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Preface

A Free and Open-Source Linear Algebra Text

Mathematics is for everyone – whether as a gateway to other fields or as background for higher
level mathematics. With linear algebra gaining importance in many applications, we feel that ac-
cess to or the cost of a textbook should not stand in the way of a successful experience in learning
linear algebra. Therefore, we made our textbook available to everyone for free download for their
own non-commercial use. We especially encourage its use in linear algebra classrooms for instruc-
tors who are looking for an inquiry-based textbook or a supplemental resource to accompany their
course. If an instructor would like to make changes to any of the files to better suit your students’
needs, we offer source files for the text by making a request to the authors.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. The graphic

that appears throughout the text shows that the work is licensed with the Creative Commons, that
the work may be used for free by any party so long as attribution is given to the author(s), that the
work and its derivatives are used in the spirit of “share and share alike,” and that no party may sell
this work or any of its derivatives for profit. Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

Goals

Linear Algebra and Applications: An Inquiry-Based Approach provides a novel inquiry-based
learning approach to linear algebra, as well as incorporating aspects of an inverted classroom. The
impetus for this book lies in our approach to teaching linear algebra. We place an emphasis on
active learning and on developing students’ intuition through their investigation of examples. For
us, active learning involves students – they are DOING something instead of being passive learners.

xvii
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xviii Section 0. Preface

What students are doing when they are actively learning might include discovering, processing,
discussing, applying information, writing intensive assignments, engaging in common intellectual
in-class experiences or collaborative assignments and projects. Although it is difficult to capture
the essence of active learning in a textbook, this book is our attempt to do just that.

Our goals for these materials are several.

• To carefully introduce the ideas behind the definitions and theorems to help students develop
intuition and understand the logic behind them.

• To help students understand that mathematics is not done as it is often presented. We expect
students to experiment through examples, make conjectures, and then refine their conjectures.
We believe it is important for students to learn that definitions and theorems don’t pop up
completely formed in the minds of most mathematicians, but are the result of much thought
and work.

• To help students develop their communication skills in mathematics. We expect our students
to read and complete activities before class and come prepared with questions. While in class,
students work to discover many concepts on their own through guided activities. Of course,
students also individually write solutions to exercises on which they receive significant feed-
back. Communication skills are essential in any discipline and we place a heavy focus on
their development.

• To have students actively involved in each of these items through in-class and out-of-class
activities, in-class presentations (this is of course up to the instructor), and problem sets.

Layout

This text is formatted into sections, each of which contains preview activities, in-class activities,
worked examples, and exercises. Most sections conclude with an application project – an applica-
tion of the material in the section. The various types of activities serve different purposes.

• Preview activities are designed for students to complete before class to motivate the upcoming
topic and prepare them with the background and information they need for the class activities
and discussion.

• We generally use the regular activities to engage students during class in critical thinking
experiences. These activities are used to provide motivation for the material, opportunities for
students to develop course material on their own, or examples to help reinforce the meanings
of definitions or theorems. The ultimate goal is to help students develop their intuition for
and understanding of linear algebra concepts.

• Worked examples are included in each section. Part of the philosophy of this text is that
students will develop the tools and understanding they need to work homework assignments
through the preview, in-class activities, and class discussions. But some students express
a desire for fully-worked examples in the text to reference during homework. In order to
preserve the flow of material within a section, we include worked examples at the end of each
section.
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• The Linear Algebra Curriculum Study Group (LACSG) was created in 1990 to “initiate sub-
stantial and sustained national interest in improving the undergraduate linear algebra curricu-
lum”.1 Funded by the national science foundation, the group formed a broad based panel
of faculty, and in consultation with client disciplines they produced a document that makes
recommendations for the linear algebra curriculum. One of the recommendations, “Math-
ematics departments should seriously consider making their first course in linear algebra a
matrix-oriented course.” is followed in this text. They suggest that this approach “implies
less emphasis on abstraction and more emphasis on problem solving and motivating applica-
tions.” and that “Some applications of linear algebra should be included to give an indication
of the pervasive use of linear algebra in many client disciplines. Such applications neces-
sarily will be limited by the need to minimize technical jargon and information from outside
the course. Students should see the course as one of the most potentially useful mathematics
courses they will take as an undergraduate.” Also, the 2015 Committee on the Undergradu-
ate Program in Mathematics (CUPM) report to the Mathematical Association of America2

recommends that “Every Linear Algebra course should incorporate interesting applications,
both to highlight the broad usefulness of linear algebra and to help students see the role of
the theory in the subject as it is applied. Attractive applications may also entice students
majoring in other disciplines to choose a minor or additional major in mathematics.” All but
two sections in this text include a substantial application. Each section begins with a short
description of an application that uses the material from the section, then concludes with a
project that develops the application in more detail. (The two sections that do not include
projects are sections that are essentially long proofs – one section that contains formal proofs
of the equivalences of the different parts of the Invertible Matrix Theorem, and the other
contains algebraic proofs of the properties of the determinant.) The projects are independent
of the material in the text – the text can be used without the applications. The applications
are written in such a way that they could also be used with other textbooks. The projects
are written following an inquiry-based style similar to the text, with important parts of the
applications developed through activities. So the projects can be assigned outside of class
as independent work for students. Several of the projects are accompanied by GeoGebra
applets or Sage worksheets which are designed to help the students better understand the
applications.

• Each investigation contains a collection of exercises. The exercises occur at a variety of levels
of difficulty and most force students to extend their knowledge in different ways. While there
are some standard, classic problems that are included in the exercises, many problems are
open ended and expect a student to develop and then verify conjectures.
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To the Student

The inquiry-based format of this book means that you can be in charge of your own learning. The
guidance of your instructor and support of your fellow classmates can help you develop your under-
standing of the topic. Your learning will benefit best if you engage in the material by completing all
preview and in-class activities in order to fully develop your own intuition and understanding of the
material, which can be achieved only by reflecting on the ideas and concepts and communicating
your reflections with others. Don’t be afraid to ask questions or to be wrong at times, for this is how
people learn. Good luck! We will be happy to hear your comments about the book.
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Section 1

Introduction to Systems of Linear
Equations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a linear equation?

• What is a system of linear equations?

• What is a solution set of a system of linear equations?

• What are equivalent systems of linear equations?

• What operations can we use to solve a system of linear equations?

Application: Electrical Circuits

Linear algebra is concerned with the study of systems of linear equations. There are two important
aspects to linear systems. One is to use given information to set up a system of equations that
represents the information (this is called modeling), and the other is to solve the system. As an
example of modeling, we consider the application to the very simple electrical circuit. An electrical
circuit consists of

• one or more electrical sources, denoted by
+ -

• one or more resistors, denoted by .

A source is a power supply like a battery, and a resistor is an object that consumes the electricity,
like a lamp or a computer. A simple circuit consists of one or more sources connected to resistors,

3



4 Section 1. Introduction to Systems of Linear Equations

like the one shown in Figure 1.2. The straight lines in the circuit indicate wires through which
current flows. The points labeled P and Q are called junctions or nodes.

+ −

+ −

8 V

5 V

4 Ω

2 Ω3 Ω

2 Ω

I1

I2

I3

P Q

Figure 1.1: A circuit.

The source creates a charge that produces potential energy E measured in volts (V). Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I1,
I2, and I3 be the currents as illustrated in Figure 1.2. The goal is to find the current flowing in each
branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current I , resistance R, and voltage E. There are laws governing electrical circuits that state that
E = IR across a resistor. Additionally, Kirchoff’s Current and Voltage Laws indicate how current
behaves within the whole circuit. Using all these laws together, we derive the system

I1 − I2 + I3 = 0

5I1 + 2I2 = 8

2I2 + 4I3 = 5,

where I1, I2, and I3 are the currents at the points indicated in Figure 1.2. To finish analyzing the
circuit, we now need to solve this system. In this section we will begin to learn systematic methods
for solving systems of linear equations. More details about the derivation of these circuit equations
can be found at the end of this section.

Introduction

Systems of linear equations arise in almost every field of study: mathematics, statistics, physics,
chemistry, biology, economics, sociology, computer science, engineering, and many, many others.
We will study the theory behind solving systems of linear equations, implications of this theory,
and applications of linear algebra as we proceed throughout this text.

Preview Activity 1.1.
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(1) Consider the following system of two linear equations in two unknowns, x1, x2:

2x1 − 3x2 = 0

x1 − x2 = 1.

One way to solve such a system of linear equations is the method of substitution (where
one equation is solved for one variable and then the resulting expression is substituted into
the remaining equations). This method works well for simple systems of two equations in
two unknowns, but becomes complicated if the number or complexity of the equations is
increased.

Another method is elimination – the method that we will adopt in this book. Recall that the
elimination method works by multiplying each equation by a suitable constant so that the co-
efficients of one of the variables in each equation is the same. Then we subtract corresponding
sides of these equations to eliminate that variable.

Use the method of elimination to show that this system has the unique solution x1 = 3 and
x2 = 2. Explain the specific steps you perform when using elimination.

(2) Recall that a linear equation in two variables can be represented as a line in R2, the Cartesian
plane, where one variable corresponds to the horizontal axis and the other to the vertical axis.
Represent the two equations 2x1− 3x2 = 0 and x1−x2 = 1 in R2 and illustrate the solution
to the system in your picture.

(3) The previous example should be familiar to you as a system of two equations in two un-
knowns. Now we consider a system of three equations in three unknowns

I1 − I2 + I3 = 0 (1.1)

5I1 + 2I2 = 8 (1.2)

2I2 + 4I3 = 5. (1.3)

that arises from our electrical circuit in Figure 1.2, with currents I1, I2, and I3 as indicated in
the circuit. In the remainder of this preview activity we will apply the method of elimination
to solve the system of linear equations (1.1), (1.2), and (1.3).

(a) Replace equation (1.2) with the new equation obtained by multiplying both sides of
equation (1.1) by 5 and then subtracting corresponding sides of this equation from
the appropriate sides of equation (1.2). Show that the resulting system is

I1 − I2 + I3 = 0

7I2 − 5I3 = 8 (1.4)

2I2 + 4I3 = 5.

(b) Now eliminate the variable I2 from the last two equations in the system in part (a) by
using equations (1.3) and (1.4) to show that I3 = 0.5. Explain your process.

(c) Once you know the value for I3, how can you find I2? Then how do you find I1? Use
your method to show that the solution to this system is the ordered triple (1,1.5,0.5).
Interpret the result in terms of currents.
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+ −
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P Q

Figure 1.2: A circuit.

Notation and Terminology

To study linear algebra, we will need to agree on some general notation and terminology to represent
our systems.

An equation like 4x1 + x2 = 8 is called a linear equation because the variables (x1 and x2

in this case) are raised to the first power, and there are no products of variables. The equation
4x1 + x2 = 8 is a linear equation in two variables, but we can make a linear equation with any
number of variables we like.

Definition 1.1. A linear equation in the variables x1, x2, . . ., xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where n is a positive integer and a1, a2, . . ., an and b are constants. The constants a1, a2, . . ., an
are called the coefficients of the equation.

We can use any labels for the variables in a linear equation that we like, e.g., I1, x1, t1, and you
should become comfortable working with variables in any form. We will usually use subscripts,
as in x1, x2, x3, . . ., to represent the variables as this notation allows us to have any number of
variables. Other examples of linear equations are

x+ 2y = 4 and
√

2x1 − 3x2 =
1

4
x3 + π .

On the other hand, the equations

1

x
+ y − z = 0 and 2x1 =

√
x2 − 5

are non-linear equations.

Definition 1.2. A system of linear equations is a collection of one or more linear equations in the
same variables.
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For example, the two equations

x1 − x2 = 1

2x1 + x2 = 5
(1.5)

form a system of two linear equations in variables x1, x2.

Definition 1.3. A solution to a system of linear equations is an ordered n-tuple (s1, s2, . . . , sn) of
numbers so that we obtain all true statements in the system when we replace the variable in order
with s1, s2, . . ., and sn.

For example, x1 = 2, x2 = 1, or simply (2, 1), is a solution to the above system of linear
equations in (1.5) as can be checked by substituting the variables into each equation. In solving a
system of linear equations, we are interested in finding the set of all solutions, which we will call
the solution set of the system. For the above system in (1.5), the solution set is the set containing
the single point (2, 1), denoted {(2, 1)}, because there is only one solution. If we consider just
the equation x1 − x2 = 0 as our system, the solution set is the line x1 = x2 in the plane. More
generally, a set of solutions is a collection of ordered n-tuples of numbers. We denote the set of all
ordered n-tuples of numbers as Rn. So, for example, R2 is the set of all ordered pairs, or just the
standard coordinate plane, and R3 is the set of all ordered triples, or the three-dimensional space.

Solving Systems of Linear Equations

In Preview Activity 1.1, we were introduced to linear systems and the method of elimination for a
system of two or three variables. Our goal now is to come up with a systematic method that will
reduce any linear system to one that is easy to solve without changing the solution set of the system.
Two linear systems will be called equivalent if they have the same solution set.

The operations we used in Preview Activity 1.1 to systematically eliminate variables so that we
can solve a linear system are called elementary operations on a system of linear equations or just
elementary operations. In the exercises you will argue that elementary operations do not change
the solution set to a system of linear equations, a fact that is summarized in the following theorem.

Theorem 1.4. The elementary operations on a system of linear equations:

(1) replacing one equation by the sum of that equation and a scalar multiple of another equation;

(2) interchanging two equations;

(3) replacing an equation by a nonzero scalar multiple of itself;

do not change the solution set to the system of equations.

When we apply these elementary operations our ultimate goal is to produce a system of linear
equations in a simplified form with the same solution set, where the number of variables eliminated
from the equations increase as we move from top to bottom. This method is called the elimination
method.
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Activity 1.1. For systems of linear equations with a small number of variables, many different
methods could be used to find a solution. However, when a system gets large, ad-hoc methods
become unwieldy. One of our goals is to develop an algorithmic approach to solving systems of
linear equations that can be programmed and applied to any linear system, so we want to work
in a very prescribed method as indicated in this activity. Ultimately, once we understand how the
algorithm works, we will use calculators/computers to do the work. Apply the elimination method
as described to show that the solution set of the following system is (2,−1, 1).

x1 + x2 − x3 = 0

2x1 + x2 − x3 = 2

x1 − x2 + 2x3 = 5.

(a) Use the first equation to eliminate the variable x1 in the second and third equations.

(b) Use the new second equation to eliminate the variable x2 in the third equation and find the
value of x3.

(c) Find values of x2 and then x1.

Important Note: Technically, we don’t really add two equations or multiply an equation by a scalar.
When we refer to a scalar multiple of an equation, we mean the equation obtained by equating the
scalar multiple of the expression on the left side of the equation and the same scalar multiple of the
expression on the right side of the equation. Similarly, when we refer to a sum of two equations, we
don’t really add the equations themselves. Instead, we mean the equation obtained by equating the
sum of the expressions on the left sides of the equations to the sum of the expressions on the right
sides of the equations. We will use the terminology “scalar multiple of an equation” and “sum of
two equations” as shorthand to mean what is described here.

Another Important Note: There is an important and subtle point to consider here. When we use
these operations to find a solution to a system of equations, we are assuming that the system has a
solution. The application of these operations then tells us what a solution must look like. However,
there is no guarantee that the outcome is actually a solution – to be safe we should check to make
sure that our result is a solution to the system. In the case of linear systems, though, every one of our
operations on equations is reversible (if applied correctly), so the result will always be a solution
(but this is not true in general for non-linear systems).

Terminology: A system of equations is called consistent if the system has at least one solution. If
a system has no solutions, then it is said to be inconsistent.

The Geometry of Solution Sets of Linear Systems

We are familiar with linear equations in two variables from basic algebra and calculus (through
linear approximations). The set of solutions to a system of linear equations in two variables has
some geometry connected to it.
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Activity 1.2. Recall that we examined the geometry of the system

2x1 − 3x2 = 0

x1 − x2 = 1

in Preview Activity 1.1 to show that the resulting solution set consists of a single point in the plane.

In this activity we examine the geometry of the system

2x1 − x2 = 1

2x1 − 2x2 = 2.
(1.6)

(a) Consider the linear equation 2x1 − 2x2 = 2 (or, equivalently 2x − 2y = 2). What is the
graph of the solution set (the set of points (x1, x2) satisfying this equation) of this single
equation in the plane? Draw the graph to illustrate.

(b) How can we represent the solution set of the system (1.6) of two equations graphically?
How is this solution set related to the solution set of the single equation 2x1 − 2x2 = 2?
Why? How many solutions does the system (1.6) have?

(c) There are exactly three possibilities for the number of solutions to a general system of two
linear equations in two unknowns. Describe the geometric representations of solution sets
for each of the possibilities. Illustrate each with a specific example (of your own) using a
system of equations and sketching its geometric representation.

Activity 1.2 shows that there are three options for the solution set of a system: A system can
have no solutions, one solution, or infinitely many solutions.

Now we consider systems of three variables. As an example, let us look at the linear equation
x + y + z = 1 in the three variables x, y, and z. Notice that the points (1, 0, 0), (0, 1, 0), and
(0, 0, 1) all satisfy this equation. As a linear equation, the graph of x+ y+ z = 1 will be a plane in
three dimensions that contains these three points, as shown in Figure 1.3. Hence when we consider
a linear system in three unknowns, we are looking for a point in the three dimensional space that
lies on all the planes described by the equations.

Activity 1.3. In this activity we examine the geometry of linear systems of three equations in three
unknowns. Recall that each linear equation in three variables has a plane as its solution set. Use a
piece of paper to represent each plane.

(a) Is it possible for a general system of three linear equations in three unknowns to have no
solutions? If so, geometrically describe this situation and then illustrate each with a specific
example using a system of equations. If not, explain why not.

(b) Is it possible for a general system of three linear equations in three unknowns to have
exactly one solution? If so, geometrically describe this situation and then illustrate each
with a specific example using a system of equations. If not, explain why not.

(c) Is it possible for a general system of three linear equations in three unknowns to have
infinitely many solutions? If so, geometrically describe this situation and then illustrate
each with a specific example using a system of equations. If not, explain why not.
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Figure 1.3: The plane x+ y + z = 1.

Examples

What follows are worked examples that use the concepts from this section.

Example 1.5. Apply the allowable operations on equations to solve the system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

x1 +2x3− x4 = 1

2x1 − 3x2+ x3+ x4 = 2.

Example Solution. We begin by eliminating the variable x1 from all but the first equation. To
do so, we replace the third equation with the third equation minus the first equation to obtain the
equivalent system

x1 + 2x2+x3− x4 = 4

− x2−x3+3x4 = 6

− 2x2+x3 = −3

2x1 − 3x2+x3+ x4 = 2.

Then we replace the fourth equation with the fourth equation minus 2 times the first to obtain the
equivalent system

x1 + 2x2+x3− x4 = 4

− x2−x3+3x4 = 6

− 2x2+x3 = −3

− 7x2−x3+3x4 = −6.

To continue the elimination process, we want to eliminate the x2 variable from our latest third
and fourth equations. To do so, we use the second equation so that we do not reinstate an x1
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variable in our new equations. We replace equation three with equation 3 minus 2 times equation 2
to produce the equivalent system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

3x3−6x4 = −15

− 7x2− x3+3x4 = − 6.

Then we replace equation four with equation four minus 7 times equation 2, giving us the equivalent
system

x1 + 2x2+ x3− x4 = 4

− x2− x3+ 3x4 = 6

3x3− 6x4 = −15

6x3−18x4 = −48.

With one more step we can determine the value of x4. We use the last two equations to eliminate
x3 from the fourth equation by replacing equation four with equation four minus 2 times equation
3. This results in the equivalent system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

3x3−6x4 = −15

−6x4 = −18.

The last equation tells us that −6x4 = −18, or x4 = 3. Substituting into the third equation
shows that

3x3 − 6 (3) = −15

3x3 = 3

x3 = 1.

The second equation shows that

−x2 − 1 + 3 (3) = 6

−x2 = −2

x2 = 2.

Finally, the first equation tells us that

x1 + 2 (2) + 1− 3 = 4

x1 = 2.

So the solution to our system is x1 = 2, x2 = 2, x3 = 1, and x4 = 3. It is worth substituting
back into our original system to check to make sure that we have not made any arithmetic mistakes.
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Example 1.6. A mining company has three mines. One day of operation at the mines produces the
following output.

• Mine 1 produces 25 tons of copper, 600 kilograms of silver and 15 tons of manganese.

• Mine 2 produces 30 tons of copper, 500 kilograms of silver and 10 tons of manganese.

• Mine 3 produces 20 tons of copper, 550 kilograms of silver and 12 tons of manganese.

Suppose the company has orders for 550 tons of copper, 11350 kilograms of silver and 250 tons of
manganese.

Write a system of equations to answer the question: how many days should the company oper-
ate each mine to exactly fill the orders? State clearly what the variables in your system represent.
Then find the general solution of your system.

Example Solution. For our system, let x1 be the number of days mine 1 operates, x2 be the number
of days mine 2 operates, and x3 be the number of days mine 3 operates. Since mine 1 produces 25
tons of coper each day, in x1 days mine 1 will produce 25x1 tons of copper. Mine 2 produces 30 tons
of copper each day, so in x2 days mine 2 will produce 30x2 tons of copper. Also, mine 3 produces
20 tons of copper each day, so in x3 days mine 3 will produce 20x3 tons of copper. Since the
company needs to supply a total of 550 tons of copper, we need to have 25x1 +30x2 +20x3 = 550.
Similar analyses of silver and manganese give us the system

25x1 + 30x2 + 20x3 = 550

600x1 + 500x2 + 550x3 = 11350

15x1 + 10x2 + 12x3 = 250.

To solve the system, we eliminate the variable x2 from the second and third equations by re-
placing equation two with equation two minus 24 times equation one and replacing equation three
with equation three minus 3

5 times equation one. This produces the equvalent system

25x1 + 30x2 + 20x3 = 550

− 220x2 + 70x3 = −1850

− 8x2 = −80 .

We are fortunate now that we can determine the value of x2 from the third equation, which tells us
that x2 = 10. Substituting into the second equation shows that

−220(10) + 70x3 = −1850

70x3 = 350

x3 = 5.

Substituting into the first equation allows us to determine the value for x1:

25x1 + 30(10) + 20(5) = 550

25x1 = 150

x1 = 6.

So the company should run mine 1 for 6 days, mine 2 for 10 days, and mine 3 for 5 days to meet
this demand.
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Summary

In this section we introduced linear equations and systems of linear equations.

• Informally, a linear equation is an equation in which each term is either a constant or a
constant times a variable. More formally, a linear equation in the variables x1, x2, . . ., xn is
an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where n is a positive integer and a1, a2, . . ., an and b are constants.

• A system of linear equations is a collection of one or more linear equations in the same
variables.

• Informally, a solution to a system of linear equations is a point that satisfies all of the equa-
tions in the system. More formally, a solution to a system of linear equation in n variables
x1, x2, . . ., xn is an ordered n-tuple (s1, s2, . . . , sn) of numbers so that we obtain all true
statements in the system when we replace x1 with s1, x2 with s2, . . ., and xn with sn.

• Two linear systems are equivalent if they have the same solution set.

• The following operations on a system of equations do not change the solution set:

(1) Replace one equation by the sum of that equation and a scalar multiple of another equa-
tion.

(2) Interchange two equations.

(3) Replace an equation by a nonzero scalar multiple of itself.

Exercises

(1) In the method of elimination there are three operations we can apply to solve a system of
linear equations. For this exercise we focus on a system of equations in three unknowns x1,
x2, and x3, but the arguments generalize to a system with any number of variables. Consider
the general system of three equations in three unknowns

4x1 − 4x2 + 4x3 = 0

4x1 + 2x2 = 8

2x2 + 5x3 = 9.

The goal of this exercise is to understand why the three operations on a system do not change
the solutions to the system. Recall that a solution to a system with unknowns x1, x2, and x3 is
a set of three numbers, one for x1, one for x2, and one for x3 that satisfy all of the equations
in the system.

(a) Explain why, if we have a solution to this system, then that solution is also a solution
to any constant k times the second equation.

(b) Explain why, if we have a solution to this system, then that solution is also a solution
to the sum of the first equation and k times the third equation for any constant k.
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(2) Alice stopped by a coffee shop two days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee and two muffins for which she paid $6.87. The
next day she bought two cups of coffee and three muffins (for herself and a friend). Her bill
was $11.25. Use the method of elimination to determine the price of a cup of coffee, and the
price of a muffin. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

(3) Alice stopped by a coffee shop three days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee, a muffin and a scone for which she paid $6.15.
The next day she bought two cups of coffee, three muffins and a scone (for herself and
friends). Her bill was $12.20. The last day she bought a cup of coffee, two muffins and two
scones, and paid $10.35. Determine the price of a cup of coffee, the price of a muffin and
the price of a scone. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

(4) (a) Find an example of a system of two linear equations in variables x, y for each of the
following three cases:

i. where the equations correspond to two non-parallel lines,
ii. two parallel distinct lines,

iii. two identical lines (represented with different equations).

(b) Describe how the relationship between the coefficients of the variables of the two
equations in parts (ii) and (iii) are different than the relationship between those coef-
ficients in part (i) (Note: Please make sure your system examples are different than
the examples in the activities, and that they are your own examples.)

(5) In a grid of wires in thermal equilibrium, the temperature at interior nodes is the average of
the temperatures at adjacent nodes. Consider the grid as shown in Figure 1.4, with x1, x2,
and x3 the temperatures (in degrees Centigrade) at the indicated interior nodes, and fixed
temperatures at the other nodes as shown. For example, the nodes adjacent to the node
with temperature x1 have temperatures of x2, 200, 0, and 0, so when the grid is in thermal
equilibrium x1 is the average of these temperatures:

x1 =
x2 + 200 + 0 + 0

4
.

0◦ 400◦

200◦

200◦

0◦

0◦

0◦

x1

x2 x3

Figure 1.4: A grid of wires.
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(a) Determine equations for the temperatures x2 and x3 if the grid is in thermal equi-
librium to construct a system of three linear equations in x1, x2, and x3 that models
node temperatures in the grid in thermal equilibrium.

(b) Use the method of elimination to find a specific solution to the system that makes
sense in context.

(6) We have seen that a linear system of two equations in two unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of three equations in two unknowns with no solutions.

(b) A linear system of three equations in two unknowns with exactly one solution.

(c) A linear system of three equations in two unknowns with exactly two solutions.

(d) A linear system of three equations in two unknowns with infinitely many solutions.

(7) We have seen that a linear system of three equations in three unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of two equations in three unknowns with no solutions.

(b) A linear system of two equations in three unknowns with exactly one solution.

(c) A linear system of two equations in three unknowns with exactly two solutions.

(d) A linear system of two equations in three unknowns with infinitely many solutions.

(8) Find a system of three linear equations in two variables u, v whose solution is u = 2, v = 1.

(9) Consider the system of linear equations

x1 + hx2 = 2

3x1 + 5x2 = 1

where h is an unknown constant.

(a) Determine the solution(s) of this system for all possible h values, if a solution exists.
(Note: Your answers for the variables will depend on the h.)

(b) How do your answers change if the second equation in the system above is changed
to 3x1 + 5x2 = 6?

(10) Suppose we are given a system of two linear equations

x1 + 2x2 − x3 = 1 (1.7)

3x1 + x2 + 2x3 = −1. (1.8)

Find another system of two linear equations E1 and E2 in the variables x1, x2, and x3 that
are not multiples of each other or of equations (1.7) or (1.8) so that any solution (x1, x2, x3)
to the system (1.7) and (1.8) is a solution to the system E1 and E2.



16 Section 1. Introduction to Systems of Linear Equations

True/False Questions

In many sections you will be given True/False questions. In each of the True/False questions, you
will be given a statement, such as “If we add corresponding sides of two linear equations, then
the resulting equation is a linear equation.” and “One can find a system of two equations in two
unknowns that has infinitely many solutions.”. Your task will be to determine the truth value of the
statement and to give a brief justification for your choice.

