yr)vi = 0.
The fact that S is a linearly independent set implies that
r1—y1=0,22—-9y2=0, ..., xp —yp =0,

showing that x; = y; for every ¢ between 1 and k. We conclude that the representation of b as a
linear combination of the linearly independent vectors in S is unique.
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Determining Linear Independence

The definition and our previous work give us a straightforward method for determining when a set
of vectors in R is linearly independent or dependent.

Activity 6.4. In this activity we learn how to use a matrix to determine in general if a set of vectors
in R is linearly independent or dependent. Suppose we have k vectors vy, va, ..., v in R”. To
see if these vectors are linearly independent, we need to find the solutions to the vector equation

T1V1 + Tovy + - +xpvE = 0. (6.5)
T
T2

If welet A = [vy va vy -+ vi]and x = . |, then we can write the vector equation (6.5) in
Tk

matrix form Ax = 0. Let B be the reduced row echelon form of A.

(a) What can we say about the pivots of B in order for Ax = 0 to have exactly one solution?
Under these conditions, are the vectors vy, va, ..., v linearly independent or dependent?

(b) What can we say about the rows or columns of B in order for Ax = 0 to have infinitely
many solutions? Under these conditions, are the vectors vy, vo, ..., Vi linearly indepen-
dent or dependent?

1 1
L -1 0
(c) Use the result of parts (a) and (b) to determine if the vectors v; = o [PV2=1 5 |
0 3
0
and vz = (2) in R* are linearly independent or dependent. If dependent, write one
1
of the vectors as a linear combination of the others. You may use the fact that the matrix
1 10 1 00
Lo is row equivalent to 010
2 2 2 W equiv 00 1
0 3 1 0 00

Minimal Spanning Sets

It is important to note the differences and connections between linear independence, span, and
minimal spanning set.

1 0
e The set S = 01,1 is not a minimal spanning set for R? even though S is a
0 0
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0
linearly independent set. Note that S does not span R? since the vector | 0 | is not in
1
Span S.
1 0 [0 ] 1
e ThesetT = Of(,/11],]01,|1 is not a minimal spanning set for R? even
0 0 | 1] 1
though Span T' = R3. Note that
1] [ 1 0 0
1{=(0|+]1[+]0],
1 | | 0 0 1
so 1" is not a linearly independent set.
1 0 0
e Theset U = O,{11],]0 is a minimal spanning set for R? since it satisfies
0 0 1

both characteristics of a minimal spanning set: Span U = R AND U is linearly independent.

The three concepts — linear independence, span, and minimal spanning set — are different. The
important point to note is that minimal spanning set must be both linearly independent and span the
space.

To find a minimal spanning set we will often need to find a smallest subset of a given set of
vectors that has the same span as the original set of vectors. In this section we determine a method
for doing so.

—1 2 0 [ -3
Activity 6.5. Let v; = 0 |,vy= 0 |,vs=1|1|,and vy = 4 | in R3. Assume
2 —4 3 | 18
-1 2 0 -3 1 1 -2 0 3
that the reduced row echelon form of the matrix A = 0 0 1 4 1is | 0O 01 4
2 -4 3 18 | 0 0 00
T
(a) Write the general solution to the homogeneous system Ax = 0, where x = 22 . Write
3
T4

all linear combinations of v, vo, v3, and v4 that are equal to 0, using weights that only
involve x5 and x4.

(b) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show that the vector v4 is a linear combination of v1, vo, and v3. What does this tell us
about Span{vy, ve, v3} and Span{vy, vo, v3, v4}?

(c) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show why the vector vy is a linear combination of v; and v3. What does this tell us about
Span{vy,vs} and Span{vy, vo, v3}?
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(d) Is {v1, vs} a minimal spanning set for Span{vy, va, v, v4}? Explain your response.

Activity 6.5 illustrates how we can use a matrix to determine a minimal spanning set for a given
set of vectors {vy,vo,...,vi}in R™.

e Form the matrix A = [v; va -+ vg].

e Find the reduced row echelon form [B | 0] of [A | 0]. If B contains non-pivot columns,
say for example that the ith column is a non-pivot column, then we can choose the weight
x; corresponding to the ith column to be 1 and all weights corresponding to the other non-
pivot columns to be 0 to make a linear combination of the columns of A that is equal to O.
This allows us to write v; as a linear combination of the vectors corresponding to the pivot
columns of A as we did in the proof of Theorem 6.3. So every vector corresponding to a
non-pivot column is in the span of the set of vectors corresponding to the pivot columns. The
vectors corresponding to the pivot columns are linearly independent, since the matrix with
those columns has every column as a pivot column. Thus, the set of vectors corresponding to
the pivot columns of A forms a minimal spanning set for {vi,va,...,vi}.

IMPORTANT NOTE! The set of pivot columns of the reduced row echelon form of A will nor-
mally not have the same span as the set of columns of A, so it is critical that we use columns of A,
NOT B in our minimal spanning set.

Activity 6.6. Find a minimal spanning set for the span of the set

O O = =
o;ww
Oh;i—lo
——

Activity 6.5 also illustrates a general process by which we can find a minimal spanning set —
that is the smallest subset of vectors that has the same span. This process will be useful later when
we consider vectors in arbitrary vector spaces. The idea is that if we can write one of the vectors
in a set .S as a linear combination of the remaining vectors, then we can remove that vector from
the set and maintain the same span. In other words, begin with the span of a set S and follow these
steps:

Step 1. If S is a linearly independent set, we already have a minimal spanning set.

Step 2. If S is not a linearly independent set, then one of the vectors in S is a linear combination
of the others. Remove that vector from .S to obtain a new set 7. It will be the case that
Span T' = Span S.

Step 3. If T is a linearly independent set, then 7" is a minimal spanning set. If not, repeat steps 2
and 3 for the set 7" until you arrive at a linearly independent set.

This process is guaranteed to stop as long as the set contains at least one nonzero vector. A verifi-
cation of the statement in Step 2 that Span 7" = Span S is given in the next theorem.
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Theorem 6.5. Let {vi,Vva,..., vV} be a set of vectors in R™ so that for some i between 1 and k,
v, isin Span{vi,va,...,Vi_1,Vit1,...,Vi}. Then

Span{v1,va,..., vk} = Span{vi,va, ..., Vi1, Vit1,..., Vg }.
Proof. Let {vi,va,..., vy} be a set of vectors in R™ so that v; is in the span of vi, vo, ..., v;_1,

Viti, ..., and vy, for some ¢ between 1 and k. To show that
Span{vy,va,..., vk} = Span{vi, ..., Vi_1,Vit1,...,Vk},
we need to show that
(1) every vector in Span{vy,va,...,vi}isin Span{vy,...,v;_1,Viy1,...,Vk}, and

(2) every vector in Span{v1,...,Vi_1,Vit1,...,Vg}isin
Span{vi,...,vi}.

Let us consider the second containment. Let x be a vector in the span of vy, va, ..., Vi_1, Vii1,
...,and vi. Then

X =21V +2Tova2+ -+ Ti—1Vi—1 + Tip1Vip1 + -+ TV
for some scalars z1, o, ..., T;—1, Ti+1, - - ., Tf. Note that
X =x1v1 +2ave + -+ xi—1Vi—1 + (0)vs + Tip1 Vi1 + -+ - + T Vi
as well, so x is in Span{vy, va, ..., vi}. Thus,
Span{vl, Vo, ..y Vi1, Vigtl,-. o, Vk} - Span{vl, Vo,... ,Vk}.

(This same argument shows a more general statement that if S is a subset of 7', then Span S C
Span T'.)

Now we demonstrate the first containment. Here we need the assumption that v; is in Span{vy,

V2, .« Vi—1, Vitl, . - ., Vi } for some i between 1 and k. That assumption gives us

Vi =C1Vl +CaVa + -+ o1Vl + G Vipr + o eV (6.6)
for some scalars ¢y, co, . . ., ¢i—1, Ci+1, - - -» Ck. NOow let x be a vector in the span of vy, va, ..., V.
Then

X =21V] +22Vy + -+ T Vg

for some scalars 1, x9, . . ., Tg. Substituting from (6.6) shows that

X =21V] +XaVy + -+ + TV
=T1V1 +x2ve+ -+ L1 Vim1 + TiVi + Tip1Vigl T+ TV
=2x1V1+ 22Vt -+ Ti1Vi-1
+xilcivi + cavo + - F o1 Viet + G Vgl o+ cp V]
+ Tip1Vig1r + -+ TRV
= (xl + xicl)vl + (1’2 + .TiCQ)VQ +---+ (fUz‘—l + xici_l)vi_l

+ (Tigp1 + iCig1)Vig1 - - + (g + Tick) Vi
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So x is in Span{vy,va,...,V;_1,Vit1,...,V} and
Span{vi,va,..., vk} C Span{vi,vo,..., Vi 1,Vit1,...,Vk}.
Since the two sets are subsets of each other, they must be equal sets. We conclude that
Span{vy,va,..., v} = Span{vi,vo, ..., Vi1, Vit1,...,VL}.
|
The result of Theorem 6.5 is that if we have a finite set .S of vectors in R”, we can eliminate

those vectors that are linear combinations of others until we obtain a smallest set of vectors that still
has the same span. As mentioned earlier, we call such a minimal spanning set a basis.

Definition 6.6. Let S be a set of vectors in R”. A subset B of S is a basis for Span S if B is
linearly independent and Span B = Span S.

IMPORTANT NOTE: A basis is defined by two characteristics. A basis must span the space in
question and a basis must be a linearly independent set. It is the linear independence that makes a
basis a minimal spanning set.

We have worked with a familiar basis in R? throughout our mathematical careers. A vector

o] elo]elv)

1
So the set {e1,e3}, where e; = [ 0

are linearly independent, so is the set {e;, es}. Therefore, the set {ej, ez} is a basis for R%. The
vector eq is in the direction of the positive z-axis and the vector ey is in the direction of the positive

a . .
|: b :| m RQ can be written as

} and ey = [ (1) ] spans R?. Since the columns of [e; es]

p |32 linear combination of e; and e is akin to identifying

the vector with the point (a, b) as we discussed earlier. The set {e1, 2} is called the standard basis
for R?.

. . a
y-axis, so decomposing a vector [

This idea is not restricted to R2. Consider the vectors

[ 1] [ 0 ] [0 ]
1 0
0 0 0
€] = . , €2 = . y T, € =
0 0
| 0 ] | 0 | 1]
in R™. That is, the vector e; is the vector with a 1 in the ith position and Os everywhere else. Since
the matrix [e; e2 - -- €,] is the identity matrix, the set {e;, e, ..., e,} is a basis for R™. The set
{e1,ey,...,e,} is called the standard basis for R™.
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As we will see later, bases! are of fundamental importance in linear algebra in that bases will
allow us to define the dimension of a vector space and will provide us with coordinate systems.

We conclude this section with an important theorem that is similar Theorem 5.3.

Theorem 6.7. Let A be an m x n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.
(3) The columns of A are linearly independent.

(4) The matrix A has a pivot position in each column.

Examples

What follows are worked examples that use the concepts from this section.

1 0 3 )
Example 6.8. Let v; = g , Vo = _(13 , Vg = _g ,and vy = _3
1 5 -7 -5

(a) Is the set S = {v1, va, v, v4} linearly independent or dependent. If independent, explain
why. If dependent, write one of the vectors in S as a linear combination of the other vectors
in S.
(b) Find a subset B of .S that is a basis for Span S. Explain how you know you have a basis.
Example Solution.
(a) We need to know the solutions to the vector equation

T1V1 + 2oV + 23V3 + 14vy = 0.

If the equation has as its only solution x1 = x9 = x3 = x4 = 0 (the trivial solution), then
the set S is linearly independent. Otherwise the set .S is linearly dependent.

To find the solutions to this system, we row reduce the augmented matrix

1 0 3 510
2 6 -6 =20
0o -1 2 2|0
1 5 =7 =510

!The plural of basis is bases.
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(Note that we really don’t need the augmented column of zeros — row operations won’t
change that column at all. We just need to know that the column of zeros is there.) Tech-
nology shows that the reduced row echelon form of this augmented matrix is

1 0 3 510
01 -2 =210
00 0 00
00 O 0|0

The reduced row echelon form tells us that the vector equation is consistent, and the fact
that there is no pivot in the fourth column shows that the system has a free variable and
more than just the trivial solution. We conclude that .S is linearly dependent.

Moreover, the general solution to our vector equation is

I = —33;3 — 5%4
To = 2x3 + 214
x3 is free

x4 18 free.
Letting z4 = 0 and 3 = 1 shows that one non-trivial solution to our vector equation is
r1=-3, x9 =2, xz3=1, and z4 = 0.
Thus,
—3vi 4+ 2ve + vy =0,

or
V3 = 3V1 — 2V2

and we have written one vector in S as a linear combination of the other vectors in S.

(b) We have seen that the pivot columns in a matrix A form a minimal spanning set (or basis)
for the span of the columns of A. From part (a) we see that the pivot columns in the reduced
row echelon form of A = [v] va v3 vy] are the first and second columns. So a basis for
the span of the columns of A is {vy,va}. Since the elements of S are the columns of A,
we conclude that the set B = {v, vy} is a subset of S that is a basis for Span S.

1 3 -5
Example 6.9. Letvi=| 1 |,vo=| —7 |,and vy = 6
0 2 10

(a) Is the set S = {v1, va, v3} a basis for R3? Explain.

-5
(b) Let v4 = 6 |, where h is a scalar. Are there any values of h for which the set
h

S’ = {v1, Vg, vy} is not a basis for R3? If so, find all such values of h and explain why S’
is not a basis for R? for those values of h.

Example Solution.
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(a) We need to know if the vectors in S are linearly independent and span R3. Technology
shows that the reduced row echelon form of

1 3 =5
A=|1 -7 6
0 2 10
is
1 00
010
0 01

Since every column of [vy vg v3] is a pivot column, the set {v1, vo, v} is linearly inde-
pendent. The fact that there is a pivot in every row of the matrix A means that the equation
Ax = b is consistent for every b in R3. Since Ax is a linear combination of the columns
of A with weights from x, tt follows that the columns of A span R3. We conclude that the
set S is a basis for R,

(b) Technology shows that a row echelon form of A = [v; v v4] is

1 0 0
0 —10 11
11

0 0 h+%
The columns of A are all pivot columns (hence linearly independent) as long as h # —%,
and are linearly dependent when h = —15—1. So the only value of h for which S’ is not a
basis for R3 is h = —%.

Summary
o Aset{vy,va,...,vi} of vectors in R™ is linearly independent if the vector equation

X1V + xove + -+ xp v =0
for scalars x1, 2, ..., x) has only the trivial solution
r1 =9 =x3="---=1x8 = 0.

Another way to think about this is that a set of vectors is linearly independent if no vector in
the set can be written as a linear combination of the other vectors in the set.

e Aset{vy,va,..., vy} of vectors in R" is linearly dependent if the vector equation
1Vl +2ave+ -+ v =0
has a nontrivial solution. That is, we can find scalars 1, x9, . . . , x} that are not all 0 so that
211 + x9vy + - -+ + xp v = 0.

Another way to think about this is that a set of vectors is linearly dependent if at least one
vector in the set can be written as a linear combination of the other vectors in the set.
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o If S'is a set of vectors, a subset B of .S is a basis for Span S if B is a linearly independent set
and Span B = Span S.

e Given a nonzero set S of vectors, we can remove vectors from .S that are linear combinations
of remaining vectors in S to obtain a linearly independent subset of .S that has the same span
as S.

e The columns of a matrix A are linearly independent if the equation Ax = 0 has only the
trivial solution x = 0.

e The set {vy,Vo,..., vy} is linearly independent if and only if every column of the matrix
A = [vy vav3 -+ v, is a pivot column.
o If A =[vyvyvs - v, then the vectors in the pivot columns of A form a minimal spanning
set for Span{vy,va, ..., vg}.
Exercises

(1) Consider the following vectors in R3:

1 1 1
V] = 1 , Vo = 2 , V3 = 3
1 1 1

Is the set consisting of these vectors linearly independent? If so, explain why. If not, make a
single change in one of the vectors so that the set is linearly independent.

(2) Consider the following vectors in R3:

1 1
vi=| 2 , vo= | —1 , vy=| 1
1 2 c

For which values of c is the set consisting of these vectors linearly independent?

(3) In alab, there are three different water-benzene-acetic acid solutions: The first one with 36%
water, 50% benzene and 14% acetic acid; the second one with 44% water, 46% benzene and
10% acetic acid; and the last one with 38% water, 49% benzene and 13% acid. Since the lab
needs space, the lab coordinator wants to determine whether all solutions are needed, or if it is
possible to create one of the solutions using the other two. Can you help the lab coordinator?

1 0
(4) Givenvectorsvi = | 2 | andvy = | 2 |, find a vector v3 in R so that the set consisting
3 1

of vi, vo and vj is linearly independent.
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(5) Consider the span of S = {v1, va, V3, v4} where

1 2 3 3
1 1 2 3
Vl = 1 ) V2 = 0 ? v3 = _ 1 ? V4 = 1
4 3 1 6

(a) Is the set S a minimal spanning set of Span S? If not, determine a minimal spanning
set, i.e. a basis, of Span S.

(b) Check that the vector u = is in Span S. Find the unique representation of

-2
1
u in terms of the basis vectors.

(6) Come up with a 4 x 3 matrix with linearly independent columns, if possible. If not, explain
why not.

(7) Come up with a 3 x 4 matrix with linearly independent columns, if possible. If not, explain
why not.

(8) Give an example of vectors v, va, v3 such that a minimal spanning set for Span{vy, vo, v3}
is equal to that of Span{vi,v2}; and an example of three vectors vy, v, v3 such that a
minimal spanning set for Span{vy, vo, v3} is equal to that of Span{vy, v3}.

(9) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If v, vo and v3 are three vectors none of which is a multiple of another,
then these vectors form a linearly independent set.

(b) True/False If v;, vy and vz in R” are linearly independent vectors, then so are v,
vy, v3 and vy for any v4 in R"™.

(c) True/False If v, vo, v3 and v4 in R” are linearly independent vectors, then so are
v1i, vo and vs.

(d) True/False A 3 x 4 matrix cannot have linearly independent columns.
(e) True/False If two vectors span R?, then they are linearly independent.
(f) True/False The space R? cannot contain four linearly independent vectors.

(g) True/False If two vectors are linearly dependent, then one is a scalar multiple of the
other.

(h) True/False If a set of vectors in R™ is linearly dependent, then the set contains more
than n vectors.

(i) True/False The columns of a matrix A are linearly independent if the equation Ax =
0 has only the trivial solution.
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(j) True/False Let W = Span{vy, va,v3,va}. If {vy,ve,vs} is a minimal spanning
set for W, then {v1, va, v4} cannot also be a minimal spanning set for TV.

(k) True/False Let W = Span{vi,va,vs,va}. If {vi,va,v3} is a minimal spanning
set for W, then {v1, vo} cannot also be a minimal spanning set for .

(I) True/False If v = 2v; — 3vy, then {vy, vo} is a minimal spanning set for
Span{vy,va, vs}.

Project: Generating Bézier Curves

Bézier curves can be created as linear combinations of vectors. In this section we will investigate
how cubic Bézier curves (the ones used for fonts) can be realized through linear and quadratic
Bézier curves. We begin with linear Bézier curves.

Project Activity 6.1. Start with two vectors pg and p;. Linear Bézier curves are linear combina-
tions

q=(1-1t)po+tp1

of the vectors pg and p; for scalars ¢ between 0 and 1. (You can visualize these linear com-
binations using the GeoGebra file Linear Bezier at https://www.geogebra.org/m/
HvrPhh86. With this file you can draw the vectors q for varying values of . You can move the
points pg and p; in the GeoGebra file, and the slider controls the values of ¢. The point identified
with q is traced as ¢ is changed.) For this activity, we will see what the curve q corresponds to by

. : . . . 2 6
evaluating certain points on the curve in a specific example. Let pg = 1 and p; = 3 |

(a) What are the components of the vector (1 — t)pg + tp; if t = %? Where is this vector in
relation to pg and p; ? Explain.

(b) What are the components of the vector (1 — ¢)pg + tpy if t = %? Where is this vector in
relation to pg and p; ? Explain.

(c) What are the components of the vector (1 — ¢)pg + tp; for an arbitrary t? Where is this
vector in relation to pg and p;? Explain.

For each value of ¢, the vector g = (1 — t)pg + tp1 is a linear combination of the vectors pg
and p;. Note that when ¢ = 0, we have q = pg and whent = 1 we have q = pj,andfor0 <t <1
Project Activity 6.1 shows that the vectors q trace out the line segment from pg to p;. The span
{(1 = t)po + tp1} of the vectors pg and p; for 0 < ¢ < 1 is a linear Bézier curve. Once we have a
construction like this, it is natural in mathematics to extend it and see what happens. We do that in
the next activity to construct quadratic Bézier curves.

Project Activity 6.2. Let pg, p1, and p2 be vectors in the plane. We can then let
qo = (1 —t)po+tp1 and qi = (1 —t)p1 + tp2

be the linear Bézier curves as defined in Project Activity 6.1. Since qg and q; are vectors, we can
define r as

r=(1—1t)qo+tq:.
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(You can visualize these linear combinations using the GeoGebra file Quadraric Bezier at
https://www.geogebra.org/m/VWCZZBXz. With this file you can draw the vectors r for
varying values of . You can move the points pg, p1, and ps in the GeoGebra file, and the slider
controls the values of . The point identified with r is traced as ¢ is changed.) In this activity we

. . . . .. 2
investigate how the vectors r change as ¢ changes. For the remainder of this activity, let pg = [ 3 ] ,

_ |8 and = 6
Pr=1,40 p2=1 _4 |

(a) At what point (in terms of pg, p1, and po) is the vector r = (1 — ¢)qg + tq; when t = 0?
Explain using the definition of r.

(b) At what point (in terms of pg, p1, and p2) is the vector r = (1 — t)qp + tq; when ¢t = 1?
Explain using the definition of r.

(c) Find by hand the components of the vector (1 — ¢)qo + tq; with ¢t = %. Compare with the
result of the GeoGebra file.

The span {(1—t)qo+tq; } of the vectors qo and q;, or the set of points traced out by the vectors
r for 0 <t < 1, is a quadratic Bézier curve. To understand why this curve is called quadratic, we
examine the situation in a general context in the following activity.

Project Activity 6.3. Let pg, p1, and p2 be arbitrary vectors in the plane. Write r = (1—t)qo+tqy
as a linear combination of pg, p1, and po. That is, write r in the form agpg + a1p1 + asp2 for
some scalars (that may depend on ?) ag, a1, and ag. Explain why the result leads us to call these
vectors quadratic Bézier curves.

Notice that if any one of the p; lies on the line determined by the other two vectors, then the
quadratic Bézier curve is just a line segment. So to obtain something non-linear we need to choose
our vectors so that that doesn’t happen.

Quadratic Bézier curves are limited, because their graphs are parabolas. For applications we
need higher order Bézier curves. In the next activity we consider cubic Bézier curves.

Project Activity 6.4. Start with four vectors pg, p1, P2, Ps — the points defined by these vectors
are called control points for the curve. As with the linear and quadratic Bézier curves, we let
do = (1 —t)po +tp1, a1 = (1 —t)p1 +tp2, and qz = (1 —1t)p2 +Ips.
Then let
ro=(1—-t)qo+tq; and ry = (1—1t)q; +tqs.

We take this one step further to generate the cubic Bézier curves by letting
s=(1—1t)rog+try.

(You can visualize these linear combinations using the GeoGebra file Cubic Bezierathttps:
//www.geogebra.org/m/EDAhudy9. With this file you can draw the vectors s for varying
values of ¢. You can move the points pg, p1, P2, and ps in the GeoGebra file, and the slider
controls the values of ¢. The point identified with s is traced as ¢ is changed.) In this activity we
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. . . . .. 1
investigate how the vectors s change as ¢ changes. For the remainder of this activity, let pg = [ 3 ] ,

e[t 3 en 3]

(a) At what point (in terms of pg, p1, p2, and p3) is the vector s = (1 — ¢)rg + tr; when
t = 0? Explain using the definition of s.

(b) At what point (in terms of pg, p1, p2, and p3) is the vector s = (1 — t)rg + tr; when
t = 1? Explain using the definition of s.

(c) Find by hand the components of the vector (1 — ¢)rg + tr; with ¢ = %. Compare with the
result of the GeoGebra file.

The span {(1 —t)ro +tr; } of the vectors r( and ry, or the set of points traced out by the vectors
s for 0 <t <1, is a cubic Bézier curve. To understand why this curve is called cubic, we examine
the situation in a general context in the following activity.

Project Activity 6.5. Let pg, p1, p2, and p3 be arbitrary vectors in the plane. Write s = (1 —
t)ro + tr; as a linear combination of py, p1, p2, and p3. That is, write s in the form bypo + b1p1 +
bapa + b3p3 for some scalars (that may depend on t) by, b1, b2, and bs. Explain why the result leads
us to call these vectors cubic Bézier curves.

Just as with the quadratic case, we need certain subsets of the set of control vectors to be linearly
independent so that the cubic Bézier curve does not degenerate to a quadratic or linear Bézier curve.

More complicated and realistic shapes can be represented by piecing together two or more
Bézier curves as illustrated with the letter “S” in Figure 6.1. Suppose we have two cubic Bézier
curves, the first with control points pg, p1, p2, and ps and the second with control points p(, p,
p5, and p5. You may have noticed that p; lies on the tangent line to the first Bézier curve at py
and that p» lies on the tangent line to the first Bézier curve at p3. (Play around with the program
Cubic Bezier to convince yourself of these statements. This can be proved in a straightforward
manner using vector calculus.) So if we want to make a smooth curve from these two Bézier
curves, the curves will need to join together smoothly at ps and p{,. This will force p3 = p(, and
the tangents at ps = py, will have to match. This implies that ps, p3, and p) all have to lie on this
common tangent line. Keeping this idea in mind, use the GeoGebra file Cubic Bezier Pair
at https://www.geogebra.org/m/UwxQ6RPXk to find control points for the pair of Bézier
curves that create your own letter S.
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Section 7

Matrix Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is a matrix transformation?

e What properties do matrix transformations have? (In particular, what prop-
erties make matrix transformations linear?)

o What is the domain of a matrix transformation defined by an m X n matrix?
Why?

e What are the range and codomain of a matrix transformation defined by an
m X n matrix? Why?

e What does it mean for a matrix transformation to be one-to-one? If 7" is a
matrix transformation represented as 7'(x) = Ax, what are the conditions
on A that make 7" a one-to-one transformation?

e What does it mean for a matrix transformation to be onto? If 7" is a matrix
transformation represented as 7'(x) = Ax, what are the conditions on A
that make I" an onto transformation?

Application: Computer Graphics

As we will discuss, left multiplication by an m x n matrix defines a function from R" to R™. Such
a function defined by matrix multiplication is called a matrix transformation. In this section we
study some of the properties of matrix transformations and understand how, using the pivots of the
matrix, to determine when the output of a matrix transformation covers the whole space R™ or
when a transformation maps distinct vectors to distinct outputs.

Matrix transformations are used extensively in computer graphics to produce animations as seen

125
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in video games and movies. For example, consider the dancing figure at left in Figure 7.1. We can
identify certain control points (e.g., the point at the neck, where the arms join the torso, etc.) to mark
the locations of important points. Using just the control points we can reconstruct the figure. Each
control point can be represented as a vector, and so we can manipulate the figure by manipulating
the control points with matrix transformations. We will explore this idea in more detail later in this
section.

Figure 7.1: A dancing figure and a rotated dancing figure.

Introduction

In this section we will consider special functions which take vectors as inputs and produce vectors
as outputs. We will use matrix multiplication to produce the output vectors.

If Ais an m x n matrix and x is a vector in R", then the matrix-vector product Ax is a
vector in R™. (Pick some specific n, m values to understand this statement better.) Therefore, left
multiplication by the matrix A takes an input vector x in R™ and produces an output vector Ax in
R™, which we will refer to as the image of x under the transformation. This defines a function T’
from R™ to R where

T(x) = Ax.

These functions are the matrix transformations.
Definition 7.1. A matrix transformation is a function 7' : R” — R"™ defined by
T(x) = Ax

for some m x n matrix A.

Many of the transformations we consider in this section are from R? to R? so that we can
visualize the transformations. As an example, let us consider the transformation 7" defined by

il . 1 0 I
(D=0 3]
. 1 0 1 -1
If we plot the input vectors u; = [ ] uy = [ ] uz = [ 9 } and uy = [ }
(as (blue) circles) and their images 7'(u;) = [ L0 } [ (1) } = [ L ] T(ug) = [ 0 ]

o099
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T(u3) = [ L ], and T'(uy) = [ -1 ] (as (red) x’s) on the same set of axes as shown in Figure

-2 -1
7.2, we see that this transformation reflects the input vectors across the x-axis. We can also see this
algebraically since the reflection of the point (x1, x2) around the z-axis is the point (1, —x2), and

r([m)-1=2]

o’
o™ o2
Uy
{2
T(ul)
X X
T(uy) T'(uy)
X
T'(us)

Figure 7.2: Inputs and outputs of the transformation 7'.

Preview Activity 7.1. We now consider other transformations from R? to R?.

(1) Suppose a transformation 7" is defined by
1 o 2 0 X1
(=)=l ]15]

(a) Find T'(u;) for each of u; = {é},u2: [?},u:;: [ ; ],andu4: [ _1 ]

(In other words, substitute uy, uz, us, uy into the formula above to see what output
is obtained.)

(b) Plot all input vectors and their images on the same axes in R?. Clearly identify which
image corresponds to which input vector. Then give a geometric description of what
this transformation does.

(2) The transformation in the introduction performs a reflection across the x-axis. Find a matrix
transformation that performs a reflection across the y-axis.
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(3) Suppose a transformation 7" is defined by

where
1 0
A[OO]

(a) Find T'(u;) for each of u; = [ (1) ],ug = [ (1) ],ug = { ; },andu4 = [ -1 ]
(b) Plot all input vectors and their images on the same axes in R%. Give a geometric
description of this transformation.

. . 1
(c) Is there an input vector which produces b = [

1 ] as an output vector?

(d) Find all input vectors that produce the output vector b = [ L

0 ] . Is there a unique

input vector, or multiple input vectors?

Properties of Matrix Transformations

A matrix transformation is a function. When dealing with functions in previous mathematics
courses we have used the terms domain and range with our functions. Recall that the domain
of a function is the set of all allowable inputs into the function and the range of a function is the set
of all outputs of the function. We do the same with transformations. If 7" is the matrix transforma-
tion 7'(x) = Ax for some m x n matrix A, then 7" maps vectors from R” into R™. So R" is the
domain of T' — the set of all input vectors. However, the set R™ is only the target set for 7" and not
necessarily the range of 7. We call R™ the codomain of T', while the range of T' is the set of all
output vectors. The range is always a subset of the codomain, but the two sets do not have to be
equal. In addition, if a vector b in R™ satisfies b = T'(x) for some x in R”, then we say that b is
the image of x under the transformation 7.

Because of the properties of the matrix-vector product, if the matrix transformation 7" is defined
by T'(x) = Ax for some m X n matrix A, then

Tu+v)=Au+v)=Au+ Av

and
T(cu) = A(cu) = cAu = T'(u)

for any vectors u and v in R™ and any scalar c. So every matrix transformation 7' satisfies the
following two important properties:

(1) T(u+v)=T(u)+T(v) and
(2) T(cu) = T'(v).

The first property says that a matrix transformation 7" preserves sums of vectors and the second that
T preserves scalar multiples of vectors.
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Activity 7.1. Let T" be a matrix transformation, and let u and v be vectors in the domain of 7" so

1 -3
that T(u) = | 2 | and T'(v) = 1
0 4

(a) Exactly which vector is 7'(2u — 3v)? Explain.

(b) If a and b are any scalars, what is the vector T'(au + bv)? Why?

As we saw in Activity 7.1, we can combine the two properties of a matrix transformation 7" into
one: for any scalars a and b and any vectors u and v in the domain of 7" we have

T(au+bv) = aT'(u) + bT'(v). (7.1)

We can then extend equation (7.1) (by mathematical induction) to any finite linear combination of
vectors. That is, if vy, va, ..., Vi are any vectors in the domain of a matrix transformation 7" and if
x1, X2, - .., T} are any scalars, then

T(z1vy +xove + -+ + 2 vE) = 21 T(vi) + 22T (Vo) + - + 21T (vi). (7.2)

In other words, a matrix transformation preserves linear combinations. For this reason matrix trans-
formations are examples of a larger set of transformation that are called /inear transformations. We
will discuss general linear transformations in a later section.

There is one other important property of a matrix transformation for us to consider. The func-
tions we encountered in earlier mathematics courses, e.g., f(z) = 2x + 1, could send the input 0
to any output. However, as a consequence of the definition, any matrix transformation 7" maps the
zero vector to the zero vector because

T(0)=A0=0.
Note that the two vectors 0 in the last equation may not be the same vector —if 7' : R" — R™,

then the first 0 is in R™ and the second in R™. It should be clear from the context which vector O is
meant.

Onto and One-to-One Transformations

The problems we have been asking about solutions to systems of linear equations can be rephrased
in terms of matrix transformations. The question about whether a system Ax = b is consistent for
any vector b is also a question about the existence of a vector x so that 7'(x) = b, where 7' is the
matrix transformation defined by 7'(x) = Ax.

Activity 7.2. Let T be the matrix transformation defined by T'(x) = Ax where A is
10
0 1
0 2
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(a) Find T’ <[ 1 ]) and T' 1 . If it is not possible to find one or both of the output

vectors, indicate why.

(b) What are the domain and codomain of 7'? Why? (Recall that the domain is the space of all
input vectors, while the codomain is the space in which the output vectors are contained.)

2
(c) Can you find a vector x for which T'(x) = | 3 |? Can you find a vector x for which
6
2
T(x)=1| 3 |?
1
a
(d) Whichb = | b | are the image vectors for this transformation? Is the range of T equal
c

to the codomain of 7'?7 Explain.

(e) The previous question can be rephrased as a matrix equation question. We are asking
whether Ax = b is consistent for every b. How is the answer to this question related to the
pivots of A?

If T'is a matrix transformation, Activity 7.2 illustrates that the range of a matrix transformation
T may not equal its codomain. In other words, there may be vectors b in the codomain of T’ that are
not the image of any vector in the domain of T'. If it is the case for a matrix transformation 7" that
there is always a vector x in the domain of 7" such that 7'(x) = b for any vector b in the codomain
of T', then T is given a special name.

Definition 7.2. A matrix transformation 7" from R" to R™ is onto if each b in R™ is the image of
at least one x in R".

So the matrix transformation 7" from R™ to R"™ defined by 7'(x) = Ax is onto if the equation
Ax = b has a solution for each vector b in R™. Since the vectors Ax are linear combinations of
the columns of A, T is onto exactly when the span of the columns of A is all of R™. Activity 7.2
shows us that 7" is onto if every row of A contains a pivot.

Another question to ask about matrix transformations is how many vectors there can be that
map onto a given output vector.

Activity 7.3. Let 7" be the matrix transformation defined by T'(x) = Ax where A is

1 30
0 0 1]
1
(a) Find T’ < [ 1 ] > and T' 1 . If it is not possible to find one or both of the output
1

vectors, indicate why.
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(b) What are the domain and codomain of 7'? Why?

1
(c) Find T 1 . Are there any other x’s for which 7'(x) is this same output vector?
2
(Hint: Set up an equation to solve for such x’s.)

(d) Assume more generally that for some vector b, there is a vector x so that 7'(x) = b. Write
this as a matrix equation to determine how many solutions this equation has. Explain. How
is the answer to this question related to the pivots of A?

The uniqueness of a solution to Ax = b is the same as saying that the matrix transformation 7'
defined by T'(x) = Ax maps exactly one vector to b. A matrix transformation 7" that has the prop-
erty that every image vector is an image in exactly one way is also a special type of transformation.

Definition 7.3. A matrix transformation 7" from R to R"" is one-to-one if each b in R™ is the
image of at most one x in R".

So the matrix transformation 7" from R™ to R™ defined by 7'(x) = Ax is one-to-one if the
equation Ax = b has a unique solution whenever Ax = b is consistent. Since the vectors Ax are
linear combinations of the columns of A, the unique solution requirement indicates that any output
vector can be written in exactly one way as a linear combination of the columns of A. This implies
that the columns of A are linearly independent. Activity 7.3 indicates that this happens when every
column of A is a pivot column.

To summarize, if 7" is a matrix transformation defined by 7'(x) = Ax, then T is onto if every
row of A contains a pivot, and 7" is one-to-one if every column of A is a pivot column. Tt is important
to note the difference: being one-to-one depends on the rows of A and being onto depends on the
columns of A.

Having a matrix transformation from R™ to R™ can tell us things about m and n. For example,
when a matrix transformation from R" to R™ is one-to-one, it means that there is a unique input
vector for every output vector. Since a matrix transformation preserves the algebraic structure of
R™, this implies that the collection of the images of the vectors in the domain of 7" form a copy of
R™ inside of R™. If we think of 7" as a one-to-one matrix transformation with 7'(x) = Ax for some
m X n matrix, then every column of A will have to be a pivot column. It follows that if there is
a one-to-one matrix transformation from R" to R™, we must have m > n. Similarly, if a matrix
transformation 7" from R™ to R™ is onto, then for each b in R™, if we select one vector in the
domain of 7" whose image is b, then the collection of these vectors in the domain of 7" is a copy of
R™ inside of R™. So if there is an onto matrix transformation from R" to R™, then n > m. Asa
consequence, the only way a matrix transformation from R" to R™ is both one-to-one and onto is
if n =m.

We conclude this section by adding new equivalent conditions to Theorems 5.3 and 6.7 from
Sections 5 and 6.

Theorem 7.4. Let A be an m x n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in R™.

(2) Every vector b in R™ can be written as a linear combination of the columns of A.
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(3) The span of the columns of A is R™.
(4) The matrix A has a pivot position in each row.

(5) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is onto.

Theorem 7.5. Let A be an m x n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.
(3) The columns of A are linearly independent.
(4) The matrix A has a pivot position in each column.

(5) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is one-to-one.

We will continue to add to these theorems, which will eventually give us many different but
equivalent perspectives to look at a linear algebra problem. Please keep these equivalent criteria in
mind when considering the best possible approach to a problem.

Examples

What follows are worked examples that use the concepts from this section.

1 1 -1 -1
Example7.6. Let A= | 3 6 0 3 | andletT(x) = Ax.
2 -1 -5 -8

(a) Identify the domain of 7'. Explain your reasoning.
(b) Is T" one-to-one. Explain.

(c) Is T onto? If yes, explain why. If no, describe the range of 7' as best you can, both
algebraically and graphically.

Example Solution.

(a) Since A is a 3 x 4 matrix, A has four columns. Now Ax is a linear combination of the
columns of A with weights from x, so x must have four entries to correspond to the columns
of A. We conclude that the domain of 7" is R%.

(b) Technology shows that the reduced row echelon form of A is

1 0 -2 =3
0 1 1 2
00 0 O

Since A contains non-pivot columns, the homogeneous system Ax = 0 has infinitely many
solutions. So 7 is not one-to-one. In other words, if there is a column of A that is a non-
pivot column, then A is not one-to-one.
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(c) Since the reduced row echelon form of A has rows of zeros, there will be vectors b in R?
such that the reduced row echelon form of [A b] will have a row of the form [0 00 O ¢| for
some nonzero scalar c. This means that 7'(x) = Ax = b will have no solution and 7" is not
onto. In other words, if there is a row of A that does not contain a pivot, then 7’ is not onto.

r
(d) To determine the vectors b = | s | sothat T'(x) = Ax = b is consistent, we row reduce
t
the augmented matrix [A | b]. Technology shows that an echelon form of [A b] is

11 -1 -1 T
0 3 3 6 s —=3r
0 0 0 O0|t—5r+s

Thus, the system Ax = b is consistent if and only if —57 + s + ¢ = 0. We can then write
the general output vector to this system as

T 1 0
b: S =17 O +3 1 3
5r — s 5 -1

with r and s any scalars. Since there are two free variables, the vectors b in R? define a
plane through the origin. Letting 7 = O and s = 1 and » = 1 and s = 0, we see that
two points that lie on this plane are (0,1, —1) and (1,0,5). So the range of T is the plane
through the origin and the points (0,1, —1) and (1,0, 5).

Example 7.7. A matrix transformation 7" : R?> — R? defined by
r([3)-17]
Y Y
is a contraction in the z direction if 0 < ¢ < 1 and a dilation in the z direction if ¢ > 1.

(a) Find a matrix A such that T'(x) = Ax.

(b) Sketch the square S with vertices u; = [ 0 , Uy = [ (1) :|,113 = [ 1 ],andw; = [ 0 ]
2

Determine and sketch the image of S under 7" if ¢ =

Example Solution.
(a) Since
c 0 x| | cx
0 1 vyl |y |’

the matrix A = [ 8 (1) } has the property that T'(x) = Ax.
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(b) We can determine the image of .S under 1" by calculating what 7" does to the vertices of .S.

Notice that
ren=o 1o ]=10
re) =0 1o ]=10
- [2 0[] [
re =g ][V ]=]1]

Since 7T is a linear map, the image of S under 7' is the polygon with vertices (0, 0), (1,0),
(2,1), and (0, 1) as shown in Figure 7.3. From Figure 7.3 we can see that 7" stretches the
figure in the x direction only by a factor of 2.

Figure 7.3: The input square S and the output 7°(.S).

Summary

In this section we determined how to represent any matrix transformation from R" to R™ as a
matrix transformation, and what it means for a matrix transformation to be one-to-one and onto.

e A matrix transformation is a function 7" : R” — R™ defined by T'(x) = Ax for some m X n
matrix A.

e A matrix transformation 7" from R" to R™ satisfies
T(au+ bv) = aT'(u) + bT(v)

for any scalars a and b and any vectors u and v in R™. The fact that T" preserves linear
combinations is why we say that 7" is a linear transformation.

e Anm X n matrix A defines the matrix transformation 7" via
T(x) = Ax.
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The domain of this transformation is R” because the matrix-vector product Ax is only defined

if xisann x 1 vector.

e If Aisanm x n matrix, then the codomain of the matrix transformation 7" defined by T'(x) =
Ax is R™. This is because the matrix-vector product Ax with x an n x 1 vector is an m x 1
vector. The range of 7" is the subset of the codomain of 1" consisting of all vectors of the form

T'(x) for vectors x in the domain of 7'.

e A matrix transformation 7' from R™ to R™ is one-to-one if each b in R™ is the image of
at most one x in R™. If T' is a matrix transformation represented as 7'(x) = Ax, then T’
is one-to-one if each column of A is a pivot column, or if the columns of A are linearly

independent.

e A matrix transformation 7" from R"” to R™ is onto if each b in R™ is the image of at least
one x in R™. If T is a matrix transformation represented as 7'(x) = Ax, then T is onto if

each row of A contains a pivot position, or if the span of the columns of A is all of R™.

Exercises

1 2

(1) Given matrix A = [ 1 0 -3

] , write the coordinate form of the transformation 7" defined

by T'(x) = Ax. (Note: Writing a transformation in coordinate form refers to writing the

transformation in terms of the entries of the input and output vectors.)

(2) Suppose the transformation 7" is defined by 7'(x) = Ax where

11 -1
A=12 1 1
4 1 4
1
Determine if b = | 0 | is in the range of 7. If so, find all x’s which map to b.
0

(3) Suppose T is a matrix transformation and

Find T'(2vy — 5va).

(4) Given a matrix transformation defined as

T 2I1 — I3
T i) = | —z1+ 222 + 23
T3 3562 — 4563

determine the matrix A for which T'(x) = Ax.
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(5) Suppose a matrix transformation 7" defined by 7'(x) = Ax for some unknown A matrix

satisfies T({épz[ﬂanwd?b:{_;]

Use the matrix transformation properties to determine 7'(x) where x = [ xl } . Use the
2

expression for 7'(x) to determine the matrix A.

(6) For each of the following matrices, determine if the transformation 7" defined by T'(x) = Ax
is onto and if T’ is one-to-one.

11 1
(a)A__12—3}
(1 1 2
(b)A__224]

1 1 2
(c) A= 1 2 3
| -1 1 2
1 1
d A=1|2 3
13 0

(7) Come up with an example of a one-to-one transformation from R? to R*, if possible. If not,
explain why not.

(8) Come up with an example of an onto transformation from R? to R*, if possible. If not, explain
why not.

(9) Come up with an example of a one-to-one but not onto transformation from R* to R4, if
possible. If not, explain why not.

(10) Two students are talking about when a matrix transformation is one-to-one.

Student 1: If we have a matrix transformation, then we need to check that Ax = b
has a unique solution for every b for which Ax = b has a solution, right?

Student 2: Well, that’s the definition. Each b in the codomain has to be the image
of at most one x in the domain. So when b is in the range, corresponding to
Ax = b having a solution, then there is exactly one solution x.

Student 1: But wouldn’t it be enough to check that Ax = 0 has a unique solution?
Doesn’t that translate to the other b vectors? If there is a unique solution for one
b1, then there can’t be infinitely many solutions for another ba.

Student 2: I don’t know. It feels to me as if changing the right hand side could
change whether there is a unique solution, or infinitely many solutions, or no
solution.
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Which part of the above conversation do you agree with? Which parts need fixing?

(11) Show that if 7" is a matrix transformation from R™ to R and L is a line in R", then T'(L),
the image of L, is a line or a single vector. (Note that a line in R™ is the set of all vectors of
the form v + cw where c is a scalar, and v, w are two fixed vectors in R™.)

(12) Label each of the following statements as True or False. Provide justification for your re-

sponse.

(a)

(b)

(c)

(d)

(e)

()
(g
(h)
(i)

@)

9]

M

(m)

(n)

(0)

(p)

True/False The range of a transformation is the same as the codomain of the trans-
formation.

True/False The codomain of a transformation 7" defined by 7T'(x) = Ax is the span
of the columns of A.

True/False A one-to-one transformation is a transformation where each input has a
unique output.

True/False A one-to-one transformation is a transformation where each output can
only come from a unique input.

True/False If a matrix transformation from R” to R™ is one-to-one, then it is also
onto.

True/False A matrix transformation from R? to R? cannot be onto.
True/False A matrix transformation from R? to R? cannot be onto.
True/False A matrix transformation from R? to R? cannot be one-to-one.

True/False If the columns of a matrix A are linearly independent, then the transfor-
mation 7" defined by T'(x) = Ax is onto.

True/False If the columns of a matrix A are linearly independent, then the transfor-
mation 7" defined by T'(x) = Ax is one-to-one.

True/False If A is an m x n matrix with n pivots, then the transformation x — Ax
is onto.

True/False If A is an m x n matrix with n pivots, then the transformation x — Ax
is one-to-one.

True/False If u is in the range of a matrix transformation 7, then there is an x in the
domain of T such that T'(x) = u.

True/False If T is a one-to-one matrix transformation, then 7'(x) = 0 has a non-
trivial solution.

True/False If the transformations 77 : R" — R"™ and 75 : R™ — RP? are onto, then
the transformation 7% o T} defined by T o T (x) = T»(T1(x)) is also onto.

True/False If the transformations 73 : R™ — R™ and 75 : R™ — RP are one-to-one,
then the transformation 7507 defined by To0T) (x) = T5(71(x)) is also one-to-one.

D00
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Project: The Geometry of Matrix Transformations

In this section we will consider certain types of matrix transformations and analyze their geometry.
Much more would be needed for real computer graphics, but the essential ideas are contained in our
examples. A GeoGebra applet is available at https://www.geogebra.org/m/rhibzxee
for you to use to visualize the transformations in this project.

Project Activity 7.1. We begin with transformations that produce the rotated dancing image in
Figure 7.1. Let R be the matrix transformation from R? to R? defined by

((GD)-1a ]l ]

These matrices are the rotation matrices.

()=l

(a) Suppose 6 = 7. Then

1 2 0
i. Find the images of u; = [ 0 }, Us = jﬁ ,and uz = [ 1 ] under R.
2

ii. Plot the points determined by the vectors from part i. The matrix transformation R
performs a rotation. Based on this small amount of data, what would you say the
angle of rotation is for this transformation R?

(b) Now let R be the general matrix transformation defined by the matrix
cos(f) —sin(6)
sin(¢)  cos(6) |-

Follow the steps indicated to show that R performs a counterclockwise rotation of an angle

) ] i

@ around the origin. Let P be the point defined by the vector [ v } = [ .
Yy sin(a)

cos(a + 0)

. w
the point defined by the vector [ i ] = [ sin(a + 6)

] as illustrated in Figure 7.4.

1. Use the angle sum trigonometric identities
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
sin(A + B) = cos(A) sin(B) + cos(B) sin(A)
to show that
w = cos(f)x — sin(f)y
z = sin(f)x + cos(6)y.

ii. Now explain why the counterclockwise rotation around the origin by an angle # can
be represented by left multiplication by the matrix

cos(f) —sin(6)
sin(f)  cos(0)


https://www.geogebra.org/m/rh4bzxee
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Q= (w,z)

P =(z,y)

Figure 7.4: A rotation in the plane.

Project Activity 7.1 presented the rotation matrices. Other matrices have different effects.

Project Activity 7.2. Different matrix transformations

(a) Let S be the matrix transformation from R? to R? defined by

(D=1 10T

Determine the entries of the output vector .S ( { y } ) and explain the action of the trans-

formation S on the dancing figure as illustrated in Figure 7.5. (The transformation S is
called a shear in the x direction.)

| 'S

Figure 7.5: A dancing figure and a sheared dancing figure.

(b) Let C be the matrix transformation from R? to R? defined by
T 0.65 0 T
(D10 ess 1[0 ]

Determine the entries of the output vector C' < [ y ] ) and explain the action of the trans-

formation C on the dancing figure as illustrated in Figure 7.6. (The transformation C' is
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called a contraction.) How would your response change if each 0.65 was changed to 2 in
the matrix C'?

Figure 7.6: A dancing figure and a contracted dancing figure.

So far we have seen specific matrix transformations perform a rotations, shears, and contrac-
tions. We can combine these, and other, matrix transformations by composition to change figures
in different ways, and to created animations of geometric figures. (As we will see later, combining
transformations needs to be done carefully in order to obtain the result we want. For example, if we
want to first rotate then translate, in what order should the matrices be applied?)

o099
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Section 8

Matrix Operations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e Under what conditions can we add two matrices and how is the matrix sum
defined?

e Under what conditions can we multiply a matrix by a scalar and how is a
scalar multiple of a matrix defined?

e Under what conditions can we multiply two matrices and how is the matrix
product defined?

o What properties do matrix addition, scalar multiplication of matrices and
matrix multiplication satisfy? Are these properties similar to properties that
are satisfied by vector operations?

e What are two properties that make matrix multiplication fundamentally dif-
ferent than our standard product of real numbers?

e What is the interpretation of matrix multiplication from the perspective of
linear transformations?

e How is the transpose of a matrix defined?

Application: Algorithms for Matrix Multiplication

Matrix multiplication is widely used in applications ranging from scientific computing and pattern
recognition to counting paths in graphs. As a consequence, much work is being done in developing
efficient algorithms for matrix multiplication.

We will see that a matrix product can be calculated through the row-column method. Recall

143
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that the product of two 2 x 2 matrices A = [ @ dn ] and B = [ b biy } is given by
a1 a922 b21 b22

| a11bi1 +a12bar  ar1biz + ai12b22
AB =
a21b11 + ag2ba1  a21b12 + azzbas

This product involves eight scalar multiplications and some scalar additions. As we will see, mul-
tiplication is more computationally expensive than addition, so we will focus on multiplication. In
1969, a German mathematician named Volker Strassen showed' that the product of two 2 x 2 matri-
ces can be calculated using only seven multiplications. While this is not much of an improvement,
the Strassen algorithm can be applied to larger matrices, using matrix partitions (which allow for
parallel computation), and its publication led to additional research on faster algorithms for matrix
multiplication. More details are provided later in this section.

Introduction

A vector is a list of numbers in a specified order and a matrix is an ordered array of objects. In fact,
a vector can be thought of as a matrix of size n x 1. Vectors and matrices are so alike in this way
that it would seem natural that we can define operations on matrices just as we did with vectors.

Recall that a matrix is made of rows and columns — the entries reading from left to right form
the rows of the matrix and the entries reading from top to bottom form the columns. The number of
rows and columns of a matrix is called the size of the matrix, so an m X n matrix has m rows and
n columns. If we label the entry in the ith row and jth column of a matrix A as a;;, then we write
A= [aij].

We can generalize the operations of addition and scalar multiplication on vectors to matrices
similarly. Given two matrices A = [a;;] and B = [b;;] of the same size, we define the sum A + B
by

A+ B = [aij + bij
when the sizes of the matrices A and B match. In other words, for matrices of the same size the
matrix addition is defined by adding corresponding entries in the matrices. For example,

EHEIMERIE

We define the scalar multiple of a matrix A = [a;;] by scalar ¢ to be the matrix cA defined by
cA = [cayj] .

This means that we multiply each entry of the matrix A by the scalar c. As an example,
3 2] _ 3 6 .
-2 3 —6 9

Even though we did not have a multiplication operation on vectors, we had a matrix-vector
product, which is a special case of a matrix-matrix product since a vector is a matrix with one col-
umn. However, generalizing the matrix-vector product to a matrix-matrix product is not immediate

'Strassen, Volker, Gaussian Elimination is not Optimal, Number. Math. 13, p. 354-356, 1969
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as it is not immediately clear what we can do with the other columns. We will consider this question
in this section.

Note that all of the matrix operations can be performed on a calculator. After entering each
matrix in the calculator, just use +, — and x operations to find the result of the matrix operation.
(Just for fun, try using = with matrices to see if it will work.)

Preview Activity 8.1.

(1) Pick three different varying sizes of pairs of A, B matrices which can be added. For each
pair:

(a) Find the matrices A + B and B + A.

(b) How are the two matrices A + B and B + A related? What does this tell us about
matrix addition?

(2) Let A = [_; g],B: [; i},andC: [(1) _Z} Determine the entries of the

matrix A + 2B — 7C.

(3) Now we turn to multiplication of matrices. Our first goal is to find out what conditions we
need on the sizes of matrices A and B if the matrix-matrix product AB is defined and what
the size of the resulting product matrix is. We know the condition and the size of the result
in the special case of B being a vector, i.e., a matrix with one column. So our conjectures for
the general case should match what we know in the special case.

In each part of this problem, use any appropriate tool (e.g., your calculator, Maple, Math-
ematica, Wolfram|Alpha) to determine the matrix product AB, if it exists. If you obtain a
product, write it down and explain how its size is related to the sizes of A and B. If you
receive an error, write down the error and guess why the error occurred and/or what it means.

1 2 0 3 50
(a)A—_O 1 1] and B—[O 9 1]

- 3 0
(b) A= éi?] and B=|5 -2

- 0 1

1 9 1 11
(c) A= 3 4 and B=|1 0 1

L 020

1 2

3 4 1 2 3

d A= 56 and B—{_l 1 1]

| 7 8

(e) Make a guess for the condition on the sizes of two matrices A, B for which the
product AB is defined. How is the size of the product matrix related to the sizes of
A and B?



146 Section 8. Matrix Operations

(4) The final matrix products, when defined, in problem 3 might seem unrelated to the individual
matrices at first. In this problem, we will uncover this relationship using our knowledge of
the matrix-vector product.

3 -1 0 2 1
LetA—[_2 3}andB—[1 3 2].

(a) Calculate AB using any tool.

(b) Using the matrix-vector product, calculate Ax where x is the first column (i.e., cal-

culate A [(1)] ), and then the second column of B (i.e., calculate A B] ), and then the

third column of B (i.e., calculate A [ﬂ ). Do you notice these output vectors within
AB?

(c) Describe as best you can a definition of A B using the matrix-vector product.

Properties of Matrix Addition and Multiplication by Scalars

Just as we were able to define an algebra of vectors with addition and multiplication by scalars, we
can define an algebra of matrices. We will see that the properties of these operations on matrices
are immediate generalizations of the properties of the operations on vectors. We will then see how
the matrix product arises through the connection of matrices to linear transformations. Finally,
we define the transpose of a matrix. The transpose of a matrix will be useful in applications such
as graph theory and least-squares fitting of curves, as well as in advanced topics as inner product
spaces and the dual space of a vector space.

We learned in Preview Activity 8.1 that we can add two matrices of the same size together by
adding corresponding entries and we can multiply any matrix by a scalar by multiplying each entry
of the matrix by that scalar. More generally, if A = [a;;] and B = [b;;] are m x n matrices and c is
any scalar, then

A+ B= [aij + bij] and cA = [caij].

As we have done each time we have introduced a new operation, we ask what properties the
operation has. For example, you determined in Preview Activity 8.1 that addition of matrices is
a commutative operation. More specifically, for every two m x n matrices A and B, A+ B =
B 4+ A. We can use similar arguments to verify the following properties of matrix addition and
multiplication by scalars. Notice that these properties are very similar to the properties of addition
and scalar multiplication of vectors we discussed earlier. This should come as no surprise since the
n-dimensional vectors are n x 1 matrices. In a strange twist, we will see that matrices themselves
can be considered as vectors when we discuss vector spaces in a later section.

Theorem 8.1. Let A, B, and C be m X n matrices and let a and b be scalars. Then

(1) A+ B = B+ A (this property tells us that matrix addition is commutative)

(2) (A+ B) + C = A+ (B + C) (this property tells us that matrix addition is associative)

o099
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(3) The m x n matrix 0 whose entries are all 0 has the property that A+ 0 = A. The matrix 0 is
called the zero matrix (It is generally clear from the context what the size of the 0 matrix is.).

(4) The scalar multiple (—1) A of the matrix A has the property that (—1) A+ A = 0. The matrix
(—1)A = — A is called the additive inverse of the matrix A.

(5) (a+0b)A = aA + bA (this property tells us that scalar multiplication of matrices distributes
over scalar addition)

(6) a(A+ B) = aA+ aB (this property tells us that scalar multiplication of matrices distributes
over matrix addition)

(7) (ab)A = a(bA)
(8) 14 = A.

Later on, we will see that these properties define the set of all m x n matrices as a vector space.
These properties just say that, regarding addition and multiplication by scalars, we can manipulate
matrices just as we do real numbers. Note, however, we have not yet defined an operation of
multiplication on matrices. That is the topic for the next section.

A Matrix Product

As we saw in Preview Activity 8.1, a matrix-matrix product can be found in a way which makes
use of and also generalizes the matrix-vector product.

Definition 8.2. The matrix product of a £ x m matrix A and an m x n matrix B = [b; by --- by,
with columns by, bo, ..., b, is the £ X n matrix

[Aby Aby -+ Aby].

We now consider the motivation behind this definition by thinking about the matrix transfor-
mations corresponding to each of the matrices A, B and AB. Recall that left multiplication by an
m x n matrix B defines a transformation 7" from R" to R™ by T'(x) = Bx. The domain of 7" is R"
because the number of components of x have to match the number of entries in each of row of B in
order for the matrix-vector product Bx to be defined. Similarly, a £ x m matrix A defines a trans-
formation A from R™ to R”. Since transformations are functions, we can compose them as long
as the output vectors of the inside transformation lie in the domain of the outside transformation.
Therefore if 7" is the inside transformation and S' is the outside transformation, the composition
S o T is defined. So a natural question to ask is if we are given

e a transformation 7" from R" to R™ where T'(x) = Bx for an m x n matrix B and

e atransformation S from R™ to R* with S(y) = Ay for some k x m matrix A,

is there a matrix that represents the transformation S o 7" defined by (S o T')(x) = S(T'(x))? We
investigate this question in the next activity in the special case of a 2 x 3 matrix A and a 3 x 2
matrix B.

D00
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Activity 8.1. In this activity, we look for the meaning of the matrix product from a transformation
perspective. Let .S and 7" be matrix transformations defined by

S(y)=Ay and T(x)= Bx,

where
3 0
Az{é??] and B=|5 -2
0 1

(a) What are the domains and codomains of S and 7'? Why is the composite transformation
S o T defined? What is the domain of S o T'? What is the codomain of S o T'? (Recall that
S o T is defined by (S o T)(x) = S(T'(x)), i.e., we substitute the output 7'(x) as the input
into the transformation S.)

(b) Letx = { ;j } . Determine the components of 7'(x).

(c) Find the components of S o T'(x) = S(T(x)).
(d) Find a matrix C so that S(7'(x)) = Cx.

(e) Use the definition of composition of transformations and the definitions of the .S and T’
transformations to explain why it is reasonable to define AB to be the matrix C'. Does the
matrix C agree with the

5 -1

you found in Preview Activity 8.1 using technology?

o-[2

We now consider this result in the general case of a k x m matrix A and an m X n matrix B,
where A and B define matrix transformations S and 7', respectively. In other words, S and 7" are
matrix transformations defined by S(x) = Ax and T'(x) = Bx. The domain of S is R™ and the
codomain is R¥. The domain of T is R™ and the codomain is R™. The composition S o T is defined
because the output vectors of 7" are in R™ and they lie in the domain of S. The domain of S o T
is the same as the domain of 7" since the input vectors first go through the 7' transformation. The
codomain of S o T'is the same as the codomain of .S since the final output vectors are produced by
applying the S transformation.

Let us see how we can obtain the matrix corresponding to the transformation S o T'. Let B =
T

€2
[b1 by --- by], where b is the jth column of B, and let x = _ | . Recall that the matrix

T,
vector product Bx is the linear combination of the columns of B with the corresponding weights
from x. So
T(x) = Bx = x1by + xobs + - - - + 2,,by,.

Note that each of the b; vectors are in R™ since B is an m X n matrix. Therefore, each of these
vectors can be multiplied by matrix A and we can evaluate S(Bx). Therefore, S o T is defined and

(S o T)(X) = S(T(X)) = A(BX) =A ($1b1 4+ xobg + -+ -+ xnbn) . (8.1)
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The properties of matrix-vector products show that
A (xlbl + x9bg + -+ + l’nbn) = x1Aby + x9Aby + - -+ + 2, Ab,,. (8.2)

This expression is a linear combination of Ab;’s with z;’s being the weights. Therefore, if we let
C be the matrix with columns Abq, Abo, ..., Ab,, thatis

C = [Aby Ab, -+ Aby,),

then
r1Aby + z9Aby + - + 2, Ab, = Cx (8.3)

by definition of the matrix-vector product. Combining equations (8.1), (8.2), and (8.3) shows that
(SoT)(x)=Cx
where C' = [Ab; Abg --- Ab,].
Also note that since 7'(x) = Bx and S(y) = Ay, we find
(SoT)(x) = S(T(x)) = S(Bx) = A(B(x)). (8.4)
Since the matrix representing the transformation S o 7" is the matrix
[Ab; Abg --- Ab,)]

where by, b, ..., b, are the columns of the matrix B, it is natural to define AB to be this matrix
in light of equation (8.4).

Matrix multiplication has some properties that are unfamiliar to us as the next activity illustrates.

. . _ 3 -1 I B 11 _ 3 -3
Activity 8.2. Let A = [2 6],3— [1 3],0— [1 1},D— [3 3}

1 0

and £ = [O L

(a) Find the indicated products (by hand or using a calculator).
AB BA DC AC BC AFE EB

(b) Is matrix multiplication commutative? Explain.

(c) Is there an identity element for matrix multiplication? In other words, is there a matrix 1
for which Al = I A = A for any matrix A? Explain.

(d) If a and b are real numbers with ab = 0, then we know that either a = 0 or b = 0. Is this
same property true with matrix multiplication? Explain.

(e) If a, b, and c are real numbers with ¢ # 0 and ac = bc, we know that a = b. Is this same
property true with matrix multiplication? Explain.

As we saw in Activity 8.2, there are matrices A, B for which AB # BA. On the other hand,
there are matrices for which AB = BA. For example, this equality will always hold for a square
matrix A and if B is the identity matrix of the same size. It also holds if A = B. If the equality
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AB = BA holds, we say that matrices A and B commute. So the identity matrix commutes with
all square matrices of the same size and every matrix A commutes with A* for any power .

There is an alternative method of calculating a matrix product that we will often use that we
illustrate in the next activity. This alternate version depends on the product of a row matrix with a

T
. . T2 .
vector. Suppose A = [aj a2 -+ a,]isal x n matrix and x = . is an n X 1 vector. Then
Tn
the product Ax is the 1 x 1 vector
T
T2
laraz -+ an] | . | = [az1 +acze + -+ anzy).
Tn

In this situation, we usually identify the 1 x 1 matrix with its scalar entry and write

X1
Z2
a1 ag -+ ap]- | . | =a1z1 +awe + - + apxy,. (8.5)
Tn
€1
2
The product - in (8.5) is called the scalar or dot product of [a; as -+ ay] with
Tn
1 -1 2 4 =2
Activity83. Let A=|3 0 —4 |andB=|6 0
2 -5 1 1 3
Let a; be the ith row of A and b; the jth column of B. For example, a; = [1 — 1 2] and
—2
by = 0
3

Calculate the entries of the matrix C, where

al-bl al~b2
C = ag-bl az-b2 )
ag~b1 a3-b2

where a; - b; refers to the scalar product of row ¢ of A with column j of B .2 Compare your result
with the result of AB calculated via the product of A with the columns of B.

?Recall from Exercise 5 of Section 5 that the scalar product u- v of a 1 x n matrix u = [u; uz ... uy,]andann x 1
U1
V2
vector v = . iSu-v=uiv1 + uzv2 + uzvz + - -+ + UpVn.
Un,

o099
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Activity 8.3 shows that these is an alternate way to calculate a matrix product. To see how this
works in general, let A = [a;;] be a k x m matrix and B = [by by --- b,] an m x n matrix. We
know that

AB = [Ab; Aby --- Ab,].

ry €1
ro . . €2
Now let ry, ro, ..., ry be the rows of A so that A = . | . First we argue that if x = . ,
rg Tm
then
r X
ro-X
Ax =
re -X

This is the scalar product (or dot product) definition of the matrix-vector product.

To show that this definition gives the same result as the linear combination definition of matrix-
vector product, we firstlet A = [c1 co -+ ¢, where ¢y, ca, . . ., €y, are the columns of A. By our
linear combination definition of the matrix-vector product, we obtain

Ax = z1c1 +22C2 + - + Ty

ail ai2 A1m

as1 a92 azm
=z1| . | *tx2| . |+t Tm

ak1 ag2 Akm

a1, + a12x2 + -+ A1 mTm,
a21x1 + a22T2 + - - - + A2mTm

Ap1T1 + Ap2X2 + -+ + QpmTm
ry - X
ro - X

| Tk X
Therefore, the above work shows that both linear combination and scalar product definitions give

the same matrix-vector product.

Applying this to the matrix product AB defined in terms of the matrix-vector product, we see

that

ry]- b]’

ro - bj

Ab; =

ryg - bj
So the i, jth entry of the matrix product AB is found by taking the scalar product of the ith row of
A with the jth column of B. In other words,

(AB)ij = ri-bj

D00
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where r; is the ith row of A and b is the jth column of B.

Properties of Matrix Multiplication

Activity 8.2 shows that we must be very careful not to assume that matrix multiplication behaves
like multiplication of real numbers. However, matrix multiplication does satisfy some familiar
properties. For example, we now have an addition and multiplication of matrices under certain
conditions, so we might ask if matrix multiplication distributes over matrix addition. To answer
this question we take two arbitrary k x m matrices A and B and an arbitrary m X n matrix
C =[cica -+ cy]. Then
(A+B)C=[(A+B)ci (A+ B)cy -+ (A+ B)c,]

= [Acy + Bcy Acy + Beg - -+ Acy, + Bey

= [ACl AC2 tee ACn] + [BCl Bey --- Bcn]

= AC + BC.

Similar arguments can be used to show the following properties of matrix multiplication.

Theorem 8.3. Let A, B, and C be matrices of the appropriate sizes for all sums and products to
be defined and let a be a scalar. Then

(1) (AB)C = A(BQC) (this property tells us that matrix multiplication is associative)

(2) (A+ B)C = AC + BC (this property tells us that matrix multiplication on the right dis-
tributes over matrix addition)

(3) A(B+C) = AB+ AC (this property tells us that matrix multiplication on the left distributes
over matrix addition)

(4) There is a square matrix I, with the property that Al,, = A or I,A = A for whichever
product is defined.

(5) a(AB) = (aA)B = A(aB)

We verified the second part of this theorem and will assume that all of the properties of this
theorem hold. The matrix [, introduced in Theorem 8.3 is called the (multiplicative) identity matrix.
We usually omit the word multiplicative and refer to the I,, simply as the identity matrix. This does
not cause any confusion since we refer to the additive identity matrix as simply the zero matrix.

Definition 8.4. Let n be a positive integer. The n x n identity matrix I, is the matrix I,, = [a;;],
where a;; = 1 for each i and a;; = 0if i # j.

We also write the matrix I,, as

100 0 0 0
100 00
0010 0 0

I, =
0000 10
(0000 0 1|
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The matrix I,, has the property that for any n X n matrix A,
Al,=1,A=A.

so I, is a multiplicative identity in the set of all n X n matrices. More generally, for an m X n

matrix A,
Al =1, A=A.

The Transpose of a Matrix

One additional operation on matrices is the transpose. The transpose of a matrix occurs in many
useful formulas in linear algebra and in applications of linear algebra.
Definition 8.5. The transpose of an m x n matrix A = [a;;] is the n x m matrix AT whose 4, jth

entry is a;;.

Written out, the transpose of the m x n matrix

ail ai2 e A1n—1 A1n

a1 a2 e a2n—1 a2n
A=

aml Om2 Umn—1 Qmn

is the n X m matrix

aip a21 -+ Am—-11 Gmil
AT _ ai2 a2 -+ Am—-12 am2

Alp A2n " Am—1n Omn

In other words, the transpose of a matrix A is the matrix AT whose rows are the columns of A.
Alternatively, the transpose of A is the matrix AT whose columns are the rows of A. We can also
view the transpose of A as the reflection of A across its main diagonal, where the diagonal of a
matrix A = [a;;] consists of the entries of the form [a;;].

Activity 8.4.

(a) Find the transpose of each of the indicated matrices.

1 2 3 4 1 L2
5 6 7 8 -1 =3
0 0 —1

(b) Find the transpose of the new matrix for each part above. What can you conjecture based
on your results?

(c) There are certain special types of matrices that are given names.
Definition 8.6. Let A be a square matrix whose 7jth entry is a;;.

(1) The matrix A is a diagonal matrix if a;; = 0 whenever 7 # j.

D00
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(2) The matrix A is a symmetric matrix if AT = A.
(3) The matrix A is an upper triangular if a;; = 0 whenever 7 > j.

(4) The matrix A is a lower triangular if a;; = 0 whenever i < j.

i. Find an example of a diagonal matrix A. What can you say about AT?

ii. Find an example of a non-diagonal symmetric matrix B. If BT = B, must B be a
square matrix?

iii. Find an example of an upper triangular matrix C. What kind of a matrix is C'T?

We will see later that diagonal matrices are important in that their powers are easy to calculate.
Symmetric matrices arise frequently in applications such as in graph theory as adjacency matri-
ces and in quantum mechanics as observables, and have many useful properties including being
diagonalizable and having real eigenvalues, as we will also see later.

Properties of the Matrix Transpose

As with every other operation, we want to understand what properties the matrix transpose has.
Properties of transposes are shown in the following theorem.

Theorem 8.7. Let A and B be matrices of the appropriate sizes and let a be a scalar. Then

AT =

(A+B)T = AT + BT
(3) (AB)T = BTAT
(4) (aA)T =aAT

The one property that might seem strange is the third one. To understand this property, suppose
Ais an m x n matrix and B an n x k matrix so that the product AB is defined. We will argue that
(AB)T = BT AT by comparing the i, jth entry of each side.

e First notice that the i, jth entry of (AB)7 is the j, ith entry of AB. The j, ith entry of AB is
found by taking the scalar product of the jth row of A with the ith column of B. Thus,

the 4, jth entry of (AB)T is the scalar product of the jth row of A with the ith column of B.

e The i, jth entry of BT AT is the scalar product of the ith row of BT with the jth column of
AT . But the ith row of BT is the ith column of B and the jth column of AT is the jth row of
A. So

the i, jth entry of BT AT is the scalar product of the jth row of A with the ith column of B.

Since the two matrices (AB)T and BT AT have the same size and same corresponding entries, they
are the same matrix.



Section 8. Matrix Operations 155

Examples

What follows are worked examples that use the concepts from this section.

Example 8.8. Let

1 2 01 -2 4 -3

A=|13 0 -4 5 B= 51 9

76 -1 0 11 -2
0 -1 6 10 —4
C=1]13 -2 5 D=| 5 2
1 0 4 8 —1

. e

E=|4 -3 and F =
5 1 1 0 —1
7 0 -5

Determine the results of the following operations, if defined. If not defined, explain why.

(a) AF (b) A(BC) (c) (BC)A
d (B+C)D () DTE 0 (AT+F)"

Example Solution.

(a) Since A is a3 x 4 matrix and F' is a 4 x 3 matrix, the number of columns of A equals the
number of rows of F' and the matrix produce AF is defined. Recall that if F' = [f; f5 f3],
where fi, fo, f3 are the columns of F, then AF = [Af; Af, Afs]. Recall also that Af; is
the linear combination of the columns of A with weights from fi, so

ot

()| 4 [+

[ 24124047
=] —64+0-4+35
| —14+36—-1+0
[ 17

=25 |,

| 21

L S O N
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Afy =
and

Afy =

17 7
SoAF =125 3

21 25

Alternatively, if A =

1 2 01
30 —4 5
76 -1 0
1
| 31]+@3)
7
[ 14+6+0+0
3+0+0+0
| 7T+18+0+0
[ 7
3 1,
| 25
1 2 01
30 —4 5
76 -1 0
1
BG)| 3|6
7
[ 5—-16—-0-5
15—-0+4—25
35—-484+1-0
'—w
—6
| —12
—16 ]
—6
—12 |
al i
ag
a3
ay

a; - f;. Using this method we have

|
|

a1-f1
AF = a2-f1
a3-f1

al-fg
a2~f2
ag-fg

0 1
—4 |+ ]5
~1 0
0 1
4| =) 5
~1 0

, then the matrix product AF is the matrix whose ij entry is

ap - f3
az'fg
ag-fg
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Now
ap - f1 = (1)(=2) + (2)(6) + (0)(1) + (1)(7) = 17
ap - £ = (1)(1) + (2)(3) + (0)(0) + (1)(0) =7
ap - f3 = (1)(5) + (2)(=8) + (0)(=1) + (1)(=5) = —16
ay - f1 = (3)(=2) + (0)(6) + (=4)(1) + (5)(7) = 25
ay - > = (3)(1) + (0)(3) + (=4)(0) + (5)(0) = 3
ay - f3 = (3)(5) + (0)(=8) + (=4)(=1) + (5)(-5) = —6
ag - f1 = (7)(=2) + (6)(6) + (=1)(1) + (0)(7) = 21
ag - f, = (7)(1) + (6)(3) + (—1)(0) + (0)(0) = 25
az - f5 = (7)(5) + (6)(=8) + (=1)(=1) + (0)(=5) = —12,
17 7 -—-16 ]
soAF =125 3 —6 |.
21 25 —12

(b) Since BC' is a 3 x 3 matrix but A is 3 x 4, the number of columns of A is not equal to the
number of rows of BC. We conclude that A(BC') is not defined.

(¢) Since BC'is a 3 x 3 matrix and A is 3 x 4, the number of columns of BC is equal to
the number of rows of A. Thus, the quantity (BC)A is defined. First we calculate BC
by
by | and
bs

C = [c; c3 c3], where by, by, and bg are the rows of B and ¢, ¢, and c3 are the columns
of C, we have

using the dot product of the rows of B with the columns of C'. Letting B =

BC = b2~C1 b2'C2 b2~C3

b1-C1 bl'CQ b1-C3
b3-C1 b3-C2 b3-C3

Now
bi-c1 =(-2)(0)+ (4)(3) + (=3)(1) =9
b;-c; =(-2)(-1)+ (4)(—-2) + (—3)(0) = —6
bi-c1 =(-2)(6)+ (4)(5) + (—3)(4) = —4
by -c1 = (5)(0) + (1)(3) + (9)(1) = 12
by -c1 =(5)(-1)+ (1)(-2) + (9)(0) = -7
by -c1 =(5)(6)+ (1)(5) 4+ (9)(4) =71
by -c1 = (1)(0)+ (1)(3) + (=2)(1) =1
bi-c1 = (1)(—-1)+ (1)(-2) + (—-2)(0) = -3
by ey = (1)(6) + (1)(5) + (—2)(4) =3,
9 -6 —4 ri ]
soBC = |12 —7 71 |.If BC = | ro | and A = [s1 sy S3 S4], Where ry, ry, and
1 -3 3 rs
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r3 are the rows of BC and si, s9, s3, and s4 are the columns of A, then

ry-S; rp-82 rp-rzg Irp-S4
(BC)A = ro-S1 r9-S9 TI9-8S3 TI9 -S4
rs-s; Ir3-S2 I3-S3 I3-84

Now
ri-s1 = (9)(1) + (=6)(3) + (=4)(7) = =37
ri-s2 = (9)(2) + (=6)(0) + (—4)(6) = —6
ri-s3=(9)(0) + (—=6)(—4) + (=4)(-1) = 28
ri-sg = (9)(1) + (=6)(5) + (-4)(0) = —21
ro-s1 = (12)(1) + (=7)(3) + (71)(7) = 488
ro-so = (12)(2) + (=7)(0) 4+ (71)(6) = 450
ro - s3 = (12)(0) + (=7)(=4) + (71)(-1) = —43
ro-sq = (12)(1) + (=7)(5) + (71)(0) = —23
r3-s1 = (1)(1) + (=3)(3) + (3)(7) = 13
r3-se = (1)(2) + (=3)(0) + (3)(6) = 20
r3-s3=(1)(0) + (=3)(-4) + (3)(-1) =9
r3-sq = (1)(1) + (=3)(5) + (3)(0) = —14,

=37 -6 28 =21
so (BC)A=| 483 450 —43 -23
13 20 9 —-14

(d) Since B and C' are both 3 x 3 matrices, their sum is defined and is a 3 x 3 matrix. Because
D is 3 x 2 matrix, the number of columns of B + C is equal to the number of rows of
D. Thus, the quantity (B + C)D is defined and, using the row-column method of matrix
multiplication as earlier,

-2 4 -3 0 —1 6 10 —4
(B+C)D = 51 9|+]3 -2 5 5 2
1 1 -2 1 0 4 8 —1
[ —24+0 4—1 -3+67][10 —4
= 543 1—-2 9+5 5 2
| 1+1 140 —-2+44 ][ 8 -1
[ —2 3 3 10 —4 ]
= 8 —1 14 5 2
2 1 2 8 —1 |
[ 19 11
= | 187 —48
| 41 -8

(e) Since DT is a 2 x 3 matrix and F is 3 x 2, the number of columns of D7 is equal to the
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number of rows of E.

D'E =

10
)
8

Thus, DT E is defined and

47711
2 4
1] |5
5 8]
2 -1 |
_923

-3
—1

-3

5 —1

(f) The fact that A is a 3 x 4 matrix means that AT is a 4 x 3 matrix. Since F is also a
4 x 3 matrix, the sum AT 4+ F is defined. The transpose of any matrix is also defined, so
(AT + F)T is defined and

(AT + F)T

2

Example 8.9. Let A = [ .

-1
-2

[anas—|

N w

SN =

1

-1
8
1
8

[ -1

4
12

S O N

3
0
—4
)

1-2
2+6
0+1
147

—4

8

3
—2

- 21 57\
0 1
6 3 —8
4 5| +
Lo 10 —1
70 —5
7 21 571\
6 6 3 —8
1T 10 -1
0 70 —5
341 7+5
0+3
—4+0—1—1
540
4 127\ "
3 -9
2
5 —5
1 8
4 5
—92 5
4 6
-3 5|

(a) Determine the matrix sum A + B. Then use this sum to calculate (A + B)?2.

(b) Now calculate (A + B)? in a different way. Use the fact that matrix multiplication dis-
tributes over matrix addition to expand (like foiling) (A + B)? into a sum of matrix prod-

ucts. The calculate each summand and add to find (A + B)?

result as part (a). If not, what could be wrong?

Example Solution.

. You should obtain the same
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(a) Adding corresponding terms shows that A + B = [

Z g } . Squaring this sum yields the

result (A + B)? = [ o645 ]

36 29

(b) Expanding (A + B)? (remember that matrix multiplication is not commutative) gives us

(A+B)?=(A+B)(A+B)
= A’ 4+ AB + BA + B?

[ 0] 7], (50 <16] [ -2 54
O 34 32 29 7 27 7
_[56 45
~ |36 29

just as in part (a). If instead you obtained the matrix [ 68

41 68
mistake of equating (A + B)? with A2 + 2AB + B2. These two matrices are not equal in
general, because we cannot say that AB is equal to BA.

} you likely made the

Summary

In this section we defined a matrix sum, scalar multiples of matrices, the matrix product, and the
transpose of a matrix.

The sum of two m x n matrices A = [a;;] and B = [b;;] is the m x n matrix A + B whose
i, jth entry is a;; + b;;.

If A = [ai;] is an m x n matrix, the scalar multiple kA of A by the scalar k is the m x n
matrix whose i, jth entry is ka;;.

If Aisak x m matrix and B = [b; by -+ by,] is an m x n matrix, then the matrix product
AB of the matrices A and B is the £ X n matrix

[Aby Aby -+ Aby].

The matrix product is defined in this way so that the matrix of a composite S o T" of linear
transformations is the product of matrices of S and 7.

An alternate way of calculating the product of an k£ x m matrix A with rows r, ro, ..., rg
and an m X m matrix B with columns by, bg, ..., by, is that the product AB is the k X n
matrix whose 7, jthentry is r; - b;.

Matrix multiplication does not behave as the standard multiplication on real numbers. For
example, we can have a product of two non-zero matrices equal to the zero matrix and there
is no cancellation law for matrix multiplication.

The transpose of an m x n matrix A = [a;;] is the n X m matrix AT whose i, jth entry is @i
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Exercises

(1) Calculate AB for each of the following matrix pairs by hand in two ways.

10 ,
@ A= |0 1 ,B:[id}
00

1 2
b A=[1 0 -1],B=|2 3
3 4

(2) For each of the following A matrices, find all 2 x 2 matrices B = CCL Z which commute

with the given A. (Two matrices A and B commute with each other if AB = BA.)

2 0 2 0 0 1
(a)A:[o 2] (b)A:[o 3} (C)A:[o 0]

(3) Find all possible, if any, X matrices satisfying each of the following matrix equations.

(1 2 01
@1 Q}X_[O o]

(1 -2 01
® 4]X:[0 0]

1 -2 0 1
© | -2 4]X:[0 —2]

(4) For each of the following A matrices, compute A2 = AA, A3 = AAA, A*. Use your results

to conjecture a formula for A™. Interpret your answer geometrically using the transformation
interpretation.

2 0 11 0 -1
(a)A:[o 3] (b)A:[o 1} (C)A:L 0]

(5) If Av = 2v for unknown A matrix and v vector, determine an expression for A%v, A3v, ...,
A™Mv,

(6) If Av = 2v and Au = 3u, find an expression for A" (av + bu) in terms of v and u.

(7) A matrix A is a nilpotent matrix if A™ = 0, i.e., A™ is the zero matrix, for some positive
integer m. Explain why the matrices

0
A:[g g],B: 0
0

o O R
oo o

are nilpotent matrices.

(8) Suppose A is an n x n matrix for which A2 = 0. Show that there is a matrix B for which
(I, + A)B = I,, where I,, is the identity matrix of size n.
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(9) Let A, B, and C be m x n matrices and let a and b be scalars. Verify Theorem 8.1. That is,
show that

(@) A+ B=B+ A

(b) (A+B)+C=A+(B+C)

(c) The m x n matrix 0 whose entries are all 0 has the property that A + 0 = A.

(d) The scalar multiple (—1) A of the matrix A has the property that (—1)A + A = 0.
(e) (a+b)A=aA+bA

() a(A+ B) =aA+aB

(@) (ab)A = a(bA)

(h) 1A = A.

(10) Let A, B, and C be matrices of the appropriate sizes for all sums and products to be defined
and let a be a scalar. Verify the remaining parts of Theorem 8.3. That is, show that

(a) (AB)C = A(BC)
(b) A(B+C) = AB+ AC

(c) There is a square matrix I,, with the property that AI, = A or [,A = A for
whichever product is defined.

(d) a(AB) = (aA)B = A(aB)

(11) Let A = [ai;] and B = [b;;] be matrices of the appropriate sizes, and let a be a scalar. Verify
the remaining parts of Theorem 8.7. That is, show that

@ (AT) =4
b)) (A+B)T=AT + BT
©) (aA)T =aAT

(12) The matrix exponential is an important tool in solving differential equations. Recall from
calculus that the Taylor series expansion for e* centered at x = 0 is

and that this Taylor series converges to e* for every real number x. We extend this idea to
define the matrix exponential e for any square matrix A with real entries as

=1 1 1
A= A=, A+ AT AR
< nl 2 3!

We explore this idea with an example. Let B = { 20 ] .

0 -1
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n
(a) Calculate B2, B3, B*. Explain why B" = [ 20 (—(i)” ] for any positive integer

n.

(b) Show that Iy + B + B? + B + B%is equal to

1+2+2+5+% 0
—1)2 _1\4
0 1+(_1)+(21)+(3! +(41!)

(c) Explain why e? =

(13) Show that if A and B are 2 x 2 rotation matrices, then AB is also a 2 x 2 rotation matrix.

(14) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, assume that matrices are of the appropriate sizes so that any matrix
sums or products are defined.

(a) True/False For any three matrices A, B, C' with A # 0, AB = AC implies B = C.
(b) True/False For any three matrices A, B, C with A # 0, AB = C A implies B = C.
(c) True/False If A? is the zero matrix, then A itself is the zero matrix.

(d) True/False If AB = BA for every n X n matrix B, then A is the identity matrix I,,.

(e) True/False If matrix products AB and B A are both defined, then A and B are both
square matrices of the same size.

(f) True/False If x; is a solution for Ax = by (i.e., that Ax; = by) and x> is a solution
for Bx = bg, then x; + X3 is a solution for (A + B)x = by + ba.

(g) True/False If B is an m x n matrix with two equal columns, then the matrix AB has
two equal columns for every k x m matrix.

(h) True/False If A2 = 5, then A = —Iy or A = I5.

Project: Strassen’s Algorithm and Partitioned Matrices

Strassen’s algorithm is an algorithm for matrix multiplication that can be more efficient than the
standard row-column method. To understand this method, we begin with the 2 x 2 case which will
highlight the essential ideas.

Project Activity 8.1. We first work with the 2 x 2 case.

(a) LetA:[aij]:{;) i}andB:[bij]: [? g}

i. Calculate the matrix product AB.
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ii. Rather than using eight multiplications to calculate AB, Strassen came up with the
idea of using the following seven products:

hi = (@11 + a22)(b11 + b22)
ha = (a21 + az2)b11
hs = a11(b12 — b22)
hy = az(ba1 — b11)
hs = (a11 + a12)ba2
he = (az1 — a11)(b11 + b12)
hr = (a12 — a2)(ba1 + ba2).
Calculate h through h7 for the given matrices A and B. Then calculate the quantities
hi 4+ ha — hs + h7, hs + hs, ha + ha, and hy + hs — ho + hg.

What do you notice?

(b) Now we repeat part (a) in general. Suppose we want to calculate the matrix product AB

for arbitrary 2 x 2 matrices A = [ a2 } and B = { b biy ]

az1 a2 ba1  boo
Let
h1 = (a11 + a22)(b11 + ba2)
ha = (a21 + a2)b11
h3 = a1 (b1 — b22)
hs = aza(ba1 — b11)
hs = (a11 + a12)b22
he = (a21 — a11)(bi1 + b12)
hr = (a12 — a22)(ba1 + ba22).
Show that
AB — hi1+ hg — hs + hy hs + hs .
ha + hy hi+ hz — ha + hg

The next step is to understand how Strassen’s algorithm can be applied to larger matrices. This
involves the idea of partitioned (or block) matrices. Recall that the matrix-matrix product of the
k x m matrix A and the m x n matrix B = [b; by - -+ b,,] is defined as

AB = [Ab; Ab, --- Ab,).

In this process, we think of B as being partitioned into n columns. We can expand on this idea to
partition both A and B when calculating a matrix-matrix product.
Project Activity 8.2. We illustrate the idea of partitioned matrices with an example. Let A =
1 -2 3 -6 4
7 5 2 —1 0 |.Wecan partition A into smaller matrices
3 -8 1 09

1 -2 3|6 4
A=|7 5 2[-1 0],
3 81| 09
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which are indicated by the vertical and horizontal lines. As a shorthand, we can describe this

partition of A as
App A }
A= ,
[ Aoy Ago

where A1y = ; ; g },Au = _(13 3 :|,A21 =[3 —8 1], and Ayp = [09]. The
submatrices A;; are called blocks. If B is a matrix such that AB is defined, then B must have five
1 3
2 0
rows. As an example, AB is definedif B = | 4 1 |. The partition of A breaks A up into blocks
6 5
4 2

with three and two columns, respectively. So if we partition B into blocks with three and two rows,
then we can use the blocks to calculate the matrix product AB. For example, partition B as

:[Bn}
By |-

=N =
_ O W

-~
N Ot

Show that

AB — [ Ay Agp | [ By } _ [ A11Bi1 + A12Boy }
Ay Az | | Bay A21B11 + AeBa1 |-

An advantage to using partitioned matrices is that computations with them can be done in paral-
lel, which lessens the time it takes to do the work. In general, we can multiply partitioned matrices
as though the submatrices are scalars. That is,

A A oo Ay
Agl A22 cee Agm B11 312 . Blj e Bln
: oo By By -+ By -+ By Py
An A - Aim b
: : S Bmi Bme B Byn
L Ak Ak o Apm

where

m
Pij = AnBij + AipBaj + -+ + Ay Bj = Z AiByj,
=1

provided that all the submatrix products are defined.
Now we can apply Strassen’s algorithm to larger matrices using partitions. This method is

sometimes referred to as divide and conquer.

Project Activity 8.3. Let A and B be two r X r matrices. If  is not a power of 2, then pad the rows
and columns of A and B with zeros to make them of size 2™ x 2™ for some integer m. (From a
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practical perspective, we might instead just use unequal block sizes.) Let n = 2™. Partition A and

B as
AH A12 :| |: Bll Bl2 :|
A= and B = ,
[ A1 A By Bao
n

where each submatrix is of size 5§ x 5. Now we use the Strassen algorithm just as in the 2 x 2
case, treating the submatrices as if they were scalars (with the additional constraints of making sure
that the dimensions match up so that products are defined, and ensuring we multiply in the correct
order). Letting

My = (A1 + Ago)(B11 + Ba)
M3 = (A21 + A22)B11
M3 = A11(B12 — Ba2)
My = Azz(Ba21 — B11)
Ms = (A1 + A12) Bo
Mg = (Az1 — A11)(B11 + Bi2)
M7 = (A1 — Agz)(B21 + Ba2),

then the same algebra as in Project Activity 8.1 shows that

My + My — Ms + M, Ms + Ms;

AB = .
My + My My + M3 — Ms + Mg

Apply Strassen’s algorithm to calculate the matrix product AB, where

1 3 -1 2 5 3
A=12 4 6 |andB=|2 -4 1
7T -2 5 1 6 4

While Strassen’s algorithm can be more efficient, it does not always speed up the process. We
investigate this in the next activity.

Project Activity 8.4. We introduce a little notation to help us describe the efficiency of our cal-
culations. We won’t be formal with this notation, rather work with it in an informal way. Big O
(the letter “O”) notation is used to describe the complexity of an algorithm. Generally speaking,
in computer science big O notation can be used to describe the run time of an algorithm, the space
used by the algorithm, or the number of computations required. The letter “O” is used because the
behavior described is also called the order. Big O measures the asymptotic time of an algorithm, not
its exact time. For example, if it takes 6n% — n + 8 steps to complete an algorithm, then we say that
the algorithm grows at the order of n? (we ignore the constants and the smaller power terms, since
they become insignificant as n increases) and we describe its growth as O(n2). To measure the
efficiency of an algorithm to determine a matrix product, we will measure the number of operations
it takes to calculate the product.

(a) Suppose A and B are n x n matrices. Explain why the operation of addition (that is,
calculating A + B) is O(n?).

(b) Suppose A and B are n x n matrices. How many multiplications are required to calculate
the matrix product AB? Explain.
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(c) The standard algorithm for calculating a matrix product of two n x n matrices requires n3

multiplications and a number of additions. Since additions are much less costly in terms
of operations, the standard matrix product is O(n3). We won’t show it here, but using
Strassen’s algorithm on a product of 2™ x 2™ matrices is O(nlog2(7)), where n = 2.
That means that Strassen’s algorithm applied to an n X n matrix (where n is a power of
2) requires approximately 1/°22(7) multiplications. We use this to analyze situations to
determine when Strassen’s algorithm is computationally more efficient than the standard
algorithm.

i. Suppose A and B are 5 x 5 matrices. Determine the number of multiplications re-
quired to calculate the matrix product AB using the standard matrix product. Then
determine the approximate number of multiplications required to calculate the matrix
product AB using Strassen’s algorithm. Which is more efficient? (Remember, we
can only apply Strassen’s algorithm to square matrices whose sizes are powers of 2.)

ii. Repeat part i. with 125 x 125 matrices. Which method is more efficient?

As a final note, Strassen’s algorithm is approximately O (nQ'Sl). As of 2018, the best algorithm

for matrix multiplication, developed by Virginia Williams at Stanford University, is approximately
O(n237) 3

’V. V. Williams, Multiplying matrices in O (n**") time, Stanford University, (2014).
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Section 9

Introduction to Eigenvalues and
Eigenvectors

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is an eigenvalue of a matrix?

e What is an eigenvector of a matrix?

e How do we find eigenvectors of a matrix corresponding to an eigenvalue?
e How can the action of a matrix on an eigenvector be visualized?

e Why do we study eigenvalues and eigenvectors?

e What are discrete dynamical systems and how do we analyze the long-term
behavior in them?

Application: The Google PageRank Algorithm

The World Wide Web is a vast collection of information, searchable via search engines. A search
engine looks for pages that are of interest to the user. In order to be effective, a search engine
needs to be able to identify those pages that are relevant to the search criteria provided by the user.
This involves determining the relative importance of different web pages by ranking the results of
thousands or millions of pages fitting the search criteria. For Google, the PageRank algorithm is
their method and is “the heart of our software” as they say. It is this PageRank algorithm that we
will learn about later in this section. Eigenvalues and eigenvectors play an important role in this
algorithm.

169
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Introduction

Given a matrix A, for some special non-zero vectors v the action of A on v will be same as scalar
multiplication, i.e., Av = Av for some scalar A\. Geometrically, this means that the transformation
T defined by T'(x) = Ax simply stretches or contracts the vector v but does not change its direction.
Such a nonzero vector is called an eigenvector of A, while the scalar A is called the corresponding
eigenvalue of A. The eigenvectors of a matrix tell us quite a bit about the transformation the matrix
defines.

Eigenvalues and eigenvectors are used in many applications. Social media like Facebook and
Google use eigenvalues to determine the influence of individual members on the network (which
can affect advertising) or to rank the importance of web pages. Eigenvalues and eigenvectors appear
in quantum physics, where atomic and molecular orbitals can be defined by the eigenvectors of a
certain operator. They appear in principal component analysis, used to study large data sets, to
diagonalize certain matrices and determine the long term behavior of systems as a result, and in
the important singular value decomposition of a matrix. Matrices with real entries can have real or
complex eigenvalues, and complex eigenvalues reveal a rotation that is encoded in every real matrix
with complex eigenvalues which allows us to better understand certain matrix transformations.

Definition 9.1. Let A be an n x n matrix. A non-zero vector x is an eigenvector (or character-
istic vector) of A if there is a scalar A such that Ax = Ax. The scalar \ is an eigenvalue (or
characteristic value) of A.

For example, v = [ 1 } is an eigenvector of A = [ g (1) ] corresponding to the eigenvalue

A = 3 because Av = g , which is equal to 3v. On the other hand, w = [ ; } is not an
. 2 1 4 .. .
eigenvector of A = [ 3 0 ] because Aw = [ 3 ] , which is not a multiple of w.

Preview Activity 9.1.
(1) For each of the following parts, use the definition of an eigenvector to determine whether the

given vector v is an eigenvector for the given matrix A. If it is, determine the corresponding
eigenvalue.

(3 2 -2
oa=[3 2]

2 0 0
was[i ]-=[1]

3

3

(c) A=

wan [t 3] [

(2) We now consider how we can find the eigenvectors corresponding to an eigenvalue using
6 —2

the definition. Suppose A = [ 5 1

o099

] . We consider whether we can find eigenvectors
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corresponding to eigenvalues 3, and 5. Effectively, this will help us determine whether 3
and/or 5 are eigenvalues of A.

(a) Rewrite the vector equation Av = 5v where v = [ Y } as a vector equation.

(b) After writing 5v as 5Iv where I is the identity matrix, rearrange the variables to

turn this vector equation into the homogeneous matrix equation Bv = 0 where
1 -2 . . .. .
B = 9 _4 ] . If possible, find a non-zero (i.e. a non-trivial) solution to Bv = 0.

Explain what this means about 5 being an eigenvalue of A or not.

(c) Similarly, determine whether the vector equation Av = 3v has non-zero solutions.
Using your result, determine whether 3 is an eigenvalue of A or not.

Eigenvalues and Eigenvectors

Eigenvectors are especially useful in understanding the long-term behavior of dynamical systems,
an example of which we will see shortly. The long-term behavior of a dynamical system is quite
simple when the initial state vector is an eigenvector and this fact helps us analyze the system in
general.

To find eigenvectors, we are interested in determining the vectors x for which Ax has the same
direction as x. This will happen when
Ax = Ax

for some scalar A. Of course, Ax = Ax when x = O for every A and every A, but that is unin-
teresting. So we really want to consider when there is a non-zero vector x so that Ax = Ax. This
prompts the definition of eigenvectors and eigenvalues as in Definition 9.1

In order for a matrix A to have an eigenvector, one condition A must satisfy is that A has to be
a square matrix, i.e. an n X n matrix. We will find that each n x n matrix has only finitely many
eigenvalues.

The terms eigenvalue and eigenvector seem to come from Hilbert, using the German “eigen”

LRI T3

(roughly translated as “own”, “proper”, or “characteristic”’) to emphasize how eigenvectors and
eigenvalues are connected to their matrices. To find the eigenvalues and eigenvectors of an n X n
matrix A, we need to find the solutions to the equation

Ax = \x.

In Preview Activity 9.1, we considered this equation for A = [ g _%

} and A = 5. The homoge-

neous matrix equation we came up with was

1 -2
[2 _4])(—0.

To see the relationship between this homogeneous matrix equation and the eigenvalue-eigenvector

D00
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equation better, let us consider the eigenvector equation using matrix algebra:

Ax = \x
Ax —Ax=0
Ax —A,x=0
(A= X,)x=0,

where I, is the n X n identity matrix. Notice that this description matches the homogenous equation
matrix example above since we simply subtracted 5 from the diagonal terms of the matrix A. Hence,
to find eigenvalues, we need to find the values of \ so that the homogeneous equation (A—\I,)x =
0 has non-trivial solutions.

Activity 9.1.

(a) Under what conditions on A—\I,, will the matrix equation (A—\I,,)x = 0 have non-trivial
solutions? Describe at least two different but equivalent conditions.

1 2

(b) The real number O is an eigenvalue of A = [ 9 4

] . Check that your criteria in the

previous part agrees with this result.

(c) Determine if 5 is an eigenvalue of the matrix A = [ ] using your criterion above.

2 4

(d) What are the two eigenvalues of the matrix A = [ i g ] ?

Since an eigenvector of A corresponding to eigenvalue ) is a non-trivial solution to the homo-
geneous equation (A — AI,,)x = 0, the eigenvalues A\ which work are those for which the matrix
A — A, has linearly dependent columns, or for which the row echelon form of the matrix A — \I,,
does not have a pivot in every column. When we need to test if a specific A is an eigenvalue, this
method works fine. However, finding which \’s will work in general involves row reducing a matrix
with \’s subtracted on the diagonal algebraically. For certain types of matrices, this method still
provides us the eigenvalues quickly. For general matrices though, row reducing algebraically is not
efficient. We will later see an algebraic method which uses the determinants to find the eigenvalues.

Activity 9.2.

(a) For A to be an eigenvalue of A, we noted that A — \I,, must have a non-pivot column. Use

this criterion to explain why A = [ g Z } has eigenvalues A = —2 and A = 4.
30 10
. . 0 2 -1 0
(b) Determine the eigenvalues of A = 0 0 2 0
00 01

(c) Generalize your results from the above parts in the form of a theorem in the most general
n X n case.
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Dynamical Systems

One real-life application of eigenvalues and eigenvectors is in analyzing the long-term behavior of
discrete dynamical systems. A dynamical system is a system of variables whose values change with
time. In discrete systems, the change is described by defining the values of the variables at time
t 4+ 1 in terms of the values at time ¢. For example, the discrete dynamical system

Yi+1 =Y + 1

relates the value of y at time ¢ 4 1 to the value of y at time ¢. This is in contrast with a differential
equation' such as

Wyt

dt - y 9

which describes the instantaneous rate of change of y(¢) in terms of y and t.

Discrete dynamical systems can be used in population modeling to provide a simplified model
of predator-prey interactions in biology (see Preview Activity 9.2). Other applications include
Markov chains (see Exercise 5), age structured population growth models, distillation of a binary
ideal mixture of two liquids, cobweb model in economics concerning the interaction of supply and
demand for a single good, queuing theory and traffic flow.

Eigenvectors can be used to analyze the long-term behavior of dynamical systems.

Preview Activity 9.2.

(1) Consider a discrete dynamical system providing a simplified model of predator-prey inter-
actions in biology, such as the system describing the populations of rabbits and foxes in a
certain area.

Suppose, for example, for a specific area the model is given by the following equations:

P = 1.14ry, — 0.12f%

9.1)
Fri1 = 0.087y + 0.86

where r; represents the number of rabbits in the area ¢ years after a starting time value, and f;
represents the number of foxes in year ¢. We use g, fo to denote the initial population values.

(a) Suppose r, = 300 and f, = 100 for one year. Calculate rabbit and fox population
values for the next year. In other words, find 751, fr+1 values.

(b) Consider the coefficients of the variables 7y, fx in the the system of equations in (9.1).
Can you explain the reasoning behind the signs and absolute sizes of the coefficients
from the story that it models?

Jr

k, because it describes the state of the whole system at time k. We can rewrite the
system of equations in (9.1) as a matrix-vector equation in terms of the state vectors
at time k£ and k£ + 1. More specifically, the equation will be of the form

T . i
(c) Let x;, = [ k ] The vector x;, is called the state vector of the system at time

Xk+1 = AXk (92)

'A differential equation is an equation that involves one or more derivatives of a function.

D00
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1.14 —-0.12

where A4 = [ 0.08  0.86

] . We will call this matrix the transition matrix of the

system. Check that A [ 300

100 } gives us the population values you calculated in the

first part above.

(d) The transition matrix will help us simplify calculations of the population values. Note
that equation (9.2) implies that x; = Axg, X9 = Ax1, X3 = Axo, and so on. This
is a recursive method to find the population values as each year’s population values
depend on the previous year’s population values. Using this approach, calculate xy,
for k values up to 5 corresponding to the following three different initial rabbit-fox
population values (all in thousands):

ro = 300, fo =100

ro = 100, fo = 200
ro = 1200, fo = 750

Can you guess the long-term behavior of the population values in each case? Are
they both increasing? Decreasing? One increasing, one decreasing? How do the
rabbit and fox populations compare?

A dynamical system is a system of variables whose values change with time. In Preview Ac-
tivity 9.2, we considered the discrete dynamical system modeling the rabbit and fox population in
an area, which is an example of a predator-prey system. The system was given by the equations
from (9.1), where r; represented the number of rabbits in the area ¢ years after a starting time value,
and f; represented the number of foxes in year 4. In this notation, ¢, fy corresponded to the initial
population values.

. . .. . T
As we saw in Preview Activity 9.2, if we define the state vector as x; = [ F

] , the system of
Jr

equations representing the dynamical system can be expressed as

Xk+1 = AXk (93)

1.14 —-0.12 o . .
where A = 008  0.86 represents the transition matrix. Note that equation (9.3) encodes
infinitely many equations including x; = Axg, Xxo = Axj, x3 = Axo, and so on. This is a

recursive formula for the population values as each year’s population values are expressed in terms
of the previous year’s population values. If we want to calculate x1¢, this formula requires first
finding the population values for years 1-9. However, we can obtain a non-recursive formula using
matrix algebra. If we substitute x; = Axg into xo = Ax; and simplify, we find that

xo = Ax; = A(Axg) = A?xg .
Similarly, substituting xo = A2?x; into the formula for x3 gives

X3 = Axy = A(AQXQ) = A3x,.
This process can be continued inductively to show that

x, = A¥x (9.4)
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for every k value. So to find the population values at any year k, we only need to know the initial
state vector Xg.

Activity 9.3. In this activity the matrix A is the transition matrix for the rabbit and fox population

model,

(a)

(b)

(©

(d)

(e)

114 —0.12
A‘[o.os 0.86]

Suppose that the initial state vector xg is an eigenvector of A corresponding to eigenvalue
. In this case, explain why x; = Axg and x» = A?xg. Find the formula for x;, in terms of
A, k and xq by applying equation (9.3) iteratively.

0 . . . .
loo | 18 @n eigenvector of A. Find the corresponding
eigenvalue and, using your formula from (a) for x, in terms of A, k and x¢, find the state
vector X in this case.

The initial state vector xg =

The initial state vector xg = is an eigenvector of A. Find the corresponding

10
200
eigenvalue and, using your formula from (a) for x;, in terms of A, k and x¢, find the state
vector X, in this case.

Consider now an initial state vector of the form xg = avy + bwg where a, b are constants,
v is an eigenvector corresponding to eigenvalue A\; and wq corresponding to eigenvalue
A2 (vg and wq are not necessarily the eigenvectors from parts (b) and (c)). Use matrix
algebra and equation (9.4) to explain why x5 = a)\’fvo + b/\’gwo.

1200

750 ] as a linear combination of the eigenvectors

Express the initial state vector xg = [

Vo = { ?88 ] s Wo = [ ;88 } and use your result from the previous part to find a formula

for x;. What happens to the population values as &k — oo?

As you discovered in Activity 9.3, we can use linearly independent eigenvectors of the transition
matrix to find a closed formula for the state vector of a dynamical system, as long as the initial state
vector can be expressed as a linear combination of the eigenvectors.

Examples

What follows are worked examples that use the concepts from this section.

2 4

Example 9.2. Let A = [ L2 }

(a)
(b)

Find all of the eigenvalues of A.

Find a corresponding eigenvector for each eigenvalue found in part (a).
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Example Solution.

(a)

(b)

Recall that a scalar A is a eigenvalue for A if there is a nonzero vector x such that Ax = Ax
or (A — Al3)x = 0. For this matrix A, we have

1—A 2
T

To solve the homogeneous system (A — Al2)x = 0, we row reduce A — A\I5. To do this,
we first interchange rows to get the following matrix that is row equivalent to A — A\l5 (we
do this to ensure that we have a nonzero entry in the first row and column)

2 4— A
1—A 2 '

Next we replace row two with %(1 — A) times row one minus row two to obtain the row
equivalent matrix

2 4— A
0 3(4—N(1-X) -2

There will be a nontrivial solution to (A — Al2)x = 0 if there is a row of zeros in this row
echelon form. Thus, we look for values of A that make

%(4—)\)(1—)\)—220.

Applying a little algebra shows that

%(4—»(1—»—2:0
(A= N1 =\ —4=0
A —50=0
AA—=5) = 0.

So the eigenvalues of A are A = 0 and A\ = 5.

Recall that an eigenvector for the eigenvalue A is a nonzero vector x such that (A—\lz)x =
0. We consider each eigenvalue in turn.

e When A =0, )
1 2
onoas[1?]

Technology shows that the reduced row echelon form of A is

1 2]

0 0"
If x = [ il ], then Ax = 0 implies that x5 is free and 21 = —2x,. Choosing

2

x9 = 1 gives us the eigenvector [ _f ] As a check, note that

2] [e]
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e When A =5,

14—512:[_;l _f]

Technology shows that the reduced row echelon form of A — 515 is

R
O Nl

Ifx = [ il ] ,then (A — 5I3)x = 0 implies that 5 is free and 21 = %l’g. Choosing
2

. . 1
x9 = 2 gives us the eigenvector [ 9 ] . As a check, note that

L =5 [[1]7 _TJo0

0 0 { 2 } N { 0 ] '
Example 9.3. Accurately predicting the weather has long been an important task. Meteorologists
use science, mathematics, and technology to construct models that help us understand weather pat-
terns. These models are very sophisticated, but we will consider only a simple model. Suppose, for
example, we want to learn something about whether it will be wet or dry in Grand Rapids, Michi-
gan. To do this, we might begin by collecting some data about weather conditions in Grand Rapids
and then use that to make predictions. Information taken over the course of 2017 from the National
Weather Service Climate Data shows that if it was dry (meaning no measurable precipitation, either
rain or snow) on a given day in Grand Rapids, it would be dry the next day with a probability of
64% and wet with a probability of 36%. Similarly, if it was wet on a given day it would be dry the
next day with a probability of 47% and dry with a probability of 53%. Assuming that this pattern is
one that continues in the long run, we can develop a mathematical model to make predictions about
the weather.

This data tells us how the weather transitions from one day to the next, and we can succinctly
represent this data in a transition matrix:

T [ 0.64 0.47 } ‘ ©5)

0.36 0.53

Whether it is dry or wet on a given day is called the state of that day. So our transition matrix tells
us about the transition between states. Notice that if 7" = [¢;;], then the probability of moving from

. S 1
state j to state ¢ is given by ?;;. We can represent a state by a vector: the vector [ 0 ] represents

0
the dry state and the vector [ 1 ] represents the wet state.

(a) Calculate T' [ ] . Interpret the meaning of this output.

1
0

(b) Calculate T’ [ (1) ] . Interpret the meaning of this output.
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(c) Calculate T’ [ 83 ] . Interpret the meaning of this output.

(d) We can use the transition matrix to build a chain of probability vectors. We begin with an
initial state, say it is dry on a given day. This initial state is represented by the initial state

vector Xg = [ ] . The probabilities that it will be dry or wet the following day are given

0
by the vector

Xl:TXO:[O.M]

0.36

This output vector tells us that the next day will be dry with a 64% probability and wet with
a 36% probability.

For each k > 1, we let
X = TXp_1. 9.6)

Thus we create a sequence of vectors that tell us the probabilities of it being dry or wet on
subsequent days. The vector x, is called the state vector of the system at time k, because
it describes the state of the whole system at time k. We can rewrite the system of equations
in (9.1) as a matrix-vector equation in terms of the state vectors at time k and k + 1. More
specifically, the equation will be of the form

X1 = T'Xg 9.7)
for k > 0.
1. Starting with x¢ = (1) , use appropriate technology to calculate xy, for £ values up
to 10. Round to three decimal places. What do you notice about the entries?

ii. What does the result of the previous part tell us about eigenvalues of 7'7 Explain.

iii. Rewrite 1" as

64 47
7 — | 100 100
36 53
100 100
47
We do this so we can use exact arithmetic. Letx = | 22 |. What is Tx? (Use exact
83

arithmetic, no decimals.) Explain how x is related to the previous two parts of this
problem. What does the vector x tells us about weather in Grand Rapids?

Example Solution.
(a) Here we have
T 1] | 0.64 047 1] | 0.64
0| | 036 0.53 0| 1036 |
This output tells us the different probabilities of whether it will be dry or wet the day
following a dry day.
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(b) Here we have
T 0] | 064 047 0] | 047
1] | 036 0.53 1| 053]
This output tells us the different probabilities of whether it will be dry or wet the day
following a wet day.

T 03| | 0.64 047 03 | _| 052
07| 036 053] |07 || 048 |°
This output tells us there is a 52% chance of it being dry and a 48% chance of it being wet

following a day when there is a 30% chance of it being dry and a 70% chance of it being
wet.

(c) Here we have

(d)  i. Technology shows that

- [ 0.640 | o — [ 0.579 |

| 0.360 | | 0.421 |

n_ | 05687 0567 ]

570432 ] Tt | 0433 |

[ 05667 [0.566 ]

70434 ] 07| 0.434 |

o — [0566) 0566 ]

| 0.434 | | 0.434

o= | 0566 [ 0.566 ]
| 0.434 | 0434 |

We can see that our vectors x;, are essentially the same as we let k increase.

ii. Since our sequence seems to be converging to a vector x satisfying Tx = x, we
conclude that 1 is an eigenvalue of 7.

iii. A matrix vector multiplication shows that

64 AT 47 47
Tx — | 100 100 83 | _ | 83
36 53 36 36
100 100 83 83

In other words, x is an eigenvector for I" with eigenvalue 1. Notice that

47 36

— ~ 0.566 and — ~ 0.434

83 8 ’

so these fractions give the same results we obtained with our sequence of vectors xy.
These vectors provide a steady-state vector for Grand Rapids weather. In other words,
if there is a 56.6% chance of it being dry on a given day in Grand Rapids, then there
is a 56.6% chance it will be dry again the next day.

This is an example of a Markov process. Markov processes (named after Andrei Andreevich
Markov) are widely used to model phenomena in biology, chemistry, business, physics, engineering,
the social sciences, and much more. More specifically,



180 Section 9. Introduction to Eigenvalues and Eigenvectors

Definition 9.4. A Markov process is a process in which the probability of the system being in a
given state depends only on the previous state.

If xg is a vector which represents the initial state of a Markov process, then there is a matrix
T (the transition matrix) such that the state of the system after one iteration is given by the vector
T'xg. This produces a chain of state vectors T'xq, 1%xq, T>x(, etc., where the state of the system
after n iterations is given by 7"xq. Such a chain of vectors is called a Markov chain. A Markov
process is characterized by two properties:

e the total number of observations remains fixed (this is reflected in the fact that the sum of the
entries in each column of the matrix 71" is 1), and

e no observation is lost (this means the entries in the matrix 7' cannot be negative).

Summary

We learned about eigenvalues and eigenvectors of a matrix in this section.

e A scalar A is an eigenvalue (or characteristic value) of a square matrix A if there is a non-zero
vector X so that Ax = Ax.

e A non-zero vector x is an eigenvector (or characteristic vector) of a square matrix A if there
is a scalar A so that Ax = \x.

e To find the eigenvectors of an n X n matrix A corresponding to an eigenvalue A\, we determine
the non-trivial solutions to (A — AI,,)x = 0 where I,, is the n x n identity matrix.

e We study eigenvectors and eigenvalues because the eigenvectors tell us quite a bit about the
transformation corresponding to the matrix. These eigenvectors arise in many applications
in physics, chemistry, statistics, economics, biology, sociology and other areas, and help
understand the long-term behavior of dynamical systems.

e A dynamical system is a system of variables whose values change with time. In linear dynam-
ical systems, the change in the state vector from one time period to the next is expressed by
matrix multiplication by the transition matrix A. The eigenvectors of A provide us a simple
method to express the state vector at any given time period in terms of the initial state vec-
tor. Specifically, if the initial state vector is xg = avg + bwg where v, w are eigenvectors
corresponding to eigenvalues A1, Ao, we have

x; = AFxy = )\]favo + )\gbwo .
Exercises

(1) For each of the following matrix-vector pairs, determine whether the given vector is an eigen-
vector of the matrix.

1 2 1
oa- [} 3= (]
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PREHEN
'210 1
©A=| 01 0],v=| 0
-1 0 1 1

(2) For each of the following matrix-eigenvalue pairs, determine an eigenvector of A for the

given eigenvalue.

[ 1 2 (1 4
(a)A___14,A_3 b A= || | |[A=3
o0
© A=| 3 3 0|, Ax=5@ A= A =4
0o 1 2000
L 000 3

(3) For each of the following matrix-\ pairs, determine whether the given A will work as an

“)

&)

eigenvalue. You do not need to find an eigenvector as long you can justify if A is a valid
eigenvalue or not.

(a)A:[i 2],A:2 (b)A:[;l :?],)\:0

() A= [ _1 ﬂ,x:—l d A= [ _(1) _f ],)\:—2
For a matrix A with eigenvector vi = [ 1 ] with eigenvalue \; = 2, and eigenvector
vy = [ ; ] with eigenvalue Ay = —1, determine the value of the following expressions

using matrix-vector product properties:
(a) A(2vy + 3va)
(b) A(A(v1+2vy))
(c) A(4vy — 2vs)

In this problem we consider a discrete dynamical system that forms what is called a Markov
chain (see Definition 9.4) which models the number of students attending and skipping a
linear algebra class in a semester. Assume the course starts with 1,000,000 students on day
0. For any given class day, 90% of the students who attend a class attend the next class (and
10% of these students skip next class) while only 30% of those absent are there the next time
(and 70% of these students continue skipping class).

(a) We know that there will be 900,000 students in class on the second day and 100,000
students skipping class. On the third day, 90% of the 900,000 students (attenders) and
30% of the 100,000 students (skippers) will come back to class. Therefore, 840,000
students will attend class on the third day. On the other hand, 10% of 900,000 stu-
dents and 70% of 100,000 students skip class on the third day, for a total of 160,000
students skipping class.
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We can use variables to represent these numbers. Let a,, represent the number of stu-
dents attending class n days after first day. So ag = 1, 000, 000, a; = 900, 000, as =
840, 000. Let s,, represent the students skipping class. So so = 0, s1 = 100, 000, so =
160, 000. Find as, 83,04, S4.

(b) Find a linear expression for ay1 in terms of the previous day values, aj and sy,
using the story given in the problem. Similarly, express s+ in terms of ay and sy.

a .
(c) Let x; represent the state vector: X = [Sk] It describes the state of the whole
k

system (students attending class and skipping class) in one vector. For example,
Xo — [1,000,000 900,000]

0 100, 000]"
Using your answer to the previous part, find a matrix A which describes how the
system changes from one day to the other so that x5 1 = Axy.

] is the initial state. The state next day is x; = [

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The number 0 cannot be an eigenvalue.

(b) True/False The 0 vector cannot be an eigenvector.

(c) True/False If v is an eigenvector of A, then so is 2v.

(d) True/False If v is an eigenvector of A, then it is also an eigenvector of A2

(e) True/False If v and u are eigenvectors of A with the same eigenvalue, then v + u is
also an eigenvector with the same eigenvalue.

(f) True/False If \ is an eigenvalue of A, then \? is an eigenvalue of A2

(2) True/False A projection matrix satisfies P2 = P. If P is a projection matrix, then
the eigenvalues of P can only be 0 and 1.

(h) True/False If ) is an eigenvalue of an n x n matrix A, then 1 + X is an eigenvalue
of I, + A.

(i) True/False If ) is an eigenvalue of two matrices A and B of the same size, then A is
an eigenvalue of A + B.

(j) True/False If v is an eigenvector of two matrices A and B of the same size, then it
is also an eigenvector of A + B.

(k) True/False A matrix A has 0 as an eigenvalue if and only if A has linearly dependent
columns.

Project: Understanding the PageRank Algorithm

Sergey Brin and Lawrence Page, the founders of Google, decided that the importance of a web
page can be judged by the number of links to it as well as the importance of those pages. It is this
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idea that leads to the PageRank algorithm.? Google uses this algorithm (and others) to order search
engine results. According to Google:*

PageRank works by counting the number and quality of links to a page to determine
a rough estimate of how important the website is. The underlying assumption is that
more important websites are likely to receive more links from other websites.

To rank how “important” a website is, we need to make some assumptions. We assume that a
person visits a page and then surfs the web by selecting a link from that page — all links on a given
page are assigned the same probability of being chosen. As an example, assume a small set of seven
pages 1, 2, 3, 4, 5, 6, and 7 with links between the pages given by the arrows as shown in Figure
9.1.* So, for example, there is a hyperlink from page 4 to page 3, but no hyperlink in the opposite
direction. If a web surfer starts on page 5, then there is probability of % that this person will surf to
page 6 and a probability of % that the surfer will move to page 4. If there is no link leaving a page,
as in the case of page 3, then the probability of remaining there is 1.

Figure 9.1: A seven page internet

To rank pages, we need to know how likely it is that a surfer will land on a given page. In our
seven page example, a person can land on page 3 from page 4 with a probability of % or from page
6 with a probability of % If there is a link from a page we assume that the surfer leaves the page,
and if there are no links from a page then the surfer stays on that page. We also assume that the
surfer does not use the “Back” key. This information for our seven page internet example can be
summarized in a transition matrix T whose 7, jth entry is the probability that a surfer lands on page

’Information for this project was taken from the websites http://www.ams.org/samplings/
feature-column/fcarc-pagerank and http://faculty.winthrop.edu/polaskit/springll/
math550/chapter.pdf.

31'1t:tp ://web.archive.org/web/20111104131332/http://www.google.com/competition/
howgooglesearchworks.html

“The Internet is very large and has upwards of 25 billion pages. This would leave us with an enormous transition
matrix, even though most of its entries are 0. In fact, studies show that web pages have an average of about 10 links, so
on average all but 10 entries of each column are 0. Working with such a large matrix is beyond what we want to do in
this project, so we will just amuse ourselves with small examples that illustrate the general points.
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1 from page j.

0200000
1000000
0013010
T=10 300 35 00
0003 031
00001100
00000 5 O]

Let us assume in our seven page internet that a user starts on page 6. That is, the probability
that the user is initially on page 6 is 1, and so the probability that the user is on some other page is
0. This information can be encapsulated in a state vector

xo=[0000010]".

Since there are links from page 6 to pages 3, 5, and 7, there is a % probability that the surfer will
next move to one of these pages. That means that at the next step, the state vector x; for this user
will be

0010101T
X1 = -0=-0-=| .
! 3°3 3
Note that

X1:TXO.

As the user continues to surf the internet, the probabilities that the surfer is on a given page after
the second, third, and fourth steps are given in the state vectors

X9 = TX1 = TQXO, X3 = TX2 = T3X0, X4 = TX3 = T4X0.

In general, the probabilities that the surfer is on a given page after the nth step is given by the state
vector
Xp = Tx,-1 = T™xg.

This example illustrates the general nature of what is called a Markov process (see Definition
9.4). The two properties of the transition matrix 7' make 7" a special kind of matrix.

Definition 9.5. A stochastic matrix is a matrix in which entries are nonnegative and the sum of the
entries in every column is one.

In a Markov process, each generation depends only on the preceding generation and there may
be a limiting value as we let the process continue indefinitely. We can test to see if that happens for
this Markov process defined by 7" by doing some experimentation.

Project Activity 9.1. Use appropriate technology to do the following. Choose several different
initial state vectors x( and calculate the vectors in the sequence {T"xg} for large values of n.
(Note that, as state vectors, the entries of xg cannot be negative and the sum of the entries of xg
must be 1.) Explain the behavior of the sequence {x,} as n gets large. Do you notice anything
strange? What aspects of our seven page internet do you think explain this behavior? Clearly
communicate all of the experimentation that you do. You may use the GeoGebra applet at https:
//www.geogebra.org/m/b3dybnux.
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If there is a limit of the sequence {1"x(} (in other words, if there is a vector v such that
v = lim T"xg), we call this limit a steady-state or equilibrium vector. Such a steady-state vector
n—o0

has another important property. Since 7' is independent of n we have

Tv=T ( lim T"Xo) = li_}In T % = v. (9.8)

n—o0

Equation (9.8) shows that a steady state vector v is an eigenvector for 7" with eigenvalue 1. We
can interpret the steady-state vector for 7" in an important way. Let ¢; be the fraction of time we
spend on page j and let /; be the number of links on page j. Then the fraction of the time that we
end up on page ¢ coming from page j is E—J If we sum over all the pages linked to page ¢ we have
that ’

b

i

Notice that this is essentially the same process we used to obtain x,, from x,_1, and so we can
interpret the steady-state vector v as telling us what fraction of a random web surfer’s time was spent
at each web page. If we assume that the time spent at a web page is a measure of its importance,
then the steady-state vector tells us the relative importance of each web page. So this steady-state
vector provides the page rankings for us. In other words,

ti =

The importance of a webpage may be measured by the relative size of the correspond-
ing entry in the steady-state vector for an appropriately chosen Markov chain.

Project Activity 9.2. Show that the limiting vector you found in Project Activity 9.1 is an eigen-
vector of T with eigenvalue 1.

Project Activity 9.1 illustrates one problem with our seven page internet. The steady-state vector
shows that page 3 is the only important page, but that hardly seems reasonable in the example
since there are other pages that must have some importance. The problem is that page 3 is a
“dangling” page and does not lead anywhere. Once a surfer reaches that page, they are stuck
there, overemphasizing its importance. So this dangling page acts like a sink, ultimately drawing
all surfers to it. To adjust for dangling pages, we make the assumption that if a surfer reaches a
dangling page (one with no links emanating from it), the surfer will jump to any page on the web
with equal probability. So in our seven page example, once a surfer reaches page 3 the surfer will
jump to any page on the web with probability %

Project Activity 9.3.
(a) Determine the transition matrix for our seven page internet with this adjustment.

(b) Approximate the steady-state vector for this adjusted matrix so that the entries are accurate
to four decimal places. Use any appropriate technology to row reduce matrices.

(c) According to this adjusted model, which web page is now the most important? Why? Does
this seem reasonable? Why?

There is one more issue to address before we can consider ourselves ready to rank web pages.
Consider the example of the five page internet shown in Figure 9.2.
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Figure 9.2: A five page internet

Project Activity 9.4.
(a) Explain why

[0

1

0

0

| O

S O = O O

o O O =

0

= O O O N

is the transition matrix for this five page internet

for dangling pages.)

U= Gl Ol O Ot

. (Keep in mind the adjustment we made

(b) Start with different initial state vectors xg and determine if there is a limit to the Markov
chain. Explain. You may use the GeoGebra applet at https://www.geogebra.org/

m/b3dybnux.

Project Activity 9.4 shows that it is possible to construct an internet so that the corresponding
Markov chain does not have a limit, even after adjusting for dangling pages. This is a significant
problem if we want to provide a relative ranking of all web pages regardless of where a surfer starts.
To fix this problem we need to make one final adjustment to arrive at a type of transition matrix that

always provides a limit for our Markov chain.

Definition 9.6. A stochastic matrix is regular if its transition matrix 7" has the property that for

some power k, all the entries of 7" are positive.

Note that the transition matrix from Project Activity 9.4 is not regular. Regular matrices have
some especially nice properties, as the following theorem describes. We will not prove this theorem,
but use it in the remainder of this project. The theorem shows that if we have a regular transition
matrix, then there will a limit of the state vectors x,, and that this limit has a very interesting

property.

Theorem 9.7. Assume n > 2 and that T is a regular n X n stochastic matrix.

(1) lim T* exists and is a stochastic matrix.
k—o0
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(2) For any vector X,
lim T"x = ¢
k—o0

for the same vector c.

(3) The columns of klim T* are the same vector c.
— 00

(4) The vector c is the unique eigenvector of T' whose entries sum to 1.

(5) If X is an eigenvalue of T not equal to 1, then |\| < 1.

Having a regular transition matrix 7" ensures that there is always the same limit v to the sequence

Tkx, for any starting vector xXg. As mentioned before, the entries in v. = lim T"x( can be
n—oo

interpreted as telling us what fraction of the random surfers time was spent at each webpage. If we
interpret the amount of time a surfer spends at a page as a measure of the page’s importance, then
this steady-state vector v provides a ranking of the relative importance of each page in the web.
This is the essence of Google’s PageRank.

To make our final adjustment in the transition matrix to be sure that we obtain a regular matrix,
we need to deal with the problems of “loops” in our internet. Loops, as illustrated in Project Activity
9.4, can act as sinks just like the dangling pages we saw earlier and condemn a user that enters such
a loop to spend his/her time only on those pages in the loop. Quite boring! To account for this
problem, we make a second adjustment.

Let p be a number between 0 and 1 (Google supposedly uses p = 0.85). Suppose a surfer is
on page ¢. We assume with probability p that the surfer will chose any link on page ¢ with equal
probability. We make the additional assumption with probability 1 — p that the surfer will select
with equal probability any page on the web.

If T is a transition matrix, incorporating the method we used to deal with dangling pages, then
the adjusted transition matrix G (the Google matrix) is

G=pl'+(1-p)Q,

where () is the matrix all of whose entries are % where n is the number of pages in the internet
(n = 7 in our seven page example). Since all of the entries of G are positive, G is a regular
stochastic matrix.

Project Activity 9.5. Return to the seven page internet in Figure 9.1.
(a) Find the Google matrix G for this internet.
(b) Approximate, to four decimal places, the steady-state vector for this internet.

(c) What is the relative rank of each page in this internet, and approximately what percentage
of time does a random user spend on each page.

We conclude with two observations. Consider the role of the parameter p in our final adjustment.
Notice that if p = 1, then G = T and we have the original hyperlink structure of the web. However,
if p=0,then G = %I n» Where I, is the n x n identity matrix with n as the number of pages in the
web. In this case, every page is linked to every other page and a random surfer spends equal time
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on any page. Here we have lost all of the character of the linked structure of the web. Choosing p
close to 1 retains much of the original hyperlink structure of the web.

Finally, the matrices that model the web are HUGE, and so the methods we used in this project to
approximate the steady-state vectors are not practical. There are many methods for approximating
eigenvectors that are often used in these situations, some of which we discuss in a later section.
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Section 10

The Inverse of a Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

What does it mean for a matrix A to be invertible?

e How can we tell when an n X n matrix A is invertible?

If an n x n matrix A is invertible, how do we find the inverse of A?

If A and B are invertible n x n matrices, why is A B invertible and what is
(AB)~1?

e How can we use the inverse of a matrix in solving matrix equations?

Application: Modeling an Arms Race

Lewis Fry Richardson was a Quaker by conviction who was deeply troubled by the major wars
that had been fought in his lifetime. Richardson’s training as a physicist led him to believe that the
causes of war were phenomena that could be quantified, studied, explained, and thus controlled.
He collected considerable data on wars and constructed a model to represent an arms race. The
equations in his model caused him concern about the future as indicated by the following statement:

But it worried him that the equations also showed that the unilateral disarmament of
Germany after 1918, enforced by the Allied Powers, combined with the persistent level
of armaments of the victor countries would lead to the level of Germanys armaments
growing again. In other words, the post-1918 situation was not stable. From the model
he concluded that great statesmanship would be needed to prevent an unstable situation
from developing, which could only be prevented by a change of policies.'

'Nature 135, 830-831 (18 May 1935) “Mathematical Psychology of War” (3420).
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Analyzing Richardson’s arms race model utilizes matrix operations, including matrix inverses. We
explore the basic ideas in Richardson’s model later in this section.

Introduction

To this point we have solved systems of linear equations with matrix forms Ax = b by row reducing
the augmented matrices [A | b]. These linear matrix-vector equations should remind us of linear
algebraic equations of the form ax = b, where a and b are real numbers. Recall that we solved
an equation of the form ax = b by dividing both sides by a (provided a # 0), giving the solution
T = g, or equivalently = a~'b. The important property that the number a~! has that allows us
to solve a linear equation in this way is that a'a = 1, so that ¢! is the multiplicative inverse of
a. We can solve certain types of matrix equations Ax = b in the same way, provided we can find a

matrix A~ with similar properties. We investigate this situation in this section.

Preview Activity 10.1.

(1) Before we define the inverse matrix, recall that the identity matrix I,, (with 1’s along the
diagonal and 0’s everywhere else) is a multiplicative identity in the set of n x n matrices (just
like the real number 1 is the multiplicative identity in the set of real number). In particular,
I,A = Al, = A for any n X n matrix A.

Now we can generalize the inverse operation to matrices. For an n x n matrix A, we define

A~ to be the matrix which when multiplied by A gives us the identity matrix. In other

words, AA~" = A=A = I,,. We can find the inverse of a matrix in a calculator by using the
-1

™" button.

For each of the following matrices, determine if the inverse exists using your calculator or
other appropriate technology. If the inverse does exist, write down the inverse and check that
it satisfies the defining property of the inverse matrix, that is AA™! = A='A = I,,. If the
inverse doesn’t exist, write down any error you received from the technology. Can you guess
why the inverse does not exist for these matrices?

13 2 3
@ A=,y (b)A_[4 6]
1 2 3 (1 2 3
© A= | -1 -1 2 @ A=|2 4 6
1 2 2 12 2
1.0 0 1 2 3
@ A=10 2 0 ) A=| -1 -1 2
(00 3 0 15

(2) Now we turn to the question of how to find the inverse of a matrix in general. With this
approach, we will be able to determine which matrices have inverses as well.

We will consider the 2 x 2 case to make the calculations easier. Suppose A is a 2 X 2 matrix.
Our goal is to find a matrix B so that AB = I, and BA = I5. If such a matrix exists, we will
call B the inverse, A=, of A.

(a) What does the equation AB = I, tell us about the size of the matrix B?
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(b) Now let A = [ 1 g } . We want to find a matrix B so that AB = I5. Suppose B
has columns b; and by, i.e. B = [by by]. Our definition of matrix multiplication
shows that

AB = [Ab; Aby].

i. If AB = I5, what must Ab; and Ab, equal?

ii. Use the result from part (a) to set up two matrix equations to solve to find by
and bs. Then find by and bs. As a result, find the matrix B.

iii. When we solve the two systems we have found a matrix B so that AB = I». Is
this enough to say that B is the inverse of A? If not, what else do we need to
know to verify that B is in fact A~1? Verify that B is A~1.

(3) A matrix inverse is extremely useful in solving matrix equations and can help us in solving
systems of equations. Suppose that A is an invertible matrix, i.e., there exists A~! such that
AA L = A7TA =1,

(a) Consider the system Ax = b. Use the inverse of A to show that this system has a
solution for every b and find an expression for this solution in terms of b and A~!.
(Note that since matrix multiplication is not commutative, we have to pay attention
to the order in which we multiply matrices. For example, A~'AB = B while we
cannot simplify ABA~! to B unless A and B commute.)

(b) If A, B, and C are matrices and A + C = B + C, then we can subtract the matrix C
from both sides to see that A = B. We saw in Section 8 that there is no corresponding
general cancellation property for matrix multiplication when we found that AB =
AC could hold while B # C. However, we can cancel A from this equation in
certain circumstances. Suppose that AB = AC and that A is an invertible matrix.
Show that we can cancel A in this case and conclude that B = C. (Note: When
simplifying the product of matrices, again keep in mind that matrix multiplication is
not commutative.)

Invertible Matrices

We now have an algebra of matrices in that we can add, subtract, and multiply matrices of the
correct sizes. But what about division? In our early mathematics education we learned about
multiplicative inverses (or reciprocals) of real numbers. The multiplicative inverse of a number a is
the real number which when multiplied by a produces 1, the multiplicative identity of real numbers.
This inverse is denoted a~'. For example, the multiplicative inverse of 2 is 271 = % because

1
2-—=1=-"-2.

2 2

Of course, we didn’t have to write both products because multiplication of real numbers is a com-
mutative operation. There are a couple of important things to note about multiplicative inverses
— we can use the inverses of the number a to solve the simple linear equation ax + b = ¢ for x

(x = a~!(c— b)), and not every real number has an inverse. The latter means that the inverse is not
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defined on the entire set of real numbers. We can extend the idea of inverses to matrices, although
we will see that there are many more matrices than just the zero matrix that do not have inverses.
To define matrix inverses?

we make an analogy with the property of inverses in the real numbers:

- l=1=z x.

Definition 10.1. Let A be an n X n matrix.

(1) Aisinvertible if there is an n X n matrix B so that AB = BA = I,,.

(2) If Aisinvertible, an inverse of A is a matrix B such that AB = BA = I,,.

If an n x n matrix A is invertible, its inverse will be unique (see Exercise 1), and we denote
the inverse of A as A~!. We also call an invertible matrix a non-singular matrix (with singular
meaning non-invertible).