Note that a general statement is considered true only when it is always true. For example,
the first of the above statements, “If we add corresponding sides of two linear equations, then the
resulting equation is a linear equation.”, is a general statement. For this statement to be true, the
equation we obtain by adding corresponding sides of any two linear equations has to be linear. If
we can find two equations that do not give a linear equation when combined in this way, then this
statement is false.

Note that an existential statement is considered true if there is at least one example which makes
is true. For example, the latter of the above statements, “One can find a system of two equations
in two unknowns that has infinitely many solutions.”, is an existential statement. For this statement
to be true, existence of a system of two equations in two unknowns with infinitely many solutions
should suffice. If it is impossible to find two such equations, then this statement is false.

To justify that something always happens or never happens, one would need to refer to other
statements whose truth is known, such as theorems, definitions. In particular, giving an example of
two linear equations that produce a linear equation when we add corresponding sides does not justify
why the sum of any two linear equations is also linear. Using the definition of linear equations,
however, we can justify why this new equation will always be linear: each side of a linear equation
is linear, and adding linear expressions always produces a linear sum.

To justify that there are examples of something happening or not happening, one would need
to give a specific example. For example, in justifying the claim that there is a system of two
equations in two unknowns with infinitely many solutions, it is not enough to say “An equation
in two unknowns is a line in the xy-plane, so there can be two equations with the same line as
their solution.”. In general, you should avoid the words “can”, “possibly”, “maybe”, etc., in your
justifications. Instead, giving an example such as “The linear system x + y = 1 and 2x + 2y = 2
of two equations in two unknowns has infinitely many solutions since the second equation gives the
same line as the first in the xy-plane.” provides complete justification beyond a reasonable doubt.

Each response to a True/False statement should be more than just True or False. It is important
that you provide justification for your responses.

(1) (a) True/False The set of all solutions of a linear equation can be represented graphically
as a line.

(b) True/False The set of all solutions of a linear equation in two variables can be rep-
resented graphically as a line.

(c) True/False The set of all solutions of an equation in two variables can be represented
graphically as a line.

(d) True/False A system of three linear equations in two unknowns cannot have a unique
solution.
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(e) True/False A system of three linear equations in three unknowns has a unique solu-
tion.

Project: Modeling an Electrical Circuit and the Wheatstone Bridge
Circuit

Mathematical modeling, or the act of creating equations to model given information, is an important
part of problem solving. In this section we will see how we derived the system of equations

I1 − I2 + I3 = 0

5I1 + 2I2 = 8

2I2 + 4I3 = 5,

to represent the electrical current in the circuit shown in Figure 1.2. Recall that a circuit consists of

• one or more electrical sources (like a battery), denoted by
+ -

• one or more resistors (like any appliance that you plug into a wall outlet), denoted by

.

The source creates a charge that produces potential energy E measured in volts (V). No sub-
stance conducts electricity perfectly, there is always some price to pay (energy loss) to moving
electricity. Electrical current I in amperes (A) is the flow of the electric charge in the circuit. (A
current of 1 ampere means that 6.2 × 1018 electrons pass through the circuit per second.) Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I1

be the current flowing through the upper branch, I2 the current through middle branch, and I3 the
current through the lower branch as illustrated in Figure 1.2. The goal is to find the current flowing
in each branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current, resistance, and potential. Three basic principles govern current low in a circuit.

(1) Resistance R in ohms (Ω) can be thought of as a measure of how difficult it is to move a
charge along a circuit. When a current flows through a resistor, it must expend some energy,
called a voltage drop. Ohm’s Law states that the voltage drop E across a resistor is the
product of the current I passing through the resistor and the resistance R. That is,

E = IR.

(2) Kirchoff’s Current Law states that at any point in an electrical circuit, the sum of currents
flowing into that point is equal to the sum of currents flowing out of that point.

(3) Kirchoff’s Voltage Law says that around any closed loop the sum of the voltage drops is equal
to the sum of the voltage rises.
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To see how these laws allow us to model the circuit in Figure 1.2, we will need three equations
in I1, I2, and I3 to determine the values of these currents. Let us first apply Kirchoff’s Current Law
to the point P. The currents flowing into point P are I1 and I3, and the current flowing out is I2. This
produces the equation I1 + I3 = I2, or

I1 − I2 + I3 = 0.

Project Activity 1.1. Apply Kirchoff’s Current Law to the point Q to obtain an equation in I1, I2,
and I3. What do you notice?

We have three variables to determine, so we still need two more equations in I1, I2, and I3.
Next we apply Kirchoff’s Voltage Law to the top loop in the circuit in Figure 1.2. We will assume
the following sign conventions:

• A current passing through a resistor produces a voltage drop if it flows in the direction of
loop (and a voltage rise if the current passes in the opposite direction of the loop).

• A current passing through a source in the direction of the loop produces a voltage drop if it
flows from + to − and a voltage rise if it flows from − to +, while a current passing through
a source in the opposite direction of the loop produces a voltage rise if it flows from + to −
and a voltage drop if it flows from − to +.

(The directions chosen in Figure 1.2 for the voltage flow are arbitrary – if we reverse the flow then
we just replace voltage drops with voltage rises and obtain the same equations. If a solution shows
that a current is negative, then that current flows in the direction opposite of what is shown.)

If we move in the counterclockwise direction around the top loop in the circuit in Figure 1.2,
there is a voltage rise through the source of 8 volts. This must equal the voltage drop in this loop.
The current I1 passing though the resistor of resistance 2 Ω produces a voltage drop of 2I1 volts.
Similarly, the current I1 passing through the resistor of resistance 3Ω produces a voltage drop of
3I1 volts. Finally, the current I2 passing through the resistor of resistance 2 Ω produces a voltage
drop of 2I2 volts. So Kirchoff’s Voltage Law applied to the top loop in the circuit in Figure 1.2
gives us the equation 2I1 + 3I1 + 2I2 = 8 or

5I1 + 2I2 = 8.

Project Activity 1.2. Apply Kirchoff’s Voltage Law to the bottom loop in the circuit in Figure 1.2
to obtain an equation in I1, I2, and I3. Compare the three equations we have found to those in the
introduction.

Project Activity 1.3. Consider the circuit as shown in Figure 1.5, with a single source and five
resistors with resistances R1, R2, R3, R4, and R5 as labeled.

(a) Assume the following information. The voltageE is 13 volts,R1 = R2 = R3 = R5 = 1Ω,
and R4 = 2Ω. Follow the directions given to find the currents I0, I1, I2, I3, I4, and I5.

i. Use Kirchoff’s Current Law to show that I0 = I1 +I2, I3 = I1−I5, and I4 = I2 +I5.
Thus, we reduce the problem to three variables.
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Figure 1.5: A Wheatstone bridge circuit.

ii. Apply Kirchoff’s Voltage Law to three loops to show that the currents must satisfy
the linear system

2I1 − I5 = 13 (1.9)

3I2 + 2I5 = 13 (1.10)

I1 − I2 + I5 = 0. (1.11)

iii. Solve the system to find the unknown currents.

(b) The circuit pictured in Figure 1.5 is called a Wheatstone bridge (invented by Samuel Hunter
Christie in 1833 and popularized by Sir Charles Wheatstone in 1843). The Wheatstone
bridge is a circuit designed to determine an unknown resistance by balancing two paths
in a circuit. It is set up so that the resistances of resistors R1 and R2 are known, R3 is a
variable resistor and we want to find the resistance of R4. The resistor R5 is replaced with
a voltmeter, and the resistance of R3 is varied until the voltmeter reads 0. This balances
the circuit and tells the resistance of resistor R4. Show that if the current I5 in Figure 1.5
is 0 (so the circuit is balanced), then R4 = R2R3

R1
(which is how we calculate the unknown

resistance R4). Do this in general and do not use any specific values for the resistances or
the voltage.





Section 2

The Matrix Representation of a Linear
System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a matrix?

• How do we associate a matrix to a system of linear equations?

• What row operations can we perform on an augmented matrix of a linear
system to solve the system of linear equations?

• What are pivots, basic variables, and free variables?

• How many solutions can a system of linear equations have?

• When is a linear system consistent?

• When does a linear system have infinitely many solutions? A unique solu-
tion?

• How can we represent the set of solutions to a consistent system if the
system has infinitely many solutions?

Application: Simpson’s Rule

You may recall that Simpson’s Rule from calculus (2
3 of the midpoint approximation plus 1

3 of the
trapezoid approximation) is a formula that can be used to approximate definite integrals. One the
one hand, Simpson’s Rule is a weighted average of the midpoint and trapezoid sum, but that does
not completely explain why Simpson’s Rule is so much better than either the midpoint or trapezoid

21
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sum. While the midpoint and trapezoid sums use line segments to approximate a function on an
interval, Simpson’s Rule uses parabolas. In order to use Simpsons Rule, we need to know how
to exactly fit a quadratic function to three points. More details about this process can be found
at the end of this section. This idea of fitting a polynomial to a set of data points has uses in
other areas as well. For example, two common applications of Bézier curves are font design and
drawing tools. When fitting a polynomial to a large set of data points, our systems of equations
can become quite large, and can be difficult to solve by hand. In this section we will see how to
use matrices to more conveniently represent systems of equations of any size. We also consider
how the elimination process works on the matrix representation of a linear system and how we can
determine the existence of solutions and the form of solutions of a linear system.

Introduction

When working with a linear system, the labels for the variables are irrelevant to the solution – the
only thing that matters is the coefficients of the variables in the equations and the constants on the
other side of the equations. For example, given a linear system of the form

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5,

(2.1)

the important information in the system can be represented as

1 −1 1 2
1 1 1 6
4 2 1 5

where we interpret the first three numbers in each horizontal row to represent the coefficients of the
variables a, b and c, respectively, and the last number to be the constant on the right hand side of
the equation. This tells us that we can record all the necessary information about our system in a
rectangular array of numbers. Such an array is called a matrix.

Definition 2.1. A matrix is a rectangular array of quantities or expressions.

We usually delineate a matrix by enclosing its entries in square brackets [∗]. For the system in
(2.1), there are two corresponding matrices:

 1 −1 1
1 1 1
4 2 1

  1 −1 1 2
1 1 1 6
4 2 1 5


The matrix on the left is the matrix of the coefficients of the system, and is called the coefficient
matrix of the system. The matrix on the right is the matrix of coefficients and the constants, and is
called the augmented matrix of the system (where we say we augment the coefficient matrix with
the additional column of constants). We will separate the augmented column from the coefficient
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matrix with a vertical line to keep it clear that the last column is an augmented column of constants
and not a column of coefficients.1

Terminology. There is some important terminology related to matrices.

• Any number in a matrix is called an entry of the matrix.

• The collection of entries in an augmented matrix that corresponds to a given equation (that
is reading the entries from left to right, or a horizontal set of entries) is called a row of the
matrix. We number the rows from top to bottom in a matrix. For example,

[
1 −1 1

]
is

the first row and
[

1 1 1
]

is the second row of the coefficient matrix of the system (2.1).

• The set of entries as we read from top to bottom (or a vertical set of entries that correspond to
one fixed variable or the constants on the right hand sides of the equations) is called a column

of the matrix. We number the columns from left to right in a matrix. For example,

 1
1
4

 is

the first column and

 1
1
1

 is the third column of the coefficient matrix of the system (2.1).

• The size of a matrix is given as m×n where m is the number of rows and n is the number of
columns. The coefficient matrix above is a 3 × 3 matrix since it has 3 rows and 3 columns,
while the augmented matrix is a 3× 4 matrix as it has 4 columns.

Preview Activity 2.1.

(1) Write the augmented matrix for the following linear system. If needed, rearrange an equation
to ensure that the variables appear in the same order on the left side in each equation with the
constants being on the right hand side of each equation.

−x3 + 3 + 2x2 = −x1

−3 + 2x3 = −x2

−2x2 + x1 = 3x3 − 7

(2.2)

(2) Write the linear system in variables x1, x2 and x3, appearing in the natural order that corre-
sponds to the following augmented matrix. Then solve the linear system using the elimination
method.  1 1 −1 4

1 2 2 3
2 3 −3 11


(3) Consider the three types of elementary operations on systems of equations introduced in

Section 1. Each row of an augmented matrix of a system corresponds to an equation, so
each elementary operation on equations corresponds to an operation on rows (called row
operations).

1You should note that not every author uses this convention – when they do not, it is important that you be careful to
understand if the matrix has an augmented column or not.
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(a) Describe the row operation that corresponds to interchanging two equations.

(b) Describe the row operation that corresponds to multiplying an equation by a nonzero
scalar.

(c) Describe the row operation that corresponds to replacing one equation by the sum of
that equation and a scalar multiple of another equation.

Simplifying Linear Systems Represented in Matrix Form

Once we have stored the information about a linear system in an augmented matrix, we can perform
the elementary operations directly on the augmented matrix.

Recall that the allowable operations on a system of equations are the following:

(1) Replacing one equation by the sum of that equation and a scalar multiple of another equation.

(2) Interchanging the positions of two equations.

(3) Replacing an equation by a nonzero scalar multiple of itself.

Recall that we use these elementary operations to transform a system, with the ultimate goal of
finding a simpler, equivalent system that we can solve. Since each row of an augmented matrix cor-
responds to an equation, we can translate these operations on equations to corresponding operations
on rows (called row operations or elementary row operations):

(1) Replacing one row by the sum of that row and a scalar multiple of another row.

(2) Interchanging two rows.

(3) Replacing a row by a nonzero scalar multiple of itself.

Activity 2.1. Consider the system

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5

with corresponding augmented matrix  1 −1 1 2
1 1 1 6
4 2 1 5



(a) As a first step in solving our system, we might eliminate a2 from the second equation. This
means that the corresponding entry in the second row and first column of the augmented
matrix will become 0. Find a row operation that adds a multiple of the first row to the
second row to achieve this goal. Then write the system of equations that corresponds to
this new augmented matrix.
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(b) Now that we have eliminated the a2 terms from the second equation, we eliminate the a2

term from the third equation. Find an appropriate row operation that does that, and write the
corresponding system of linear equations that corresponds to the new augmented matrix.

(c) Now you should have a system in which the last two rows correspond to a system of 2 linear
equations in two unknowns. Use a row operation that adds a multiple of the second row to
the third row to turn the coefficient of a1 in the third row to 0. Then write the corresponding
system of linear equations.

(d) Your simplified system and its augment matrix are in row echelon form and this system is
solvable using back-substitution (substituting the known variable values into the previous
equation to find the value of another variable). Solve the system.

Reflection 1. Do you see how this standard elimination process can be generalized to any linear
system with any number of variables to produce a simplified system? Do you see why the process
does not change the solutions of the system? If needed, can you modify the standard elimination
process to obtain a simplified system in which the last equation contains only the variable a2, the
next to last equation contains only the variables a1, a2, etc.? Understanding the standard process
will enable you to be able to modify it, if needed, in a problem.

Activity 2.1 illustrates how we can perform all of the operations on equations with operations
on the rows of augmented matrices to reduce a system to a solvable form. Each time we perform an
operation on the system of equations (or on the rows of an augmented matrix) we obtain an equiv-
alent system (or an augmented matrix corresponding to an equivalent system). For completeness,
we list the operations on equations and the corresponding row operations below that can be used
to solve our polynomial fitting system. Throughout the process we will let E1, E2, and E3 be the
first, second, and third equations in the system and R1, R2, and R3 the first, second, and third rows
of the augmented matrices. The notation E1 +E2 placed next to equation E2 means means that we
replace the second equation in the system with the sum of the first two equations. We start with the
system

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5

On the left we demonstrate the operations on equations and on the right the corresponding
operations on rows of the augmented matrix.

E2 − E1 → E2

a2 − a1 + a0 = 2

2a1 = 4

4a2 + 2a1 + a0 = 5

R2 − R1 → R2

 1 −1 1 2

0 2 0 4

4 2 1 5



E3−4E1 → E3

a2 − a1 + a0 = 2

2a1 = 4

6a1 − 3a0 = −3 R3 − 4R1 → R3

 1 −1 1 2

0 2 0 4

0 6 −3 −3


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E3−3E2 → E3

a2 − a1 + a0 = 2

2a1 = 4

− 3a0 = −15 R3 − 3R2 → R3

 1 −1 1 2

0 2 0 4

0 0 −3 −15


Now we can solve the last equation for a0 to find that a0 = 5. The second equation gives us

a1 = 2.2 Finally, using the first equation with the already determined values of a0 and a1 gives us
a2 = −1. Thus we have found the solution to the polynomial fitting system to be a2 = −1, a1 = 2,
and a0 = 5.

We summarize the steps of the (partial) elimination on matrices we used above to solve a general
linear system in the variables x1, x2, . . ., xn.

(1) Interchange equations if needed to ensure that the coefficient of x1 (or, more generally, the
first non-zero variable) in the first equation is non-zero.

(2) Use the first equation to eliminate x1 (or, the first non-zero variable) from other equations by
adding a multiple of the first equation to the others.

(3) After x1 is eliminated from all equations but the first equation, focus on the rest of the equa-
tions. Repeat the process of elimination on these equations to eliminate x2 (or, the next
non-zero variable) all but the second equation.

(4) Once the process of eliminating variables recursively is finished, solve for the variables in
a backwards fashion starting with the last equation and substituting known values in the
equations above as they become known.

This elimination method where the variables are eliminated from lower equations is called the
forward elimination phase as it eliminates variables in the forward direction. Solving for variables
using substitution into upper equations is called back substitution. The matrix representation of a
linear system after the forward elimination process is said to be in row echelon form. We will define
this form and the elimination process on the matrices more precisely in the next section.

Linear Systems with Infinitely Many Solutions

Each of the systems that we solved so far have had a unique (exactly one) solution. The geometric
representation of linear systems with two equations in two variables shows that this does not always
have to be the case. We also have linear systems with no solution and systems with infinitely many
solutions. We now consider the problem of how to represent the set of solutions of a linear system
that has infinitely many solutions. (Systems with infinitely many solutions will also be of special
interest to us a bit later when we study eigenspaces of a matrix.)

Activity 2.2. Consider the system

x1 + 2x2 − x3 = 1

x1 + x2 − 3x3 = 0

2x1 + 3x2 − 4x3 = 1.

2If there had been an a0 term in the second equation, we could have substituted a0 = 5 and solved for a1
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(a) Without explicitly solving the system, check that (−1, 1, 0) and (4,−1, 1) are solutions to
this system.

(b) Without explicitly solving the system, show that x1 = −1 + 5t, x2 = 1− 2t, and x3 = t is
a solution to this system for any value of t. What values of t yield the solutions (−1, 1, 0)
and (4,−1, 1) from part (a)? The equations x1 = −1 + 5t, x2 = 1− 2t, and x3 = t form
what is called a parametric solution to the system with parameter t.

(c) Part (b) shows that our system has infinitely many solutions. We were given solutions in
part (b) – but how do we find these solutions and how do we know that these are all of the
solutions? We address those questions now.

If we apply row operations to the augmented matrix 1 2 −1 1
1 1 −3 0
2 3 −4 1


of this system, we can reduce this system to one with augmented matrix 1 2 −1 1

0 1 2 1
0 0 0 0

 .
i. What is it about this reduced form of the augmented matrix that indicates that the

system has infinitely many solutions?

ii. Since the system has infinitely many solutions, we will not be able to explicitly de-
termine values for each of the variables. Instead, at least one of the variables can be
chosen arbitrarily. What is it about the reduced form of the augmented matrix that
indicates that x3 is convenient to choose as the arbitrary variable?

iii. Letting x3 be arbitrary (we call x3 a free variable), use the second row to show that
x2 = 1− 2x3 (so that we can write x2 in terms of the arbitrary variable x3).

iv. Use the first row to show that x1 = 5x3 − 1 (and we can write x1 in terms of the
arbitrary variable x3). Compare this to the solutions from part (b).

After using the elimination method, the first non-zero coefficient (from the left) of each equation
in the linear system is in a different position. We call each such coefficient a pivot and a variable
corresponding to a pivot a basic variable. In the system

a2 − a1 + a0 = 2

2a1 = 4

− 3a0 = −15

the basic variables are a2, a1, a0 for the first, second, and third equations, respectively. In the
system,
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x1 + 2x2 − x3 = 1

x2 + 2x3 = 1

0 = 0

the basic variables are x1 and x2 for the first and second equations, respectively, while the third
equation does not have a basic variable. Through back-substitution, we can solve for each variable
in a unique way if each appears as the basic variable in an equation. If, however, a variable is free,
meaning that it is not the basic variable of an equation, we cannot solve for that variable explicitly.
We instead assign a distinct parameter to each such free variable and solve for the basic variables
in terms of these parameters.

Definition 2.2. The first non-zero coefficient (from the left) in an equation in a linear system after
elimination is called a pivot. A variable corresponding to a pivot is a basic variable and while a
variable not corresponding to a pivot is a free variable.

Activity 2.3. Each matrix is an augmented matrix for a linear system after elimination. Identify
the basic variables (if any) and free variables (if any). Then write the general solution (if there is a
solution) expressing all variables in terms of the free variables. Use any symbols you like for the
variables.

(a)

 1 0 2 1
0 3 1 0
0 0 0 0



(b)

 1 0 −1 1
0 0 1 2
0 0 0 0



(c)


1 2 −1 1 1
0 1 0 2 1
0 0 0 0 0
0 0 0 0 0


Reflection 2. Does the existence of a row of 0’s always mean a free variable? Can you think of
an example where there is a row of 0’s but none of the variables is free? How do the numbers of
equations and the variables compare in that case?

Linear Systems with No Solutions

We saw in the previous section that geometrically two parallel and distinct lines represent a linear
system with two equations in two unknowns which has no solution. Similarly, two parallel and
distinct planes in three dimensions represent a linear system with two equations in three unknowns
which has no solution. We can have at least four different geometric configurations of three planes
in three dimensions representing a system with no solution. But how do these geometrical configu-
rations manifest themselves algebraically?
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Activity 2.4. Consider the linear system

x1 − x2 + x3 = 2

x1 + x2 − 3x3 = 1

3x1 − x2 − x3 = 6.

(a) Apply the elimination process to the augmented matrix of this system. Write the system of
equations that corresponds to the final reduced matrix.

(b) Discuss which feature in the final simplified system makes it easy to determine that the
system has no solution. Similarly, what features in the matrix representation makes is easy
to see the system has no solution?

We summarize our observations about when a system has a solution, and which of those cases
has a unique solution.

Theorem 2.3. A linear system is consistent if after the elimination process there is no equation
of the form 0 = b where b is a non-zero number. If a linear system is consistent and has a free
variable, then it has infinitely many solutions. If it is consistent and has no free variables, then
there is a unique solution.

Examples

What follows are worked examples that use the concepts from this section.

Example 2.4. Consider the linear system

x1 − x2 + 2x4 = 1

2x1 + 3x2 − 2x3 + 5x4 = 4

x1 − x2 + x3 − x4 = 0

4x1 + x2 − x3 + 6x4 = 5.

(a) Set up the augmented matrix for this linear system.

(b) Find all solutions to the system using forward elimination.

(c) Suppose, after forward elimination, the augmented matrix of the system

x1 − x2 + 2x4 = 1

2x1 + 3x2 − 2x3 + 5x4 = 4

x1 − x2 + x3 − x4 = 0

4x1 + x2 − x3 + 6x4 = h.
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has the form 
1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 0 0 h− 5

 .
For which values of h does this system have:

i. No solutions?

ii. A unique solution? Find the solution.

iii. Infinitely many solution? Determine all solutions?

Example Solution.

(a) The augmented matrix for this system is
1 −1 0 2 1
2 3 −2 5 4
1 −1 1 −1 0
4 1 −1 6 5

 .
(b) We apply forward elimination, first making the entries below the 1 in the upper left all

0. We do this by replacing row two with row two minus 2 times row 1, row three with
row three minus row 1, and row four with row four minus 4 row one. This produces the
augmented matrix 

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 5 −1 −2 1

 .
Now we eliminate the leading 5 in the fourth row by replacing row four with row four
minus row two to obtain the augmented matrix

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 1 −3 −1

 .
When we replace row four with row four minus row three, we wind up with a row of zeros:

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 0 0 0

 .
We see that there is no pivot in column four, so x4 is a free variable. We can solve for the
other variables in terms of x4. The third row shows us that

x3 − 3x4 = −1

x3 = 3x4 − 1.
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The second row tells us that

5x2 − 2x3 + x4 = 2

5x2 = 2x3 − x4 + 2

5x2 = 2(3x4 − 1)− x4 + 2

5x2 = 5x4

x2 = x4.

Finally, the first row gives us

x1 − x2 + 2x4 = 1

x1 = x2 − 2x4 + 1

x1 = x4 − 2x4 + 1

x1 = −x4 + 1.

So this system has infinitely many solutions, with x1 = −x4 + 1, x2 = x4, x3 = 3x4 − 1,
and x4 is arbitrary. As a check, notice that

(−x4 + 1)− x4 + 2x4 = 1

and so this solution satisfies the first equation in our system. You should check to verify
that it also satisfies the other three equations.

(c) i. The system has no solutions when there is an equation of the form 0 = b for some
nonzero number b. The last row will correspond to an equation of the form 0 = h−5.
So our system will have no solutions when h 6= 5.

ii. When h 6= 5, the system has no solutions. When h = 5, the variable x4 is a free
variable and the system has infinitely many solutions. So there are no values of h for
which the system has exactly one solution.

iii. When h = 5, the variable x4 is a free variable and the system has infinitely many
solutions. The solutions were already found in part (a).

Example 2.5. After applying row operations to the augmented matrix of a system of linear equa-
tions, each of which describes a plane in 3-space, the following augmented matrix was obtained:

1 a 0 2

0 2− 2a b −4

0 0 3− 1
2b 1

 .

(a) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 2.

(b) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 6.
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(c) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 1
and b = 12.

Example Solution. Throughout, we will let the variables x, y, and z correspond to the first, second,
and third columns, respectively, of our augmented matrix.

(a) When a = 0 and b = 2 our augmented matrix has the form 1 0 0 2
0 2 2 −4
0 0 2 1

 .
This matrix corresponds to the system

x = 2

2y + 2z = −4

2z = 1.

There are no equations of the form 0 = b for a nonzero constant b, so the system is con-
sistent. There are no free variables, so the system has a unique solution. Algebraically, the
solution is x = 2, z = 1

2 , and y = −5
2 . Geometrically, this tells us that the three planes

given by the original system intersect in a single point.

(b) When a = 0 and b = 6 our augmented matrix has the form 1 0 0 2
0 2 6 −4
0 0 0 1

 .
The last row corresponds to the equation 0 = 1, so our system is inconsistent and has no
solution. Geometrically, this tells us that the three planes given by the original system do
not all intersect at any common points.

(c) When a = 1 and b = 12 our augmented matrix reduces to
1 1 0 2

0 0 1 −1
3

0 0 0 0

 .
There are no rows that correspond to equations of the form 0 = c for a nonzero constant
c, so the system is consistent. The variable y is a free variable, so the system has infinitely
many solutions. Algebraically, the solutions are y is free, is z = −1

3 , and x = 2 − y.
Geometrically, this tells us that the three planes given by the original system intersect in
the line with z = −1

3 , and x = 2− y.
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Summary

• A matrix is just a rectangular array of numbers or objects.

• Given a system of linear equations, with the variables listed in the same order in each equa-
tion, we represent the system by writing the coefficients of the first equation as the first row
of a matrix, the coefficients of the second equation as the second row, and so on. This creates
the coefficient matrix of the system. We then augment the coefficient matrix with a column of
the constants that appear in the equations. This gives us the augmented matrix of the system.

• The operations that we can perform on equations translate exactly to row operations that we
can perform on an augmented matrix:

(1) Replacing one row by the sum of that row and a scalar multiple of another row.