Activity 10.1.

10
00
it is not possible to have AB = I5, showing that A is non-invertible.

(a) Let A = { } Calculate AB where B = [ Z Z } Using your result, explain why

1 2

(b) Calculate AB where A = [ 9 4

} and B = [ CCL Z ] Using your result, explain why

the inverse of A doesn’t exist.

We saw in Activity 10.1 why the inverse does not exist for two specific matrices. We will find
in the next section an easy criterion for determining when a matrix has an inverse. In short, when
the RREF of the matrix has a pivot in every column and row, then the matrix will be invertible. We
know that this condition relates to quite a few other linear algebra concepts we have seen so far,
such as linear independence of columns and the columns spanning R™. We will put these criteria
together in one big theorem in the next section.

Activity 10.2. Suppose that A is an invertible n x n matrix. Hence we have an inverse matrix A~!
for which AA=! = A=Y A = I,,. We will see how the inverse is useful in solving matrix equations
involving A.

(a) Explain why the matrix expressions
A™YAB), A7Y(A(BA)A™) and BA™'BAA™'B™1A
can all be simplified to B. (Hint: Use the associative property of matrix multiplication.)

(b) Suppose the system Ax = b has a solution. Explain why then A~!(Ax) = A~'b. What
does this equation simplify to?

(c) Since we found one single expression for the solution x in equation Ax = b, this implies
that the equation has a unique solution. What does this imply about the matrix A?

>We usually refer to a multiplicative inverse as just an inverse. Since every matrix has an additive inverse, there is no
need to consider the existence of additive inverses.
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As we saw in Preview Activity 10.1, if the n X n matrix A is invertible, then the equation
Ax = b is consistent for all b in R™ and has the unique solution x = A~!b. This means that A
has a pivot in every row and column, which is equivalent to the criterion that A reduces to I,,, as we
noted above.

Even though x = A~ !b is an explicit expression for the solution of the system Ax = b, using
the inverse of a matrix is usually not a computationally efficient way to solve a matrix equation.
Finding the RREF of a matrix computationally takes fewer steps to solve the matrix equation.

Finding the Inverse of a Matrix

The next questions for us to address are how to tell when a matrix is invertible and how to find the
inverse of an invertible matrix. Consider a 2 x 2 matrix A. To find the inverse matrix B = [b; b]

0

1] to find the
columns of B. Since A is the coefficient matrix for both systems, we apply the same row operations
on both systems to reduce A to RREF. Thus, instead of solving the two matrix-vector equations

separately, we could simply have found the RREF of

10
4o 1]
and done all of the work in one pass. Note that the right hand side of the augmented matrix is now

I5. So we row reduce [A | 3], and if the systems are consistent, the reduced row echelon form of
[A | I2) mustbe [I5 | A™1]. You should be able to see that this same process works in any dimension.

of A, we have to solve the two matrix-vector equations Ab; = [(ﬂ and Aby = [

How to find the inverse of an n x n matrix A:

e Augment A with the identity matrix I,,.

e Apply row operations to reduce the augmented matrix [A | I,]. If the system is consistent,
then the reduced row echelon form of [A | I,,] will have the form [I,, | B] (by Activity 10.1
(d)). If the reduced row echelon form of A is not I,,, then this step fails and A is not invertible.

e If A is row equivalent to [,,, then the matrix B in the second step has the property that
AB = I,,. We will show later that the matrix B also satisfies BA = I,, and so B is the
inverse of A.

Activity 10.3. Find the inverse of each matrix using the method above, if it exists. Compare the
result with the inverse that you get from using appropriate technology to directly calculate the
inverse.

1
@ |1 1 -1
1 -1 0
(11 1
(b) 2
00 1
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We can use this method of finding the inverse of a matrix to derive a concrete formula for the

inverse of a 2 x 2 matrix:
-1
a b 1 d b
[c d] _ad—bc[—c a}’ (10.1)

provided that ad — bc # 0 (see Exercise 2). Hence, any 2 X 2 matrix [ (z b } has an inverse if

d
and only if ad — be # 0. We call this quantity determinant of A, det(A). We will see that the
determinant of a general n X n matrix will be essential in determining invertibility of the matrix.

Properties of the Matrix Inverse

As we have done with every new operation, we ask what properties the inverse of a matrix has.

Activity 10.4. Consider the following questions about matrix inverses. If two n x n matrices A and
B are invertible, is the product AB invertible? If so, what is the inverse of AB? We answer these
questions in this activity.

(a) Let

1 2 2 3
A—[l 3} andB—[_1 2]

i. Use formula (10.1) to find the inverses of A and B.

ii. Find the matrix product AB. Is AB invertible? If so, use formula (10.1) to find the
inverse of AB.

iii. Calculate the products A~ B~! and B! A~!. What do you notice?

(b) In part (a) we saw that the matrix product B ~1 A~1 was the inverse of the matrix product
AB. Now we address the question of whether this is true in general. Suppose now that C
and D are invertible n x n matrices so that the matrix inverses C~! and D~ exist.

i. Use matrix algebra to simplify the matrix product (C'D) (D_1C’ _1). (Hint: What do
you know about DD~! and CC~1?)

ii. Simplify the matrix product (D~'C~') (CD) in a manner similar to part i.
iii. What conclusion can we draw from parts i and ii? Explain. What property of ma-

trix multiplication requires us to reverse the order of the product when we create the
inverse of C'D?

Activity 10.4 gives us one important property of matrix inverses. The other properties given in
the next theorem can be verified similarly.

Theorem 10.2. Let A and B be invertible n x n matrices. Then
(1) (A ) =4
(2) The product AB is invertible and (AB)~! = B~1A~L,
(3) The matrix AT is invertible and (AT)_1 = (A*I)T.
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Examples

What follows are worked examples that use the concepts from this section.

Example 10.3. For each of the following matrices A,

e Use appropriate technology to find the reduced row echelon form of [A | I3].

e Based on the result of part (a), is A invertible? If yes, what is A~'? If no, explain why.

T 5
e letx= | 29 | andb = | 4 |.If Aisinvertible, solve the matrix equation Ax = b using
T3 1

the inverse of A. If A is not invertible, find all solutions, if any, to the equation Ax = b using
whatever method you choose.

1 2 3
@ A=1|1 -1 -1
1 0 1]
1 2 57
b A=|1 -1 -1
1 0 1]

Example Solution.

1 2 3
(a WithA=| 1 —1 -1 |, we have the following.
1 1

e The reduced row echelon form of [A | I3] is

[y

1
1ool & 1 -1
010 1 1 -2

1 3
00 1|-1+ -1 3

e Since A is row equivalent to I3, we conclude that A is invertible. The reduced row
echelon form of [A | I3] tells us that

1 1 2 -1
Al = 5| 2 2
-1 -2 3
e The solution to Ax = b is given by
1 1 2 -1 5 6
vr =A"1b = 3 2 —4 = 7
-1 -2 3 1 -5
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1 2 5
(b) WithA=| 1 —1 -1 |, we have the following.
1 0 1

e The reduced row echelon form of [A | I3] is

1010 0 1
01 2|0 -1 1
00011 2 -3

e Since A is not row equivalent to /5, we conclude that A is not invertible.
e The reduced row echelon form of [A | b] is

S O =

0 110
1 210
0 0|1

The fact that the augmented column is a pivot column means that the equation Ax =
b has no solutions.

Example 10.4.

(a) Let A =

o O O
S O =
O = O

i. Show that A% #£ 0 but A3 = 0.

ii. Show that I — A is invertible and find its inverse. Compare the inverse of I — A to
I+ A+ A%

(b) Let M be an arbitrary square matrix such that M = 0. Show that M is invertible and find
an inverse for M.

Example Solution.

010
(a) LetA=| 0 0 1
0 00

0 0 1
i. Using technology to calculate A% and A3 we find that A3 = Owhile A2 = | 0 0 0
0 00
1 -1 0
ii. For this matrix Awehave I — A= | 0 1 —1 |. The reduced row echelon form
0 o0
of I — Ais
1 -0 0]1 1 1
0 1 0j0 1 1/,
0 0 1|0 0 1
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1
so I — Aisinvertible and (I — A)~t = | 0
0

O = =

1
1
1

A straightforward matrix calculation also shows that

7]

(I-A)t=I+A+ A%

(b) We can try to emulate the result of part (a) here. Expanding using matrix operations gives

us
(I—M)IT+M+M*)=(I+M+M?)— (M+ M+ M?)
=+ M+ M?) — (M + M*+0)
=
and

(I+M+M*»I—-M)=(I+M+M?)—(M+ M+ M?)
= (I + M+ M?) — (M + M? +0)
=1

So I — M is invertible and (I — M)~t = I+ M + M2,

This argument can be generalized to show that if M is a square matrix and M" = 0 for
some positive integer n, then I — M is invertible and

(I-M)y " =I+M+M*+. ..+ ML

Summary

e If A is an n X n matrix, then A is invertible if there is a matrix B so that AB = BA = I,.
The matrix B is called the inverse of A and is denoted A~ 1.

e Ann X n matrix A is invertible if and only if A the reduced row echelon form of A is the
n X n identity matrix I,,.

e To find the inverse of an invertible n X n matrix A, augment A with the identity and row
reduce. If [A | I,,] ~ [I,, | B], then B = A~L,

e If A and B are invertible n x n matrices, then (AB)~! = B~ AL, Since the inverse of AB
exists, the product of two invertible matrices is an invertible matrix.

e We can use the algebraic tools we have developed for matrix operations to solve equations
much like we solve equations with real variables. We must be careful, though, to only mul-
tiply by inverses of invertible matrices, and remember that matrix multiplication is not com-
mutative.
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Exercises

(1) Let A be an invertible n x n matrix. In this exercise we will prove that the inverse of A is
unique. To do so, we assume that both B and C are inverses of A, thatis AB = BA = I,
and AC' = CA = I,. By considering the product BAC simplified in two different ways,
show that B = C, implying that the inverse of A is unique.

(2) Let A= { i 2 ] be an arbitrary 2 X 2 matrix.

(a) If A is invertible, perform row operations to determine a row echelon form of A.
(Hint: You may need to consider different cases, e.g., when a = 0 and when a # 0.)

(b) Under certain conditions, we can row reduce [A | I2] to [[2 | B], where

B 1 d —b
Cad—be| —¢ a

|

Use the row echelon form of A from part (a) to find conditions under which the 2 x 2
matrix A is invertible. Then derive the formula for the inverse B of A.

3)

(a) For a few different k values, find the inverse of A = [

1

0 1 ] From these results,

make a conjecture as to what A~! is in general.

(b) Prove your conjecture using the definition of inverse matrix.

(¢) Find the inverse of A =

1 k 7/
01 m
0 0 1

(Note: You can combine the first two parts above by applying the inverse finding algorithm

1 k

directly on A = [ 0 1

;

(4) Solve for the matrix A in terms of the others in the following equation:

P YD+ CAP=B

If you need to use an inverse, assume it exists.

(5) For which cis the matrix A =

(6) For which c is the matrix A =

1 2 —

2 1 1 | invertible?
| 15 c

g invertible?

(7) Let A and B be invertible n x n matrices. Verify the remaining properties of Theorem 10.2.

That is, show that

@ (A7) ' = A

(b) The matrix AT is invertible and (AT) !

(4",
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(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If A is an invertible matrix, then for any two matrices B, C, AB = AC
implies B = C.

(b) True/False If A is invertible, then so is AB for any matrix B.
(¢) True/False If A and B are invertible n x n matrices, then so is AB.

(d) True/False If A is an invertible n X n matrix, then the equation Ax = b is consistent
for any b in R".

(e) True/False If A is an invertible n X n matrix, then the equation Ax = b has a unique
solution when it is consistent.

(f) True/False If A is invertible, then so is A2.

(g) True/False If A is invertible, then it reduces to the identity matrix.

(h) True/False If a matrix is invertible, then so is its transpose.

(i) True/False If A and B are invertible n X n matrices, then A + B is invertible.
(j) True/False If A?> = 0, then I + A is invertible.

Project: The Richardson Arms Race Model

How and why a nation arms itself for defense depends on many factors. Among these factors are the
offensive military capabilities a nation deems its enemies have, the resources available for creating
military forces and equipment, and many others. To begin to analyze such a situation, we will
need some notation and background. In this section we will consider a two nation scenario, but the
methods can be extended to any number of nations. In fact, after World War I, Richardson collected
data and created a model for the countries Czechoslovakia, China, France, Germany, England, Italy,
Japan, Poland, the USA, and the USSR.?

Let N; and N, represent 2 different nations. Each nation has some military capability (we will
call this the armament of the nation) at time n (think of n as representing the year). Let a;(n)
represent the armament of nation NV; at time n, and as(n) the armament of nation Ny at time n.
We could measure a;(n) in weaponry or dollars or whatever units make sense for armaments. The
Richardson arms race model provides connections between the armaments of the two nations.

Project Activity 10.1. We continue to analyze a two nation scenario. Let us suppose that our two
nations are Iran (nation N7) and Iraq (nation N2). In 1980, Iraq invaded Iran resulting in a long
and brutal 8 year war. Richardson was interested in analyzing data to see if such wars could be
predicted by the changes in armaments of each nation. We construct the two nation model in this
activity.

During each time period every nation adds or subtracts from its armaments. In our model, we
will consider three main effects on the changes in armaments: the defense effect, fatigue effect and

3The Union of Soviet Socialist Republics (USSR), headed by Russia, was a confederation of socialist republics in
Eurasia. The USSR disbanded in 1991. Czechoslovakia was a sovereign state in central Europe that peacefully split into
the Czech Republic and Slovakia in 1993.

D00
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the grievance effect. In this activity we will discuss each effect in turn and then create a model to
represent a two nation arms race.

e We first consider the defense effect. In a two nation scenario, each nation may react to the
potential threat implied by an arms buildup of the other nation. For example, if nation Ny
feels threatened by nation /Ny (think of South and North Korea, or Ukraine and Russia, for
example), then nation Vo’s level of armament might cause nation N; to increase its armament
in response. We will let 415 represent this effect of nation No’s armament on the armament
of nation V7. Nation N; will then increase (or decrease) its armament in time period n by
the amount dy2a2(n — 1) based on the armament of nation N in time period n — 1. We will
call 01 a defense coefficient.*

e Next we discuss the fatigue effect. Keeping a strong defense is an expensive and taxing
enterprise, often exacting a heavy toll on the resources of a nation. For example, consider the
fatigue that the U.S. experienced fighting wars in Iraq and Afghanistan, losing much hardware
and manpower in these conflicts. Let d;; represent this fatigue factor on nation 7. Think of
d;; as a measure of how much the nation has to replace each year, so a positive fatigue factor
means that the nation is adding to its armament. The fatigue factor produces an effect of
di;ai(n — 1) on the armament of nation ¢ at time ¢ = n that is the effect of the armament at
timet =n — 1.

e The last factor we consider is what we will call a grievance factor. This can be thought of
as the set of ambitions and/or grievances against other nations (such as the acquisition or
reacquisition of territory currently belonging to another country). As an example, Argentina
and Great Britain both claim the Falkland Islands as territory. In 1982 Argentina invaded the
disputed Falkland Islands which resulted in a two-month long undeclared Falkland Islands
war, which returned control to the British. It seems reasonable that one nation might want to
have sufficient armament in place to support its claim if force becomes necessary. Assuming
that these grievances and ambitions have a constant impact on the armament of a nation from
year to year, let g; be this “grievance” constant for nation 7.7 The effect a grievance factor g;
would have on the armament of nation 7 in year n would be to add g; directly to a;(n — 1),
since the factor g; is constant from year to year (paying for arms and soldier’s wages, for
example) and does not depend on the amount of existing armament.

(a) Taking the three effects discussed above into consideration, explain why
ai(n) = dna1(n — 1) + d12a2(n — 1) + ar(n — 1) + g1.
Then explain why

ai(n) = (011 + 1) ai(n — 1) 4+ d12a2(n — 1) + g1. (10.2)

4Of course, there are many other factors that have not been taken into account in the analysis. A nation may have
heavily armed allies (like the U.S.) which may provide enough perceived security that this analysis is not relevant. Also,
a nation might be a neutral state, such as Switzerland, and this analysis might not apply to such nations.

51t might be possible for g; to be negative if, for example, a nation feels that such disputes can and should only be
settled by negotiation.
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(b) Write an equation similar to equation (10.2) that describes ag(n) in terms of the three ef-
fects.

(c) Leta, = [ Zlgn)

. Explain wh
1 |- Exptain why

an = (D + 12)an71 + 8,

where D = [ o 02 ] and g = [g1 gz]T-
d21 022

Year Iran Iraq
1966 662 391
1967 903 378
1968 1090 495
1969 1320 615
1970 1470 600
1971 1970 618
1972 2500 589
1973 2970 785
1974 5970 2990
1975 7100 1690

Table 10.1: Military Expenditures of Iran and Iraq 1966-1975.

Project Activity 10.2. In order to analyze a specific arms race between nations, we need some data
to determine values of the d;; and the g;. Table 10.1 shows the military expenditures of Iran and
Iraq in the years leading up to their war in 1975. (The data is in millions of US dollars, adjusted for
inflation and is taken from “World Military Expenditures and Arms Transfers 1966-1975” by the
U.S. Arms Control and Disarmament Agency.) We can perform regression (we will see how in a
later section) on this data to obtain the following linear approximations:

ai(n) = 2.0780ai(n — 1) — 1.7081az(n — 1) — 126.9954 (10.3)
az(n) = 0.9419a;(n — 1) — 1.3283a2(n — 1) — 101.2980. (10.4)
(Of course, the data does not restrict itself to only factors between the two countries, so our model

will not be as precise as we might like. However, it is a reasonable place to start.) Use the regression
equations (10.3) and (10.4) to explain why

1.0780 —1.7081

D=1 00941904 —2.3283

and g = [—126.9954 — 101.2980]"

for our Iran-Iraq arms race.

Activities 10.1 and 10.2 provide the basics to describe the general arms race model due to
Richardson. If we have an m nation arms race with D = [d;;] and g = [g;] , then

a, = (D+ Iy)a,—1 + 8. (10.5)
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Project Activity 10.3. The idea of an arms race, theoretically, is to reach a point at which all parties
feel secure and no additional money needs to be spent on armament. If such a situation ever arises,
then the armament of all nations is stable, or in equilibrium. If we have an equilibrium solution,
then for large values of n we will have a,, = a,,—;. So to find an equilibrium solution, if it exists,
we need to find a vector ag so that

ap=(D+lagp+g (10.6)

where [ is the appropriate size identity matrix. If ap exists, we call ag an equilibrium state.

We can apply matrix algebra to find the equilibrium state vector ag under certain conditions.
(a) Assuming that ap exists, use matrix algebra and Equation 10.6 to show that

Dag +g = 0. (10.7)

(b) Under what conditions can we be assured that there will always be a unique equilibrium
state ag? Explain. Under these conditions, how can we find this unique equilibrium state?
Write this equilibrium state vector ag as a matrix-vector product.

(c) Does the arms race model for Iran and Iraq have an equilibrium solution? If so, find it. If
not, explain why not. Use technology as appropriate.

(d) Assuming an equilibrium exists and that both nations behave in a way that supports the
equilibrium, explain what the appropriate entry of the equilibrium state vector ag suggests
about what Iran and Iraq’s policies should be. What does this model say about why there
might have been war between these two nations?

o099



Section 11

The Invertible Matrix Theorem

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What does it mean for two statements to be equivalent?
o How can we efficiently prove that a string of statements are all equivalent?
e What is the Invertible Matrix Theorem and why is it important?

o What are the equivalent conditions to a matrix being invertible?

Introduction

This section is different than others in this book in that it contains only one long proof of the
equivalence of statements that we have already discussed. As such, this is a theoretical section and
there is no application connected to it.

The Invertible Matrix Theorem is a theorem that provides many different statements that are
equivalent to having a matrix be invertible. To understand the Invertible Matrix Theorem, we need
to know what it means for two statements to be equivalent. By equivalent, we mean that if one of
the statements is true, then so is the other. We examine this idea in this preview activity.

Preview Activity 11.1. Let A be an n X n matrix. In this activity we endeavor to understand why
the two statements

I. The matrix A is invertible.

II. The matrix AT is invertible.

are equivalent. To demonstrate that statements I and II are equivalent, we need to argue that if
statement I is true, then so is statement II, and if statement II is true then so is statement 1.
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(1) Let’s first show that if statement I is true, then so is statement II. So we assume statement 1.
That is, we assume that A is an invertible matrix. So we know that there is an n X n matrix
B such that AB = BA = I, where [, is the n x n identity matrix. To demonstrate that
statement IT must also be true, we need to verify that AT is an invertible matrix.

(a) Whatis I,7?

(b) Take the transpose of both sides of the equation AB = I,, and use the properties of
the transpose to write (AB)" in terms of AT and BT.

(c) Take the transpose of both sides of the equation BA = I, and use the properties of
the transpose to write (BA)T in terms of AT and BT.

(d) Explain how the previous two parts show that BT is the inverse of AT, so that AT is
invertible. So we have shown that if statement I is true, so is statement II.!

(2) Now we prove that if statement II is true, then so is statement I. So we assume statement I1.
That is, we assume that the matrix AT is invertible. We could do this in the same manner as
part (a), or we could be a bit clever. Let’s try to be clever.

(a) What matrix is (AT)T?

(b) Why can we use the result of part (a) with AT in place of A to conclude that A is
invertible? As a consequence, we have demonstrated that A is invertible if AT is
invertible. This concludes our argument that statements I and II are equivalent.

The Invertible Matrix Theorem

We have been introduced to many statements about existence and uniqueness of solutions to systems
of linear equations, linear independence of columns of coefficient matrices, onto linear transforma-
tions, and many other items. In this section we will analyze these statements in light of how they
are related to invertible matrices, with the main goal to understand the Invertible Matrix Theorem.

Recall that an n x n matrix A is invertible if there is an n x n matrix B such that AB = BA =
I,,, where I, is the n x n identity matrix. The Invertible Matrix Theorem is an important theorem in
that it provides us with a wealth of statements that are all equivalent to the statement that an n X n
matrix A is invertible, and connects many of the topics we have been discussing so far this semester
into one big picture.

Theorem 11.1 (The Invertible Matrix Theorem). Let A be an n x n matrix. The following state-
ments are equivalent:

(1) A is an invertible matrix.
(2) The equation Ax = 0 has only the trivial solution.
(3) A has n pivot columns.

(4) The columns of A span R™.

'Note that statement I does not have to be true. We are only assuming that IF statement I is true, then statement IT
must also be true.
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(5) A is row equivalent to the identity matrix I,.
(6) The columns of A are linearly independent.
(7) The columns of A form a basis for R™.
(8) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is one-to-one.
(9) The matrix equation Ax = b has exactly one solution for each vector b in R".
(10) The matrix transformation T from R™ to R" defined by T'(x) = Ax is onto.
(11) There is an n x n matrix C so that AC = I,
(12) There is an n x n matrix D so that DA = I,,.
(13) The scalar 0 is not an eigenvalue of A.

(14) AT is invertible.

The Invertible Matrix Theorem is a theorem that provides many different statements that are
equivalent to a matrix being invertible. As discussed in Preview Activity 11.1, two statements are
said to be equivalent if, whenever one of the statements is true, then the other is also true. So to
demonstrate, say, statements I and II are equivalent, we need to argue that

e if statement I is true, then so is statement II, and

e if statement II is true then so is statement I.

The Invertible Matrix Theorem, however, provides a long list of statements that are equivalent. It
would be inefficient to prove, one by one, that each pair of statements is equivalent. (There are
(124) = 91 such pairs.) Fortunately, there is a shorter method that we can use.

Activity 11.1. In this activity, we will consider certain parts of the Invertible Matrix Theorem and
show that one implies another in a specific order. For all parts in this activity, we assume A is an
n X n matrix.

(a) Consider the following implication:
(2) = (6):% If the equation Ax = 0 has only the trivial solution, then the columns of
A are linearly independent. This shows that part 2 of the IMT implies part 6 of the IMT.
Justify this implication as if it is a T/F problem.

(b) Justify the following implication:
(6) = (9): If the columns of A are linearly independent, then the matrix equation
Ax = b has exactly one solution for each vector b in R".

(c) Justify the following implication:
(9) = (4): If the equation Ax = b has exactly one solution for every vector b in R",
then the columns of A span R™.

*The symbol == is the implication symbol, so (1) == (12) is read to mean that statement (1) of the theorem
implies statement (12).
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(d) Justify the following implication:
(4) = (2): If the columns of A span R", then the equation Ax = 0 has only the trivial
solution.

(e) Using the above implications you proved, explain why we can conclude the following im-
plication must also be true:
(2) = (9): If the equation Ax = 0 has only the trivial solution, then the matrix equation
Ax = b has exactly one solution for each vector b in R".

(f) Using the above implications you proved, explain why any one of the implications (2), (6),
(9), and (4) implies any of the others.

Using a similar ordering of circular implications as in Activity 11.1, we can prove the Invertible
Matrix Theorem by showing that each statement in the list implies the next statement, and that the
last statement implies the first.

Proof of the Invertible Matrix Theorem

Statement (1) implies Statement (2). This follows from work done in Activity 11.1.
Statement (2) implies Statement (3). This was done in Activity 11.1.

Statement (3) implies Statement (4). Suppose that every column of A is a pivot column. The fact
that A is square means that every row of A contains a pivot, and hence the columns of A span
R™.

Statement (4) implies Statement (5). Since the columns of A span R™, it must be the case that
every row of A contains a pivot. This means that A must be row equivalent to I,,.

Statement (5) implies Statement (6). If A is row equivalent to /,,, there must be a pivot in every
column, which means that the columns of A are linearly independent.

Statement (6) implies Statement (7). If the columns of A are linearly independent, then there is
a pivot in every column. Since A is a square matrix, there is a pivot in every row as well.
So the columns of A span R™. Since they are also linearly independent, the columns form a
minimal spanning set, which is a basis of R".

Statement (7) implies Statement (8). If the columns form a basis of R™, then the columns are
linearly independent. This means that each column is a pivot column, which also implies
Ax = 0 has a unique solution and that 7" is one-to-one.

Statement (8) implies Statement (9). If 7" is one-to-one, then A has a pivot in every column.
Since A is square, every row of A contains a pivot. Therefore, the system Ax = b is
consistent for every b € R™ and has a unique solution.

Statement (9) implies Statement (10). If Ax = b has a unique solution for every b, then the
transformation 7" is onto since 7'(x) = b has a solution for every b.



Section 11. The Invertible Matrix Theorem 207

Statement (10) implies Statement (11). Assume that 7" defined by 7'(x) = Ax is onto. For each
1, let e; be the ¢th column of the n x n identity matrix [,,. That is, e; is the vector in R" with
1 in the ith component and 0 everywhere else. Since 7' is onto, for each ¢ there is a vector c;
such that T'(c;) = Ac; = ;. Let C' = [c1 c2 -+ ¢y]. Then

AC:A[Cch Cn]:[AclACZ Acn]:[eleQ en]:In

Statement (11) implies Statement (12). Assume C is an n X n matrix so that AC = I,,. First we
show that the matrix equation Cx = 0 has only the trivial solution. Suppose Cx = 0. Then
multiplying both sides on the left by A gives us

A(Cx) = AO.

Simplifying this equation using AC' = I,,, we find x = 0.

Since Cx = 0 has only the trivial solution, every column of C' must be a pivot column. Since
C is an n x n matrix, it follows that every row of C' contains a pivot position. Thus, the
matrix equation Cx = b is consistent and has a unique solution for every b in R". Let v; be
the vector in R" satisfying C'v; = e; for each i between 1 and n and let M = [v va -+ vy].
Then CM = I,,.

Now we show that C A = I,,. Since
AC =1,

we can multiply both sides on the left by C' to see that
C(AC) = C1,.
Now we multiply both sides on the right by M and obtain
(C(AC))M =CM.

Using the associative property of matrix multiplication and the fact that CM = I,, shows
that

(CA)(CM) = CM
CA =1,

Thus, if A and C are n x n matrices and AC' = I,,, then CA = I,,. So we have proved our
implication with D = C

Statement (12) implies Statement (13). Assume that there is an n x n matrix D so that DA = I,,.
Suppose Ax = 0. Then multiplying both sides by A on the left, we find that
D(Ax) = DO
(DA)

x=0
x=0.

So the equation Ax = 0 has only the trivial solution and 0 is not an eigenvalue for A.
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Statement (13) implies Statement (14). If 0 is not an eigenvalue of A, then the equation Ax = 0
has only the trivial solution. Since statement 2 implies statement 11, there is an n X n
matrix C' such that AC' = I,,. The proof that statement 11 implies statement 12 shows that
CA = I, as well. So A is invertible. By taking the transpose of both sides of the equation
AA™l = A71A = I, (remembering (AB)T = BTAT) we find

(A HTAT =ATA YT =1T=1,.
Therefore, (A~1)T is the inverse of AT by definition of the inverse.

Statement (14) implies Statement (1). Since statement (1) implies statement (14), we proved ‘If
A is invertible, then AT is invertible”” Using this implication with AT replaced by A, we
find that ‘If AT is invertible, then (AT)T is invertible”” But (AT)T = A, which proves that
statement (14) implies statement (1).

This concludes our proof of the Invertible Matrix Theorem.

Examples

What follows are worked examples that use the concepts from this section.

Example 11.2. Let M =

S = O =
=W =N
SN O N
S W= =

(a) Without doing any calculations, is M invertible? Explain your response.
(b) Is the equation Mx = b consistent for every b in R*? Explain.

(c) Is the equation Mx = O consistent? If so, how many solutions does this equation have?
Explain.

(d) Isit possible to find a 4 x 4 matrix P such that PM = I,? Explain.

Example Solution.

(a) The third column of M is twice the first, so the columns of M are not linearly independent.
We conclude that M is not invertible.

(b) The equation Mx = b is not consistent for every b in R*. If it was, then the columns of
M would span R* and, since there are exactly four columns, the columns of M would be a
basis for R*. Thus, M would have to be invertible, which it is not.

(c) The homogeneous system is always consistent. Since the columns of M are linearly de-
pendent, the equation Mx = 0 has infinitely many solutions.

(d) Itis not possible to find a 4 x 4 matrix P such that PM = I4. Otherwise M would have to
be invertible.
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Example 11.3. Let M be an n X n matrix whose eigenvalues are all nonzero.

(a) Let b € R™. Is the equation Mx = b consistent? If yes, explain why and find all solutions
in terms of M and b. If no, explain why.

(b) Let S be the matrix transformation defined by S(x) = Mx. Suppose S(a) = S(b) for
some vectors a and b in R™. Must there be any relationship between a and b? If yes,
explain the relationship. If no, explain why.

(¢) Letmj, mo, ..., m, be the columns of M. In how many ways can we write the zero vector
as a linear combination of m;, my, ..., m,? Explain.

Example Solution.

(a) Since 0 is not an eigenvalue of M, we know that M is invertible. Therefore, the equation
Mx = b has the unique solution x = M ~'b.

(b) The fact that M is invertible implies that S is one-to-one. So if S(a) = S(b), then it must
be the case that a = b.

(c) Because M is invertible, the columns of M are linearly independent. Therefore, there is
only the trivial solution to the equation

rimi +xromo + -+ x,m, = 0.

Summary

e Two statements are equivalent if, whenever one of the statements is true, then the other must
also be true.

e To efficiently prove that a string of statements are all equivalent, we can prove that each
statement in the list implies the next statement, and that the last statement implies the first.

e The Invertible Matrix Theorem gives us many conditions that are equivalent to an n X n
matrix being invertible. This theorem is important because it connects many of the concepts
we have been studying.

Exercises

(1) Consider the matrix A = | — . Use the Invertible Matrix Theorem to geometri-

= DN
o o Q

a

cally describe the vectors | b | which make A invertible without doing any calculations.

—_ = =

D00
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(2) Suppose A is an invertible n x n matrix. Let T" be the matrix transformation defined by
T(x) = Ax for x in R™. Show that the matrix transformation S defined by S(x) = A~ 1x is
the inverse of the transformation 7T (i.e., S is the inverse function to 7" when the transforma-
tions are considered as functions).

(3) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If A? is invertible, then A is invertible.

(b) True/False If A and B are square matrices with AB invertible, then A and B are
invertible.

(c) True/False If the columns of an n x n matrix A span R”, then the equation A~'x = 0
has a unique solution.

(d) True/False If the columns of A and columns of B form a basis of R™, then so do the
columns of AB.

(e) True/False If the columns of a matrix A form a basis of R™, then so do the rows of
A.

(f) True/False If the matrix transformation 7" defined by 7'(x) = Ax is one-to-one for
an n X n matrix A, then the columns of A~! are linearly independent.

(g) True/False If the columns of an n X n matrix A span R", then so do the rows of A.

(h) True/False If there are two n x n matrices A and B such that AB = I,,, then the
matrix transformation defined by 7'(x) = A”x is one-to-one.
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Section 12

The Structure of R"

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

What properties make R™ a vector space?

What is a subspace of R"?

What properties do we need to verify to show that a set of vectors is a
subspace of R"? Why?

What important structure does the span of a set of vectors in R™ have?

Application: Connecting GDP and Consumption in Romania

It is common practice in the sciences to run experiments and collect data. Once data is collected it
is necessary to find some way to analyze the data and predict future behavior from the data. One
method is to find a curve that best “fits” the data, and one widely used method for curve fitting is
called the least squares method.

For example, economists are often interested in consumption, which is the purchase of goods
and services for use by households. In “A Statistical Analysis of GDP and Final Consumption
Using Simple Linear Regression, the Case of Romania 1990-2010”," the authors collect data and
then use simple linear regression to compare GDP (gross domestic product) to consumption in
Romania. The data they used is seen in Table 12.1, with a corresponding scatterplot of the data
(with consumption as independent variable and GDP as dependent variable). The units for GDP

IBilicescu, Aniela & Zaharia, Marian. (2012). A STATISTICAL ANALYSIS OF GDP AND FINAL
CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA 1990?2010. An-
nals - Economy Series. 4. 26-31. Available from: https://www.researchgate.net/publication/
227382939_A_STATISTICAL_ANALYSIS_OF_GDP_AND_FINAL_CONSUMPTION_USING_SIMPLE_
LINEAR_REGRESSION_THE_CASE_OF_ROMANIA_1990-2010.
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and consumption are milliions of leu (the currency of Romania is the leu — on December 21, 2018,
one leu was worth approximately $0.25 U.S.) The authors conclude their paper with the following

statement:

“However, we can appreciate that linear regression model describes the correlation
between the value of gross domestic product and the value of final consumption and

may be transcribed following form:

PIB =-3127.51+ 1.22 CE.

Analysis of correlation between GDP and final consumption (private consumption and
public consumption) will result in an increase of 1.22 units of monetary value of gross
domestic product.

We can conclude that the Gross Domestic Product of our country is strongly influenced

by the private and public consumption.”

Year GDP Consumption
1990 85.8 68.0
1991 220.4 167.3
1992 602.9 464.3
1993  2003.9 1523.6
1994  4977.3 3845.2
1995  7648.9 6257.7
1996 11384.2 9713.8
1997  25529.8 21972.2
1998  37055.1 33311.2
1999 551914 49311.9
2000  80984.6 69587.4
2001 117945.8 100731.7
2002 152017.0 127118.8
2003 197427.6 168818.7
2004 247368.0 211054.6
2005 288954.6 251038.1
2006 344650.6 294867.6
2007 416006.8 344937.0
2008 514700.0 420917.5
2009 498007.5 402246.0
2010 513640.8 405422.4
Table 12.1: GDP and con-

sumption in Romania.
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Figure 12.1: GDP and consump-
tion data plot.

As we can see from the scatterplot, the relationship between the GDP and consumption is not
exactly linear, but looks to be very close. To make correlations between GDP and consumption as
the authors did, we need to understand how they determined their approximate linear relationship
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between the variables. With a good approximation function we can then compare the variables,
extrapolate from the data, and make predictions or interpolate and estimate between data points.
For example, we could use our approximation function to predict, as the authors did, how changes
in consumption affect GDP (or vice versa). Later in this section we will see how to find the least
squares line to fit this data — the best linear approximation to the data. This involves finding a vector
in a certain subspace of R? that is closest to a given vector. Linear least squares approximation is a
special case of a more general process that we will encounter in later sections where we learn how
to project sets onto subspaces.

Introduction

The set R™ with vector addition and scalar multiplication has a nice algebraic structure. These op-
erations satisfy a number of properties, such as associativity and commutativity of vector addition,
the existence of an additive identity and additive inverse, distribution of scalar multiplication over
vector addition, and others. These properties make it easier to work with the whole space since
we can express the vectors as linear combinations of basis vectors in a unique way. This algebraic
structure makes R"™ a vector space.

There are many subsets of R™ that have this same structure. These subsets are called subspaces
of R™. These are the sets of vectors for which the addition of any two vectors is defined within the
set, the scalar multiple of any vector by any scalar is defined within the set and the set contains the
zero vector. One type of subset with this structure is the span of a set of vectors.

Recall that the span of a set of vectors {vi,Vva,...,vi} in R" is the set of all linear combina-
1 1
tions of the vectors. For example, if vi = | 1 | and vo = | 0 |, then a linear combination of
0 1
these two vectors is of the form
1 1 c1+ c2
civit+cveo=ci | 1 | +c | 0 | = cl
0 1 Co
One linear combination can be obtained by letting ¢c; = 2, co = —3, which gives the vector 2v; —
-1
3ve = | —3 |. All such linear combinations form the span of the vectors vy and v». In this case,
2

these vectors will form a plane through the origin in R3.

Now we will investigate if the span of two vectors form a subspace, i.e. if it has the same
structure as a vector space.

Preview Activity 12.1. Let w; and wy be two vectors in R™. Let W = Span{w1, wa}.

(1) For W to be a subspace of R™, the sum of any two vectors in W must also be in WW.

(a) Pick two specific examples of vectors u,y in W (keeping w1, wo unknown/general
vectors). For example, one specific u would be 2w; — 3wy as we used in the above
example. Find the sum of u,y. Is the sum also in W? Explain. (Hint: What does it
mean for a vector to be in W ?)

D00
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(b) Now let u and y be arbitrary vectors in W. Explain why u 4+ y is in W.
(2) For W to be a subspace of R, any scalar multiple of any vector in W must also be in W.

(a) Pick a specific example u in W. Explain why 2u, —3u, wu are all also in W.

(b) Now let a be an arbitrary scalar and let u be an arbitrary vector in . Explain why
the vector au is in W.

(3) For W to be a subspace of R", the zero vector must also be in W. Explain why the zero
vector is in WW.

(4) Does vector addition being commutative for vectors in R™ imply that vector addition is also
commutative for vectors in W7 Explain your reasoning.

(5) Suppose we have an arbitrary u in W. There is an additive inverse of u in R". In other words,
there is a u’ such that u + u’ = 0. Should this u’ be also in W? If so, explain why. If not,
give a counterexample.

(6) Look at the other properties of vector addition and scalar multiplication of vectors in R"
listed in Theorem 4.3 in Section 4. Which of these properties should also hold for vectors in
W?

Vector Spaces

The set of n-dimensional vectors with the vector addition and scalar multiplication satisfy many
properties, such as addition being commutative and associative, existence of an additive identity,
and others. The set R™ with these properties is an example of a vector space, a general structure
examples of which include many other algebraic structures as we will see later.

Definition 12.1. A set VV on which an operation of addition and a multiplication by scalars is defined
is a vector space if for all u, v, and w in V' and all scalars a and b:

(1) u+ visanelement of V' (we say that V' is closed under the addition in V'),
(2) u+ v = v + u (we say that the addition in V' is commutative),
(3) (u+v)+w =u+ (v+ w) (we say that the addition in V' is associative),

(4) thereis a vector 0 in V' so that u+ 0 = u (we say that V' contains an additive identity or zero
vector 0),

(5) for each x in V there is an element y in V so that x + y = 0 (we say that V' contains an
additive inverse y for each element x in V'),

(6) auis an element of V' (we say that V' is closed under multiplication by scalars),
(7) (a+ b)u = au + bu (we say that multiplication by scalars distributes over scalar addition),

(8) a(u+ v) = au+ av (we say that multiplication by scalars distributes over addition in V'),

o099
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9) (ab)u = a(bu),
(10) 1u =u.

Theorem 4.3 in Section 4 shows that R is itself a vector space. As we will see, there are many
other sets that have the same algebraic structure. By focusing on this structure and the properties
of these operations, we can extend the theory of vectors we developed so far to a broad range of
objects, making it easier to work with them. For example, we can consider linear combinations of
functions or matrices, or define a basis for different types of sets of objects. Such algebraic tools
provide us with new ways of looking at these sets of objects, including a geometric intuition when
working with these sets. In this section, we will analyze subsets of R” which behave similar to R"
algebraically. We will call such sets subspaces. In a later chapter we will encounter different kinds
of sets that are also vector spaces.

Definition 12.2. A subset W of R is a subspace of R” if IV itself is a vector space using the same
operations as in R".

The following example illustrates the process for demonstrating that a subset of R™ is a subspace
of R™.

Example 12.3. There are many subsets of R™ that are themselves vector spaces. Consider as an
example the set W of vectors in R? defined by

vl

In other words, W is the set of vectors in R? whose second component is 0. To see that ¥ is itself a
vector space, we need to demonstrate that W satisfies all of the properties listed in Definition 12.1.

x is a real number} .

To prove the first property, we need to show that the sum of any two vectors in I is again in

Y

0 ] be vectors in

W. So we need to choose two arbitrary vectors in W. Let u = [ g ] and v = [

W . Note that
I y| _ |ty
wev=[g 4[] =70 )

Since the second component of u + v is 0, it follows that u + v is in W. Thus, the set W is closed
under addition.

For the second property, that addition is commutative in W, we can just use the fact that if u
and v are in W, they are also vectors in R? and u 4 v = v + u is satisfied in R?. So the property
also holds in W.

A similar argument can be made for property (3).

Property (4) states the existence of the additive identity in WW. Note that O is an additive identity
in R? and if it is also an element in W, then it will automatically be the additive identity of .

Since the zero vector can be written as 0 = { g ] with x = 0, 0 is in W. Thus, W satisfies
property 4.

We will postpone property (5) for a bit since we can show that other properties imply property

(5).
@Ol
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Property (6) is a closure property, just like property (1). We need to verify that any scalar
multiple of any vector in W is again in W. Consider an arbitrary vector u and an arbitrary scalar a.

e[ 3]-[7]

Since the vector au has a 0 as its second component, we see that qu is in W. Thus, W is closed
under scalar multiplication.

Properties (7), (8), (9) and (10) only depend on the operations of addition and multiplication by
scalars in R?. Since these properties depend on the operations and not the vectors, these properties
will transfer to W.

We still have to justify property (5) though. Note that since 1 — 1 = 0 in real numbers, by
applying property (7) with a = 1, b = —1, we find that

0=0u=(a+bu=au+bu=u+(—1)u.

Therefore, (—1)u is an additive inverse for u. Therefore, to show that the additive inverse of any u
in W is also in W, we simply note that any multiple of u is also in W and hence (—1)u must also
bein W.

Since W satisfies all of the properties of a vector space, W is a vector space. Any subset of R"”
that is itself a vector space using the same operations as in R" is called a subspace of R™.

Example 12.3 and our work Preview Activity 12.1 bring out some important ideas. When
checking that a subset W of a vector space R" is also a vector space, we can use the fact that all
of the properties of the operations in R™ are transferred to any closed subset . This implies that
properties (2), (3), (7)-(10) are all automatically satisfied for W as well. Property (5) follows from
the others. So we only need to check properties (1), (4) and (6). In fact, as we argued in the above
example, property (4) also needs to be checked by simply checking that O of R™ is in W. We
summarize this result in the following theorem.

Theorem 12.4. A subset W of R" is a subspace of R" if

(1) whenever u and v are in W it is also true that u + v is in W (that is, W is closed under
addition),

(2) whenever u is in W and a is a scalar it is also true that au is in W (that is, W is closed
under scalar multiplication),

(3) OisinW.

The next activity provides some practice using Theorem 12.4.

Activity 12.1. Use Theorem 12.4 to answer the following questions. Justify your responses. For
sets which lie inside R?, sketch a pictorial representation of the set and explain why your picture
confirms your answer.

(a) Isthe set W = { [ Zj } ‘y = 2:r} a subspace of R??
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x
(b) Isthe set W = 0 ||z is ascalar p a subspace of R3?

1
(c) Isthe set W = . i y ] x,y are scalars} a subspace of R29

(d) Isthe set W = :yc } ‘y =2z + 1} a subspace of R??

{
{
(e) Istheset W = { Z } ‘y = 51:2} a subspace of R??
0
(f) Isthe set W = { 8 a subspace of R*?
0
T
(g) Isthe set W = { y | |z% +y?+ 22 <1} a subspace of R3? Note that I is the unit
z

sphere (a.k.a. unit ball) in R3.

(h) Isthe set W =R?a subspace of R3?

There are several important points that we can glean from Activity 12.1.

e A subspace is a vector space within a larger vector space, similar to a subset being a set within
a larger set.

e The set containing the zero vector in R is a subspace of R"”, and it is the only finite subspace
of R™.

e Every subspace of R™ must contain the zero vector.

e No nonzero subspace is bounded — since a subspace must include all scalar multiples of its
vectors, a subspace cannot be contained in a finite sphere or box.

e Since vectors in R* have k components, vectors in R¥ are not contained in R” when n # k.
However, if n > k, then we can think of R" as containing a copy (what we call an isomorphic
image) of R” as the set of vectors with zeros as the last n — k& components.

The Subspace Spanned by a Set of Vectors

One of the most convenient ways to represent a subspace of R” is as the span of a set of vectors. In
Preview Activity 12.1 we saw that the span of two vectors is a subspace of R™. In the next theorem
we verify this result for the span of an arbitrary number of vectors, extending the ideas you used in
Preview Activity 12.1. Expressing a set of vectors as the span of some number of vectors is a quick

D00
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way of justifying that this set is a subspace and it also provides us a geometric intuition for the set
of vectors.

Theorem 12.5. Let vy, Vo, ..., Vi be vectors in R™. Then Span{v1,va,...,Vy} is a subspace of
R™.
Proof. Let vy, va, ..., Vi be vectors in R™. Let W = Span{vy, va,...,vg}. To show that W is a

subspace of R™ we need to show that W is closed under addition and multiplication by scalars and
that 0 is in W.

First we show that TV is closed under addition. Let u and w be vectors in W. This means that
u and w are linear combinations of vi, vo, ..., vi. So there are scalars a1, ao, ..., ai and by, bo,
..., by so that
u=a;vi+agve+---+arvy and W =0b;vy+byvy+ -+ byvy.

To demonstrate that u + w is in W, we need to show that u + w is a linear combination of vi, v,
..., vi. Using the properties of vector addition and scalar multiplication, we find

u+w=(a1vy +agve+ -+ apvg) + (byvy + bave + - - - + bpvg)
= (a1 + bl)Vl + (a2 + bQ)VQ +---+ (ak + bk)vk.
Thus u + w is a linear combination of vq, vo, ..., v and W is closed under vector addition.

Next we show that W is closed under scalar multiplication. Let u be in W and c be a scalar.
Then
cu=c(a1vy + agve + -+ - + apvy) = (cap)vi + (caz)ve + - - - + (cag)vg

and cu is a linear combination of vy, vo, ..., v and W is closed under multiplication by scalars.
Finally, we show that 0 is in . Since
0=0vy+0vy+---+0vg,
Oisin W.
Since W satisfies all of the properties of a subspace as given in definition of a subspace, we

conclude that W is a subspace of R". |

The subspace W = Span{vy, ve, ..., vy} is called the subspace of R" spanned by v1,va, ..., V.
We also use the phrase “subspace generated by vi, vo, ..., v” since the vectors vy, vy, ..., Vi are
the building blocks of all vectors in .

Activity 12.2.

(a) Describe geometrically as best as you can the subspaces of R? spanned by the following
sets of vectors.

o099



Section 12. The Structure of R" 221

(b) Express the following set of vectors as the span of some vectors to show that this set is a
subspace. Can you give a geometric description of the set?

24y —=
W = 'Z : x,y, z real numbers
—x + 3z

One additional conclusion we can draw from Activities 12.1 and 12.2 is that subspaces of R"
are made up of “flat” subsets. The span of a single nonzero vector is a line (which is flat), and the
span of a set of two distinct nonzero vectors is a plane (which is also flat). So subspaces of R" are
linear (or “flat”) subsets of R™. That is why we can recognize that the non-flat parabola in Activity
12.1 is not a subspace of R2.

Examples

What follows are worked examples that use the concepts from this section.

2r+s+t
Example 12.6. Let W = r4+t ', s, t €R
r+ s

(a) Show that W is a subspace of R3.

(b) Describe in detail the geometry of the subspace W (e.g., is it a line, a union of lines, a
plane, a union of planes, etc.)

Example Solution.

(a) Every vector in W has the form

2r+ s+t 2 1 1
r+t =r|1|+s|0|[+2]|1
r+s 1 1 0
for some real numbers r, s, and t. Thus,
2 1 1
W = Span 11,101, 1
1 1 0

As a span of a set of vectors, we know that W is a subspace of R*.

1 1
(b) Let vi = , Vo = 0 |, and vy = 1 |. The reduced row echelon form of
1 0

2
1
1
[vi v vs]i [ . The pivot columns of [v; v v3| form a linearly independent

O O =
S = O
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set with the same span as {v1, va,v3}, So W = Span{vy, vy} and W forms the plane in
R through the origin and the points (2, 1,1) and (1,0, 1).

Example 12.7.

1
(a) Let X = Span 0 and let Y = Span 1 . That is, X is the x-axis and Y
0 0
the y-axis in three-space. Let

X+Y={x+y:xeXandyeY}.

in X + Y'? Justify your answer.

ii. Is in X + Y? Justify your answer.

iii. Assume that X + Y is a subspace of R3. Describe in detail the geometry of this
subspace.

(b) Now let W7 and W5 be arbitrary subspaces of R™ for some positive integer n. Let
Wi+ Wy = {Wl +wy:wp € Wi and wy € WQ}.
Show that W1 + W5 is a subspace of R™. The set W1 +Wj is called the sum of the subspaces
W1 and Wg.

Example Solution.

1 0

, x=2|0|,andy =3[ 1 |. Sincew =x+ywithx € X
0 0

andy € Y we conclude thatw € X + Y.

1 0
(a) We let X = Span { 0 and Y = Span 1 LT
2
3
0

1
ii. Every vector in X has the form ae; for some scalar a (where e; = | 0 |, and every
0
0
vector in Y has the form bes for some scalar b (where e = | 1 |). So every vector
0
a 1
in X +Y is of the form ae; +bes = | b |. Since the vector | 1 | does not have
0 1
1
a 0 in the third component, we conclude thatin | 1 | isnotin X 4+ Y.
1
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iii. As we just argued, every vector in X + Y has the form ae; + bes. So X +Y =
Span{ej, ez}, which is the zy-plane in R3.

(b) To see why the set W} + W is a subspace of R, suppose that x and y are in Wy + Wa.
Then x = u; + ug and y = z; + 25 for some uy, z; in W; and some us, zs in W5. Then

x+y=(u;+u2)+ (z1 +22) = (u; +21) + (ug + 22).
Since W is a subspace of R3 it follows that u; +2z; € Wj. Similarly, us 4+ z2 € Wy. This

makes X + y an element of W 4+ Ws.

Also, suppose that a is a scalar. Then
ax = a(u; + uz) = auy + aus.
Since W1 is a subspace of R3 it follows that au; € Wj. Similarly, aus € Ws. This makes

ax an element of W7 + Wh.

Finally, since O is in both W} and W5, and 0 = 0 + 0, it follows that 0 is an element of
W1 + Ws,. We conclude that W + Ws is a subspace of R3.

Summary

e A vector space is a set V' with operations of addition and scalar multiplication defined on V'
such that for all u, v, and w in V and all scalars a and b:
(1) u+ vis anelement of V' (we say that V' is closed under the addition in V'),
(2) u+ v = v + u (we say that the addition in V' is commutative),
(3) (u+v)+w =u+ (v+ w) (we say that the addition in V is associative),

(4) there is a vector 0 in V' so that u 4+ 0 = u (we say that V' contains an additive identity
or zero vector 0),

(5) for each x in V there is an element y in V' so that x + y = 0 (we say that V' contains
an additive inverse y for each element x in V'),

(6) auis an element of V' (we say that V' is closed under multiplication by scalars),

(7) (a 4+ b)u = au + bu (we say that multiplication by scalars distributes over scalar

addition),
(8) a(u+v) = au+ av (we say that multiplication by scalars distributes over addition in
V),
9) (ab)u = a(bu),
(10) 1u =u.

e For every n, R" is a vector space.

e A subset W of R™ is a subspace of R™ if W is a vector space using the same operations as in
R™,

e To show that a subset W of R™ is a subspace of R"”, we need to prove the following:



224 Section 12. The Structure of R™

(1) u+ visin W whenever u and v are in W (when this property is satisfied we say that
W is closed under addition),

(2) auisin W whenever a is a scalar and u is in W (when this property is satisfied we say
that W is closed under multiplication by scalars),

(3) Oisin W.

The remaining properties of a vector space are properties of the operation, and as long as we
use the same operations as in R™, the operation properties follow the operations.

e The span of any set of vectors in R™ is a subspace of R".
Exercises

(1) Each of the following regions or graphs determines a subset W of R2. For each region, dis-
cuss each of the subspace properties of Theorem 12.4 and explain with justification if the set
W satisfies each property or not.

(a) (b)

() (d)

(2) Determine which of the following sets W is a subspace of R" for the indicated value of n.
Justify your answer.

(@) W = {[z0]" : xis a scalar}
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b)) W={2z+yx—yx+y]" :z,vyare scalars}
() W={lz+1z—1]7: 2isascalar}
(d) W = {[zy xz yz]" : z,y, z are scalars}

(3) Find a subset of R? that is closed under addition and scalar multiplication, but that does not
contain the zero vector, or explain why no such subset exists.

(4) Let v be a vector in R2. What is the smallest subspace of R? that contains v? Explain.
Describe this space geometrically.

(5) What is the smallest subspace of R? containing the first quadrant? Justify your answer.

(6) Let u, v, and w be vectors in R? with w = u + v. Let W; = Span{u,v} and Wy =
Span{u, v, w}.

(a) If x is in Wy, must x be in W3 ? Explain.

(b) If y is in Wy, must y be in W7 ? Explain.

(c) What is the relationship between Span{u, v} and Span{u, v, w}? Be specific.
(7) Let m and n be positive integers, and let v be in R”. Let W = {Av : A € M, xn}.

(a) Asanexample, letv =[21]T inR? with W = {Av : A € Mays}.
i. Show that the vector [2 1] is in T by finding a matrix A that places [2 1]T in

w.

ii. Show that the the vector [4 2] is in TV by finding a matrix A that places [4 2]T
inW.

iii. Show that the vector [6 — 1] is in W by finding a matrix A that places [6 —1]T
inW.

iv. Show that W = R2.
(b) Show that, regardless of the vector v selected, W is a subspace of R™.

(c) Characterize all of the possibilities for what the subspace W can be. (Hint: There is
more than one possibility.)

(8) Let S; and S5 be subsets of R? such that Span S; = Span S,. Must it be the case that S; and
So contain at least one vector in common? Justify your answer.

(9) Assume W7 and W5 are two subspaces of R™. Is W1 MW, also a subspace of R™*? Is W UW,;
also a subspace of R™? Justify your answer. (Note: The notation W1 "W refers to the vectors

common to both W7, W5, while the notation W7 U W5 refers to the vectors that are in at least
one of W1, Ws.)

(10) Determine whether the plane defined by the equation 52 + 3y — 2z = 0 is a subspace in R3.

(11) If W is a subspace of R™ and u is a vector in R" not in W, determine whether
u+ W ={u+v:visavectorin W}

is a subspace of R™.
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(12) Two students are talking about examples of subspaces.

Student 1: The x-axis in R? is a subspace. It is generated by the vector [ (1) } .

Student 2: Similarly R? is a subspace of R3.

Student 1: I'm not sure if that will work. Can we fit R2 inside R?? Don’t we need
W to be a subset of R? if it is a subspace of R3?

Student 2: Of course we can fit R? inside R?. We can think of R? as vectors

a
b |. That’s the xy-plane.
0
“ a
Student 1: I don’t know. The vector | b | is not exactly same as [ b ] .
0

Student 2: Well, R? is a plane and so is the zy-plane. So they must be equal,
shouldn’t they?

Student 1: But there are infinitely many planes in R3. They can’t all be equal to
R?. They all “look like” R? but I don’t think we can say they are equal.

Which student is correct? Is R? a subspace of R3, or not? Justify your answer.

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False Any line in R” is a subspace in R".

(b) True/False Any line through the origin in R™ is a subspace in R™.

(c) True/False Any plane through the origin in R™ is a subspace in R".
(d) True/False In R?, the points satisfying zy = 2t + 2 form a subspace.
(e) True/False In R, the points satisfying = + 3y = 2z form a subspace.
(f) True/False Any two nonzero vectors generate a plane subspace in R3.
(g) True/False The space R? is a subspace of R3.

(h) True/False If W is a subspace of R™ and u is in W, then the line through the origin
and uisin W.

(i) True/False There are four types of subspaces in R3: 0, line through origin, plane
through origin and the whole space R?.

(j) True/False There are four types of subspaces in R*: 0, line through origin, plane
through origin and the whole space R*.
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1 1 2
(k) True/False The vectors | 1 |, | 2 | and | 3 | form a subspace in R>.
| 1] 1 2
[ 1] 1
(1) True/False The vectors | 1 | and | 2 | form a basis of a subspace in R3.
1 1

Project: Least Squares Linear Approximation

We return to the problem of finding the least squares line to fit the GDP-consumption data. We will
start our work in a more general setting, determining the method for fitting a linear function to fit
any data set, like the GDP-consumption data, in the least squares sense. Then we will apply our
result to the GDP-consumption data.

Project Activity 12.1. Suppose we want to fit a linear function p(z) = ma + b to our data. For
the sake of our argument, let us assume the general case where we have n data points labeled as
(x1,11)s (x2,92), (£3,Y3), - s (Tn,Yn). (In the GDP-consumption data n = 21.) In the unlikely
event that the graph of p(x) actually passes through these data points, then we would have the
system of equations

Y1 = b+mx1
Yo = b—i-m.%'g
y3 = b+ mas (12.1)
Yn = b+ mzx,

in the unknowns b and m.

(a) As a small example to illustrate, write the system (12.1) using the three points (z1,y1) =
(1,2), (z2,y2) = (3,4), and (z3,y3) = (5,6). Identify the unknowns and then write this
system in the form Ma = y. Explicitly identify the matrix M and the the vectors a and y.

(b) Identify the specific matrix M and the specific vectors a and y using the data in Table 12.1.
Explain why the system Ma = y is inconsistent. (Remember, we are treating consumption
as the independent variable and GDP as the dependent variable.) What does the result tell
us about the data?

Project Activity 12.1 shows that the GDP-consumption data does not lie on a line. So instead of
attempting to find coefficients b and m that give a solution to this system, which may be impossible,
we instead look for a vector a* that provides us with something that is “close” to a solution.

If we could find b and m that give a solution to the system Ma = y, then Ma — y would be
zero. If we can’t make Ma — y exactly equal to the vector 0, we could instead try to minimize
Ma — y in some way. One way is to minimize the length || Ma — y|| of the vector Ma — y.

If we minimize the quantity || M a— y||, then we will have minimized a function given by a sum
of squares. That is, || Ma — y]|| is calculated to be

VO +mazy —y1)?2+ (b+mzy —y2)2 + -+ (b + man — yn)? (12.2)
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This is why the method we will derive is called the method of least squares. This method provides
us with a vector “solution” in a subspace that is related to M. We can visualize ||[Ma — y|| as in
Figure 12.2. In this figure the data points are shown along with a linear approximation (not the best
for illustrative purposes). The lengths of the vertical line segments are the summands (b+ma; —y;)
in (12.2). So we are trying to minimize the sum of the squares of these line segments.

500000 §

400000 1

300000 ¢

200000

100000

100000 200000 300000 400000

Figure 12.2: Error in the linear approximation.

Suppose that a* minimizes || Ma — y||. Then the vector Ma* is the vector that is closest to y
of all of the vectors of the form Mx. The fact that the vectors of the form M x make a subspace
will be useful in what follows. We verify that fact in the next project activity.

Project Activity 12.2. Let A be an arbitrary m x k matrix. Explain why the set C' = {Ax : x € R¥}
is a subspace of R™.

Project Activity 12.2 shows us that even though the GDP-consumption system Ma = y does
not have a solution, we can find a vector that is close to a solution in the subspace {Mx : x € R?}.
That is, find a vector a* in R? such that Ma* is as close (in the least squares sense) to y as we can
get. In other words, the error ||[Ma* — y|| is as small as possible. In the following activity we see
how to find a*.

Project Activity 12.3. Let

S=vO+mzy—y1)2+ b+may—1y2)2+ -+ (b+mx, —yn)?,

the quantity we want to minimize. The variables in S are m and b, so we can think of S as a function
of the two independent variables m and b. The square root makes calculations more complicated,
so it is helpful to notice that S will be a minimum when S? is a minimum. Since S? is also function
of the two variables b and m, the minimum value of S? will occur when the partial derivatives of
S? with respect to b and m are both 0 (if you haven’t yet taken a multivariable calculus course, you
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can just assume that this is correct). This yields the equations

n

0= Z (mz; +b—y;) x; (12.3)
=1

0=> (mz;i+b—y). (12.4)
=1

In this activity we solve equations (12.3) and (12.4) for the unknowns b and m. (Do this in a general
setting without using specific values for the x; and y;.)

(@) Letr =30 22, s=> 1"  xi,t=> 1 yi,andu =Y, z;5;. Show that the equations
(12.3) and (12.4) can be written in the form

O0=bs+mr—u
0=bn+ms—t.

Note that this is a system of two linear equations in the unknowns b and m.

(b) Write the system from part (a) in matrix form Ax = b. Then use techniques from linear
algebra to solve the linear system to show that

b= tr—us _ (it wi) (0 27) — (2 @) (i ivi) (12.5)

nr — s2 n (Z?:l 5612) ->n, xi)z

and

o e ts (0 wiy) — (0 @) (i Yi) (12.6)

nr - s* n (i 2f) — (2 i)’

Project Activity 12.4. Use the formulas (12.5) and (12.6) to find the values of b and m for the
regression line to fit the GDP-consumption data in Table 12.1. You may use the fact that the sum of
the GDP data is 3.5164030 x 10°, the sum of the consumption data is 2.9233750 x 10%, the sum
of the squares of the consumption data is 8.806564894 x 10!, and the sum of the products of the
GDP and consumption data is 1.069946378 x 10'2. Compare to the results the authors obtained in
the paper “A Statistical Analysis of GDP and Final Consumption Using Simple Linear Regression,
the Case of Romania 1990-2010.







Section 13

The Null Space and Column Space of a
Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is the null space of a matrix?
e What is the column space of a matrix?

e What important structure do the null space and column space of a matrix
have?

e What is the kernel of a matrix transformation?

e How is the kernel of a matrix transformation 7" defined by 7T'(x) = Ax
related to the null space of A?

e What is the range of a matrix transformation?

e How is the range of a matrix transformation 7" defined by 7'(x) = Ax
related to the column space of A?

e How do we find a basis for Nul A?

e How do we find a basis for Col A?

Application: The Lights Out Game

Lights Out (LO) is a commercial game released by Tiger Toys in 1995 (later bought out by Hasbro).
The game consists of a 5x 5 grid in which each square is either lit or unlit. Pressing a square changes
the status of the square itself and all the squares to the left, right, up, or down. The player’s job
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is to turn all the lights out. You can play a sample game at https://www.geogebra.org/
m/wcmctahp. There is a method to solve any solvable Lights Out game that can be uncovered
through linear algebra that we will uncover later in this section. Column spaces and null spaces
play important roles in this method.

Introduction

Recall that a subspace of R” is a subset of R™ which is a vector space in itself. More specifically, a
subset W or R" is a subspace of R if

(1) whenever u and v are in W it is also true that u + v is in W (that is, WW is closed under
addition),

(2) whenever uisin W and a is a scalar it is also true that au is in W (that is, I is closed under
scalar multiplication),

3) Oisin W.

Given a matrix A, there are several subspaces that are connected to A. Two specific such sub-
spaces are the null space of A and the column space of A. We will see that these subspaces provide
answers to the big questions we have been considering since the beginning of the semester, such as
“Do columns of A span R"?” “Are the columns of A linearly independent?” “Is the transformation
T defined by matrix multiplication by A one-to-one?” “Is the transformation 7" onto?”

In this preview activity, we start examining the null space.

Preview Activity 13.1.

21 3

(1) Let A= { 11 4 ]
(a) Find the general solution to the homogeneous equation Ax = 0. Write your solutions
in parametric vector form. (Recall that the parametric vector form expresses the

solutions to an equation as linear combinations of vectors with free variables as the

1 -2

. 0 1
weights. An example would be z3 | 1 + x4 0 J)

0 1

(b) Find two specific solutions x; and xs to the homogeneous equation Ax = 0. Is
X1 4 X9 a solution to Ax = 0? Explain.

(c) Is 3x7 a solution to Ax = 0? Explain.
(d) Is 0 a solution to Ax = 0?

(e) What does the above seem to indicate about the set of solutions to the homogeneous
system Ax = 0?

(2) Let A be an m x n matrix. As problem 1 implies, the set of solutions to a homogeneous
matrix-vector equation Ax = 0 appears to be a subspace. We give a special name to this set.

o099
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Definition 13.1. The null space of an m x n matrix A is the set of all solutions to Ax = 0.

We denote the null space of a matrix A as Nul A. In set notation we write
Nul A = {x : Ax = 0}.

Note that since Ax = 0 corresponds to a homogeneous system of linear equations, Nul A
also represents the solution set of a homogeneous system.

2130

LetA:[1 141

} . Find all vectors in Nul A.

(3) So far we considered specific examples of null spaces. But what are the properties of a null
space in general? Let A be an arbitrary m X n matrix.

(a) The null space of an m X n matrix is a subset of R* for some integer k. What is k?

(b) Now suppose u and v are two vectors in Nul A. By definition, that means Au = 0,
Av = 0. Use properties of the matrix-vector product to show that u + v is also in
Nul A.

(c) Now suppose u is a vector in Nul A and a is a scalar. Explain why au is also in
Nul A.

(d) Explain why Nul A is a subspace of R".

The Null Space of a Matrix and the Kernel of a Matrix Transformation

In this section we explore the null space and see how the null space of a matrix is related to the
matrix transformation defined by the matrix.

Let A be an m X n matrix. In Preview Activity 13.1 we defined the null space of a matrix A
(see Definition 13.1) as the set of solutions to the matrix equation Ax = 0. Note that the null space
of an m X n matrix is a subset of R”. We saw that the null space of A is closed under addition and
scalar multiplication — that is, if u and v are in Nul A and « and b are any scalars, then u + v and
au are also in Nul A. Since the zero vector is always in Nul A, we can conclude that the null space
of A is a subspace of R™.

There is a connection between the null space of a matrix and the matrix transformation it defines.
Recall that any m x n matrix A defines a matrix transformation 7" from R” to R™ by T'(x) = Ax.
The null space of A is then the collection of vectors x in R™ so that 7'(x) = 0. So if 7" is a matrix
transformation from R" to R™, then the set

{xinR" : T'(x) = 0}
is a subspace of R"™ equal to the null space of A. This set is is given a special name.
Definition 13.2. Let 7" : R” — R"” be a matrix transformation. The kernel of 7' is the set

Ker(T) = {x e R" : T'(x) = 0}.
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Activity 13.1. If T' is a matrix transformation defined by a matrix A, then there is a convenient way
to determine if 7" is one-to-one.

(a) Let T be the matrix transformation defined by 7'(x) = Ax, where
1 2 -1
A=y 171
Find all of the vectors in Nul A. If Nul A contains more than one vector, can 7" be one-to-
one? Why?

(b) Let 7T be the matrix transformation defined by T'(x) = Ax, where

1
A= 2
-1

A

Find all of the vectors in Nul A. Is T" one-to-one? Why?

(¢) To find the vectors in the null space of a matrix A we solve the system Ax = 0. Since
a homogeneous system is always consistent, there are two possibilities for Nul A: either
Nul A = {0} or Nul A contains infinitely many vectors.

i. Under what conditions on A is Nul A = {0}? What does that mean about 7" being
one-to-one or not? Explain.

ii. Under what conditions is Nul A infinite? What does that mean about 7" being one-to-
one or not? Explain.

iii. Is is possible for Nul A to be the whole space R"? If so, give an example. If not,
explain why not.

Recall that for a function to be one-to-one, each output must come from exactly one input. Since
a matrix transformation 7" defined by 7'(x) = Ax always maps the zero vector to the zero vector,
for T to be one-to-one it must be the case that the zero vector is the only vector that 7" maps to the
zero vector. This means that the null space of A must be {0}. Activity 13.1 demonstrates that if the
matrix A that defines the transformation 7" has a pivot in every column, then 7'(x) = b will have
exactly one solution for each b in the range of 7. So a trivial null space is enough to characterize a
one-to-one matrix transformation.

Theorem 13.3. A matrix transformation T from R™ to R™ defined by T'(x) = Ax is one-to-one if

and only if
Nul A = Ker(T) = {0}.

The Column Space of a Matrix and the Range of a Matrix Transforma-
tion

Given an m x n matrix A, we have seen that the matrix-vector product Ax is a linear combination
of the columns of A with weights from x. It follows that the equation Ax = b has a solution if and
only if b is a linear combination of the columns of A. So the span of the columns of A tells us for
which vectors the equation Ax = b is consistent. We give the span of the columns of a matrix A a
special name.
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Definition 13.4. The column space of an m x n matrix A is the span of the columns of A.

We denote the column space of A as Col A. Given that Ax is a linear combination of the
columns of A, we can also write the column space of an m X n matrix A as

Col A = {Ax : xisin R"}.

For the matrix transformation 7" defined by 7T'(x) = Ax, the set of all vectors of the form Ax is
also the range of the transformation 7". So for a matrix transformation 7" with matrix A we have
Range(7") = Col A.

Activity 13.2. As a span of a set of vectors, we know that Col A is a subspace of R¥ for an appro-
priate value of k.

1110 2
(a) Let M = (1) (1) (1) 1 I The space Col M is a subspace of R¥ for some positive
01 01 1

k in this case?

«
—

integer k. What i

(b) If A is an m x n matrix, then Col A is a subspace of R¥ for some positive integer k. What
is k in this case?

(c) Recall that a matrix transformation 7" given by 7'(x) = Ax where A is an m X n matrix is
onto if for every b in R™ there exists a x in R” for which 7'(x) = b. How does T being
onto relate to the Col A?

As you saw in Activity 13.2, a matrix transformation 7" defined by T'(x) = Ax is onto if the
column space of A, which consists of the image vectors under the transformation 7', is equal to R™.
In other words, we want the Range(7") to equal R™.

Theorem 13.5. A matrix transformation T from R™ to R™ defined by T'(x) = Ax is onto if and
only if
Col A = Range(T) = R™.

The Row Space of a Matrix

As you might expect, if there is a column space for a matrix then there is also a row space for a
matrix. The row space is defined just as the column space as the span of the rows of a matrix.

Definition 13.6. The row space of an m x n matrix A is the span of the row of A.

There is really nothing new here, though. Since the rows of A are the columns of AT, it follows
that Row A = Col AT. So if we want to learn anything about the row space of A, we can just
translate all of our questions to the column space of AT.
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Bases for Nul A and Col A

When confronted with a subspace of R"”, we will usually want to find a minimal spanning set — a
smallest spanning set — for the space. Recall that a minimal spanning set is also called a basis for
the space. So a basis for a space must span that space, and to be a minimal spanning set we have
seen that a basis must also be linearly independent. So to prove that a set is a basis for a subspace
of R™ we need to demonstrate two things: that the set is linearly independent, and that the set spans
the subspace.

Activity 13.3. In this activity we see how to find a basis for Col A and Nul A for a specific matrix

A. Let
1 110 2
01 0 1 1
4= 1 01 1 -1
01 01 1
Assume that the reduced row echelon form of A is
1 01 0 0
01 0O 2
R= 00 01 -1
00 0O 0

(a) First we examine Col A. Recall that to find a minimal spanning set of a set of vectors
{v1,va,..., v} in R™ we just select the pivot columns of the matrix [vq vy -+ Vg].
i. Find a basis for Col A.
ii. Does Col A equal Col R? Explain.

(b) Now we look at Nul A.

i. Write the general solution to the homogeneous system Ax = 0 in vector form.
ii. Find a spanning set for Nul A.

iii. Find a basis for Nul A. Explain how you know you have a basis.

You should have noticed that Activity 13.3 (a) provides a process for finding a basis for Col A
— the pivot columns of A form a basis for Col A. Similarly, Activity 13.3 (b) shows us that we
can find a basis for Nul A by writing the general solution to the homogeneous equation Ax = 0
as a linear combination of vectors whose weights are the variables corresponding to the non-pivot
columns of A — and these vectors form a basis for Nul A. As we will argue next, these process
always give us bases for Col A and Nul A.

Let A be an m x n matrix, and let R be the reduced row echelon form of A. Suppose R has k
non-pivot columns and n — k pivot columns. We can rearrange the columns so that the non-pivot
columns of R are the last £ columns (this just amounts to relabeling the unknowns in the system).

Basis for Nul A. Here we argue that the method described following Activity 13.3 to find a span-
ning set for the null space always yields a basis for the null space.
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First note that Nul R = Nul A, since the system Ax = 0 has the same solution set as Rx = 0.
So it is enough to find a basis for Nul R. If every column of R is a pivot column, then Rx = 0
has only the trivial solution and the null space of R is {0}. Let us now consider the case where
R contains non-pivot columns. If we let x = [z} x2 ... ;Un]T, and if Rx = 0 then we can
write x1, X2, . .., Tn_k in terms of T, k11, Tn_k1o, ..., and x,. From these equations we
can write x as a linear combination of some vectors vi, va, ..., Vi With 11, Tn—2+42,
..., T, as weights. By construction, each of the vectors vy, va, ..., vi has a component that
is 1 with the corresponding component as O in all the other v;. Therefore, the vectors vy, va,
..., vi, are linearly independent and span Nul R (and Nul A). In other words, the method we
have developed to find the general solution to Ax = 0 always produces a basis for Nul A.

Basis for Col A. Here we explain why the pivot columns of A form a basis for Col A. Recall that
the product Ax expresses a linear combination of the columns of A with weights from x, and
every such linear combination is matched with a product Rx giving a linear combination of
the columns of R using the same weights. So if a set of columns of R is linearly indepen-
dent (or dependent), then the set of corresponding columns in A is linearly independent (or
dependent) and vice versa. Since each pivot column of R is a vector with 1 in one entry (a
different entry for different pivot columns) and zeros elsewhere, the pivot columns of I are
clearly linearly independent. It follows that the pivot columns of A are linearly independent.
All that remains is to explain why the pivot columns of A span Col A.

Let ry, ro, ..., r, be the columns of Rsothat R = [r; ro --- r,),andletaj, ag, ...,
a,, be the columns of A sothat A = [a; as --- a,]. Suppose a; is a non-pivot column
for A and r; the corresponding non-pivot column in R. Each pivot column is composed of a
single 1 with the rest of its entries 0. Also, if a non-pivot column contains a nonzero entry,
then there is a corresponding pivot column that contains a 1 in the corresponding position.
So r; is a linear combination of r1, ro, . . ., r,,_j — the pivot columns of R. Thus,

ri=cry+cro+---+cp g rp_k

for some scalars ¢y, ¢, ..., ¢p_p. Letx = [c1c2 -+ ¢y 0 ---0 — 10 --- 0]T, where the
—1 is in position ¢. Then Rx = 0 and so Ax = 0. Thus,

a; =cia; +coag + -+ Cp_pan_k

and a; is a linear combination of the pivot columns of A. So every non-pivot column of A is
in the span of A and we conclude that the pivot columns of A form a basis for Col A.

IMPORTANT POINT: It is the pivot columns of A that form a basis for Col A, not the pivot
columns of the reduced row echelon form R of A. In general, Col R # Col A.

We can incorporate the ideas of this section to expand the Invertible Matrix Theorem.

Theorem 13.7 (The Invertible Matrix Theorem). Let A be an n x n matrix. The following state-
ments are equivalent.

(1) The matrix A is an invertible matrix.
(2) The matrix equation Ax = 0 has only the trivial solution.

(3) The matrix A has n pivot columns.

D00
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(4) Every row of A contains a pivot.

(5) The columns of A span R".

(6) The matrix A is row equivalent to the identity matrix I,.

(7) The columns of A are linearly independent.

(8) The columns of A form a basis for R"™.

(9) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is one-to-one.
(10) The matrix equation Ax = b has exactly one solution for each vector b in R™.
(11) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is onto.
(12) There is an n x n matrix C so that AC = I,

(13) There is an n x n matrix D so that DA = I,,.
(14) The scalar 0 is not an eigenvalue of A.

(15) The matrix AT is invertible.

(16) Nul A = {0}.

(17) Col A =R"™

Examples

What follows are worked examples that use the concepts from this section.
Example 13.8.

1 0 -2 3
(@) LetA=| -2 -4 0 -14
1 3 1 9

i. Find a basis for Col A.

ii. Describe Col A geometrically (e.g., as a line, a plane, a union of lines, etc.) in the
appropriate larger space.

0o -2 1
-1 0 1

b LetB=| o o |
1 -4 1

1. Find a basis for Nul B.

ii. Describe Nul B geometrically (e.g., as a line, a plane, a union of lines, etc.) in the
appropriate larger space.

Example Solution.
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1 0 -2 3
(a) Weuse A=| -2 -4 0 -14
1 3 1 9

i. Technology shows that the reduced row echelon form of A is

o O =
O = O
O =
SN W

The first two columns of A are the pivot columns of A. Since the pivot columns of A
form a basis for Col A, a basis for Col A is

1 0
-2 1, —4
1 3
1 0
ii. Letvy = | —2 | and v = | —4 |. Since neither v; nor vy is a scalar multiple
1 3

of the other, we see that Col A is the span of two linearly independent vectors in R3.
Thus, we conclude that Col A is the plane in R3 through the origin and the points
(1,—2,1) and (0, —4, 3).

0o -2 1

—1 0 1

(b) Weuse B = 6 —10 —1
1 -4 1

i. Technology shows that the reduced row echelon form of B is

(1 0 -1 ]

1
01 -1
00 0
(00 0]

To find a basis for Nul B, we must solve the homogeneous equation Bx = 0. If
I

x = | zo | and Bx = 0, the reduced row echelon form of B shows that x3 is free,
T3
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To = %xg, and r1 = x3. So

I
X = )
L 3
T3
x3
1
=z3| 11
1
Thus, a basis for Nul B is
2
1
2
2
ii. Since Nul B = Span 1 is the span of one nonzero vector in R3, we conclude
2
that Nul B is the line in R? through the origin and the point (2, 1, 2).
1 3
Example 13.9. Let A = _(1) _; , and let 7" be the matrix transformation defined by 7'(x) =
5 6

Ax.

(a) What are the domain and codomain of 7'? Why?
(b) Find all vectors x such that 7'(x) = 0. How is this set of vectors related to Nul A? Explain.
(c) Is T one-to-one? Explain.
(d) Is T onto? If yes, explain why. If no, find a basis for the range of 7.
Example Solution.

(a) Recall that Ax is a linear combination of the columns of A with weights from x. So Ax
is defined only when the number of components of x is equal to the number of columns
of A. This explains why the domain of 7" is R?. Also, since each output of 7" is a linear
combination of the columns of A, the codomain of 7" is R%.

(b) The set of vectors x such that 0 = T'(x) = Ax is the same as Nul A. The reduced row
echelon form of A is

oS O o
o O = O
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Since both columns of A are pivot columns, the columns of A are linearly independent.
This implies that Ax = 0 has only the trivial solution. Therefore, the only vector x such
that 7'(x) = 0 is the zero vector in R2,

(c) The previous part shows that Ker(7') = {0}. This means that T is one-to-one by Theorem
13.3.

(d) Recall that the range of T is the same as Col A. The reduced row echelon form of A has
a row of zeros, so Ax = b is not consistent for every b in R*. We conclude that 7T is not
onto. To find a basis for the range of 7, we just need to find a basis for Col A. The pivot
columns of A form such a basis, so a basis for the range of T is

1 3
-1 2
0’| -2
5 6

Summary

e The null space of an m x n matrix A is the set of vectors x in R™ so that Ax = 0. In set
notation
Nul A = {x : Ax = 0}.

e The column space of a matrix A is the span of the columns of A.
e A subset W of R” is a subspace of R™ if

(1) u+ visin W whenever u and v are in W (when this property is satisfied we say that
W is closed under addition),

(2) auisin W whenever a is a scalar and u is in W (when this property is satisfied we say
that W is closed under multiplication by scalars),

(3) Oisin W.

e The null space of an m x n matrix is a subspace of R™ while the column space of A is a
subspace of R™.

e The span of any set of vectors in R” is a subspace of R".

e The kernel of a matrix transformation 7" : R"™ — R™ is the set

Ker(T) = {x € R": T'(x) = 0}.

e The kernel of a matrix transformation 7" defined by 7'(x) = Ax is the same set as Nul A.

e The range of a matrix transformation 7" : R™ — R™ is the set

Range(T) = {T'(x) : x € R"}.

e The range of a matrix transformation 7" defined by 7'(x) = Ax is the same set as Col A.
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e A basis for the null space of a matrix A can be found by writing the general solution to the
homogeneous equation Ax = 0 as a linear combination of vectors whose weights are the
variables corresponding to the non-pivot columns of A. The number of vectors in a basis for
Nul A is the number of non-pivot columns of A.

e The pivot columns of a matrix A form a basis for the column space of A.

Exercises

(1) Find a basis for the null space and column space of the matrix

3 4
2 =2
)

1
A=10
1 2

N O N

Of which spaces are the null and column spaces of A subspaces?

1 2 -1 1 2
(2) If the column spaceof | 1 1 1 | has basis 1(,]1 , what must ¢ be?
1 2 1 2
2 1 a 2
(3) If the null space of [ 1 2 b ] has basis -1 , what must a and b be?
1

(4) Find a matrix with at least four non-zero and distinct columns for which the column space

1 2
has basis 11,] 2
1 3
1
(5) Find a matrix with at least two rows whose null space has basis 1
-1
1 2
(6) Find a matrix whose column space has basis 1(,] 2 and whose null space has
1 3
2
basis 1
-1

(7) If possible, find a 4 x 4 matrix whose column space does not equal R* but whose null space
equals {0}. Explain your answer. If not possible, explain why not.

(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False For a 3 x 4 matrix, the null space contains vectors other than the zero
vector.
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(b) True/False For a 4 x 3 matrix, the null space contains vectors other than the zero
vector.

(¢) True/False If Nul A is not the zero subspace, then the transformation x — Ax is not
one-to-one.

(d) True/False If the transformation x — Ax is onto where A is an m X n matrix, then
Col A =R™,

(e) True/False For a 4 x 3 matrix A, Col A cannot equal R*.
(f) True/False For a 3 x 4 matrix A, Col A cannot equal R3.

1 11

(g) True/False The null space of the matrix consists of the two vectors

111
111
[-101]Tand [0 —11]T.

111
(h) True/False A basis for the null space of the matrix |1 1 1| consists of the two
111

vectors [-101]T and [0 — 1 1]T.
(i) True/False There does not exist a matrix whose null space equals its column space.

(j) True/False The column space of every 4 x 4 matrix is R* and its null space is {0}.

Project: Solving the Lights Out Game

The Lights Out game starts with a 5 x 5 grid on which some of the squares are lit (on) and some
are not lit (off). We will call such a state a configuration. Pressing a square that is on turns it off
and changes the state of all adjacent (vertically and horizontally) squares, and pressing a square
that is off turns it on and changes the state of all adjacent (vertically and horizontally) squares. To
model this situation, we consider the number system Zs = {0, 1} consisting only of 0 and 1, where
0 represents the off state and 1 the on state. We can also think of 1 as the act of pressing a square
and 0 as the act of not pressing — that is,

e 0+ 0 = 0 (not pressing an off square leaves it off),
e 0+ 1=1=1+40 (pressing an off square turns it on or not pressing a lit square leaves it lit),

e 1+ 1 = 0 (pressing a lit square turns it off).

The numbers 0 and 1 in Zo will be the only numbers we use when playing the Lights Out game,
so all of our matrix entries will be in Z and all of our calculations are done in Zs.

There are two ways we can view a Lights Out game.

e We can view each configuration as a 5 x 5 matrix. In this situation, we label the entries in
the grid as shown in Figure 13.1. Each entry in the grid will be assigned a 0 or 1 according
to whether the light in that entry is off or on.
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e For our purposes a better way to visualize a Lights Out configuration is as a 25 x 1 vector. The
components in this vector correspond to the entries in the 5 x 5 grid with the correspondence
given by the numbering demonstrated in Figure 13.1 (for the sake of space, this array is
shown in a row instead of a column). Again, each component is assigned a 0 or 1 according
to whether the light for that entry is off or on. In this view, each configuration is a vector with
25 components in Zs.

1123|145
67|89 (10
11(12]13(14|15
16(17|18]19 20
2112212312425

[1]2]3]4]s]6]7]8]o]1o]ti]r2]13]14]15]16[17]18]19]20[21[22]23]24]25]

Figure 13.1: Two representations of the Lights Out game.

We will take the latter perspective and view the Lights Out game as if it is played on a 25 x 1
board with entries in Zy. The space of all of these Lights Out configurations is denoted as Z3°
(similar to R?®, but with entries in Zs rather than R). Since Z, is a field, the space Z%5 is a vector
space just as R?? is. This is the environment in which we will play the Lights Out game.

If we think about the game as played on a 25 x 1 board, then pressing a square correlates to
selecting one of the 25 components of a configuration vector. Each time we press a square, we make
a move that changes the status of that square and all the squares vertically or horizontally adjacent
to it from the 5 x 5 board. Recalling that adding 1 to a square has the effect of changing its status
(from on to off or off to on), and each move that we make in the game can be represented as a 25 x 1
vector that is added to a configuration. For example, the move of pressing the first square is given
by adding the vector

m1:[1100010000000000000000000]T

to a configuration vector and the move of pressing the second square is represented by adding the
vector
my=1[1110001000000000000000000]".

Project Activity 13.1. Let m; be the move of pressing the ith square for ¢ from 1 to 25.
(a) Find vector representations for mg and mos.

(b) Let M = [m;;] = [my|mgy|- - - |mgs]. Explain why m;; = mj; for each i and j. In other
words, explain why M T = M. (Such a matrix is called a symmetric matrix.)

The goal of the Lights Out game is to begin with an initial configuration c (a vector in Z3°) and
determine if we can apply a sequence of moves to obtain the configuration in which all the entries
are 0 (or all the lights are off). The vector in Z3° of all Os is the zero vector in Z3° and we will
denote it as 0. Some basic algebra of vector addition in Zy (or mod 2) will help us understand the
strategy.
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Start with a configuration c. If we press the ith square, then we obtain the new configuration
c1 = m; + c (where each move m; is also in Z3°).

Project Activity 13.2.

(a) What happens if we press the ith square twice in a row? Explain in terms of the action and
the game and verify using vector addition.

(b) Explain why applying move m; then move m; is the same as applying move m;, then m,;.

(c) Explain how the answers to the previous two questions show that to play the game we only
need to determine which buttons to press (and only once each) without worrying about the
order in which the buttons are pressed.

What we have seen is that to play the game we are really looking for scalars x1, xo, .. ., T25 in
Zs (in other words, either O or 1) so that

T1mi + roms + - - - + Tosmos + ¢ = 0. (13.1)
Project Activity 13.3. Explain why (13.1) has the equivalent matrix equation
Mx =c, (13.2)

where M = [mj|mg|- - - |mgs], or

!
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Explicitly identify the vector x. Also, explain why c is on the right side of this equation.
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To solve a Lights Out game now, all we need do is determine a solution, if one exists, to the
matrix equation (13.2).

Project Activity 13.4. For this activity you may use the fact that the reduced row echelon form of
the matrix M (using algebra in Zs) is as shown below.

(a) Find a basis for the column space of M.

(b) Explain why not every Lights Out puzzle can be solved. That is, explain why there are
some initial configurations of lights on and off for which it is not possible to turn out all the
lights (without turning off the game). Relate this to the column space of M.

The reduced row echelon form of the matrix M (using algebra in Zo):

)

[N elNeoNoNoNeoNeoNeoNoNeoNeoNeNeoNeolNeoloBEoNEoBoNoNo o Ne Nl
[N eNeoNoNoNoNEoNeoNeoNeoNeoNeoNeoNeoNoNoBEoNEoBRoNoNRoNoRel ™
[N elNeoNeNeNeNeNoeNeNoNeoNeoNeoNeNeoloBoBEoBoNoNeNel =N
O O DD DD DO DD DODDDDODODDODOOODOO OO RO OO
N eNeoNoNoNeoNoNeoNeoNeoNeoReoNeoNeoNoNoBoNoRoNol =Nl
O O DD DD DD DD DODDODDODODOODOOOOOOOOOOoO OO O OO
[N elNoNoNoNeoNeoNeoNoNeoNeNeNeNeNoeNoNoNol e le oo oo
O O DD DD DO DD DO DD DO OO OO0 O OO OO O OO
O DD DD DD DD DD DD DODDDDODOODOODOOOOOoOHODOODODODODOO OO
OO DD DD DD IDODDDDODDODDODOODOODOHODOODODOOODODOO O
OO DD OO DODODODDODODOODOOO0OOHOODOODOoOOODOO O
DO DD DD OO DO DODOODOODODOOoOHOOOOODODOoODOoDOoOoOoOOoO
OO DO DD OO OO DODODOOHODOODOOODOOODOO O
OO DO O DODODODDODOOHOODOODOOoOODOoOOoOOoCoOoOo o
OO DD DD DODDODODDODOHODODODODOODODOOOODOOOOCOO OO
[N eNeNoNeNeNoNeNBell =l NololNo ool ool o oo o Rl
OO DD OO DODOOHR OO0 oo o
DO DD DODIODDODOH ODODDODODODODDODODOOODODOOOOO OO

OO DD DO O H ODIDIODDODIDODIODDODDODDODDODDOOODODOcOoOoO0CcoOoooo
[N eNeoNeoNel Yool oNoNoNoNoNeoNoNeNoNoNeNoNoNo o No Nl
[N eNeNeol S oNoNeNoNoNoNoNoNo o Noe o No No o No No o No Nl
[sNeNe " NoNoNeoNeoNoNeNeoNoNoeNoeNoNeNoeNoNe o No No o No N
[N NoNoNeoNoNeoNoNoNeoNoNeNoNoNeNoNoNe o No No o No Nl
OO R P OFrRPROFR,FOFF PO FFFRFORFRFOHFOFRFRFRO
OO OFRF P OFHFOFHFOOODOOFRFOFORFFEFOFOF

To find conditions under which a Lights Out game is not solvable, we will demonstrate that if A
is an n x n matrix, then the scalar product of any vector in Nul AT with any column of A4 is 0. Let

A= [aij] be an n X n matrix with columns aj, as, .. ., a,. Represent the entries in the ith column
as a; = [ay; ag; - .. am]T for each 7 between 1 and n. Note that a; is also the ith row of AT. Also,
letx = [z1 9 ... x,] be a vector in Nul AT. Then ATx = 0. Using the row-column method of

multiplying a matrix by a vector, when we multiply the ith row of AT with x we obtain
a1;x1 + a2ix2 + - + apixy, = 0. (13.3)
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This equation is valid for each ¢ between 1 and n. Recall that the sum in (13.3) is the scalar product
of a; and x and is denoted a; - x. That is,

a; - X = Gj1%1 + ;22 + -+ AinTn.

The fact that x is in Nul AT means a; - x = O for every i between 1 and n. In other words, the
scalar product of any vector in Nul AT with any column of A is 0. (When the scalar product of
two vectors is 0, we call the vectors orthogonal — a fancy word for “perpendicular”.) Since scalar
products are linear, we can extend this result to the following.

Theorem 13.10. Let A be an n X n matrix. If x is any vector in Col A and y is any vector in
Nul AT, thenx -y = 0.

With Theorem 13.10 in mind we can return to our analysis of the Lights Out game, applying
this result to the matrix M.

Project Activity 13.5.

(a) Find a basis for the null space of M T. (Recall that M = M, so you can use the reduced
row echelon form of M (using algebra in Zs) given earlier.)

(b) Use Theorem 13.10 to show that if ¢ = [c; ¢2 ... co5]" is an initial Lights Out configura-
tion that is solvable, then ¢ must be orthogonal to each of the vectors in a basis for Nul M.
Then show that if c is a solvable initial Lights Out configuration, ¢ must satisfy

Co +c3+cq4+cg+cg+ cio+c11 + C12 + 14 + €15 + C16 + €18
+ co0 + o2 + a3 + 24 =0

and
c1+c3+c5+cg+cg+cro+ cie + c18 + c20 + €21 + €23 + c25 = 0.

Be very specific in your explanation.

Project Activity 13.6. Now that we know which Lights Out games can be solved, let ¢ be an initial
configuration to a solvable Lights Out game. Explain how to find a solution to this game. Will the
solution be unique? Explain.

Now that we have a strategy for solving the Lights Out game, use it to solve random puzzles at
https://www.geogebra.org/m/wcmctahp, or create your own game to solve.


https://www.geogebra.org/m/wcmctahp




Section 14

Eigenspaces of a Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is an eigenspace of a matrix?
e How do we find a basis for an eigenspace of a matrix?

e What is true about any set of eigenvectors for a matrix that correspond to
different eigenvalues?

Application: Population Dynamics

The study of population dynamics — how and why people move from one place to another — is
important to economists. The movement of people corresponds to the movement of money, and
money makes the economy go. As an example, we might consider a simple model of population
migration to and from the state of Michigan.

According to the Michigan Department of Technology, Management, and Budget,' from 2011
to 2012, approximately 0.05% of the U.S. population outside of Michigan moved to the state of
Michigan, while approximately 2% of Michigan’s population moved out of Michigan. A reason-
able question to ask about this situation is, if these numbers don’t change, what is the long-term
distribution of the US population inside and outside of Michigan (under the assumption that the total
US population doesn’t change.). The answer to this question involves eigenvalues and eigenvectors
of a matrix. More details can be found later in this section.

"http://michigan.gov/cgi/0, 1607, 7-158-54534-140915-—, 00.html
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Introduction

Preview Activity 14.1. Consider the matrix transformation 7" from R? to R? defined by T'(x) =

Ax, where
A= { 51 } .
1 3
We are interested in understanding what this matrix transformation does to vectors in R?. The
matrix A has eigenvalues A\; = 2 and A\, = 4 with corresponding eigenvectors vi = [ _1 ] and

e[t

(1) Explain why v; and vy are linearly independent.

(2) Explain why any vector b in R? can be written uniquely as a linear combination of v; and
Va.

(3) We now consider the action of the matrix transformation 7" on a linear combination of v and
va. Explain why
T(01V1 + CQVQ) = 2¢1vy + 4cova. (14.1)

Equation (14.1) illustrates that it would be convenient to view the action of 7" in the coordinate
system where Span{v;} serves as the z-axis and Span{vy} as the y-axis. In this case, we can
visualize that when we apply the transformation 7" to a vector b = ¢; v + cavs in R? the result
is an output vector is scaled by a factor of 2 in the v; direction and by a factor of 4 in the vy
direction. For example, consider the box with vertices at (0,0), v1, vo, and vi + vo as shown at
left in Figure 14.1. The transformation 7 stretches this box by a fact of 2 in the v; direction and a
factor of 4 in the vo direction as illustrated at right in Figure 14.1. In this situation, the eigenvalues
and eigenvectors provide the most convenient perspective through which to visualize the action of
the transformation 7". Here, Span{v; } and Span{vs} are the eigenspaces of the matrix A.

T(v1)

T(vs)

Figure 14.1: A box and a transformed box.

This geometric perspective illustrates how each the span of each eigenvalue of A tells us some-
thing important about A. In this section we explore the idea of eigenvalues and spaces defined by
eigenvectors in more detail.

o099
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Eigenspaces of Matrix

Recall that the eigenvectors of an n x n matrix A satisty the equation
Ax = d\x
for some scalar \. Equivalently, the eigenvectors of A with eigenvalue A satisfy the equation
(A= MX,)x=0.

In other words, the eigenvectors for A with eigenvalue A are the non-zero vectors in Nul A — Al,,.
Recall that the null space of an n X n matrix is a subspace of R". In Preview Activity 14.1 we
say how these subspaces provided a convenient coordinate system through which to view a matrix
transformation. These special null spaces are called eigenspaces.

Definition 14.1. Let A be an n x n matrix with eigenvalue A. The eigenspace for A corresponding
to A is the null space of A — AI,.

2 0 1
Activity 14.1. The matrix A = | 0 2 —1 | has two distinct eigenvalues.
0 0 1

(a) Find a basis for the eigenspace of A corresponding to the eigenvalue A; = 1. In other
words, find a basis for Nul A — I3.

(b) Find a basis for the eigenspace of A corresponding to the eigenvalue Ao = 2.

(c) Is it true that if vy and vo are two distinct eigenvectors for A, that v; and v are linearly
independent? Explain.

(d) Is it possible to have two linearly independent eigenvectors corresponding to the same
eigenvalue?

(e) Isittrue thatif v; and vo are two distinct eigenvectors corresponding to different eigenval-
ues for A, that v and v5 are linearly independent? Explain.

If we know an eigenvalue A of an n x n matrix A, Activity 14.1 shows us how to find a basis
for the corresponding eigenspace — just row reduce A — A\, to find a basis for Nul A — Al,,. To this
point we have always been given eigenvalues for our matrices, and have not seen how to find these
eigenvalues. That process will come a bit later. For now, we just want to become more familiar
with eigenvalues and eigenvectors. The next activity should help connect eigenvalues to ideas we
have discussed earlier.

Activity 14.2. Let A be an n X n matrix with eigenvalue \.
(a) How many solutions does the equation (A — AI,,)x = 0 have? Explain.
(b) Can A — AI,, have a pivot in every column? Why or why not?
(¢c) Can A — A\, have a pivot in every row? Why or why not?

(d) Can the columns of A — AI, be linearly independent? Why or why not?
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Linearly Independent Eigenvectors

An important question we will want to answer about a matrix is how many linearly independent
eigenvectors the matrix has. Activity 14.1 shows that eigenvectors for the same eigenvalue may be
linearly dependent or independent, but all of our examples so far seem to indicate that eigenvectors
corresponding to different eigenvalues are linearly independent. This turns out to be universally
true as our next theorem demonstrates. The next activity should help prepare us for the proof of this
theorem

Activity 14.3. Let A\; and )5 be distinct eigenvalues of a matrix A with corresponding eigenvectors
v and vy. The goal of this activity is to demonstrate that v; and v are linearly independent. To
prove that v and v are linearly independent, suppose that

21v1 + zovy = 0. (14.2)

(a) Multiply both sides of equation (14.2) on the left by the matrix A and show that

T1A1V1 + Tadove = 0. (14.3)

(b) Now multiply both sides of equation (14.2) by the scalar A\; and show that

T1A1V] + a1 ve = 0. (14.4)

(c) Combine equations (14.3) and (14.4) to obtain the equation

xg()\g — )\1)V2 =0. (14.5)

(d) Explain how we can conclude that zo = 0. Why does it follow that ;1 = 0? What does
this tell us about v; and vy?

Activity 14.3 contains the basic elements of the proof of the next theorem.

Theorem 14.2. Let \i, Ao, ..., A\ be k distinct eigenvalues for a matrix A and for each i between 1
and k let v; be an eigenvector of A with eigenvalue \;. Then the vectors v1, Vo, ..., Vi are linearly
independent.

Proof. Let A be a matrix with k distinct eigenvalues A1, g, . . ., A\; and corresponding eigenvectors
Vi, Vo, ..., V. To understand why vi, vo, ..., Vi are linearly independent, we will argue by
contradiction and suppose that the vectors vy, va, ..., vi are linearly dependent. Note that v,
cannot be the zero vector (why?), so the set S; = {v1} is linearly independent. If we include v
into this set, the set Sy = {vi, vy} may be linearly independent or dependent. If Sy is linearly
independent, then the set S5 = {v1, vy, v3} may be linearly independent or dependent. We can
continue adding additional vectors until we reach the set Sy = {v1,Vva,Vs,..., vy} which we are
assuming is linearly dependent. So there must be a smallest integer m > 2 such that the set .S,,
is linearly dependent while S,,,_; is linearly independent. Since S,, = {vi,va,V3,..., vy} is
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linearly dependent, there is a linear combination of vy, vg, .. ., v,;, with weights not all O that is the
zero vector. Let ¢y, ca, . . ., ¢, be such weights, not all zero, so that
cvi+cove+ -+ Cne1Vm—1 + cmVm =0 (14.6)

If we multiply both sides of (14.6) on the left by the matrix A we obtain

A(C1V1 +covo 4+ -+ Cme) = A0
c1Avy + cAve + -+ e Avy, =0
C1AV1 + 2 AoV + - + A Vi = 0. (14.7)

If we multiply both sides of (14.6) by \,,, we obtain the equation

C1AmV1 + oA\ Ve + -+ + c A Vi, = 0. (14.8)

Subtracting corresponding sides of equation (14.8) from (14.7) gives us

1M — Am)vi +c2(Xa = Ap)va + - + cm—1(Am—1 — Am)Vin—1 = 0. (14.9)

Recall that S,,—1 is a linearly independent set, so the only way a linear combination of vectors
in S;,—1 can be 0 is if all of the weights are 0. Therefore, we must have

Cl()\l — )\m) = 0, CQ(/\Q — )\m) = 0, ceny Cm—l()\m—l — >\m) =0.
Since the eigenvalues are all distinct, this can only happen if
01202:-"267”71:0.

But equation (14.6) then implies that c¢,,, = 0 and so all of the weights ¢y, ca, . . ., ¢, are 0. However,
when we assumed that the eigenvectors v, va, ..., v were linearly dependent, this led to having
at least one of the weights cy, co, ..., ¢, be nonzero. This cannot happen, so our assumption that
the eigenvectors vy, va, ..., v were linearly dependent must be false and we conclude that the
eigenvectors vy, Vo, .. ., Vi are linearly independent. |

Examples

What follows are worked examples that use the concepts from this section.

4 -3 -3
Example 14.3. Let A = | —3 4 3 | and let 7" be the matrix transformation defined by
3 -3 -2

T(x) = Ax.
(a) Show that 4 is an eigenvalue for A and find a basis for the corresponding eigenspace of A.

(b) Geometrically describe the eigenspace of A corresponding to the eigenvalue 4. Explain
what the transformation 7" does to this eigenspace.
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(c) Show that 1 is an eigenvalue for A and find a basis for the corresponding eigenspace of A.

(d) Geometrically describe the eigenspace of A corresponding to the eigenvalue 1. Explain
what the transformation 7" does to this eigenspace.

Example Solution.

(a) Recall that A is an eigenvalue of A if A — A3 is not invertible. To show that 4 is an
eigenvalue for A we row reduce the matrix

0 -3 -3
A-DIz3=|3 0 -3
3 -3 -6
1 0 -1
to| 0 1 1 |. Since the third column of A — 413 is not a pivot column, the matrix
00 O

A — 413 is not invertible. We conclude that 4 is an eigenvalue of A.

The eigenspace of A for the eigenvalue 4 is Nul (A — 413). The reduced row echelon form

z1
of A—4I3 showsthatif x = | x2 | and (A —4I3)x = 0, then x5 is free, x9 = —x3, and
T3
x1 = x3. Thus,
A T3 1
x=| a9 | =| —x3 | =23 | —1
T3 T3 1
1
Therefore, -1 is a basis for the eigenspace of A corresponding to the eigenvalue
1

(b) Since the eigenspace of A corresponding to the eigenvalue 4 is the span of a single nonzero
1
vector v = | —1 |, this eigenspace is the line in R? through the origin and the point
1
(1,—1,1). Any vector in this eigenspace has the form cv for some scalar c. Notice that

T(cv) = Acv = cAv = 4ev,
so T" expands any vector in this eigenspace by a factor of 4.

(¢) To show that 1 is an eigenvalue for A we row reduce the matrix

3 -3 -3
A-1I3=| -3 3 3
3 -3 -3
1 -1 -1
to| 0 0 0 |. Since the third column of A — I3 is not a pivot column, the matrix
0 0 0

A — I3 is not invertible. We conclude that 1 is an eigenvalue of A.
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The eigenspace of A for the eigenvalue 1 is Nul (A — I3). The reduced row echelon form

x1
of A — I3 shows thatif x = | x2 | and (A — I3)x = 0, then x9 and x3 are free, and
x3
x1 = x2 + x3. Thus,
xr1 T2 + X3 1 1
XxX=| x93 | = T2 =xz0| 1 | +x23]| O
I3 I3 0 1
1 1
Therefore, 11,10 is a basis for the eigenspace of A corresponding to the
0 1

eigenvalue 1.

(d) Since the eigenspace of A corresponding to the eigenvalue 1 is the span of two linearly

1 1
independent vectors vi = | 1 | and vo = | 0 |, this eigenspace is the plane in R3
0 1

through the origin and the points (1,1,0) and (1,0, 1). Any vector in this eigenspace has
the form av; + bvy for some scalars ¢ and b. Notice that

T(avy + bvy) = A(avy + bvy) = aAvy + bAvy = avy + bva,

so T fixes every vector in this plane.

Example 14.4.

(a) Let A = [ L2 } . Note that the vector v = [

1 .
9 1 } satisfies Av = 3v.

1

i. Show that v is an eigenvector of A2. What is the corresponding eigenvalue?
ii. Show that v is an eigenvector of A3. What is the corresponding eigenvalue?
iii. Show that v is an eigenvector of A%. What is the corresponding eigenvalue?
iv. If k is a positive integer, do you expect that v is an eigenvector of A*? If so, what do

you think is the corresponding eigenvalue?

(b) The result of part (a) is true in general. Let M be an n x n matrix with eigenvalue A and
corresponding eigenvector X.
i. Show that A\? is an eigenvalue of M? with eigenvector x.
ii. Show that A\? is an eigenvalue of M3 with eigenvector x.

iii. Suppose that \* is an eigenvalue of M* with eigenvector x for some integer k& > 1.
Show then that \**! is an eigenvalue of M**! with eigenvector x. This argument
shows that \¥ is an eigenvalue of M* with eigenvector x for any positive integer k.

(c) We now investigate the eigenvalues of a special type of matrix.
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010

0 01
000

M* = 0 for some positive integer k, so B is an example of a nilpotent matrix.) What

are the eigenvalues of B? Explain.

i. Let B = . Show that B3 = 0. (A square matrix M is nilpotent) if

ii. Show that the only eigenvalue of a nilpotent matrix is 0.

Example Solution.
(a) We use the fact that v is an eigenvector of the matrix A with eigenvalue 3.
i. We have that
A%v = A(Av) = A(3v) = 3(Av) = 3(3v) = 9v.

So v is an eigenvector of A% with eigenvalue 9 = 3.

ii. We have that
APy = A(A%v) = A(9v) = 9(AV) = 9(3v) = 2Tv.

So v is an eigenvector of A3 with eigenvalue 27 = 33,

iii. We have that
Aly = A(A3v) = A(2Tv) = 27(Av) = 27(3v) = 8lv.

So v is an eigenvector of A* with eigenvalue 81 = 3*.

iv. The results of the previous parts of this example indicate that A*v = 3¥v, or that v
is an eigenvector of A¥ with corresponding eigenvalue 3.

(b) Let M be an n x m matrix with eigenvalue A and corresponding eigenvector X.
i. We have that
M?x = M(Mx) = M(\x) = A(Mx) = A\(Ax) = \?x.

So x is an eigenvector of M? with eigenvalue \2.

ii. We have that
M3x = M(M?x) = M(A\?x) = A(Mx) = \?(\x) = X3x.

So x is an eigenvector of M3 with eigenvalue \3.

iii. Assume that M*x = \Fx. Then
M x = M(M*Fx) = M(\*x) = \E(Mx) = 20F(\x) = Mtk
So x is an eigenvector of M**! with eigenvalue \**1.

(c) Now we investigate a special type of matrix.
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i. Straightforward calculations show that B3 = 0. Since B is an upper triangular matrix,
the eigenvalues of B are the entries on the diagonal. That is, the only eigenvalue of B
is 0.

ii. Assume that M is a nilpotent matrix. Suppose that X is an eigenvalue of M with
corresponding eigenvector v. Since M is a nilpotent matrix, there is a positive integer
k such that M* = 0. But \¥ is an eigenvalue of M* with eigenvector v. The only
eigenvalue of the zero matrix is 0, so \¥ = 0. This implies that A = 0. We conclude
that the only eigenvalue of a nilpotent matrix is 0.

Summary

e An eigenspace of an n X n matrix A corresponding to an eigenvalue \ of A is the null space
of A — \I,.

e To find a basis for an eigenspace of a matrix A corresponding to an eigenvalue A\, we row
reduce A — A\, and find a basis for Nul A — \I,,.

e Eigenvectors corresponding to different eigenvalues are always linearly independent.
Exercises

(1) For each of the following, find a basis for the eigenspace of the indicated matrix correspond-
ing to the given eigenvalue.

10 7 .
(a) 111 } with eigenvalue 3
(b) 118 with eigenvalue 2
| -3 —4
1 S
(©) with eigenvalue 1
-1 0
1 0 0]
(d | 0 0 2 | witheigenvalue 2
|1 0 2 |
1 0 0]
() { 0 0 2 [ witheigenvalue 1
| 1 0 2 ]
[ 2 2 47
® 1 1 2 | witheigenvalue 0
| 3 3 6 |

(2) Suppose A is an invertible matrix.

(a) Use the definition of an eigenvalue and an eigenvector to algebraically explain why
if A is an eigenvalue of A, then A~! is an eigenvalue of A~!.
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(b) To provide an alternative explanation to the result in the previous part, let v be an
eigenvector of A corresponding to A. Consider the matrix transformation 74 corre-
sponding to A and T4-1 corresponding to A~!. Considering what happens to v if
T4 and then T'4-1 are applied, describe why this justifies v is also an eigenvector of
AL

3) IfA= [ 2 ll) } has two eigenvalues 4 and 6, what are the values of a and b?

“)
(a) What are the eigenvalues of the identity matrix Io? Describe each eigenspace.
(b) Now let n > 2 be a positive integer. What are the eigenvalues of the identity matrix
1,7 Describe each eigenspace.
)

(a) What are the eigenvalues of the 2 x 2 zero matrix (the matrix all of whose entries are
0)? Describe each eigenspace.

(b) Now let n > 2 be a positive integer. What are the eigenvalues of the n x n zero
matrix? Describe each eigenspace.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If Av = \v, then ) is an eigenvalue of A with eigenvector v.

(b) True/False The scalar A is an eigenvalue of a square matrix A if and only if the
equation (A — \I,)x = 0 has a nontrivial solution.

(c) True/False If X is an eigenvalue of a matrix A, then there is only one nonzero vector
v with Av = Av.

(d) True/False The eigenspace of an eigenvalue of an n x n matrix A is the same as
Nul (A — \L,).

(e) True/False If v; and v, are eigenvectors of a matrix A corresponding to the same
eigenvalue A, then v; + v2 is also an eigenvector of A.

(f) True/False If v; and vo are eigenvectors of a matrix A, then v; + vy is also an
eigenvector of A.

(g) True/False If v is an eigenvector of an invertible matrix A, then v is also an eigen-
vector of AL,

Project: Modeling Population Migration

As introduced earlier, data from the Michigan Department of Technology, Management, and Budget
shows that from 2011 to 2012, approximately 0.05% of the U.S. population outside of Michigan
moved to the state of Michigan, while approximately 2% of Michigan’s population moved out of
Michigan. We are interested in determining the long-term distribution of population in Michigan.
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Let x,, = [ tn } be the 2 x 1 vector where m,, is the population of Michigan and wu,, is the
n

U.S. population outside of Michigan in year n. Assume that we start our analysis at generation 0

and xg = [730 ]
0

Project Activity 14.1.
(a) Explain how the data above shows that

my = 0.98mg + 0.0005ug
uy = 0.02m0 + 0.9995UO

(b) Identify the matrix A such that x; = Axg.

One we have the equation x; = Axg, we can extend it to subsequent years:
x9 = Axy, x3=AX3, .., Xpy1 = Axy,

for eachn > 0.

This example illustrates the general nature of what is called a Markov process (see Definition
9.4). Recall that the matrix A that provides the link from one generation to the next is called the
transition matrix.

In situations like these, we are interested in determining if there is a steady-state vector, that is
a vector that satisfies
x = Ax. (14.10)

Such a vector would show us the long-term population of Michigan provided the population dy-
namics do not change.

Project Activity 14.2.

(a) Explain why a steady-state solution to (14.10) is an eigenvector of A. What is the corre-
sponding eigenvalue?

(b) Consider again the transition matrix A from Project Activity 14.1. Recall that the solutions
to equation (14.10) are all the vectors in Nul (A — I2). In other words, the eigenvectors of A
for this eigenvalue are the nonzero vectors in Nul (A — I). Find a basis for the eigenspace
of A corresponding to this eigenvalue. Use whatever technology is appropriate.

(c) Once we know a basis for the eigenspace of the transition matrix A, we can use it to
estimate the steady-state population of Michigan (assuming the stated migration trends are
valid long-term). According to the US Census Bureau?, the resident US population on
December 1, 2019 was 330,073,471. Assuming no population growth in the U.S., what
would the long-term population of Michigan be? How realistic do you think this is?

https://www.census.gov/data/tables/time-series/demo/popest/
2010s—-national-total.html

D00
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Section 15

Bases and Dimension

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is the dimension of a subspace of R"? What property of bases makes
the dimension a well-defined number?

e If W is a subspace of R™ with dimension k, what must be true about any
linearly independent subset S of W that contains exactly k vectors?

e If IV is a subspace of R" with dimension k, what must be true about any
subset S of W that contains exactly k£ vectors and spans /?

e What is the rank of a matrix?

o What does the Rank-Nullity Theorem say?

Application: Lattice Based Cryptography

When you use your credit card, you expect that the information that is transmitted is protected
so others can’t use your card. Similarly, when you create a password for your computer or other
devices, you do so with the intention that it will be difficult for others to decipher.

Cryptology is the study of methods to maintain secure communication in the presence of other
parties (cryptography), along with the study of breaking codes (cryptanalysis). In essence, cryp-
tology is the art of keeping and breaking secrets. The creation of secure codes (cryptography) can
provide confidentiality (ensure that information is available only to the intended recipients), data
integrity (prevent data from being altered between the sender and recipient), and authentication
(making sure that the information is from the correct source).

Modern cryptology uses mathematical theory that can be implemented with computer hardware
and algorithms. The security of public key sytems is largely based on mathematical problems that

261
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are very difficult to solve. For example, the security of the RSA system relies on the fact that it
is computationally difficult to find prime factors of very large numbers, and elliptic curve cryptog-
raphy relies on the difficulty of the discrete logarithm problem for elliptic curves. However, the
continual increase in the power of computers threatens the security of these systems, and so cryp-
tographic systems have to keep adapting to the newest technology. For example, Shor’s Algorithm
(which could run on a quantum computer) can solve the public key cryptographic systems that rely
on the integer factorization problem or the discrete logarithm problem. So if a working quantum
computer was ever developed, it would threaten the existing cryptographic systems. Lattice-based
cryptography is a potential source of systems that may be secure even in such an environment. The
security of these systems is dependent on the fact that the average case of the difficulty of certain
problems in lattice theory is higher than the worst case problems that underpin current cryptosys-
tems. As we will see later in this section, lattices are built on bases for subspace of R".

Introduction

A basis provides a system in which we can uniquely represent every vector in the space we are
considering. More specifically, every vector in the space can be expressed as a linear combination
of the vectors in the basis in a unique way. In order to be able to cover every point in the space,
the basis has to span the space. In order to be able to provide a unique coordinate for each point,
there should not be any extra vectors in the basis, which is achieved by linear independence of the
vectors. For practical reasons, a basis simplifies many problems because we only need to solve the
problem for each of the basis vectors. Solutions of the other cases usually follow because every
vector in the space can be expressed as a unique linear combination of the basis vectors.

Recall that a basis for a subspace W of R"™ is a set of vectors which are linearly independent
and which span W.

Preview Activity 15.1.

(1) For each of the following sets of vectors, determine whether the vectors form a basis of R3.
Use any appropriate technology for your computations.

T17 17 [1]

(a) O, 1,1
o] o] [ 1]
17 17 [2]

(b) of,[11],]3
1] o] [ 1]
17 [17 [0] -1

(©) 0,1 |,]3], 2
1] 1] [ 3] 1
17 o

(d) 01,1
0] [0]

(2) Inproblem (1) we should have noticed that a space can have more than one basis, but that any
two bases contain the same number of elements. This is a critically important idea that we
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investigate in more detail in this problem in one specific case. Assume that W is a subspace
of R™ that has a basis B = {vy, vo} with two basis vectors. We want to see if any other basis
for W can have a different number of elements. Let us now consider a set U = {u;, uz, us}
of three vectors in W. Our goal is to determine if U can be a basis for W. Since B is a basis
for W, any vector in W can be written as a linear combination of the vectors in 3. So we can

write
u; = a11vi +az1va (15.1)
U2 = a12Vi1 + a22Vva (15.2)
uz = a13Vi + a23Vva (15.3)

for some scalars a;;. If U were to be a basis for W, then U would have to be a linearly
independent set. To determine the independence or dependence of U we consider the vector
equation

T1U] + Tous + x3u3 = 0 (15.4)

for scalars 1, x2, and x3.

(a) Substitute for uy, ug, and us from (15.1), (15.2), and (15.3) into (15.4) and perform
some vector algebra to show that

0 = (a1121 + a12z2 + arzxz) vi + (a2121 + g2 + azzxs) va. (15.5)

(b) Recall that B = {vy,va} is a basis. What does that tell us about the weights in
the linear combination (15.5)? Explain why Ax = 0, where A = [a;;] and x =
[ZL‘l xT9 $3]T.

(c) With A as in part (b), how many solutions does the system Ax = 0 have? Explain.
(Hint: Consider the number of rows and columns of A.) What does this tell us about
the independence or dependence of the set U? Why?

(d) Can U be a basis for W? Explain.

The Dimension of a Subspace of R"

In Preview Activity 15.1 we saw that a subspace of R can have more than one basis. This prompts
the question of how, if at all, are any two bases for a given space related. More specifically, is it
possible to have two bases for a given subspace of R™ that contain different numbers of vectors?
As we will see the answer is no, which will lead us to the concept of dimension.

Let W be a subspace of R™ that has a basis B = {vi,va,..., v} of k vectors. Since we
have been calling bases minimal spanning sets, we should expect that any two bases for the same
subspace have the same number of elements (otherwise one of the two bases would not be minimal).
Our goal in this section is to prove that result — that any other basis of W contains exactly k
vectors. The approach will be the same as was used in Preview Activity 15.1. We will let U =

{uj,uy,...,u,,} be a set of vectors in W with m > k and demonstrate that U is a linearly
dependent set. To argue linear dependence, let x1, x2, . . ., Z,, be scalars so that
riuy + xousg + -+ - + Uy, = 0. (15.6)
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For each ¢ there exist scalars a;; so that
U; = a1;V1 + a2ive + -+ Qg V.
Substituting into (15.6) yields

0:m1u1 + xoug + - - + Ty Uy,
=z1(avy +ava + - - + a1 ve) + 2(ai2vi + ageve
+ o apave) + - (@1 Vi F a2 Ve + -+ apm Vi)
= (xlall + x2a12 + 3013 + - - - + xmalm)vl

+ (331(121 + x9a920 + x3a93 + - - - + :Emagm)VQ

+ o+ (zraK1 + 20K + T3AK3 F -+ TGl ) V- (15.7)
Since B is a basis, the vectors v1, Vo, ..., Vi are linearly independent. So each coefficient in (15.7)
isOandx = [z] 22 -+ 2] isa solution to the homogeneous system Ax = 0, where A = [a;;].

Now A is a k x m matrix with m > k, so not every column of A is a pivot column. This means that
Ax = 0 has a nontrivial solution. It follows that the vector equation (15.6) has a nontrivial solution
and so the m vectors uy, ug, ..., U,, are linearly dependent. We summarize this in the following
theorem.

Theorem 15.1. Let W be a subspace of R™ containing a basis with k vectors. If m > k, then any
set of m vectors in W is linearly dependent.

One consequence of Theorem 15.1 is that, in addition to being a minimal spanning set, a basis
is also a maximal linearly independent set.

Activity 15.1. Now let’s return to the question of the number of elements in a basis for a subspace
of R™. Recall that we are assuming that W has a basis B = {v1, va,..., vy} of k vectors in R".
Suppose that B’ is another basis for ¥ containing m vectors.

(a) Given the fact that B is a basis for W, what does Theorem 15.1 tell us about the relationship
between m and k?

(b) Given the fact that B’ is a basis for W, what does Theorem 15.1 tell us about the relationship
between m and k?

(c) What do the results of (a) and (b) tell us about the relationship between m and k£? What
can we conclude about any basis for W?

The result of Activity 15.1 is summarized in the following theorem. Recall that the trivial space
is the single element set {0}.

Theorem 15.2. If a nontrivial subspace W of R™ has a basis of k vectors, then every basis of W
contains exactly k vectors.

This last theorem states that the number of vectors in a basis for a subspace space is a well-
defined number. In other words, the number of vectors in a basis is an invariant of the subspace.
This important number is given a name.

o099
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Definition 15.3. The dimension of a subspace W of R is the number of vectors in a basis for V.
The dimension of the trivial subspace {0} of R" is defined to be 0.

We denote the dimension of a subspace W of R™ by dim(W). As we will see later, any two
vector spaces of the same dimension are basically the same vector space. So the dimension of a
vector space is an important number that essentially tells us all we need to know about the structure
of the space.

Activity 15.2. Find the dimensions of each of the indicated subspaces of R™ for the appropriate 7.
Explain your method.

1 1 2
(a) Span O, 11|,] 3
0 0 0

(b) zy-plane in R3
(© R®
d) R”

Conditions for a Basis of a Subspace of R"

There are two items we need to confirm before we can state that a subset B of a subspace W of
R™ is a basis for W: the set B must be linearly independent and span . However, if we have the
right number (namely, the dimension) of vectors in our set 3, then either one of these conditions
will imply the other.

Activity 15.3. Let IV be a subspace of R” with dim(W) = k. We know that every basis of W
contains exactly k vectors.

(a) Suppose that .S is a subset of W that contains k vectors and is linearly independent. In this
part of the activity we will show that .S must span WV

i. Suppose that S does not span W. Explain why this implies that W contains a set of
k + 1 linearly independent vectors.

ii. Explain why the result of part i. tells us that .S is a basis for W.

(b) Now suppose that S is a subset of W with k vectors that spans . In this part of the activity
we will show that S must be linearly independent.

i. Suppose that S is not linearly independent. Explain why we can then find a proper
subset of .S that is linearly independent but has the same span as S.

ii. Explain why the result of part i. tells us that .S is a basis for W.
The result of Activity 15.3 is the following important theorem.

Theorem 15.4. Let W be a subspace of R™ of dimension k and let S be a subset of W containing
exactly k vectors.
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(1) If S is linearly independent, then S is a basis for W.

(2) If S spans W, then S is a basis for W.

Finding a Basis for a Subspace

Since every vector in a subspace of R™ can be written uniquely as a linear combination of vectors in
a basis for the subspace, a basis provides us with the most efficient and convenient way to represent
vectors in the subspace. Until now we have been given a set of vectors and have been asked to find
a basis from that set, so an important question to address is how we can find a basis for a subspace
W of R™ starting from scratch. Here is one way. If W = {0}, then the dimension of W is 0 and
W has no basis. So suppose dim(W) > 0. Start by choosing any nonzero vector wj in W. Let
By = {w1}. If By spans W, then B is a basis for W. If not, there is a vector wy in W that is not
in Span(B;). Then By = {w, wa} is a linearly independent set. If Span(B2) = W, then B is a
basis for W and we are done. If not, repeat the process. Since any basis for W can contain at most
n = dim(R") vectors, we know the process must stop at some point. This process also allows us
to construct a basis for a vector space that contains a given nonzero vector.

1
Activity 15.4. Find a basis for R? that contains the vector 2 |. When constructing your basis,
-1
how do you know when to stop?

Rank of a Matrix

In this section, we define the rank of a matrix and review conditions to add to our Invertible Matrix
Theorem.

1 2 -1 0 0
Activity 15.5. LetA=| 0 0 1 0 -1
00 01 1

(a) Without performing any calculations, find dim(Nul A). Explain.
(b) Without performing any calculations, find dim(Col A). Explain.

(c) There is a connection between dim(Nul A), dim(Col A) and the size of A. Find this
connection and explain it.

As Activity 15.5 illustrates, the number of vectors in a basis for Nul A is the number of non-
pivot columns in A and the number of vectors in a basis for Col A is the number of pivot columns of
A. We define the rank of a matrix A (denoted rank(A)) to be the dimension of Col A and the nullity
of A to be dimension of Nul A. The dimension of the null space of A is also called the nullity of A
(denoted nullity(A)) Using this terminology we have the Rank-Nullity Theorem.

Theorem 15.5 (The Rank-Nullity Theorem). Let A be an m x n matrix. Then
rank(A) + nullity(A) = n.
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There is also a row space of a matrix A, which we define to be the span of the rows of A. We
can find the row space of A by finding the column space of AT, so the row space is really nothing
new. As it turns out, the dimension of the row space of A is always equal to the dimension of the
column space of A, and justification for this statement is in the exercises.

The Rank-Nullity Theorem allows us to add extra conditions to the Invertible Matrix Theorem.

Theorem 15.6 (The Invertible Matrix Theorem). Let A be an n x n matrix. The following state-
ments are equivalent.

(a) The matrix A is an invertible matrix.
(b) The matrix equation Ax = 0 has only the trivial solution.
(c) The matrix A has n pivot columns.
(d) Every row of A contains a pivot.
(e) The columns of A span R™.
(f) The matrix A is row equivalent to the identity matrix I,.
(g) The columns of A are linearly independent.
(h) The columns of A form a basis for R"™.
(i) The matrix transformation T from R™ to R™ defined by T'(x) = Ax is one-to-one.
(j) The matrix equation Ax = b has exactly one solution for each vector b in R™.
(k) The matrix transformation T from R™ to R" defined by T'(x) = Ax is onto.
(1) There is ann x n matrix C so that AC = I,,.
(m) There is an n X n matrix D so that DA = I,
(n) The scalar 0 is not an eigenvalue of A.
(0) The matrix A" is invertible.
(p) Nul A = {0}.
(q) Col A=R".
(r) dim(Col A) =n
(s) dim(Nul A) =0
(1) rank(A) =n

Examples

What follows are worked examples that use the concepts from this section.
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r+s+u
r+3s+2t—u
—s—t+u
s+t—u

Example 15.7. Let W = ', s, t,u € R

(a) Explain why W is a subspace of R%.
(b) Find a basis for W and determine the dimension of W.
Example Solution.

(a) We can write any vector in W in the form

r+s+u 1 1 0 1
r+3s+2t—u 1 2 -1
s ttu =r 0 + s 1 +1 1 +u e
s+t—u 0 | 1 1 -1
SO )
1 1 0 1
1 3 2 —1
W_Span 0 9 _1 ) _1 9 1
0 |1 1 —1

As a span of a set of vectors in R*, W is a subspace of R*.

1 1 0 1
1 3 2 -1 .
(b) Let A = 0 -1 -1 e To find a basis for W, we note that the reduced row
0 1 1 -1
10 -1 2
. 01 1 - . . :
echelon form of A is o0 o0 o0l Since the pivot columns of A form a basis for
00 0 O
Col A = W, we conclude that
1 1
1 3
01| -1
0 1

is a basis for IW. Therefore, dim(W') = 2.

Example 15.8. Find a basis and the dimension of the solution set to the system

r+ s— t+2u=0
3r— s+2t— u=0
r—3s+4t—-5u=20
or —3s+ 5t —4u = 0.
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Example Solution.

The coefficient matrix of this system is

1 1 -1 2

3 -1 2 -1
A= 1 -3 4 =5 |’

5 -3 o5 —4

and the solution set to the system is Nul A. To find a basis for Nul A we row reduce A to

The general solution to the system has the form

[ 1

4

5

SO 4

1

|0
Summary

= e I

S+ » 3

1o I3
01 ]
0 0 0 O
_0 0 0 O_
[ 1 1, [ 1] [ 1]
—gt—gu 1 1
5, 7T 5 7
,t_,u 9 4
— 4 4 —¢ 4 +u 4 7
t 1 0
i U | i 0_ i 1_

is a basis for Nul A and dim(Nul A) = 2.

The key idea in this section is the dimension of a vector space.

Any two bases for a vector space must contain the same number of vectors. Therefore, we
can define the dimension of a vector space W to be the number of vectors in any basis for W.

If W is a subspace of R™ with dimension k£ and S is any linearly independent subset of W
with k vectors, then S is a basis for W.

If W is a subspace of R™ with dimension k£ and S is any subset of W with k vectors that
spans W, then S is a basis for W.

The rank of a matrix is the dimension of its column space.

The Rank-Nullity Theorem states that if A is an m x n matrix, then rank(A)+nullity(A) = n.
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Exercises
1 3 1 2 0]
0000 1
2 6 0 0 1
(DLetd=11 3 94
3 91 2 -1
13 9 3 6 1|
(a) Find a basis for Col A. What is the dimension of Col A? What, then, is the dimension
of Nul A?

(b) Find a basis for Nul A and verify the dimension you found in part (a).

2 —1 1
2) LetA= |1 0 1 |. The eigenvalues of A are 1 and 2. Find the dimension of each
1 -1 2

eigenspace of A.

1 2 -1 -1
B)LetA=| -2 -4 2 2
1 2 -1 -1

(a) Find a basis for Col A. What is the rank of A?
(b) Find a basis for Nul A. What is the nullity of A.
(¢) Verify the Rank-Nullity Theorem for A.

(d) The row space of A is the span of the rows of A. Find a basis for the row space of A
and the dimension of the row space of A.

(4) Let A be an m x n matrix with r pivots, where 7 is less than or equal to both m, n. Fill in the
blanks.

(a) The null space of A is a subspace of

(b) The column space of A is a subspace of

(c) Suppose r = m. Then there is a pivot in every and Col A =
(d) Suppose r = n. Then there is a pivot in every andNul A =
(e) If A has 3 pivots, then the rank of A is

(f) If A has 3 pivots, then the number of free variables in the system Ax = 0 is

(g) The dimension of Col A is equal to the number of , 1.e.
dimCol A =

(h) The dimension of Nul A is equal to the number of , l.e.
dimNul A =

(i) dim(Nul A) 4 dim(Col A) = .
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(j) Suppose the columns of A span R™. Then rank A is

(k) Suppose the columns of A are linearly independent. Then r = and the
dimension of Nul A is

(5) Prove the remaining parts of the Invertible Matrix Theorem (Theorem 15.6). Let A be an
n X n matrix.

(a) Prove that A is invertible if and only if dim(Nul A) = 0.
(b) Prove that A is invertible if and only if dim(Col A) = n.

(6) We can convert the language of the Rank-Nullity Theorem to matrix transformation language,
as we show in this exercise. Let 7" be the matrix transformation defined by the matrix A.

(a) How is the kernel of T related to A?

(b) How is the range of T related to A?

(¢) How is the domain of T related to A?

(d) Explain why the Rank-Nullity Theorem says that dim(Ker(7")) + dim(Range(T)) =
dim(Domain(T)).

(7) Let W be a subspace of RY. What are possible values for the dimension of 1/ ? Explain.
What are the geometric descriptions of W in each case?

(8) Isitpossible to find two subspaces W7 and W5 in IR3 such that WiNWy = {0} and dim W, =
dim Wy = 2? If possible, give an example and justify that they satisfy the conditions. If not
possible, explain why not. (Hint: Dimension two leads to two linearly independent vectors
in each of W;.)

1 2 4 3 2

. . . 1 0 21 4

(9) Determine the dimensions of the column space and null space of 1131 9
10 2 2 5

(10) If possible, find a 3 x 4 matrix whose column space has dimension 3 and null space has
dimension 1. Explain how you found the matrix in addition to explaining why your answer
works. If not possible, explain why it is not possible to find such a matrix.

(11

(a) If possible, find a 5 x 5 matrix whose column space has the same dimension as its
null space. Explain how you found the matrix in addition to explaining why your
answer works. If not possible, explain why it is not possible to find such a matrix.

(b) If possible, find a matrix A so that Col A = Nul A. Explain how you found the
matrix in addition to explaining why your answer works. If not possible, explain
why it is not possible to find such a matrix.

(12) In this exercise we examine why the dimension of a row space of a matrix is the same as the
dimension of the column space of the matrix. Let A be an m X n matrix.
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(a) Explain why row operations do not change the row space of a matrix. Then explain
why if R is the reduced row echelon form of A, then Row R = Row A, where
Row M is the row space of the matrix M.

(b) Explain why the rows of R that contain pivots form a basis for Row R, and also of
Row A.

(c) Explain why rank(A) is the number of pivots in the matrix A. Then explain why
dim(Row A) = dim(Col A).
(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The dimension of the column space of a 3 X 2 matrix can be three.

(b) True/False There exists a 3 x 3 matrix whose column space has equal dimension as
the null space.

(c) True/False If a set of vectors spans a subspace, then that set is a basis of this sub-
space.

(d) True/False If a linearly independent set of vectors spans a subspace, then that set is
a basis of this subspace.

(e) True/False The dimension of a space is the minimum number of vectors needed to
span that space.

(f) True/False The dimension of the null space of a 3 x 2 matrix can at most be 2.

(2) True/False Any basis of R* contains 4 vectors.

(h) True/False If n vectors span R", then these vectors form a basis of R™.

(i) True/False Every line in R” is a one-dimensional subspace of R".

(j) True/False Every plane through origin in R"” is a two-dimensional subspace of R".

(k) True/False In R" any n linearly independent vectors form a basis.

Project: The GGH Cryptosystem

A cryptographic system (or cryptosystem) allows for secure communication between two or more
parties. These systems take messages (called plaintext) and encrypt them in some way to produce
what is called ciphertext. This is the scrambled information that is transmitted to the receiver,
from which it should not be possible for someone who does not have the proper key to recover the
original message. When the message is received by the intended recipient, it must be unscrambled
or decrypted. Decryption is the process of converting ciphertext back to plaintext.

The Goldreich-Goldwasser-Halevi (GGH) public key cryptosystem' uses lattices to encrypt
plaintext. The security of the system depends on the fact that the Closest Vector Problem (CVP) is,
in general, a very hard problem. To begin to understand these cryptosystems, we begin with lattices.

"Published in 1997 by Oded Goldreich, Shafi Goldwasser, and Shai Halevi.
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Lattices are closely related to spans of sets of vectors in R"™. If we start with a linearly in-
dependent set S = {by,bs,...,b,,} in R", we can create the span of S — the set of all linear
combinations

cibt + caba + - -+ cpbpy,

where c1, co, ..., ¢, are real numbers. This span creates a subspace of R™. If we restrict the set
from which we choose the coefficients, we can create different types of structures. An important
one is a lattice. The lattice L(S) defined by the linearly independent set S = {by, ba,...,b,,} is
the set of linear combinations

c1b1 4+ cobo + - - - 4+ ¢ b,

where c1, cg, ..., ¢y are integers. If the vectors in S have integer components, then every point
in £(S) will have integer entries. In these cases, £(.5) is a subset of Z", as illustrated in Figure
15.1. Also, if m = n we say that the lattice £(S) is full-rank. We will restrict ourselves to full-rank
lattices in this project. A basis for a lattice is any set of linearly independent vectors that generates
the lattice. There is a little special notation that is often used with lattices. If B = {by, ba,...,b,}
is a basis for R", we associate to BB the matrix B = [by by b3 --- b,]. We then use the notation
L(B) to also refer to the lattice defined by B.