(2) Interchanging two rows.

(3) Replacing a row by a nonzero scalar multiple of itself.

• The forward elimination phase of the elimination method recursively eliminates the variables
in a linear system to reach an equivalent but simplified system.

• The first non-zero entry in an equation in a linear system after elimination is called a pivot.

• A basic variable in a linear system corresponds to a pivot of the system. A free variable is a
variable that is not basic.

• A linear system can be inconsistent (no solutions), have a unique solution (if consistent and
every variable is a basic variable), or have infinitely many solutions (if consistent and there is
a free variable).

• A linear system has no solutions if, after elimination, there is an equation of the form 0 = b
where b is a nonzero number.

• A linear system after the elimination method can be solved using back-substitution. The free
variables can be chosen arbitrarily and the basic variables can be solved in terms of the free
variables through the back-substitution process.

Exercises

(1) Consider the system of linear equations whose augmented matrix is[
1 3 −1
2 h k

]
where h and k are unknown constants. For which values of h and k does this system have

(a) a unique solution,

(b) infinitely many solutions,

(c) no solution?
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(2) Consider the following system:

x− 2y + z = −1

−x+ y − 3z = 2

x+ hy − z = 0.

Check that when h = −3 the system has infinitely many solutions, while when h 6= −3 the
system has a unique solution.

(3) If possible, find a system of three equations (not in reduced form) in three variables whose
solution set consists only of the point x1 = 2, x2 = −1, x3 = 0.

(4) What are the possible geometrical descriptions of the solution set of two linear equations in
R3? (Recall that R3 is the three-dimensional xyz-space – that is, the set of all ordered triples
of the form (x, y, z)).

(5) Two students are talking about when a linear system has infinitely many solutions.

Student 1: So, if we have a linear system whose augmented matrix has a row of
zeros, then the system has infinitely many solutions, doesn’t it?

Student 2: Well, but what if there is a row of the form [ 0 0 . . . 0 | b ] with a non-
zero b right above the row of 0’s?

Student 1: OK, maybe I should ask “If we have a consistent linear system whose
augmented matrix has a row of zeros, then the system has infinitely many solu-
tions, doesn’t it?”

Student 2: I don’t know. It still doesn’t sound enough to me, but I’m not sure why.

Is Student 1 right? Or is Student 2’s hunch correct? Justify your answer with a specific
example if possible.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A system of linear equations in two unknowns can have exactly five
solutions.

(b) True/False A system of equations with all the right hand sides equal to 0 has at least
one solution.

(c) True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

(d) True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

(e) True/False A consistent system of two equations in three unknowns cannot have a
unique solution.

(f) True/False If a system with three equations and three unknowns has a solution, then
the solution is unique.
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(g) True/False If a system of equations has two different solutions, then it has infinitely
many solutions.

(h) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a system has no free variables, then the system has a unique solution.

(k) True/False If a system has a free variable, then the system has infinitely many solu-
tions.

Project: A Polynomial Fitting Application: Simpson’s Rule

As discussed in the introduction, Simpson’s Rule for approximating a definite integral models the
integrand with a quadratic polynomial on each interval. To better understand this method, we
consider how to fit a quadratic to three points.

Suppose we are given a collection of three points in the plane: (x1, y1), (x2, y2) and (x3, y3).
There is exactly one quadratic polynomial p(x) which goes through these points, i.e. there is exactly
one quadratic p(x) such that for each xi, p(xi) = yi. This is an example of polynomial curve fitting.

Suppose our given points are (−1, 2), (1, 6), (2, 5). To fit a quadratic to these points, consider
a general quadratic of the form p(x) = a2x

2 + a1x+ a0. By substituting the x value of each of the
given points and setting that equal to the y value of that point, we find three equations

(−1)2a2 − a1 + a0 = 2 , a2 + a1 + a0 = 6 , (2)2a2 + 2a1 + a0 = 5

that give us a system of three equations in the three unknowns a2, a1, and a0:

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5.

This system is the example we considered in Preview Activity 2.1, whose solution is a2 = −1,
a1 = 2, and a0 = 5. A graph of q(x) = −x2 + 2x + 5 along with the three points (−1, 2), (1, 6),
(2, 5) is shown in Figure 2.1.

Project Activity 2.1. In this activity we model the sine function on the interval [a, b], where a =
−π

2 and b = π with a collection of quadratics. Let f(x) = sin(x). We partition the interval [a, b]
using 6 partition points. Let x0 = −π

2 , x1 = −π
4 , x2 = 0, x3 = π

4 , x4 = π
2 , x5 = 3π

4 , and
x6 = π. We need 3 points to determine a quadratic, so the interval [a, b] will be partitioned into 3
subintervals: [x0, x2], [x2, x4], and [x4, x6].

(a) Set up a system of linear equations to fit a quadratic q1(x) = r1x
2 +s1x+ t1 to the 3 points

(x0, f(x0)), (x1, f(x1)), and (x2, f(x2)). (The solution to this system to 3 decimal places
is r1 ≈ 0.336, s1 ≈ 1.164, and t1 = 0.)
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Figure 2.1: A quadratic fit to the points (−1, 2), (1, 6), (2, 5).

(b) Set up a system of linear equations to fit a quadratic q2(x) = r2x
2 +s2x+ t2 to the 3 points

(x2, f(x2)), (x3, f(x3)), and (x4, f(x4)). (The solution to this system to 3 decimal places
is r2 ≈ −0.336, s2 ≈ 1.164, and t2 = 0.)

(c) Set up a system of linear equations to fit a quadratic q3(x) = r3x
2 +s3x+ t3 to the 3 points

(x4, f(x4)), (x5, f(x5)), and (x6, f(x6)). (The solution to this system to 3 decimal places
is r3 ≈ −0.336, s3 ≈ 0.946, and t3 ≈ 0.343.)

(d) Plot the three quadratics on their intervals against the graph of f . Explain what you see.

Project Activity 2.1 illustrates how we can model a function on an interval using a sequence
of quadratic functions. Now we apply this polynomial curve fitting technique to derive the general
formula for Simpson’s Rule for approximating definite integrals. The Simpson sum S(n) is found
by using parabolic arcs to approximate the graph of f on each subinterval rather than line segments.
This allows Simpsons’s Rule to more closely approximate the value of the definite integral with a
smaller number of subintervals, although Simpson’s Rule requires more calculations. Recall that
to approximate a definite integral of a function f on an interval [a, b], we partition [a, b] into equal
length subintervals. For Simpson’s Rule, we partition [a, b] into n = 2m subintervals of equal
length ∆x = b−a

n . (Note that we need an even number of subintervals since we have to use three
points for each parabola.) For each k we let xk = a + k∆x and yk = f(xk). We approximate f
on each subinterval using a quadratic. So we need to find the quadratic Q(x) = c2x

2 + c1x + c0

that passes through two consecutive end points as well as the midpoint of a subinterval. That is,
we need to find the coefficients of Q so that Q passes through the points (xk, yk), (xk+2, yk+2),
and the midpoint (xk+1, yk+1) on the interval [xk, xk+2] (so that we have three points to which to
fit a parabola). Note that the length of the interval [xk, xk+2] is 2∆x. To make the calculations
easier, we will translate our function so that our leftmost point is (−r, yk). Then the middle point
is (0, yk+1) and the rightmost point is (r, yk+2), where r = ∆x.

Project Activity 2.2.

(a) Set up a linear system that will determine the coefficients c2, c1, and c0 so that the polyno-
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mial Q(x) = c2x
2 + c1x+ c0 passes through the points (−r, yk), (0, yk+1), and (r, yk+2)

with r 6= 0. Remember that the unknowns in this system are c2, c1, and c0.

(b) We apply row operations to the matrix

 r2 −r 1 yk
0 0 1 yk+1

r2 r 1 yk+2

 and obtain the matrix r2 −r 1 yk
0 2r 0 yk+2 − yk
0 0 1 yk+1

. Use these matrices to show that c2 =
yk−2yk+1+yk+2

2r2
, c1 =

yk+2−yk
2r , and c0 = yk+1.

(c) Our goal is to ultimately approximate
∫ b
a f(x) dx by approximating f with quadratics on

each subinterval. Use the fact that∫ xk+2

xk

f(x) dx ≈
∫ xk+2

xk

Q(x) dx =

∫ r

−r
Q(x) dx,

to show that ∫ xk+2

xk

f(x) dx =
1

3
(yk + 4yk+1 + yk+2) ∆x.

(d) Now we can derive Simpson’s Rule. Use an additive property of the definite integral to
show that ∫ b

a
f(x) dx ≈ S(n),

where

S(n) = (y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · 2yn−2 + 4yn−1 + yn)
∆x

3

is the Simpson’s Rule approximation.

Notice that we can rewrite the Simpson’s Rule approximation as

1

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) ∆x

=
2

3
[2 (y1 + y3 + · · ·+ yn−1)] ∆x

+
2

3

(
y0 + y2

2
+
y2 + y4

2
+ · · ·+ yn−2 + yn

2

)
∆x

=
1

3
[(y1 + y3 + · · ·+ yn−1) (2∆x)]

+
1

3

(
y0 + y2

2
+
y2 + y4

2
+ · · ·+ yn−2 + yn

2

)
(2∆x)

=
2M(n) + T (n)

3
,

whereM(n) is the midpoint sum and T (n) is the trapezoid sum using n subdivisions of the interval
[a, b]. Therefore, the weighted average 2M(n)+T (n)

3 of the midpoint and trapezoid sums gives an
approximation using quadratic functions.





Section 3

Row Echelon Forms

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the row echelon form of a matrix?

• What is the procedure to obtain the row echelon form of any matrix?

• What is the reduced row echelon form of a matrix?

• What is the procedure to obtain the reduced row echelon form of any ma-
trix?

• What do the echelon forms of the augmented matrix for a linear system tell
us about the solutions to the system?

Application: Balancing Chemical Reactions

Linear systems have applications in chemistry when balancing chemical equations. When a chem-
ical reaction occurs, molecules of different substances combine to create molecules of other sub-
stances. Chemists represent such reactions with chemical equations. To balance a chemical equa-
tion means to find the number of atoms of each element involved that will preserve the number of
atoms in the reaction. As an example, consider the chemical equation

C2H6 + O2 → CO2 + H2O. (3.1)

This equation asks about what will happen when the chemicals ethane (C2H6) and oxygen (O2),
called the reactants of the reaction, combine to produce carbon dioxide (CO2) and water (H2O),
called the products of the reaction (note that oxygen gas is diatomic, so that oxygen atoms are
paired). The arrow indicates that it is the reactants that combine to form the products. Any chemical
reaction has to obey the Law of Conservation of Mass that says that mass can neither be created

39
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nor destroyed in a chemical reaction. Consequently, a chemical reaction requires the same number
of atoms on both sides of the reaction. In other words, the total mass of the reactants must equal
the total mass of the products. In reaction (3.1) the chemicals involved are made up of carbon
(C), hydrogen (H), and oxygen (O) atoms. To balance the equation, we need to know how many
molecules of each chemical are combined to preserve the number of atoms of C, H, and O. This can
be done by setting up a linear system of equations of the form

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0,

where x1, x2, x3, and x4 represent the number of molecules of C2H6, O2, CO2, and H2O, respec-
tively, in the reaction and then solving the system. Specific details can be found at the end of this
section.

Introduction

In the previous sections, we identified operations on a given linear system with corresponding equiv-
alent operations on the matrix representations which simplify the system and its matrix representa-
tion without changing the solutions of the system. Our end goal was to obtain a system which could
be solved using back substitution, such as

x1 − x2 + x3 = 0

6x2 − x3 = 8

x3 = 1.

The augmented matrix for this system is 1 −1 1 0
0 6 −1 8
0 0 1 1

 .
The matrices of linear systems which can be solved via back substitution are said to be in row
echelon form (or simply echelon form). We will define the properties of matrices in this form
precisely in this section. Our goal will be to prescribe a precise procedure for converting any
matrix to an equivalent one in row echelon form without having to convert back to the system
representation.

Preview Activity 3.1. We want to determine a suitable form for an augmented matrix that can be
obtained from row operations so that it is straightforward to find the solutions to the system. We
begin with some examples.

(1) Write the linear system corresponding to each of the following augmented matrices. Use the
linear system to determine which systems have their variables eliminated completely in the
forward direction, or equivalently determine for which systems the next step in the solution
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process is back substitution (possibly using free variables). Explain your reasoning. You do
not need to solve the systems.

i.

 1 −1 2 −2
0 1 2 −1
0 0 3 1

 ii.

 1 1 0 −2
0 1 0 3
0 0 0 0


iii.

 1 1 1 2
1 2 2 2
0 0 2 2

 iv.

 0 1 1 2
0 0 3 3
0 0 −2 −2


(2) Shown below are two row reduced forms of the system

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0.

Of the systems that correspond to these augmented matrices, which is easier to solve and
why?  2 0 −1 0 0

0 2 −2 −1 0
0 0 3 −2 0




1 0 0 −1
3 0

0 1 0 −7
6 0

0 0 1 −2
3 0



The Echelon Forms of a Matrix

In the previous sections we saw how to simplify a linear system and its matrix representation via
the elimination method without changing the solution set. This process is more efficient when
performed on the matrix representation rather than on the system itself. Furthermore, the process
of applying row operations to any augmented matrix is one that can be automated. In order to write
an algorithm that can be used with any size augmented matrix to the extent that it can be applied
even by a computer program, it is necessary to have a consistent procedure and a stopping point for
the simplification process. The two main properties that we want the simplified augmented matrix
to satisfy are that it should be easy to see if the system has solutions from the simplified matrix, and
in cases when there are solutions, the general form of the solutions can be easily found. Hence the
topic of this section is to define the process of elimination completely and generally.

We begin by discussing the row echelon or, simply, echelon form of a matrix. We know that the
forward phase of the elimination on a linear system produces a system which can be solved by back
substitution. The matrix representation of such a simplified system is said to be in row echelon or
simply echelon form. Note that matrices in this form have the first nonzero entry in each row to the
right of and below the first nonzero entry in the preceding row. Our next step is to formally describe
this form – one that you tried to explain in problem 3 of Preview Activity 3.1.

Definition 3.1. A rectangular matrix is in row echelon form (or simply echelon form) if it has the
following properties:

(1) All nonzero rows are above any rows of all zeros.
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(2) Each pivot (the first non-zero entry reading from left to right) in a row is in a column to the
right of the pivot of the row above it.

A pivot is also called a leading entry of a row. Note that properties (1) and (2) above imply that
all entries in a column below a pivot are zeros. It can be shown that the positions of these pivots,
called pivot positions, are unique and tell us quite a bit about a matrix and the solutions of the
linear system it corresponds to. The columns that the pivots are in, called pivot columns, will also
have useful properties as we will see soon.

Reflection 3. Compare the row echelon form of an augmented matrix to the corresponding system.
Do you clearly see the correspondence between the requirements of the row echelon form and the
properly eliminated variables in the system? Can you quickly come up with a system which will
be in row echelon form when represented in augmented matrix form? Can you modify the standard
row echelon form definition to cover cases where the elimination process eliminates the variables
from last to first? For example, in a system with three equations in three unknowns, the last variable,
say x3, can be eliminated from the second equation, and the last two variables, say x2, x3 can be
eliminated from the last equation. How would you define this modified row echelon form for a
general system with this modified elimination process?

Once an augmented matrix is in row echelon form, we can use back substitution to solve the cor-
responding system. However, we can make solving much easier with just a little more elimination
work.

Row operations are easy to apply, so if we are inclined, there is no reason to stop at the row
echelon form. For example, starting with the following matrix 2 −1 2 2 7

0 1 3 −1 −1
0 0 0 2 4


in row echelon form, we could take the row operations even farther and avoid the process of back
substitution altogether. First, we multiply the last row by 1/2 to simplify that row:

1
2
R3 → R3

 2 −1 2 2 7
0 1 3 −1 −1
0 0 0 1 2

 .
Then we use the third row to eliminate entries above the third pivot:

R1 − 2R3 → R1

R2 +R3 → R2

 2 −1 2 0 3
0 1 3 0 1
0 0 0 1 2

 .
We can continue in this manner (we call this process backward elimination) to make 0 all of the
entries above the pivots (one in the second column, and one in the fourth) with the pivots being 1,
to ultimately obtain the equivalent augmented matrix 1 0 1 0 2

0 1 3 0 1
0 0 0 1 2

 .
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The system corresponding to this augmented matrix is

x1 + x3 = 2

x2 + 3x3 = 1

x4 = 2

so we can just directly read off the solution to the system: x3 free and x1 = 2 − x3, x2 = 1 −
3x3, x4 = 2. This final row reduced form makes solving the system very easy, and this form is
called the reduced row echelon form.

Definition 3.2. A rectangular matrix is in reduced row echelon form (or reduced echelon form)
if the matrix is in row echelon form and

(3) The pivot in each nonzero row is 1.

(4) Each pivot is the only nonzero entry in its column.

In short, the reduced row echelon form of a matrix is a row echelon form in which all the pivots
are 1 and any entries below and above the pivots are 0.

If we use either of these two row echelon forms, solving the original system becomes straight-
forward and, as a result, these matrix forms are stopping points for the row operation algorithm
to solve a system. It is also very easy to write a computer program to perform row operations to
obtain and row echelon or reduced row echelon form of the matrix, making hand computations
unnecessary. We will discuss this shortly.

Reflection 4. Compare the reduced row echelon form of an augmented matrix to the corresponding
system. Do you clearly see the correspondence between the requirements of the reduced row eche-
lon form and the way the variables appear in the equations in the system? Can you quickly come up
with a system which will be in reduced row echelon form when represented in augmented matrix
form?

Note. We have used the elimination method on augmented matrices so far. However, the elimina-
tion method can be applied on just the coefficient matrix, or other matrices that will arise in other
contexts, and will provide useful information in each of those cases. Therefore, the row echelon
form and reduced row echelon form is defined for any matrix, and from now on, a matrix will be a
general matrix unless explicitly specified to be an augmented matrix.

Activity 3.1. Identify which of the following matrices is in row echelon form (REF) and/or reduced
row echelon form (RREF). For those in row and/or reduced row echelon form, identify the pivots
clearly by circling them. For those that are not in a given form, state which properties the matrix
fails to satisfy.

(a)
[

2 4 −3 6
0 0 0 7

]
(b)

[
1 0
0 1

]
(c)

 0 1 2 3
0 0 1 0
0 1 0 5


(d)

 1 2 3 4
0 0 0 0
0 0 0 0

 (e)
[

0 0
0 0

]
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Determining the Number of Solutions of a Linear System

Consider the system

x1+2x2 − x3 = 0

x2 − x4 = 2

x3 − 2x4 = 4.

The augmented matrix for this system is 1 2 −1 0 0
0 1 0 −1 2
0 0 1 −2 4

 .
Note that this matrix is already in row echelon form. The reduced row echelon form of this aug-
mented matrix is  1 0 0 0 0

0 1 0 −1 2
0 0 1 −2 4

 . (3.2)

Since there are leading 1s in the first three columns, we can use those entries to write x1, x2,
and x3 in terms of x4. We then choose x4 to be arbitrary and write the remaining variables in terms
of x4. Let x4 = t. Solving the third equation for x3 gives us x3 = 4 + 2t. The second equation
shows that x2 = 2 + t, and the first that x1 = 0. Each value of t provides a solution to the system,
so our system has infinitely many solutions. These solutions are

x1 = 0, x2 == 2 + t, x3 = 4 + 2t, and x4 = t,

where t can have any value.

Activity 3.2. We have seen examples of systems with no solutions, one solution, and infinitely
many solutions. As we will see in this activity, we can recognize the number of solutions to a
system by analyzing the pivot positions in the augmented matrix of the system.

(a) Write an example of an augmented matrix in row echelon form so that the last column of
the (whole) matrix is a pivot column. What is the system of equations corresponding to
your augmented matrix? How many solutions does your system have? Why?

(b) Consider the reduced row echelon form (3.2). Based on the columns of this matrix, explain
how we know that the system it represents is consistent.

(c) The system with reduced row echelon form (3.2) is consistent. What is it about the columns
of the coefficient matrix that tells us that this system has infinitely many solutions?

(d) Suppose that a linear system is consistent and that the coefficient matrix has m rows and n
columns.

i. If every column of the coefficient matrix is a pivot column, how many solutions must
the system have? Why? What relationship must exist between m and n? Explain.
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ii. If the coefficient matrix has at least one non-pivot column, how many solutions must
the system have? Why?

When solving a linear system of equations, the free variables can be chosen arbitrarily and we
can write the basic variables in terms of the free variables. Therefore, the existence of a free variable
leads to infinitely many solutions for consistent systems. However, it is possible to have a system
with free variables which is inconsistent. (Can you think of an example?)

Producing the Echelon Forms

In this part, we consider the formal process of creating the row and reduced row echelon forms of
matrices. The process of creating the row echelon form is the equivalent of the elimination method
on systems of linear equations.

Activity 3.3. Each of the following matrices is at most a few steps away from being in the requested
echelon form. Determine what row operations need to be completed to turn the matrix into the
required form.

(a) Turn into REF:
[

0 2
2 1

]
(b) Turn into REF:

[
1 2
2 5

]

(c) Turn into RREF:

 2 0 0
0 3 0
0 0 1

 (d) Turn into RREF:
[

1 −1
0 1

]

(e) Turn into RREF:
[

1 1
0 2

]
(f) Turn into RREF:

 1 0 −1
0 1 3
0 0 2


The complete process of applying row operations to reduce an augmented matrix to a row or

reduced row echelon form can be expressed as a recursive process in an algorithmic fashion, making
it possible to program computers to solve linear systems. Here are the steps to do so:

Step 1: Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

Step 2: Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

Step 3: Use row operations to create zeros in all positions below the pivot.

Step 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there are no more
nonzero rows to modify.

To obtain the reduced row echelon form we need one more step.

Step 5: Beginning with the rightmost pivot and working upward and to the left, create zeros above
each pivot. If a pivot is not 1, make it 1 by an appropriate row multiplication.
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The algorithm described in steps 1-4 will produce the row echelon form of the matrix. This
algorithm is called Gaussian elimination. When we add step 5 to produce the reduced row echelon
form, the algorithm is called Gauss-Jordan elimination.

Activity 3.4. Consider the matrix


0 2 4 1
−1 3 0 6

0 4 8 2
1 −3 0 −2

.

(a) Perform Gaussian elimination to reduce the matrix to row echelon form. Clearly identify
each step used. Compare your row echelon form to that of another group. Do your results
agree? If not, who is right?

(b) Now continue applying row operations to obtain the reduced row echelon form of the ma-
trix. Clearly identify each step. Compare your row echelon form to that of another group.
Do your results agree? If not, who is right?

If we compare row echelon forms from Activity 3.4, it is likely that different groups or individ-
uals produced different row echelon forms. That is because the row echelon form of a matrix is not
unique. (Is the row echelon form ever unique?)

However, if row operations are applied correctly, then we will all arrive at the same reduced
row echelon form in Activity 3.4: 

1 0 6 0
0 1 2 0
0 0 0 1
0 0 0 0

 .
It turns out that the reduced row echelon form of a matrix is unique.

Two matrices who are connected by row operations are said to be row equivalent.

Definition 3.3. A matrix B is row equivalent to a matrix A if B can be obtained by applying
elementary row operations to A.

Since every elementary row operation is reversible, if B is row equivalent to A, then A is also
row equivalent to B. Thus, we just say that A and B are row equivalent. While the row echelon
form of a matrix is not unique, it is the case that the reduced row echelon form of a matrix is unique.

Theorem 3.4. Every matrix is row equivalent to a unique matrix in reduced row echelon form.

The reduced row echelon form of a matrix that corresponds to a system of linear equations
provides us with a equivalent system whose solutions are easy to find. As an example, consider the
system

2x2 + 4x3 + x4 = 0

−x1 + 3x2 + 6x4 = 0

4x2 + 8x3 + 2x4 = 0

x1 − 3x2 − 2x4 = 0
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with augmented matrix 
0 2 4 1 0
−1 3 0 6 0

0 4 8 2 0
1 −3 0 −2 0

 .
Notice that the coefficient matrix (the left hand side portion of the augmented matrix) of this system
is same as the matrix we considered in Activity 3.4. Since we are augmenting with a column of
zeros, no row operations will change those zeros in the augmented column. So the row operations
applied in Activity 3.4 will give us the reduced row echelon form of this augmented matrix as

1 0 6 0 0
0 1 2 0 0
0 0 0 1 0
0 0 0 0 0

 .
Note that the third column is not a pivot column. That means that the variable x3 is a free variable.
There are pivots in the other three columns of the coefficient matrix, so we can solve for x1, x2, and
x4 in terms of x3. These variables are the basic variables. The third row of the augmented matrix
tells us that x4 = 0. The second row corresponds to the equation x2 + 2x3 = 0, and solving for x2

shows that x2 = −2x3. Finally, the first row tells us that x1 + 6x3 = 0, so x1 = −6x3. Therefore,
the general solution to this system of equations is

x1 = −6x3, x2 = −2x3, x3 is free, x4 = 0.

The fact that x3 is free means that we can choose any value for x3 that we like and obtain a specific
solution to the system. For example, if x3 = −1, then we have the solution x1 = 6, x2 = 2,
x3 = −1, and x4 = 0. Check this to be sure.

Activity 3.5. Each matrix below is an augmented matrix for a linear system after elimination with
variables x1, x2, . . . in that order. Identify the basic variables (if any) and free variables (if any).
Then find the general solution (if there is a solution) expressing all variables in terms of the free
variables.

(a)

 1 0 2 1
0 3 1 0
0 0 0 0

 (b)

 1 1 0 1
0 0 1 2
0 0 0 0

 (c)


1 2 −1 1 1
0 1 0 2 1
0 0 0 0 0
0 0 0 0 0


(d)

 1 0 1 1
0 1 0 0
0 0 0 2

 (e)

 1 0 1
0 1 0
0 0 0


Recall that in the previous section, we determined the criteria for when a system has a unique

solution, or infinitely many solutions, or no solution. With the use of the row echelon form of the
augmented matrix, we can rewrite these criteria as follows:

Theorem 3.5.

(1) A linear system is consistent if in the row echelon form of the augmented matrix representing
the system no pivot is in the rightmost column.
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(2) If a linear system is consistent and the row echelon form of the coefficient matrix does not
have a pivot in every column, then the system has infinitely many solutions.

(3) If a linear system is consistent and there is a pivot in every column of the row echelon form
of the coefficient matrix, then the system has a unique solution.
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Figure 3.1: Figures for Activity 3.6.

Activity 3.6.

(a) For each part, the reduced row echelon form of the augmented matrix of a system of equa-
tions in variables x, y, and z (in that order) is given. Use the reduced row echelon form to
find the solution set to the original system of equations.

i.

 1 0 0 −1
0 1 0 3
0 0 0 0

 ii.

 1 0 2 −1
0 1 −1 3
0 0 0 0

 iii.

 1 0 0 2
0 1 0 −1
0 0 1 3


iv. Each of the three systems above is represented as one of the graphs in Figure 3.1.

Match each figure with a system.

(b) The reduced row echelon form of the augmented matrix of a system of equations in vari-
ables x, y, z, and t (in that order) is given. Use the reduced row echelon form to find the
solution set to the original system of equations: 1 3 0 0 −1

0 0 1 2 4
0 0 0 0 1

 .
Examples

What follows are worked examples that use the concepts from this section.

Example 3.6. Consider the linear system

2x1 + 6x3 = x2 + 2

2x3 − 4x1 = 2x2

x2 + 4x3 − 2 = 2x1 + 6.
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(a) Find the augmented matrix for this system.

(b) Use row operations to find a row echelon form of the augmented matrix of this system.

(c) Use row operations to find the reduced row echelon form of the augmented matrix of this
system.

(d) Find the solution(s), if any, to the system.