Project Activity 15.1. We explore lattices in more detail in this activity.
(@ Let Sy = {[1 T, [-11]T}.

i. Find five distinct vectors in £(.S1).
ii. Is the vector [1 0] in £(S1)? Justify your answer.

iii. We can draw pictures of lattices by plotting the terminal points of the lattice vectors.
Draw all of the lattice points in £(S7) on the square with vertices (—4, —4), (4, —4),
(4,4), and (—4,4).

(b) Now let Sy = {[35]T,[1 2]T}. A picture of £(S3) is shown in Figure 15.1 with the basis
vectors highlighted. As we have seen, £(S]) is not the entire space Z2. Is £(Ss) = Z2?
Justify your answer.

Figure 15.1: The lattice £(S5).
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Project Activity 15.1 shows that even if B is a basis for R”, it does not follow that £(B) is all
of Z™. So latices can be complicated, and problems in lattice theory can be very difficult.

The GGH cryptosystem relies on the fact that we can convert “good” bases for lattices into
“bad” bases. We will not delve into the details of what separates a “good” basis from a “bad”
one, but suffice it to say that a good basis is one in which the basis vectors are close to being
perpendicular® and are all short (that is, they have small norms), while any other basis is a bad
basis. An example of a good basis is the basis S; for R? in Project Activity 15.1, and we will see
later that {[—2 8]T,[—1 3]} is a bad basis for the same lattice. You should draw a picture of the
vectors [—2 8] and [—1 3]T to convince yourself that this is a bad basis for its lattice.

The GGH cryptosystem works with two keys — a public key and a private key. The keys are
based on lattices. The general process of the GGH cryptosystem is as follows. Begin with a good
basis B = {bj bs ... b, } of R" of vectors with integer components. Let B = [b; ba --- b,] be
the matrix associated with B. Let B’ = {b/, b}, ..., b} } be a bad basis for which L(B') = L(B).
Let B’ = [b} b), --- bl ] be the matrix associated to the basis ’. The bad basis can be shared with
anyone (the public key), but the good basis is kept secret (the private key). Start with a message
m = [mq mg --- m,]' with integer entries to send.

First we encrypt the message, which can be done by anyone who has the public key B'.

o Create the message vector
m’ = m;b} +mebh + -+ m,b), = B'm
that is in the lattice using the bad basis B'.

e Choose a small error e to add to m’ to move m’ off the lattice (small enough so that m’
does not pass by another lattice point). This is an important step that will make the message
difficult to decrypt without the key. Let ¢ = m’+e = B’'m+e. The vector c is the ciphertext
that is to be transmitted to the receiver.

Only someone who knows the basis BB can decode the ciphertext. This is done as follows.

e Find the vector a = a1by + asbs + - - - + a, by, in the good basis B that is closest to c.

e We interpret the vector [a; ag ... an]T as being the encoded vector without the error. So to
recreate the original message vector we need to undo the encrypting using the bad basis 5’.
That is, we need to find the weights y1, ys, . . ., Y5, such that

[al as ... CLn]T = ylb/l + beIQ +---+ ynb% = B,[yl Y2 - yn]T
We can do this by as [y1 y2 -+ yn]" = B’ lai az ... a,]".

There are several items to address before we can implement this algorithm. One is how we
create a bad basis B’ from B that produces the same lattice. Another is how we find the vector in
B closest to a given vector. The latter problem is called the Closest Vector Problem (CVP) and is,
in general, a very difficult problem. This is what makes lattice-based cryptosystems secure. We
address the first of these items in the next activity, and the second a bit later.

2This is also a good property in vector spaces. We will see in a later section that perpendicular basis vectors make
calculations in vector spaces relatively easy. A similar thing is true in lattices, where we are able to solve certain variants
of closest vector problem very efficiently.

o099
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Project Activity 15.2. Consider again the basis S; = {[1 1]T,[~1 1]T} from Project Activity 15.1,

and let B = [ b=l

1 1 ] be the matrix whose columns are the vectors in Sy.

(a) Let T be the triangle with vertices (0,0), (1,1), and (—1,1). Show that this triangle is a
right triangle, and conclude that the vectors vi = [1 1]T, and vy = [—1 1]T are perpendic-

ular.
(b) LetU = [ g ; . Let S5 be the set whose vectors are the columns of the matrix B1U.
Show that [:(51) = £(53)

The two bases S; = {[1 1]T,[~11]"} and S3 = {[-2 8]T,[~1 3]} from Project Activity
15.2 are shown in Figure 15.2. This figure illustrates how the matrix U transforms the basis S1, in
which the vectors are perpendicular and short, to one in which the vectors are nearly parallel and
significantly longer. So the matrix U converts the “good” basis S into a “bad” basis So, keeping
the lattice intact. This is a key idea in the GGH cryptosystem. What makes this work is the fact that

both U and U ! have integer entries. The reason for this is that, for a 2 x 2 matrix U = [ Z Z ] ,

we know that U~1 = adl—bc [ _Ccl _2 . If U has integer entries and ad — bc = +1, then U~}

will also have integer entries. The number ad — bc is called the determinant of U, and matrices
with determinant of 1 or —1 are called unimodular. That what happened in Project Activity 15.2
happens in the general case is the focus of the next activity.

(<] (<] e 10 e (<] e
(o] (o] (] (o] (o] (o]

(<] (<] 8 e (] e
(o] (o] (o] (o] (o] (o]
(o} [} e 6 e (<] (<]
o] (<] (e} o] o] o]

(] o (o] 4 (o] Q (o]
] (] ] (] (]
(o} (o} (o] o] (o} (<]
(] (] (] (]

Figure 15.2: The lattices £(.S1) and £(.S3).

Project Activity 15.3. We will restrict ourselves to 2 X 2 matrices in this activity, but the results
generalize to n x n matrices. Let B = {by,by} and B’ = {b],b}} be bases for R? with integer
entries, and let B = [by by] and B’ = [b] b)] be the matrices associated to these bases. Show that
if B’ = BU for some unimodular matrix U with integer entries, then £(B) = L(B’).

Project Activity 15.3 is the part we need for our lattice-based cryptosysystem. Although we
won’t show it here, the converse of the statement in Project Activity 15.3 is also true. That is, if B
and B’ generate the same lattice, then B’ = BU for some unimodular matrix U with integer entries.
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There is one more item to address before we implement the GGH cryptosystem. That item is
how to solve the Closest Vector Problem. There are some algorithms for approximating the closest
vector in a basis. One is Babai’s Closest Vector algorithm. This algorithm works in the following
way. Consider a lattice with basis {by, bo, ..., b, }. To approximate the closest vector in the lattice
to a vector w, find the weights c1, co, ..., ¢, in R such that w = c1b; + cobs + - -+ + ¢, by,.
Then round the coefficients to the nearest integer. This algorithm works well for a good basis, but
is unlikely to return a lattice point that is close to w if the basis is a bad one.

Now we put this all together to illustrate the GGH algorithm.

(] (] 15 ° (]
(] (] (] (] (<}
10
(] (] (] (<}
(] (] ) (] (<}
5
° ° ° ° (]

-10

Figure 15.3: Decrypting an encrypted message.

Project Activity 15.4. Let B = {[50]", [0 3]} be the private key, and let B = { g g } be the
matrix whose columns are the vectors in B. Let U be the unimodular matrix U = { g Z; ] . Let

m = [3 — 2|7 be our message and lete = [1 — 1] be our error vector.

(a) Use the unimodular matrix U to create the bad basis B'.
(b) Determine the ciphertext message c.

(c) A picture of the message vector m and the ciphertext vector ¢ are shown in Figure 15.3.
Although the closest vector in the lattice to ¢ can be determined by the figure, actual mes-
sages are constructed in high dimensional spaces where a visual approach is not practical.
Use Babai’s algorithm to find the vector in £(B) that is closest to ¢ and compare to Figure
15.3.

(d) The final step in the GGH scheme is to recover the original message. Complete the GGH
algorithm to find this message.

(e) The GGH cryptosystem works because the CVP can be reasonable solved using a good
basis. That is, Babai’s algorithm works if our basis is a good basis. To illustrate that a
bad basis will not allow us to reproduce the original message vector, show that Babai’s
algorithm does not return the closest vector to c using the bad basis B'.
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Eigenvalues and Eigenvectors
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Section 16

The Determinant

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e How do we calculate the determinant of an n X n matrix?

e What is one important fact the determinant tells us about a matrix?

Application: Area and Volume

Consider the problem of finding the area of a parallelogram determined by two vectors u and v,
as illustrated at left in Figure 16.1. We could calculate this area, for example, by breaking up

v

Figure 16.1: A parallelogram and a parallelepiped.

the parallelogram into two triangles and a rectangle and finding the area of each. Now consider
the problem of calculating the volume of the three-dimensional analog (called a parallelepiped)
determined by three vectors u, v, and w as illustrated at right in Figure 16.1.

It is quite a bit more difficult to break this parallelepiped into subregions whose volumes are
easy to compute. However, all of these computations can be made quickly by using determinants.
The details are later in this section.

279
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Introduction

We know that a non-zero vector x is an eigenvector of an n x n matrix A if Ax = A\x for some
scalar \. Note that this equation can be written as (A — AI,)x = 0. Until now, we were given
eigenvalues of matrices and have used the eigenvalues to find the eigenvectors. In this section we
will learn an algebraic technique to find the eigenvalues ourselves. We will also be able to justify
why an n X n matrix has at most n eigenvalues.

A scalar A is an eigenvalue of A if (A — AI,,)x = 0 has a non-trivial solution x, which happens
if and only if A — AI, is not invertible. In this section we will find a scalar whose value will tell us
when a matrix is invertible and when it is not, and use this scalar to find the eigenvalues of a matrix.

Preview Activity 16.1. In this activity, we will focus on 2 x 2 matrices. Let A = CCL Z be a
2 x 2 matrix. To see if A is invertible, we row reduce A by replacing row 2 with a-(row 2) —c-(row

1):
a b
0 ad—bc |-

So the only way A can be reduced 15 is if ad — bc # 0. We call this quantity ad — bc the determinant
of A, and denote the determinant of A as det(A) or |A|. When det(A) # 0, we know that

ad—bc| —c a
We now consider how we can use the determinant to find eigenvalues and other information about
the invertibility of a matrix.

(1) Let A = [ ; Z ] . Find det(A) by hand. What does this mean about the matrix A? Can
you confirm this with other methods?
. 1 3. . .
(2) One of the eigenvalues of A = [ 9 9 ] is A = 4. Recall that we can rewrite the matrix

equation Ax = 4x in the form (A — 4I5)x = 0. What must be true about A — 415 in order
for 4 to be an eigenvalue of A? How does this relate to det(A — 415)?

1 3
2 2
for —1 to be an eigenvalue of A? How does this relate to det(A + I3)?

(3) Another eigenvalue of A = [ ] is A = —1. What must be true about A + I5 in order

(4) To find the eigenvalues of the matrix A = [ 3 6 }, we rewrite the equation Ax = Ax
as (A — M)x = 0. The coefficient matrix of this last system has the form A — A\l =
[ 3 ; A 6 E L The determinant of this matrix is a quadratic expression in A. Since the

eigenvalues will occur when the determinant is 0, we need to solve a quadratic equation. Find
the resulting eigenvalues. (Note: One of the eigenvalues is 2.)

(5) Can you explain why a 2 x 2 matrix can have at most two eigenvalues?
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The Determinant of a Square Matrix

Around 1900 or so determinants were deemed much more important than they are today. In fact,
determinants were used even before matrices. According to Tucker! determinants (not matrices)
developed out of the study of coefficients of systems of linear equations and were used by Leibniz
150 years before the term matrix was coined by J. J. Sylvester in 1848. Even though determinants
are not as important as they once were, the determinant of a matrix is still a useful quantity. We saw
in Preview Activity 16.1 that the determinant of a matrix tells us if the matrix is invertible and how
it can help us find eigenvalues. In this section, we will see how to find the determinant of any size
matrix and how to use this determinant to find the eigenvalues.

The determinant of a 2 X 2 matrix A = @ d

invertible if and only if det(A) # 0. We will use a recursive approach to find the determinants of
larger size matrices building from the 2 x 2 determinants. We present the result in the 3 x 3 case
here — a more detailed analysis can be found at the end of this section.

b } is det(A) = ad — bc. The matrix A is

ail a2 ais
To find the determinant of a3 x 3 matrix A = | as1 ag2 ao3 |, we will use the determinants
aszr az2 as3
of three 2 x 2 matrices. More specifically, the determinant of A, denoted det(A) is the quantity

a1 det ([ @22 23 :|> — ajo det <|: on 423 :|> + a13 det <|: @21 22 :|> . (16.1)
a32 Aass az1 ass as; as2

This sum is called a cofactor expansion of the determinant of A. The smaller matrices in this
expansion are obtained by deleting certain rows and columns of the matrix A. In general, when
finding the determinant of an n x n matrix, we find determinants of (n — 1) x (n — 1) matrices,
which we can again reduce to smaller matrices to calculate.

We will use the specific matrix
1 20
A=1]1 4 3
2 21

as an example in illustrating the cofactor expansion method in general.

e We first pick a row or column of A. We will pick the first row of A for this example.

e For each entry in the row (or column) we choose, in this case the first row, we will calculate
the determinant of a smaller matrix obtained by removing the row and the column the entry
is in. Let A;; be the smaller matrix found by deleting the ith row and jth column of A. For
entry a11, we find the matrix A1 obtained by removing first row and first column:

4 3
=[]
For entry a2, we find
1 3
=10

"Tucker, Alan. (1993). The Growing Importance of Linear Algebra in Undergraduate Mathematics. The College
Mathematics Journal, 1, 3-9.

D00
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Finally, for entry a3, we find

1 4
e Notice that in the 3 X 3 determinant formula in (16.1) above, the middle term had a (-) sign.
The signs of the terms in the cofactor expansion alternate within each row and each column.
More specifically, the sign of a term in the ith row and jth column is (—1)*/. We then obtain
the following pattern of the signs within each row and column:

+ -+
— _I_ —
+ -+
In particular, the sign factor for aj; is (—1)'*1 = 1, for a1 is (—1)'*2 = —1, and for a13 is

(—D)H3 =1

e For each entry a;; in the row (or column) of A we chose, we multiply the entry a;; by the
determinant of A;; and the sign (—1)"*7. In this case, we obtain the following numbers

4 3

an(—l)Hl det(Au) = ldet [ 9 1

}_1(4—6)_—2

1 3

CL12(—1)1+2 det(Alz) = —2det |: 92 1

}:—2(1—6):10

a13(—1)1+3 det(Alg) =0

Note that in the last calculation, since a;3 = 0, we did not have to evaluate the rest of the
terms.

o Finally, we find the determinant by adding all these values:

det(A) = CL11(—1)1+1 det(AH) + alg(—1)1+2 det(Alg)
+ a13(—1)"*? det(Ay3)
= 8.

Cofactors

We will now define the determinant of a general n x n matrix A in terms of a cofactor expansion
as we did in the 3 x 3 case. To do so, we need some notation and terminology.

e We let A;; be the submatrix of A = [a;;] found by deleting the ith row and jth column of A.
The determinant of A;; is called the 7jth minor of A or the minor corresponding to the entry
Q5.
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o Notice that in the 3 x 3 case, we used the opposite of the 1,2 minor in the sum. It will be the
case that the terms in the cofactor expansion will alternate in sign. We can make the signs
in the sum alternate by taking —1 to an appropriate power. As a result, we define the ¢jth
cofactor Cyj of A as

Cij = (=1)" det (A;j) .
e Finally, we define the determinant of A.
Definition 16.1. If A = [a;;] is an n X n matrix, the determinant of A is the scalar
det(A) = a11C11 + a12C12 + a13C13 + - - - + a1,.C1y,

where C;; = (—1)"7 det(A;;) is the ij-cofactor of A and A;; is the matrix obtained by removing
row ¢ and column j of matrix A.

This method for computing determinants is called the cofactor expansion or Laplace expansion
of A along the 1st row. The cofactor expansion reduces the computation of the determinant of an
n X n matrix to n computations of determinants of (n — 1) x (n — 1) matrices. These smaller
matrices can be reduced again using cofactor expansions, so it can be a long and grueling process
for large matrices. It turns out that we can actually take this expansion along any row or column of
the matrix (a proof of this fact is given in Section 21). For example, the cofactor expansion along
the 2nd row is

det(A) = a21Ca1 + a22C% + - - - + a2,Cop

and along the 3rd column the formula is

det(A) = a13C13 + a23Ca3 + - - - + ap3Chs.

Note that when finding a cofactor expansion, choosing a row or column with many zeros makes
calculations easier.

Activity 16.1.

1 2 -1
(a) Let A= | —2 0 4 [. Use the cofactor expansion along the first row to calculate the
6 3 0
determinant of A by hand.
1 4 2
(b) Calculate det(A) by using a cofactor expansion along the second row where A = | 0 2 0
2 5 3
1 -2 3
(c) Calculate the determinant of | 0 4 -3
0o 0 8

(d) Which determinant property can be used to calculate the determinant in part (c¢)? Explain
how. (Determinant properties are included below for easy reference.)
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1 1 2
(e) Consider the matrix A = | 0 2 1 |. Let B be the matrix which results when ¢ times
1 2 2

row 1 is added to row 2 of A. Evaluate the determinant of B by hand to check that it is
equal to the determinant of A, which verifies one other determinant property (in a specific
case).

As with any new idea, like the determinant, we must ask what properties are satisfied. We state
the following theorem without proof for the time being. For the interested reader, the proof of many
of these properties is given in Section 21 and others in the exercises.

Theorem 16.2. Given n x n matrices A, B, the following hold:

(1) det(AB) = det(A) - det(B), and in particular det(A*) = (det A)* for any positive integer
k.

(2) det(AT) = det(A).
(3) A is invertible if and only if det(A) # 0.

(4) If A is invertible, then det(A™") = (det A)~".

(5) Fora?2 x 2 matrix A = [CCL b], det(A) = ad — be.

d
(6) If A is upper/lower triangular, then det(A) is the product of the entries on the diagonal.

(7) The determinant of a matrix is the product of the eigenvalues, with each eigenvalue repeated
as many times as its multiplicity.

(8) Effect of row operations:

o Adding a multiple of a row to another does NOT change the determinant of the matrix.
e Multiplying a row by a constant multiplies the determinant by the same constant.

e Row swapping multiplies the determinant by (—1).

(9) If the row echelon form U of A is obtained by adding multiples of one row to another, and
row swapping, then det(A) is equal to det(U) multiplied by (—1)" where r is the number of
row swappings done during the row reduction.

Note that if we were to find the determinant of a 4 x 4 matrix using the cofactor method, we
will calculate determinants of 4 matrices of size 3 x 3, each of which will require 3 determinant
calculations again. So, we will need a total of 12 calculations of determinants of 2 x 2 matrices.
That is a lot of calculations. There are other, more efficient, methods for calculating determinants.
For example, we can row reduce the matrix, keeping track of the effect that each row operation has
on the determinant.
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The Determinant of a 3 x 3 Matrix

Earlier we defined the determinant of a 3 x 3 matrix. In this section we endeavor to understand the
motivation behind that definition.

We will repeat the process we went through in the 2 x 2 case to see how to define the determinant
of a 3 x 3 matrix. Let
ail a2 a13
A= an ax a3
azyr az2 asg

To find the inverse of A we augment A by the 3 x 3 identity matrix

aj; a1z ais 1 00
[A ‘ Ig] = a1 ag2 a3 01 0
a3l az2 ass 0 0 1

and row reduce the matrix (using appropriate technology) to obtain

10 0 (33022 — (32023  A33412 — 32013  —Q130322 + aj2a23
d d d

01 0 033021 — (31023 (33011 — ag1ai3 (23011 — A21013 ’
d d d

00 1 —a31a22d+ @32021 432011 ; as1ai2 a22a11 ; az1a12

where

d= (33011022 — 033021012 — 031013022 (16 2)
— (32011023 + 032021013 + A31012023-

In this case, we can see that the inverse of the 3 x 3 matrix A will be defined if and only if
d # 0. So, in the 3 x 3 case the determinant of A will be given by the value of d in Equation (16.2).
What remains is for us to see how this is related to determinants of 2 x 2 sub-matrices of A.

To start, we collect all terms involving a7 in d. A little algebra shows that

det(A) = a1 (azza22 — az2a23) — a33a21012 — A31G13022 + 32021013 + A31A12023.
Now let’s collect the remaining terms involving a;2:
det(A) =an (a33a22 - a32a23) — a12 (a33a21 - a31a23) — (31013022 + A32021013.
Finally, we collect the terms involving a;3:
det(A) = a11 (agzaze — az2a23) — a12 (azzaz; — az1a23) + a3 (azzaz1 — aziazs) .
Now we can connect the determinant of A to determinants of 2 x 2 sub-matrices of A.

e Notice that
33022 — 432023
a2 23

} obtained from A by deleting the first row
agz ass

is the determinant of the 2 x 2 matrix [

and first column.

D00
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e Similarly, the expression
a33a21 — 31423

a1 a3

] obtained from A by deleting the first row
az1 as3

is the determinant of the 2 x 2 matrix [

and second column.

¢ Finally, the expression
(32021 — (31022

a1 a2

is the determinant of the 2 x 2 matrix
azr as2

] obtained from A by deleting the first row

and third column.

Putting this all together gives us formula (16.1) for the determinant of a 3 X 3 matrix as we
defined earlier.

Two Devices for Remembering Determinants

There are useful ways to remember how to calculate the formulas for determinants of 2 x 2 and
ail a2

3 x 3 matrices. In the 2 x 2 case of A = [
ag1 a2

} , we saw that

|A| = a11a22 — a21a22.

This makes |A| the product of the diagonal elements a1 and ass minus the product of the off-
diagonal elements a12 and as;. We can visualize this in an array by drawing arrows across the
diagonal and off-diagonal, with a plus sign on the diagonal arrow indicting that we add the product
of the diagonal elements and a minus sign on the off-diagonal arrow indicating that we subtract the
product of the off-diagonal elements as shown in Figure 16.2.

11 12
21 2
- ¥

Figure 16.2: A diagram to remember the 2 x 2 determinant.

We can do a similar thing for the determinant of a 3 X 3 matrix. In this case, we extend the
3 x 3 array to a 3 x 5 array by adjoining the first two columns onto the matrix. We then add the
products along the diagonals going from left to right and subtract the products along the diagonals
going from right to left as indicated in Figure 16.3.

Examples

What follows are worked examples that use the concepts from this section.

Example 16.3. For each of the following
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Figure 16.3: A diagram to remember the 3 x 3 determinant.

e Identify the sub-matrices A ;
e Determine the cofactors C1 ;.

e Use the cofactor expansion to calculate the determinant.

36 2
@ A=]0 4 -1
50 1
3 01 1
2 12 1
® A=\ 55
3 23 1

Example Solution.

(a) With a 3 x 3 matrix, we will find the sub-matrices Aq1, A12, and Ay3. Recall that A4;; is
the sub-matrix of A obtained by deleting the ith row and jth column of A. Thus,

4 -1 0 —1 0 4
A11—|:0 1:|A12—|:5 1:|andA13—|:5 0:|

The ijth cofactor is C;; = (—1)"" det(A;;), so

(4 -1
Cll:(_1)2_0 1}:4

[0 -1
012:(—1)3_5 1}:—5
Ciz3 = (—1)* (5)3]:20.

Then

det(A) = a11C11 + a12C12 + a13C13 = (3)(4) + (6)(—5) + (2)(—20) = —58.
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(b) With a 4 x 4 matrix, we will find the sub-matrices A11, A12, A13, and A14. We see that

12 1
Ap=1| -2 2 -1
| 23 1]

- s 1)
Ap=1| 12 -1
__ 3 1_.

2 1 1

A=1| 1 -2 -1
-3 2 1
2 1 2

Ay=| 1 -2 2|.
| 3 23

To calculate the ijth cofactor C;; = (—1)"™7 det(A4;;), we need to calculate the determi-
nants of the Ay;. Using the device for calculating the determinant of a 3 x 3 matrix we

have that
1 2 1
det(AH) = det -2 2 -1
2 3 1
=1)2)1) + 2)(-1)(2) + (1)(=2)(3)
—(1)2)(2) - (M(=1)B) = (2)(=2)(1)
= —5,
2 2 1
det(Aj2) = det ({ 1 2 -1 ])
-3 3 1
=(2)(2)(1) + 2)(-1)(=3) + (1)(1)(3)

—(D(=2)(=3) = @) (-1)(2) - (D))
= -2,
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and
2 1 2
det(A14) = det 1 -2 2
-3 2 3
= 2)(=2)3) + (H)(2)(=3) + (2)(1)(2)
—(2)(=2)(=3) - (2)(2)(2) - (M)(D)(B)
=37
Then
CH = (*1)2 det(AH) = -5
Cig = (—1)3 det(Alz) =-23
013 = (—1)4 det(Alg) = -2
014 = (—1)5 det(Alg) =37
and so

det(B) = b11C11 + b12C12 + b13C13 + b14Cra
= (3)(=5) + (0)(=23) + (1)(—2) + (1)(37)
= 20.

Example 16.4. Show that for any 2 x 2 matrices A and B,
det(AB) = det(A) det(B).

Example Solution.

LetA=| M 2 | andB = bii b . Then
as1 a9o9 b21 b22

a11b11 + a12b21  a11b12 + a12b22

AB = .
[ az1b11 + az2bo1  ag1biz + azebar

So

det(AB) = (a11b11 + a12b21)(a21b12 + azeb22)
— (a11b12 + a12b22) (a21b11 + azabor)
= (a11b11a21b12 + a11b11a22b22 + a12b21a21b12 + a12b21a22b22)
— (a11b12a21b11 + a11bi2a22b21 + a12b22a21b11 + a12b22a22b21)

= a11b11a22b22 + a12b21a21b12 — a11b12a22021 — a12ba2as1biy.
Also,

det(A) det(B) = (a11a22 — ai2a21)(b11b2z2 — b12b21)

= ai1a22b11b22 — a11a22b12b21 — a12a21b11b22 + a12a21b1202;1.
We conclude that det(AB) = det(A) det(B) if A and B are 2 x 2 matrices.
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Summary
e The determinant of an n x n matrix A = [a;;] is found by taking the cofactor expansion of
A along the first row. That is
det(A) = a11C11 + a12C12 + a13C13 + - - - + a1, Chn,
where

— A;j is the sub-matrix of A found by deleting the ith row and jth column of A.
- Cj; = (—1)" det (A;;) is the ijth cofactor of A.

e The matrix A is invertible if and only if det(A) # 0.
Exercises

(1) Use the cofactor expansion to explain why multiplying each of the entries of a 3 x 3 matrix
A by 2 multiplies the determinant of A by 8.

—_ O

1
(2) Use the determinant criterion to determine for which ¢ the matrix A = | 1
2

invertible.
(3) Let A be a square matrix.
(a) Explain why det(A42) = [det(A)]?

(b) Expand on the argument from (a) to explain why det(A*) = [det(A)]* for any
positive integer k.

(c) Suppose that A is an invertible matrix and k is a positive integer. Must A* be an
invertible matrix? Why or why not?

1
(4) Let A be an invertible matrix. Explain why det(A~1) = det(A) using determinant proper-
e

ties.
(5) Simplify the following determinant expression using determinant properties:
det(PAYP~1AT(A™Y3)

(6) Find the eigenvalues of the following matrices. Find a basis for and the dimension of each

eigenspace.
[1 1 1]
(aA=]1 11
|11 1]
[2 0 3]
by A=]0 1 0
|0 1 2 |
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(7) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False For any two n X n matrices A and B, det(A + B) = det A + det B.
(b) True/False For any square matrix A, det(—A) = — det(A).

(c) True/False For any square matrix A, det(—A) = det(A).

(d) True/False The determinant of a square matrix with all non-zero entries is non-zero.
(e) True/False If the determinant of A is non-zero, then so is the determinant of AZ.

(f) True/False If the determinant of a matrix A is 0, then one of the rows of A is a linear
combination of the other rows.

(g) True/False For any square matrix A, det(A42) > det(A).

(h) True/False If A and B are n x n matrices and AB is invertible, then A and B are
invertible.

(i) True/False If A2 is the zero matrix, then the only eigenvalue of A is 0.

(j) True/False If O is an eigenvalue of A, then O is an eigenvalue of AB for any B of the
same size as A.

(k) True/False Suppose A is a 3 x 3 matrix. Then any three eigenvectors of A will form
a basis of R3.

Project: Area and Volume Using Determinants

The approach we will take to connecting area (volume) to the determinant will help shed light on
properties of the determinant that we will discuss from an algebraic perspective in a later section.
First, we mention some basic properties of area (we focus on area for now, but these same properties
are valid for volumes as well). volume). As a shorthand, we denote the area of a region R by
Area(R).

e Area cannot be negative.

o If two regions R; and Ry don’t overlap, then the area of the union of the regions is equal
to the sum of the areas of the regions. That is, if Ry N Ry = (), then Area(R; U Ry) =
Area(R;) 4 Area(Ry).

e Area is invariant under translation. That is, if we move a geometric region by the same
amount uniformly in a given direction, the area of the original region and the area of the
transformed region are the same. A translation of a region is done by just adding a fixed
vector to each vector in the region. That is, a translation by a vector v is a function 75, such
that the image 77, (R) of a region R is defined as

Tv(R)={r+v:r € R}

Since area is translation invariant, Area(7, (R)) = Area(R).
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e The area of a one-dimensional object like a line segment is 0.

Now we turn our attention to areas of parallelograms. Let u and v be vectors in R?. The
parallelogram P(u, v) defined by u and v with point ) as basepoint is the set

P(u,v):{O@—i-ru—i-sv:ogr,sgl}.

An illustration of such a parallelogram is shown at left in Figure 16.4. If u = [u; us]" and v =

Figure 16.4: A parallelogram and a translated, rotated parallelogram.

[v1 2] T, then we will also represent P(u,v) as P ( [ Zi zz } )

Since area is translation and rotation invariant, we can translate our parallelogram by —Oﬁ to
place its basepoint at the origin, then rotate by an angle 6 (as shown at left in Figure 16.4. This
transforms the vector v to a vector v/ and the vector u to a vector u’ as shown at right in Figure
16.4. With this in mind we can always assume that our parallelograms have one vertex at the origin,
with u along the z-axis, and v in standard position. Now we can investigate how to calculate the
area of a parallelogram.

Project Activity 16.1. There are two situations to consider when we want to find the area of a
parallelogram determined by vectors u and v, both shown in Figure 16.5. The parallelogram will
be determined by the lengths of these vectors.

B c B C
v V;
h h
0 u .
O D A B O A D E

Figure 16.5: Parallelograms formed by u and v

(a) Inthe situation depicted at left in Figure 16.5, use geometry to explain why Area(P(u,v)) =
h|ul|. (Hint: What can we say about the triangles ODB and EAC?)
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(b) In the situation depicted at right in Figure 16.5, use geometry to again explain why
Area(P(u,v)) = h|u|. (Hint: What can we say about Area(AEC') and Area(ODB)?)

The result of Project Activity 16.1 is that the area of P(u, V) is given by h|u|, where h is the
height of the parallelogram determined by dropping a perpendicular from the terminal point of v to
the line determined by the vector u.

Now we turn to the question of how the determinant is related to area of a parallelogram. Our
approach will use some properties of the area of P(u,v).

Project Activity 16.2. Let u and v be vectors that determine a parallelogram in R2,

v + ku

h h h

[1 [1 N
u ku u

Figure 16.6: Parallelograms formed by ku and v and by u and v + ku.

(a) Explain why
Area(P(u,v)) = Area(P(v,u)) (16.3)

(b) If k is any scalar, then ku either stretches or compresses u. Use this idea, and the result of
Project Activity 16.1, to explain why

Area(P(ku,v)) = Area(P(u, kv)) = |k|Area(P(u,V)) (16.4)

for any real number k. A representative picture of this situation is shown at left in Figure
16.5 for a value of £ > 1. You will also need to consider what happens when & < 0.

(c) Finally, use the result of Project Activity 16.1 to explain why
Area(P(u+ kv,v)) = Area(P(u,v + ku)) = Area(P(u,v)) (16.5)
for any real number k. A representative picture is shown at right in Figure 16.6.
Properties (16.4) and (16.5) will allow us to calculate the area of the parallelogram determined
by vectors u and v.

Project Activity 16.3. Let u = [u; us]" and v = [v; v2]T. We will now demonstrate that

()
v1 V2

Before we begin, note that if both u; and v, are 0, then u and v are parallel. This makes P(u,Vv) a
line segment and so Area(P(u,v)) = 0. Butif u; = v; = 0, it is also the case that

det( v U2 }) =urvg —ugvy =0

v V2
as well. So we can assume that at least one of u;, vy is not 0. Since P(u,v) = P(v,u), we can
assume without loss of generality that u; # 0.

Area(P(u,v)) =
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(a) Explain using properties (16.4) and (16.5) as appropriate why

Area(P(u,v)) = Area (P <u, [0 vy — ZiuQD) .

-
(b) Let vi = [O vy — %uz} . Recall that our alternate representation of P(u,v)) allows us

Area(P(u, v1)) = Area (P ([ %1 o —U?&W D) .

This should seem very suggestive. We are essentially applying the process of Gaussian
elimination to our parallelogram matrix to reduce it to a diagonal matrix. From there,
we can calculate the area. The matrix form should indicate the next step — applying an
operation to eliminate the entry in the first row and second column. To do this, we need to
consider what happens if v — Z—lluQ =0 and if vg — %ug £ 0.

to write

i. Assume that vy — Jtups = 0. Explain why Area(P(u,v)) = 0. Then explain why
Area(P(u,v)) =0 = det ([ t })
v1 o U2
ii. Now we consider the case when vy, — %uz # 0. Complete the process as in part (a),
using properties (16.4) and (16.5) (compare to Gaussian elimination) to continue to re-
duce the problem of calculating Area(P(u, v)) to one of calculating Area(P (e, e2)).

Use this process to conclude that
det([ul u2]>‘
v V2

We can apply the same arguments as above using rotations, translations, shearings, and scalings
to show that the properties of area given above work in any dimension. Given vectors us, uo, ...,
u, in R"?, we let

Area(P(u,v)) =

P(uj,ug,...,u,) = {Oﬁ—kmlul—kxgug—k”'—i—xnun :0 < x; < 1foreachi}.

If n = 2, then P(uj,uy) is the parallelogram determined by u; and uy with basepoint Q. If
n = 3, then P(uy, uy, us) is the parallelepiped with basepoint ) determined by u;, ug, and us.
In higher dimensions the sets P(uj, ug,...,u,) are called parallelotopes, and we use the nota-
tion Vol(P(uy, ug,...,u,)) for their volume. The n-dimensional volumes of these paralleotopes
satisfy the following properties:

Vol(P(ul, uz, ..., W—1, W, Wi, .., 051, W5, W41, ... ,un))

= Vol(P(u,ug, ..., W1, ), Wit1,..., W1, W, Wjt1,...,Uy)) (16.6)
for any 7 and j.
Vol(P(uy,ug,...,wi—1,ku;, Uit1,...,uy)) = |k|Vol(P(uy,ug,...,uy)) (16.7)
for any real number £ and any <.
Vol(P(uy,ug, ..., u—1,u; + kuj, Wit1,...,u,)) = Vol(P(uy, ug,...,uy,)) (16.8)

for any real number k and any distinct ¢ and j.
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Project Activity 16.4. We now show that Vol(P(uy, uz, us)) is the absolute value of the determi-
u

nant of | up |. For easier notation, let u = [uj ug u3]", v = [v1 v v3
u3

As we argued in the 2-dimensional case, we can assume that all terms that we need to be nonzero

are nonzero, and we can do so without verification.

1T, and w = [wy wo w3]T.

(a) Explain how property (16.7) shows that Vol(P(u, v, w)) is equal to

Uy uz u3

Vol | P 0 u%(vgul — v1ug) u%(vgul — viu3)

0 uil(wgul — w1U2> u%(wgul — ’LU1U3)
(Hint: Think about how these properties are related to row operations.)

-
(b) Now let vi = [O uil(vgul — v1ug) uil(vgul — U1U3):| and

Wi = {O u%(wﬂél — wyug) u—ll(wgul — w1U3):| . Explain how property (16.7) shows that
Vol(P(u, v, w)) is equal to

(51 u9 us
Vol | P 0 uil(vgul - U1U2) i(vgul — 111U3) s
0 0 d
where
1
d = 7(’[“(2}2103 — ’0311)2) — u2(vlw3 — Ug’wl) + U3(v1w2 — Ugwl)).

U1v2 — U2V

(c) Just as we saw in the 2-dimensional case, we can proceed to use the diagonal entries to
eliminate the entries above the diagonal without changing the volume to see that

(75} 0 0
Vol(P(u,v,w)) = Vol [ P 0 u%(vgul —wvug) 0
0 0 d

Complete the process, applying appropriate properties to explain why
Vol(P(u,v,w)) = xVol(P(e1, ez, €3))

for some constant z. Find the constant and, as a result, find a specific expression for
Vol(P(u, v, w)) involving a determinant.

Properties (16.6), (16.7), and (16.8) involve the analogs of row operations on matrices, and we
will prove algebraically that the determinant exhibits the same properties. In fact, the determinant
can be uniquely defined by these properties. So in a sense, the determinant is an area or volume
function.






Section 17

The Characteristic Equation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is the characteristic polynomial of a matrix?

What is the characteristic equation of a matrix?

How and why is the characteristic equation of a matrix useful?

How many different eigenvalues can an n X n matrix have?

How large can the dimension of the eigenspace corresponding to an eigen-
value be?

Application: Modeling the Second Law of Thermodynamics

Pour cream into your cup of coffee and the cream spreads out; straighten up your room and it soon
becomes messy again; when gasoline is mixed with air in a car’s cylinders, it explodes if a spark is
introduced. In each of these cases a transition from a low energy state (your room is straightened
up) to a higher energy state (a messy, disorganized room) occurs. This can be described by entropy
— a measure of the energy in a system. Low energy is organized (like ice cubes) and higher energy
is not (like water vapor). It is a fundamental property of energy (as described by the second law of
thermodynamics) that the entropy of a system cannot decrease. In other words, in the absence of
any external intervention, things never become more organized.

The Ehrenfest model' is a Markov process proposed to explain the statistical interpretation
of the second law of thermodynamics using the diffusion of gas molecules. This process can be
modeled as a problem of balls and bins, as we will do later in this section. The characteristic

'named after Paul and Tatiana Ehrenfest who introduced it in “Uber zwei bekannte Einwinde gegen das Boltz-

mannsche H-Theorem,” Physikalishce Zeitschrift, vol. 8 (1907), pp. 311-314)
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298 Section 17. The Characteristic Equation

polynomial of the transition matrix will help us find the eigenvalues and allow us to analyze our
model.

Introduction

We have seen that the eigenvalues of an n x n matrix A are the scalars A so that A — A\I,, has
a nontrivial null space. Since a matrix has a nontrivial null space if and only if the matrix is not
invertible, we can also say that \ is an eigenvalue of A if

det(A — AI,) = 0. (17.1)

This equation is called the characteristic equation of A. It provides us an algebraic way to find

eigenvalues, which can then be used in finding eigenvectors corresponding to each eigenvalue.

1 1
1 3 ] Note that

1—A 1
a-an=[ 1M )

Suppose we want to find the eigenvalues of A = [

with determinant (1 —\)(3 —\) —1 = A? — 4\ + 2. Hence, the eigenvalues A1, Ao are the solutions
of the characteristic equation \?> — 4\ + 2 = 0. Using quadratic formula, we find that \; = 2 + /2
and \y = 2 — /2 are the eigenvalues.

In this activity, our goal will be to use the characteristic equation to obtain information about
eigenvalues and eigenvectors of a matrix with real entries.

Preview Activity 17.1.

(1) For each of the following parts, use the characteristic equation to determine the eigenvalues of
A. Then, for each eigenvalue ), find a basis of the corresponding eigenspace, i.e., Nul (4 —
AI). You might want to recall how to find a basis for the null space of a matrix from Section
13. Also, make sure that your eigenvalue candidate \ yields nonzero eigenvectors in Nul (A—
AI) for otherwise A will not be an eigenvalue.

2 0 1 2 1 4
(a)A:[o —3] (b)A:[o 1] (C)A:[2 3}

(2) Use your eigenvalue and eigenvector calculations of the above problem as a guidance to
answer the following questions about a matrix with real entries.

(a) At most how many eigenvalues can a 2 X 2 matrix have? Is it possible to have no
eigenvalues? Is it possible to have only one eigenvalue? Explain.

(b) If a matrix is an upper-triangular matrix (i.e., all entries below the diagonal are 0’s,
as in the first two matrices of the previous problem), what can you say about its
eigenvalues? Explain.

(c) How many linearly independent eigenvectors can be found for a 2 x 2 matrix? Is it
possible to have a matrix without 2 linearly independent eigenvectors? Explain.

(3) Using the characteristic equation, determine which matrices have 0 as an eigenvalue.
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The Characteristic Equation

Until now, we have been given eigenvalues or eigenvectors of a matrix and determined eigenvectors
and eigenvalues from the known information. In this section we use determinants to find (or ap-
proximate) the eigenvalues of a matrix. From there we can find (or approximate) the corresponding
eigenvectors. The tool we will use is a polynomial equation, the characteristic equation, of a square
matrix whose roots are the eigenvalues of the matrix. The characteristic equation will then provide
us with an algebraic way of finding the eigenvalues of a square matrix.

We have seen that the eigenvalues of a square matrix A are the scalars A so that A — AI has
a nontrivial null space. Since a matrix has a nontrivial null space if and only if the matrix is not
invertible, we can also say that A is an eigenvalue of A if

det(A — AI) = 0. (17.2)

Note that if A is an n x n matrix, then det(A — A\I) is a polynomial of degree n. Furthermore, if A
has real entries, the polynomial has real coefficients. This polynomial, and the equation (17.2) are
given special names.

Definition 17.1. Let A be an n x n matrix. The characteristic polynomial of A is the polynomial
det(A — \I,),
where I, is the n x n identity matrix. The characteristic equation of A is the equation

det(A — AI,,) = 0.

So the characteristic equation of A gives us an algebraic way of finding the eigenvalues of A.

Activity 17.1.
3 =2 5
(a) Find the characteristic polynomial of the matrix A = | 1 0 7 |, and use the charac-
0 1
teristic polynomial to find all of the eigenvalues of A.
1 0 01
. . . 1 2 00
(b) Verify that 1 and 2 are the only eigenvalues of the matrix 00 10
0 0 01

As we argued in Preview Activity 17.1, a 2 X 2 matrix can have at most 2 eigenvalues. For
an n X n matrix, the characteristic polynomial will be a degree n polynomial, and we know from
algebra that a degree n polynomial can have at most n roots. Since an eigenvalue of a matrix is a
root of the characteristic polynomial of that matrix, we can conclude that an n X n matrix can have
at most n distinct eigenvalues. Activity 17.1 (b) shows that a 4 x 4 matrix may have fewer than 4
eigenvalues, however. Note that one of these eigenvalues, the eigenvalue 1, appears three times as
a root of the characteristic polynomial of the matrix. The number of times an eigenvalue appears as
a root of the characteristic polynomial is called the (algebraic) multiplicity of the eigenvalue. More
formally:

D00
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Definition 17.2. The (algebraic) multiplicity of an eigenvalue A of a matrix A is the largest integer
m so that (z — \)" divides the characteristic polynomial of A.

Thus, in Activity 17.1 (b) the eigenvalue 1 has multiplicity 3 and the eigenvalue 2 has multi-
plicity 1. Notice that if we count the eigenvalues of an n X n matrix with their multiplicities, the
total will always be n.

If A is a matrix with real entries, then the characteristic polynomial will have real coefficients.
It is possible that the characteristic polynomial can have complex roots, and that the matrix A has
complex eigenvalues. The Fundamental Theorem of Algebra shows us that if a real matrix has
complex eigenvalues, then those eigenvalues will appear in conjugate pairs, i.e., if A\ = a + tb is
an eigenvalue of A, then Ay = a — b is another eigenvalue of A. Furthermore, for an odd degree
polynomial, since the complex eigenvalues will come in conjugate pairs, we will be able to find at
least one real eigenvalue.

We now summarize the information we have so far about eigenvalues of an n x n real matrix:

Theorem 17.3. Let A be an n x n matrix with real entries. Then

(1) There are at most n eigenvalues of A. If each eigenvalue (including complex eigenvalues) is
counted with its multiplicity, there are exactly n eigenvalues.

(2) If A has a complex eigenvalue A\, the complex conjugate of X is also an eigenvalue of A.
(3) If nis odd, A has at least one real eigenvalue.

(4) If A is upper or lower-triangular, the eigenvalues are the entries on the diagonal.

Eigenspaces, A Geometric Example

Recall that for each eigenvalue A of an n x n matrix A, the eigenspace of A corresponding to
the eigenvalue )\ is Nul (A — A\I,,). These eigenspaces can tell us important information about the
matrix transformation defined by A. For example, consider the matrix transformation 7" from R3 to
R? defined by T'(x) = Ax, where

1 01
A=10 11
0 0 2

We are interested in understanding what this matrix transformation does to vectors in R?. First we
note that A has eigenvalues A\; = 1 and Ay = 2, with A\; having multiplicity 2. There is a pair

1 0
vi= | 0 | and vo = | 1 | of linearly independent eigenvectors for A corresponding to the
0 0
1
eigenvalue \; and an eigenvector v§ = | 1 | for A corresponding to the eigenvalue Ay. Note
1

that the vectors vy, va, and vs are linearly independent (recall from Theorem that eigenvectors
corresponding to different eigenvalues are always linearly independent). So any vector b in R? can

o099
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be written uniquely as a linear combination of v1, vo, and vs. Let’s now consider the action of the
matrix transformation 7" on a linear combination of v, vo, and vy. Note that

T(clvl + covo + 03V3) = ClT(Vl) =+ CQT(VQ) + CgT(Vg)
= C1A1V1 + oAV + cghovs
= (1)(61V1 + CQVQ) + (2)63V3. (17.3)

Equation (17.3) illustrates that it is most convenient to view the action of 7" in the coordinate system
where Span{vi} serves as the z-axis, Span{vy} serves as the y-axis, and Span{vs} as the z-
axis. In this case, we can visualize that when we apply the transformation 7" to a vector b =
c1V1 + cava + c3vs3 in R3 the result is an output vector that is unchanged in the v;-vo plane and
scaled by a factor of 2 in the v3 direction. For example, consider the box whose sides are determined
by the vectors vi, v, and v3 as shown in Figure 17.1. The transformation 7 stretches this box by
a factor of 2 in the v3 direction and leaves everything else alone, as illustrated in Figure 17.1. So
the entire Span{v,va}) is unchanged by 7', but Span{vs}) is scaled by 2. In this situation, the
eigenvalues and eigenvectors provide the most convenient perspective through which to visualize
the action of the transformation 7'.

2
Z
1..
V
0.
2
0 v, 2 _3

Figure 17.1: A box and a transformed box.

This geometric perspective illustrates how each eigenvalue and the corresponding eigenspace of
A tells us something important about A. So it behooves us to learn a little more about eigenspaces.

Dimensions of Eigenspaces

There is a connection between the dimension of the eigenspace of a matrix corresponding to an
eigenvalue and the multiplicity of that eigenvalue as a root of the characteristic polynomial. Recall
that the dimension of a subspace of R” is the number of vectors in a basis for the eigenspace. We
investigate the connection between dimension and multiplicity in the next activity.

Activity 17.2.

D00
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3 =2 5
(a) Find the dimension of the eigenspace for each eigenvalue of matrix A = | 1 0
0 01
from Activity 17.1 (a). i
100 17
. . . . . . 1 2 00
(b) Find the dimension of the eigenspace for each eigenvalue of matrix A = 001 0
0 001

from Activity 17.1 (b).
(c) Consider now a 3 x 3 matrix with 3 distinct eigenvalues A1, A2, As.

i. Recall that a polynomial of degree can have at most three distinct roots. What does
that say about the multiplicities of A1, A2, A3?

ii. Use the fact that eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent to find the dimensions of the eigenspaces for A1, Ag, As.

The examples in Activity 17.2 all provide instances of the principle that the dimension of an
eigenspace corresponding to an eigenvalue \ cannot exceed the multiplicity of A. Specifically:

Theorem 17.4. If A is an eigenvalue of A, the dimension of the eigenspace corresponding to \ is
less than or equal to the multiplicity of \.

1 01
The examples we have seen raise another important point. The matrix A= | 0 1 1 | from
0 0 2

our geometric example has two eigenvalues 1 and 2, with the eigenvalue 1 having multiplicity 2.
If we let E) represent the eigenspace of A corresponding to the eigenvalue )\, then dim(FE;) = 2

2 01
and dim(E2) = 1. If we change this matrix slightly to the matrix B = | 0 1 1 | we see that
0 01

B has two eigenvalues 1 and 2, with the eigenvalue 1 having multiplicity 2. However, in this case
we have dim(F£;) = 1 (like the example in from Activities 17.1 (a) and 17.2 (a)). In this case the
vector vi = [1 0 0] forms a basis for Fy and the vector vy = [0 1 0]T forms a basis for E1. We
can visualize the action of B on the square formed by v; and vs in the zy-plane as a scaling by 2
in the v direction as shown in Figure 17.2, but since we do not have a third linearly independent
eigenvector, the action of B in the direction of [0 0 1] is not so clear.

So the action of a matrix transformation can be more easily visualized if the dimension of each
eigenspace is equal to the multiplicity of the corresponding eigenvalue. This geometric perspective
leads us to define the geometric multiplicity of an eigenvalue.

Definition 17.5. The geometric multiplicity of an eigenvalue of an n x n matrix A is the dimension
of the corresponding eigenspace Nul (A — AI},).

Examples

What follows are worked examples that use the concepts from this section.
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y Vo >

Figure 17.2: A box and a transformed box.

-1 0 -2
Example 17.6. Let A = 2 1 2
00 1

(a) Find the characteristic polynomial of A.
(b) Factor the characteristic polynomial and find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.

(d) Is it possible to find a basis for R? consisting of eigenvectors of A? Explain.

Example Solution.
(a) The characteristic polynomial of A is

p(A) = det(A — AI3)
—-1-2A 0 -2
= det 2 1—A 2
0 0 1-A

=(=1=X)(1=X)(1-=A).
(b) The eigenvalues of A are the solutions to the characteristic equation. Since
pA)=(-1=-X)1 -1 =) =0
implies A = —1 or A = 1, the eigenvalues of A are 1 and —1.

(c) To find a basis for the eigenspace of A corresponding to the eigenvalue 1, we find a ba-

-2 0 -2
sis for Nul (A — I3). The reduced row echelon form of A — I3 = 2 0 2 |is
00 O
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1 01 T
0 0 0 |.Ifx=| zo |,then (A — I3)x = 0 has general solution
0 00 x3
e —XI3 0 -1
x=| a9 | = To | =x22 | 1 | +x3 0
I3 T3 0 1

Therefore, {[0 1 0]T,[~1 0 1]T} is a basis for the eigenspace of A corresponding to the
eigenvalue 1.

To find a basis for the eigenspace of A corresponding to the eigenvalue —1, we find a

00 -2
basis for Nul (A + I3). The reduced row echelon formof A+ I3 = [ 2 2 2 | is
00 2
110 x1
0 0 1 |.Ifx=| 2 |,then (A+ I3)x = 0 has general solution
000 x3
T — X9 —1
X=| x93 | = To | = To 1
T3 0

Therefore, a basis for the eigenspace of A corresponding to the eigenvalue —1is {[—110]"}.

(d) Letvi =[010]",[-101]T, vy = [-101]T, and v3 = [~1 1 0]T. Since eigenvectors
corresponding to different eigenvalues are linearly independent, and since neither v; nor
vy is a scalar multiple of the other, we can conclude that the set {v1, vy, v3} is a linearly
independent set with 3 = dim(R3) vectors. Therefore, {v{,v2,Vv3} is a basis for R?
consisting of eigenvectors of A.

Example 17.7. Find a 3 x 3 matrix A that has an eigenvector v; = [1 0 1]T with corresponding

eigenvalue \; = 2, an eigenvector vo = [0 2 — 3]T with corresponding eigenvalue Ay = —3, and
an eigenvector v3 = [—4 0 5] with corresponding eigenvalue \3 = 5. Explain your process.
Example Solution. We are looking for a 3 x 3 matrix A such that Avy = 2vy, Avy = —3vs and

Avs = bvs. Since vi, va, and v3 are eigenvectors corresponding to different eigenvalues, vy, vo,
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and v are linearly independent. So the matrix [v] vo v3] is invertible. It follows that

Summary

In this section we studied the characteristic polynomial of a matrix and similar matrices.

e If Aisann x n matrix, the characteristic polynomial of A is the polynomial

det(A — \I,,),

A[Vl Vo Vg] = [AVl AV2 AV3]

(1 0
Alo 2
1 -3
(10
Alo 2
1 -3

[2v] — 3vg Hvs]

0
—6
9

0
-6

N O N N O N

=N
|
o o

where [, is the n x n identity matrix.

e If Aisan n x n matrix, the characteristic equation of A is the equation
det(A — \I,,) = 0.

—20 ]|

0
25

—20 ]|

0

o~ o ©lu

= NI Wi

= O Ol

e The characteristic equation of a square matrix provides us an algebraic method to find the
eigenvalues of the matrix.

e The eigenvalues of an upper or lower-triangular matrix are the entries on the diagonal.

e There are at most n eigenvalues of an n X n matrix.

e For a real matrix A, if an eigenvalue A of A is complex, then the complex conjugate of X is
also an eigenvalue.

e The algebraic multiplicity of an eigenvalue A is the multiplicity of A as a root of the charac-
teristic equation.

e The dimension of the eigenspace corresponding to an eigenvalue A is less than or equal to the
algebraic multiplicity of \.



306 Section 17. The Characteristic Equation

Exercises

(1) There is interesting relationship® between a matrix and its characteristic equation that we
explore in this exercise.

(a) We first illustrate with an example. Let B = [ i _g ] .

i. Show that A2 + \ — 4 is the characteristic polynomial for B.
ii. Calculate B2. Then compute B? + B — 4I5. What do you get?

(b) The first part of this exercise presents an example of a matrix that satisfies its own
characteristic equation. Explain for a general n x n matrix, why A satisfies its char-
acteristic equation.

(2) There is a useful relationship between the determinant and eigenvalues of a matrix A that we
explore in this exercise.

2 3
8 4
pare det(B) to the eigenvalues of B.

(a) Let B = [ ] . Find the determinant of B and the eigenvalues of B, and com-

(b) Let A be an n x n matrix. In this part of the exercise we argue the general case
illustrated in the previous part — that det(A) is the product of the eigenvalues of A.
Let p(\) = det(A — AI,) be the characteristic polynomial of A.

i. Let Ay, Ao, ..., A\, be the eigenvalues of A (note that these eigenvalues may not
all be distinct). Recall that if 7 is a root of a polynomial g(x), then (z — r) is a
factor of ¢(z). Use this idea to explain why

PAA) = (=" A = A)A = A2) -+ (A= An).

ii. Explain why p(0) = A\ A2« \y.
iii. Why is p(0) also equal to det(A). Explain how we have shown that det(A) is
the product of the eigenvalues of A.

(3) Find the eigenvalues of the following matrices. For each eigenvalue, determine its algebraic
and geometric multiplicity.

111
@ A=|1 1 1
|11 1
[2 0 3]
® A=01 0
|0 1 2 |

(4) Let A be an n x n matrix. Use the characteristic equation to explain why A and AT have the
same eigenvalues.

*This result is known as the Cayley-Hamilton Theorem and is one of the fascinating results in linear algebra.
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(5) Find three 3 x 3 matrices whose eigenvalues are 2 and 3, and for which the dimensions of the
eigenspaces for A = 2 and A = 3 are different.

(6) Suppose A is an n X n matrix and B is an invertible n x n matrix. Explain why the charac-
teristic polynomial of A is the same as the characteristic polynomial of BAB~!, and hence,
as a result, the eigenvalues of A and BAB~! are the same.

(7) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If the determinant of a 2 x 2 matrix A is positive, then A has two distinct
real eigenvalues.

(b) True/False If two 2 x 2 matrices have the same eigenvalues, then the have the same
eigenvectors.

(c) True/False The characteristic polynomial of an n x n matrix has degree n.

(d) True/False If R is the reduced row echelon form of an n x n matrix A, then A and
R have the same eigenvalues.

(e) True/False If R is the reduced row echelon form of an n x n matrix A, and v is an
eigenvector of A, then v is an eigenvector of R.

(f) True/False Let A and B be n x n matrices with characteristic polynomials p4(\)
and pp()\), respectively. If A # B, then p4(\) # pp(A).

(g) True/False Every matrix has at least one eigenvalue.

(h) True/False Suppose A is a 3 x 3 matrix with three distinct eigenvalues. Then any
three eigenvectors, one for each eigenvalue, will form a basis of R3.

(i) True/False If an eigenvalue X is repeated 3 times among the eigenvalues of a matrix,
then there are at most 3 linearly independent eigenvectors corresponding to \.

Project: The Ehrenfest Model

To realistically model the diffusion of gas molecules we would need to consider a system with a
large number of balls as substitutes for the gas molecules. However, the main idea can be seen in
a model with a much smaller number of balls, as we will do now. Suppose we have two bins that
contain a total of 4 balls between them. Label the bins as Bin 1 and Bin 2. In this case we can
think of entropy as the number of different possible ways the balls can be arranged in the system.
For example, there is only 1 way for all of the balls to be in Bin 1 (low entropy), but there are 4
ways that we can have one ball in Bin 1 (choose any one of the four different balls, which can be
distinguished from each other) and 3 balls in Bin 2 (higher entropy). The highest entropy state has
the balls equally distributed between the bins (with 6 different ways to do this).

We assume that there is a way for balls to move from one bin to the other (like having gas
molecules pass through a permeable membrane). A way to think about this is that we select a ball
(from ball 1 to ball 4, which are different balls) and move that ball from its current bin to the other
bin. Consider a “move” to be any instance when a ball changes bins. A sfate is any configuration of
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balls in the bins at a given time, and the state changes when a ball is chosen at random and moved
to the other bin. The possible states are to have 0 balls in Bin 1 and 4 balls in Bin 2 (State 0, entropy
1), 1 ball in Bin 1 and 3 in Bin 2 (State 1, entropy 4), 2 balls in each Bin (State 2, entropy 6), 3 balls
in Bin 1 and 1 ball in Bin 2 (State 3, entropy 4), and 4 balls in Bin 1 and 0 balls in Bin 2 (State 4,
entropy 1). These states are shown in Figure 17.3.

L o Ll e o ee L o0 o o U
. .
— ® — e — o
Bin 1 Bin 2 Bin 1 Bin 2 Bin 1 Bin 2 Bin 1 Bin 2

X0 X1 X X3

° L]

° —

Bin 1 Bin 2

X4
Figure 17.3: States

Project Activity 17.1. To model the system of balls in bins we need to understand how the system
can transform from one state to another. It suffices to count the number of balls in Bin 1 (since the
remaining balls will be in Bin 2). Even though the balls are labeled, our count only cares about how

many balls are in each bin. Let xg = [x0, 21, T2, *3, x4]T, where z; is the probability that Bin 1

contains ¢ balls, and let x; = [95(1), :1:%, l‘%, x:l),, 95}1] , where xll is the probability that Bin 1 contains

1 balls after the first move. We will call the vectors xg and x; probability distributions of balls in
bins. Note that since all four balls have to be placed in some bin, the sum of the entries in our
probability distribution vectors must be 1. Recall that a move is an instance when a ball changes
bins. We want to understand how x; is obtained from xg. In other words, we want to figure out
what the probability that Bin 1 contains 0, 1, 2, 3, or 4 balls after one ball changes bins if our initial
probability distribution of balls in bins is xg.

We begin by analyzing the ways that a state can change. For example,

e Suppose there are 0 balls in Bin 1. (In our probability distribution xq, this happens with
probability zy.) Then there are four balls in Bin 2. The only way for a ball to change bins is
if one of the four balls moves from Bin 2 to Bin 1, putting us in State 1. Regardless of which
ball moves, we will always be put in State 1, so this happens with a probability of 1. In other
words, if the probability that Bin 1 contains 0 balls is x(, then there is a probability of (1)xg
that Bin 1 will contain 1 ball after the move.

e Suppose we have 1 ball in Bin 1. There are four ways this can happen (since there are four
balls, and the one in Bin 1 is selected at random from the four balls), so the probability of a
given ball being in Bin 1 is %.
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— If the ball in Bin 1 moves, that move puts us in State 0. In other words, if the probability
that Bin 1 contains 1 ball is =1, then there is a probability of %xl that Bin 1 will contain
0 balls after a move.

— If any of the 3 balls in Bin 2 moves (each moves with probability %), that move puts us
in State 2. In other words, if the probability that Bin 1 contains 1 ball is x1, then there
is a probability of %531 that Bin 1 will contain 2 balls after a move.

(a) Complete this analysis to explain the probabilities if there are 2, 3, or 4 balls in Bin 1.

(b) Explain how the results of part (a) show that

1

a;(l] = 0xg + 771 + Ox2 + Ozg + Oxy
x% = lzg + Oz + %xg + Oxs + Oxy4
x% = Ozg + %ml + Oxo + %1’3 + Oxy
x:l,) = 0zg + Oz + %xz + Oxs + lag
x}t = O0zg + Ox1 + Oxo + il‘g + Oxy

The system we developed in Project Activity 17.1 has matrix form

XIZTX07
where T is the transition matrix
[0 L 0 0 0]
103 00
T=10 320 20
00 101
(00 0 1 0]

Subsequent moves give probability distribution vectors

X9 = TX1

X3 = TX2

X — Tkal.

This example is an example of a Markov process (see Definition 9.4). There are several ques-
tions we can ask about this model. For example, what is the long-term behavior of this system,
and how does this model relate to entropy? That is, given an initial probability distribution vector
X, the system will have probability distribution vectors x1, X2, . . . after subsequent moves. What
happens to the vectors xj, as k goes to infinity, and what does this tell us about entropy? To answer
these questions, we will first explore the sequence {xy } numerically, and then use the eigenvalues
and eigenvectors of 7" to analyze the sequence {xy}.

Project Activity 17.2. Use appropriate technology to do the following.
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(a) Suppose we begin with a probability distribution vector xo = [1 0 0 0 0]7. Calculate
vectors x; for enough values of k so that you can identify the long term behavior of the
sequence. Describe this behavior.

(b) Repeat part (a) with

i xg=[03200]"
ii. xo=[01101]"
11111

Describe the long term behavior of the sequence {xy} in each case.
In what follows, we investigate the behavior of the sequence {xy } that we uncovered in Project
Activity 17.2.
Project Activity 17.3. We use the characteristic polynomial to find the eigenvalues of 7.

(a) Find the characteristic polynomial of 7'. Factor the characteristic polynomial into a product
of linear polynomials to show that the eigenvalues of 1" are 0, 1, —1, % and —%.

(b) As we will see a bit later, certain eigenvectors for 1" will describe the end behavior of
the sequence {xy}. Find eigenvectors for 7' corresponding to the eigenvalues 1 and —1.
Explain how the eigenvector for 7" corresponding to the eigenvalue 1 explains the behavior
of one of the sequences was saw in Project Activity 17.2. (Any eigenvector of 1" with
eigenvalue 1 is called an equilibrium or steady state vector.)

Now we can analyze the behavior of the sequence {x}.

Project Activity 17.4. To make the notation easier, we will let v; be an eigenvector of T" cor-
responding to the eigenvalue 0, vo an eigenvector of I" corresponding to the eigenvalue 1, v3 an
eigenvector of T' corresponding to the eigenvalue —1, v4 an eigenvector of 1" corresponding to the
eigenvalue % and vy an eigenvector of T' corresponding to the eigenvalue —%.

(a) Explain why {v1,Vva, V3, vy, vs} is a basis of R?.

(b) Let xq be any initial probability distribution vector. Explain why we can write xq as
5
Xp = a1V1 + aavy + azvs + aqvy + asvs = Z aiVvi
i=1

for some scalars a1, as, as, a4, and as.

We can now use the eigenvalues and eigenvectors of ' to write the vectors xj, in a convenient
form. Let \{ =0, Ao =1, A3 = —1, \y = %, and \5 = —%. Notice that

x1 = Txg
=T (a1vi + aava + agvs + asvy + asvs)
=a1Tvi + adTve + azTvs + agTvy + asTvs
= a1 A1V] + agAaVae + a3A3Vvy + ag g vy + aszA5vs

5
= Z ai/\ivi.
=1
@Ol
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Similarly
5 5 5
X9 = TX1 =T (Z CLZ‘)\Z'Vi) = Z ai/\iTvi = Z ai/\?vi.
=1 =1 =1

We can continue in this manner to ultimately show that for each positive integer k£ we have
5
Xp =Y a\v; (17.4)
i=1

when X0 = Z?:l a;Vj.

Project Activity 17.5. Recall that we are interested in understanding the behavior of the sequence
{x1} as k goes to infinity.

(a) Equation (17.4) shows that we need to know limy_,, )\f for each ¢ in order to analyze
limy,_, o, xj. Calculate or describe these limits.

(b) Use the result of part (a), Equation (17.4), and Project Activity 17.3 (b) to explain why the
sequence {xy } is either eventually fixed or oscillates between two states. Compare to the
results from Project Activity 17.2. How are these results related to entropy? You may use
the facts that

° 10 —201]" is an eigenvector for T' corresponding to the eigenvalue 0,

A%
oV

1
o = [14641]7 is an eigenvector for T corresponding to the eigenvalue 1,

=
=
e v3=[1 —46 —41]7 is an eigenvector for T corresponding to the eigenvalue —1,
[-1 —2021]" is an eigenvector for T corresponding to the eigenvalue %,
[

V4 = |—
V5 = |— L

120 —21]7 is an eigenvector for T corresponding to the eigenvalue — 5






Section 18

Diagonalization

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

What is a diagonal matrix?

What does it mean to diagonalize a matrix?

What does it mean for two matrices to be similar?
What important properties do similar matrices share?
Under what conditions is a matrix diagonalizable?

When a matrix A is diagonalizable, what is the structure of a matrix P that
diagonalizes A?

Why is diagonalization useful?

Application: The Fibonacci Numbers

In 1202 Leonardo of Pisa (better known as Fibonacci) published Liber Abaci (roughly translated
as The Book of Calculation), in which he constructed a mathematical model of the growth of a
rabbit population. The problem Fibonacci considered is that of determining the number of pairs of
rabbits produced in a given time period beginning with an initial pair of rabbits. Fibonacci made the
assumptions that each pair of rabbits more than one month old produces a new pair of rabbits each
month, and that no rabbits die. (We ignore any issues about that might arise concerning the gender
of the offspring.) If we let F;, represent the number of rabbits in month n, Fibonacci produced the
model

Fn+2:Fn+1+Fn7

313

(18.1)
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for n > 0 where Fy = 0 and F; = 1. The resulting sequence
1,1,2,3,5,8,13,21, ...

is a very famous sequence in mathematics and is called the Fibonacci sequence. This sequence is
thought to model many natural phenomena such as number of seeds in a sunflower and anything
which grows in a spiral form. It is so famous in fact that it has a journal devoted entirely to it. As
a note, while Fibonacci’s work Liber Abaci introduced this sequence to the western world, it had
been described earlier Sanskrit texts going back as early as the sixth century.

By definition, the Fibonacci numbers are calculated by recursion. This is a vey ineffective way
to determine entries F}, for large n. Later in this section we will derive a fascinating and unexpected
formula for the Fibonacci numbers using the idea of diagonalization.

Introduction

As we have seen when studying Markov processes, each state is dependent on the previous state. If
X is the initial state and A is the transition matrix, then the nth state is found by A"”xq. In these
situations, and others, it is valuable to be able to quickly and easily calculate powers of a matrix.
We explore a way to do that in this section.

Preview Activity 18.1. Consider a very simplified weather forecast. Let us assume there are two
possible states for the weather: rainy (R) or sunny(S). Let us also assume that the weather patterns
are stable enough that we can reasonably predict the weather tomorrow based on the weather today.
If is is sunny today, then there is a 70% chance that it will be sunny tomorrow, and if it is rainy

. . . s .
today then there is a 40% chance that it will be rainy tomorrow. If xg = [ , ] is a state vector that
indicates a probability s that it is sunny and probability r that it is rainy on day 0, then

o _[070 04d0]
1= 1030 060 |

tells us the likelihood of it being sunny or rainy on day 1. Let A = [ 8;8 828 ] .

(1) Suppose it is sunny today, that is xg = [ (1)

matrix-vector product tells us the probability that it will be sunny tomorrow.

] . Calculate x; = Ax( and explain how this

(2) Calculate xo = Ax; and interpret the meaning of each component of the product.
(3) Explain why x5 = A?x. Then explain in general why x,, = A"xq.

(4) The previous result demonstrates that to determine the long-term probability of a sunny or
rainy day, we want to be able to easily calculate powers of the matrix A. Use a computer
algebra system (e.g., Maple, Mathematica, Wolfram|Alpha) to calculate the entries of x;,
X920, and xgzo. Based on this data, what do you expect the long term probability of any day
being a sunny one?

o099
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Diagonalization

In Preview Activity 18.1 we saw how if we can powers of a matrix we can make predictions about
the long-term behavior of some systems. In general, calculating powers of a matrix can be a very
difficult thing, but there are times when the process is straightforward.

Activity 18.1. Let D = [ 20 ]

0 3

22 0
(a) Show that D? = [ 0 32 }

230

(b) Show that D3 = [ } (Hint: D3 = DD?)

0 33

n
(c) Explain in general why D™ = [ 20 391 } for any positive integer .

Activity 18.1 illustrates that calculating powers of square matrices whose only nonzero entries
are along the diagonal is rather simple. In general, if

dy 0 0 -~ 0 0
0 does O 0 0
D= . )
: 0 O :
0O 0 0 0 dpn,
then
dy, 0 0 -~ 0 0
D 0 ds, 0 --- 0 0
: 0O 0 . :
0O 0 0 --- 0 dt

for any positive integer k. Recall that a diagonal matrix is a matrix whose only nonzero elements
are along the diagonal (see Definition 8.6). In this section we will see that matrices that are sim-
ilar to diagonal matrices have some very nice properties, and that diagonal matrices are useful in
calculations of powers of matrices.

We can utilize the method of calculating powers of diagonal matrices to also easily calculate
powers of other types of matrices.

Activity 18.2. Let D be any matrix, P an invertible matrix, and let A = P 1DP.
(a) Show that A2 = P~1D?P.
(b) Show that A*> = P~1D3P.
(c) Explain in general why A™ = P~! D" P for positive integers n.

As Activity 18.2 illustrates, to calculate the powers of a matrix of the form P~!DP we only
need determine the powers of the matrix D. If D is a diagonal matrix, this is especially straightfor-
ward.
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Similar Matrices

Similar matrices play an important role in certain calculations. For example, Activity 18.2 showed
that if we can write a square matrix A in the form A = P~'D P for some invertible matrix P and
diagonal matrix D, then finding the powers of A is straightforward. As we will see, the relation
A = P~'DP will imply that the matrices A and D share many properties.

Definition 18.1. The n x n matrix A is similar to the n x n matrix B if there is an invertible matrix
P such that A = P~ 1BP.

Activity 18.3. Let A = [ L1 } and B = { 22 ] Assume that A is similar to B via the

2 0 0 -1
. 2 1
matrle—[2 2}.

(a) Calculate det(A) and det(B). What do you notice?
(b) Find the characteristic polynomials of A and B. What do you notice?

(c) What can you say about the eigenvalues of A and B? Explain.

1 is an eigenvector for A with eigenvalue 2. Is x an eigenvector for

B with eigenvalue 2? Why or why not?

(d) Explain why x = [ !

Activity 18.3 suggests that similar matrices share some, but not all, properties. Note that if
A =P 'BP, then B = Q 'AQ with Q = P~!. So if A is similar to B, then B is similar to A.
Similarly (no pun intended), since A = I~'AI (where I is the identity matrix), then any square
matrix is similar to itself. Also, if A= P !BPand B= M~'CM, then A = (MP)~'C(MP).
So if A is similar to B and B is similar to C, then A is similar to C'. If you have studied relations,
these three properties show that similarity is an equivalence relation on the set of all n X n matrices.
This is one reason why similar matrices share many important traits, as the next activity highlights.

Activity 18.4. Let A and B be similar matrices with A = P~!BP.

(a) Use the multiplicative property of the determinant to explain why det(A) = det(B). So
similar matrices have the same determinants.

(b) Use the fact that P~ TP = I to show that A — \I is similar to B — \I.
(c) Explain why it follows from (a) and (b) that
det(A — \I) = det(B — A\I).
So similar matrices have the same characteristic polynomial, and the same eigenvalues.
We summarize some properties of similar matrices in the following theorem.
Theorem 18.2. Let A and B be similar n x n matrices and I the n x n identity matrix. Then
(1) det(A) = det(B),
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(2) A — M is similarto B — )1,
(3) A and B have the same characteristic polynomial,

(4) A and B have the same eigenvalues.

Similarity and Matrix Transformations

When a matrix is similar to a diagonal matrix, we can gain insight into the action of the correspond-
ing matrix transformation. As an example, consider the matrix transformation 7" from R? to R?
defined by Tx = Ax, where
31
4= [ ] | (182)

1 3

We are interested in understanding what this matrix transformation does to vectors in R?. First we

-1 } and

note that A has eigenvalues A\; = 2 and A\ = 4 with corresponding eigenvectors v = [ 1

Vo = { 1 } . If we let P = [v; v3], then you can check that

P'AP=0D
and
A=PDP!,
where
2 0
D= [ 2 } |
Thus,

T(x) = PDP 'x.

A simple calculation shows that

1[-11
_1_7
P _2{ 11]'

. . 1
Let us apply 7' to the unit square whose sides are formed by the vectors e; = [ 0 ] and ey = [ 0 }
as shown in the first picture in Figure 18.1.

To apply T we first multiply e; and e by P~!. This gives us
1 1
P le = §V1 and P lvy = §V2.

So P! transforms the standard coordinate system into a coordinate system in which v; and v
determine the axes, as illustrated in the second picture in Figure 18.1. Applying D to the output
scales by 2 in the v; direction and 4 in the v, direction as depicted in the third picture in Figure
18.1. Finally, we apply P to translate back into the standard xy coordinate system as shown in the
last picture in Figure 18.1.
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This example illustrates that it is most convenient to view the action of 7" in the coordinate
system where v serves as the z-direction and v as the y-direction. In this case, we can visualize
that when we apply the transformation 7" to a vector in this system it is just scaled in both directions
by the matrix D. Then the matrix P translates everything back to the standard xy coordinate system.

€y
Ple, Ple,

DP e,

DP e, T(es)

Figure 18.1: The matrix transformation.

This geometric perspective provides another example of how having a matrix similar to a di-
agonal matrix informs us about the situation. In what follows we determine the conditions that
determine when a matrix is similar to a diagonal matrix.

Diagonalization in General

In Preview Activity 18.1 and in the matrix transformation example we found that a matrix A was
similar to a diagonal matrix whose columns were eigenvectors of A. This will work for a general
n X n matrix A as long as we can find an invertible matrix P whose columns are eigenvectors of A.
More specifically, suppose A is an n X n matrix with n linearly independent eigenvectors vy, vy,
..., v with corresponding eigenvalues A1, A1, ..., A, (not necessarily distinct). Let

P=[vivavs - vy

o099
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Then
AP = [Avy Avy Avs -+ Av,)]
= [/\1V1 )\QVQ )\3V3 e )\nvn]
X1 0 0 0 0 ]
0 X O 0 0
0 0 0 A1 O
| 0 0 O 0 A |
= PD.
where ) )
A 0 0 0 0
0 X O 0 0
D — : : PPN : :
0O 0 0 -+ A1 O
. 0 0 0 - 0 An

Since the columns of P are linearly independent, we know P is invertible, and so
P'AP=D.

Definition 18.3. An n x n matrix A is diagonalizable if there is an invertible n x n matrix P so
that P~! AP is a diagonal matrix.

In other words, a matrix A is diagonalizable if A is similar to a diagonal matrix.

IMPORTANT NOTE: The key notion to the process described above is that in order to diago-
nalize an n X n matrix A, we have to find n linearly independent eigenvectors for A. When A is
diagonalizable, a matrix P so that P! AP is diagonal is said to diagonalize A.

Activity 18.5. Find an invertible matrix P that diagonalizes A.

11
(a)A:[o 2}

3 2
b)y A=|2 0
4 2

. (Hint: The eigenvalues of A are 8 and —1.)

W N W~

It should be noted that there are square matrices that are not diagonalizable. For example,
11
01
A corresponding to the eigenvalue is one. Therefore, it will be impossible to find two linearly
independent eigenvectors for A.

the matrix A = [ } has 1 as its only eigenvalue and the dimension of the eigenspace of

We showed previously that eigenvectors corresponding to distinct eigenvalue are always linearly
independent, so if an n x n matrix A has n distinct eigenvalues then A is diagonalizable. Activity
18.5 (b) shows that it is possible to diagonalize an n x n matrix even if the matrix does not have
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n distinct eigenvalues. In general, we can diagonalize a matrix as long as the dimension of each
eigenspace is equal to the multiplicity of the corresponding eigenvalue. In other words, a matrix
is diagonalizable if the geometric multiplicity is the same is the algebraic multiplicity for each
eigenvalue.

At this point we might ask one final question. We argued that if an n X n matrix A has n linearly
independent eigenvectors, then A is diagonalizable. It is reasonable to wonder if the converse is true
— that is, if A is diagonalizable, must A have n linearly independent eigenvectors? The answer is
yes, and you are asked to show this in Exercise 6. We summarize the result in the following theorem.

Theorem 18.4 (The Diagonalization Theorem). An n X n matrix A is diagonalizable if and only
if A has n linearly independent eigenvectors. If A is diagonalizable and has linearly independent
eigenvectors vi, Vo, ..., vy with Av; = \;v; for each i, then n X n matrix P[vi vy - -+ vy,| whose
columns are linearly independent eigenvectors of A satisfies P"YAP = D, where Di[d;;] is the
diagonal matrix with diagonal entries d;; = \; for each 1.

Examples

What follows are worked examples that use the concepts from this section.

1 -2 1 1 2 0
Example 185. Let A= | 0 3 —1 |andB = | 0 1 0 |. You should use appropriate
0 -2 2 0 0 4

technology to calculate determinants, perform any row reductions, or solve any polynomial equa-
tions.

(a) Determine if A is diagonalizable. If diagonalizable, find a matrix P that diagonalizes A.
(b) Determine if B is diagonalizable. If diagonalizable, find a matrix () that diagonalizes B.

(¢) Isitpossible for two matrices R and S to have the same eigenvalues with the same algebraic
multiplicities, but one matrix is diagonalizable and the other is not? Explain.

Example Solution.
(a) Technology shows that the characteristic polynomial of A is
p(\) = det(A — A3) = (4 — \)(1 — N2

The eigenvalues of A are the solutions to the characteristic equation p(\) = 0. Thus, the
eigenvalues of A are 1 and 4.

To find a basis for the eigenspace of A corresponding to the eigenvalue 1, we find the
general solution to the homogeneous system (A — I3)x = 0. Using technology we see

01 —1
0 -2 1 2

that the reduced row echelon formof A — I3 = | 0 2 =1 [is| 0 0 0 |. So
0 -2 1 00 0
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Ty
ifx = | zo [, then the general solution to (A — I3)x = 0 is
z3
T |
X = %1‘3
z3
1 0
=xz1| 0| +z3 %
0] 1

So a basis for the eigenspace of A corresponding to the eigenvalue 1 is
{[1 00]",[01 2]T} .

To find a basis for the eigenspace of A corresponding to the eigenvalue 4, we find the
general solution to the homogeneous system (A — 473)x = 0. Using technology we see

-3 -2 1 01 -1
that the reduced row echelon form of A — 413 = 0 -1 -1 ]is| 0 1 1
0 -2 -2 00 O
z1
Soif x = | x2 |, then the general solution to (A — 413)x = 0 is
z3

T
X = [1’1 xI9 $3]
= [z3 —z323]"

=231 —11]".

So a basis for the eigenspace of A corresponding to the eigenvalue 4 is

{[1 - 10]T}.

Eigenvectors corresponding to different eigenvalues are linearly independent, so the set
{[1 00", 012", 1 —1 o]T}

is a basis for R3. Since we can find a basis for R? consisting of eigenvectors of A, we
conclude that A is diagonalizable. Letting

1 0 1
P=]101 -1
0 2 1
gives us
1 00
P'AP=10 1 0
0 0 4
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(b)

(©

Technology shows that the characteristic polynomial of B is
p(A\) =det(B — M3) = (4 — \)(1 — N2

The eigenvalues of B are the solutions to the characteristic equation p(A) = 0. Thus, the
eigenvalues of B are 1 and 4.

To find a basis for the eigenspace of B corresponding to the eigenvalue 1, we find the
general solution to the homogeneous system (B — I3)x = 0. Using technology we see

0 2 0 010
that the reduced row echelon formof B—I3 = | 0 0 0 [is | 0O O 1 |. Soif
0 0 3 0 0 0
z1
x = | x2 |, then the general solutionto (B — I3)x = 0is
r3

.

x =[] 2 x3]
=[z100]"
=z1[100]".

So a basis for the eigenspace of B corresponding to the eigenvalue 1 is

{uoof}.

To find a basis for the eigenspace of B corresponding to the eigenvalue 4, we find the
general solution to the homogeneous system (B — 4[3)x = 0. Using technology we see

-3 2 0 1 00
that the reduced row echelon form of B — 413 = 0 -3 0|is| 0O 1 O |.Soif
0 0 0 0 00
T
x = | x2 |, then the general solution to (B — 4I3)x = 0 is
3

N

X = [.2171 i) .%'3]
=[00xzs]"
=235[001]".

So a basis for the eigenspace of B corresponding to the eigenvalue 4 is

{mo1f}.

Since each eigenspace is one-dimensional, we cannot find a basis for R? consisting of
eigenvectors of B. We conclude that B is not diagonalizable.

Yes it is possible for two matrices R and S to have the same eigenvalues with the same
multiplicities, but one matrix is diagonalizable and the other is not. An example is given
by the matrices A and B in this problem.
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Example 18.6.

(a) Is it possible to find diagonalizable matrices A and B such that AB is not diagonalizable?
If yes, provide an example. If no, explain why.

(b) Isitpossible to find diagonalizable matrices A and B such that A+ B is not diagonalizable?
If yes, provide an example. If no, explain why.

(c) Is it possible to find a diagonalizable matrix A such that AT is not diagonalizable? If yes,
provide an example. If no, explain why.

(d) Is it possible to find an invertible diagonalizable matrix A such that A~ is not diagonaliz-
able? If yes, provide an example. If no, explain why.

Example Solution.

(a) Let A = [ (1) ; ] and B = (2) B uE Since A and B are both diagonal matrices,
their eigenvalues are their diagonal entries. With 2 distinct eigenvalues, both A and B are

. . . 2 -1 . .
diagonalizable. In this case we have AB = [ ] , whose only eigenvector is 2. The

0 2

8 (1) ] . So a basis for the eigenspace of AB
is {[1 0]T}. Since there is no basis for R? consisting of eigenvectors of AB, we conclude
that AB is not diagonalizable.

reduced row echelon form of AB — 215 is [

0 2 01
their eigenvalues are their diagonal entries. With 2 distinct eigenvalues, both A and B are
3
0 3

(b) Let A = [ 13 ] and B = [ 20 ] Since A and B are both diagonal matrices,

diagonalizable. In this case we have A + B = [ } , whose only eigenvector is 3. The

0 [1) } . So a basis for the eigenspace of
A+ Bis {[10]T}. Since there is no basis for R? consisting of eigenvectors of A + B, we
conclude that A + B is not diagonalizable.

reduced row echelon form of (A + B) — 31z is [ 0

(c) It is not possible to find a diagonalizable matrix A such that AT is not diagonalizable. To
see why, suppose that matrix A is diagonalizable. That is, there exists a matrix P such that
P~YAP = D, where D is a diagonal matrix. Recall that (P~)" = (PT)™". So

D=D"
— (p'aP)"
= PTAT(PY)T
— pPTAT (PT)il .
Letting A = (PT) ~! we conclude that
Q'ATQ = D.
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Therefore, () diagonalizes AT.

(d) It is not possible to find an invertible diagonalizable matrix A such that A~! is not diag-
onalizable. To see why, suppose that matrix A is diagonalizable. That is, there exists a
matrix P such that P~1AP = D, where D is a diagonal matrix. Thus, A = PDP 1.
Since A is invertible, det(A) # 0. It follows that det(D) # 0. So none of the diagonal
entries of D can be 0. Thus, D is invertible and D~ 1 is a diagonal matrix. Then

1

D' = (P 'AP)" =pA P!

and so P! diagonalizes A~

Summary

e A matrix D = [d;;] is a diagonal matrix if d;; = 0 whenever ¢ # j.

A matrix A is diagonalizable if there is an invertible matrix P so that P~' AP is a diagonal
matrix.

e Two matrices A and B are similar if there is an invertible matrix P so that

B=P AP

e Similar matrices have the same determinants, same characteristic polynomials, and same
eigenvalues. Note that similar matrices do not necessarily have the same eigenvectors corre-
sponding to the same eigenvalues.

e Ann x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

e When an n x n matrix A is diagonalizable, then P = [v; vo v3 --- v,,] is invertible and
P~1AP is diagonal, where v, vo, ..., v, are n linearly independent eigenvectors for A.

e One use for diagonalization is that once we have diagonalized a matrix A we can quickly
and easily compute powers of A. Diagonalization can also help us understand the actions of
matrix transformations.

Exercises

(1) Determine if each of the following matrices is diagonalizable or not. For diagonalizable
matrices, clearly identify a matrix PP which diagonalizes the matrix, and what the resulting
diagonal matrix is.

fo —1
(a)A:_1 4

[ 1 4 -2
b A=| -3 4 o0

-3 1 3
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1 1
(2) The 3 x 3 matrix A has two eigenvalues A\; = 2 and Ao = 3. The vectors | 2 |, | —1 |,
1 2
2 1 2
and | 4 | are eigenvectors for \; = 2, while the vectors | 1 |, | 2 | are eigenvectors
2 1 2

for Ay = 3. Find the matrix A.

(3) Find a 2 x 2 non-diagonal matrix A and two different pairs of P and D matrices for which

A=PDpP 1

(4) Find a 2 x 2 non-diagonal matrix A and two different P matrices for which A = PDP~!

with the same D.

(5) Suppose a 4 x 4 matrix A has eigenvalues 2, 3 and 5 and the eigenspace for the eigenvalue

3 has dimension 2. Do we have enough information to determine if A is diagonalizable?
Explain.

(6) Let A be adiagonalizable n x n matrix. Show that A has n linearly independent eigenvectors.

(N

®)

(a) Let A = [ é 1 ] and B = é i ] Find the eigenvalues and eigenvectors of A
and B. Conclude that it is possible for two different n x n matrices A and B to have

exactly the same eigenvectors and corresponding eigenvalues.

(b) A natural question to ask is if there are any conditions under which n x n matrices that
have exactly the same eigenvectors and corresponding eigenvalues must be equal.
Determine the answer to this question if A and B are both diagonalizable.

(a) Show that if D and D’ are n x n diagonal matrices, then DD’ = D'D.

(b) Show that if A and B are n x n matrices and P is an invertible n x n matrix such that
P~'AP = Dand P~'BP = D' with D and D’ diagonal matrices, then AB = BA.

(9) Exercise 2 in Section 17 shows that the determinant of a matrix is the product of its eigen-

values. In this exercise we show that the trace of a diagonalizable matrix is the sum of its
eigenvalues.! First we define the trace of a matrix.

Definition 18.7. The trace of an n x n matrix A = [a;;] is the sum of the diagonal entries
of A. That is,

n
trace(A) = ai1 + a2 + - + app = Z .-
i=1

(a) Show thatif R = [r;;] and S = [s;;] are nxn matrices, then trace(RS) = trace(SR).

IThis result is true for any matrix, but the argument is more complicated.
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(b) Let A be a diagonalizable n x n matrix, and let p(A\) = det(A—A\I,) be the character-
istic polynomial of A. Let P be an invertible matrix such that P"' AP = D, where
D is the diagonal matrix whose diagonal entries are A1, Ao, ..., A,, the eigenvalues
of A (note that these eigenvalues may not all be distinct).

i. Explain why trace(A) = trace(D).
ii. Show that the trace of an n X n diagonalizable matrix is the sum of the eigen-
values of the matrix.

(10) In this exercise we generalize the result of Exercise 12 in Section 8 to arbitrary diagonalizable
matrices.

(a) Show that if

M 0 0 0
0 X O 0
D=\| . . . ,
0 0 0 A
then
e 00 0
0 e 0 0
6D = .
0 0 0 en

(b) Now suppose that an n x n matrix A is diagonalizable, with P~' AP equal to a
diagonal matrix D. Show that e = PeP P~

1 1 0 —1
(11) LetA—{O O}andletB—{O 0].

(a) Use the result of Exercise 10 to calculate .

(b) Calculate e?. (Hint: Explain why B is not diagonalizable.)

(c) Use the result of Exercise 10 to calculate e 15,

(d) The real exponential function satisfies some familiar properties. For example, e*e¥ =
eYe” and e 1Y = e%e¥ for any real numbers x and y. Does the matrix exponential
satisfy the corresponding properties. That is, if X and Y are n X n matrices, must

eXeY — 6Y€X and eX+Y = eXeY? EXplain.

X+Y

(12) In Exercise 11 we see that we cannot conclude that e = eXeY for n x n matrices X and

Y. However, a more limited property is true.

(a) Follow the steps indicated to show that if A is an n x n matrix and s and ¢ are any
scalars, then e%eAt = A1) (Although we will not use it, you may assume that
the series for e converges for any square matrix A.)

1. Use the definition to show that

s A Sktm
et = Z Z Tm!AHm.

k>0 m>0
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ii. Relabel and reorder terms with n = k + m to show that

1 " n! _
eAseAt — sumn>0—|A” E e MAT AL
=n!

= (n —m)!m!

iii. Complete the problem using the Binomial Theorem that says

n

|
(S +t)n _ Z Lsn—mtm'
= (n— m)!m!

(b) Use the result of part (a) to show that e is an invertible matrix for any n X n matrix
A.

(13) There is an interesting connection between the determinant of a matrix exponential and the
trace of the matrix. Let A be a diagonalizable n x n matrix with real entries. Let D = P~ 1 AP
for some invertible matrix PP, where D is the diagonal matrix with entries A1, Ao, ..., A, the
eigenvalues of A.

(a) Show that e = PeP p—1,
(b) Use Exercise 9 to show that
det (eA) = erace(4)
(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.
(a) True/False If matrix A is diagonalizable, then so is A7
(b) True/False If matrix A is diagonalizable, then A is invertible.
(c) True/False If an n x n matrix A is diagonalizable, then A has n distinct eigenvalues.
(d) True/False If matrix A is invertible and diagonalizable, then so is A~

(e) True/False If an n x n matrix C' is diagonalizable, then there exists a basis of R"
consisting of the eigenvectors of C.

(f) True/False An n x n matrix with n distinct eigenvalues is diagonalizable.

(g) True/False If A is an n x n diagonalizable matrix, then there is a unique diagonal
matrix such that P~' AP = D for some invertible matrix P.

(h) True/False If A is an n x n matrix with eigenvalue A, then the dimension of the
eigenspace of A corresponding to the eigenvalue A is n — rank(A — \I,).

(i) True/False If \ is an eigenvalue of an n x n matrix A, then e’ is an eigenvalue of
e, (See Exercise 12 in Section 8 for information on the matrix exponential.)

Project: Binet’s Formula for the Fibonacci Numbers

We return to the Fibonacci sequence F}, where F, 190 = F, 11+ F,,, forn > 0, Fy = 0,and F} = 1.
Since F, ;9 is determined by previous values Fj, 1 and F,, the relation F,, 1o = F,11 + F, is
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called a recurrence relation. The recurrence relation F, 1o = Fj, 41 + F}, is very time consuming
to use to compute F;, for large values of n. It turns out that there is a fascinating formula that gives
the nth term of the Fibonacci sequence directly, without using the relation F, 10 = Fj,+1 + Fi,.

Project Activity 18.1. The recurrence relationF,, o = F,,+1 + F}, gives the equations
Fn+1 :Fn‘i‘anl (183)
F, = F,. (18.4)

Letx,, = [ FZ,H } for n > 0. Explain how the equations (18.3) and (18.3) can be described with
n

the matrix equation

where A = {1 (1)}

The matrix equation (18.5) shows us how to find the vectors x,, using powers of the matrix A:
x1 = Axg
xo = Ax; = A(Axg) = A%xg
X3 = Axy = A(AQX()) = A3x,

x, = A"xg.

So if we can somehow easily find the powers of the matrix A, then we can find a convenient formula
for F,. As we have seen, we know how to do this if A is diagonalizable

Project Activity 18.2. Let A = [ 1 (1) }

(a) Show that the eigenvalues of A are ¢ = 1457\/5 and @ = 1=

)=

(b) Find bases for each eigenspace of A.

Now that we have the eigenvalues and know corresponding eigenvectors for A, we can return
to the problem of diagonalizing A.
Project Activity 18.3.

(a) Why do we know that A is diagonalizable?

(b) Find a matrix P such that P~' AP is a diagonal matrix. What is the diagonal matrix?

Now we can find a formula for the nth Fibonacci number.

Project Activity 18.4. Since P"'AP = D, where D is a diagonal matrix, we also have A =
PDP~!. Recall that when A = PDP~!, it follows that A" = PD"P~!. Use the equation
A" = PD"P~! to show that

n =N
N 18.6

(Hint: We just need to calculate the second component of A™x.)
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Formula (18.6) is called Binet’s formula. It is a very surprising formula in the fact that the
expression on the right hand side of (18.6) is an integer for each positive integer n. Note that with
Binet’s formula we can quickly compute F;, for very large values of n. For example,

Fi50 = 9969216677189303386214405760200.

The number ¢ = #, called the golden mean or golden ratio is intimately related to the

Fibonacci sequence. Binet’s formula provides a fascinating relationship between the Fibonacci
numbers and the golden ratio. The golden ratio also occurs often in other areas of mathematics. It
was an important number to the ancient Greek mathematicians who felt that the most aesthetically
pleasing rectangles had sides in the ratio of ¢ : 1.

Project Activity 18.5. You might wonder what happens if we use negative integer exponents in
Binet’s formula. In other words, are there negatively indexed Fibonacci numbers? For any integer
n, including negative integers, let
(pn _ @TL

Vb

There is a specific relationship between F_,, and F},. Find it and verify it.

F, =






Section 19

Approximating Eigenvalues and
Eigenvectors

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is the power method for?
o How does the power method work?

e How can we use the inverse power method to approximate any eigen-
value/eigenvector pair?

Application: Leslie Matrices and Population Modeling

The Leslie Matrix (also called the Leslie Model) is a powerful model for describing an age dis-
tributed growth of a population that is closed to migration. In a Leslie model, it is usually the case
that only one gender (most often female) is considered. As an example, we will later consider a
population of sheep that is being grown commercially. A natural question that we will address is
how we can harvest the population to build a sustainable environment.

When working with populations, the matrices we use are often large. For large matrices, using
the characteristic polynomial to calculate eigenvalues is too time and resource consuming to be
practical, and we generally cannot find the exact values of the eigenvalues. As a result, approxi-
mation techniques are very important. In this section we will explore a method for approximating
eigenvalues. The eigenvalues of a Leslie matrix are important because they describe the limiting or
steady-state behavior of a population. The matrix and model were introduced by Patrick H. Leslie
in “On the Use of Matrices in Certain Population Mathematics”, Leslie, P.H., Biometrika, Volume
XXXIII, November 1945, pp. 183-212.

331
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Introduction

We have used the characteristic polynomial to find the eigenvalues of a matrix, and for each eigen-
value row reduced a corresponding matrix to find the eigenvectors This method is only practical for
small matrices — for more realistic applications approximation techniques are used. We investigate
one such technique in this section, the power method.

2

Preview Activity 19.1. Let A = [ 5 3

so that Av = \v.

} . Our goal is to find a scalar A and a nonzero vector v

(1) If we have no prior knowledge of the eigenvalues and eigenvectors of this matrix, we might
just begin with a guess. Let xo = [1 0]T be such a guess for an eigenvector. Calculate Axq.
Is xg an eigenvector of A? Explain.

(2) If xq is not a good approximation to an eigenvector of A, then we need to make a better guess.
We have little to work with other than just random guessing, but we can use x; = Axq as
another guess. We calculated x; in part 1. Is x; an eigenvector for A? Explain.

(3) In parts (a) and (b) you might have noticed that in some sense X is closer to being an eigen-
vector of A than xy was. So maybe continuing this process will get us closer to an eigenvector
of A. In other words, for each positive integer k& we define x; as Axy_1. Before we proceed,
however, we should note that as we calculate the vectors X1, X9, X3, ..., the entries in the
vectors get large very quickly. So it will be useful to scale the entries so that they stay at a
reasonable size, which makes it easier to interpret the output. One way to do this is to divide
each vector x; by its largest component in absolute value so that all of the entries stay between
—1 and 1." So in our example we have xo = [1 0]T, x; = [2/5 1]7, and xo = [1 25/34]T.
Explain why scaling our vectors will not affect our search for an eigenvector.

(4) Use an appropriate technological tool to find the vectors x; up to k = 10. What do you think
the limiting vector limy,_, . Xy, is? Is this limiting vector an eigenvector of A? If so, what is
the corresponding eigenvalue?

The Power Method

While the examples we present in this text are small in order to highlight the concepts, matrices that
appear in real life applications are often enormous. For example, in Google’s PageRank algorithm
that is used to determine relative rankings of the importance of web pages, matrices of staggering
size are used (most entries in the matrices are zero, but the size of the matrices is still huge). Finding
eigenvalues of such large matrices through the characteristic polynomial is impractical. In fact,
finding the roots of all but the smallest degree characteristic polynomials is a very difficult problem.
As a result, using the characteristic polynomial to find eigenvalues and then finding eigenvectors is
not very practical in general, and it is often a better option to use a numeric approximation method.
We will consider one such method in this section, the power method.

!There are several other ways to scale, but we won’t consider them here.

o099
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6
5 3 } so that the sequence

{x1}, where x;, = Axj_1, converged to a dominant eigenvector of A for an initial guess vector
xo = [1 0]T. The vectors x; for i from 1 to 6 (with scaling) are approximately

In Preview Activity 19.1, we saw an example of a matrix A = [

04 1 0.8898
X1 = X2 = X3 =
1 0.7353 1
1 0.9838 1
X4 = X5 = Xg =
0.9575 1 0.9939

Numerically we can see that the sequence {x;} approaches the vector [1 1]T, and Figure 19.1
illustrates this geometrically as well. This method of successive approximations x; = Axj_1 is

Xy X3 X5 Xg
X4

X2

X0

Figure 19.1: The power method.

called the power method (since we could write X as AFx). Our task now is to show that this
method works in general. In the next activity we restrict our argument to the 2 x 2 case, and then
discuss the general case afterwards.

Let A be an arbitrary 2 x 2 matrix with two linearly independent eigenvectors v; and vy and
corresponding eigenvalues A1 and Ay, respectively. We will also assume [A1| > |\2|. An eigenvalue
whose absolute value is larger than that of any other eigenvalue is called a dominant eigenvalue.
Any eigenvector for a dominant eigenvalue is called a dominant eigenvector. Before we show that
our method can be used to approximate a dominant eigenvector, we recall that since v; and vy are
eigenvectors corresponding to distinct eigenvalues, then v; and vy are linearly independent. So
there exist scalars a1 and as such that

X0 = a1V] + aava.
We have seen that for each positive integer £ we can write x,, as
— k k
X = A1 A\]V] + a2A5Vva. (19.1)

With this representation of xy we can now see why the power method approximates a dominant
eigenvector of A.

D00
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Activity 19.1. Assume as above that A is an arbitrary 2 x 2 matrix with two linearly independent
eigenvectors v and vg and corresponding eigenvalues A; and Ag, respectively. (We are assuming
that we don’t know these eigenvectors, but we can assume that they exist.) Assume that A; is the
dominant eigenvalue for A, x( is some initial guess to an eigenvector for A, that xg = a1vi +asvo,
and that x;, = Axy_q fork > 1.

(a) We divide both sides of equation (19.1) by )\’f (since A; is the dominant eigenvalue, we
know that A1 is not 0) to obtain

1 A2\ ”
FX]{; =a1vy + a /\71 Vo. (19.2)
1

k
Recall that \; is the dominant eigenvalue for A. What happens to (:\\—f) as k — o0?
Explain what happens to the right hand side of equation (19.2) as k — oo.

(b) Explain why the previous result tells us that the vectors x;, are approaching a vector in the
direction of vi or —vy as k — oo, assuming a; # 0. (Why do we need a; # 0? What
happens if a; = 07?)

(c) What does all of this tell us about the sequence {xy} as k — 0o?

The power method is straightforward to implement, but it is not without its drawbacks. We
began by assuming that we had a basis of eigenvectors of a matrix A. So we are also assuming that
A is diagonalizable. We also assumed that A had a dominant eigenvalue \;. Thatis, if Aisn x n
we assume that A has eigenvalues A1, Ao, .. ., An, not necessarily distinct, with

Al > Ao = [As] = -+ > [An]

and with v; an eigenvector of A with eigenvalue \;. We could then write any initial guess xq in the
form
Xo = a1vV1 +agve + -+ anpvp.

The initial guess is also called a seed.

Then
X = al)\lfvl + ag)\ng + - an)\flvn
and N N
1 A A
)\—lka =a1vy + as (/\j) Vot -+ ap <)\711> V. (19.3)

Notice that we are not actually calculating the vectors x;, here — this is a theoretical argument and
we don’t know A; and are not performing any scaling like we did in Preview Activity 19.1. We are

k
assuming that \; is the dominant eigenvalue of A, though, so for each ¢ the terms </’\\—i) converge

to 0 as k goes to infinity. Thus,
X A )\Ifalvl

for large values of k, which makes the sequence {x;} converge to a vector in the direction of a
dominant eigenvector v provided a; # 0. So we need to be careful enough to choose a seed that
has a nonzero component in the direction of v;. Of course, we generally don’t know that our matrix

o099
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is diagonalizable before we make these calculations, but for many matrices the sequence {xy } will
approach a dominant eigenvector.

Once we have an approximation to a dominant eigenvector, we can then approximate the dom-
inant eigenvalue.

Activity 19.2. Let A be an n x n matrix with eigenvalue A and corresponding eigenvector v.

(a) Explain why A = %
. ~ (Av)v
(b) Use the result of part (a) to explain why A = ~—=—.

The result of Activity 19.2 is that, when the vectors in the sequence {xy } approximate a domi-
nant eigenvector of a matrix A, the quotients

(Axk) * Xk B X;i—AX]g

(19.4)

Xk - Xk X-]!;Xk

approximate the dominant eigenvalue of A. The quotients in (19.4) are called Rayleigh quotients.

To summarize, the procedure for applying the power method for approximating a dominant
eigenvector and dominant eigenvalue of a matrix A is as follows.

Step 1: Select an arbitrary nonzero vector Xg as an initial guess to a dominant eigenvector.
Step 2: Letx; = Axq. Letk = 1.

Step 3: To avoid having the magnitudes of successive approximations become excessively large,
scale this approximation xj. That is, find the entry o, of x;, that is largest in absolute value.
Then replace x;, by ﬁxk. Note that this does not change the direction of this approximation,
only its magnitude.

(Axp)-xp
XX

Step 4: Calculate the Rayleigh quotient r, =

Step 5: Let let x5 = Axy. Increase k by 1 and repeat Steps 3 through 5.

If the sequence {x}} converges to a dominant eigenvector of A, then the sequence {7} converges
to the dominant eigenvalue of A.

The power method can be useful for approximating a dominant eigenvector as long as the suc-
cessive multiplications by A are fairly simple — for example, if many entries of A are zero.”> The
rate of convergence of the sequence {xj} depends on the ratio i—f If this ratio is close to 1, then

k
it can take many iterations before the power (ﬁ—j) makes the vo term negligible. There are other

methods for approximating eigenvalues and eigenvectors, e.g., the QR factorization, that we will
not discuss at this point.

2 A matrix in which most entries are zero is called a sparse matrix.

D00
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The Inverse Power Method

The power method only allows us to approximate the dominant eigenvalue and a dominant eigen-
vector for a matrix A. It is possible to modify this method to approximate other eigenvectors and
eigenvalues under certain conditions. We consider an example in the next activity to motivate the
general situation.

2 6
5 3
eigenvalue for A, and a quick calculation can show that —3 is the other eigenvalue of A. Consider

the matrix B = (A — (=2)I2) ™! = 15 [ _g _Z ]

Activity 19.3. Let A = be the matrix from Preview Activity 19.1. Recall that 8 is an

1
3-(-2)

(a) Show that 8_(1_2) and — are the eigenvalues of B.

(b) Recall that vi = [11]T is an eigenvector of A corresponding to the eigenvalue 8 and assume
that vo = [—6 5|7 is an eigenvector for A corresponding to the eigenvalue —3. Calculate
the products Bv; and Bvsy. How do the products relate to the results of part (a)?

Activity 19.3 provides evidence that we can translate the matrix A having a dominant eigenvalue
to a different matrix B with the same eigenvectors as A and with a dominant eigenvalue of our
choosing. To see why, let A be an n x n matrix with eigenvalues A1, Ag, ..., Ay, and let o be any
real number distinct from the eigenvalues. Let B = (A — aI,,)~!. In our example in Activity 19.3

the numbers
1 1 1 1

M—a da—a M—a T\ -«

were the eigenvalues of B, and that if v; is an eigenvector for A corresponding to the eigenvalue
Ai, then v; is an eigenvector of B corresponding to the eigenvalue /\z%a To see why, let A be an
eigenvalue of an n x n matrix A with corresponding eigenvector v. Let « be a scalar that is not an
eigenvalue of A, and let B = (A — ad,,)~!. Now

Av = \v
Av —av =)v —av
(A—al)v=(A—a)v
1

(A _ -1
)\_av—(A al,) v.

So ﬁ is an eigenvalue of B with eigenvector v.

Now suppose that A is an n X n matrix with eigenvalues A1, Ag, ..., Ay, and that we want to
approximate an eigenvector and corresponding eigenvalue \; of A. If we can somehow find a value
of a so that |\; — a| < |\; — o for all j # 4, then )/\%a > ’ L ‘ for any j # 7. Thus, the

Aj—o

matrix B = (A — al,)~! has ﬁ as its dominant eigenvalue and we can use the power method

to approximate an eigenvector and the Rayleigh quotient to approximate the eigenvalue /\/_—1_06, and
hence approximate \;.

T3 3
Activity 19.4. Let A= | 30 22 —10
15 —21 11
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(a) Apply the power method to the matrix B = (A — I3)~! with initial vector xo = [100]" to
fill in Table 19.1 (to four decimal places). Use this information to estimate an eigenvalue
for A and a corresponding eigenvector.

k 10 15 20

Xk

T
x5 Axp,

X-]Ic—xk

Table 19.1: Applying the power method to (A — I3)~!.

(b) Applying the power method to the matrix B = (A — 0I3)~! with initial vector xq =
[100] yields the information in Table 19.2 (to four decimal places). Use this information
to estimate an eigenvalue for A and a corresponding eigenvector.

k 10 15 20
| 0ssaa | | —ossss | | ossss)
Xk —0.6677 0.6666 —0.6666
| 10000 | | 10000 | | ~1.0000 |
’fﬁ:’v —1.0014 —1.0000 —1.0000

Table 19.2: Applying the power method to (A — 03) 1.

(c) Applying the power method to the matrix B = (A — 5I3)~! with initial vector xg =
[100]7 yields the information in Table 19.3 (to four decimal places). Use this information
to estimate an eigenvalue for A and a corresponding eigenvector.

Examples

What follows are worked examples that use the concepts from this section.

Example 19.1. Let A =

~ &~ =
O S W

2
)
8

(a) Approximate the dominant eigenvalue of A accurate to two decimal places using the power
method. Use technology as appropriate.
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k 10 15 20
_ 0.0000 1| 0.0000 [ 0.0000 _
X, 1.0000 —1.0000 1.0000
| ~1.0000 | | 1.0000 | | —1.0000 |
"fﬁ(’;’c —1.0000 —1.0000 —1.0000

Table 19.3: Applying the power method to (A — 5I3) 1.

(b) Find the characteristic polynomial p(\) of A. Then find the the root of p(\) farthest from
the origin. Compare to the result of part (a). Use technology as appropriate.

Example Solution.

(a) We use technology to calculate the scaled vectors AFx for values of k until the components
don’t change in the second decimal place. We start with the seed xg = [1 1 1]T. For
example, to two decimal places we have x;, = [0.28 0.64 1.00] " for k£ > 20. So we suspect
that [0.28 0.64 1.00] " is close to a dominant eigenvector for A.

For the dominant eigenvalue, we can calculate the Rayleigh quotients (Axx’“ﬂ until they
k' Xk

do not change to two decimal places. For k > 4, our Rayleigh quotients are all (to two
decimal places) equal to 16.12. So we expect that the dominant eigenvalue of A is close to
16.12. Notice that

A[0.28 0.64 1.00] T = [4.56 10.32 16.08] T,
which is not far off from 16.12[0.28 0.64 1.00]T.

(b) The characteristic polynomial of A is
p(A) = = X3+ 1502 + 18\ = —\(\2 — 15\ — 18).
The quadratic formula gives the nonzero roots of p(\) as

15+ /152 4 4(18) 154 3+/33
= 5 )

The roots farthest from the origin is approximately 16.12, as was also calculated in part (a).

Example 19.2. Let A =

S =N
— W =
N = O

(a) Use the power method to approximate the dominant eigenvalue and a corresponding eigen-
vector (using scaling) accurate to two decimal places. Use xo = [1 1 1]T as the seed.
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(b)

(©

Determine the exact value of the dominant eigenvalue of A and compare to your result from
part (a).

Approximate the remaining eigenvalues of A using the inverse power method. (Hint: Try
a=05and a = 1.8.)

Example Solution.

(a)

(b)

(©

We use technology to calculate the scaled vectors A*x for values of k until the components

don’t change in the second decimal place. For example, to two decimal places we have

xj, = [0.50 1.00 0.50]T for k& > 4. So we suspect that [% 1 %]T is a dominant eigenvector

for A.

For the dominant eigenvalue, we can calculate the Rayleigh quotients (’ixk )Xk yntil they
k' Xk

do not change to two decimal places. For k& > 2, our Rayleigh quotients are all (to two
decimal places) equal to 4. So we expect that the dominant eigenvalue of A is 4. We could

also use the fact that
T T
1 1 1 1
A[lQ] :[242]T:4[ ]

-1
2 22
to see that [% 1 %} T is a dominant eigenvector for A with eigenvalue 4.

Technology shows that the characteristic polynomial of A — AI3 is
pA) = =N +7A7 1A +8=—-A—-1)(A—2)(\ —4).
We can see from the characteristic polynomial that 4 is the dominant eigenvalue of A.

Applying the power method to B = (A — 0.513)~! with seed xo = [1 1 1] gives x;, ~
[0.50 1.00 0.50] for k& > 5, with Rayleigh quotients of 2 (to several decimal places). So 2
is the dominant eigenvalue of B. But ﬁ is also the dominant eigenvalue of B, where A

_1

is the corresponding eigenvalue of A. . So to find A, we note that ==

A = 1is an eigenvalue of A.

= 2 implies that

Now applying the power method to B = (A — 1.813)~! with seed xg = [1 1 1] gives
X, ~ [1.00 — 1.00 1.00]" for large enough k, with Rayleigh quotients of 5 (to several
decimal places). To find the corresponding eigenvalue A for A, we note that ﬁ =5, or
A = 2is an eigenvalue of A.

Admittedly, this method is very limited. Finding good choices for o often depends on
having some information about the eigenvalues of A. Choosing « close to an eigenvalue
provides the best chance of obtaining that eigenvalue.

Summary

e The power method is an iterative method that can be used to approximate the dominant eigen-
value of an n x n matrix A that has n linearly independent eigenvectors and a dominant
eigenvalue.
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e To use the power method we start with a seed x( and then calculate the sequence {xy} of
vectors, where x;, = Axj_1. If X is chosen well, then the sequence {x;} converges to a
dominant eigenvector of A.

e If A is an n x n matrix with eigenvalues A1, Ao, ..., Ay, to approximate an eigenvector

of A corresponding to the eigenvalue \;, we apply the power method to the matrix B =
1 ‘ ‘ 1
—| >

(A — al,)" !, where « is not a eigenvalue of A and pys—n

for any j # 1.

[0}

Ai
Exercises

(1) Let A= [ L2 }Letxo:[10]T.

21

(a) Find the eigenvalues and corresponding eigenvectors for A.

(b) Use appropriate technology to calculate x;, = A*xq for k up to 10. Compare to a
dominant eigenvector for A.

(c) Use the eigenvectors from part (b) to approximate the dominant eigenvalue for A.
Compare to the exact value of the dominant eigenvalue of A.

(d) Assume that the other eigenvalue for A is close to 0. Apply the inverse power method
and compare the results to the remaining eigenvalue and eigenvectors for A.

1 20
2) Let A= | —2 1 2 |. Use the power method to approximate a dominant eigenvector for
1 31

A. Use xg = [111]7 as the seed. Then approximate the dominant eigenvalue of A.

3 -1
-1 3
method fails in this case to approximate a dominant eigenvector, and how you could adjust
the seed to make the process work.

(3) Let A =

] . Use the power method starting with xo = [1 1]T. Explain why the

1 0

(a) Find the eigenvalues and an eigenvector for each eigenvalue.

4) LetA:[O 1 }

(b) Apply the power method with an initial starting vector xq = [0 1]T. What is the
resulting sequence?

(c) Use equation (19.3) to explain the sequence you found in part (b).

2 6
5) LetA—[5 3

dominant eigenvector using the power method, starting with the seed xo = [1 0]T. Compare
the results of this table to the eigenvalues of A and limy_, % What do you notice?

] . Fill in the entries in Table 19.4, where X, is the kth approximation to a

4 -5
2 15
In this exercise we explore what happens if we apply the power method to A~1,

(6) Let A = [

] . The power method will approximate the dominant eigenvalue A\ = 14.
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A% X0 X1 X9 X3 X4 X5

vl Av
viv

v X6 X7 X8 X9 X10 X11

vl Av
viv

Table 19.4: Values of the Rayleigh quotient.

(a) Apply the power method to A~! to approximate the dominant eigenvalue of A~
Use [11]T as the seed. How is this eigenvalue related to an eigenvalue of A?

(b) Explain in general why applying the power method to the inverse of an invertible
matrix B might give an approximation to an eigenvalue of B of smallest magnitude.
When might this not work?

(7) There are other algebraic methods that do not rely on the determinant of a matrix that can be
used to find eigenvalues of a matrix. We examine one such method in this exercise. Let A be
any n X n matrix, and let v be any vector in R".

(a) Explain why the vectors
v, Av, A%v, ..., A"

are linearly independent.

(b) Let cg, c1, ..., ¢, be scalars, not all 0, so that
oV + LAV + 9 A%V + -+« 4 ¢, A"v = 0.

Explain why there must be a smallest positive integer k so that there are scalars ay,
ai, ..., ag with ag # 0. such that

apv + a1 Av + as A%V + - + akAkv =0.

(c) Let
q(t) = ap + a1t + ast® + - - - + axt”.
Then
q(A) =ag + a,lA + a2A2 —+ -+ akAk
and

QAW = (ag + a1 A+ ag A2 + - - + a, AF)v
= agV + a1 AV + ap A%V + - + ap APy
=0.
Suppose the polynomial ¢(¢) has a linear factor, say ¢(t) = (t — A\)Q(t) for some

)
degree k— 1 polynomial Q(¢). Explain why, if Q(A)v is non-zero, A is an eigenvalue
of A with eigenvector Q(A)v.
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(d) This method allows us to find certain eigenvalues and eigenvectors, the roots of
the polynomial ¢(t). Any other eigenvector must lie outside the eigenspaces we
have already found, so repeating the process with a vector v not in any of the
known eigenspaces will produce different eigenvalues and eigenvectors. Let A =

2 2 -1
2 2 2
0 0 6

i. Find the polynomial ¢(t). Use v = [1 1 1]T.
ii. Find all of the roots of ¢(t).

iii. For each root A of ¢(t), find the polynomial Q(¢) and use this polynomial to
determine an eigenvector of A. Verify your work.

(8) We don’t need to use the Rayleigh quotients to approximate the dominant eigenvalue of a
matrix A if we instead keep track of the scaling factors. Recall that the scaling in the power
method can be used to make the magnitudes of the successive approximations smaller and
easier to work with. Let A be an n X n matrix and begin with a non-zero seed vo. We
now want to keep track of the scaling factors, so let oy be the component of v with largest
absolute value and let x¢ = |a—10|v0. For k > 0, let vi, = Axj_1, let ay, be the component of

vy, with largest absolute value and let x;, = olevk'
0 1

-8 6
10. Compare to the dominant eigenvalue of A.

(a) Let A = [ } . Use xo = [1 1]T as the seed and calculate oy, for k from 1 to

(b) Assume that for large k the vectors x;, approach a dominant eigenvector with dom-
inant eigenvalue A. Show now in general that the sequence of scaling factors o
approaches \.

(9) Let A be an n x n matrix and let « be a scalar that is not an eigenvalue of A. Suppose that x
is an eigenvector of B = (A — al,,)~! with eigenvalue 3. Find an eigenvalue of A in terms
of B and « with corresponding eigenvector x.

(10) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The largest eigenvalue of a matrix is a dominant eigenvalue.

(b) True/False If an n x n matrix A has n linearly independent eigenvectors and a
dominant eigenvalue, then the sequence { A¥x} converges to a dominant eigenvector
of A for any initial vector xg.

(c) True/False If ) is an eigenvalue of an n x n matrix A and « is not an eigenvalue of
A, then A — « is an eigenvalue of A — a,.

(d) True/False Every square matrix has a dominant eigenvalue.

Project: Managing a Sheep Herd

Sheep farming is a significant industry in New Zealand. New Zealand is reported to have the
highest density of sheep in the world. Sheep can begin to reproduce after one year, and give birth
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only once per year. Table 19.5 gives Birth and Survival Rates for Female New Zealand Sheep (from
G. Caughley, “Parameters for Seasonally Breeding Populations,” Ecology, 48, (1967), 834-839).
Since sheep hardly ever live past 12 years, we will only consider the population through 12 years.

Age (years) | Birth Rate | Survival Rate
0-1 0.000 0.845
1-2 0.045 0.975
2-3 0.391 0.965
3-4 0.472 0.950
4-5 0.484 0.926
5-6 0.546 0.895
6-7 0.543 0.850
7-8 0.502 0.786
8-9 0.468 0.691

9-10 0.459 0.561
10-11 0.433 0.370
11-12 0.421 0.000

Table 19.5: New Zealand female sheep data by age group.

As sheep reproduce, they add to the 0-1 sheep (lamb) population. The potential to produce
offspring is called fecundity (derived from the word fecund which generally refers to reproductive
ability) and determines how many lamb are added to the population. Let F}, (the fecundity rate) be
the rate at which females in age class & give birth to female offspring. Not all members of a given
age group survive to the next age groups, so let s be the fraction of individuals that survives from
age group k to age group k + 1. With these ideas in mind, we can create a life cycle chart as in
Figure 19.2 that illustrates how the population of sheep changes on a farm (for the sake of space,
we illustrate with four age classes).

fco=o=o=o
S3

S1

Figure 19.2: Life cycle with four age classes.

To model the sheep population, we need a few variables. Let n§°) be the number of sheep in

age group 0-1, néo) the number in age group 1-2, n3 the number in age group 2-3 and, in general,

ng)) the number of sheep in age group (k — 1)-k at some initial time (time 0), and let

'
S
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We wish to determine the populations in the different groups after one year. Let

1"

M © N9

x1 = [0 ) D ..

1

where n; (1)

) denotes the number of sheep in age group 0-1, n,

1-2 and, in general, n,(:)

the number of sheep in age group

the number of tilapia in age group (k — 1)-k after one year.

Project Activity 19.1. Table 19.5 shows that, on average, each female in age group 1-2 produces
0.045 female offspring in a year. Since there are ny females in age group 1-2, the lamb population
increases by 0.045n3 in a year.

(a) Continue this analysis to explain why

n{Y = 0.045n5 + 0.391n3 + 0.472n4 + 0.484n5 + 0.546n6 + 0.543n7
+0.502n5 + 0.468n9 + 0.459n10 + 0.433n1; + 0.421n15.

(1)

(b) Explain why n,’ = 0.845n;.

(c) Now explain why

x1 = Lxg, (19.5)
where L is the matrix
T 0 0.045 0.391 0.472 0.484 0.546 0.543 0.502 0.468 0.459 0.433 0.421
0.845 0 0 0 0 0 0 0 0 0 0 0
0 0975 0 0 0 0 0 0 0 0 0 0
0 0 0965 0 0 0 0 0 0 0 0 0
0 0 0 0950 O 0 0 0 0 0 0 0
0 0 0 0 0926 0 0 0 0 0 0 0
0 0 0 0 0 0895 0 0 0 0 0 0 (19.6)
0 0 0 0 0 0 0850 0 0 0 0 0
0 0 0 0 0 0 0 078 0 0 0 0
0 0 0 0 0 0 0 0 0691 0 0 0
0 0 0 0 0 0 0 0 0 0561 0 0
) 0 0 0 0 0 0 0 0 0 0370 0
Notice that our matrix L has the form
F Fy, F3 F,.1 F,
s1 0 O 0 0
0 s O 0 0
0 0 s3 0 0
. 0 0 O Sp—1 0 |

Such a matrix is called a Leslie matrix.

Leslie matrices have certain useful properties, and one eigenvalue of a Leslie matrix can tell us
a lot about the long-term behavior of the situation being modeled. You can take these properties as
fact unless otherwise directed.

(1) A Leslie matrix L has a unique positive eigenvalue A; with a corresponding eigenvector v
whose entries are all positive.
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(2) If A\; (i > 1) is any other eigenvalue (real or complex) of L, then |A;| < A;. If A; is the largest
magnitude eigenvalue of a matrix L, we call Ay a dominant eigenvalue of L.

(3) If any two successive entries in the first row of L are both positive, then |\;| < A; for every
1 > 1. In this case we say that \; is a strictly dominant eigenvalue of L. In a Leslie model, this
happens when the females in two successive age classes are fertile, which is almost always
the case.

(4) If A\p is a strictly dominant eigenvalue, then xj, is approximately a scalar multiple of v; for
large values of k, regardless of the initial state xg. In other words, large state vectors are close
to eigenvectors for A;.

We can use these properties to determine the long-term behavior of the sheep herd.

Project Activity 19.2. Assume that L is defined by (19.6), and let

where n

‘
s = [ e i)

gm) denotes the number of sheep in age group 0-1, ném) the number of sheep in age group

(m)

1-2 and, in general, n;, ~ the number of sheep in age group (k — 1)-k after k years.

(a)

(b)

Assume that xo = [100 100 100 - - - IOO]T. Use appropriate technology to calculate x2o,
X923, X24, and Xo5. Round to the nearest whole number. What do you notice about the sheep
population? You may use the GeoGebra applet at https://www.geogebra.org/m/
yqgss88xq.

We can use the third and fourth properties of Leslie matrices to better understand the long-
term behavior of the sheep population. Since successive entries in the first row of the Leslie
matrix in (19.6) are positive, our Leslie matrix has a strictly dominant eigenvalue A;. Given
the dimensions of our Leslie matrix, finding this dominant eigenvalue through algebraic
means is not feasible. Use the power method to approximate the dominant eigenvalue \;
of the Leslie matrix in (19.6) to five decimal places. Explain your process. Then explain
how this dominant eigenvalue tells us that, unchecked, the sheep population grows at a rate
that is roughly exponential. What is the growth rate of this exponential growth? You may
use the GeoGebra applet at https://www.geogebra.org/m/ygss88xq.

Project Activity 19.2 indicates that, unchecked, the sheep population will grow without bound,
roughly exponentially with ratio equal to the dominant eigenvalue of our Leslie matrix L. Of course,
a sheep farmer cannot provide the physical environment or the resources to support an unlimited
population of sheep. In addition, most sheep farmers cannot support themselves only by shearing
sheep for the wool. Consequently, some harvesting of the sheep population each year for meat and
skin is necessary. A sustainable harvesting policy allows for the regular harvesting of some sheep
while maintaining the population at a stable level. It is necessary for the farmer to find an optimal
harvesting rate to attain this stable population and the following activity leads us through an analysis
of how such a harvesting rate can be determined.

Project Activity 19.3. The Leslie model can be modified to consider harvesting. It is possible to
harvest different age groups at different rates, and to harvest only some age groups and not others.


https://www.geogebra.org/m/yqss88xq
https://www.geogebra.org/m/yqss88xq
https://www.geogebra.org/m/yqss88xq
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In the case of sheep, it might make sense to only harvest from the youngest population since lamb
is more desirable than mutton and the lamb population grows the fastest. Assume that this is our
harvesting strategy and that we harvest our sheep from only the youngest age group at the start of
each year. Let h be the fraction of sheep we harvest from the youngest age group each year after
considering growth.

(a)

(b)

(©)

(d)

If we begin with an initial population x, then the state vector after births and expected
deaths is Lxy. Now we harvest. Explain why if we harvest a fraction h from the youngest
age group after considering growth, then the state vector after 1 year will be

X1 = LXO — HLXO,

where

oo o oo ococooco s
OO OO OO OO OO oo
DO OO DO OO OO O oo
DO DO DODDODDODO OO O OO
OO OO OO OO OO oo
DO OO OO OO OO oo
DO OO OO OO OO oo
SO OO OO OO OO oo
DO OO OO OO OO oo

DO DD DODDODDOD OO O OO
DO DO DD DODDODDOD O OO OO
DO DD DD DODDODDOD O OO OO

Our goal is to find a harvesting rate that will lead to a steady state in which the sheep
population remains the same each year. In other words, we want to find a value of A, if one
exists, that satisfies

x = Lx — HLx. (19.7)

Show that (19.7) is equivalent to the matrix equation

x = (I12 — H)Lx. (19.8)

Use appropriate technology to experiment numerically with different values of A to find the
value you think gives the best uniform harvest rate. Explain your reasoning. You may use
the GeoGebra applet at https://www.geogebra.org/m/yqss88xq.

Now we will use some algebra to find an equation that explicitly gives us the harvest rate in
the general setting. This will take a bit of work, but none of it is too difficult. To simplify
our work but yet illustrate the overall idea, let us consider the general 4 x 4 case with
arbitrary Leslie matrix

Fy, F, F3 Fy

s 0 0 0
L=1% & 0o o
0 0 s3 0


https://www.geogebra.org/m/yqss88xq
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Recall that we want to find a value of h that satisfies (19.8) with H =

oo o
o O O O
o O O O
o O O O

Let x =[x o2 23 x4]".

I

il.

1il.

1v.

Calculate the matrix product (14 — H)L. Explain why this product is again a Leslie
matrix and why (/4 — H)L will have a dominant eigenvalue of 1.

Now calculate (I, — H)Lx and set it equal to x. Write down the resulting system of
4 equations that must be satisfied. Be sure that your first equation is

x| = (1 — h)F1w1 + (1 — h)FQwQ + (1 — h)Fg.Tg + (1 — h)F4ac4. (19.9)

Equation (19.9) as written depends on the entries of the vector x, but we should be
able to arrive at a result that is independent of x. To see how we do this, we assume
the population of the youngest group is never 0, so we can divide both sides of (19.9)
by x1 to obtain

l=(1-WR+1-MB2 11 -nR2 1 -nE2. 19.10)
I I I
Now we need to write the fractions 72, 73, and % so that they do not involve the ;.
Use the remaining equations in your system to show that
o)
1
T3
—= = 5152
T
T4
— — 8185283.
I
Now conclude that the harvesting value h must satisfy the equation
1= (1 — h)[Fl + Fos1 + F3s1589 + F4818253}. (19.11)

The value R = F} + Fbs1 + F3s150 4+ Fys1592s3 is called the net reproduction rate of
the population and turns out to be the average number of daughters born to a female
in her expected lifetime.

(e) Extend (19.11) to the 12 age group case of the sheep herd. Calculate the value of R for this
sheep herd and then find the value of A. Compare this A to the value you obtained through
experimentation earlier. Find the fraction of the lambs that should be harvested each year
and explain what the stable population state vector x tells us about the sheep population for
this harvesting policy.






Section 20

Complex Eigenvalues

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

What properties do complex eigenvalues of a real matrix satisfy?

What properties do complex eigenvectors of a real matrix satisfy?

What is a rotation-scaling matrix?

e How do we find a rotation-scaling matrix within a matrix with complex
eigenvalues?

Application: The Gershgorin Disk Theorem

We have now seen different methods for calculating/approximating eigenvalues of a matrix. The
algebraic method using the characteristic polynomial can provide exact values, but only in cases
where the size of the matrix is small. Methods like the power method allow us to approximate
eigenvalues in many, but not all, cases. These approximation techniques can be made more efficient
if we have some idea of where the eigenvalues are. The Gershgorin Disc Theorem is a useful
tool that can quickly provide bounds on the location of eigenvalues using elementary calculations.
For example, using the Gershsgorin Disk Theorem we can quickly tell that the real parts of the
eigenvalues of the matrix

3 1 -1
0 -1+ ?
2 1 —24

lie between —4 and 5 and the imaginary parts lie between —5 and 2. Even more, we can say that
the eigenvalues lie in the disks (called Gershgorin disks) shown in Figure 20.1. We will learn more
details about the Gershgorin Disk Theorem at the end of this section.

349
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[im)

Figure 20.1: Gershgorin disks.

Introduction

So far we have worked with real matrices whose eigenvalues are all real. However, the characteristic
polynomial of a matrix with real entries can have complex roots. In this section we investigate the
properties of these complex roots and their corresponding eigenvectors, how these complex eigen-
vectors are found, and the geometric interpretation of the transformations defined by matrices with
complex eigenvalues. Although we can consider matrices that have complex numbers as entries,
we will restrict ourselves to matrices with real entries.

Preview Activity 20.1. Let A = [ _g ;l }

(1) Find the characteristic polynomial of A.

(2) Find the eigenvalues of A. You should get two complex numbers. How are these complex
numbers related?

(3) Find an eigenvector corresponding to each eigenvalue of A. You should obtain vectors with
complex entries.

Complex Eigenvalues

As you noticed in Preview Activity 20.1, the complex roots of the characteristic equation of a real
matrix A come in complex conjugate pairs. This should come as no surprise since we know through
our use of the quadratic formula that complex roots of (real) quadratic polynomials come in complex
conjugate pairs. More generally, if p(x) = ag + a2 + asx? + - - - + a,x" is a polynomial with real
coefficients and z is a root of this polynomial, meaning p(z) = 0, then

0=p(2) =ao+ a1z +az? + -+ anz" = ag + a1z + agZ> + - -- + a,2" = p(%).

Therefore, % is also a root of p(z).

o099
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Activity 20.1. Let A = [ (1’ _(1) ]

(a) The linear transformation 7" : R? — R? defined by T'(x) = Ax is a rotation transformation.
What is the angle of rotation?

(b) Find the eigenvalues of A. For each eigenvalue, find an eigenvector.

In Preview Activity 20.1 and in Activity 20.1, you found that if v is an eigenvector of A corre-
sponding to A, then vV obtained by taking the complex conjugate of each entry in v is an eigenvector
of A corresponding to A. Specifically, if v = u + w where both u and w are real vectors is an
eigenvector of A, then so is V. = u — ¢w. We can justify this property using matrix algebra as
follows:

AV =AVv = Av =)\v = \V.

In the first equality, we used the fact that A is a real matrix, so A = A. In all the other equalities,
we used the properties of the conjugation operation in complex numbers.

Rotation and Scaling Matrices

Recall that a rotation matrix is of the form

cos(f) —sin(6)
Ry=| .
sin(d)  cos(0)

where the rotation is counterclockwise about the origin by an angle of 6 radians. In Activity 20.1,
we considered the rotation matrix with angle 7/2 in counterclockwise direction. We will soon see
that rotation matrices play an important role in the geometry of a matrix transformation for a matrix
that has complex eigenvalues. In this activity, we will restrict ourselves to the 2 x 2 case, but similar
arguments can be made in higher dimensions.

Activity 20.2. Let A = [ _1 1 ]

(a) Explain why A is not a rotation matrix.

(b) Although A is not a rotation matrix, there is a rotation matrix B inside A. To find the matrix
B, factor out v/2 from all entries of A. In other words, write A as a product of two matrices

in the form
[Vv2 0

(¢c) The B matrix is a rotation matrix with an appropriate 6. Find this 6.

(d) If we think about the product of two matrices as applying one transformation after another,
describe the effect of the matrix transformation defined by A geometrically.
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More generally, if we have a matrix A of the form A = [ Z _Z ] , then

s va? + b2 0
- 0 Va2 + b2

a —b
VaZ+b2  Va2+b?
b a .
Va2+b?  Va?+b?

The first matrix in the decomposition is a scaling matrix with a scaling factor of s = v/a? + b2. So
if s > 1, the transformation stretches vectors, and if s < 1, the transformation shrinks vectors. The
second matrix in the decomposition is a rotation matrix with angle # such that cos(f) = —=2

) Va2+b2
and sin(f) = WL This angle is also the angle between the positive x-axis and the vector
a . : a — . . .

v = [ b } . We will refer to the matrices of the form [ b } as rotation-scaling matrices.

Matrices with Complex Eigenvalues

Now we will investigate how a general 2 x 2 matrix with complex eigenvalues can be seen to be
similar (both in a linear algebra and a colloquial meaning) to a rotation-scaling matrix.

1 -5
2 3
-5
1—-3:

Activity 20.3. Let B = [ } . The eigenvalues of B are 2 4+ 3i. An eigenvector for the

eigenvalue 2 — 3iis v = [ } . We will use this eigenvector to show that B is similar to a

rotation-scaling matrix.

(a) Any complex vector v can be written as v = u + ¢w where both u and w are real vectors.
What are these real vectors u and w for the eigenvector v above?

(b) Let P = [u w]| be the matrix whose first column is the real part of v and whose second
column is the imaginary part of v (without the 7). Find R = P~'BP.

(c) Express R as a product of a rotation and a scaling matrix. What is the factor of scaling?
What is the rotation angle?

In Activity 20.3, we saw that the matrix B with complex eigenvalues 2 £ 37 is similar to a
rotation-scaling matrix. Specifically R = P~!BP, where the columns of P are the real and imagi-
nary parts of an eigenvector of B, is the rotation-scaling matrix with a factor of scaling by /22 + 32
and a rotation by angle 6 = arccos(ﬁ).

Does a similar decomposition result hold for a general 2 x 2 matrix with complex eigenvalues?
We investigate this question in the next activity.

Activity 20.4. Let A be a 2 x 2 matrix with complex eigenvalue A = a — bi, b # 0, and corre-
sponding complex eigenvector v = u + iw.

(a) Explain why Av = Au + iAw.
(b) Explain why A\v = (au + bw) + i(aw — bu).

o099
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(c) Use the previous two results to explain why

e Au = qu + bw and

o Aw = aw — bu.

(d) Let P = [u w]. We will now show that AP = PR where R = [ Z _2 } .

i. Without any calculation, explain why
AP = [Au Aw].

ii. Recall that if M is an m X n matrix and x is an n X 1 vector, then the matrix product
Mx is a linear combination of the columns of M with weights the corresponding
entries of the vector x. Use this idea to show that

PR = [au+ bw — bu + aw].

iii. Now explain why AP = PR.
iv. Assume for the moment that P is an invertible matrix. Show that A = PRP 1.