Example Solution. Before we can find the augmented matrix of this system, we need to rewrite
the system so that the variables are all on one side and the constant terms are on the other side of
the equations. Doing so yields the equivalent system

2x1 − x2 + 6x3 = 2

−4x1 − 2x2 + 2x3 = 0

−2x1 + x2 + 4x3 = 8.

Note that this is not the only way to rearrange the system. For example, for the second equation,
could be written instead as 4x1 + 2x2 − 2x3 = 0 to minimize the number of negative signs in the
equation.

(a) The augmented matrix for this system is 2 −1 6 2
−4 −2 2 0
−2 1 4 8

 .
(b) Our first steps to row echelon form are to eliminate the entries below the leading entry in

the first row. To do this we replace row two with row two plus 2 times row 1 and we replace
row three with row three plus row one. This produces the row equivalent matrix 2 −1 6 2

0 −4 14 4
0 0 10 10

 .
This matrix is now in row echelon form.

(c) To continue to find the reduced row echelon form, we replace row two with row two times
−1

4 to get a leading 1 in the second row, and we replace row three with row three times 1
10

to get a leading 1 in the third row and obtain the row equivalent matrix
2 −1 6 2

0 1 −7
2 −1

0 0 1 1

 .
Now we perform backwards elimination to make the entries above the leading 1s equal to
0, starting with the third column and working backwards. Replace row one with row one
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minus 6 times row three and replace row two with row two plus 7
2 row three to obtain the

row equivalent matrix 
2 −1 0 −4

0 1 0 5
2

0 0 1 1

 .
For the second column, we replace row one with row one plus row two to obtain the row
equivalent matrix 

2 0 0 −3
2

0 1 0 5
2

0 0 1 1

 .
Since the leading entry in row one is not a one, we have one more step before we have the
reduced row echelon form. Finally, we replace row one with row one times 1

2 . This gives
us the reduced row echelon form 

1 0 0 −3
4

0 1 0 5
2

0 0 1 1

 .

(d) We can read off the solution to the system from the reduced row echelon form: x1 = −3
4 ,

x2 = 5
2 , and x3 = 1. You should check in the original equations to make sure we have the

correct solution.

Example 3.7. In this example, a and b are unknown scalars. Consider the system with augmented
matrix  1 2 a 3

1 0 0 b
0 1 1 0

 .
Find all values of a and b so that the system has:

(a) Exactly one solution (and find the solution)

(b) No solutions

(c) Infinitely many solutions (and find all solutions)

Example Solution. Let x1, x2, and x3 be the variables corresponding to the first, second, and third
columns, respectively, of the augmented matrix. To answer these questions, we row reduce the
augmented matrix. We interchange rows one and two and then also rows two and three to obtain
the matrix  1 0 0 b

0 1 1 0
1 2 a 3

 .
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Now we replace row three with row three minus row one to produce the row equivalent matrix 1 0 0 b
0 1 1 0
0 2 a 3− b

 .
Next, replace row three with row three minus 2 times row two. This yields the row equivalent
matrix  1 0 0 b

0 1 1 0
0 0 a− 2 3− b

 .
We now have a row echelon form.

(a) The system will have exactly one solution when the last row has the form [0 0 u v] where
u is not zero. Thus, the system has exactly one solution when a − 2 6= 0, or when a 6= 2.
In this case, the solution is

x3 =
3− b
a− 2

,

x2 = −x3 =
b− 2

a− 2

x1 = b.

You should check to ensure that this solution is correct. The other cases occur when a = 2.

(b) When a = 2 and 3− b 6= 0 (or b 6= 3), then we have a row of the form [0 0 0 t], where t is
not 0. In these cases there are no solutions.

(c) When a = 2 and b = 3, then the last row is a row of all zeros. In this case, the system
is consistent and x3 is a free variable, so the system has infinitely many solutions. The
solutions are

x1 = b

x2 = −x3

x3 is free.

You should check to ensure that this solution is correct.

Summary

In this section we learned about the row echelon and reduced row echelon forms of a matrix and
some of the things these forms tell us about solutions to systems of linear equations.

• A matrix is in row echelon form if

(1) All nonzero rows are above any rows of all zeros.

(2) Each pivot (the first nonzero entry) of a row is in a column to the right of the pivot of
the row above it.
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• Once an augmented matrix is in row echelon form, we can use back substitution to solve the
corresponding linear system.

• To reduce a matrix to row echelon form we do the following:

– Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

– Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

– Use row operations to create zeros in all positions below the pivot.

– Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply the preceding steps to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

• A matrix is in reduced row echelon form if it is in row echelon form and

(3) The pivot in each nonzero row is 1.

(4) Each pivot is the only nonzero entry in its column.

• To obtain the reduced row echelon form from the row echelon form, beginning with the
rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot
is not 1, make it 1 by an appropriate row multiplication.

• Both row echelon forms of an augmented matrix tell us about the number of solutions to the
corresponding linear system.

– A linear system is inconsistent if and only if a row echelon form of the augmented
matrix of the system contains a row of the form

[0 0 0 · · · 0 ∗],

where ∗ is not zero. Another way to say this is that a linear system is inconsistent if and
only if the last column of the augmented matrix of the system is a pivot column.

– A consistent linear system will have a unique solution if and only if each column but
the last in the augmented matrix of the system is a pivot column. This is equivalent
to saying that a consistent linear system will have a unique solution if and only if the
consistent system has no free variables.

– A consistent linear system will have infinitely many solutions if and only if the coeffi-
cient matrix of the system contains a non-pivot column. In that case, the free variables
corresponding to the non-pivot columns can be chosen arbitrarily and the basic variables
corresponding to pivot columns can be written in terms of the free variables.

– A linear system can have no solutions, exactly one solution, or infinitely many solutions.
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Exercises

(1) Represent the following linear system in variables x1, x2, x3 in augmented matrix form and
use row reduction to find the general solution of the system.

x1 + x2 − x3 = 4

x1 + 2x2 + 2x3 = 3

2x1 + 3x2 − 3x3 =11.

(2) Represent the following linear system in variables x1, x2, x3 in augmented matrix form after
rearranging the terms and use row reduction to find all solutions to the system.

x1 − x3 − 2x2 = 3

2x3 + 2 = x1 + x2

4x2 + 2x1 − 2 = 5x3.

(3) Check that the reduced row echelon form of the matrix 1 −1 3 2
−1 2 −4 −1

2 0 6 8


is  1 0 0 1

0 1 0 2
0 0 1 1

 .
(4) Consider the following system:

x− 2y + z = −1

2y − 4z = 6

hy − 2z = 1.

(a) Find a row echelon form of the augmented matrix for this system.

(b) For which values of h, if any, does the system have (i.) no solutions, (ii.) exactly one
solution, (iii.) infinitely many solutions? Find the solutions in each case.

(5) Find the general solution of the linear system corresponding to the following augmented
matrix:  1 −1 2 1 2

−1 2 2 −1 −5
1 1 10 2 −1

 .
(6) What are the conditions, if any, on the a, b, c values so that the following augmented matrix

corresponds to a consistent linear system? How many solutions will the consistent system
have? Explain.  1 2 3 a

2 3 7 b
−1 −4 −1 c

 .
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(7) In this exercise the symbol � denotes a non-zero number and the symbol * denotes any real
number (including 0).

(a) Is the augmented matrix [
� ∗ ∗
0 � ∗

]
in a form to which back substitution will easily give the solutions to the system?
Explain your reasoning. (Hint: In order to help see what happens in the general case,
substitute some numbers in place of the �’s and *’s and answer the question for that
specific system first. Then determine if your answer generalizes.)

(b) The above matrix is a possible form of an augmented matrix with 2 rows and 3
columns corresponding to a linear system after forward elimination, i.e., a linear
system for which back substitution will easily give the solutions. Determine the other
possible such forms of the nonzero augmented matrices with 2 rows and 3 columns.
As in part (a), use the symbol � to denote a non-zero number and * to denote any
real number.

(8) Give an example of a linear system with a unique solution for which a row echelon form of
the augmented matrix of the system has a row of 0’s.

(9) Come up with an example of an augmented matrix with 0’s in the rightmost column corre-
sponding to an inconsistent system, if possible. If not, explain why not.

(10) Find two different row echelon forms which are equivalent to the same matrix not given in
row echelon form.

(11) Determine all possible row echelon forms of a 2 × 2 matrix. Use the symbol � to denote
a non-zero number and * to denote a real number with no condition on being 0 or not to
represent entries.

(12) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The number of pivots of an m× n matrix cannot exceed m. (Note: Here
m, n are some unknown numbers.)

(b) True/False The row echelon form of a matrix is unique.

(c) True/False The reduced row echelon form of a matrix is unique.

(d) True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

(e) True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

(f) True/False If a row echelon form of the augmented matrix of a system of three
equations in two unknowns has three pivots, then the system is inconsistent.

(g) True/False If the coefficient matrix of a system has pivots in every row, then the
system is consistent.
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(h) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a linear system has no free variables, then the system has a unique
solution.

(k) True/False If a linear system has a free variable, then the system has infinitely many
solutions.

Project: Modeling a Chemical Reaction

Recall the chemical equation
C2H6 + O2 → CO2 + H2O

from the beginning of this section. This equation illustrates the reaction between ethane (C2H6)
and oxygen (O2),called the reactants, to produce carbon dioxide (CO2) and water (H2O), called the
products of the reaction. In any chemical reaction, the total mass of the reactants must equal the total
mass of the products. In our reaction the chemicals involved are made up of carbon (C), hydrogen
(H), and oxygen (O) atoms. To balance the equation, we need to know how many molecules of each
chemical are combined to preserve the number of atoms of C, H, and O.

Let x1 be the number of molecules of C2H6, x2 the number of molecules of O2, x3 the number
of molecules of CO2, and x4 the number of molecules of H2O in the reaction. We can then represent
this reaction as

x1C2H6 + x2O2 → x3CO2 + x4H2O.

In each molecule (e.g., ethane C2H6), the subscripts indicate the number of atoms of each
element in the molecule. So 1 molecule of ethane contains 2 atoms of carbon and 6 atoms of
hydrogen. Thus, there are 2 atoms of carbon in C2H6 and 0 atoms of carbon in O2, giving us
2x1 carbon atoms in x1 molecules of C2H6 and 0 carbon atoms in x2 molecules of O2. On the
product side of the reaction there is 1 carbon atom in CO2 and 0 carbon atoms in H2O. To balance
the reaction, we know that the number of carbon atoms in the products must equal the number of
carbon atoms in the reactants.

Project Activity 3.1.

(a) Set up an equation that balances the number of carbon atoms on both sides of the reaction.

(b) Balance the numbers of hydrogen and oxygen atoms in the reaction to explain why

6x1 = 2x4

2x2 = 2x3 + x4.

(c) So the system of linear equations that models this chemical reaction is

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0.
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Find all solutions to this system and then balance the reaction. Note that we cannot have a
fraction of a molecule in our reaction. (Hint: Some of the work needed is done in Preview
Activity 3.1.)

Project Activity 3.2. Chemical reactions can be very interesting.

(a) Carbon dioxide, CO2, is a familiar product of combustion. For example, when we burn
glucose, C6H12O6, the products of the reaction are carbon dioxide and water:

C6H12O6 + O2 → CO2 + H2O. (3.3)

Use the techniques developed in this project to balance this reaction.

(b) To burn glucose, we need to add oxygen to make the combustion happen. Carbon dioxide
is different in that it can burn without the presence of oxygen. For example, when we
mix magnesium (Mg) with dry ice (CO2), the products are magnesium oxide (Mg) and
carbon (C). This is an interesting reaction to watch: you can see it at many websites, e.g.,
http://www.ebaumsworld.com/video/watch/404311/ or https://www.
youtube.com/watch?v=-6dfi8LyRLA.

Use the method determined above to balance the chemical reaction

Mg + CO2 → MgO + C. (3.4)

http://www.ebaumsworld.com/video/watch/404311/
https://www.youtube.com/watch?v=-6dfi8LyRLA
https://www.youtube.com/watch?v=-6dfi8LyRLA


Section 4

Vector Representation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a vector?

• How do we define operations on vectors?

• What is a linear combination of vectors?

• How do we determine if one vector is a linear combination of a given set
of vectors?

• How do we represent a linear system as a vector equation?

• What is the span of a set of vectors?

• What are possible geometric representations of the span of a vector, or the
span of two vectors?

Application: The Knight’s Tour

Chess is a game played on an 8× 8 grid which utilizes a variety of different pieces. One piece, the
knight, is different from the other pieces in that it can jump over other pieces. However, the knight
is limited in how far it can move in a given turn. For these reasons, the knight is a powerful, but
often under-utilized, piece.

A knight can move two units either horizontally or vertically, and one unit perpendicular to that.
Four knight moves are as illustrated in Figure 4.1, and the other four moves are the opposites of
these.

The knight’s tour problem is the mathematical problem of finding a knight’s tour, that is a se-
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Start

Start

Figure 4.1: Moves a knight can make.

quence of knight moves so the the knight visits each square exactly once. While we won’t consider
a knight’s tour in this text, we will see using linear combinations of vectors that a knight can move
from its initial position to any other position on the board, and that it is possible to determine an
sequence of moves to make that happen.

Introduction

So far we learned of a convenient method to represent a linear system using matrices. We now
consider another representation of a linear system using vectors. Vectors can represent concepts in
the physical world like velocity, acceleration, and force – but we will be interested in vectors as
algebraic objects in this class. Vectors will form the foundation for everything we will do in linear
algebra. For now, the following definition will suffice.

Definition 4.1. A (real) vector is a finite list of real numbers in a specified order. Each number in
the list is referred to as an entry or component of the vector.

Note: For the majority of this text, we will work with real vectors. However, A vector does not need
to be restricted to have real entries. At times we will use complex vectors and even vectors in other
types of sets. The types of sets we use will be ones that have structure just like the real numbers.
Recall that a real number is a number that has a decimal representation, either finite or repeating
(rational numbers) or otherwise (irrational numbers). We can add and multiply real numbers as we
have done throughout our mathematical careers, and the real numbers have a certain structure given
in the following theorem that we will treat as an axiom – that is, we assume these properties without
proof. We denote the set of real numbers with the symbol R.

Theorem 4.2. Let x, y, and z be real numbers. Then

• x + y ∈ R and xy ∈ R (The name given to this property is closure. That is, the set R is
closed under addition and multiplication.)
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• x + y = y + x and xy = yx (The name given to this property is commutativity. That is
addition and multiplication are commutative operations in R.)

• (x+y)+z = x+(y+z) and (xy)z = x(yz) (The name given to this property is associativity.
That is, addition and multiplication is associative operations in R.)

• There is an element 0 in R such that x+ 0 = x (The element 0 is called the additive identity
in R.)

• There is an element 1 in R such that (1)x = x (The element 1 is called the multiplicative
identity in R.)

• There is an element −x in R such that x+ (−x) = 0 (The element −x is the additive inverse
of x in R.)

• If x 6= 0, there is an element 1
x in R such that x

(
1
x

)
= 1 (The element 1

x is the multiplicative
inverse of the nonzero element x in R.)

• x(y + z) = (xy) + (xz) (The is the distributive property. That is, multiplication distributes
over addition in R.)

Any set that satisfies the properties listed in Theorem 4.2 is called a field. We our vectors are
made from elements of a field, we call those elements of the field scalars.

We will algebraically represent a vector as a matrix with one column. For example, v =

[
1
2

]
is a vector with 2 entries, and we say that v is a vector in 2-space. By 2-space we mean R2, which
can be geometrically modeled as the plane. Here the symbol R indicates that the entries of v are real
numbers and the superscript 2 tells us that v has two entries. Similarly, vectors in R3 have three

entries, e.g.,

 1
3
−1

. The collection of column vectors with three entries can be geometrically

modeled as three-dimensional space. If a vector v has n entries we say that v is a vector in Rn (or
n-space). Vectors are also often indicated with arrows, so we might also see a vector v written as
−→v . It is important when writing to differentiate between a vector v and a scalar v. These are quite
different objects and it is up to us to make sure we are clear what a symbol represents. We will use
boldface letters to represent vectors.

A vector like
[

1
2

]
is called a column vector of size 2 × 1 (two rows, one column). We can

define an addition operation on two vectors of the same size by adding corresponding components,
such as [

1
−2

]
+

[
3
4

]
=

[
4
2

]
.

Similarly, we can define scalar multiplication of a vector by multiplying each component of the
vector by the scalar. For example,

3

[
1
2

]
=

[
3
6

]
.
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Since we can add vectors and multiply vectors by scalars, we can then add together scalar multiples
of vectors. For completeness, we define vector subtraction as adding a scalar multiple:

v − u = v + (−1)u.

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

Preview Activity 4.1.

(1) Given vectors

v =

 1
−2

2

 , u =

 0
1
3

 , w =

 1
1
4

 ,
determine the components of the vector 3v + u− 2w using the operations defined above.

(2) In mathematics, any time we define operations on objects, such as addition of vectors, we ask
which properties the operation has. For example, one might wonder if u+v = v+u for any
two vectors u,v of the same size. If this property holds, we say that the addition of vectors is
a commutative operation. However, to verify this property we cannot use examples since the
property must hold for any two vectors. For simplicity, we focus on two-dimensional vectors

u =

[
u1

u2

]
and v =

[
v1

v2

]
. Using these arbitrary vectors, can we say that u+v = v+u?

If so, justify. If not, give a counterexample. (Note: Giving a counterexample is the best way
to justify why a general statement is not true.)

(3) One way to geometrically represent vectors with two components uses a point in the plane to

correspond to a vector. Specifically, the vector
[
x
y

]
corresponds to the point (x, y) in the

plane. As a specific example, the vector
[

1
2

]
corresponds to the point (1, 2) in the plane.

This representation will be especially handy when we consider infinite collections of vectors
as we will do in this problem.

(a) On the same set of axes, plot the points that correspond to 5-6 scalar multiples of the

vector
[

1
2

]
. Make sure to use variety of scalar multiples covering possibilities with

c > 0, c < 0, c > 1, 0 < c < 1,−1 < c < 0. If we consider the collection of all
possible scalar multiples of this vector, what do we obtain?

(b) What would the collection of all scalar multiples of the vector
[

0
0

]
form in the

plane?

(c) What would the collection of all scalar multiples of the vector

 1
1
1

 form in the

three-dimensional space?

(4) Let u =

[
1
2

]
and v =

[
1
−1

]
in R2. We are interested in finding all vectors that can be

formed as a sum of scalar multiples of u and v.
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(a) On the same set of axes, plot the points that correspond to the vectors u,v,u +
v, 1.5u, 2v,−u,−v,−u+ 2v. Plot other random sums of scalar multiples of u and
v using several scalar multiples (including those less than 1 or negative) (that is, find
other vectors of the form au + bv where a and b are any scalars.).

(b) If we considered sums of all scalar multiples of u,v, which vectors will we obtain?
Can we obtain any vector in R2 in this form?

Vectors and Vector Operations

As discussed in Preview Activity 4.1, a vector is simply a list of numbers. We can add vectors of like
size and multiply vectors by scalars. These operations define a structure on the set of all vectors with
the same number of components that will be our major object of study in linear algebra. Ultimately
we will expand our idea of vectors to a more general context and study what we will call vector
spaces.

In Preview Activity 4.1 we saw how to add vectors and multiply vectors by scalars in R2, and
this idea extends to Rn for any n. Before we do so, one thing we didn’t address in Preview Activity
4.1 is what it means for two vectors to be equal. It should seem reasonable that two vectors are
equal if and only if they have the same corresponding components. More formally, if we let

u =


u1

u2
...
un

 and v =


v1

v2
...
vn


be vectors in Rn, then u = v if ui = vi for every i between 1 and n. Note that this statement
implies that a vector in R2 cannot equal a vector in R3 because they don’t have the same number of
components. With this in mind we can now define the sum u + v of the vectors u and v to be the
vector in Rn defined by

u + v =


u1 + v1

u2 + v2
...

un + vn

 .
In other words, to add two vectors of the same size, we add corresponding components.

Similarly, we can define scalar multiplication of a vector. If c is a scalar, then the scalar multiple
cv of the vector v is the vector in Rn defined by

cv =


cv1

cv2
...
cvn

 .
In other words, the scalar multiple cv of the vector v is the vector obtained by multiplying each
component of the vector v by the scalar c. Since we can add vectors and multiply vectors by scalars,
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we can then add together scalar multiples of vectors. For completeness, we define vector subtraction
as adding a scalar multiple:

v − u = v + (−1)u.

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

After defining operations on objects, we should wonder what kinds of properties these opera-
tions have. For example, with the operation of addition of real numbers we know that 1 + 2 is equal
to 2 + 1. This is called the commutative property of scalar addition and says that order does not
matter when we add real numbers. It is natural for us to ask if similar properties hold for the vector
operations, addition and scalar multiplication, we defined. You showed in Preview Activity 4.1 that
the addition operation is also commutative on vectors in R2.

In the activity below we consider how the two operations, addition and scalar multiplication,
interact with each other. In real numbers, we know that multiplication is distributive over addition.
Is that true with vectors as well?

Activity 4.1. We work with vectors in R2 to make the notation easier.

Let a be an arbitrary scalar, and u =

[
u1

u2

]
and v =

[
v1

v2

]
be two arbitrary vectors in R2.

Is a(u + v) equal to au + av? What property does this imply about the scalar multiplication and
addition operations on vectors?

Similar arguments can be used to show the following properties of vector addition and multi-
plication by scalars.

Theorem 4.3. Let v, u, and w be vectors in Rn and let a and b be scalars. Then

(1) v + u = u + v

(2) (v + u) + w = v + (u + w)

(3) The vector z =


0
0
...
0

 has the property that v + z = v. The vector z is called the zero

vector.

(4) (−1)v + v = z. The vector (−1)v = −v is called the additive inverse of the vector v.

(5) (a+ b)v = av + bv

(6) a(v + u) = av + au

(7) (ab)v = a(bv)

(8) 1v = v.

We will later see that the above properties make the set Rn a vector space. These properties
just say that, for the most part, we can manipulate vectors just as we do real numbers. Please note,
though, that there is no multiplication or division of vectors.
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Geometric Representation of Vectors and Vector Operations

We can geometrically represent a vector v =

[
v1

v2

]
in R2 as the point (v1, v2) in the plane as

we did in Preview Activity 4.1. We can similarly represent a vector v =

 v1

v2

v3

 in R3 as the

point (v1, v2, v3) in the three-dimensional space. This geometric representation will be handy when
we consider collections of infinitely many vectors, as we will do when we consider the span of a
collection of vectors later in this section.

We can also represent the vector v =

[
v1

v2

]
in R2 as the directed line segment (or arrow) from

the origin to the point (v1, v2) as shown in Figure 4.2 to aid in the visualization.

4

6

O

P

x

y

Figure 4.2: The vector [ 4
6 ] in R2.

The fact that the vector in Figure 4.2 is represented by the directed line segment from the origin

to the point (4,6) means that this vector is the vector v =

[
4
6

]
. If O is the origin and P is the

point (4, 6), we will also denote this vector as
−−→
OP – so

−−→
OP =

[
4
6

]
.

In this way we can think of vectors as having direction and length. With the Pythagorean Theorem,

we can see that the length of a vector v =

[
v1

v2

]
is
√
v2

1 + v2
2 . This idea can be applied to vectors

in any space. If v =


v1

v2

v3
...
vn

 is a vector in Rn, then the length of v, denoted |v| is the scalar

||v|| =
√
v2

1 + v2
2 + · · ·+ v2

n.

Thinking of vectors having direction and length is especially useful in visualizing the addition
of vectors. The geometric interpretation of the sum of two vectors can be seen in Figures 4.3 and
4.4.
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(3,−2)

(4,6)

u

v

u+v

x

y

Figure 4.3: A vector sum.

(3,−2)

(4,6)

u

v

u+v

Figure 4.4: Geometric inter-
pretation.

Let u =

[
4
6

]
and v =

[
3
−2

]
. Then u + v =

[
7
4

]
as shown in Figure 4.3. Figure 4.4

provides a context to interpret this vector sum geometrically. Using the parallelogram imposed on
the three vectors, we see that if vectors u and v are both placed to start at the origin, then the vector
sum u+v can be visualized geometrically as the directed line segment from the origin to the fourth
corner of the parallelogram.

In Preview Activity 4.1 we considered scalar multiples of a vector in R2. The arrow representa-
tion helps in visualizing scalar multiples as well. Geometrically, a scalar multiple cv of a nonzero
vector v is a vector in the same direction as v if c > 0 and in the opposite direction as v if c < 0.
If c > 1, scalar multiplication stretches the vector, while 0 < c < 1 shrinks the vector. We also saw
that the collection of all scalar multiples of a vector v in R2 gives us a line through the origin and
v, except when v = 0 in which case we only obtain 0. In other words, for a nonzero vector v, the
set S = {cv : c is a scalar} is the line through the origin and v in R2.

All of these properties generalize to vectors in R3. Specifically, the scalar multiple cv is a vector
in the same or opposite direction as v based on the sign of c, and is a stretched or shrunken version
of v based on whether |c| > 1 or |c| < 1. Also, the collection of all multiples of a non-zero vector
v in R3 form a line through the origin.

Linear Combinations of Vectors

The concept of linear combinations is one of the fundamental ideas in linear algebra. We will use
linear combinations to describe almost every important concept in linear algebra – the span of a set
of vectors, the range of a linear transformation, bases, the dimension of a vector space – to name
just a few.

In Preview Activity 4.1, we considered the sets of all scalar multiples of a single nonzero vector
in R2 and in R3. We also considered the set of all sums of scalar multiples of two nonzero vectors.
These results so far gives us an idea of geometrical descriptions of sets of vectors generated by one
or two vectors. Oftentimes we are interested in what vectors can be made from a given collection of
vectors. For example, suppose we have two different water-benzene-acetic acid chemical solutions,
one with 40% water, 50% benzene and 10% acetic acid, the other with 52% water, 42% benzene



Section 4. Vector Representation 65

and 6% acid. An experiment we want to conduct requires a chemical solution with 43% water, 48%
benzene and 9% acid. We would like to know if we make this new chemical solution by mixing
the first two chemical solutions, or do we have to run to the chemical solutions market to get the
chemical solution we want.

We can set up a system of equations for each ingredient and find the answer. But we can also
consider each chemical solution as a vector, where the components represent the water, benzene
and acid percentages. So the two chemical solutions we have are represented by the vectors v1 = 40

50
10

 and v2 =

 52
42
6

. If we mix the two chemical solutions with varying amounts of each

ingredient, then the question of whether we can make the desired chemical solution becomes the
question of whether the equation

c1

 40
50
10

+ c2

 52
42
6

 =

 43
48
9


has a solution. (You will determine if this equation has a solution in Exercise 5.)

We might also be interested in what other chemical solutions we can make from the two given

solutions. This amounts to determining which vectors can be written in the form c1

 40
50
10

 +

c2

 52
42
6

 for scalars c1 and c2. Vectors that are created from sums of scalar multiples of given

vectors are called linear combinations of those vectors. More formally,

Definition 4.4. A linear combination of vectors v1, v2, . . ., vm in Rn is any vector of the form

c1v1 + c2v2 + · · ·+ cmvm, (4.1)

where c1, c2, . . ., cm are scalars that we will refer to as the weights.

In the chemical solutions example, the vector c1

 40
50
10

 + c2

 52
42
6

 for scalars c1 and c2

is a linear combination of the vectors

 40
50
10

 and

 52
42
6

 with weights c1 and c2, and the set of

linear combinations of the given chemical solution vectors tells us exactly which chemical solutions
we can make from the given ones. This is one example of how linear combinations can arise in
applications.