Your work in Activity 20.4 shows that any 2 X 2 matrix is similar to a rotation-scaling matrix

with a factor of scaling by v/a? + b2 and a rotation by angle 6 = arccos( \/C;W) if b > 0, and

)if b < 0. Geometrically, this means that every 2 x 2 real matrix with complex

0=— arccos(\/%
. . . a +b . . .

eigenvalues is just a scaled rotation (R) with respect to the basis B formed by u and w from the

complex eigenvector v. Multiplying by P~! and P simply provides the change of basis from the

standard basis to the basis B, as we will see in detail when we learn about linear transformations.

Theorem 20.1. Let A be a real 2 x 2 matrix with complex eigenvalue a — bi and corresponding
eigenvector v.=u + i1w. Then

A=PRP™' where P=[uw] and R = [z _2} :

The one fact that we have not yet addressed is why the matrix P = [u w] is invertible. We do
that now to complete the argument.

Let A be areal 2 x 2 matrix with Av = Av, where A = a — bi, b # 0 and v = u + iw. To
show that u and w are linearly independent, we need to show that no nontrivial linear combination
of u and w can be the zero vector. Suppose

riu+ xow =0

for some scalars x1 and 3. We will show that 1 = 22 = 0. Assume to the contrary that one of

x1, 2 is not zero. First, assume z; # 0. Then u = —%w. Letc = —%. Then
Au = A(ew)
Au = cAw

au + bw = c(au — bw)
(a+cb)ju=(ca—b)w
(a+ cb)(cu) = (ca — b)w.
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So we must have (a+cb)c = ca—b. This equation simplifies to c2b = —b. Since b # 0, we conclude
that ¢> = —1 which is impossible for a real constant c. Therefore, we cannot have 1 # 0. A similar
argument (left to the reader) shows that zo = 0. Thus we can conclude that u and w are linearly
independent.

Examples

What follows are worked examples that use the concepts from this section.

01 O
Example 20.2. LetA=| —1 0 -1
11 1

(a) Without doing any computations, explain why not all of the eigenvalues of A can be com-
plex.

(b) Find all of the eigenvalues of A.

Example Solution.

(a) Since complex eigenvalues occur in conjugate pairs, the complex eigenvalues with nonzero
imaginary parts occur in pairs. Since A can have at most 3 different eigenvalues, at most
two of them can have nonzero imaginary parts. So at least one eigenvalue of A is real.

- 1 0
(b) For this matrix Awehave A—Al3 = | —1 —\ -1 . Using a cofactor expansion
1 1 —x+1

along the first row gives us
det(A—A3) = (=A) (=)A= A)+1) = ((-1)(1=X)+1)
=M -Ar1-2-1
=A%+ 2% —2A
=AM =-)+2).

The roots of the characteristic polynomial are A = 0 and
2 1
Ao LEVIZHO) =51+ VTi).

Example 20.3. Let A = ] Find a rotation scaling matrix R that is similar to A. Identify

—1 3
the rotation and scaling factor.

Example Solution. The eigenvalues of A are the roots of the characteristic polynomial

p(A) = det(A — \]p)

BTy

=(1-XNB=-))+2
=2 — 4\ +5.
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The quadratic formula shows that the roots of p(\) are
4+ +/—4
— =2=.
2
To find an eigenvector for A with eigenvalue 2 — i, we row reduce

A (2— i)l = [ —1+4i 2 ]

-1 1+

ERNi

An eigenvector for A with eigenvalue 2 — 7 is then

to

1+ 1T =11 +i10]".

1

Letting P = [ 10

} , we have

i 2 41
R=P AP_[l 5 |-

The scaling is determined by the determinant of R which is 5, and the angle § of rotation satisfies

sin(f) = % This makes 6 = 0.2014 radians or approximately 11.5370° counterclockwise.

Summary

e For a real matrix, complex eigenvalues appear in conjugate pairs. Specifically, if A = a + ib
is an eigenvalue of a real matrix A, then A = a — ib is also an eigenvalue of A.

e For a real matrix, if a v is an eigenvector corresponding to A, then the vector v obtained by
taking the complex conjugate of each entry in v is an eigenvector corresponding to .

a —b

e The rotation-scaling matrix A = [ b a ] can be written as

[ Va2 + b2 0 ] [ \/a2a+b2 \/ag—?—lﬁ ]
/2 2 b a :
0 a®+b VaZ+b2  VaZ+b2

This decomposition geometrically means that the transformation corresponding to A can be

a

viewed as a rotation by angle # = arccos (W) if b > 0, or § = — arccos (ﬁ) if
b < 0, followed by a scaling by factor v/a? + b2.
e If Aisareal 2 x 2 matrix with complex eigenvalue a — bi and corresponding eigenvector v =

a

—b .
b4 } . More specifically,

u + iw, then A is similar to the rotation-scaling matrix R = [

A= PRP™!' where P = [uw].
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Exercises

(1) Find eigenvalues and eigenvectors of each of the following matrices.

2 4]
@1 5 o]
3 2]
(b) 11
© | :g_

(2) Find a rotation-scaling matrix where the rotation angle is # = 37/4 and scaling factor is less
than 1.

(3) Determine which rotation-scaling matrices have determinant equal to 1. Be as specific as
possible.

(4) Determine the rotation-scaling matrix inside the matrix [ _Z ;1 ] .

(5) Find areal 2 x 2 matrix with eigenvalue 1 + 21.
(6) Find a real 2 x 2 matrix which is not a rotation-scaling matrix with eigenvalue —1 + 21.

(7) We have seen how to find the characteristic polynomial of an n x n matrix. In this exercise
we consider the revers question. That is, given a polynomial p(\) of degree n, can we find
an n X n matrix whose characteristic polynomial is p(\)?

0 —ag
1 —aq
result to find a real valued matrix whose eigenvalues are 1 4+ ¢ and 1 — <.

(a) Find the characteristic polynomial of the 2 x 2 matrix C' = [ ] . Use this

(b) Repeat part (a) by showing that —p(A\) = — (A? + agA? + a1\ + ap) is the charac-

0 0 —ag
teristic polynomial of the 3 x 3matrix C = | 0 1 —ay
0 0 —as

(c) We can generalize this argument. Prove, using mathematical induction, that the poly-
nomial

P = (=1)" (A" + a1 A"+ anaX" 2+ -+ arh + ag)

is the characteristic polynomial of the matrix

000 --- 0 —aqa

1 0 0 —aq

c=10120 -+ 0 —a
100 0 -~ 1 —ap_1 |

The matrix C is called the companion matrix for p(\).
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(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If 3 — 41 is an eigenvalue of a real matrix, then so is 3 + 4.

(b) True/False If 2 + 3i is an eigenvalue of a 3 x 3 real matrix A, then A has three
distinct eigenvalues.

(c) True/False Every 2 x 2 real matrix with complex eigenvalues is a rotation-scaling
matrix.

(d) True/False Every square matrix with real entries has real number eigenvalues.

(e) True/False If A is a 2 x 2 matrix with complex eigenvalues similar to a rotation-
scaling matrix R, the eigenvalues of A and R are the same.

(f) True/False If A is a real matrix with complex eigenvalues, all eigenvectors of A must
be non-real.

Project: Understanding the Gershgorin Disk Theorem

To understand the Gershgorin Disk Theorem, we need to recall how to visualize a complex number
in the plane. Recall that a complex number z is a number of the form z = a + bi where a and
b are real numbers and i> = —1. The number a is the real part of z, denoted as $(z), and b is
the imaginary part of z, denoted 3(z). The set of all complex numbers is denoted C. We define
addition and multiplication on C as follows. For a + bi,c + di € C,

(a+bi)+ (c+di)=(a+c)+ (b+d)i and (a+ bi)(c+ di) = (ac—bd)+ (ad + be)i.

Note that the product is what we would expect if we “expanded” the product in the normal way and
used the fact that i> = —1. The set of complex numbers forms a field — that is, C satisfies all of the
same properties as R as stated in Theorem 4.2.

We can visualize the complex number a + bi in the plane as the point (a,b). Here we are
viewing the horizontal axis as the real axis and the vertical axis as the imaginary axis. The length
(or magnitude) of the complex number z = a + bi, which we denote as |z|, is the distance from the
origin to 2. So by the Pythagorean Theorem we have |a + bi| = v/a? + b2. Note that the magnitude
of z = a + bi can be written as a complex product

12| = \/(a + bi)(a — bi).

The complex number a — bi is called the complex conjugate of z = a + bi and is denoted as z. A
few important properties of real numbers and their conjugates are the following. Let z = a+ b¢ and
w = ¢ + di be complex numbers. Then

eztw=(a+c)+(b+di=(a+c)—(b+d)i=(a—bi)+ (c—di) =Z+w,

o zw = (ac — bd) + (ad + be)i = (ac — bd) — (ad + be)i = (a — bi)(c — di) = zw,

||

o 7z =2z,
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o 2| =Va?+1b? > Va2 = la| = |R(2)],
o [z =vVa2+ 02> Vb2 = b = |3(2)],

NEE

>

|z| = 0if and only if z = 0,

If p(x) is a polynomial with real coefficients and the complex number z satisfies p(z) = 0,
then p (z) = 0 as well.

Using these facts we can show that the triangle inequality is true for complex numbers. That is,
|2+ w| < |z] + |wl.
To see why, notice that

124+ w|? = (z + w)(z T w)
= (z4+w)(z+w)
=2z + 20+ wz +ww
= 2Z + 2W + 20W + Ww
= |2> + 2R(2w) + |w]|?
< 22 + 20zw] + ful?
= [2[* + 2|z ]w] + w]”
= (|| + |w])*.

Since |z 4+ w|, ||, and |w| are all non-negative, taking square roots of both sides gives us |z + w| <

|z| + |w| as desired. We can extend this triangle inequality to any number of complex numbers.
That is, if 21, 29, .. ., 2§ are complex numbers, then

|21 + 20 4+ -+ 2] < 2]+ |z + -+ 2l (20.1)

We can prove Equation (20.1) by mathematical induction. We have already done the k = 2 case
and so we assume that Equation (20.1) is true for any sum of k£ complex numbers. Now suppose
that z1, 29, ..., 2k, 2+1 are complex numbers. Then

|21+ 22+ 2+ 2] = (21 H 22+ 00+ 2k) + 2]
<21+ 22+ 4 2] + 2541
< (Jza] + |z2] 4 -+ + [2]) + 2041
= |z1] + |z2| + -+ + [2] + [2841]-

To prove the Gershgorin Disk Theorem, we will use the Levy-Desplanques Theorem, which
gives conditions that guarantee that a matrix is invertible. We illustrate with an example in the
following activity.

Project Activity 20.1. Let A = | 1 4

matrix. Let us assume for a moment that we don’t know that A is invertible and try to determine

3 2 ] . Since det(A) # 0, we know that A is an invertible
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if 0 is an eigenvalue of A. In other words, we want to know if there is a nonzero vector v so that
Av = 0. Assuming the existence of such a vector v = [v; vg}T, for Av to be 0 it must be the case
that

3vi1 +2v9 =0 and — v1 +4vy = 0.

Since the vector v is not the zero vector, at least one of v1, v2 is not zero. Note that if one of vy, v
is zero, the so is the other. So we can assume that v; and v are nonzero.

(a) Use the fact that 3v; + 2vy = 0 to show that |va| > |v1].

(b) Use the fact that —v; + 4ve = 0 to show that |v;| > |ve|. What conclusion can we draw
about whether 0 is an eigenvalue of A? Why does this mean that A is invertible?

What makes the arguments work in Project Activity 20.1 is that [3| > |2| and |4| > | — 1|. This
argument can be extended to larger matrices, as described in the following theorem.

Theorem 20.4 (Levy-Desplanques Theorem). Any square matrix A = [a;;] satisfying |a;| >
> ji laij| for all i is invertible.

Proof. Let A = [a;;] be an n x n matrix satisfying |a;| > Z#i la;;| for all 7. Let us assume that
A is not invertible, that is that there is a vector v # 0 such that Av = 0. Let v = [v1 vg -+ vy]
and ¢ be between 1 and n so that |v;| > |v;| for all 4. That is, choose v; to be the component of v
with the largest absolute value.

Expanding the product Av using the row-column product along the tth row shows that
ag1v1 + agpve + - - agpvp = 0.
Solving for the a;; term gives us
apvr = —(anv1 + apve + - Gy 1) V-1 + Qy(er1) V1 0+ Qmtn).
Then

|laul|ve] = | = (anv1 + ar2v2 + - @y 1y Vi1 + Qy(e11)Ve41 + 0+ Qnn|
= lanvr + a2 + - A1) V-1 F Qy(g1) V41 + o F G Un|
< lag||vor] + fasellva| + -+ lag—p)llvi—a] + |agsny [vesa| + - - + [aem][vn]
<agl[ve] + [age||ve| + - - - Jag—1y||ve] + largqny[Jve] + - -+ + |agn|ve]

= (lan| + fas| + - layg—y)| + || + - - + lawm])oz].
Since |v;| # 0, we cancel the |v;| term to conclude that
lae| < lagt| + lasz| + - - lage—1)| + lagaq)| + - + lawml.

But this contradicts the condition that [a;;| > >, |a;;| for all i. We conclude that 0 is not an
eigenvalue for A and A is invertible. |

Any matrix A = [a;;] satisfying the condition of the Levy-Desplanques Theorem is given a
special name.

D00
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Definition 20.5. A square matrix A = [a;;] is strictly diagonally dominant if [a;;| > ., [a;;|
for all s.

So any strictly diagonally dominant matrix is invertible. A quick glance can show that a matrix
is strictly diagonally dominant. For example, since |3| > |[1| + | — 1|, [12] > |5| + |6], and
| — 8] < | — 2|+ |4], the matrix

3 1 -1
A= 5 12 6
-2 4 =8

is strictly diagonally dominant and therefore invertible. However, just because a matrix is not
strictly diagonally dominant, it does not follow that the matrix is non-invertible. For example, the

) 1
matrix B = { 01

Now we can address the Gershgorin Disk Theorem.

] is invertible, but not strictly diagonally dominant.

Project Activity 20.2. Let A be an arbitrary n x n matrix and assume that X is an eigenvalue of A.

(a) Explain why the matrix A — A[ is singular.
(b) What does the Levy-Desplanques Theorem tell us about the matrix A — \I?
(c) Explain how we can conclude the Gershgorin Disk Theorem.

Theorem 20.6 (Gershgorin Disk Theorem). Let A = [a;;] be an n x n matrix with complex
entries. Then every eigenvalue of A lies in one of the Gershgorin discs

{z € C:|z—au| <},
where i = 3., |aijl.
Based on this theorem, we define a Gershgorin disk to be D(a;, 7;), where r; = ., |ai;|.

(d) Use the Gershgorin Disk Theorem to give estimates on the locations of the eigenvalues of

the matrix A = [ :; g }

The Gershgorin Disk Theorem has a consequence that gives additional information about the
eigenvalues if some of the Gershgorin disks do not overlap.

Theorem 20.7. If S is a union of m Gershgorin disks of a matrix A such that S does not intersect
any other Gershgorin disk, then S contains exactly m eigenvalues (counting multiplicities) of A.

Proof. Most proofs of this theorem require some results from topology. For that reason, we will
not present a completely rigorous proof but rather give the highlights. Let A = [a;;] be ann x n
matrix. Let D; be a collection of Gershgorin disks of A for 1 <7 < m such that S = Uj<;<;nD;
does not intersect any other Gershgorin disk of A, and let S” be the union of the Gershgorin disks
of A that are different from the D;. Note that S N S’ = (. Let C be the matrix whose ith column is
a;;€;, that is C'is the diagonal matrix whose diagonal entries are the corresponding diagonal entries
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of A. Note that the eigenvalues of C' are a;; and the Gershgorin disks of C' are just the points a;;.
So our theorem is true for this matrix C. To prove the result, we build a continuum of matrices
from C to A as follows: let B = A — C' (so that B is the matrix whose off-diagonal entries are
those of A and whose diagonal entries are 0), and let A(¢) = tB + C for ¢ in the interval [0, 1].
Note that A(1) = A. Since the diagonal entries of A(¢) are the same as those of A, the Gershgorin
disks of A(t) have the same centers as the corresponding Gershgorin disks of A, while the radii
of the Gershgorin disks of A(t) are those of A but scaled by ¢. So the Gershgorin disks of A(t)
increase from points (the a;;) to the Gershgorin disks of A as ¢ increases from 0 to 1. While the
centers of the disks all remain fixed, it is important to recognize that the eigenvalues of A(t) move

as t changes. An illustration of this is shown in Figure 20.2 with the eigenvalues as the black points
1

and the changing Gershgorin disks dashed in magenta, using the matrix [ i B 22+ ; } . We can

learn about how the eigenvalues move with the characteristic polynomial.

Figure 20.2: How eigenvalues move.

Let p(t, x) be the characteristic polynomial of A(¢). Note that these characteristic polynomials
are functions of both ¢ and . Since polynomials are continuous functions, their roots (the eigen-
values of A(t)) are continuous for ¢ € [0, 1] as well. Let \(¢) be an eigenvalue of A(¢). Note that
A(1) is an eigenvalue of A, and \(0) is one of the a;; and is therefore in S. We will argue that A(¢)
is in S for every value of ¢ in [0, 1]. Let r; be the radius of D; and let D(¢); be the Gershgorin
disk of A(t) with the same center as D; and radius 7(t); = tr;. Let S(t) = Ui<i<mD(s);. Since
r(s); < r, it follows that D(s); C D; and so S(t) N S’ = ) as well. From topology, we know that
since the disks D; are closed, the union S of these disks is also closed. Similarly, S(¢) and S’ are
closed. Thus, A(¢) is continuous in a closed set and so does not leave the set. Thus, A(¢) is in .S for
every value of ¢ in [0, 1].






Section 21

Properties of Determinants

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e How do elementary row operations change the determinant?

e How can we represent elementary row operations via matrix multiplica-
tion?

e How can we use elementary row operations to calculate the determinant
more efficiently?

e What is the Cramer’s rule for the explicit formula for the inverse of a ma-
trix?

e How can we interpret determinants from a geometric perspective?

Introduction

This section is different than others in that it contains mainly proofs of previously stated results and
only a little new material. Consequently, there is no application attached to this section.

We have seen that an important property of the determinant is that it provides an easy criteria for
the invertibility of a matrix. As aresult, we obtained an algebraic method for finding the eigenvalues
of a matrix, using the characteristic equation. In this section, we will investigate other properties of
the determinant related to how elementary row operations change the determinant. These properties
of the determinant will help us evaluate the determinant in a more efficient way compared to using
the cofactor expansion method, which is computationally intensive for large n values due to it being
a recursive method. Finally, we will derive a geometrical interpretation of the determinant.

Preview Activity 21.1.

363
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(1) We first consider how the determinant changes if we multiply a row of the matrix by a con-
stant.

2 3

(a) LetA:[1 4

] . Pick a few different values for the constant k£ and compare the

2k 3k
1 4
multiplying a row by a constant on the determinant is?

determinant of A and that of [ ] . What do you conjecture that the effect of

(b) If we want to make sure our conjecture is valid for any 2 X 2 matrix, we need to
show that for A = [ Z
a-k b-k
f
© [ c d

Z } , the relationship between det(A) and the determinant

} follows our conjecture. We should also check that the relation-

ship between det(A) and the determinant of [ follows our conjecture.

a b
c-k d-k }
Verify this.
(c) Make a similar conjecture for what happens to the determinant when arow of a 3 x 3
matrix A is multiplied by a constant k, and explain why your conjecture is true using
the cofactor expansion definition of the determinant.

(2) The second type of elementary row operation we consider is row swapping.

b

(a) Take a general 2 X 2 matrix A = [ Z d

} and determine how row swapping effects

the determinant.

(b) Now choose a few different 3 x 3 matrices and see how row swapping changes the
determinant in these matrices by evaluating the determinant with a calculator or any
other appropriate technology.

(c) Based on your results so far, conjecture how row swapping changes the determinant
in general.

(3) The last type of elementary row operation is adding a multiple of a row to another. Determine
the effect of this operation on a 2 x 2 matrix by evaluating the determinant of a general 2 x 2
matrix after a multiple of one row is added to the other row.

(4) All of the elementary row operations we discussed above can be achieved by matrix mul-
tiplication with elementary matrices. For each of the following elementary matrices, de-
termine what elementary operation it corresponds to by calculating the product £/ A, where

a1l a2 a3
A= a1 a2 aoz | isageneral 3 X 3 matrix.
a3z1 az2 ass

010 100
@E=|100| ®E={03 0| () E=
00 1 00 1

O O =
O = O
=N O
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Elementary Row Operations and Their Effects on the Determinant

In Preview Activity 21.1, we conjectured how elementary row operations affect the determinant of
a matrix. In the following activity, we prove how the determinant changes when a row is multiplied
by a constant using the cofactor expansion definition of the determinant.

Activity 21.1. In this activity, assume that the determinant of A can be determined by a cofactor
expansion along any row or column. (We will prove this result independently later in this section.)
Consider an arbitrary n x n matrix A = [a;;].

(a)
(b) Write the expression for det(A) using the cofactor expansion along the second row.

(c) Let B be obtained by multiplying the second row of A by k. Write the expression for
det(B) if the cofactor expansion along the second row is used.

(d) Use the expressions you found above, to express det(B) in terms of det(A).

(e) Explain how this method generalizes to prove the relationship between the determinant of
a matrix A and that of the matrix obtained by multiplying a row by a constant k.

Your work in Activity 21.1 proves the first part of the following theorem on how elementary
row operations change the determinant of a matrix.

Theorem 21.1. Let A be a square matrix.

(1) If B is obtained by multiplying a row of A by a constant k, then det(B) = k det(A).
(2) If B is obtained by swapping two rows of A, then det(B) = — det(A).

(3) If B is obtained by adding a multiple of a row of A to another, then det(B) = det(A).

In the next section, we will use elementary matrices to prove the last two properties of Theorem
21.1.

Elementary Matrices

As we saw in Preview Activity 21.1, elementary row operations can be achieved by multiplication
by elementary matrices.

Definition 21.2. An elementary matrix is a matrix obtained by performing a single elementary
row operation on an identity matrix.

The following elementary matrices correspond, respectively, to an elementary row operation
which swaps rows 2 and 4; an elementary row operation which multiplies the third row by 5; and an
elementary row operation which adds four times the third row to the first row on any 4 X 4 matrix:
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1000 1000 10 4 0
0001 0100 0100
Ei=lo o010 P 005 0] ™ EB=1y91 0
0100 0001 0001

To obtain an elementary matrix corresponding an elementary row operation, we simply per-
form the elementary row operation on the identity matrix. For example, E; above is obtained by
swapping rows 2 and 4 of the identity matrix.

With the use of elementary matrices, we can now prove the result about how the determinant
is affected by elementary row operations. We first rewrite Theorem 21.1 in terms of elementary
matrices:

Theorem 21.3. Let A be an n x n matrix. If E is an n X n elementary matrix, then det(EA) =
det(E) det(A) where

r if E corresponds to multiplying a row by r
det(E) = ¢ —1 if E corresponds to swapping two rows
1 if E corresponds to adding a multiple of a row to another.

Notes on Theorem 21.3. An elementary matrix E obtained by multiplying a row by r is a diagonal
matrix with one 7 along the diagonal and the rest 1s, so det(E) = r. Similarly, an elementary
matrix F obtained by adding a multiple of a row to another is a triangular matrix with 1s along
the diagonal, so det(F) = 1. The fact that the the determinant of an elementary matrix obtained
by swapping two rows is —1 is a bit more complicated and is verified independently later in this
section. Also, the proof of 21.3 depends on the fact that the cofactor expansion of a matrix is the
same along any two rows. A proof of this can also be found later in this section.

Proof of Theorem 21.3. We will prove the result by induction on n, the size of the matrix A. We
verified these results in Preview Activity 21.1 for n = 2 using elementary row operations. The
elementary matrix versions follow immediately.

Now assume the theorem is true for £ x k matrices with &k > 2 and consider an n X n matrix
A where n = k + 1. If E is an n X n elementary matrix, we want to show that det(FA) =
det(E)det(A). Let FA = B. (Although it is an abuse of language, we will refer to both the
elementary matrix and the elementary row operation corresponding to it by E.)

When finding det(B) = det(EFA) we will use a cofactor expansion along a row which is not
affected by the elementary row operation E. Since FE affects at most two rows and A has n > 3
rows, it is possible to find such a row, say row ¢. The cofactor expansion along row ¢ of B is

bil(*l)“_l det(Bil) + biQ(*l)H_Q det(Bl-g) —+ -+ bin(*l)“_n det(Bm) . 21.1)

Since we chose a row of A which was not affected by the elementary row operation, it follows
that b;; = a;j for 1 < j < n. Also, the matrix B;; obtained by removing row ¢ and column j from
matrix B = F'A can be obtained from A;; by an elementary row operation of the same type as E.
Hence there is an elementary matrix Ej, of the same type as I/ with B;; = Ej A;;. Therefore, by
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induction, det(B;;) = det(E}) det(A;;) and det(E}) is equal to 1, -1 or r depending on the type
of elementary row operation. If we substitute this information into equation (21.1), we obtain

det(B) = ail(—l)iﬂ det(Ek) det(Ail) + aig(—l)H_Q det(Ek) det(Aiz)
—+ -+ am(_l)z‘—&-n det(Ek) det(Am)
= det(Ey) det(A).

This equation proves det(EA) = det(Ey) det(A) for any n x n matrix A where Ej, is the corre-
sponding elementary row operation on the k X k matrices obtained in the cofactor expansion.

The proof of the inductive step will be finished if we show that det(Fy) = det(E). This
equality follows if we let A = I, in det(FA) = det(E}))det(A). Therefore, det(FE) is equal to
r, or 1, or —1, depending on the type of the elementary row operation E since the same is true of
det(FE}) by inductive hypothesis.

Therefore, by the principle of induction, the claim is true for every n > 2. |

As a corollary of this theorem, we can prove the multiplicativity of determinants:

Theorem 21.4. Let A and B be n x n matrices. Then

det(AB) = det(A) det(B) .

Proof. If A is non-invertible, then AB is also non-invertible and both det(A) and det(AB) are 0,
proving the equality in this case.

Suppose now that A is invertible. By the Invertible Matrix Theorem, we know that A is row
equivalent to I,,. Expressed in terms of elementary matrices, this means that there are elementary
matrices Fq, Fo, ..., Ey such that

A=E\FEy---Eyl,=E\Ey---Ey. (21.2)

Therefore, repeatedly applying Theorem 21.3, we find that

det(A) = det(Ey) det(Es) - - - det(Ey) . (21.3)
If we multiply equation (21.2) by B on the right, we obtain

AB =FE\Ey--- E/B.
Again, by repeatedly applying Theorem 21.3 with this product of matrices, we find
det(AB) = det(E1Ey - - - E¢B) = det(E) det(Es) - - - det(Ey) det(B) .
From equation (21.3), the product of det(E;)’s equals det(A), so
det(AB) = det(A) det(B)

which finishes the proof of the theorem. |

We can use the multiplicative property of the determinant and the determinants of elementary
matrices to calculate the determinant of a matrix in a more efficient way than using the cofactor
expansion. The next activity provides an example.
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11 2
Activity 21.2. Let A = 2 2 6
-1 2 1

(a) Use elementary row operations to reduce A to a row echelon form. Keep track of the
elementary row operation you use.

(b) Taking into account how elementary row operations affect the determinant, use the row
echelon form of A to calculate det(A).

Your work in Activity 21.2 provides an efficient method for calculating the determinant. If A is
a square matrix, we use row operations given by elementary matrices 1, Eo, . . ., ) to row reduce
A to row echelon form R. That is

R=EyE,_1---E2E A
We know det(E;) for each 4, and since R is a triangular matrix we can find its determinant. Then
det(A) = det(E;) L det(Fy) L. - det(Ey) "t det(R).

In other words, if we keep track of how the row operations affect the determinant, we can calculate
the determinant of a matrix A using row operations.

Activity 21.3. Theorems 21.3 and 21.4 can be used to prove the following (part ¢ of Theorem 16.2)
that A is invertible if and only if det(A) # 0. We see how in this activity. Let A be an n x n matrix.
We can row reduce A to its reduced row echelon form R by elementary matrices Fq, Eo, ..., Ej
so that

R=FEFE;y--- E,A.

(a) Suppose A is invertible. What, then, is R? What is det(R)? Can the determinant of an
elementary matrix ever be 0? How do we conclude that det(A) # 0?

(b) Now suppose that det(A) # 0. What can we conclude about det(R)? What, then, must R
be? How do we conclude that A is invertible?

Summary: Let A be an n X n matrix. Suppose we swap rows s times and divide rows by
constants ki, k2, ..., k, while computing a row echelon form REF(A) of A. Then det(A) =
(—=1)°k1ks - - - k, det(REF(A)).

Geometric Interpretation of the Determinant

Determinants have interesting and useful applications from a geometric perspective. To understand
the geometric interpretation of the determinant of an n x n matrix A, we consider the image of the
unit square under the transformation 7'(x) = Ax and see how its area changes based on A.

Activity 21.4.
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(a) Let A = [ 20

0 3 ] . Start with the unit square in R? with corners at the origin and at (1, 1).

In other words, the unit square we are considering consists of all vectors v = [ y ] where

0<z<1land 0 <y <1, visualized as points in the plane.

i. Consider the collection of image vectors Av obtained by multiplying v’s by A. Sketch
the rectangle formed by these image vectors.

ii. Explain how the area of this image rectangle and the unit square is related via det(A).

iii. Does the relationship you found above generalize to an arbitrary A = [ g 2 ] 7 1If

not, modify the relationship to hold for all diagonal matrices.

2 1
(b) Let A = [ 0 3 }
i. Sketch the image of the unit square under the transformation 7'(v) = Av. To make
the sketching easier, find the images of the vectors [0 0]T,[1 0]7,[0 1]T,[1 1] as
points first and then connect these images to find the image of the unit square.

ii. Check that the area of the parallelogram you obtained in the above part is equal to
det(A).

iii. Does the relationship between the area and det(A) still hold if A = [ _(2) ;) } ?1If

not, how will you modify the relationship?

It can be shown that for all 2 x 2 matrices a similar relationship holds.

Theorem 21.5. For a 2 x 2 matrix A, the area of the image of the unit square under the transfor-
mation T (x) = Ax is equal to | det(A)|. This is equivalent to saying that | det(A)| is equal to the
area of the parallelogram defined by the columns of A. The area of the parallelogram is also equal
to the lengths of the column vectors of A multiplied by |sin(0)| where 0 is the angle between the
two column vectors.

There is a similar geometric interpretation of the determinant of a 3 X 3 matrix in terms of
volume.

Theorem 21.6. For a 3 x 3 matrix A, the volume of the image of the unit cube under the transfor-
mation T'(x) = Ax is equal to | det(A)|. This is equivalent to saying that | det(A)| is equal to the
volume of the parallelepiped defined by the columns of A.

The sign of det(A) can be interpreted in terms of the orientation of the column vectors of A.
See the project in Section 16 for details.

An Explicit Formula for the Inverse and Cramer’s Rule

In Section 10 we found the inverse A~! using row reduction of the matrix obtained by augmenting
A with I,,. However, in theoretical applications, having an explicit formula for A~! can be handy.
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Such an explicit formula provides us with an algebraic expression for A~! in terms of the entries
of A. A consequence of the formula we develop is Cramer’s Rule, which can be used to provide
formulas that give solutions to certain linear systems.

We begin with an interesting connection between a square matrix and the matrix of its cofactors
that we explore in the next activity.

2 1 3
Activity 21.5. Let A= | 1 4 5
2 -1 2

(a) Calculate the (1,1), (1,2), and (1, 3) cofactors of A.

(b) If C;; represents the (i, j) cofactor of A, then the cofactor matrix C'is the matrix C' = [Cj;].
The adjugate matrix of A is the transpose of the cofactor matrix. In our example, the
adjugate matrix of A is

13 -5 —7
adj(A)=| 8 —2 -7
—9 4 7

Check the entries of this adjugate matrix with your calculations from part (a). Then calcu-
late the matrix product
A adj(A).

(c) What do you notice about the product A adj(A)? How is this product related to det(A)?

The result of Activity 21.5 is rather surprising, but it is valid in general. That is, if A = [a;;] is
an invertible n x n matrix and Cj; is the (¢, j) cofactor of A, then A adj(A) = det(A)I,. In other

words, A (32{%2) = I,, and so

A7l = madj(/l).

This gives us another formulation of the inverse of a matrix. To see why A adj(A) = det(A)I,,, we
use the row-column version of the matrix product to find the ijth entry of A adj(A) as indicated by
the shaded row and column

[ a1n aip - an |
as1 azy - aon Cn Coy1 -+ Cji -+ Cm
: : : Cio Co -+ Cjo -+ Cpa
i1 Q2 -t Qip : : :
Cln C2n e Cjn T Cnn
| nl Qp2 - Qnn |
Thus the ijth entry of A adj(A) is
aﬂCﬂ + aiQng + -+ aijn. 21.4)

Notice that if ¢ = j, then expression (21.4) is the cofactor expansion of A along the ith row. So
the 7ith entry of A adj(A) is det(A). It remains to show that the ijth entry of A adj(A) is 0 when

i # j.
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When i # j, the expression (21.4) is the cofactor expansion of the matrix

ai a2 Q1n
az1 a22 a2n
a;1 a;2 Qin
aj—11 aj—12 aj—1n
a1 a2 QAin
Qj+11  Ai+12 Aj+1n
L anl an2 Qnpn |

along the jth row. This matrix is the one obtained by replacing the jth row of A with the ith row
of A. Since this matrix has two identical rows, it is not row equivalent to the identity matrix and
is therefore not invertible. Thus, when ¢ # j expression (21.4) is 0. This makes A adj(A) =
det(A)L,.

One consequence of the formula A~! =

madj (A) is Cramer’s rule, which describes the
solution to the equation Ax = b.

Activity 21.6. Let A = [ Z ; ],andletb = { 2 }

(a) Solve the equation Ax = b using the inverse of A.

(b) Let A} = [ 21 ] , the matrix obtained by replacing the first column of A with b. Calcu-

6 2
late ‘ile;t((%) and compare to your solution from part (a). What do you notice?

3

4 6
Calculate (f;t(éf)) and compare to your solution from part (a). What do you notice?

(c) Now let Ay = [ } , the matrix obtained by replacing the second column of A with b.

The result from Activity 21.6 may seem a bit strange, but turns out to be true in general. The
result is called Cramer’s Rule.

Theorem 21.7 (Cramer’s Rule). Let A be ann x n invertible matrix. For any b in R", the solution
X of Ax = b has entries

. det(AZ)

~ det(A)

where A; represents the matrix formed by replacing ith column of A with b.

Z;

To see why Cramer’s Rule works in general, let A be an n X n invertible matrix and b =

[b1 by - -- by]T. The solution to Ax = b is
Cn Cou -+ Oy b1
1 1 Ci2 Cz -+ Cp2 by
—A'b= dj(A)b =
x det () AP = 5 : : :
Cln CQn Tt Cnn bn
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Expanding the product gives us

b1C11 + 0201 + -+ + b, Cia
1 b1C12 + b2C2 + - - - + bpCho
* 7 det(A) :

blcln + bQCQn +---+ annn

The expression
b1C1j + b2Co5 + -+ - + 0, Cyj

is the cofactor expansion of the matrix

ain a2 -+ aij—1 b ayjyr - an

a1 asy -+ azj—1 by agjy1 - aox
A=

Gpl Aap2 -+ Gpj-1 by, Qpj+1  *° Gpn

along the jth column, giving us the formula in Cramer’s Rule.

Cramer’s Rule is not a computationally efficient method. To find a solution to a linear system of
n equations in 7 unknowns using Cramer’s Rule requires calculating n + 1 determinants of n X n
matrices — quite inefficient when n is 3 or greater. Our standard method of solving systems using
Gaussian elimination is much more efficient. However, Cramer’s Rule does provide a formula for
the solution to Ax = b as long as A is invertible.

The Determinant of the Transpose

In this section we establish the fact that the determinant of a square matrix is the same as the
determinant of its transpose.

The result is easily verified for 2 x 2 matrices, so we will proceed by induction and assume that
the determinant of the transpose of any (n — 1) x (n — 1) matrix is the same as the determinant of
its transpose. Suppose A = [a;;] is an n X n matrix. By definition,

det(A) =a11C11 + a12C12 + a13C13 + - - - + a1,C1n,

and
det(AT) = a;1C11 + a21Ca1 + a31031 + - + a1 Chy.

Note that the only terms in either determinant that contains a1 is a11C11. This term is the same
in both determinants, so we proceed to examine other elements. Let us consider all terms in the
cofactor expansion for det(AT) that contain a;1a1;. The only summand that contains a;; is a;1Cj1.
Letting A;; be the sub-matrix of A obtained by deleting the ith row and jth column, we see that
a;1Ci1 = (—1)"ta;; det(A;1). Now let’s examine the sub-matrix A;;:

ai2 aig -0 a1y o Qip—1 Ain
a22 agz - az; - A2p—1 a2n
a;—12 A;—-13 - Gi—15 - Qj—1n—-1 Qi—1n
Ai+12  QAi4+13 " Qi1 0 Gitln—1  Qitln
L Gn2 an3 te Qnj co Gpn—1 Qnn |

o099
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When we expand along the first row to calculate det(A;1 ), the only term that will involve a,; is
(—1) " ay; det(Ai,yy),

where A;j, jm, denotes the sub-matrix of A obtained by deleting rows ¢ and k and columns j and m
from A. So the term that contains a;1a1; in the cofactor expansion for det(AT) 18

(=1)i + Laj(—1)ay; det(Aq,;) = (=) aay; det( A 1) (21.5)

Now we examine the cofactor expansion for det(A) to find the terms that contain a;1a1;. The
quantity ai; only appears in the cofactor expansion as

alelj = (—1)1+ja1j det(Alj).

Now let’s examine the sub-matrix Aj;:

a1 G2 - Q2j—1 G241 - G2y
az1 az2 -+ az3j—1 azgj+1 . G3p
a1 Q2 Q-1 Q41 Gip

| Gnl Qp2 - Gpj—-1 Gpj+l - Qpp |

Here is where we use the induction hypothesis. Since A;; is an (n — 1) x (n — 1) matrix, its
determinant can be found with a cofactor expansion down the first column. The only term in this
cofactor expansion that will involve a;; is

(—1)i_1+1a¢1 det(Au,jl).
So the term that contains a;1a1; in the cofactor expansion for det(A) is
(—1)1+ja1j(—1)"*1+1ai1 det(Alj“) = (—1)i+j+1ai1a1j det(Alml). (21.6)

Since the quantities in (21.5) and (21.6) are equal, we conclude that the terms in the two cofactor
expansions are the same and
det(AT) = det(A).

Row Swaps and Determinants

In this section we determine the effect of row swaps to the determinant. Let E,; be the elementary
matrix that swaps rows r and s in the n x n matrix A = [a;;]. Applying E12 to a 2 x 2 matrix

A= [ a b },weseethat
c d

det(A) = ad — be = —(ad — be) = det ({ Z Z D = det(E1pA).

So swapping rows in a 2 X 2 matrix multiplies the determinant by —1. Suppose that row swapping
onany (n—1) x (n—1) matrix multiplies the determinant by —1 (in other words, we are proving our

D00
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statement by mathematical induction). Now suppose A is an nxn matrix and let B = [b;;] = E, A.
We first consider the case that s = r 4+ 1 — that we swap adjacent rows. We consider two cases,
r > 1 and r = 1. First let us suppose that r > 1. Let C;; be the (4, j) cofactor of A and C’ij the
(1, ) cofactor of B. We have

det(A) = a11C11 + a12Ci2 + - - - + a1,C1p,

and
det(B) = bHC{l + buC{Q + -+ blncin

Since r > 1,it follows that a;; = by; for every j. For each j the sub-matrix B;; obtained from B
by deleting the 7th row and jth column is the same matrix as obtained from A;; by swapping rows
r and s. So by our induction hypothesis, we have C ; = —C4; for each j. Then

det(B) = b1101 + b12Cy + - -+ + b1,CY,,
= a11(—C11) + a12(—C2) + - - + a1, (—C1p)
= —(a11C11 + a12C12 + - - - + a1,.C1)
= —det(A).

Now we consider the case where = 1, where B is the matrix obtained from A by swapping the
first and second rows. Here we will use the fact that det(A) = det(AT) which allows us to calculate
det(A) and det(B) with the cofactor expansions down the first column. In this case we have

det(A) = a11C11 + a21Ca1 + -+ - + ap1Cnma

and
det(B) = bllCil + b21C’§1 + -+ bnl(J;Ll
= aglch + aHC'él + (1310&1 + -+ anlC{ﬂ.
For each ¢ > 3, the sub-matrix B, is just A;; with rows 1 and 2 swapped. So we have C’Z{1 =-Ci

by our induction hypothesis. Since we swapped rows 1 and 2, we have Bo; = A1 and B1; = Ag;.
Thus,
6110{1 == (—1)1+1b11 det(A21) = a21 det(Agl) = —021021

and
leCél = (—1)2+1a11 det(An) = —daill det(An) = —a11011.

Putting this all together gives us

det(B) = b1107; + b21C + -+ + b1 Cyyy
= —a21091 — a11C11 + a31(—C31) + -+ + an1(—Ch1)
= —(a11C11 + a21Co1 + -+ - + an1Cn1)
= —det(A).

So we have shown that if B is obtained from A by interchanging two adjacent rows, then det(B) =
—det(A). Now we consider the general case. Suppose B is obtained from A by interchanging rows
r and s, with 7 < s. We can perform this single row interchange through a sequence of adjacent
row interchanges. First we swap rows r and r + 1, then rows r + 1 and 7 + 2, and continue until
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we swap rows s — 1 and s. This places the original row r into the row s position, and the process
involved s — r adjacent row interchanges. Each of these interchanges multiplies the determinant
by a factor of —1. At the end of this sequence of row swaps, the original row s is now row s — 1.
So it will take one fewer adjacent row interchanges to move this row to be row r. This sequence of
(s—r)4+(s—r—1)=2(s —r—1) — 1 row interchanges produces the matrix B. Thus,

det(B) = (—1)267) "1 det(A) = — det(A),

and interchanging any two rows multiplies the determinant by —1.

Cofactor Expansions

We have stated that the determinant of a matrix can be calculated by using a cofactor expansion
along any row or column. We use the result that swapping rows introduces a factor of —1 in the
determinant to verify that result in this section. Note that in proving that det(AT) = det(A), we
have already shown that the cofactor expansion along the first column is the same as the cofactor
expansion along the first row. If we can prove that the cofactor expansion along any row is the same,
then the fact that det(AT) = det(A) will imply that the cofactor expansion along any column is
the same as well.

Now we demonstrate that the cofactor expansions along the first row and the ith row are the
same. Let A = [a;;] be an n x n matrix. The cofactor expansion of A along the first row is

anCi + a12Ci2 + -+ - + a1,.Cr1p
and the cofactor expansion along the ith row is
ainCi1 + a;pCiz2 + - + ainCin

Let B be the matrix obtained by swapping row ¢ with previous rows so that row ¢ becomes the first
row and the order of the remaining rows is preserved.

[ ai Qi Qo Q4 1
ail ai -+ aiy o Qlp
a1 Q22 Q25 vt (2p

B=| @%G-11 Qi-12 - Qi-15 - Qi—1n
Ai+11 Q412 0 Qi1 0 Qidln
| Qnl An?2 tet Qnj T ann |

Then
det(B) = (—1)"_1 det(A).

So, letting C;; be the (i, j) cofactor of B we have
det(A) = (=1)"""det(B) = (=1)"" (anCy + ainCla + - - + ainC1,,) -

D00
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Notice that for each j we have By; = A;;. So

det(A)

(=1 HanCly + anCiy + -+ + ainC1,,)

— (1)} (aﬂ(—l)(l 1) det(Bu1) + as(—1)2 det(Bio)
F ot ag(—1)HT det(Bln))

— (~1)i! (aﬂ(—l)(l 1) det(Ai) + ai(—1)2 det(Ay)
Fo o ag (=11 det(Am)>

= ai (=1 + 1) det(Ai1) + an(—1)"2 det(Az)

e i (—1)T det(Ayy)
=a;1Ci1 + a2Ci2 + -+ - + ainCip.

The LU Factorization of a Matrix

There are many instances where we have a number of systems to solve of the form Ax = b, all
with the same coefficient matrix. The system may evolve over time so that we do not know the
constant vectors b in the system all at once, but only determine them as time progresses. Each time
we obtain a new vector b, we have to apply the same row operations to reduce the coefficient matrix
to solve the new system. This is time repetitive and time consuming. Instead, we can keep track of
the row operations in one row reduction and save ourselves a significant amount of time. One way
of doing this is the LU -factorization (or decomposition).

To illustrate, suppose we can write the matrix A as a product A = LU, where

1000 101 0
110 0 01 3 —2
L=1 09110 ™MU=1990 3
100 1 000 O

Letb = [3113]" and x = |21 o2 23 4], and consider the linear system Ax = b. If Ax = b,
then LUx = b. We can solve this system without applying row operations as follows. Let Ux = z,
where z = [21 22 23 Z4]T. We can solve Lz = b by using forward substitution.

The equation Lz = b is equivalent to the system

The first equation shows that z; = 3. Substituting into the second equation gives us zo = 4. Using
this information in the third equation yields z3 = —3, and then the fourth equation shows that
z4 = 0. To return to the original system, since Ux = z, we now solve this system to find the



Section 21. Properties of Determinants 377

solution vector x. In this case, since U is upper triangular, we use back substitution. The equation
Ux = z is equivalent to the system

€ + x3 = 3
To + 3x3 — 2204 = 4
3xy =—3.

Note that the third column of U is not a pivot column, so 3 is a free variable. The last equation
shows that z4 = —1. Substituting into the second equation and solving for 3 yields zo = 2 — 3x3.
The first equation then gives us 1 = 3 — z3. So the general solution

3 —1
X = 2 + -3 x3
0
-1

1
0

to Ax = b can be found through L and U via forward and backward substitution. If we can find a
factorization of a matrix A into a lower triangular matrix L and an upper triangular matrix U, then
A = LU is called an LU -factorization or LU-decomposition.

We can use elementary matrices to obtain a factorization of certain matrices into products of
lower triangular (the“L” in LU) and upper triangular (the “U” in LU) matrices. We illustrate with
an example. Let

01 0

-1 1 2 -2

4= 1 3 1
101 O

Our goal is to find an upper triangular matrix U and a lower triangular matrix L so that A = LU.
We begin by row reducing A to an upper triangular matrix, keeping track of the elementary matrices
used to perform the row operations. We start by replacing the entries below the (1, 1) entry in A
with zeros. The elementary matrices that perform these operations are

1 0 00 1 0 00
1100 0100
Bi=logo1o] ™M 5= 9010
0 0 01 -1 0 0 1
and
1 01 0
01 3 -2
BEEA=1 13 1
0 00
We next zero out the entries below the (2, 2) entry as
1 01 0
013 -2
EsFEyE1A = 000 3l°
000 O
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where
1 0 0
0 1 0 0
Es=149 2110
0 0 0 1

The product F3FE5F1 A is an upper triangular matrix U. So we have

EsEyF1A=U
and
A=E'Ey ES,
where
0 00
1] e -1 1 0 0
1p—1p—1 _
By By By = 01 10
1 0 01

is a lower triangular matrix L. So we have decomposed the matrix A into a product A = LU, where
L is lower triangular and U is upper triangular. Since every matrix is row equivalent to a matrix in
row echelon form, we can always find an upper triangular matrix U in this way. However, we may
not always obtain a corresponding lower triangular matrix, as the next example illustrates.

Suppose we change the problem slightly and consider the matrix

1 01 O

-1 1 2 =2

B= 013 1
100 1

Using the same elementary matrices E'j, F», and E3 as earlier, we have

E3EyE1 B =

O O O
O O = O
@)
w

To reduce B to row-echelon form now requires a row interchange. Letting

10 0 0

0100

Ei=19 00 1

0010

brings us to

10 1 O
01 3 -2
EEsEyEW\B = 00 -1 1

00 O
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So in this case we have U = E4E3FE>FE1 B, but

1 0 00
E'Ey'ESE = _(1) 1 8 (1)
1010

is not lower triangular. The difference in this latter example is that we needed a row swap to obtain
the upper triangular form.

Examples

What follows are worked examples that use the concepts from this section.

Example 21.8.

(a) If A, B are n x n matrices with det(A) = 3 and det(B) = 2, evaluate the following
determinant values. Briefly justify.

i. det(A™1)
ii. det(ABAT)
iii. det(A3(BA)~1(AB)?)

a b c
(b) If the determinant of | d e f | is m, find the determinant of each of the following
g h i
matrices.
[« b ¢
i 2d 2e 2f
g h 1
[(d e f
ii. | g h 14
la b ¢
[ a b c
ii. | g—2d h—2e i—2f
| a+d b+e c+f

Example Solution.
(a) Assume that det(A) = 3 and det(B) = 2.

i. Since det(A) # 0, we know that A is invertible. Since 1 = det(I,,) = det(AA~!) =

det(A) det(A~1), it follows that det(A~!) = detl(A) = %
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ii. We know that det(AT) = det(A), so

det(ABAT) = det(A) det(B) det(AT)
= det(A) det(B) det(A)
=(3)2)B3)
=18.

iii. Using properties of determinants gives us

det(A3(BA) 1 (AB)?) = det(A%) det((BA)™!) det((AB)?)

— (det(A))? (det(lAm> (det(AB))?

_ o7 (M) (det(A) det(B))?
_ (20)(6?)
6
= 162.
a b c
(b) Assume that det d e f =m
g h i

1. Multiplying a row by a scalar multiples the determinant by that scalar, so

a b ¢
det 2d 2e 2f = 2m.
g h i

ii. Interchanging two rows multiples the determinant by —1. It takes two row swaps in
the original matrix to obtain this one, so

f

d e
det g h i =(-1)’m=m.
a b c

iii. Adding a multiple of a row to another does not change the determinant of the matrix.
Since there is a row swap needed to get this matrix from the original we have

a b c
det g—2d h—2 i—-2f = —m.
at+d b4+e cH+f
28 0
Example 21.9. Let A= | 2 2 -3
1 2 7

(a) Find an LU factorization for A.
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(b) Use the LU factorization with forward substitution and back substitution to solve the system
Ax =[18312]T.

Example Solution.

(a) We row reduce A to an upper triangular matrix by applying elementary matrices. First

1 00
notice thatif ¥1 = | —1 1 0 |, then
0 0 1
2 8 0
FiA=]10 -6 -3
1 2 7
1 00
Letting Fy = 0 1 0 | givesus
1
-5 0 1
2 8 0
EEiA=10 —6 -3
0 -2 7
1 0 0
Finally, when E3 = | 0 1 0 | wehave
1
0 —3 1
2 8 0
U=FE3EEiA=|0 -6 -3
0 0 8

This gives us F3FoFE1 A = U, so we can take

L=E'E'E;t =

N[—= =
Wl = o
- o O

(b) To solve the system Ax = b, where b = [18 3 12]T, we use the LU factorization of A
and solve LUx = b. Let x = [r1 o2 23]" and let z = [21 29 23]7 with Ux = z so
that Lz = L(Ux) = Ax = b. First we solve Lz = [18 3 12]" to find z using forward
substitution. The first row of L shows that z; = 18 and the second row that z; + z9 = 3.
So 29 = —15. The third row of L gives us %21 + %22 +23=12,8023=12—9+5 =28.
Now to find x we solve Ux = z using back substitution. The third row of U tells us that
8x3 = 8 or that 3 = 1. The second row of U shows that —6x2 — 3x3 = —15 or x5 = 2.
Finally, the first row of U gives us 2x1 + 8z = 18, or 1 = 1. So the solution to Ax = b
isx=[121]T.
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Summary

e The elementary row operations have the following effects on the determinant:

(a) If we multiply a row of a matrix by a constant k, then the determinant is multiplied
by k.

(b) If we swap two rows of a matrix, then the determinant changes sign.

(c) If we add a multiple of a row of a matrix to another, the determinant does not change.

e Each of the elementary row operations can be achieved by multiplication by elementary ma-
trices. To obtain the elementary matrix corresponding to an elementary row operation, we
perform the operation on the identity matrix.

e Let A be an n x n invertible matrix. For any b in R"”, the solution x of Ax = b has entries

~ det(4,(b))
YT T det(A)

where A;(b) represents the matrix formed by replacing ith column of A with b.

e Let A be an invertible n x n matrix. Then

1
A7l = dj A
det(A)

where the adj A matrix, the adjugate of A, is defined as the matrix whose ij-th entry is C;,
the ji-th cofactor of A.

e For a 2 x 2 matrix A, the area of the image of the unit square under the transformation
T(x) = Ax is equal to | det(A)|, which is also equal to the area of the parallelogram defined
by the columns of A.

e For a 3 x 3 matrix A, the volume of the image of the unit cube under the transformation
T(x) = Ax is equal to | det(A)|, which is also equal to the volume of the parallelepiped
defined by the columns of A.

Exercises

(1) Find a formula for det(rA) in terms of r and det(A), where A is an n x n matrix and r is a
scalar. Explain why your formula is valid.

(2) Find det(A) by hand using elementary row operations where

1 2 -1 3
-1 -2 3 -1
-2 -1 2 -3

1 8 -3 8

A=
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4 -1 -1 -1
-1 4 -1 -1
-1 -1 4 -1
-1 -1 -1 4
row operations. (This matrix arises in graph theory, and its determinant gives the number of
spanning trees in the complete graph with 5 vertices. This number is also equal to the number
of labeled trees with 5 vertices.)

(3) Consider the matrix A = . We will find det(A) using elementary

(a) Add rows Ry, R3 and R4 to the first row in that order.
(b) Then add the new R; to rows Ra, R3 and R4 to get a triangular matrix B.

(c) Find the determinant of B. Then use det(B) and properties of how elementary row
operations affect determinants to find det(A).

(d) Generalize your work to find the determinant of the n X n matrix

n -1 -1 -+ -1 -1

-1 n -1 -+ -1 -1
A=

-1 -1 -1 -+ -1 =n

1 01
(5) Find the inverse A~ of A= | 0 1 0 | using the adjugate matrix.
2 01

(6) For an invertible n x n matrix A, what is the relationship between det(A) and det(adj A)?
Justify your result.

a b 1
(7) Let A= | ¢ d 2 |,andassume that det(A) = 2. Determine the determinants of each of
e f 3
the following.
[ a b 1
(a) B= 3c 3d 6
e+a f+b 4
[ 2e 2f 6
b)) C=]| 2c—2e 2d-2f -2
| 2a 2b 2

(8) Find the area of the parallelogram with one vertex at the origin and adjacent vertices at (1,2)
and (a,b). For which (a, b) is the area 0? When does this happen geometrically?

(9) Find the volume of the parallelepiped with one vertex at the origin and three adjacent vertices
at (3,2,0), (1,1,1) and (1, 3, ¢) where c¢ is unknown. For which c, is the volume 0? When
does this happen geometrically?

(10) Label each of the following statements as True or False. Provide justification for your re-
sponse.
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(a) True/False If two rows are equal in A, then det(A) = 0.

(b) True/False If A is a square matrix and R is a row echelon form of A, then det(A) =
det(R).

(c) True/False If a matrix A is invertible, then 0 is not an eigenvalue of A.

(d) True/False If A is a 2 x 2 matrix for which the image of the unit square under the
transformation 7'(x) = Ax has zero area, then A is non-invertible.

(e) True/False Row operations do not change the determinant of a square matrix.

(f) True/False If A;; is the matrix obtained from a square matrix A = [a;;] by deleting
the ith row and jth column of A, then
ail(—l)i—l—l det(Ail) + aig(—l)i+2 det(Aig) + -
+ am(—l)i—HL det(Am)
= alj(—l)jH det(Alj) + agi(—l)j+2 det(AQZ’) —+ -
+ anj(—l)j+" det(Ay; )

for any 7 and j between 1 and n.

(2) True/False If A is an invertible matrix, then det (AT A) > 0.



Part V

Vector Spaces

385






Section 22

Vector Spaces

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What is a vector space?

e What is a subspace of a vector space?

What is a linear combination of vectors in a vector space V'?

What is the span of a set of vectors in a vector space V'?

What special structure does the span of a set of vectors in a vector space V'
have?

Why is the vector space concept important?

Application: The Hat Puzzle

In a New York Times article (April 10, 2001) “Why Mathematicians Now Care About Their Hat
Color”, the following puzzle is posed.

“Three players enter a room and a red or blue hat is placed on each person’s head. The
color of each hat is determined by a coin toss, with the outcome of one coin toss having
no effect on the others. Each person can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy session before
the game begins. Once they have had a chance to look at the other hats, the players
must simultaneously guess the color of their own hats or pass. The group shares a
hypothetical $3 million prize if at least one player guesses correctly and no players
guess incorrectly.”

387
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The game can be played with more players, and the problem is to find a strategy for the group
that maximizes its chance of winning. One strategy is for a designated player to make a random
guess and for the others to pass. This gives a 50% chance of winning. However, there are much
better strategies that provide a nearly 100% probability of winning as the number of players in-
creases. One such strategy is based on Hamming codes and subspaces of a particular vector space
to implement the most effective approach.

Introduction

We have previously seen that R™ and the set of fixed size matrices have a nice algebraic structure
when endowed with the addition and scalar multiplication operations. In fact, as we will see, there
are many other sets of elements that have the same kind of structure with natural addition and scalar
multiplication operations. Due to this underlying similar structure, these sets are connected in some
way and can all be studied jointly. Mathematicians look for these kinds of connections between
seemingly dissimilar objects and, from a mathematical standpoint, it is convenient to study all of
these similar structures at once by combining them into a larger collection. This motivates the idea
of a vector space that we will investigate in this chapter.

An example of a set that has a structure similar to vectors is a collection of polynomials. Let P
be the collection of all polynomials of degree less than or equal to 1 with real coefficients. That is,

Py = {ap + a1t : ap,a; € R}.
So, for example, the polynomials 2 + ¢, 5¢, —7, and v/12 — 7t are in Py, but /% is not in IP;.
Two polynomials a(t) = ag + a1t and b(t) = by + b1t in [P are equal if ag = by and a1 = b;.
We define addition of polynomials in P; by adding the coefficients of the like degree terms. So
if a(t) = ap + a1t and b(t) = by + by t, then the polynomial sum of a(t) and b(t) is
a(t) + b(t) = (ao + alt) + (bo + blt) = (CLO + bo) + (al + bl)t.

So, for example,

(24+3t)+(-14+5t) =2+ (-1))+(3+5)t =1+ 8t.

We now consider the properties of the addition operation. For example, we can ask if polyno-
mial addition is commutative. That is, if a(t) and b(t) are in P;, must it be the case that

a(t) +b(t) = b(t) +a(t)?
To show that addition is commutative in IP;, we choose arbitrary polynomials a(t) = ag + a1t and

b(t) = bo + b1t in P;. Then we have

a(t) 4+ b(t) = (ao + bo) + (a1 + b1)t
= (bo + ag) + (b1 + a1)t
= b(t) +a(?).

Note that in the middle step, we used the definition of equality of polynomials since ag+bg = bp+ag
and a1 + by = by + a1 due to the fact that addition of real numbers is commutative. So addition of
elements in IP; is a commutative operation.
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Preview Activity 22.1.

(1) Now we investigate other properties of addition in P;.

(a) To show addition is associative in P, we need to verify that if a(t) = ag + a1t,
b(t) = by + bit, and c(t) = cp + c1t are in Py, it must be the case that

(a(t) +b(t)) + c(t) = a(t) + (b(t) + c(t)).

Either verify this property by using the definition of two polynomials being equal, or
give a counterexample to show the equality fails in that case.

(b) Find a polynomial z(¢) € P; such that
a(t) + z(t) = a(t)

for all a(t) € P;. This polynomial is called the zero polynomial or the additive
identity polynomial in IP;.

(c) If a(t) = ap + ait is an element of Py, is there an element p(t) € P; such that
a(t) +p(t) = (),

where z(t) is the additive identity polynomial you found above? If not, why not? If
so, what polynomial is p(¢)? Explain.

(2) We can also define a multiplication of polynomials by scalars (real numbers).
(a) What element in IP; could be the scalar multiple (2 + 3t)?

(b) In general, if k is a scalar and a(t) = ag + a;t is in P;, how do we define the scalar
multiple ka(t) in P ?

(c) If k is a scalar and a(t) = ag + a;t and b(t) = by + byt are elements in Py, is it true
that
k(a(t) + b(t)) = ka(t) + kb(t)?

If no, explain why. If yes, verify your answer using the definition of two polynomials
being equal.

(d) If k and m are scalars and a(t) = ag + a1t is an element in [Py, is it true that
(k +m)a(t) = ka(t) + ma(t)?

If no, explain why. If yes, verify your answer.

(e) If k and m are scalars and a(t) = ag + a1t is an element in Py, is it true that
(km)a(t) = k(ma(t))?

If no, explain why. If yes, verify your answer.

() If a(t) = ag + aqt is an element of Py, is it true that
la(t) = a(t)?

If no, explain why. If yes, verify your answer.
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Spaces with Similar Structure to R"

Mathematicians look for patterns and for similarities between mathematical objects. In doing so,
mathematicians often consider larger collections of objects that are sorted according to their sim-
ilarities and then study these collections rather than just the objects themselves. This perspective
can be very powerful — whatever can be shown to be true about an arbitrary element in a collection
will then be true for every specific element in the collection. In this section we study the larger
collection of sets that share the algebraic structure of vectors in R". These sets are called vector
spaces.

In Preview Activity 22.1, we showed that the set P; of polynomials of degree less than or equal
to one with real coefficients, with the operations of addition and scalar multiplication defined by

(ao + alt) + (bo + blt) = (ao + b()) + (a1 + bl)t and k(ao + alt) = (kao) + (k}al)t,

has a structure similar to R2.

By structure we mean how the elements in the set relate to each other under addition and multi-
plication by scalars. That is, if a(t) = ag + a1t, b(t), and ¢(t) are elements of P; and k and m are
scalars, then

(1) a(t) + b(t) is an element of Py,

(2) a(t) +b(t) = b(t) + a(t),

() (a(t) +b(t)) + c(t) = alt) + (b(t) + c(t)),

(4) there is a zero polynomial z(¢) (namely, 0 + Ot) in P; so that a(t) + z(t) = a(t),

(5) there is an element —a(t) in Py (namely, (—ag) + (—a1)t) so that a(t) + (—a(t)) = 2(t),
(6) ka(t) is an element of PPy,

7) (k+m)a(t) = ka(t) + ma(t),

8) ka(t) +b(t)) = ka(t) + kb(¢),

9) (km)a(t) = k(ma(t)),

(10) la(t) = a(t).

The properties we saw for polynomials in [P; stated above are the same as the properties for
vector addition and multiplication by scalars in R", as well as matrix addition and multiplication
by scalars identified in Section 8. This indicates that polynomials in P, vectors in R", and the
set of m X n matrices behave in much the same way as regards their addition and multiplication
by scalars. There is an even closer connection between linear polynomials and vectors in R?. An

1
results of polynomial addition and multiplication by scalars then translate to corresponding results

of addition and multiplication by scalars of vectors in R2. So for all intents and purposes, as far as
addition and multiplication by scalars is concerned, there is no difference between elements in [P;

element a(t) = ag + a1t in P; can be naturally associated with the vector [ ZO ] in R2. All the
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and vectors in R? — the only difference is how we choose to present the elements (as polynomials
or as vectors). This sameness of structure of our sets as it relates to addition and multiplication
by scalars is the type of similarity mentioned in the introduction. We can study all of the types of
objects that exhibit this same structure at one time by studying vector spaces.

Vector Spaces

We defined vector spaces in the context of subspaces of R” in Definition 12.1. In general, any set
that has the same kind of additive and multiplicative structure as our sets of vectors, matrices, and
linear polynomials is called a vector space. As we will see, the ideas that we introduced about
subspaces of R™ apply to vector spaces in general, so the material in this chapter should have a
familiar feel.

Definition 22.1. A set VV on which an operation of addition and a multiplication by scalars is defined
is a vector space if for all u, v, and w in V' and all scalars a and b:

(1) u+ vis anelement of V' (we say that V' is closed under the addition in V'),
(2) u+ v = v + u (we say that the addition in V' is commutative),
3) (u+v)+w=u+ (v+ w) (we say that the addition in V' is associative),

(4) there is a zero vector 0 in V' so that u + 0 = u (we say that V' contains an additive identity
0),

(5) for each x in V there is an element y in V' so that x +y = 0 (we say that V' contains an
additive inverse y for each element x in V),

(6) auis an element of V' (we say that V' is closed under multiplication by scalars),
(7) (a+ b)u = au+ bu (we say that multiplication by scalars distributes over scalar addition),
(8) a(u+ v) = au + av (we say that multiplication by scalars distributes over addition in V),
9) (ab)u = a(bu),

(10) 1u = u.

Note. Unless otherwise stated, in this book the scalars will refer to real numbers. However, we can
define vector spaces where scalars are complex numbers, or rational numbers, or integers modulo
p where p is a prime number, or, more generally, elements of a field. A field is an algebraic
structure which generalizes the structure of real numbers and rational numbers under the addition
and multiplication operations. Since we will focus on the real numbers as scalars, the reader is not
required to be familiar with the concept of a field.

Because of the similarity of the way elements in vector spaces behave compared to vectors in
R™, we call the elements in a vector space vectors. There are many examples of vectors spaces,
which is what makes this idea so powerful.

Example 22.2.

D00
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(1) The space R™ of all vectors with n components is a vector space using the standard vector ad-
dition and multiplication by scalars. The zero element is the zero vector 0 whose components
are all 0.

(2) The set P; of all polynomials of degree less than or equal to 1 with addition and scalar
multiplication as defined earlier. Recall that IP; is essentially the same as R2.

(3) The properties listed in the introduction for IP; are equally true for the collection of all poly-
nomials of degree less than or equal to some fixed number. We label as P, this set of all
polynomials of degree less than or equal to n, with the standard addition and scalar multi-
plication. Note that P, is essentially the same as R"T!. More generally, the space P of all
polynomials is also a vector space with standard addition and scalar multiplication.

(4) As a subspace of R"”, the eigenspace of an n X n matrix corresponding to an eigenvalue A is
a vector space.

(5) As asubspace of R", the null space of an m x n matrix is a vector space.
(6) As asubspace of R™, the column space of an m X n matrix is a vector space.
(7) The span of a set of vectors in R™ is a subspace of R"”, and is therefore a vector space.

(8) Let V be a vector space and let O be the additive identity in V. The set {0} is a vector space
in which 0+ 0 = 0 and k0 = O for any scalar k. This space is called the trivial vector space.

(9) The space M, %y (or M,y,x,(R) when it is important to indicate that the entries of our
matrices are real numbers) of all m x n matrices with real entries with the standard addition
and multiplication by scalars we have already defined. In this case, M, x, is essentially the
same vector space as R™",

(10) The space F of all functions from R to R, where we define the sum of two functions f and g
in F as the function f + g satisfying

(f +9)(x) = fz) + g(x)

for all real numbers z, and the scalar multiple cf of the function f by the scalar ¢ to be the
function satisfying

(cf)(x) = cf(z)

for all real numbers x. The verification of the vector space properties for this space is left to
the reader.

(11) The space R> of all infinite real sequences (x1, z2, 3, ...). We define addition and scalar
multiplication termwise:

(w1, 22,23, ...) + (Y1,Y2,93, - - ) = (1 +y1, 2 + Y2, 23 + ¥3,...),

c(z1,z2,23,...) = (cx1, Ccxe, CX3, . . .)

is a vector space. In addition, the set of convergent sequences inside R* forms a vector
space using this addition and multiplication by scalars (as we did in R", we will call this set
of convergent sequences a subspace of R*).
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(12) (For those readers who are familiar with differential equations). The set of solutions to a
second order homogeneous differential equation forms a vector space under addition and
scalar multiplication defined as in the space F above.