The set of all linear combinations of a fixed collection of vectors has a very nice algebraic
structure and, in small dimensions, allows us to use a geometrical description to aid our under-
standing. In the above example, this collection gives us the type of chemical solutions we can make
by combining the first two solutions in varying amounts.
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Activity 4.2. Our chemical solution example illustrates that it can be of interest to determine
whether certain vectors can be written as a linear combination of given vectors. We explore that

idea in more depth in this activity. Let v1 =

 1
1
1

 and v2 =

 2
−1

3

.

(a) Calculate the linear combination of v1 and v2 with corresponding weights (scalar multi-
ples) 1 and 2. The resulting vector is a vector which can be written as a linear combination
of v1 and v2.

(b) Can w =

 3
0
4

 be written as a linear combination of v1 and v2? If so, which linear

combination? If not, explain why not.

(c) Can w =

 2
0
2

 be written as a linear combination of v1 and v2? If so, which linear

combination? If not, explain why not.

(d) Let w =

 0
6
−2

. The problem of determining if w is a linear combination of v1 and v2

is equivalent to the problem of finding scalars x1 and x2 so that

w = x1v1 + x2v2. (4.2)

i. Combine the vectors on the right hand side of equation (4.2) into one vector, and then
set the components of the vectors on both sides equal to each other to convert the
vector equation (4.2) to a linear system of three equations in two variables.

ii. Use row operations to find a solution, if it exists, to the system you found in the
previous part of this activity. If you find a solution, verify in (4.2) that you have found
appropriate weights to produce the vector w as a linear combination of v1 and v2.

Note that to find the weights that make w a linear combination of the vectors v1 and v2, we
simply solved the linear system corresponding to the augmented matrix

[v1 v2 | w],

where the vectors v1, v2, and w form the columns of an augmented matrix, and the solution of the
system gave us the weights of the linear combination. In general, if we want to find weights c1, c2,
. . ., cm so that a vector w in Rn is a linear combination of the vectors v1, v2, . . ., vm in Rn, we
solve the system corresponding to the augmented matrix

[v1 v2 v3 · · · vm| w].

Any solution to this system will gives us the weights. If this system has no solutions, then w cannot
be written as a linear combination of the vectors v1, v2, . . ., vm. This shows us the equivalence of
the linear system and its vector equation representation. Specifically, we have the following result.
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Theorem 4.5. The vector equation

x1v1 + x2v2 + x3v3 + · · ·+ xmvm = w

has the same solution set as the linear system represented by the augmented matrix

[v1 v2 v3 · · · vm| w].

In particular, the system has a solution if and only if w is a linear combination of the vectors
v1,v2,v3, . . . ,vm.

Activity 4.3.

(a) Represent the following linear system as a vector equation. After finding the vector equa-
tion, compare your vector equation to the matrix representation you found in Preview Ac-
tivity 4.1. (Note that this is the same linear system from Preview Activity 3.1.)

−x3 + 3 + 2x2 = −x1

−3 + 2x3 = −x2

−2x2 + x1 = 3x3 − 7

(b) Represent the following vector equation as a linear system and solve the linear system.

x1

 1
1
2

+ x2

 1
2
3

+ x3

 −1
2
−3

 =

 4
3
11



The Span of a Set of Vectors

As we saw in the previous section, the question of whether a system of linear equations has a
solution is equivalent to the question of whether the vector obtained by the non-coefficient constants
in the system is a linear combination of the vectors obtained from the columns of the coefficient
matrix of the system. So if we were interested in finding for which constants the system has a
solution, we would look for the collection of all linear combinations of the columns. We call
this collection the span of these vectors. In this section we investigate the concept of span both
algebraically and geometrically.

Our work in Preview Activity 4.1 seems to indicate that the span of a set of vectors, i.e., the
collection of all linear combinations of this set of vectors, has a nice structure. As we mentioned
above, the span of a set of vectors represents the collection of all constant vectors for which a linear
system has a solution, but we will also see that other important objects in linear algebra can be
represented as the span of a set of vectors.

Definition 4.6. The span of the vectors v1, v2, . . ., vm in Rn is the collection of all linear combi-
nations of the vectors v1, v2, . . ., vm.

Notation: We denote the span of a set of vectors v1, v2, . . ., vm as

Span{v1,v2, . . . ,vm}.
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So

Span{v1,v2, . . . ,vm} = {c1v1 + c2v2 + · · ·+ cmvm : c1, c2, . . . , cm are scalars}.

The curly braces, { }, are used in denoting sets. They represent the whole set formed by the objects
included between them. So {v1,v2, . . . ,vm} represents the collection of the vectors formed by
v1,v2, . . . ,vm for an arbitrary number m. Note that m can be 1, meaning that the collection can
contain only one vector v1.

We now investigate what the span of a set of one or two vectors is, both from an algebraic and
geometric perspective, and consider what happens for more general spanning sets.

Activity 4.4.

(a) By definition, Span
{[

1
−2

]}
is the collection of all vectors which are scalar multiples of[

1
−2

]
. Determine which vectors are in this collection. If we plot all these vectors with

each vector being represented as a point in the plane, what do they form?

(b) Let v1 =

 1
0
1

 and v2 =

 0
1
1

 in R3. By definition,

Span


 1

0
1

 ,
 0

1
1


is the collection of all linear combinations of the form

x1

 1
0
1

+ x2

 0
1
1

 ,
where x1 and x2 are any scalars.

i. Find four different vectors in Span{v1,v2} and indicate the weights (the values of
x1 and x2) for each linear combination. (Hint: It is really easy to find 3 vectors in
Span{v1,v2} for any v1,v2.)

ii. Are there any vectors in R3 that are not in Span{v1,v2}? Explain. Verify your result.

iii. Set up a linear system to determine which vectors w =

 w1

w2

w3

 are in Span{v1,v2}.

Specifically, which w can be expressed as a linear combination of v1 and v2?

iv. Geometrically, what shape do the vectors in Span{v1,v2} form inside R3?

(c) Is it possible for Span{z1, z2} to be a line for two vectors z1, z2 in R3?

(d) What do you think are the possible geometric descriptions of a span of a set of vectors in
R2? Explain.

(e) What do you think are the possible spans of a set of vectors in R3? Explain.
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Examples

What follows are worked examples that use the concepts from this section.

Example 4.7. For each of the following systems,

• express an arbitrary solution to the system algebraically as a linear combination of vectors,

• find a set of vectors that spans the solution set,

• describe the solution set geometrically.

(a)

x1 + x3 =0

2x1 + x2 + 3x3 =0

4x1 − x2 + 3x3 =0.

(b)

x1 + 2x2 + 3x3 =0

2x1 + 4x2 + 6x3 =0

4x1 + 8x2 + 12x3 =0.

Example Solution. In each example, we use technology to find the reduced row echelon form of
the augmented matrix.

(a) The reduced row echelon form of the augmented matrix 1 0 1 0
2 1 3 0
4 −1 3 0


is  1 0 1 0

0 1 1 0
0 0 0 0

 .
• There is no pivot in the x3 column, so x3 is a free variable. Since the system is

consistent, it has infinitely many solutions. We can write both x1 and x2 in terms
of x3 as x2 = −x3 and x1 = −x3. So the general solution to the system has the
algebraic form  x1

x2

x3

 =

 −x3

−x3

x3

 = x3

 −1
−1

1

 .
So every solution to this system is a scalar multiple (linear combination) of the vector −1
−1

1

.
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• Since every solution to the system is a scalar multiple of the vector

 −1
−1

1

, the

solution set to the system is Span


 −1
−1

1

.

• As the set of scalar multiples of a single vector, the solution set to this system is a line
in R3 through the origin and the point (−1,−1, 1).

(b) The reduced row echelon form of the augmented matrix 1 2 3 0
2 4 6 0
4 8 12 0


is  1 2 3 0

0 0 0 0
0 0 0 0

 .
• There are no pivots in the x2 and x3 columns, so x2 and x3 are free variables. Since

the system is consistent, it has infinitely many solutions. We can write x1 in terms
of x2 and x3 as x1 = −2x2 − 3x3. So the general solution to the system has the
algebraic form x1

x2

x3

 =

 −2x2 − 3x3

x2

x3

 = x2

 −2
1
0

+ x3

 −3
0
1

 .

So every solution to this system is a linear combination of the vectors

 −2
1
0

 and −3
0
1

.

• Since every solution to the system is a linear combination of the vectors

 −2
1
0

 and −3
0
1

, the solution set to the system is

Span


 −2

1
0

 ,
 −3

0
1

 .

• As the set of linear combinations of two vectors, the solution set to this system is a
plane in R3 through the origin and the points (−2, 1, 0) and (−3, 0, 1).
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Example 4.8. Let W =




s+ t
r + 2s
r − 3t
r + s+ t

 : r, s, t ∈ R

.

(a) Find three vectors v1, v2, and v3 such that W = Span{v1,v2,v3}.

(b) Can w =


−2
−4
−1

0

 be written as a linear combination of the vectors v1, v2, v3? If so, find

such a linear combination. If not, justify your response. What does your result tell us about
the relationship between w and W ? Explain.

(c) Can u =


3
−4

1
−1

 be written as a linear combination of the vectors v1, v2, v3? If so, find

such a linear combination. If not, justify your response. What does your result tell us about
the relationship between w and W ? Explain.

(d) What relationship, if any, exists between Span{v1,v2,v3} and Span W ? Explain.

Example Solution.

(a) Every vector in W has the form


s+ t
r + 2s
r − 3t
r + s+ t

 =


0
r
r
r

+


s
2s
0
s

+


t
0

−3t
t



= r


0
1
1
1

+ s


1
2
0
1

+ t


1
0
−3

1



for some real numbers r, s, and t. Thus, W = Span{v1,v2,v3} where v1 =


0
1
1
1

,

v2 =


1
2
0
1

, and v3 =


1
0
−3

1

.

(b) To determine if w is a linear combination of v1, v2, and v3, we row reduced the augmented
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matrix [v1 v2 v3 | w]. The reduced row echelon form of the matrix [v1 v2 v3 | w] is
1 0 0 2
0 1 0 −3
0 0 1 1
0 0 0 0

 .
The system with this as augmented matrix is consistent. If we let x1, x2, and x3 be the
variables corresponding to the first three columns, respectively, of this augmented matrix,
then we see that x1 = 2, x2 = −3, and x3 = 1. So w can be written as a linear combination
of v1, v2, and v3 as

w = 2v1 − 3v2 + v3.

Since W = Span{v1,v2,v3}, it follows that w ∈W .

(c) To determine if u is a linear combination of v1, v2, and v3, we row reduced the augmented
matrix [v1 v2 v3 | u]. The reduced row echelon form of the matrix [v1 v2 v3 | u] is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The last row shows that the system with this as augmented matrix is inconsistent. So u
cannot be written as a linear combination of v1, v2, and v3. Since W = Span{v1,v2,v3},
it follows that u 6∈W .

(d) We know that Span{v1,v2,v3} = W . Now Span W contains the linear combinations
of vectors in W , which are all linear combinations of the vectors v1, v2, and v3. Thus,
SpanW is just the set of linear combinations of v1, v2, and v3. We conclude that SpanW =
Span{v1,v2,v3} = W .

Summary

• A vector is a list of numbers in a specified order.

• We add two vectors of the same size by adding corresponding components. In other words,
if u and v are vectors of the same size and ui and vi are the i components of u and v,
respectively, then u+v is the vector whose ith component is ui+vi for each i. Geometrically,
we represent the sum of two vectors using the Parallelogram Rule: The vector u + v is the
directed line segment from the origin to the 4th point of the parallelogram formed by the
origin and the vectors u,v.

• A scalar multiple of a vector is found by multiplying each component of the vector by that
scalar. In other words, if vi is the i component of the vector v and c is any scalar, then cv is
the vector whose i component is cvi for each i. Geometrically, a scalar multiple of a nonzero
vector v is a vector in the same direction as v if c > 0 and in the opposite direction if c < 0.
If |c| > 1, the vector is stretched, and if |c| < 1, the vector is shrunk.
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• An important concept is that of a linear combination of vectors. In words, a linear combi-
nation of a collection of vectors is a sum of scalar multiples of the vectors. More formally,
we defined a linear combination of vectors v1, v2, . . ., vm in Rn is any vector of the form
c1v1 + c2v2 + · · ·+ cmvm, where c1, c2, . . ., cm are scalars.

• To find weights c1, c2, . . ., cm so that a vector w in Rn is a linear combination of the vectors
v1, v2, . . ., vm in Rn, we simply solve the system corresponding to the augmented matrix

[v1 v2 v3 · · · vm| w].

• The collection of all linear combinations of a set of vectors is called the span of the set of
vectors. More formally, the span of the vectors v1, v2, . . ., vm in Rn is the set

{c1v1 + c2v2 + · · ·+ cmvm : c1, c2, . . . , cm are scalars},

which we denote as Span{v1,v2, . . . ,vm}. Geometrically, the span of a single nonzero
vector v in any dimension is the line through the origin and the vector v. The span of two
vectors v1,v2 in any dimension neither of which is a multiple of the other is a plane through
the origin containing both vectors.

Exercises

(1) Given vectors u =

[
1
2

]
and v =

[
−1

2

]
in R2, determine if w =

[
−4
−1

]
can be written

as a linear combination of u and v. If so, determine the weights of u and v which produce
w.

(2) Given vectors v1 =

 1
2
1

, v2 =

 −2
1
2

 and v3 =

 −1
3
3

 in R3, determine if w = 5
5
1

 can be written as a linear combination of v1, v2 and v3. If so, determine the weights

of v1, v2 and v3 which produce w. Reflect on the result. Is there anything special about the
given vectors v1, v2 and v3?

(3) Let u =

 1
2
1

 and v =

 −1
1
1

 in R3. Determine which vectors w =

 w1

w2

w3

 in R3 can

be written as a linear combination of u and v. Does the set of w’s include the 0 vector? If
so, determine which weights in the linear combination produce the 0 vector. If not, explain
why not.

(4) Consider vectors u =

 0
2
0

 and v =

 1
1
1

 in R3.

(a) Find four specific linear combinations of the vectors u and v.

(b) Explain why the zero vector must be a linear combination of u and v.
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(c) What kind of geometric shape does the set of all linear combinations of u and v have
in R3?

(d) Can we obtain any vector in R3 as a linear combination of u and v? Explain.

(5) Suppose we have two different water-benzene-acetic acid solutions, one with 40% water,
50% benzene and 10% acetic acid, the other with 52% water, 42% benzene and 6% acid.

(a) An experiment we want to conduct requires a solution with 43% water, 48% benzene
and 9% acid. Representing each acid solution as a vector, determine if we can we
make this new acid solution by mixing the first two solutions, or do we have to run
to the chemical solutions market to get the solution we want?

(b) Using the water-benzene-acetic acid solutions in the previous problem, can we obtain
an acid solution which contains 50% water, 43% benzene and 7% acid?

(c) Determine the relationship between the percentages of water, benzene, and acid in
solutions which can be obtained by mixing the two given water-benzene-acetic acid
solutions above.

(6) Is the vector b =

 0
1
2

 in Span


 2
−1

0

 ,
 −3

0
−5

 ,
 1

1
0

? Justify your answer.

(7) Describe geometrically each of the following sets.

(a) Span
{[

1
1

]
,

[
−1
−1

]}
in R2

(b) Span


 1

1
1

 ,
 −1
−1
−1

 ,
 2

0
1

 in R3

(8) Consider the linear system

2x1 + 3x2 + 3x3 = 0

4x1 + 6x3 + 6x4 = 0

2x1 + 4x2 + 3x3 − x4 = 0.

(a) Find the general solution to this system.

(b) Find two specific vectors v1 and v2 so that the solution set to this system is Span{v1,v2}.

(9) Answer the following question as yes or no. Verify your answer. If u and v are vectors in
Rn, then v is in Span{u,u− v}.

(10) Let v, u, and w be vectors in Rn and let a and b be scalars. Verify Theorem 4.3. That is,
show that

(a) v + u = u + v

(b) (v + u) + w = v + (u + w)
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(c) The vector z =


0
0
...
0

 has the property that v + z = v.

(d) (−1)v + v = z.

(e) (a+ b)v = av + bv

(f) a(v + u) = av + au

(g) (ab)v = a(bv)

(h) 1v = v.

(11) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A vector in R2, i.e. a two-dimensional vector, is also a vector in R3.

(b) True/False Any vector in R2 can be visualized as a vector in R3 by adding a 0 as the
last coordinate.

(c) True/False The zero vector is a scalar multiple of any other vector (of the same size).

(d) True/False The zero vector cannot be a linear combination of two non-zero vectors.

(e) True/False Given two vectors u and v, the vector 1
2u is a linear combination of u

and v.

(f) True/False Given any two non-zero vectors u and v in R2, we can obtain any vector
in R2 as a linear combination of u and v.

(g) True/False Given any two distinct vectors u and v in R2, we can obtain any vector
in R2 as a linear combination of u and v.

(h) True/False If u can be expressed as a linear combination of v1 and v2, then 2u can
also be expressed as a linear combination of v1 and v2.

(i) True/False The span of any two vectors neither of which is a multiple of the other
can be visualized as a plane through the origin.

(j) True/False Given any vector, the collection of all linear combinations of this vector
can be visualized as a line through the origin.

(k) True/False The span of any collection of vectors includes the 0 vector.

(l) True/False If the span of v1 and v2 is all of R2, then so is the span of v1 and v1 +v2.

(m) True/False If the span of v1,v2 and v3 is all of R3, then so is the span of v1 + v2

and v2 + v3.

Project: Analyzing Knight Moves

To understand where a knight can move in a chess game, we need to know the initial setup. A chess
board is an 8× 8 grid. To be able to refer to the individual positions on the board, we will place the
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board so that its lower left corner is at the origin, make each square in the grid have side length 1,
and label each square with the point at the lower left corner. This is illustrated at left in Figure 4.5.
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Figure 4.5: Initial knight placement and moves.

Each player has two knights to start the game, for one player the knights would begin in posi-
tions (1, 0) and (6, 0). Because of the symmetry of the knight’s moves, we will only analyze the
moves of the knight that begins at position (1, 0). This knight has only three allowable moves from
its starting point (assuming that the board is empty), as shown at right in Figure 4.5. The questions
we will ask are: given any position on the board, can the knight move from its start position to that
position using only knight moves and, what sequence of moves will make that happen. To answer
these questions we will use linear combinations of knight moves described as vectors.

Each knight move can be described by a vector. A move one position to the right and two

up can be represented as n1 =

[
1
2

]
. Three other moves are n2 =

[
−1

2

]
, n3 =

[
2
1

]
, and

n4 =

[
−2

1

]
. The other four knight moves are the additive inverses of these four. Any sequence

of moves by the knight is given by the linear combination

x1n1 + x2n2 + x3n3 + x4n4.

A word of caution: the knight can only make complete moves, so we are restricted to integer (either
positive or negative) values for x1, x2, x3, and x4. You can use the GeoGebra app at https:
//www.geogebra.org/m/dfwtskrj to see the effects the weights have on the knight moves.
We should note here that since addition of vectors is commutative, the order in which we apply our
moves does not matter. However, we may need to be careful with the order so that our knight does
not leave the chess board.

Project Activity 4.1.

(a) Explain why the vector equation[
1
0

]
+ x1n1 + x2n2 + x3n3 + x4n4 =

[
5
2

]

https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj
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will tell us if it is possible for the knight to move from its initial position at (1, 0) to the
position (5,2).

(b) Find all solutions, if any, to the system from part (a). If it is possible to find a sequence
of moves that take the knight from its initial position to position (5, 2), find weights x1,
x2, x3, and x4 to accomplish this move. (Be careful – we must have solutions in which
x1, x2, x3, and x4 are integers.) Is there more than one sequence of possible moves? You
can check your solution with the GeoGebra app at https://www.geogebra.org/m/
dfwtskrj.

Project Activity 4.1 shows that it is possible for our knight to move to position (5, 2) on the
board. We would like to know if it is possible to move to any position on the board. That is, we
would like to know if the integer span of the four moves n1, n2, n3, and n4 will allow our knight
to cover the entire board. This takes a bit more work.

Project Activity 4.2. Given any position (a, b), we want to know if our knight can move from its
start position (1, 0) to position (a, b).

(a) Write a vector equation whose solution will tell us if it is possible for our knight to move
from its start position (1, 0) to position (a, b).

(b) Show that the solution to part (a) can be written in the form

x1 =
1

4
(−5x3 + 3x4 + b+ 2(a− 1)) (4.3)

x2 =
1

4
(3x3 − 5x4 + b− 2(a− 1)) (4.4)

x3 is free

x4 is free.

To answer our question if our knight can reach any position, we now need to determine if we can
always find integer values of x3 and x4 to make equations (4.3) and (4.4) have integer solutions.
In other words, we need to find values of x3 and x4 so that −5x3 + 3x4 + b + 2(a − 1) and
3x3 − 5x4 + b− 2(a− 1) are multiples of 4. How we do this could depend on the parity (even or
odd) of a and b. For example, if a is odd and b is even, say a = 2r+ 1 and b = 2s for some integers
r and s, then

x1 =
1

4
(−5x3 + 3x4 + 2s+ 4r)

x2 =
1

4
(3x3 − 5x4 + 2s− 4r) .

With a little trial and error we can see that if we let x3 = x4 = s, then x1 = r and x2 = −r is
a solution with integer weights. For example, when a = 5 and b = 2 we have r = 2 and s = 1.
This makes x1 = 2, x2 = −2, x3 = 1 = x4. Compare this to the solution(s) you found in Project
Activity 4.1. This analysis shows us how to move our knight to any position (a, b) where a is odd
and b is even.

Project Activity 4.3. Complete the analysis as above to determine if there are integer solutions to
our knight’s move system in the following cases.

https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj
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(a) a odd and b odd

(b) a even and b even

(c) a even and b odd.

Project Activity 4.3 shows that for any position on the chess board, using linear combinations of
move vectors, we can find a sequence of moves that takes our knight to that position. (We actually
haven’t shown that these moves can be made so that our knight always stays on the board – we
leave that question to you.)



Section 5

The Matrix-Vector Form of a Linear
System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How and when is the matrix-vector product Ax defined?

• How can a system of linear equations be written in matrix-vector form?

• How can we tell if the system Ax = b is consistent for a given vector b?

• How can we tell if the system Ax = b is consistent for every vector b?

• What is a homogeneous system? What can we say about the solution set to
a homogeneous system?

• What must be true about pivots in the coefficient matrix A in order for the
homogeneous system Ax = 0 to have a unique solution?

• How are the solutions to the nonhomogeneous system Ax = b related to
the solutions of the corresponding homogeneous system Ax = 0?

Application: Modeling an Economy

An economy is a very complex system. An economy is not a well-defined object, there are many
factors that influence an economy, and it is often unclear how the factors influence each other.
Mathematical modeling plays an important role in attempting to understand an economy.

In 1941 Wassily Leontief developed the first empirical model of a national economy. Around
1949 Leontief used data from the U.S. Bureau of Labor Statistics to divide the U.S. economy into

79
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500 sectors. He then set up linear equations for each sector. This system was too large for the
computers at the time to solve, so he then aggregated the information into 42 sectors. The Harvard
Mark II computer was used to solve this system, one of the first significant uses of computers for
mathematical modeling. Leontief won the 1973 Nobel Prize in economics for his work.

With such large models (Leontief’s models are called input-output models) it is important to find
a shorthand way to represent the resulting systems. In this section we will see how to represent any
size system of linear equations in a very convenient way. Later, we will analyze a small economy
using input-output models.

Introduction

There is another useful way to represent a system of linear equations using a matrix-vector product
that we investigate in this section. To understand how this product comes about, recall that we can
represent the linear system

x1 + 4x2 + 2x3 + 4x4 = 1

2x1 − x2 − 5x3 − x4 = 2

3x1 + 7x2 + x3 + 7x4 = 3

as a vector equation as

x1

 1
2
3

+ x2

 4
−1

7

+ x3

 2
−5

1

+ x4

 4
−1

7

 =

 1
2
3

 . (5.1)

We can view the left hand side of Equation ( 5.1) as a matrix-vector product. Specifically, if

A =

 1 4 2 4
2 −1 −5 −1
3 7 1 7

 and x =


x1

x2

x3

x4

, then we define the matrix-vector product Ax as

the left hand side Equation (5.1). So the matrix vector product Ax is the linear combination of the
columns of A with weights from the vector x in order.

With this definition, the vector equation in (5.1) can be expressed as a matrix-vector equation
as  1 4 2 4

2 −1 −5 −1
3 7 1 7



x1

x2

x3

x4

 =

 1
2
3

 .
We call this representation the matrix-vector form of the system. Note that the matrix A in this
expression is the same as the coefficient matrix that appears in the augmented matrix representation
of the system.

We can use the above definition of the matrix-vector product as a linear combination with any
matrix and any vector, as long as it is meaningful to use the entries in the vector as weights for the



Section 5. The Matrix-Vector Form of a Linear System 81

columns of the matrix. For example, for A =

 1 2
3 1
1 1

 and v =

[
3
4

]
, then we can define Av to

be the linear combination of the columns of A with weights 3 and 4:

Av = 3

 1
3
1

+ 4

 2
1
1

 =

 11
13
7

 .
However, note that if v had three entries, this definition would not make sense since we do not have
three columns in A. In those cases, we say Av is not defined. We will later see that this definition
can be generalized to matrix-matrix products, by treating the vector as a special case of a matrix
with one column.

Preview Activity 5.1.

(1) Write the vector equation

x1

 1
1
2

+ x2

 1
2
3

+ x3

 −1
2
−3

 =

 4
3
11


in matrix-vector form. Note that this is the vector equation whose augmented matrix repre-
sentation was given in Problem 2 in Preview Activity 2.1. Compare your matrix A and the
right hand side vector to the augmented matrix. Do not solve the system.

(2) Given the matrix-vector equation 1 2 −1
0 1 2
1 −2 −3

x =

 −3
3
−7


represent the system corresponding to this equation. Note that this should correspond to the
system (or an equivalent system where an equation might be multiplied by (−1)) in Problem
1 of Preview Activity 2.1.

(3) Find the indicated matrix-vector products, if possible. Express as one vector.

(a)
[

2 −2
1 2

] [
1
−1

]
(b)

[
1 0 2
2 −2 3

] [
2
1

]

(c)
[
−6 −2 1

2 −2 1

] 1
−3

1


(4) As you might have noticed, systems with all the constants being 0 are special in that they

always have a solution. (Why?) So we might consider grouping systems into two types:
Those of the form Ax = b, where not all of the entries of the vector b are 0, and those of the
form Ax = 0, where 0 is the vector of all zeros. Systems like Ax = b, where b contains
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at least one non-zero entry, are called nonhomogeneous systems, and systems of the form
Ax = 0 are called homogeneous systems. For every nonhomogeneous system Ax = b there
is a corresponding homogeneous system Ax = 0, and there is a useful connection between
the solutions to the nonhomogeneous system and the corresponding homogeneous system.
For example, consider the nonhomogeneous system

Ax = b

with

A =

[
1 1 2
1 2 1

]
, x =

 x1

x2

x3

 , and b =

[
0
−2

]
. (5.2)

The augmented matrix representation of this system is [A | b]. If we reduce this augmented
matrix, we find [

1 0 3 2
0 1 −1 −2

]
.

From this RREF, we immediately see that the general solution is that x3 is free, x2 = x3− 2,
and x1 = 2− 3x3. In vector form, we can represent this general solution as x1

x2

x3

 =

 2− 3x3

x3 − 2
x3

 =

 2
−2

0

+ x3

 −3
1
1

 . (5.3)

The rightmost expression above is called the parametric vector form of the solution.

If we had a system where the general solution involved more than one free variable, then we
would write the parametric vector form to include one vector multiplying each free variable.
For example, if the general solution of a system were that x2 and x3 are free and x1 =
2 + x2 + 3x3, then the parametric vector form would be

x =

 2 + x2 + 3x3

x2

x3

 =

 2
0
0

+ x2

 1
1
0

+ x3

 3
0
1

 .
Note that the parametric vector form expresses the solutions as a linear combination of a
number of vectors, depending on the number of free variables, with an added constant vector.
This expression helps us in interpreting the solution set geometrically, as we will see in this
section.

(a) Find the general solution to the homogeneous system

Ax = 0

with A and x as in (5.2) and compare it to the solution to the nonhomogeneous
system in (5.3). What do you notice?

(b) Find the general solution to the nonhomogeneous system

Ax = b
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with

A =

[
1 2 −1
2 4 −2

]
, x =

 x1

x2

x3

 , and b =

[
−1

1

]
.

and express it in parametric vector form. Then find the general solution to the cor-
responding homogeneous system and express it in parametric vector form. How are
the two solution sets related?

(c) Make a conjecture about the relationship between the solutions to a consistent non-
homogeneous systemAx = b and the corresponding homogeneous systemAx = 0.
Be as specific as possible.

The Matrix-Vector Product

The matrix-vector product we defined in Preview Activity 5.1 for a specific example generalizes
in a very straightforward manner, and provides a convenient way to represent a system of linear
equations of any size using matrices and vectors. In addition to providing us with an algebraic
approach to solving systems via matrices and vectors – leading to a powerful geometric relationship
between solution sets of homogeneous and non-homogeneous systems – this representation allows
us to think of a linear system from a dynamic perspective, as we will see later in the section on
matrix transformations.

The matrix-vector product Ax is a linear combination of the columns of A with weights from
x. To define this product in general, we will need a little notation. Recall that a matrix is made of
rows and columns – the entries reading from left to right form the rows of the matrix and the entries
reading from top to bottom form the columns. For example, the matrix

A =

 1 2 3 4
5 6 7 8
9 10 11 12

 .
has three rows and four columns. The number of rows and columns of a matrix is called the size of
the matrix, so A is a 3 by 4 matrix (also written as 3× 4). We often need to have a way to reference
the individual entries of a matrix A, and to do so we typically give a label, say aij to the entry in
the ith row and jth column of A. So in our example we have a23 = 7. We also write A = [aij ] to
indicate a matrix whose i, jth entry is aij . At times it is convenient to write a matrix in terms of its
rows or columns. If A = [aij ] is an m× n matrix, then we will write

A =


a11 a12 · · · a1n−1 a1n

a21 a22 · · · a2n−1 a2n
...

. . .
...

am1 am2 · · · amn−1 amn


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or, if we let r1, r2, . . . , rm denote the rows of the matrix A, then we can write A as1

A =


r1

r2
...
rm

 .
We can also write A in terms of its columns, c1, c2, . . . , cn, as

A = [c1 c2 · · · cn].

In general, the product of a matrix with a vector is defined as follows.

Definition 5.1. Let A be an m × n matrix with columns c1, c2, . . ., cn, and let x =


x1

x2
...
xn

 be a

vector in Rn. The matrix-vector product Ax is

Ax = x1c2 + x2c2 + · · ·+ xncn.

Important Note: The matrix-vector product Ax is defined only when the number of entries of the
vector x is equal to the number of columns of the matrix A. That is, if A is an m× n matrix, then
Ax is defined only if x is a column vector with n entries.

The Matrix-Vector Form of a Linear System

As we saw in Preview Activity 5.1, the matrix-vector product provides us with a short hand way
of representing a system of linear equations. In general, every linear system can be written in
matrix-vector form as follows.

The linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + a2mx2 + · · ·+ amnxn = bm

of m equations in n unknowns can be written in matrix-vector form as Ax = b, where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , and b =


b1
b2
...
bm

 .
1Technically, the rows of A are made from the entries of the row vectors, but we use this notation as a shorthand.
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This general system can also be written in the vector form

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn

 =


b1
b2
...
bm

 .

With this last representation, we now have four different ways to represent a system of linear
equations (as a system of linear equations, as an augmented matrix, in vector equation form, and
in matrix-vector equation form), and it is important to be able to translate between them. As an
example, the system

x1 + 4x2 + 2x3 + 4x4 = 2

2x1 − x2 − 5x3 − x4 = 2

3x1 + 7x2 + x3 + 7x4 = 3

from the introduction to this section has corresponding augmented matrix 1 4 2 4 1
2 −1 −5 −1 2
3 7 1 7 3

 ,
is expressed in vector form as

x1

 1
2
3

+ x2

 4
−1

7

+ x3

 2
−5

1

+ x4

 4
−1

7

 =

 1
2
3

 ,
and has matrix-vector form

 1 4 2 4
2 −1 −5 −1
3 7 1 7



x1

x2

x3

x4

 =

 2
2
3

 .
Activity 5.1. In this activity, we will use the equivalence of the different representations of a system
to make useful observations about when a system represented as Ax = b has a solution.

(a) Consider the system [
1 2 −1
2 1 3

] x1

x2

x3

 =

[
2
6

]
.

Write the matrix-vector product on the left side of this equation as a linear combination of

the columns of the coefficient matrix. Find weights that make the vector
[

2
6

]
a linear

combination of the columns of the coefficient matrix.
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(b) From this point on we consider the general case whereA is anm×nmatrix. Use the vector
equation representation to explain why the system Ax = b has a solution if and only if b
is a linear combination of the columns of A. (Note that ‘if and only if’ is an expression to
mean that if one side of the expression is true, then the other side must also be true.) (Hint:
Compare to what you did in part (a).)

(c) Use part (b) and the definition of span to explain why the system Ax = b has a solution if
and only if the vector b is in the span of the columns of A.

(d) Use part (c) to explain why the system Ax = b always has a solution for any vector b in
Rm if and only if the span of the columns of A is all of Rm.

(e) Use the augmented matrix representation and the criterion for a consistent system to explain
why the system Ax = b is consistent for all vectors b if and only if A has a pivot position
in every row.

We summarize our observations from the above activity in the following theorem.

Theorem 5.2. Let A be an m× n matrix. The following statements are equivalent:

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.

(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

In the future, if we need to determine whether a system has a solution for every b, we can refer
to this theorem without having to argue our reasoning from scratch.

Properties of the Matrix Vector Product

As we have done before, we have a new operation (the matrix-vector product), so we should wonder
what properties it has.

Activity 5.2. In this activity, we consider whether the matrix-vector product distributes vector ad-
dition. In other words: Is A(u + v) equal to Au +Av?

We work with arbitrary vectors u,v in R3 and an arbitrary matrixAwith 3 columns (so thatAu
and Av are defined) to simplify notation. Let A = [c1 c2 c3] (note that each ci represents a column

of A), u =

 u1

u2

u3

, and v =

 v1

v2

v3

. Use the definition of the matrix-vector product along with

the properties of vector operations to show that

A(u + v) = Au +Av.

Similar arguments using the definition of matrix-vector product along with the properties of
vector operations can be used to show the following theorem:
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Theorem 5.3. Let A be an m× n matrix, u and v n× 1 vectors, and c a scalar. Then

(1) A(u + v) = Au +Av

(2) c(Av) = A(cv)

Homogeneous and Nonhomogeneous Systems

As we saw before, the systems with all the right hand side constants being 0 are special in that they
always have a solution. (Why?) So we might consider grouping systems into two types: Those
of the form Ax = b, where not all of the entries of the vector b are 0, and those of the form
Ax = 0, where 0 is the vector of all zeros. Systems like Ax = b, where b contains at least one
non-zero entry, are called nonhomogeneous systems, and systems of the form Ax = 0 are called
homogeneous systems. For every nonhomogeneous system Ax = b there is a corresponding
homogeneous system Ax = 0. We now investigate the connection between the solutions to the
nonhomogeneous system and the corresponding homogeneous system.

Activity 5.3. In this activity we will consider the relationship between the solution sets of nonho-
mogeneous systems and those of the corresponding homogeneous systems.

(a) Find the solution sets of the system
Ax = b

where

A =

[
1 1 2
1 2 1

]
, x =

 x1

x2

x3

 , and b =

[
0
−2

]
and the corresponding homogeneous system (i.e. where we replace b with 0.)

(b) Find the solution sets of the system
Ax = b

where

A =

[
1 2 −1
2 4 −2

]
, x =

 x1

x2

x3

 , and b =

[
−1

1

]
and the corresponding homogeneous system.

(c) What are the similarities/differences between solutions of the nonhomogeneous system and
its homogeneous counterpart?

As we saw in the above activity, there is a relationship between solutions of a nonhomogeneous
and the corresponding homogeneous system. Let us formalize this relationship. If the general
solution of a system involves free variables, we can represent the solutions in parametric vector
form to have a better idea about the geometric representation of the solution set. Suppose the
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solution is that x3 is free, x2 = −2 + x3, and x1 = 2− 3x3. In vector form, we can represent this
general solution as  x1

x2

x3

 =

 2− 3x3

x3 − 2
x3

 =

 2
−2

0

+ x3

 −3
1
1

 . (5.4)

From this representation, we see that the solution set is a line through the origin (formed by mul-

tiples of

 −3
1
1

) shifted by the added vector

 2
−2

0

. The solution to the homogeneous system

on the other does not have the shift.

Algebraically, we see that every solution to the nonhomogeneous system Ax = b can be writ-
ten in the form p + vh, where p is a particular solution to Ax = b and vh is a solution to the
corresponding homogeneous system Ax = 0.

To understand why this always happens, we will verify the result algebraically for an arbitrary
A and b. Assuming that p is a particular solution to the nonhomogeneous system Ax = b, we
need to show that:

• if v is an arbitrary solution to the nonhomogeneous system, then v = p + vh, where vh is
some solution to the homogeneous system Ax = 0, and

• if vh is an arbitrary solution to the homogeneous system, then p + vh is a solution to the
nonhomogeneous system.

To verify the first condition, suppose that v is a solution to the nonhomogeneous system Ax =
b. Since we want v = p + vh, we need to verify that v − p is a solution for the homogeneous
system so that we can assign vh = v − p. Note that

A(v − p) = Av −Ap = b− b = 0 ,

using the distributive property of matrix-vector product over vector addition. Hence v is of the form
p + vh with vh = 0.

To verify the second condition, consider a vector of the form p+vh, where vh is a homogeneous
solution. We have

A(p + vh) = Ap +Avh = b + 0 = b,

and so p + vh is a solution to Ax = b.

Our work above proves the following theorem.

Theorem 5.4. Suppose the equation Ax = b is consistent for some b and p is a solution. Then
the solution set of Ax = b consists of all vectors of the form v = p + vh where vh is a solution to
Ax = 0.
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The Geometry of Solutions to the Homogeneous System

There is a simple geometric interpretation to the solution set of the homogeneous system Ax = 0
based on the number of free variables that imposes a geometry on the solution set of the correspond-
ing nonhomogeneous system Ax = b (when consistent) due to Theorem 5.4.

Activity 5.4. In this activity we consider geometric interpretations of the solution sets of homoge-
neous and nonhomogeneous systems.

(a) Consider the system Ax = b where A =

 1 −3
−3 9
−1 3

 and b =

 2
−6
−2

. The general

solution to this system has the form
[

2
0

]
+ x2

[
3
1

]
, where x2 is any real number.

i. Let v =

[
3
1

]
. What does the set of all vectors of the form x2v look like geometri-

cally? Draw a picture in R2 to illustrate. (Recall that we refer to all the vectors of the
form x2v simply as Span{v}.)

ii. Let p =

[
2
0

]
. What effect does adding the vector p to each vector in Span{v} have

on the geometry of Span{v}? Finally, what does this mean about the geometry of the
solution set to the nonhomogeneous system Ax = b?

(b) Consider the system Ax = b where A =

[
1 2 −1
3 6 −3

]
and b =

[
−2
−6

]
. The general

solution to this system has the form

 −2
0
0

+ x2

 −2
1
0

+ x3

 1
0
1

, where x2, x3 are

any real numbers.

i. Let u =

 −2
1
0

 ,v =

 1
0
1

. Use our results from Section 4 to determine the geo-

metric shape of Span{u,v}, the set of all vectors of the form x2

 −2
1
0

+x3

 1
0
1

,

where x2, x3 are any real numbers.

ii. Let p =

 −2
0
0

. What’s the geometric effect of adding the vector p to each vector

in Span{u,v}? Finally, what does this mean about the geometry of the solution set
to the nonhomogeneous system Ax = b?

Our work in the above activity shows the geometric shape of the solution set of a consistent
nonhomogeneous system is the same as the geometric shape of the solution set of the corresponding
homogeneous system. The only difference between the two solution sets is that one is a shifted
version of the other.
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Examples

What follows are worked examples that use the concepts from this section.

Example 5.5. We now have several different ways to represent a system of linear equations.
Rewrite the system in an equivalent form

11x1 + 4x2 − 5x3 − 2x4 =63

15x1 + 5x2 + 2x3 − 2x4 =68

6x1 + 2x2 + x3 − x4 =26

9x1 + 3x2 + 2x3 − x4 =40.

(a) as an augmented matrix

(b) as an equation involving a linear combination of vectors

(c) using a matrix-vector product

Then solve the system.

Example Solution.

(a) The augmented matrix for this system is
11 4 −5 −2 63
15 5 2 −2 68
6 2 1 −1 26
9 3 2 −1 40

 .
(b) If we make vectors from the columns of the augmented matrix, we can write this system in

vector form as

x1


11
15
6
9

+ x2


4
5
2
3

+ x3


−5

2
1
2

+ x4


−2
−2
−1
−1

 =


63
68
26
40

 .

(c) The coefficient matrix for this system is


11 4 −5 −2
15 5 2 −2
6 2 1 −1
9 3 2 −1

, and the matrix-vector form

of the system is 
11 4 −5 −2
15 5 2 −2
6 2 1 −1
9 3 2 −1



x1

x2

x3

x4

 =


63
68
26
40

 .
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Using technology, we find that the reduced row echelon form of the augmented matrix for this
system is 

1 0 0 0 3
0 1 0 0 7
0 0 1 0 −2
0 0 0 1 4

 .
So the solution to this system is x1 = 3, x2 = 7, x3 = −2, and x4 = 4.

Example 5.6. Consider the homogeneous system

x1 + 8x2 − x3 =0

x1 − 7x2 + 2x3 =0

3x1 + 4x2 + x3 =0.

(a) Find the general solution to this homogeneous system and express the system in parametric
vector form.

(b) Let A =

 1 8 −1
1 −7 2
3 4 1

, and let b =

 −6
9
2

. Show that

 −1
0
5

 is a solution to the

non-homogeneous system Ax = b.

(c) Use the results from part (a) and (b) to write the parametric vector form of the general
solution to the non-homogeneous system Ax = b. (Do this without directly solving the
system Ax = b.)

(d) Describe what the general solution to the homogeneous system Ax = 0 and the general
solution to the non-homogeneous system Ax = b look like geometrically.

Example Solution.

(a) The augmented matrix of the homogeneous system is 1 8 −1 0
1 −7 2 0
3 4 1 0

 ,
and the reduced row echelon form of this augmented matrix is

1 0 3
5 0

1 −1
5 0

0 0 0 0

 .
Since there is no corresponding equation of the form 0 = b for a nonzero constant b, this
system is consistent. The third column contains no pivot, so the variable x3 is free, x2 =
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1
5x3 and x1 = −3

5x3. In parametric vector form the general solution to the homogeneous
system is

 x1

x2

x3

 =


−3

5x3

1
5x3

x3

 = x3


−3

5

1
5

1

 .

(b) Since

A

 −1
0
5

 = (−1)

 1
1
3

+ (0)

 8
−7

4

+ (5)

 −1
2
1


=

 −1− 5
−1 + 10
−3 + 5

 =

 −6
9
2

 ,

we conclude that

 −1
0
5

 is a solution to the non-homogeneous system Ax = b.

(c) We know that every solution to the non-homogeneous system Ax = b has the form of
the general solution to the homogeneous system plus a particular solution to the non-
homogeneous system. Combining the results of (a) and (b) we see that the general solution
to the non-homogeneous system Ax = b is

 x1

x2

x3

 =

 −1
0
5

+ x3


−3

5

1
5

1

 ,

where x3 can be any real number.

(d) The solution to the homogeneous system Ax = 0 is the span of the vector


−3

5

1
5

1

.

Geometrically, this set of points is a line through the origin and the point (−3, 1, 5) in
R3. The solution to the non-homogeneous system Ax = b is the translation of the line

through the origin and (−3, 1, 5) by the vector

 −1
0
5

. In other words, the solution to

the non-homogeneous system Ax = b is the line in R3 through the points (−1, 0, 5) and
(−4, 1, 10).
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Summary

• If A = [c1 c2 · · · cn] is an m × n matrix with columns c1, c2, . . ., cn, and if x =


x1

x2
...
xn


is a vector in Rn, then the matrix-vector product Ax is defined to be the linear combination
of the columns of A with corresponding weights from x – that is

Ax = x1c1 + x2c2 + · · ·+ xncn.

• A linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + a2mx2 + · · ·+ amnxn = bm

can be written in matrix form as
Ax = b,

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , and b =


b1
b2
...
bm

 .
• The matrix equation Ax = b has a solution if and only if b is a linear combination of the

columns of A.

• The system Ax = b is consistent for every vector b if every row of A contains a pivot.

• A homogeneous system is a system of the form Ax = 0 for some m×n matrix A. Since the
zero vector in Rn satisfies Ax = 0, a homogeneous system is always consistent.

• A homogeneous system can have one or infinitely many different solutions. The homoge-
neous system Ax = 0 has exactly one solution if and only if each column of A is a pivot
column.

• The solutions to the consistent nonhomogeneous system Ax = b have the form p + vh,
where p is a particular solution to the nonhomogeneous system Ax = b and vh is a solution
to the homogeneous system Ax = 0. In other words, the solution space to a consistent
nonhomogeneous system Ax = b is a translation of the solution space of the homogeneous
system Ax = 0 by a particular solution to the nonhomogeneous system.

Finally, we argued an important theorem.
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Theorem 5.7. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.

(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

We will continue to add to this theorem, so it is a good idea for you to begin now to remember
the equivalent conditions of this theorem.

Exercises

(1) Write the system

x1 + 2x2 + 2x3 + x4 = −1

4x1 − 8x2 + 3x3 − 9x4 = 2

x1 + 6x2 − 4x3 + 12x4 = −1

in matrix-vector form. Explicitly identify the coefficient matrix and the vector of constants.

(2) Write the linear combination

x1

[
1
5

]
+ x2

[
−3
10

]
+ x3

[
2
2

]
as a matrix-vector product.

(3) Represent the following matrix-vector equation as a linear system and find its solution.

[
2 3 4
1 −2 3

] x1

x2

x3

 =

[
4
−6

]

(4) Represent the following matrix-vector equation as a linear system and find its solution. 1 −2 −1
2 2 −2
3 1 1

 x1

x2

x3

 =

 1
−4

8


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(5) Another way of defining the matrix-vector product uses the concept of the scalar product of

vectors.2 Given a 1 × n matrix u = [u1 u2 . . . un]3 and an n × 1 vector v =


v1

v2
...
vn

, we

define the scalar product u · v as

u · v = u1v1 + u2v2 + u3v3 + · · ·+ unvn.

We then define the matrix-vector product Ax as the vector whose entries are the scalar prod-

ucts of the rows of A with x. As an example, if A =

[
2 3 4
1 −2 3

]
and x =

 x1

x2

x3

,

then

Ax =

[
2x1 + 3x2 + 4x3

x1 + (−2)x2 + 3x3

]
.

Calculate the matrix-vector product Ax where A =

[
a b
c d

]
and x =

[
x1

x2

]
using both

methods of finding the matrix-vector product to show that the two definitions are equivalent
for size 2× 2 matrices.

(6) Find the value of a such that 1 2 2
1 −1 3
1 2 4

 1
−1
a

 =

 ∗
−5
∗


where ∗’s represent unknown values.

(7) Suppose we have  1 2 1 2
−1 2 3 1

2 3 1 a




1
2
−2

3

 =

 b1
b2
b3


where bi’s represent unknown values.

(a) In order to find the value of a, which of the bi’s do we need to know? Why?

(b) Suppose the bi(s) that we need to know is(are) equal to 9. What is the value of a?

(8) Suppose we are given

Au =

[
1
1

]
and Av =

[
1
3

]
for an unknown A and two unknown vectors u,v in R3. Using matrix-vector product prop-
erties, evaluate Aw where w = 2u− 3v.

2Note that some authors refer to the scalar product as the dot product.

3We can identify a 1 × n matrix u = [u1 u2 . . . un] with the n × 1 vector u =


u1

u2

...
un

, so we ofter refer to

[u1 u2 . . . un] as a vector.
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(9) Suppose we are given

A

 1
2
1

 =

[
1
1

]
and A

 1
0
2

 =

[
0
2

]
.

After expressing

 −1
6
−5

 as a linear combination of

 1
2
1

 and

 1
0
2

, use the matrix-vector

product properties to determine A

 −1
6
−5

.

(10) (a) The non-homogeneous system (with unknown constants a and b)

x+ y − z = 2

2x+ ay + bz = 4

has a solution which lies on the x-axis (i.e. y = z = 0). Find this solution.

(b) If the corresponding homogeneous system

x+ y − z = 0

2x+ ay + bz = 0

has its general solution expressed in parametric vector form as z ·

 0
1
1

, find the

general solution for the non-homogeneous system using your answer to part (a).

(c) Find the conditions on a and b that make the system from (a) have the general solution
you found in (b).

(11) Find the general solution to the non-homogeneous system

x− 2y + z = 3

−2x+ 4y − 2z = −6.

Using the parametric vector form of the solutions, determine what the solution set to this
non-homogeneous system looks like geometrically. Be as specific as possible. (Include in-
formation such as whether the solution set is a point, a line, or a plane, etc.; whether the
solution set passes through the origin or is shifted from the origin in a specific direction by a
specific number of units; and how the solution is related to the corresponding homogeneous
system.)

(12) Come up with an example of a 3× 3 matrix A for which the solution set of Ax = 0 is a line,
and a 3× 3 matrix A for which the solution set of Ax = 0 is a plane.

(13) Suppose we have three vectors v1,v2 and v3 satisfying v3 = 2v1 − v2. Let A be the matrix
with vectors v1,v2 and v3 as the columns in that order. Find a non-zero x such that Ax = 0
using this information.
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(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If the system Ax = 0 has infinitely many solutions, then so does the
system Ax = b for any right-hand-side b.

(b) True/False If x1 is a solution for Ax = b1 and x2 is a solution for Ax = b2, then
x1 + x2 is a solution for Ax = b1 + b2.

(c) True/False If an m×n matrix A has a pivot in every row, then the equation Ax = b
has a unique solution for every b.

(d) True/False If an m×n matrix A has a pivot in every row, then the equation Ax = b
has a solution for every b.

(e) True/False If A and B are row equivalent matrices and the columns of A span Rm,
then so do the columns of B.

(f) True/False All homogeneous systems have either a unique solution or infinitely
many solutions.

(g) True/False If a linear system is not homogeneous, then the solution set does not
include the origin.

(h) True/False If a solution set of a linear system does not include the origin, the system
is not homogeneous.

(i) True/False If the system Ax = b has a unique solution for some b, then the homo-
geneous system has only the trivial solution.

(j) True/False If A is a 3 × 4 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

(k) True/False If A is a 3 × 2 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

Project: Input-Output Models

There are two basic types of input-output models: closed and open. The closed model assumes that
all goods produced are consumed within the economy – no trading takes place with outside entities.
In the open model, goods produced within the economy can be traded outside the economy.

To work with a closed model, we use an example (from Input-Output Economics by Wassily
Leontief). Assume a simple three-sector economy consisting of agriculture (growing wheat), man-
ufacturing (producing cloth), and households (supplying labor). Each sector of the economy relies
on goods from the other sectors to operate (e.g., people must eat to work and need to be clothed).
To model the interactions between the sectors, we consider how many units of product is needed as
input from one sector to another to produce one unit of product in the second sector. For example,
assume the following:

• to produce one unit (say dollars worth) of agricultural goods requires 25% of a unit of agricul-
tural output, 28% of a unit of manufacturing output, and 27% of a unit of household output;
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• to produce one unit of manufactured goods requires 20% of a unit of agricultural output, 60%
of a unit of manufacturing output, and 60% of a unit of household output;

• to produce one unit of household goods requires 55% of a unit of agricultural output, 12% of
a unit of manufacturing output, and 13% of a unit of household output.

These assumptions are summarized in Table 5.1.

into\from Agriculture Manufacture Households
Agriculture 0.25 0.28 0.27
Manufacture 0.20 0.60 0.60
Households 0.55 0.12 0.13

Table 5.1: Summary of simple three sector economy.

This model is said to be closed because all good produced are used up within the economy. If
there are goods that are not used within the economy the model is said to be open. Open models
will be examined later.

The economist’s goal is to determine what level of production in each section meets the follow-
ing requirements:

• the production from each sector meets the needs of all of the sectors and
• there is no overproduction.

Project Activity 5.1. We can use techniques from linear algebra to determine the levels of produc-
tion that precisely meet the two goals of the economist.

(a) Suppose that the agricultural output is x1 units, the manufacturing output is x2 units, and

the household output is x3 units. We represent this data as a production vector

 x1

x2

x3

. To

produce a unit of agriculture requires 0.25 units of agriculture, 0.28 units of manufacturing,
and 0.27 units of household. If x1 units of agriculture, x2 units of manufacturing, and x3

units of household products are are produced, then agriculture can produce

0.25x1 + 0.28x2 + 0.27x3

units. In order to meet the needs of agriculture and for there to be no overproduction, we
must then have

0.25x1 + 0.28x2 + 0.27x3 = x1.

Write similar equations for the manufacturing and household sectors of the economy.

(b) Find the augmented matrix for the system of linear equations that represent production of
the three sectors from part (a), and then solve the system to find the production levels that
meet the economist’s two goals.
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(c) Suppose the production level of the household sector is 200 million units (dollars). Find the
production levels of the agricultural and manufacturing sectors that meet the economist’s
two goals.

In general, a matrix derived from a table like Table 5.1 is called a consumption matrix, which

we will denote as C. (In the example discussed here C =

 0.25 0.28 0.27
0.20 0.60 0.60
0.55 0.12 0.13

.) A consumption

matrix C = [cij ], where cij represents the proportion of the output of sector j that is consumed by
sector i, satisfies two important properties.

• Since no sector can consume a negative amount or an amount that exceeds the output of
another sector, we must have 0 ≤ cij ≤ 1 for all i and j.

• If there are n sectors in the economy, the fact that all output is consumed within the economy
implies that c1j + c2j + · · ·+ cnj = 1. In other words, the column sums of C are all 1.

In our example, if we let x =

 x1

x2

x3

, then we can write the equations that guarantee that the

production levels satisfy the two economists’ goal in matrix form as

x = Cx. (5.5)

Now we can rephrase the question to be answered as which production vectors x satisfy equation
(5.5). When Cx = x, then the system is in equilibrium, that is output exactly meets needs. Any
solution x that satisfies (5.5) is called a steady state solution.

Project Activity 5.2. Is there a steady state solution for the closed system of Agriculture, Manu-
facturing, and Households? If so, find the general steady state solution. If no, explain why.

So far, we considered the case where the economic system was closed. This means that the
industries that were part of the system sold products only to each other. However, if we want to
represent the demand from other countries, from households, capital building, etc., we need an open
model. In an article in the Scientific American Leontief organized the 1958 American economy
into 81 sectors. The production of each of these sectors relied on production from the all of the
sectors. Here we present a small sample from Leontief’s 81 sectors, using Petroleum, Textiles,
Transportation, and Chemicals as our sectors of the economy. Leontief’s model assumed that the
production of 1 unit of output of

• petroleum requires 0.1 unit of petroleum, 0.2 units of transportation, and 0.4 units of chemi-
cals;

• textiles requires 0.4 units of petroleum, 0.1 unit of textiles, 0.15 units of transportation, and
0.3 units of chemicals;

• transportation requires 0.6 units of petroleum, 0.1 unit of transportation, and 0.25 units of
chemicals;
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• chemicals requires 0.2 units of petroleum, 0.1 unit of textiles, 0.3 units of transportation, and
0.2 units of chemicals.