(13) The set of polynomials of positive degree in [P; is not a vector space using the standard
addition and multiplication by scalars in P; is not a vector space. Notice that ¢ 4+ (—t) is not
a polynomial of positive degree, and so this set is not closed under addition.

(14) The color space where each color is assigned an RGB (red, green, blue) coordinate between 0
and 255, with addition and scalar multiplication defined component-wise, however, does not
define a vector space. The color space is not closed under either operation due to the color
coordinates being integers ranging from 0 to 255.

It is important to note that the set of defining properties of a vector space is intended to be a
minimum set. Any other properties of a vector space must be verified or proved using the defining
properties. For example, in R™ it is clear that the scalar multiple Ov is the zero vector for any vector
v in R". This might be true in any vector space, but it is not a defining property. Therefore, if this
property is true, then we must be able to prove it using just the defining properties. To see how this
might work, let v be any vector in a vector space V. We want to show that Ov = 0 (the existence
of the zero vector is property (4)). Using the fact that 0 + 0 = 0 and that scalar multiplication
distributes over scalar addition, we can see that

Ov=(0+0)v=0v+0v.

Property (5) tells us that V' contains an additive inverse for every vector in V, so let u be an additive
inverse of the vector Ov in V. Then Ov + u = 0' and so

Ov+u=(0v+0v)+u
0=0v+ (0v+u)
0=0v-+0.

Now O has the property that 0 + w = w + 0 = w for any vector w in V' (by properties (4) and
(2)), and so we can conclude that
0 =0v.

Activity 22.1. Another property that will be useful is a cancellation property. In the set of real
numbers we know that if a + b = ¢ + b, then a = ¢, and we verify this by subtracting b from both
sides. This is the same as adding the additive inverse of b to both sides, so we ought to be able to
make the same argument using additive inverses in a vector space. To see how, let u, v, and w be
vectors in a vector space and suppose that

u+w=v+w. (22.1)

(a) Why does our space contain an additive inverse z of w?

Tt is very important to keep track of the different kinds of zeros here — the boldface zero 0 is the additive identity in
the vector space and the non-bold 0 is the scalar zero.

D00
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(b) Now add the vector z to both sides of equation (22.1) to obtain
(u+w)+z=(v+w)+z (22.2)
Which property of a vector space allows us to state the following equality?

ut(w+z)=v+(w+z). (22.3)

(c) Now use the properties of additive inverses and the additive identity to explain why u = v.
Conclude that we have a cancellation law for addition in any vector space.

We should also note that the definition of a vector space only states the existence of a zero vector
and an additive inverse for each vector in the space, and does not say that there cannot be more than
one zero vector or more than one additive inverse of a vector in the space. The reason why is that
the uniqueness of the zero vector and an additive inverse of a vector can be proved from the defining
properties of a vector space, and so we don’t list this consequence as a defining property. Similarly,
the defining properties of a vector space do not state that the additive inverse of a vector v is the
scalar multiple (—1)v. Verification of these properties are left for the exercises. We summarize the
results of this section in the following theorem.

Theorem 22.3. Let V be any vector space with identity 0.

o 0v = 0 for any vector vin'V.

o The vector 0 is unique.

c0 = 0 for any scalar c.

e Forany v in 'V, the additive inverse of v is unique.

The additive inverse of a vector v in'V is the vector (—1)v.

Ifu, v,andwareinVandu+w =v +w, thenu = v.

Subspaces

In Section 12 we saw that R” contained subsets that we called subspaces that had the same algebraic
structure as R™. The same idea applies to vector spaces in general.

Activity 22.2. Let H = {at : a € R}. Notice that H is a subset of ;.
(a) Is H closed under the addition in P;? Verify your answer.
(b) Does H contain the zero vector from IP;? Verify your answer.
(c) Is H closed under multiplication by scalars? Verify your answer.

(d) Explain why H satisfies every other property of the definition of a vector space automati-
cally just by being a subset of Py and using the same operations as in [P;. Conclude that H
is a vector space.

o099
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Activity 22.2 illustrates an important point. There is a fundamental difference in the types of
properties that define a vector space. Some of the properties that define a vector space are true for
any subset of the vector space because they are properties of the operations (such as the commutative
and associative properties). The other properties (closure, the inclusion of the zero vector, and the
inclusion of additive inverses) are set properties, not properties of the operations. So these three
properties have to be specifically checked to see if a subset of a vector space is also a vector space.
This leads to the definition of a subspace, a subset of a vector space which is a vector space itself.

Definition 22.4. A subset H of a vector space V is a subspace of V' if

(1) whenever u and v are in H it is also true that u + v is in H (that is, H is closed under
addition),

(2) whenever uis in H and a is a scalar it is also true that au is in H (that is, H is closed under
scalar multiplication),

(3) Oisin H.

Activity 22.3. Is the given subset H a subspace of the indicated vector space V'? Verify your
answer.

(a) V is any vector space and H = {0}

(b) V = My«2, the vector space of 2 x 2 matrices and
_ 2r vy
H—{[ 0 ] }xandyaresoalars}.

(c) V = Py, the vector space of all polynomials of degree less than or equal to 2 and H =
{2at? + 1| ais a scalar }.

(d) V=Pyand H = {at | aisascalar} U {bt* | bis a scalar}.

(e) V=Fand H = Ps.

There is an interesting subspace relationship between the spaces P, Po, P3, . . . and P. For every
1, P; is a subspace of P. Furthermore, P; is a subspace of P, Py is a subspace of P3, and so on.
Note however that a similar relationship does NOT hold for R”, even though P; looks like R“*!. For
example, R! is NOT a subspace of R?. Similarly, R? is NOT a subspace of R>. Since the vectors
in different R™’s are of different sizes, none of the R"’s is a subset of another R™ with i # n, and
hence, R? is not a subspace of R™ when i < n.

The Subspace Spanned by a Set of Vectors

In R™ we showed that the span of any set of vectors forms a subspace of R™. The same is true in
any vector space. Recall that the span of a set of vectors in R™ is the set of all linear combinations
of those vectors. So before we can discuss the span of a set of vectors in a vector space, we need to
extend the definition of linear combinations to vector spaces (compare to Definitions 4.4 and 4.6).
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Definition 22.5. Let V' be a vector space. A linear combination of vectors vy, vo, ..., v in V is
a vector of the form
r1V1 -+ ToVo + -+ TEpVi,

where x1, x2, ..., x} are scalars. The span of the vectors vi, va, ..., Vi is the collection of all
linear combinations of vq, v, ..., vi. That is,
Span{vl, Vo,. .. ,Vk} = {I'1V1 + TV + - + TR VE ’ X1,22,...,TL are scalars}.

The argument that the span of any finite set of vectors in a vector space forms a subspace is the
same as we gave for the span of a set of vectors in R” (see Theorem 12.5). The proof is left for the
exercises.

Theorem 22.6. Given a vector space V and vectors vi, Vo, ..., Vp, in'V, Span{vi,va,..., v}
is a subspace of V.

The subspace Span{vi,va, ..., Vv,,} is called the subspace of V spanned by vi,va, ..., Vp,.

Activity 22.4.

(a) Let H = {a2t2 — aqt : ag and a; are real numbers}. Note that H is a subset of Py. Find
two vectors vq, ve in Py so that H = Span{vi, vy} and hence conclude that H is a sub-
space of IPo. (Note that the vectors v, vo are not unique.)

(b) Letpi(t) =1 —t2and po(t) = 1 + ¢, and let S = {p;(t), p2(t)} in Ps. Is the polynomial
q(t) = 3—2t? in Span S? (Hint: Create a matrix equation of the form Ax = b by setting up
an appropriate polynomial equation involving p; (), p2(t) and ¢(t). Under what conditions
on A is the system Ax = b consistent?)

(c) With S as in part (b), describe as best you can the subspace Span S of Ps.

Given a subspace H, the set .S such that H = Span S is called a spanning set of H. In order to
determine if a set S = {v1,va,..., vy} is a spanning set for H, all we need to do is to show that
for every b in H, the equation

x1v1 + Tovy + -+ xpvp =b

has a solution. We will see important uses of special spanning sets called bases in the rest of this
chapter.

Examples

What follows are worked examples that use the concepts from this section.

Example 22.7. Determine if each of the following sets is a vector space.
(@) V=A{(z,y,2) : z,y, z € R} with addition and multiplication by scalars defined by
(a,b,¢) ® (2,y,2) = (a+x,c+2,b+y) and k(z,y,z) = (kz, k2, ky),

where (a,b,c) and (z,y,z) arein V and k € R
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(b) V ={x € R:z > 0} with addition & and multiplication by scalars defined by

t®y=azy and kx = z¥,

where z and y are in V, k € R, and xy is the standard product of = and y

(c) The set W of all 2 x 2 matrices of the form [ Z 8 } where a and b are real numbers using

the standard addition and multiplication by scalars on matrices.

(d) The set W of all functions f from R to R such that f(0) > 0 using the standard addition
and multiplication by scalars on functions.

Example Solution.

(a) We consider the vector space properties in Definition 22.1. Let (a,b,¢), (u,v,w), and
(z,y,2z) be in V and let k,m € R. By the definition of addition and multiplication by
scalars, both (a, b, ¢) + (z,y, z) and k(x, y, z) are in V. Note also that

(a,b,¢)® (v,y,2) = (a+z,c+ 2,0+ 7y)
=(r+a,z+c,y+b)
= (l’,y,Z)@(a, b,C),

and so addition is commutative in V.
Since
((1,1,0) ® (0,1,1)) ® (0,0,1) = (1,1,2) & (0,0,1) = (1,3,1)
and
(1,1,0) ® ((0,1,1) ® (0,0,1)) = (1,1,0) & (0,2,1) = (1,1, 3),
we see that addition is not associative and conclude that V' is not a vector space. At this

point we can stop since we have shown that V' is not a vector space.

(b) We consider the vector space properties in Definition 22.1. Let z, y, and z be in V' and let
k,m € R. Since x and y are both positive real numbers, we know that xy is a positive real
number. Thus, x & y € V and V is closed under its addition. Also, ¥ is a positive real
number, so z¥ € V as well.

Now
rhOy=xy=yr=y>dx
and addition is commutative in V.

Also,
(zoy)@z=(zy)d2z=(2y)z=2(y2) =28 (y2) =3 (y S 2)

and addition is associative in V.

Since
1z =1z =z,
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V contains an additive identity, which is 1. The fact that x is a positive real number implies
that % is a positive real number. Thus, % € Vand

()
rd—=a—-| =1
T T

and V contains an additive inverse for each of its elements.

We have that

(k+m)z = 2Fm = 2F2™ = 2% @ 2™ = k(z) ® m(z),
k(z ® 4y) = k(zy) =2zfyf =af @ yF =k
(km)z = 2™ = (z™)* = (m(x))* = k

1z = 2! = 2.

So V satisfies all of the properties of a vector space.
(c) Recall that M2y is a vector space using the standard addition and multiplication by scalars

. . a
on matrices. Any matrix of the form { b

o leelon] v e

SoW = Span{[ é 8 ] , [ ? 8 }}andWisasubspace of Msys. Thus, W is a vector

0 )
can be written as

space.

(d) We will show that IV is not a vector space. Let f : R — R be defined by f(z) = 1. Then
f(0) > 0and f € W. However, if h = (—1)f, then h(0) = (—1)f(0) = —land h ¢ W.
It follows that W is not closed under multiplication by scalars and W is not a vector space.

Example 22.8. Let IV be a vector space and u and v vectors in V. Also, let @ and b be scalars. You
may use the result of Exercise 4 that cO = 0 for any scalar c in any vector space.

(@) If av = bv and v # 0, must a = b? Use the properties of a vector space or provide a
counterexample to justify your answer.

(b) If au = av and a # 0, must u = v? Use the properties of a vector space or provide a
counterexample to justify your answer.

(¢) If au = bv, must ¢ = b and u = v? Use the properties of a vector space or provide a
counterexample to justify your answer.

Example Solution.

(a) We will show that this statement is true. Suppose av = bv and v # 0. Then 0 = av—bv =
(a — b)v. If a = b, then we are done. So suppose a # b. Then a — b # 0 and ﬁ is a real
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number. Then

But we assumed that v # 0, so we can conclude that a = b as desired.

(b) We will show that this statement is true. Suppose au = av and a # 0. Then 0 = gau—av =
a(u — v). Since a # 0, we know that 2 is a real number. Thus,

1
a
u-—
V.

—

a(u—v))

e

@\*—‘

& o
I

(c) We will demonstrate that this statement is false with a counterexample. Leta = 1, b = 2,
u=1[20]"and v = [1 0]7 in R2. Then

=1[20]" =[20]"T =2[10]" = bv,

buta # band u # v.

Summary

e A set V on which an operation of addition and a multiplication by scalars is defined is a
vector space if for all u, v, and w in V' and all scalars a and b:
(1) u+ visanelement of V,
2)u+v=v+u,
B) (u+v)+w=u+(v+w),
(4) there is a zero vector 0 in V sothatu + 0 = u,
(5) for each x in V there is an element y in V so thatx +y = 0,
(6) auis an element of V,
(7) (a+b)u=au+ bu,
8) a(u+v) =au+av,
9) (ab)u = a(bu),
(10) 1u =u.

e A subset H of a vector space V' is a subspace of V' if
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(1) whenever u and v are in H it is also true that u + v is in H,
(2) whenever u isin H and a is a scalar it is also true that qu is in H,

(3) Oisin H.
A linear combination of vectors vi, va, ..., Vi in a vector space V is a vector of the form

T1V1 + Tavy + - + TV,

where 1, T2, ..., X} are scalars.
The span of the vectors vy, vo, ..., Vi in a vector space V is the collection of all linear
combinations of vi, vo, ..., vi. Thatis,

Span{vl, Vo,. .. ,Vk} = {$1V1 + X9Vy + -+ TpVE I X1,T2,...,T) are scalars}.

The span of any finite set of vectors in a vector space V is always a subspace of V.

This concept of vector space is important because there are many different types of sets (e.g.,
R"™, Mxn» Pr, JF) that have similar structure, and we can relate them all as members of this
larger collection of vector spaces.

Exercises

ey

2

3)

The definition of a vector space only states the existence of a zero vector and does not say
how many zero vectors the space might have. In this exercise we show that the zero vector in
a vector space is unique. To show that the zero vector is unique, we assume that two vectors
0; and 03 have the zero vector property.

(a) Using the fact that 0, is a zero vector, what vector is 0; + 02?
(b) Using the fact that 05 is a zero vector, what vector is 07 + 02?

(c) How do we conclude that the zero vector is unique?

The definition of a vector space only states the existence of an additive inverse for each vector
in the space, but does not say how many additive inverses a vector can have. In this exercise
we show that the additive inverse of a vector in a vector space is unique. To show that a vector
v has only one additive inverse, we suppose that v has two additive inverses, u and w, and
demonstrate that u = w.

(a) What equations must u and w satisfy if u and w are additive inverses of v?

(b) Use the equations from part (a) to show that u = w. Clearly identify all vector space
properties you use in your argument.

Let V be a vector space and v a vector in V. In all of the vector spaces we have seen to
date, the additive inverse of the vector v is equal to the scalar multiple (—1)v. This seems
reasonable, but it is important to note that this result is not stated in the definition of a vector

o099
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space, so this it is something that we need to verify. To show that (—1)v is an additive inverse
of the vector v, we need to demonstrate that

v+ (—-1)v=0.
Verify this equation, explicitly stating which properties you use at each step.

(4) It is reasonable to expect that if c is any scalar and O is the zero vector in a vector space V,
then cO = 0. Use the fact that 0 + 0 = O to prove this statement.

(5) Let Wy, W5 be two subspaces of a vector space V. Determine whether W1 MWy and W, UW,
are subspaces of V. Justify each answer clearly.

(6) Find three vectors vy, v, V3 to express

a+2b+c
W = b—3c ca,b,cinR
a—-c

as Span{vy, vo, v3}. How does this justify why W is a subspace of R3?

(7) Find three vectors vy, vy, V3 to express

_ a+b a—2c¢ ) .
W= {[ 3b+c a—l—b—c} .a,b,cmR}

as Span{vy, vy, v3}. How does this justify why W is a subspace of Mayx2?

(8) Let F be the set of all functions from R to R, where we define the sum of two functions f
and g in F as the function f + g satisfying

(f +9)(x) = f(z) + g(x)

for all real numbers z, and the scalar multiple cf of the function f by the scalar ¢ to be the
function satisfying

(cf)(x) = cf (x)

for all real numbers . Show that F is a vector space using these operations.
(9) Prove Theorem 22.6. (Hint: Compare to Theorem 12.5).

(10) Determine if each of the following sets of elements is a vector space or not. If appropriate,
you can identify a set as a subspace of another vector space, or as a span of a collection of
vectors to shorten your solution.

(a) A line through the origin in R™.
(b) The first quadrant in R?.

(c) The set of vectors { { 8 } tain Z}.

(d) The set of all differentiable functions from R to R.
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(e) The set of all functions from R to R which are increasing for every z. (Assume that
a function f is increasing if f(a) > f(b) whenever a > b.)

(f) The set of all functions f from R to R for which f(c) = 0 for some fixed ¢ in R.
(g) The set of polynomials of the form a + bt, where a + b = 0.
(h) The set of all upper triangular 4 x 4 real matrices.

(1) The set of complex numbers C where scalar multiplication is defined as multiplica-
tion by real numbers.

(11) A reasonable way to extend the idea of the vector space R™ to infinity is to let R* be the set
of all sequences of real numbers. Define addition and multiplication by scalars on R* by

{zn} +{yn} = {zn +yn} and c{an} = {czn}

where {x, } denotes the sequence 1, x2,x3, ..., {y,} denotes the sequence y1,ya2,ys, ...
and cis a scalar.

(a) Show that R is a vector space using these operations.

(b) Is the set of sequences that have infinitely many zeros a subspace of R*? Verify
your answer.

(c) Is the set of sequences which are eventually zero a subspace of R>*? Verify your
answer. (A sequence {z,} is eventually zero if there is an index kg such that z,, = 0
whenever n > kq.)

(d) Is the set of decreasing sequences a subspace of R*°? Verify your answer. (A se-
quence {x, } is decreasing if x, 1 < x,, for each n.)

(e) Is the set of sequences in R°° that have limits at infinity a subspace of R*>°?

(f) Let £? be the set of all square summable sequences in R, that is sequences {z,}
so that ) 72 xi is finite. So, for example, the sequence {%} is in /2. Show that
£? is a subspace of R™ (the set /2 is an example of what is called a Hilbert space
by defining the inner product ({z,,}, {y,}) = >_°° | z,y,). (Hint: show that 2u? +

n=1
202 — (u + v)? > 0 for any real numbers u and v.)

(12) Given two subspaces Hi, Hs of a vector space V, define
Hy+ Hy={w|w=u+vwhereuin Hj,vin Hy}.

Show that H; + H> is a subspace of V' containing both H, Hy as subspaces. The space
H, + Hs is the sum of the subspaces H; and Ho.

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The intersection of any two subspaces of V' is also a subspace.
(b) True/False The union of any two subspaces of V is also a subspace.

(c) True/False If H is a subspace of a vector space V', then —H = {(—1)v:vin H}is
equal to H.
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(d) True/False If v is a nonzero vector in H, a subspace of R”, then H contains the line
through the origin and v in R"™.

(e) True/False If v, vy are nonzero, non-parallel vectors in H, a subspace of R”, then
H contains the plane through the origin, v; and vg in R™.

(f) True/False The smallest subspace in R" containing a vector v is a line through the
origin.

(g) True/False The largest subspace of V is V.
(h) True/False The space IP; is a subspace of P,, for n > 1.
(i) True/False The set of constant functions from R to R is a subspace of F.

(j) True/False The set of all polynomial functions with rational coefficients is a sub-
space of F.

Project: Hamming Codes and the Hat Puzzle

Recall the hat problem from the beginning of this section. Three players are assigned either a red
or blue hat and can only see the colors of the hats of the other players. The goal is to devise a
high probability strategy for one player to correctly guess the color of their hat. The players have
a 50% chance of winning if one player guesses randomly and all of the others pass. However, the
group can do better than 50% with a reasonably simple strategy. There are 2 possibilities for each
hat color for a total of 23 = 8 possible distributions of hat colors. Of these, only red-red-red and
blue-blue-blue contain only one hat color, so 6/8 of 3/4 of the possible hat distributions have two
hats of one color and one of the other color. So if a player sees two hats of the same color, that
player guesses the other color and passes otherwise. This gives a 75% chance of winning. This
strategy will only work for three players, though. We want to develop an effective strategy that
works for larger groups of players.

There is a strategy, based on Hamming codes that can be utilized when the number of players is
of the form 2¥ — 1 with k& > 2. This strategy will provide a winning probability of

1-27"
Note that as £ — oo, this probability has a limit of 1. Note also that if £k = 2 (so that there are 3

players), then the probability is % or 75% — the same strategy we came up with earlier.

To understand this strategy, we need to build a slightly different kind of vector space than we
have seen until now, one that is based on a binary choice of red or blue. To do so, we identify the
hat colors with numbers — 0 for red and 1 for blue. So let F = {0, 1}. Assume there are n = 2% — 1
players for some integer & > 2. We can then view a distribution of hats among the n = 2¥ — 1
players as a vector with n components from F. That is,

F" = {[a1 ag --- ay]" 1 a; € F}.

We can give some structure to both ' and F” by noting that we can define addition and multi-
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plication in F by

0+40=0, O04+1=140=1 14+1=0
0-0=0, 0-1=1-0=0, 1-1=1.

Project Activity 22.1. Show that [F has the same structure as R. That is, show that for all z, ¢, and
z in I, the following properties are satisfied.

(@ r4+yeFanday eF

b) r+y=y+zandzy = yx

© (@+y)+z=a+(y+z) and (zy)z = z(yz)

(d) There is an element O in IF such that x + 0 =

(e) There is an element 1 in IF such that (1)z = =

(f) There is an element —z in IF such that z + (—z) = 0

(g) If z # 0, there is an element  in F such that z () =1
(h) z(y + 2) = (zy) + (z2)

Project Activity 22.1 shows that [ has the same properties as R — that is that IF is a field. Until
now, we have worked with vector spaces whose scalars come from the set of real numbers, but that
is not necessary. None of the results we have discovered so far about vector spaces require our
scalars to come from R. In fact, we can replace R with any field and all of the same vector space
properties hold. It follows that V' = F" is a vector space over F. As we did in R", we define the

standard unit vectors e; = [1 00 --- 0]T,e; =[0100 ... 0]",...,e, =[000 ... 01]T in
V =TF"

Now we return to the hat puzzle. We have n = 2¥ — 1 players. Label the players 1, 2, .. ., n.
We can now represent a random placements of hats on heads as a vector v = [ag ag - - an]T in

V = F", where a; = 0 in the ¢th entry represents a red hat and «; = 1 a blue hat on player ¢. Since
player 7 can see all of the other hats, from player ¢’s perspective the distribution of hats has the form

v =vi+ fe;

where (3; is the unknown color of hat on player i’s head and

-
vi=logag o a1 00y -oran]

In order to analyze the vectors v from player ¢’s perspective and to devise an effective strategy, we

will partition the set V' into an appropriate disjoint union of subsets.

To provide a different way to look at players, we will use a subspace of V. Let W be a subspace
of V that has a basis of &k vectors. The elements of W are the linear combinations of & basis vectors,
and each basis vector in a linear combination has 2 possibilities for its weight (from ). Thus, W
contains exactly 2¥ = n 4 1 vectors. We can then use the n = 2* — 1 nonzero vectors in W to
represent our players. Each distribution of hats can be seen as a linear combination of the vectors
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in W. Let wq, wo, ..., Wor_7 be the nonzero vectors in W. We then define a function p : V. — W
as

n
pllarag -+ an]T) = ayw;
i=1

that identifies a distribution of hats with a vector in W. The subspace that we need to devise our
strategy is what is called a Hamming code.

Project Activity 22.2. Let

H:{[oqaz ---an]TEV:Zaiwi:O}.

i=1

Show that H is a subspace of V. (The subspace H is called the (2% — 1,2¥ — k — 1) Hamming
code (where the first component is the number of elements in a basis for V' and the second the
number of elements in a basis for ). Hamming codes are examples of linear codes — those codes
that are subspaces of the larger vector space.)

Now for each i between 0 and n we define H; = e; + H as
H,':ei—}—H:{ei—i—h:hGH},
where we let ey = 0. The sets H; are called cosets of H.

Project Activity 22.3. To complete our strategy for the hat puzzle, we need to know some addi-
tional information about the sets H;.

(a) Show that the sets H; are disjoint. That is, show that H; N H; = () if ¢ # j. (Hint: If
v € H; and v € H;, what can we say about e; — e;?)

(b) Since H; C V for each i, it follows that | J;" , H; € V. Now we show that V = |JI"_, H;
by demonstrating that | J;_, H; has exactly the same number of elements as V. We will
need one fact for our argument. We will see in a later section that H has a basis of n — k
elements, so the number of elements in H is 2" %,

i. Since the sets H; are disjoint, the number of elements in  J;_; H; is equal to the sum
of the number of elements in each H;. Show that each H; has the same number of
elements as H.

ii. Now use the fact that the number of elements in | J;"_, H; is equal to the sum of the
number of elements in each H; to argue that V = |J;_, H;.

The useful idea from Project Activity 22.3 is that any hat distribution in V is in exactly one of
the sets H;. Recall that a hat distribution v = [ a2 - -+ ;)" in V can be written from player 4’s
perspective as
v =v; + bie;,
]T

where v; = [a1 ag -+ aj—1 0 cjqq -ov - - an]'. Our strategy for the hat game can now be

revealed.

e If v; + (;e; is not in H for either choice of 3;, then player ¢ should pass.

D00
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e If v; + (;e; is in H, then player i guesses 1 + [3;.
Project Activity 22.4. Let us analyze this strategy.

(a) Explain why every player guesses wrong if v is in H.

(b) Now we see determine that our strategy is a winning strategy for all hat distributions v that
are not in H. First we need to know that these two options are the only ones. That is, show
that it is not possible for v; + (;e; to be in H for both choices of j3;.

(c) Now we want to demonstrate that this is a winning strategy if v ¢ H. That is, at least one
player guesses a correct hat color and no one else guesses incorrectly. So assume v ¢ H.

i. We know that v € H; for some unique choice of ¢, so let v = e; + h for some h € H.
Explain why player ¢ can correctly choose color 1 + «;.

ii. Finally, we need to argue that every player except player ¢ must pass. So consider
player j, with j # 4. Recall that

vV =V, + qje;.

Analyze our strategy and the conditions under which player j does not pass. Show
that this leads to a contradiction.

Project Activity 22.4 completes our analysis of this strategy and shows that our strategy results
in a win with probability
|H| 92F—k—1

_q1_ = 1 _9-k
“y Tl s



Section 23

Bases for Vector Spaces

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

e What does it mean for a set {vy,va,..., v, } of vectors in a vector space
V to be linearly independent?

e What is another equivalent characterization of a linearly independent set?

e What does is mean for a set {vi,va,..., vy} of vectors in a vector space
V to be linearly dependent?

e Describe another characterization of a linearly dependent set.
e What is a basis for a vector space V?
e What makes a basis for a vector space useful?

e How can we find a basis for a vector space V'?

Application: Image Compression

If you painted a picture with a sky, clouds, trees, and flowers, you would use a different
size brush depending on the size of the features. Wavelets are like those brushes.
— Ingrid Daubechies

The advent of the digital age has presented many new opportunities for the collection, analysis,
and dissemination of information. Along with these opportunities come new difficulties as well.
All of this digital information must be stored in some way and be retrievable in an efficient manner.
One collection of tools that is used to deal with these problems is wavelets. For example, The FBI
fingerprint files contain millions of cards, each of which contains 10 rolled fingerprint impressions.
Each card produces about 10 megabytes of data. To store all of these cards would require an enor-

407
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mous amount of space, and transmitting one full card over existing data lines is slow and inefficient.
Without some sort of image compression, a sortable and searchable electronic fingerprint database
would be next to impossible. To deal with this problem, the FBI adopted standards for fingerprint
digitization using a wavelet compression standard.

Another problem with electronics is noise. Noise can be a big problem when collecting and
transmitting data. Wavelet decomposition filters data by averaging and detailing. The detailing
coefficients indicate where the details are in the original data set. If some details are very small in
relation to others, eliminating them may not substantially alter the original data set. Similar ideas
may be used to restore damaged audio,' video, photographs, and medical information.>

We will consider wavelets as a tool for image compression. The basic idea behind using
wavelets to compress images is that we start with a digital image, made up of pixels. Each pixel
can be assigned a number or a vector (depending on the makeup of the image). The image can then
be represented as a matrix (or a set of matrices) M, where each entry in M represents a pixel in
the image. As a simple example, consider the 16 x 16 image of a flower as shown at left in Figure
23.1. (We will work with small images like this to make the calculations more manageable, but the
ideas work for any size image. We could also extend our methods to consider color images, but
for the sake of simplicity we focus on grayscale.) This flower image is a gray-scale image, so each

Figure 23.1: Left: A 16 by 16 pixel image. Right: The image compressed.

pixel has a numeric representation between 0 and 255, where 0 is black, 255 is white, and numbers

'see https://ccrma.stanford.edu/groups/edison/brahms/brahms.html for a discussion of the
denoising of a Brahms recording

2A review of wavelets in biomedical applications. M. Unser, A. Aldroubi. Proceedings of the IEEE, Volume: 84,
Issue: 4, Apr 1996

@92e
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between 0 and 255 represent shades of gray. The matrix for this flower image is
[ 240 240 240 240 130 130 240 130 130 240 240 240 240 240 240 240 ]
240 240 240 130 175 175 130 175 175 130 240 240 240 240 240 240
240 240 130 130 175 175 130 175 175 130 130 240 240 240 240 240
240 130 175 175 130 175 175 175 130 175 175 130 240 240 240 240
240 240 130 175 175 130 175 130 175 175 130 240 240 240 240 240
255 240 240 130 130 175 175 175 130 130 240 240 225 240 240 240
240 240 130 175 175 130 130 130 175 175 130 240 225 255 240 240
240 240 130 175 130 240 130 240 130 175 130 240 255 255 255 240 231
240 240 240 130 240 240 75 240 240 130 240 255 255 255 255 255 | - (23.1)
240 240 240 240 240 240 75 240 240 240 240 240 240 240 240 240
240 240 240 75 75 240 75 240 75 75 240 240 240 240 240 240
50 240 240 240 75 240 75 240 75 240 240 240 240 50 240 240
240 75 240 240 240 75 75 75 240 240 50 240 50 240 240 50
240 240 75 240 240 240 75 240 240 50 240 50 240 240 50 240
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
| 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 |

Now we can apply wavelets to the image and compress it. Essentially, wavelets act by averaging
and differencing. The averaging creates smaller versions of the image and the differencing keeps
track of how far the smaller version is from a previous copy. The differencing often produces many
small (close to 0) entries, and so replacing these entries with 0 doesn’t have much effect on the
image (this is called thresholding). By introducing long strings of zeros into our data, we are able
to store a (compressed) copy of the image in a smaller amount of space. For example, using a
threshold value of 10 produces the flower image shown at right in Figure 23.1.

The averaging and differencing is done with special vectors (wavelets) that form a basis for a
suitable function space. More details of this process can be found at the end of this section.

Introduction

In R™ we defined a basis for a subspace W of R” to be a minimal spanning set for W, or a linearly
independent spanning set (see Definition 6.6). So to consider the idea of a basis in a vector space,
we will need the notion of linear independence in that context.

Since we can add vectors and multiply vectors by scalars in any vector space, and because we
have a zero vector in any vector space, we can define linear independence of a finite set of vectors
in any vector space as follows (compare to Definition 6.1).

Definition 23.1. A set {vi,Vva,..., vy} of vectors in a vector space V' is linearly independent if
the vector equation
X1V + 2ovy + -+ xpvE =0

for scalars 1, za, . . ., has only the trivial solution
x1:m2:x3:---:xk:0.

If a set of vectors is not linearly independent, then the set is linearly dependent.

Alternatively, we say that the vectors v, va, ..., v are linearly independent (or dependent) if
the set {vy,va,..., vy} is linearly independent (or dependent).

Preview Activity 23.1.

D00
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(1) We can use the tools we developed to determine if a set of vectors in R" is linearly indepen-
dent to answer the same questions for sets of vectors in other vector spaces. For example,
consider the question of whether the set {1 + ¢,1 — ¢} in [P; is linearly independent or de-
pendent. To answer this question we need to determine if there is a non-trivial solution to the
equation

z1(1+1¢)+22(l —t)=0. (23.2)

Note that equation (23.2) can also be written in the form

(1 + x2) + (1 — x2)t = 0.

(a) Recall that two polynomials are equal if all coefficients of like powers are the same.
By equating coefficients of like power terms, rewrite equation (23.2) as an equivalent
system of two equations in the two unknowns x; and x2, and solve for z1, za.

(b) What does your answer to the previous part tell you about the linear independence or
dependence of the set {1 +¢,1 — ¢t} in Py ?

(c) Recall that in R"”, a set of two vectors is linearly dependent if and only if one of the
vectors in the set is a scalar multiple of the other and linearly independent if neither
vector is a scalar multiple of the other. Verify your answer to part (c) from a similar
perspective in P;.

(2) We can use the same type of method as in problem (1) to address the question of whether the

(BRI

is linearly independent or dependent in M2y 2. To answer this question we need to determine
if there is a non-trivial solution to the equation

1 3 1 -9 1 -1
l‘1|:12:|+$2|:1 8:|+563|:1 4:|—0 (23.3)

for some scalars z1, x2, and x3. Note that the linear combination on the left side of equation
(23.3) has entries
T1+x9+x3 3x1 — 920 — 23
{ T+ o +x3 221 + 8x9 + 423 }

(a) Recall that two matrices are equal if all corresponding entries are the same. Equate
corresponding entries of the matrices in equation (23.3) to rewrite the equation as an
equivalent system of four equations in the three unknowns 1, x2, and x3.

(b) Use appropriate matrix tools and techniques to find all solutions to the system from
part ().

(c) What does the set of solutions to the system from part (a) tell you about the linear
independence or dependence of the set

e TR IR b
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(d) Recall that in R™, a set of vectors is linearly dependent if and only if one of the
vectors in the set is a linear combination of the others and linearly independent if no
vector in the set is a linear combination of the others. Verify your answer to part (c)
from a similar perspective in Maxo.

(3) We will define a basis for a vector space to be a linearly independent spanning set. Which, if
any, of the sets in parts (1) and (2) is a basis for its vector space? Explain.

Linear Independence

The concept of linear independence, which we formally defined in Preview Activity 23.1, provides
us with a process to determine if there is redundancy in a spanning set to obtain an efficient spanning
set.

The definition tells us that a set {vy,va,...,vi} of vectors in a vector space V is linearly
dependent if there are scalars x1, x2, . . ., 5, not all of which are 0 so that

T1V] + T2y + - + xpvE = 0.

As examples, we saw in Preview Activity 23.1 that the set {1+ ¢,1 — ¢} is linearly independent
in Py. The set {1 + ¢, —1 + 2t + 2,1 — 8¢ — 3t2}, on the other hand, is linearly dependent in Py
since 2(1 +t) + 3(—1+ 2t + t?) + (1 — 8t — 3t?) = 0.

In addition to the definition, there are other ways to characterize linearly independent and de-
pendent sets in vector spaces as the next theorems illustrate. These characterizations are the same
as those we saw in R™, and the proofs are essentially the same as well. The proof of Theorem 23.2
is similar to that of Theorem 6.2 and is left for the exercises.

Theorem 23.2. A set {vi,Va,...,Vi} of vectors in a vector space V is linearly dependent if and
only if at least one of the vectors in the set can be written as a linear combination of the remaining
vectors in the set.

Theorem 23.2 is equivalent to the following theorem that provides the corresponding result for
linearly independent sets.

Theorem 23.3. A set {vi,Va,...,Vy} of vectors in a vector space V is linearly independent if and
only if no vector in the set can be written as a linear combination of the remaining vectors in the
set.

One consequence of Theorems 23.2 and 23.3 is that if a spanning set is linearly dependent, then
one of the vectors in the set can be written as a linear combination of the others. In other words,
at least one of the vectors is redundant. In that case, we can find a smaller spanning set as the
next theorem states. The proof of this theorem is similar to that of Theorem 6.5 and is left for the
exercises.

Theorem 23.4. Let {vi,Va,..., v} be a set of vectors in a vector space V. If for some i between
I and k, v; is in Span{v1,Va, ..., Vi_1,Vit1,...,Vi}, then
Span{v1,va,..., vk} = Span{vi,va, ..., Vi1, Vit1,. .., Vi }.
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Bases

A basis for a vector space is a spanning set that is as small as it can be. We already saw how to
define bases formally in R™. We will now formally define a basis for a vector space and understand
why with this definition a basis is a minimal spanning set. Bases are important because any vector
in a vector space can be uniquely represented as a linear combination of basis vectors. We will see
in later sections that this representation will allow us to identify any vector space with a basis of n
vectors with R™.

To obtain the formal definition of a basis, which is a minimal spanning set, we consider what
additional property makes a spanning set a minimal spanning set. As a consequence of Theorem
234, if S is a spanning set that is linearly dependent, then we can find a proper subset of .S that
has the same span. Thus, the set S cannot be a minimal spanning set. However, if .S is linearly
independent, then no vector in S is a linear combination of the others and we need all of the vectors
in S to form the span. This leads us to the following formal characterization of a minimal spanning
set, called a basis.

Definition 23.5. A basis for a vector space V is a subset S of V' if

(1) Span S =V and

(2) S'is alinearly independent set.

In other words, a basis for a vector space V' is a linearly independent spanning set for V. To
put it another way, a basis for a vector space is a minimal spanning set for the vector space. Similar
reasoning will show that a basis is also a maximal linearly independent set.

The key ideas to take from the previous theorems are:
e A basis for a vector space V' is a minimal spanning set for V.
e A basis for V' is a subset S of V so that

(1) S spans V and
(2) S'is linearly independent.

e No vector in a basis can be written as a linear combination of the other vectors in the basis.

e If a subset S of a vector space V' has the property that one of the vectors in S is a linear
combination of the other vectors in S, then S is not a basis for V.

As an example of a basis of a vector space, we saw in Preview Activity 23.1 that the set S =
{1 —t,1 4 t} is both linearly independent and spans IP1, and so S is a basis for ;.

Activity 23.1.
(a) Is S = {1 +t¢,t,1 — t} abasis for P;? Explain.

(b) Explain why the set S = {1,¢,¢2,...,t"} is a basis for P,,. This basis is called the standard
basis for P,.
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(c) Show that the set
10 0 1 11 11
1 1’1 1’1 0’0 1

It should be noted that not every vector space has a finite basis. For example, the space PP of all
polynomials with real coefficients (of any degree) is a vector space, but no finite set of vectors will
span P. In fact, the infinite set {1,¢,2, ...} is both linearly independent and spans P, so P has an
infinite basis.

is a basis for Mo yo.

Finding a Basis for a Vector Space

We already know how to find bases for certain vector spaces, namely Nul A and Col A, where A is
any matrix. Finding a basis for a different kind of vector space will require other methods. Since a
basis for a vector space is a minimal spanning set, to find a basis for a given vector space we might
begin from scratch, starting with a given vector in the space and adding one vector at a time until
we have a spanning set.

Activity 23.2. Let W = {a + bt + ct3 | a, b, c are scalars}. We will find a basis of W that contains
the polynomial 3 4 ¢ — 3t3.

(a) Let S; = {3 +t — t3}. Find a polynomial p(t) in W that is not in Span S;. Explain why
this means that the set S does not span W,

(b) Let Sy = {3+t — 3, p(t)}. Find a polynomial ¢(#) that is not in Span S,. What does this
mean about S, being a possible spanning set of /'?

(c) Let S5 = {3+t —t3,p(t),q(t)}. Explain why the set Ss is a basis for W.

Alternatively, we might construct a basis from a known spanning set.

v+2z w+z

Activity 23.3. Let W = {[
T Yy

} |v,w,x,y, z are scalars}. Assume that W is a

subspace of Maxa.

(a) Find a set S of five 2 x 2 matrices that spans W (since W is a span of a set of vectors in
Moo, W is a subspace of Mayx2). Without doing any computation, can this set S be a
basis for W? Why or why not?

(b) Find a subset B of S that is a basis for W.

Activities 23.2 and 23.3 give us two ways of finding a basis for a subspace W of a vector space
V', assuming W has a basis with finitely many vectors. One way (illustrated in Activity 23.2 is to
start by choosing any non-zero vector wi in W. Let S; = {w }. If §; spans W, then S is a basis
for W. If not, there is a vector wy in W that is not in Span S;. Then S = {w1, wa} is a linearly
independent set. If Span S; = W, then S, is a basis for W and we are done. If not, repeat the
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process. We will show later that this process must stop as long as we know that W has a basis with
finitely many vectors.

Another way (illustrated in Activity 23.3 to find a basis for W is to start with a spanning set
Sy of W. If §; is linearly independent, then S is a basis for W. If S is linearly dependent, then
one vector in 87 is a linear combination of the others and we can remove that vector to obtain a
new set Sz that also spans W. If Sy is linearly independent, then Ss is a basis for W. If not, we
repeat the process as many times as needed until we arrive until at a subset S, of S that is linearly
independent and spans W. We summarize these results in the following theorem.

Theorem 23.6. Let W be a subspace of a finite-dimensional vector space V. Then

(1) any linearly independent subset of W can be extended to a basis of W,

(2) any subset of W that spans W can be reduced to a basis of W.

We conclude this section with the result mentioned in the introduction — that every vector in a
vector space with basis 3 can be written in one and only one way as a linear combination of basis
vectors. The proof is similar to that of Theorem 6.4 and is left to the exercises.

Theorem 23.7. Let vi, Vo, ..., vy, be vectors in a vector space V that make up a basis B for V.
If u is a vector in 'V, then u can be written in one and only one way as a linear combination of
vectors Vi, Vo, ..., V, in B.

Examples

What follows are worked examples that use the concepts from this section.
Example 23.8. Let S = {1,1 +¢,2 —t2, 1+t 42t — t?}.

(a) Does S span P»? Explain.

(b) Explain why S is not a basis for Ps.

(c) Find a subset of S that is a basis for Py. Explain your reasoning.

Example Solution.

(a) Let p(t) = ag + a1t + aot? be an arbitrary vector in Po. If p(¢) is in Span S, then there are
weights c1, ca, ¢3, ¢4, and c5 such that

ap + art + agt? = 1 (1) + co(1 4+ 1) + 3(2 — 2) + e (1 + t + t2) + ¢5(t — t2).
Equating coefficients of like powers gives us the system

c1+ca+ 2c3+ ¢y = ay
Co +c1+cs=aq

—C3 +c¢C4 — C5 = an.
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The reduced row echelon form of the coefficient matrix A is
100 2 -3
010 1 1
0 01 -1 1

Since there is a pivot in every row of A, the system Ax = b is always consistent. We

conclude that S does span Ps.

(b) The fact that the coefficient matrix A of our system has non-pivot columns means that each
vector in Py can be written in more than one way as a linear combination of vectors in S.
This means that .S is not linearly independent and so cannot be a basis for Ps.

(c) That the first three columns of A are pivot columns implies that the polynomials 1, 1 + ¢,
and 2 — ¢2 are linearly independent. Since there is a pivot in every row of A, the three
polynomials 1, 1 + ¢, and 2 — ¢? also span Ps. So {1,1 + ¢,2 — t?} is a subset of .S that is
a basis for Ps.

Example 23.9. Let U be the set of all matrices of real numbers of the form [ g _ux_ r

} and

W be the set of all real matrices of the form [ Z} _Ov } .
(a) Find a basis for U and a basis for V.

(b) Let U+ W = {A+ B : AisinU and Bisin W}. Show that U + W is a subspace of
Moo and find a basis for U + W.

Example Solution.

(a) Every matrix in U has the form
U —u—T | 1 -1 " 0 -1
0 z Yo o|T|o 1]

Let Sy = {[ (1) _(1) } , [ 8 _1 ]} Then U = Span Sy and U is a subspace of Maxs.

N I I
Do ol T2l 1|7"Y

then ¢; = ¢co = 0 and Sy is also linearly independent. This makes Sy a basis for U.

Similarly, every matrix in W has the form

v 0 | v 1 0 L 0 0
w o —v | 0 —1 1 0|
1 0 0 0 .
Let Sy = {[ 0 —1 } , { 10 }} Then W = Span Sy, and W is a subspace of
M2><2. If

10l To0]_,
Dlo -1 |21 0|77

then ¢; = co = 0 and Syy is also linearly independent. This makes Sy a basis for W.
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(b) Every matrix in U 4+ W has the form
[u —u—x} [v 0 ] [u-i—v —u—x}
+ =
0 T w —v w Tr—v
_ 1 -1 n 0 -1
Yo o]0 1
n 1 0 n 0 0
lo =1 |7%]1 0"

1 -1 0 —1 1 0 00
LetS—{[O O]’[O 1},{0 _1],[10]}.ThenU+W—SpanS

and U + W is a subspace of Mayo. If

1], o 1), (1 0], [o00]_,
Do ol T2lo 1|70 1| %1 0|7

then

1 0 10 10 10
-1 -1 0 0. 01 -1 0
The reduced row echelon form of 0 0 0 1 is 0 0 01 |- The vec-
0O 1 -1 0 00 00
tors that correspond to the pivot columns are linearly independent and span U + W, so a
basis for U + W is
1 -1 0 -1 0 0
o of|’fo 1|10 '
Summary

The important idea in this section is that of a basis for a vector space. A basis is a minimal spanning
set and another equivalent characterization of the “minimal” property is linear independence.

e A set {vy,va,..., v} of vectors in a vector space V is linearly independent if the vector
equation
z1vy +xove + -+ v =0

for scalars x1, x2, ..., x) has only the trivial solution
x1:x2:x3:~-:xk20.

If a set of vectors is not linearly independent, then the set is linearly dependent.
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o Aset {vy,va,...,vi} of vectors in a vector space V' is linearly independent if and only if
none of the vectors in the set can be written as a linear combination of the remaining vectors
in the set.

o Aset {vy,va,..., vk} of vectors in a vector space V is linearly dependent if and only if at

least one of the vectors in the set can be written as a linear combination of the remaining
vectors in the set.

e A basis for a vector space V is a subset .S of V' if

(1) Span S =V and
(2) S'is alinearly independent set.

e A basis is important in that it provides us with an efficient way to represent any vector in the
vector space — any vector can be written in one and only one way as a linear combination of
vectors in a basis.

e To find a basis of a vector space, we can start with a spanning set S' and toss out any vector
in S that can be written as a linear combination of the remaining vectors in S. We repeat the
process with the remaining subset of .S until we arrive at a linearly independent spanning set.
Alternatively, we can find a spanning set for the space and remove any vector that is a linear
combination of the others in the spanning set. We can repeat this process until we wind up
with a linearly independent spanning set.

Exercises

(1) Determine if the given sets are linearly independent or dependent in the indicated vector
space. If dependent, write one of the vectors as a linear combination of the others. If inde-
pendent, determine if the set is a basis for the vector space.

(@) {[146]7,[2 —13]T,[015]T}inR3
(b) {1 —2t2 43,3 —t+4t3,2 — 3t} in P3
(¢) {1+t,—1—5t+4t2 + 3,14+t + 3t + 2t} in P3

120] [t —20][12 o]\,
(d){[o 1 1}’[0 -1 1}’[0 1 —1”mM3X2‘

(2 Let S ={1+t+t2t+t21+t,1+t2}inPy.
(a) Show that the set .S spans Ps.
(b) Show that the set S is linearly dependent.
(c) Find a subset of .S that is a basis for P;. Be sure to verify that you have a basis.

(3) Find two different bases for Msyo. Explain how you know that each set is a basis.

(4) The set W = {at + bt? | a and b are scalars} is a subspace of Ps.

(a) Find a set of vectors in P3 that spans W.
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(b) Find a basis for W. Be sure to verify that you have a basis.

(5) Suppose that the set {u, v, w} is a basis for a vector space V. Is the set {u+v,u+w,v+w}
a basis for V'? Verify your result.

(6) Determine all scalars c so that the set {c? + t2, ¢ + 2t, 1 + 2} is a basis for Ps.

(7) A symmetric matrix is a matrix A so that AT = A. Is it possible to find a basis for Moy
consisting entirely of symmetric matrices? If so, exhibit one such basis. If not, explain why
not.

a b c
d e f

(8) Find a basis of the subspace of M3 consisting of all matrices of the form [

where c = a — 2d and f = b+ 3e.
(9) Prove Theorem 23.2. (Hint: Compare to Theorem 6.2.)
(10) Prove Theorem 23.4. (Hint: Compare to Theorem 6.5.)
(11) Prove Theorem 23.7. (Hint: Compare to Theorem 6.4.)

(12) Show that if W1, Wy are subspaces of V' such that W; N Wy = {0}, then for any linearly
independent vectors uy, ug, ..., ug in Wp and v, va, ..., vy in Wy, the set {uy, ug, .. ., ug,
V1, Vo, ..., vg} is linearly independent in V.

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, let V' be a vector space.

(a) True/False If v is in V, then the set {v} is linearly independent.

(b) True/False If a set of vectors span a subspace, then the set forms a basis of this
subspace.

(c) True/False If a linearly independent set of vectors spans a subspace, then the set
forms a basis of this subspace.

(d) True/False If the set S spans V' and removing any vector from .S makes it not a
spanning set anymore, then S is a basis.

(e) True/Falself S is a linearly independent set in V' and for every u in V', adding u to
S makes it not linearly independent anymore, then S is a basis.

(f) True/False If a subset S of V' spans V, then .S must be linearly independent.
(g) True/False If a subset S of V' is linearly independent, then S must span V.

(h) True/False If S is a linearly dependent set in V, then every vector in S is a linear
combination of the other vectors in .S.

(i) True/False A vector space cannot have more than one basis.
(j) True/False If u is a non-zero vector in V, then there is a basis of V' containing u.

(k) True/False If u, v are two linearly independent vectors in V, then there is a basis of
V' containing u, v.

(1) True/False If u is in a basis of V/, then 2u cannot be in a basis of V.
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Project: Image Compression with Wavelets

We return to the problem of image compression introduced at the beginning of this section. The first
step in the wavelet compression process is to digitize an image. There are two important ideas about
digitalization to understand here: intensity levels and resolution. In grayscale image processing, it
is common to think of 256 different intensity levels, or scales, of gray ranging from O (black) to
255 (white). A digital image can be created by taking a small grid of squares (called pixels) and
coloring each pixel with some shade of gray. The resolution of this grid is a measure of how many
pixels are used per square inch. An example of a 16 by 16 pixel picture of a flower was shown in
Figure 23.1.

An image can be thought of in several ways: as a two-dimensional array; as one long vector
by stringing the columns together one after another; or as a collection of column vectors. For
simplicity, we will use the last approach in this project. We call each column vector in a picture
a signal. Wavelets are used to process signals. After processing we can apply some technique to
compress the processed signals.

To process a signal we select a family of wavelets. There are many different families of wavelets
— which family to use depends on the problem to be addressed. The simplest family of wavelets
is the Haar family. More complicated families of wavelets are usually used in applications, but
the basic ideas in wavelets can be seen through working with the Haar wavelets, and their relative
simplicity will make the details easier to follow. Each family of wavelets has a father wavelet
(usually denoted ) and a mother wavelet (2)).

Wavelets are generated from the mother wavelet by scalings and translations. To further sim-
plify our work we will restrict ourselves to wavelets on [0,1], although this is not necessary. The
advantage the wavelets have over other methods of data analysis (Fourier analysis for example) is
that with the scalings and translations we are able to analyze both frequency on large intervals and
isolate signal discontinuities on very small intervals. The way this is done is by using a large col-
lection (infinite, in fact) of basis functions with which to transform the data. We’ll begin by looking
at how these basis functions arise.

If we sample data at various points, we can consider our data to represent a piecewise constant
function obtained by partitioning [0,1] into n equal sized subintervals, where n represents the num-
ber of sample points. For the purposes of this project we will always choose n to be a power of 2.
So we can consider all of our data to represent functions. For us, then, it is natural to look at these
functions in the vector space of all functions from R to R. Since our data is piecewise constant, we
can really restrict ourselves to a subspace of this larger vector space — subspaces of piecewise con-
stant functions. The most basic piecewise constant function on the interval [0, 1] is the one whose
value is 1 on the entire interval. We define ¢ to be this constant function (called the characteristic
function of the unit interval). That is

() 1 ifo<z<1
€Tr) =
4 0, otherwise.

This function ¢ is the Father Haar wavelet.

This function ¢ may seem to be a very simple function but it has properties that will be im-
portant to us. One property is that ¢ satisfies a scaling equation. For example, Figure 23.2 shows
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1.0 1.0 1.0

0.5 0.5 0.5

0.5 1.0 0.5 0 0.5 1.0
Figure 23.2: Graphs of ¢(z), ¢(2x), and p(2z — 1) from left to right.

that
p(r) = p(2z) + (22 — 1)
while Figure 23.3 shows that

p(x) = p(2%2) + ¢(2%2 — 1) + (2% — 2) + ¢(2°x — 3).
So ¢ is a sum of scalings and translations of itself. In general, for each positive integer n and

1.0 1.0 frm— 1.0 frm— 1.0 frm—

0.5 0.5 0.5 0.5

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

Figure 23.3: Graphs of p(222), ¢(22x — 1), ¢(2%x — 2), and (222 — 3), from left to right.

integers k between 0 and 2" — 1 we define
pni(r) = (2" — k).

Then p(z) = Ziiﬁl ©n k() for each n.

These functions ¢, j are useful in that they form a basis for the vector space V;, of all piecewise
constant functions on [0, 1] that have possible breaks at the points 2%, 2%, 2%, R 22;1. This is
exactly the kind of space in which digital signals live, especially if we sample signals at 2" evenly
spaced points on [0,1]. Let B,, = {¢ 1 : 0 < k < 2" — 1}. You may assume without proof that

B,, is a basis of V,.

Project Activity 23.1.

(a) Draw the linear combination 2¢ o — 32 1 + 1792 2 + 302 3. What does this linear com-
bination look like? Explain the statement made previously “Notice that these 2™ functions
n. 1 form a basis for the vector space of all piecewise constant functions on [0, 1] that have

. ) o
possible breaks at the points 2%, 2%, 2%, . 22n L»

(b) Remember that we can consider our data to represent a piecewise constant function ob-
tained by partitioning [0, 1] into n subintervals, where n represents the number of sample
points. Suppose we collect the following data: 10, 13, 21, 55, 3, 12, 4, 18. Explain how we
can use this data to define a piecewise constant function f on [0, 1]. Express f as a linear
combination of suitable functions ¢, .. Plot this linear combination of ¢,, ;. to verify.
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Working with functions can be more cumbersome than working with vectors in R", but the
digital nature of our data makes it possible to view our piecewise constant functions as vectors in
R™ for suitable n. More specifically, if f is an element in V,,, then f is a piecewise constant function

on [0, 1] with possible breaks at the points %, 2%, %, e 27;;1. If f has the value of y; on the
interval between ’2_—"1 and 2% then we can identify f with the vector [y; y1 . .. an]T.
Project Activity 23.2.

(a) Determine the vector in R® that is identified with ¢.

(b) Determine the value of m and the vectors in R™ that are identified with 2 0, 2.1, ©2 2,
and 2 3.

We can use the functions ¢, ;. to represent digital signals, but to manipulate the data in useful
ways we need a different perspective. A different basis for V,, (a wavelet basis) will allow us to
identify the pieces of the data that are most important. We illustrate in the next activity with the
spaces V1 and V5.

Project Activity 23.3. The space V; consists of all functions that are piecewise constant on [0, 1]

with a possible break at z = % The functions ¢ = ¢, are used to records the values of a

signal, and by summing these values we can calculate their average. Wavelets act by averaging and
differencing, and so ¢ does the averaging. We need functions that will perform the differencing.

(a) Define {1} as
1 ifo<z<}
w()’o(x) =4¢-1 if% <z<l.
0 otherwise

A picture of g is shown in Figure 23.4. Since 1 assumes values of 1 and —1, we
can use g o to perform differencing. The function 1) = ) o is the Mother Haar wavelet.
Show that {¢, 1} is a basis for V;.

1.0 pe————— 1.0 1.0 r—
05 0.5[ 0.5‘
0.5 1.0 0.5 1.0 0.5 1.0
-0.5 -0.5 -0.5
-1.0 -1.0 —_— -1.0 —_—

Figure 23.4: The graphs of v o, ¥1,0 and 1)1 1 from left to right.

(b) We continue in a manner similar to the one in which we constructed bases for V,,. For
k=0andk = 1,let ¢y, = 9 (2'x — k). Graphs of ¢y and 1,1 are shown in Figure
23.4. The functions 1 ;, assume the values of 1 and —1 on smaller intervals, and so can be
used to perform differencing on smaller scale than 1 o. Show that {¢g 0, %00, %1,0, %11}
is a basis for V5.

3The first mention of wavelets appeared in an appendix to the thesis of A. Haar in 1909.
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As Project Activity 23.3 suggests, we can make a basis for V;, from (g ¢ and functions of the
form 1y, , defined by ¥, (z) = ¢ (2" — k) for k from 0 to 2" — 1. More specifically, if we let
Sp = {¥nk : 0 <k < 2" — 1}, then the set

n—1
Wy = {900,0} U U Sj
7=0

is a basis for VnL (we state this without proof). The functions v, j, are the wavelets.

Project Activity 23.4. We can now write any function in V,, using the basis W,,. As an example,
the string 50, 16, 14, 28 represents a piecewise constant function which can be written as 50¢2 o +
16p2.1 + 14p2 2 + 289 3, an element in V5.

(a) Specifically identify the functions in Wy, Wi, and W», and Wi.

(b) As mentioned earlier, we can identify a signal, and each wavelet function, with a vector
in R™ for an appropriate value of m. We can then use this identification to decompose
any signal as a linear combination of wavelets. We illustrate this idea with the signal
[50 16 14 28] in R*. Recall that we can represent this signal as the function f = 502, +
1621 + 1402 + 28(,02,3.

i. Find the the vectors w1, wa, w3, and w4 in R™ that are identified with g9, 10,0,
10, and 1 1, respectively.

ii. Any linear combination c1pq 0 + 2900 + c3t%1,0 + €411 1 is then identified with the
linear combination c¢; w1 + cows + c3w3 + c4wy. Use this idea to find the weights to
write the function f as a linear combination of ¢ 0, 10,0, ¥1,0, and ¥y 1.

Although is it not necessarily easy to observe, the weights in the decomposition f = 27 ¢ +
60,0 + 17910 — T1p11 are just averages and differences of the original weights in f = 502 +
1621 + 1492 2 + 28¢2 3. To see how, notice that if we take the overall average of the original
weights we obtain the value of 27. If we average the original weights in pairs (50 and 16, and 14 and
28) we obtain the values 33 and 21, and if we take average differences of the original weights in pairs
(50 and 16, and 14 and 28) we obtain the values 17 and —7. We can treat the signal [33 21]T formed
from the average of the pairs of the original weights as a smaller copy of the original signal. The
average difference of the entries of this new signal is 6. So the weights in our final decomposition
are obtained by differences between successive averages and certain coefficients. The coefficients
in our final decomposition 27¢q o + 61,0 + 1721 o — 7111 are called wavelet coefficients. This is
the idea that makes wavelets so useful for image compression. In many images, pixels that are near
to each other often have similar coloring or shading. These pixels are coded with numbers that are
close in value. In the differencing process, these numbers are replaced with numbers that are close
to 0. If there is little difference in the shading of the adjacent pixels, the image will be changed only
a little if the shadings are made the same. This results in replacing these small wavelet coefficients
with zeros. If the processed vectors contain long strings of zeros, the vectors can be significantly
compressed.

Once we have recognized the pattern in expressing our original function as an overall average
and wavelet coefficients we can perform these operations more quickly with matrices.
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Project Activity 23.5. The process of averaging and differencing discussed in and following Project
Activity 23.4 can be viewed as a matrix-vector problem. As we saw in Project Activity 23.4, we
can translate the problem of finding wavelet coefficients to the matrix world.

(a) Consider again the problem of finding the wavelet coefficients contained in the vector
[27 6 17 — 7]T for the signal [50 16 14 28]". Find the matrix A4 that has the property
that A4[50 16 14 28]T = [27 6 17 — 7]T. (You have already done part of this problem in
Project Activity 23.4.) Explain how A4 performs the averaging and differencing discussed
earlier.

(b) Repeat the process in part (a) to find the matrix Ag that converts a signal to its wavelet
coefficients.

(c) The matrix A; is called a forward wavelet transformation matrix and A;l is the inverse
wavelet transform matrix. Use Ag to show that the wavelet coefficients for the data string
[80 48 4 36 28 64 6 50] T are contained in the vector [39.52.522 916 — 16 — 18 — 22]T.

Now we have all of the necessary background to discuss image compression. Suppose we want
to store an image. We partition the image vertically and horizontally and record the color or shade
at each grid entry. The grid entries will be our pixels. This gives a matrix, M, of colors, indexed
by pixels or horizontal and vertical position. To simplify our examples we will work in gray-scale,
where our grid entries are integers between 0 (black) and 255 (white). We can treat each column of
our grid as a piecewise constant function. As an example, the image matrix M that produced the
picture at left in Figure 23.1 is given in (23.1).

We can then apply a 16 by 16 forward wavelet transformation matrix A4 to M to convert the
columns to averages and wavelet coefficients that will appear in the matrix A1gM. These wavelet
coefficients allow us to compress the image — that is, create a smaller set of data that contains the
essence of the original image.

Recall that the forward wavelet transformation matrix computes weighted differences of con-
secutive entries in the columns of the image matrix M. If two entries in M are close in values, the
weighted difference in Aj6M will be close to 0. For our example, the matrix A;gM is approxi-
mately

[ 208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0 ]
33.4 24.1 —0.625 0.938 —2.50 —5.94 42.8 —5.94 —2.50 12.8 0.938 24.7 30.6 33.4 32.5 31.6
—1.88 -13.8 19.4 250 0.0 —-2.50 8.12 —2.50 0.0 2.50 19.4 —13.8 1.88 —3.75 —1.88 0.0
17.5 61.9 61.9 6.88 0.0 61.9 0.0 61.9 0.0 30.6 650 66.9 66.9 19.4 66.9 66.9

0.0 27.5 438 16.2 0.0 -11.2 16.2 —11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
3.75 0.0 27.5 -11.2 0.0 -16.2 22.5 —-16.2 0.0 -—11.2 27.5 0.0 —-3.75—-7.50-3.75 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 825 13.8 0.0 3.75 3.75 51.2 3.75 3.75
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 825 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 —22.5 —22.5 55.0 —22.5 —22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 —22.5 —22.5 22.5 0.0 —22.5 0.0 22.5 —22.5-22.5 55.0 0.0 0.0 0.0 0.0
—7.50 0.0 —=55.0 22.5 22.5 —22.5 0.0 —22.5 22.5 22.5 —55.0 0.0 7.50 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22,5 -55.0 0.0 -55.0 22.5 0.0 0.0 0.0 —15.0 0.0 -7.50 0.0
0.0 0.0 0.0 —=55.0 0.0 0.0 0.0 0.0 0.0 -55.0 0.0 7.50 7.50 7.50 7.50 7.50
95.0 0.0 0.0 —82.5 0.0 0.0 0.0 0.0 0.0 —82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 —82.5 82.5 0.0 0.0 —82.5 0.0 —82.5 0.0 95.0 —95.0 95.0 —95.0 0.0 95.0 —95.0
L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note that there are many wavelet coefficients that are quite small compared to others — the ones
where the weighted averages are close to 0. In a sense, the weighted differences tell us how much
“detail” about the whole that each piece of information contains. If a piece of information contains
only a small amount of information about the whole, then we shouldn’t sacrifice much of the picture
if we ignore the small “detail” coefficients. One way to ignore the small “detail” coefficients is to
use thresholding.
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With thresholding (this is hard thresholding or keep or kill), we decide on how much of the
detail we want to remove (this is called the tolerance). So we set a tolerance and then replace each
entry in our matrix A6 M whose absolute value is below the tolerance with 0 to obtain a new matrix
M. In our example, if you use a threshold value of 10 we obtain the new matrix M;:

[[208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0 7]
33.4 24.1 0.0 0.0 0.0 0.0 42.8 0.0 0.0 12.8 0.0 24.7 30.6 33.4 32.5 31.6
0.0 —13.8 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 194 —-13.8 0.0 0.0 0.0 0.0
17.5 61.9 61.9 0.0 0.0 61.9 0.0 619 0.0 30.6 650 66.9 66.9 19.4 66.9 66.9
0.0 27.5 43.8 16.2 0.0 -—-11.2 16.2 —11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
0.0 0.0 275 —-11.2 0.0 -16.2 22.5 —-16.2 0.0 -11.2 27.5 0.0 0.0 0.0 0.0 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 82.5 13.8 0.0 0.0 0.0 51.2 0.0 0.0
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 82.5 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 —22.5 —-22.5 55.0 —22.5 —-22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 —22.5 -22.5 22,5 0.0 -—22.5 0.0 225 —22.5-22.5 55.0 0.0 0.0 0.0 0.0
0.0 0.0 -55.0 22.5 22.5 —22.5 0.0 -—22.5 22.5 22.5 —-55.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22.5 —-55.0 0.0 -55.0 22.5 0.0 0.0 0.0 —-15.0 0.0 0.0 0.0
0.0 0.0 0.0 -55.0 0.0 0.0 0.0 0.0 0.0 —-55.0 0.0 0.0 0.0 0.0 0.0 0.0
95.0 0.0 0.0 —-82.5 0.0 0.0 0.0 0.0 0.0 —82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 —82.5 82.5 0.0 0.0 —-82.5 0.0 —-82.5 0.0 95.0 —95.0 95.0 —95.0 0.0 95.0 —95.0

L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |

We now have introduced many zeros in our matrix. This is where we compress the image. To
store the original image, we need to store every pixel. Once we introduce strings of zeros we can
identify a new code (say 256) that indicates we have a string of zeros. We can then follow that code
with the number of zeros in the string. So if we had a string of 15 zeros in a signal, we could store
that information in 2 bytes rather than 15 and obtain significant savings in storage. This process
removes some detail from our picture, but only the small detail. To convert back to an image, we just
undo the forward processing by multiplying our thresholded matrix M; by A1_61. The ultimate goal
is to obtain significant compression but still have A1_61 M) retain all of the essence of the original
image.

In our example using M, the reconstructed image matrix is A1_61M1 (rounded to the nearest
whole number) is

242 240 241 237 132 138 232 138 132 238 239 240 238 244 242 240 |
242 240 241 127 178 183 122 183 178 128 239 240 238 244 242 240
242 240 131 127 178 183 122 183 178 128 129 240 238 244 242 240
242 130 176 172 132 183 167 183 132 172 174 130 238 244 242 240
242 240 131 177 178 133 183 133 178 178 129 240 238 244 242 240
242 240 241 132 132 178 183 178 132 132 239 240 238 244 242 240
242 240 131 177 178 133 138 133 178 178 129 240 223 244 242 240
242 240 131 177 132 243 138 243 132 178 129 240 253 244 242 240
240 240 239 124 238 234 75 234 238 130 241 244 244 248 244 244
240 240 239 234 238 234 75 234 238 240 241 244 244 248 244 244
240 240 239 69 73 234 75 234 73 75 241 244 244 240 244 244
50 240 239 234 73 234 75 234 T3 240 241 244 244 50 244 244
240 75 239 248 238 69 75 69 238 240 51 240 50 240 240 50
240 240 74 248 238 234 75 234 238 50 241 50 240 240 50 240
75 75 T4 83 T3 69 75 69 Y3 V5 76 75 75 75 75 75
| 75 75 74 83 73 69 75 69 73 75 76 75 75 75 75 U5 |

We convert this into a gray-scale image and obtain the image at right in Figure 23.1. Compare
this image to the original at right in Figure 23.1. It is difficult to tell the difference.

There is a Sage file you can u