A summary of this information is in Table 5.2. Assume the units are measured in dollars.

into\from Petroleum Textiles Transportation Chemicals
Petroleum 0.10 0.00 0.20 0.40
Textiles 0.40 0.10 0.15 0.30
Transportation 0.60 0.00 0.10 0.25
Chemicals 0.20 0.10 0.30 0.20

Table 5.2: Summary of four sector economy.

In the open model, there is another part of the economy, called the open sector, that does
not produce goods or services but only consumes them. If this sector (think end consumers, for
example) demands/consumes d1 units of Petroleum, d2 units of Textiles, d3 units of Transportation,

and d4 units of Chemicals, we put this into a final demand vector d =


d1

d2

d3

d4

.

An economist would want to find the production level where the demand from the good/service
producing sectors of the economy plus the final demand from the open sector exactly matches
the output in each of the sectors. Let x1 represent the number of units of petroleum output, x2

the number of units of textiles output, x3 the number of units of transportation output, and x4

the number of units of chemical output during any time period. Then the production vector is

x =


x1

x2

x3

x4

. So an economist wants to find the production vectors x such that

0.10x1 + 0.20x3 + 0.40x4 + d1 = x1

0.40x1 + 0.10x2 + 0.15x3 + 0.30x4 + d2 = x2

0.60x1 + 0.10x3 + 0.25x4 + d3 = x3

0.20x1 + 0.10x2 + 0.30x3 + 0.20x4 + d4 = x4,

where d =


d1

d2

d3

d4

 is the demand vector from the open market. The matrix

E =


0.10 0.00 0.20 0.40
0.40 0.10 0.15 0.30
0.60 0.00 0.10 0.25
0.20 0.10 0.30 0.20





Section 5. The Matrix-Vector Form of a Linear System 101

derived from Table 5.2, is called the exchange matrix.

Project Activity 5.3.

(a) Suppose the final demand vector in our four sector economy is


500
200
400
100

. Find the produc-

tion levels that satisfy our system.

(b) Does this economy defined by the exchange matrix E have production levels that exactly
meet internal and external demands regardless of the external demands? That is, does the
system of equations

0.10x1 + 0.20x3 + 0.40x4 + d1 = x1

0.40x1 + 0.10x2 + 0.15x3 + 0.30x4 + d2 = x2

0.60x1 + 0.10x3 + 0.25x4 + d3 = x3

0.20x1 + 0.10x2 + 0.30x3 + 0.20x4 + d4 = x4

have a solution regardless of the values of d1, d2, d3, and d4? Explain.





Section 6

Linear Dependence and Independence

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What are two ways to describe what it means for a set of vectors in Rn to
be linearly independent?

• What are two ways to describe what it means for a set of vectors in Rn to
be linearly dependent?

• If S is a set of vectors, what do we mean by a basis for Span S?

• Given a nonzero set S of vectors, how can we find a linearly independent
subset of S that has the same span as S?

• How do we recognize if the columns of a matrix A are linearly indepen-
dent?

• How can we use a matrix to determine if a set {v1,v2, . . . ,vk} of vectors
is linearly independent?

• How can we use a matrix to find a minimal spanning set for a set
{v1,v2,v3, . . . ,vk} of vectors in Rn?

Application: Bézier Curves

Bézier curves are simple curves that were first developed in 1959 by French mathematician Paul
de Casteljau, who was working at the French automaker Citroën. The curves were made public in
1962 by Pierre Bézier who used them in his work designing automobiles at the French car maker
Renault. In addition to automobile design, Bézier curves have many other uses. Two of the most
common applications of Bézier curves are font design and drawing tools. As an example, the letter

103
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“S” in Palatino font is shown using Bézier curves in Figure 6.1. If you’ve used Adobe Illustrator,
Photoshop, Macromedia Freehand, Fontographer, or any other of a number of drawing programs,
then you’ve used Bézier curves. At the end of this section we will see how Bézier curves can be
defined using linearly independent vectors and linear combinations of vectors.

Figure 6.1: A letter S.

Introduction

In Section 4 we saw how to represent water-benzene-acetic acid chemical solutions with vectors,
where the components represent the water, benzene and acid percentages. We then considered
a problem of determining if a given chemical solution could be made by mixing other chemical
solutions. Suppose we now have three different water-benzene-acetic acid chemical solutions, one
with 40% water, 50% benzene and 10% acetic acid, the second with 52% water, 42% benzene and
6% acid, and a third with 46% water, 46% benzene and 8% acid. We represent the first chemical

solution with the vector v1 =

 40
50
10

, the second with the vector v2 =

 52
42
6

, and the third with

the vector v3 =

 46
46
8

. By combining these three chemical solutions we can make a chemical

solution with 43% water, 48% benzene and 9% acid as follows

7

12
v1 +

1

12
v2 +

1

3
v3 =

 43
48
9

 .
However, if we had noticed that the third chemical solution can actually be made from the first two,
that is,

1

2
v1 +

1

2
v2 = v3,
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we might have realized that we don’t need the third chemical solution to make the 43% water, 48%
benzene and 9% acid chemical solution. In fact,

3

4
v1 +

1

4
v2 =

 43
48
9

 .
(See Exercise 5 of Section 4.) Using the third chemical solution (represented by v3) uses more
information than we actually need to make the desired 43% water, 48% benzene and 9% acid
chemical solution because the vector v3 is redundant – all of the material we need to make v3 is
contained in v1 and v2. This is the basic idea behind linear independence – representing information
in the most efficient way.

Information is often contained in and conveyed through vectors – especially linear combinations
of vectors. In this section we will investigate the concepts of linear dependence and independence
of a set of vectors. Our goal is to be able to efficiently determine when a given set of vectors forms
a minimal spanning set. A minimal spanning set is a spanning set that contains the smallest number
of vectors to obtain all of the vectors in the span. An important aspect of a minimal spanning set
is that every vector in the span can be written in one and only one way as a linear combination of
the vectors in the minimal spanning set. This will allow us to define the important notion of the
dimension of a vector space.

Review of useful information: Recall that a linear combination of vectors v1, v2, . . ., vk in Rn is
a sum of scalar multiples of v1, v2, . . ., vk. That is, a linear combination of the vectors v1, v2, . . .,
vk is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . ., ck are scalars.

Recall also that the collection of all linear combinations of a set {v1, v2, . . ., vk} of vectors in
Rn is called the span of the set of vectors. That is, the span Span{v1,v2, . . . ,vk} of the set v1, v2,
. . ., vk of vectors in Rn is the set

{c1v1 + c2v2 + · · ·+ ckvk : where c1, c2, . . . , ck are scalars}.

For example, a linear combination of vectors v1 =

 1
1
2

 and v2 =

 0
−2

1

 is 2v1 − 3v2 = 2
8
1

. All linear combinations of these two vectors can be expressed as the collection of vectors

of the form

 c1

c1 − 2c2

2c1 + c2

 where c1, c2 are scalars. Suppose we want to determine whether w = 1
2
3

 is in the span, in other words if w is a linear combination of v1,v2. This means we are
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looking for c1, c2 such that  c1

c1 − 2c2

2c1 + c2

 =

 1
2
3

 .
we solve for the system represented with the augmented matrix 1 0 1

1 −2 2
2 1 3

 .
By reducing this matrix, we find that there are no solutions of the system, which implies that w is
not a linear combination of v1,v2. Note that we can use any names we please for the scalars, say
x1, x2, if we prefer.

Preview Activity 6.1. Let v1 =

 2
1
−3

, v2 =

 1
1
0

, and v3 =

 1
−1
−6

, and let b =

 0
1
3

.

If b is in Span{v1,v2,v3}, we are interested in the most efficient way to represent b as a linear
combination of v1, v2, and v3.

(1) The vector b is in Span{v1,v2,v3} if there exist x1, x2, and x3 so that

x1v1 + x2v2 + x3v3 = b.

(Recall that we can use any letters we want for the scalars. They are simply unknown scalars
we want to solve for.)

(a) Explain why b is in Span{v1,v2,v3}. (Hint: What is the matrix we need to reduce?)

(b) Write b as a linear combination of v1, v2, and v3. In how many ways can b be
written as a linear combination of the vectors v1, v2, and v3? Explain.

(2) In problem 1 we saw that the vector b could be written in infinitely many different ways as
linear combinations of v1, v2, and v3. We now ask the question if we really need all of the
vectors v1, v2, and v3 to make b as a linear combination in a unique way.

(a) Can the vector b be written as a linear combination of the vectors v1 and v2? If not,
why not? If so, in how many ways can b be written as a linear combination of v1

and v2? Explain.

(b) If possible, write b as a linear combination of v1 and v2.

(3) In problem 1 we saw that b could be written in infinitely many different ways as a linear
combination of the vectors v1, v2, and v3. However, the vector b could only be written
in one way as a linear combination of v1 and v2. So b is in Span{v1,v2,v3} and b is
also in Span{v1,v2}. This raises a question – is any vector in Span{v1,v2,v3} also in
Span{v1,v2}. If so, then the vector v3 is redundant in terms of forming the span of v1, v2,
and v3. For the sake of efficiency, we want to recognize and eliminate this redundancy.

(a) Can v3 be written as a linear combination of the vectors v1 and v2? If not, why not?
If so, write v3 as a linear combination of v1 and v2.

(b) Use the result of part (a) to decide if any vector in Span{v1,v2,v3} is also in
Span{v1,v2}.
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Linear Independence

In this section we will investigate the concepts of linear dependence and independence of a set of
vectors. Our goal is to be able to efficiently determine when a given set of vectors forms a minimal
spanning set. This will involve the concepts of span and linear independence. Minimal spanning
sets are important in that they provide the most efficient way to represent vectors in a space, and
will later allow us to define the dimension of a vector space.

In Preview Activity 6.1 we considered the case where we had a set {v1,v2,v3} of three vectors,
and the vector v3 was in the span of {v1,v2}. So the the vector v3 did not add anything to the span
of {v1,v2}. In other words, the set {v1,v2,v3} was larger than it needed to be in order to generate
the vectors in its span – that is, Span{v1,v2,v3} = Span{v1,v2}. However, neither of the vectors
in the set {v1,v2} could be removed without changing its span. In this case, the set {v1,v2} is
what we will call a minimal spanning set or a basis for Span S. There are two important properties
that make {v1,v2} a basis for Span S. The first is that every vector in Span S can be written as
linear combinations of v1 and v2 (we also use the terminology that the vectors v1 and v2 span
Span S), and the second is that every vector in Span S can be written in exactly one way as a linear
combination of v1 and v2. This second property is the property of linear independence, and it is
the property that makes the spanning set minimal.

To make a spanning set minimal, we want to be able to write every vector in the span in a unique
way in terms of the spanning vectors. Notice that the zero vector can always be written as a linear
combination of any set of vectors using 0 for all of the weights. So to have a minimal or linearly
independent spanning set, that is, to have a unique representation for each vector in the span, it will
need to be the case that the only way we can write the zero vector as a linear combination of a set
of vectors is if all of the weights are 0. This leads us to the definition of a linearly independent set
of vectors.

Definition 6.1. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if the vector equa-
tion

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

If a set of vectors is not linearly independent, then the set is linearly dependent.

Alternatively, we say that the vectors v1,v2, . . . ,vk are linearly independent (or dependent) if
the set {v1,v2, . . . ,vk} is linearly independent (or dependent).

Note that the definition tells us that a set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent
if there are scalars x1, x2, . . ., xn, not all of which are 0 so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

Activity 6.1. Which of the following sets in R2 or R3 is linearly independent and which is linearly
dependent? Why? For the linearly dependent sets, write one of the vectors as a linear combination
of the others, if possible.
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(a) S1 =


 2

0
1

 ,
 −2

8
1

 ,
 −4

8
0

.

(b) S2 =


 1

2
1

 ,
 0

2
3

. (Hint: What relationship must exist between two vectors if they

are linearly dependent?)

(c) The vectors u, v, and w as shown in Figure 6.2.

u

v

w

x

y

O

Figure 6.2: Vectors u, v, and w.

Activity 6.1 (a) and (c) illustrate how we can write one of the vectors in a linearly dependent set
as a linear combination of the others. This would allow us to write at least one of the vectors in the
span of the set in more than one way as a linear combination of vectors in this set. We prove this
result in general in the following theorem.

Theorem 6.2. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent if and only if at least
one of the vectors in the set can be written as a linear combination of the remaining vectors in the
set.

The next activity is intended to help set the stage for the proof of Theorem 6.2.

Activity 6.2. The statement of Theorem 6.2 is a bi-conditional statement (an if and only if state-
ment). To prove this statement about the set S we need to show two things about S. One: we must
demonstrate that if S is a linearly dependent set, then at least one vector in S is a linear combination
of the other vectors (this is the “only if” part of the biconditional statement) and Two: if at least
one vector in S is a linear combination of the others, then S is linearly dependent (this is the “if”
part of the biconditional statement). We illustrate the main idea of the proof using a three vector set
S = {v1,v2,v3}.

(a) First let us assume that S is a linearly dependent set and show that at least one vector in S
is a linear combination of the other vectors. Since S is linearly dependent we can write the
zero vector as a linear combination of v1, v2, and v3 with at least one nonzero weight. For
example, suppose

2v1 + 3v2 + 4v3 = 0. (6.1)
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Solve Equation (6.1) for the vector v2 to show that v2 can be written as a linear combination
of v1 and v3. Conclude that v2 is a linear combination of the other vectors in the set S.

(b) Now we assume that at least one of the vectors in S is a linear combination of the others.
For example, suppose that

v3 = v1 + 5v2. (6.2)

Use vector algebra to rewrite Equation 6.2 so that 0 is expressed as a linear combination of
v1, v2, and v3 such that the weight on v3 is not zero. Conclude that the set S is linearly
dependent.

Now we provide a formal proof of Theorem 6.2, using the ideas from Activity 6.2.

Proof of Theorem 6.2. Let S = {v1,v2, . . . ,vk} be a set of vectors in Rn. We will begin by
verifying the first statement.

We assume that S is a linearly dependent set and show that at least one vector in S is a linear
combination of the others. Since S is linearly dependent, there are scalars x1, x2, . . ., xn, not all of
which are 0, so that

x1v1 + x2v2 + · · ·+ xkvk = 0. (6.3)

We don’t know which scalar(s) are not zero, but there is at least one. So let us assume that xi is not
zero for some i between 1 and k. We can then subtract xivi from both sides of Equation (6.3) and
divide by xi to obtain

vi =
x1

xi
v1 +

x2

xi
v2 + · · ·+ xi−1

xi
vi−1 +

xi+1

xi
vi+1 +

xi+2

xi
vi+2 + · · ·+ xk

xi
vk.

Thus, the vector vi is a linear combination of v1, v2, . . ., vi−1, vi+1, . . ., vk, and at least one of
the vectors in S is a linear combination of the other vectors in S.

To verify the second statement, we assume that at least one of the vectors in S can be written
as a linear combination of the others and show that S is then a linearly dependent set. We don’t
know which vector(s) in S can be written as a linear combination of the others, but there is at least
one. Let us suppose that vi is a linear combination of the vectors v1, v2, . . ., vi−1, vi+1, . . ., vk
for some i between 1 and k. Then there exist scalars x1, x2, . . ., x−1, xi+1, . . ., xn so that

vi = x1v1 + x2v2 + · · ·+ xi−1vi−1 + xi+1vi+1 + xi+2vi+2 + · · ·+ xkvk.

It follows that

0 = x1v1 + x2v2 + · · ·+ xi−1vi−1 + (−1)vi + xi+1vi+1 + xi+2vi+2 + · · ·+ xkvk.

So there are scalars there are scalars x1, x2, . . ., xn (with xi = −1), not all of which are 0, so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

This makes S a linearly dependent set. �

With a linearly dependent set, at least one of the vectors in the set is a linear combination of the
others. With a linearly independent set, this cannot happen – no vector in the set can be written as
a linear combination of the others. This result is given in the next theorem. You may be able to see
how Theorems 6.2 and 6.3 are logically equivalent.
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Theorem 6.3. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if and only if no
vector in the set can be written as a linear combination of the remaining vectors in the set.

Activity 6.3. As was hinted at in Preview Activity 6.1, an important consequence of a linearly
independent set is that every vector in the span of the set can be written in one and only one way as
a linear combination of vectors in the set. It is this uniqueness that makes linearly independent sets
so useful. We explore this idea in this activity for a linearly independent set of three vectors. Let
S = {v1,v2,v3} be a linearly independent set of vectors in Rn for some n, and let b be a vector
in Span S. To show that b can be written in exactly one way as a linear combination of vectors in
S, we assume that

b = x1v1 + x2v2 + x3v3 and b = y1v1 + y2v2 + y3v3

for some scalars x1, x2, x3, y1, y2, and y3. We need to demonstrate that x1 = y1, x2 = y2, and
x3 = y3.

(a) Use the two different ways of writing b as a linear combination of v1,v2 and v3 to come
up with a linear combination expressing 0 as a linear combination of these vectors.

(b) Use the linear independence of the vectors v1,v2 and v3 to explain why x1 = y1, x2 = y2,
and x3 = y3.

Activity 6.3 contains the general ideas to show that any vector in the span of a linearly indepen-
dent set can be written in one and only one way as a linear combination of the vectors in the set. The
weights of such a linear combination provide us a coordinate system for the vectors in terms of the
basis. Two familiar examples of coordinate systems are the Cartesian coordinates in the xy-plane,
and xyz-space. We will revisit the coordinate system idea in a later chapter.

In the next theorem we state and prove the general case of any number of linearly independent
vectors producing unique representations as linear combinations.

Theorem 6.4. Let S = {v1,v2, . . . ,vk} be a linearly independent set of vectors in Rn. Any vector
in Span S can be written in one and only one way as a linear combination of the vectors v1, v2,
. . ., vk.

Proof. Let S = {v1,v2, . . . ,vk} be a linearly independent set of vectors in Rn, and let b be a
vector in Span S. By definition, it follows that b can be written as a linear combination of the
vectors in S. It remains for us to show that this representation is unique. So assume that

b = x1v1 + x2v2 + · · ·+ xkvk and b = y1v1 + y2v2 + · · ·+ ykvk (6.4)

for some scalars x1, x2, . . ., xk, and y1, y2, . . ., yk. Then

x1v1 + x2v2 + · · ·+ xkvk = y1v1 + y2v2 + · · ·+ ykvk.

Subtracting all terms from the right side and using a little vector algebra gives us

(x1 − y1)v1 + (x2 − y2)v2 + · · ·+ (xk − yk)vk = 0.

The fact that S is a linearly independent set implies that

x1 − y1 = 0, x2 − y2 = 0, . . . , xk − yk = 0,

showing that xi = yi for every i between 1 and k. We conclude that the representation of b as a
linear combination of the linearly independent vectors in S is unique.

�



Section 6. Linear Dependence and Independence 111

Determining Linear Independence

The definition and our previous work give us a straightforward method for determining when a set
of vectors in Rn is linearly independent or dependent.

Activity 6.4. In this activity we learn how to use a matrix to determine in general if a set of vectors
in Rn is linearly independent or dependent. Suppose we have k vectors v1, v2, . . ., vk in Rn. To
see if these vectors are linearly independent, we need to find the solutions to the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0. (6.5)

If we let A = [v1 v2 v3 · · · vk] and x =


x1

x2
...
xk

, then we can write the vector equation (6.5) in

matrix form Ax = 0. Let B be the reduced row echelon form of A.

(a) What can we say about the pivots of B in order for Ax = 0 to have exactly one solution?
Under these conditions, are the vectors v1, v2, . . ., vk linearly independent or dependent?

(b) What can we say about the rows or columns of B in order for Ax = 0 to have infinitely
many solutions? Under these conditions, are the vectors v1, v2, . . ., vk linearly indepen-
dent or dependent?

(c) Use the result of parts (a) and (b) to determine if the vectors v1 =


1
−1

2
0

, v2 =


1
0
2
3

,

and v3 =


0
0
2
1

 in R4 are linearly independent or dependent. If dependent, write one

of the vectors as a linear combination of the others. You may use the fact that the matrix
1 1 0
−1 0 0

2 2 2
0 3 1

 is row equivalent to


1 0 0
0 1 0
0 0 1
0 0 0

.

Minimal Spanning Sets

It is important to note the differences and connections between linear independence, span, and
minimal spanning set.

• The set S =


 1

0
0

 ,
 0

1
0

 is not a minimal spanning set for R3 even though S is a
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linearly independent set. Note that S does not span R3 since the vector

 0
0
1

 is not in

Span S.

• The set T =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 1

1
1

 is not a minimal spanning set for R3 even

though Span T = R3. Note that 1
1
1

 =

 1
0
0

+

 0
1
0

+

 0
0
1

 ,
so T is not a linearly independent set.

• The set U =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 is a minimal spanning set for R3 since it satisfies

both characteristics of a minimal spanning set: Span U = R3 AND U is linearly independent.

The three concepts – linear independence, span, and minimal spanning set – are different. The
important point to note is that minimal spanning set must be both linearly independent and span the
space.

To find a minimal spanning set we will often need to find a smallest subset of a given set of
vectors that has the same span as the original set of vectors. In this section we determine a method
for doing so.

Activity 6.5. Let v1 =

 −1
0
2

, v2 =

 2
0
−4

, v3 =

 0
1
3

, and v4 =

 −3
4

18

 in R3. Assume

that the reduced row echelon form of the matrixA =

 −1 2 0 −3
0 0 1 4
2 −4 3 18

 is

 1 −2 0 3
0 0 1 4
0 0 0 0

.

(a) Write the general solution to the homogeneous systemAx = 0, where x =


x1

x2

x3

x4

. Write

all linear combinations of v1, v2, v3, and v4 that are equal to 0, using weights that only
involve x2 and x4.

(b) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show that the vector v4 is a linear combination of v1, v2, and v3. What does this tell us
about Span{v1,v2,v3} and Span{v1,v2,v3,v4}?

(c) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show why the vector v2 is a linear combination of v1 and v3. What does this tell us about
Span{v1,v3} and Span{v1,v2,v3}?
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(d) Is {v1,v3} a minimal spanning set for Span{v1,v2,v3,v4}? Explain your response.

Activity 6.5 illustrates how we can use a matrix to determine a minimal spanning set for a given
set of vectors {v1,v2, . . . ,vk} in Rn.

• Form the matrix A = [v1 v2 · · · vk].

• Find the reduced row echelon form [B | 0] of [A | 0]. If B contains non-pivot columns,
say for example that the ith column is a non-pivot column, then we can choose the weight
xi corresponding to the ith column to be 1 and all weights corresponding to the other non-
pivot columns to be 0 to make a linear combination of the columns of A that is equal to 0.
This allows us to write vi as a linear combination of the vectors corresponding to the pivot
columns of A as we did in the proof of Theorem 6.3. So every vector corresponding to a
non-pivot column is in the span of the set of vectors corresponding to the pivot columns. The
vectors corresponding to the pivot columns are linearly independent, since the matrix with
those columns has every column as a pivot column. Thus, the set of vectors corresponding to
the pivot columns of A forms a minimal spanning set for {v1,v2, . . . ,vk}.

IMPORTANT NOTE! The set of pivot columns of the reduced row echelon form of A will nor-
mally not have the same span as the set of columns of A, so it is critical that we use columns of A,
NOT B in our minimal spanning set.

Activity 6.6. Find a minimal spanning set for the span of the set


1
1
0
0

 ,


2
3
0
0

 ,


0
1
2
0

 ,


4
1
0
0


 .

Activity 6.5 also illustrates a general process by which we can find a minimal spanning set –
that is the smallest subset of vectors that has the same span. This process will be useful later when
we consider vectors in arbitrary vector spaces. The idea is that if we can write one of the vectors
in a set S as a linear combination of the remaining vectors, then we can remove that vector from
the set and maintain the same span. In other words, begin with the span of a set S and follow these
steps:

Step 1. If S is a linearly independent set, we already have a minimal spanning set.

Step 2. If S is not a linearly independent set, then one of the vectors in S is a linear combination
of the others. Remove that vector from S to obtain a new set T . It will be the case that
Span T = Span S.

Step 3. If T is a linearly independent set, then T is a minimal spanning set. If not, repeat steps 2
and 3 for the set T until you arrive at a linearly independent set.

This process is guaranteed to stop as long as the set contains at least one nonzero vector. A verifi-
cation of the statement in Step 2 that Span T = Span S is given in the next theorem.
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Theorem 6.5. Let {v1,v2, . . . ,vk} be a set of vectors in Rn so that for some i between 1 and k,
vi is in Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}. Then

Span{v1,v2, . . . ,vk} = Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

Proof. Let {v1,v2, . . . ,vk} be a set of vectors in Rn so that vi is in the span of v1, v2, . . ., vi−1,
vi+1, . . ., and vk for some i between 1 and k. To show that

Span{v1,v2, . . . ,vk} = Span{v1, . . . ,vi−1,vi+1, . . . ,vk},

we need to show that

(1) every vector in Span{v1,v2, . . . ,vk} is in Span{v1, . . . ,vi−1,vi+1, . . . ,vk}, and

(2) every vector in Span{v1, . . . ,vi−1,vi+1, . . . ,vk} is in
Span{v1, . . . ,vk}.

Let us consider the second containment. Let x be a vector in the span of v1, v2, . . ., vi−1, vi+1,
. . ., and vk. Then

x = x1v1 + x2v2 + · · ·+ xi−1vi−1 + xi+1vi+1 + · · ·+ xkvk

for some scalars x1, x2, . . ., xi−1, xi+1, . . ., xk. Note that

x = x1v1 + x2v2 + · · ·+ xi−1vi−1 + (0)vi + xi+1vi+1 + · · ·+ xkvk

as well, so x is in Span{v1,v2, . . . ,vk}. Thus,

Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk} ⊆ Span{v1,v2, . . . ,vk}.

(This same argument shows a more general statement that if S is a subset of T , then Span S ⊆
Span T .)

Now we demonstrate the first containment. Here we need the assumption that vi is in Span{v1,
v2, . . ., vi−1, vi+1, . . ., vk} for some i between 1 and k. That assumption gives us

vi = c1v1 + c2v2 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ ckvk (6.6)

for some scalars c1, c2, . . ., ci−1, ci+1, . . ., ck. Now let x be a vector in the span of v1, v2, . . ., vk.
Then

x = x1v1 + x2v2 + · · ·+ xkvk

for some scalars x1, x2, . . ., xk. Substituting from (6.6) shows that

x = x1v1 + x2v2 + · · ·+ xkvk

= x1v1 + x2v2 + · · ·+ xi−1vi−1 + xivi + xi+1vi+1 + · · ·+ xkvk

= x1v1 + x2v2 + · · ·+ xi−1vi−1

+ xi[c1v1 + c2v2 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ ckvk]

+ xi+1vi+1 + · · ·+ xkvk

= (x1 + xic1)v1 + (x2 + xic2)v2 + · · ·+ (xi−1 + xici−1)vi−1

+ (xi+1 + xici+1)vi+1 · · ·+ (xk + xick)vk.
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So x is in Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk} and

Span{v1,v2, . . . ,vk} ⊆ Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

Since the two sets are subsets of each other, they must be equal sets. We conclude that

Span{v1,v2, . . . ,vk} = Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

�

The result of Theorem 6.5 is that if we have a finite set S of vectors in Rn, we can eliminate
those vectors that are linear combinations of others until we obtain a smallest set of vectors that still
has the same span. As mentioned earlier, we call such a minimal spanning set a basis.

Definition 6.6. Let S be a set of vectors in Rn. A subset B of S is a basis for Span S if B is
linearly independent and Span B = Span S.

IMPORTANT NOTE: A basis is defined by two characteristics. A basis must span the space in
question and a basis must be a linearly independent set. It is the linear independence that makes a
basis a minimal spanning set.

We have worked with a familiar basis in R2 throughout our mathematical careers. A vector[
a
b

]
in R2 can be written as

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
.

So the set {e1, e2}, where e1 =

[
1
0

]
and e2 =

[
0
1

]
spans R2. Since the columns of [e1 e2]

are linearly independent, so is the set {e1, e2}. Therefore, the set {e1, e2} is a basis for R2. The
vector e1 is in the direction of the positive x-axis and the vector e2 is in the direction of the positive

y-axis, so decomposing a vector
[
a
b

]
as a linear combination of e1 and e2 is akin to identifying

the vector with the point (a, b) as we discussed earlier. The set {e1, e2} is called the standard basis
for R2.

This idea is not restricted to R2. Consider the vectors

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, · · · , en =



0
0
0
...
0
1


in Rn. That is, the vector ei is the vector with a 1 in the ith position and 0s everywhere else. Since
the matrix [e1 e2 · · · en] is the identity matrix, the set {e1, e2, . . . , en} is a basis for Rn. The set
{e1, e2, . . . , en} is called the standard basis for Rn.
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As we will see later, bases1 are of fundamental importance in linear algebra in that bases will
allow us to define the dimension of a vector space and will provide us with coordinate systems.

We conclude this section with an important theorem that is similar Theorem 5.3.

Theorem 6.7. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.

(3) The columns of A are linearly independent.

(4) The matrix A has a pivot position in each column.

Examples

What follows are worked examples that use the concepts from this section.

Example 6.8. Let v1 =


1
2
0
1

, v2 =


0
6
−1

5

, v3 =


3
−6

2
−7

, and v4 =


5
−2

2
−5

.

(a) Is the set S = {v1,v2,v3,v4} linearly independent or dependent. If independent, explain
why. If dependent, write one of the vectors in S as a linear combination of the other vectors
in S.

(b) Find a subset B of S that is a basis for Span S. Explain how you know you have a basis.

Example Solution.

(a) We need to know the solutions to the vector equation

x1v1 + x2v2 + x3v3 + x4v4 = 0.

If the equation has as its only solution x1 = x2 = x3 = x4 = 0 (the trivial solution), then
the set S is linearly independent. Otherwise the set S is linearly dependent.

To find the solutions to this system, we row reduce the augmented matrix
1 0 3 5 0
2 6 −6 −2 0
0 −1 2 2 0
1 5 −7 −5 0

 .
1The plural of basis is bases.
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(Note that we really don’t need the augmented column of zeros – row operations won’t
change that column at all. We just need to know that the column of zeros is there.) Tech-
nology shows that the reduced row echelon form of this augmented matrix is

1 0 3 5 0
0 1 −2 −2 0
0 0 0 0 0
0 0 0 0 0

 .
The reduced row echelon form tells us that the vector equation is consistent, and the fact
that there is no pivot in the fourth column shows that the system has a free variable and
more than just the trivial solution. We conclude that S is linearly dependent.

Moreover, the general solution to our vector equation is

x1 = −3x3 − 5x4

x2 = 2x3 + 2x4

x3 is free

x4 is free.

Letting x4 = 0 and x3 = 1 shows that one non-trivial solution to our vector equation is

x1 = −3, x2 = 2, x3 = 1, and x4 = 0.

Thus,
−3v1 + 2v2 + v3 = 0,

or
v3 = 3v1 − 2v2

and we have written one vector in S as a linear combination of the other vectors in S.

(b) We have seen that the pivot columns in a matrix A form a minimal spanning set (or basis)
for the span of the columns ofA. From part (a) we see that the pivot columns in the reduced
row echelon form of A = [v1 v2 v3 v4] are the first and second columns. So a basis for
the span of the columns of A is {v1,v2}. Since the elements of S are the columns of A,
we conclude that the set B = {v1,v2} is a subset of S that is a basis for Span S.

Example 6.9. Let v1 =

 1
1
0

, v2 =

 3
−7

2

, and v3 =

 −5
6

10

.

(a) Is the set S = {v1,v2,v3} a basis for R3? Explain.

(b) Let v4 =

 −5
6
h

, where h is a scalar. Are there any values of h for which the set

S′ = {v1,v2,v4} is not a basis for R3? If so, find all such values of h and explain why S′

is not a basis for R3 for those values of h.

Example Solution.
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(a) We need to know if the vectors in S are linearly independent and span R3. Technology
shows that the reduced row echelon form of

A =

 1 3 −5
1 −7 6
0 2 10


is  1 0 0

0 1 0
0 0 1

 .
Since every column of [v1 v2 v3] is a pivot column, the set {v1,v2,v3} is linearly inde-
pendent. The fact that there is a pivot in every row of the matrix A means that the equation
Ax = b is consistent for every b in R3. Since Ax is a linear combination of the columns
of A with weights from x, tt follows that the columns of A span R3. We conclude that the
set S is a basis for R3.

(b) Technology shows that a row echelon form of A = [v1 v2 v4] is
1 0 0

0 −10 11

0 0 h+ 11
5

 .
The columns of A are all pivot columns (hence linearly independent) as long as h 6= −11

5 ,
and are linearly dependent when h = −11

5 . So the only value of h for which S′ is not a
basis for R3 is h = −11

5 .

Summary

• A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

Another way to think about this is that a set of vectors is linearly independent if no vector in
the set can be written as a linear combination of the other vectors in the set.

• A set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has a nontrivial solution. That is, we can find scalars x1, x2, . . . , xk that are not all 0 so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

Another way to think about this is that a set of vectors is linearly dependent if at least one
vector in the set can be written as a linear combination of the other vectors in the set.
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• If S is a set of vectors, a subset B of S is a basis for Span S if B is a linearly independent set
and Span B = Span S.

• Given a nonzero set S of vectors, we can remove vectors from S that are linear combinations
of remaining vectors in S to obtain a linearly independent subset of S that has the same span
as S.

• The columns of a matrix A are linearly independent if the equation Ax = 0 has only the
trivial solution x = 0.

• The set {v1,v2, . . . ,vk} is linearly independent if and only if every column of the matrix
A = [v1 v2 v3 · · · vk], is a pivot column.

• IfA = [v1 v2 v3 · · · vk], then the vectors in the pivot columns ofA form a minimal spanning
set for Span{v1,v2, . . . ,vk}.

Exercises

(1) Consider the following vectors in R3:

v1 =

 1
1
1

 , v2 =

 1
2
1

 , v3 =

 1
3
1


Is the set consisting of these vectors linearly independent? If so, explain why. If not, make a
single change in one of the vectors so that the set is linearly independent.

(2) Consider the following vectors in R3:

v1 =

 1
2
1

 , v2 =

 1
−1

2

 , v3 =

 1
1
c


For which values of c is the set consisting of these vectors linearly independent?

(3) In a lab, there are three different water-benzene-acetic acid solutions: The first one with 36%
water, 50% benzene and 14% acetic acid; the second one with 44% water, 46% benzene and
10% acetic acid; and the last one with 38% water, 49% benzene and 13% acid. Since the lab
needs space, the lab coordinator wants to determine whether all solutions are needed, or if it is
possible to create one of the solutions using the other two. Can you help the lab coordinator?

(4) Given vectors v1 =

 1
2
3

 and v2 =

 0
2
1

, find a vector v3 in R3 so that the set consisting

of v1,v2 and v3 is linearly independent.
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(5) Consider the span of S = {v1,v2,v3,v4} where

v1 =


1
1
1
4

 , v2 =


2
1
0
3

 , v3 =


3
2
−1

1

 , v4 =


3
3
1
6

 .

(a) Is the set S a minimal spanning set of Span S? If not, determine a minimal spanning
set, i.e. a basis, of Span S.

(b) Check that the vector u =


6
5
−2

1

 is in Span S. Find the unique representation of

u in terms of the basis vectors.

(6) Come up with a 4 × 3 matrix with linearly independent columns, if possible. If not, explain
why not.

(7) Come up with a 3 × 4 matrix with linearly independent columns, if possible. If not, explain
why not.

(8) Give an example of vectors v1,v2,v3 such that a minimal spanning set for Span{v1,v2,v3}
is equal to that of Span{v1,v2}; and an example of three vectors v1,v2,v3 such that a
minimal spanning set for Span{v1,v2,v3} is equal to that of Span{v1,v3}.

(9) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If v1, v2 and v3 are three vectors none of which is a multiple of another,
then these vectors form a linearly independent set.

(b) True/False If v1, v2 and v3 in Rn are linearly independent vectors, then so are v1,
v2, v3 and v4 for any v4 in Rn.

(c) True/False If v1, v2, v3 and v4 in Rn are linearly independent vectors, then so are
v1, v2 and v3.

(d) True/False A 3× 4 matrix cannot have linearly independent columns.

(e) True/False If two vectors span R2, then they are linearly independent.

(f) True/False The space R3 cannot contain four linearly independent vectors.

(g) True/False If two vectors are linearly dependent, then one is a scalar multiple of the
other.

(h) True/False If a set of vectors in Rn is linearly dependent, then the set contains more
than n vectors.

(i) True/False The columns of a matrixA are linearly independent if the equationAx =
0 has only the trivial solution.
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(j) True/False Let W = Span{v1,v2,v3,v4}. If {v1,v2,v3} is a minimal spanning
set for W , then {v1,v2,v4} cannot also be a minimal spanning set for W .

(k) True/False Let W = Span{v1,v2,v3,v4}. If {v1,v2,v3} is a minimal spanning
set for W , then {v1,v2} cannot also be a minimal spanning set for W .

(l) True/False If v3 = 2v1 − 3v2, then {v1,v2} is a minimal spanning set for
Span{v1,v2,v3}.

Project: Generating Bézier Curves

Bézier curves can be created as linear combinations of vectors. In this section we will investigate
how cubic Bézier curves (the ones used for fonts) can be realized through linear and quadratic
Bézier curves. We begin with linear Bézier curves.

Project Activity 6.1. Start with two vectors p0 and p1. Linear Bézier curves are linear combina-
tions

q = (1− t)p0 + tp1

of the vectors p0 and p1 for scalars t between 0 and 1. (You can visualize these linear com-
binations using the GeoGebra file Linear Bezier at https://www.geogebra.org/m/
HvrPhh86. With this file you can draw the vectors q for varying values of t. You can move the
points p0 and p1 in the GeoGebra file, and the slider controls the values of t. The point identified
with q is traced as t is changed.) For this activity, we will see what the curve q corresponds to by

evaluating certain points on the curve in a specific example. Let p0 =

[
2
1

]
and p1 =

[
6
3

]
.

(a) What are the components of the vector (1 − t)p0 + tp1 if t = 1
2? Where is this vector in

relation to p0 and p1? Explain.

(b) What are the components of the vector (1 − t)p0 + tp1 if t = 1
3? Where is this vector in

relation to p0 and p1? Explain.

(c) What are the components of the vector (1 − t)p0 + tp1 for an arbitrary t? Where is this
vector in relation to p0 and p1? Explain.

For each value of t, the vector q = (1 − t)p0 + tp1 is a linear combination of the vectors p0

and p1. Note that when t = 0, we have q = p0 and when t = 1 we have q = p1, and for 0 ≤ t ≤ 1
Project Activity 6.1 shows that the vectors q trace out the line segment from p0 to p1. The span
{(1− t)p0 + tp1} of the vectors p0 and p1 for 0 ≤ t ≤ 1 is a linear Bézier curve. Once we have a
construction like this, it is natural in mathematics to extend it and see what happens. We do that in
the next activity to construct quadratic Bézier curves.

Project Activity 6.2. Let p0, p1, and p2 be vectors in the plane. We can then let

q0 = (1− t)p0 + tp1 and q1 = (1− t)p1 + tp2

be the linear Bézier curves as defined in Project Activity 6.1. Since q0 and q1 are vectors, we can
define r as

r = (1− t)q0 + tq1.

https://www.geogebra.org/m/HvrPhh86
https://www.geogebra.org/m/HvrPhh86
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(You can visualize these linear combinations using the GeoGebra file Quadraric Bezier at
https://www.geogebra.org/m/VWCZZBXz. With this file you can draw the vectors r for
varying values of t. You can move the points p0, p1, and p2 in the GeoGebra file, and the slider
controls the values of t. The point identified with r is traced as t is changed.) In this activity we

investigate how the vectors r change as t changes. For the remainder of this activity, let p0 =

[
2
3

]
,

p1 =

[
8
4

]
, and p2 =

[
6
−3

]
.

(a) At what point (in terms of p0, p1, and p2) is the vector r = (1− t)q0 + tq1 when t = 0?
Explain using the definition of r.

(b) At what point (in terms of p0, p1, and p2) is the vector r = (1− t)q0 + tq1 when t = 1?
Explain using the definition of r.

(c) Find by hand the components of the vector (1− t)q0 + tq1 with t = 1
4 . Compare with the

result of the GeoGebra file.

The span {(1−t)q0+tq1} of the vectors q0 and q1, or the set of points traced out by the vectors
r for 0 ≤ t ≤ 1, is a quadratic Bézier curve. To understand why this curve is called quadratic, we
examine the situation in a general context in the following activity.

Project Activity 6.3. Let p0, p1, and p2 be arbitrary vectors in the plane. Write r = (1−t)q0+tq1

as a linear combination of p0, p1, and p2. That is, write r in the form a0p0 + a1p1 + a2p2 for
some scalars (that may depend on t) a0, a1, and a2. Explain why the result leads us to call these
vectors quadratic Bézier curves.

Notice that if any one of the pi lies on the line determined by the other two vectors, then the
quadratic Bézier curve is just a line segment. So to obtain something non-linear we need to choose
our vectors so that that doesn’t happen.

Quadratic Bézier curves are limited, because their graphs are parabolas. For applications we
need higher order Bézier curves. In the next activity we consider cubic Bézier curves.

Project Activity 6.4. Start with four vectors p0, p1, p2, p3 – the points defined by these vectors
are called control points for the curve. As with the linear and quadratic Bézier curves, we let

q0 = (1− t)p0 + tp1, q1 = (1− t)p1 + tp2, and q2 = (1− t)p2 + tp3.

Then let
r0 = (1− t)q0 + tq1 and r1 = (1− t)q1 + tq2.

We take this one step further to generate the cubic Bézier curves by letting

s = (1− t)r0 + tr1.

(You can visualize these linear combinations using the GeoGebra file Cubic Bezier at https:
//www.geogebra.org/m/EDAhudy9. With this file you can draw the vectors s for varying
values of t. You can move the points p0, p1, p2, and p3 in the GeoGebra file, and the slider
controls the values of t. The point identified with s is traced as t is changed.) In this activity we

https://www.geogebra.org/m/VWCZZBXz
https://www.geogebra.org/m/EDAhudy9
https://www.geogebra.org/m/EDAhudy9
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investigate how the vectors s change as t changes. For the remainder of this activity, let p0 =

[
1
3

]
,

p1 =

[
4
5

]
, p2 =

[
9
−3

]
, and p3 =

[
2
0

]
.

(a) At what point (in terms of p0, p1, p2, and p3) is the vector s = (1 − t)r0 + tr1 when
t = 0? Explain using the definition of s.

(b) At what point (in terms of p0, p1, p2, and p3) is the vector s = (1 − t)r0 + tr1 when
t = 1? Explain using the definition of s.

(c) Find by hand the components of the vector (1− t)r0 + tr1 with t = 3
4 . Compare with the

result of the GeoGebra file.

The span {(1− t)r0 + tr1} of the vectors r0 and r1, or the set of points traced out by the vectors
s for 0 ≤ t ≤ 1, is a cubic Bézier curve. To understand why this curve is called cubic, we examine
the situation in a general context in the following activity.

Project Activity 6.5. Let p0, p1, p2, and p3 be arbitrary vectors in the plane. Write s = (1 −
t)r0 + tr1 as a linear combination of p0, p1, p2, and p3. That is, write s in the form b0p0 + b1p1 +
b2p2 + b3p3 for some scalars (that may depend on t) b0, b1, b2, and b3. Explain why the result leads
us to call these vectors cubic Bézier curves.

Just as with the quadratic case, we need certain subsets of the set of control vectors to be linearly
independent so that the cubic Bézier curve does not degenerate to a quadratic or linear Bézier curve.

More complicated and realistic shapes can be represented by piecing together two or more
Bézier curves as illustrated with the letter “S” in Figure 6.1. Suppose we have two cubic Bézier
curves, the first with control points p0, p1, p2, and p3 and the second with control points p′0, p′1,
p′2, and p′3. You may have noticed that p1 lies on the tangent line to the first Bézier curve at p0

and that p2 lies on the tangent line to the first Bézier curve at p3. (Play around with the program
Cubic Bezier to convince yourself of these statements. This can be proved in a straightforward
manner using vector calculus.) So if we want to make a smooth curve from these two Bézier
curves, the curves will need to join together smoothly at p3 and p′0. This will force p3 = p′0 and
the tangents at p3 = p′0 will have to match. This implies that p2, p3, and p′1 all have to lie on this
common tangent line. Keeping this idea in mind, use the GeoGebra file Cubic Bezier Pair
at https://www.geogebra.org/m/UwxQ6RPk to find control points for the pair of Bézier
curves that create your own letter S.

https://www.geogebra.org/m/UwxQ6RPk
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Matrix Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a matrix transformation?

• What properties do matrix transformations have? (In particular, what prop-
erties make matrix transformations linear?)

• What is the domain of a matrix transformation defined by anm×nmatrix?
Why?

• What are the range and codomain of a matrix transformation defined by an
m× n matrix? Why?

• What does it mean for a matrix transformation to be one-to-one? If T is a
matrix transformation represented as T (x) = Ax, what are the conditions
on A that make T a one-to-one transformation?

• What does it mean for a matrix transformation to be onto? If T is a matrix
transformation represented as T (x) = Ax, what are the conditions on A
that make T an onto transformation?

Application: Computer Graphics

As we will discuss, left multiplication by an m×n matrix defines a function from Rn to Rm. Such
a function defined by matrix multiplication is called a matrix transformation. In this section we
study some of the properties of matrix transformations and understand how, using the pivots of the
matrix, to determine when the output of a matrix transformation covers the whole space Rm or
when a transformation maps distinct vectors to distinct outputs.

Matrix transformations are used extensively in computer graphics to produce animations as seen

125
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in video games and movies. For example, consider the dancing figure at left in Figure 7.1. We can
identify certain control points (e.g., the point at the neck, where the arms join the torso, etc.) to mark
the locations of important points. Using just the control points we can reconstruct the figure. Each
control point can be represented as a vector, and so we can manipulate the figure by manipulating
the control points with matrix transformations. We will explore this idea in more detail later in this
section.

Figure 7.1: A dancing figure and a rotated dancing figure.

Introduction

In this section we will consider special functions which take vectors as inputs and produce vectors
as outputs. We will use matrix multiplication to produce the output vectors.

If A is an m × n matrix and x is a vector in Rn, then the matrix-vector product Ax is a
vector in Rm. (Pick some specific n,m values to understand this statement better.) Therefore, left
multiplication by the matrix A takes an input vector x in Rn and produces an output vector Ax in
Rm, which we will refer to as the image of x under the transformation. This defines a function T
from Rn to Rm where

T (x) = Ax .

These functions are the matrix transformations.

Definition 7.1. A matrix transformation is a function T : Rn → Rm defined by

T (x) = Ax

for some m× n matrix A.

Many of the transformations we consider in this section are from R2 to R2 so that we can
visualize the transformations. As an example, let us consider the transformation T defined by

T

([
x1

x2

])
=

[
1 0
0 −1

] [
x1

x2

]
.

If we plot the input vectors u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
(as (blue) circles) and their images T (u1) =

[
1 0
0 −1

] [
1
0

]
=

[
1
0

]
, T (u2) =

[
0
−1

]
,
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T (u3) =

[
1
−2

]
, and T (u4) =

[
−1
−1

]
(as (red) ×’s) on the same set of axes as shown in Figure

7.2, we see that this transformation reflects the input vectors across the x-axis. We can also see this
algebraically since the reflection of the point (x1, x2) around the x-axis is the point (x1,−x2), and

T

([
x1

x2

])
=

[
x1

−x2

]
.

u1

T (u1)

u2

T (u2)

u3

T (u3)

u4

T (u4)

Figure 7.2: Inputs and outputs of the transformation T .

Preview Activity 7.1. We now consider other transformations from R2 to R2.

(1) Suppose a transformation T is defined by

T

([
x1

x2

])
=

[
2 0
0 2

] [
x1

x2

]
.

(a) Find T (ui) for each of u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
.

(In other words, substitute u1,u2,u3,u4 into the formula above to see what output
is obtained.)

(b) Plot all input vectors and their images on the same axes in R2. Clearly identify which
image corresponds to which input vector. Then give a geometric description of what
this transformation does.

(2) The transformation in the introduction performs a reflection across the x-axis. Find a matrix
transformation that performs a reflection across the y-axis.
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(3) Suppose a transformation T is defined by

T (x) = Ax,

where

A =

[
1 0
0 0

]
.

(a) Find T (ui) for each of u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
.

(b) Plot all input vectors and their images on the same axes in R2. Give a geometric
description of this transformation.

(c) Is there an input vector which produces b =

[
1
1

]
as an output vector?

(d) Find all input vectors that produce the output vector b =

[
1
0

]
. Is there a unique

input vector, or multiple input vectors?

Properties of Matrix Transformations

A matrix transformation is a function. When dealing with functions in previous mathematics
courses we have used the terms domain and range with our functions. Recall that the domain
of a function is the set of all allowable inputs into the function and the range of a function is the set
of all outputs of the function. We do the same with transformations. If T is the matrix transforma-
tion T (x) = Ax for some m × n matrix A, then T maps vectors from Rn into Rm. So Rn is the
domain of T – the set of all input vectors. However, the set Rm is only the target set for T and not
necessarily the range of T . We call Rm the codomain of T , while the range of T is the set of all
output vectors. The range is always a subset of the codomain, but the two sets do not have to be
equal. In addition, if a vector b in Rm satisfies b = T (x) for some x in Rn, then we say that b is
the image of x under the transformation T .

Because of the properties of the matrix-vector product, if the matrix transformation T is defined
by T (x) = Ax for some m× n matrix A, then

T (u + v) = A(u + v) = Au +Av

and
T (cu) = A(cu) = cAu = cT (u)

for any vectors u and v in Rn and any scalar c. So every matrix transformation T satisfies the
following two important properties:

(1) T (u + v) = T (u) + T (v) and

(2) T (cu) = cT (v).

The first property says that a matrix transformation T preserves sums of vectors and the second that
T preserves scalar multiples of vectors.
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Activity 7.1. Let T be a matrix transformation, and let u and v be vectors in the domain of T so

that T (u) =

 1
2
0

 and T (v) =

 −3
1
4

.

(a) Exactly which vector is T (2u− 3v)? Explain.

(b) If a and b are any scalars, what is the vector T (au + bv)? Why?

As we saw in Activity 7.1, we can combine the two properties of a matrix transformation T into
one: for any scalars a and b and any vectors u and v in the domain of T we have

T (au + bv) = aT (u) + bT (v). (7.1)

We can then extend equation (7.1) (by mathematical induction) to any finite linear combination of
vectors. That is, if v1, v2, . . ., vk are any vectors in the domain of a matrix transformation T and if
x1, x2, . . ., xk are any scalars, then

T (x1v1 + x2v2 + · · ·+ xkvk) = x1T (v1) + x2T (v2) + · · ·+ xkT (vk). (7.2)

In other words, a matrix transformation preserves linear combinations. For this reason matrix trans-
formations are examples of a larger set of transformation that are called linear transformations. We
will discuss general linear transformations in a later section.

There is one other important property of a matrix transformation for us to consider. The func-
tions we encountered in earlier mathematics courses, e.g., f(x) = 2x + 1, could send the input 0
to any output. However, as a consequence of the definition, any matrix transformation T maps the
zero vector to the zero vector because

T (0) = A0 = 0 .

Note that the two vectors 0 in the last equation may not be the same vector – if T : Rn → Rm,
then the first 0 is in Rn and the second in Rm. It should be clear from the context which vector 0 is
meant.

Onto and One-to-One Transformations

The problems we have been asking about solutions to systems of linear equations can be rephrased
in terms of matrix transformations. The question about whether a system Ax = b is consistent for
any vector b is also a question about the existence of a vector x so that T (x) = b, where T is the
matrix transformation defined by T (x) = Ax.

Activity 7.2. Let T be the matrix transformation defined by T (x) = Ax where A is 1 0
0 1
0 2

 .
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(a) Find T
([

1
1

])
and T

 1
1
1

. If it is not possible to find one or both of the output

vectors, indicate why.

(b) What are the domain and codomain of T ? Why? (Recall that the domain is the space of all
input vectors, while the codomain is the space in which the output vectors are contained.)

(c) Can you find a vector x for which T (x) =

 2
3
6

? Can you find a vector x for which

T (x) =

 2
3
1

?

(d) Which b =

 a
b
c

 are the image vectors for this transformation? Is the range of T equal

to the codomain of T ? Explain.

(e) The previous question can be rephrased as a matrix equation question. We are asking
whether Ax = b is consistent for every b. How is the answer to this question related to the
pivots of A?

If T is a matrix transformation, Activity 7.2 illustrates that the range of a matrix transformation
T may not equal its codomain. In other words, there may be vectors b in the codomain of T that are
not the image of any vector in the domain of T . If it is the case for a matrix transformation T that
there is always a vector x in the domain of T such that T (x) = b for any vector b in the codomain
of T , then T is given a special name.

Definition 7.2. A matrix transformation T from Rn to Rm is onto if each b in Rm is the image of
at least one x in Rn.

So the matrix transformation T from Rn to Rm defined by T (x) = Ax is onto if the equation
Ax = b has a solution for each vector b in Rm. Since the vectors Ax are linear combinations of
the columns of A, T is onto exactly when the span of the columns of A is all of Rm. Activity 7.2
shows us that T is onto if every row of A contains a pivot.

Another question to ask about matrix transformations is how many vectors there can be that
map onto a given output vector.

Activity 7.3. Let T be the matrix transformation defined by T (x) = Ax where A is[
1 3 0
0 0 1

]
.

(a) Find T
([

1
1

])
and T

 1
1
1

. If it is not possible to find one or both of the output

vectors, indicate why.
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(b) What are the domain and codomain of T ? Why?

(c) Find T

 1
1
2

. Are there any other x’s for which T (x) is this same output vector?

(Hint: Set up an equation to solve for such x’s.)

(d) Assume more generally that for some vector b, there is a vector x so that T (x) = b. Write
this as a matrix equation to determine how many solutions this equation has. Explain. How
is the answer to this question related to the pivots of A?

The uniqueness of a solution to Ax = b is the same as saying that the matrix transformation T
defined by T (x) = Ax maps exactly one vector to b. A matrix transformation T that has the prop-
erty that every image vector is an image in exactly one way is also a special type of transformation.

Definition 7.3. A matrix transformation T from Rn to Rm is one-to-one if each b in Rm is the
image of at most one x in Rn.

So the matrix transformation T from Rn to Rm defined by T (x) = Ax is one-to-one if the
equation Ax = b has a unique solution whenever Ax = b is consistent. Since the vectors Ax are
linear combinations of the columns of A, the unique solution requirement indicates that any output
vector can be written in exactly one way as a linear combination of the columns of A. This implies
that the columns of A are linearly independent. Activity 7.3 indicates that this happens when every
column of A is a pivot column.

To summarize, if T is a matrix transformation defined by T (x) = Ax, then T is onto if every
row ofA contains a pivot, and T is one-to-one if every column ofA is a pivot column. It is important
to note the difference: being one-to-one depends on the rows of A and being onto depends on the
columns of A.

Having a matrix transformation from Rn to Rm can tell us things about m and n. For example,
when a matrix transformation from Rn to Rm is one-to-one, it means that there is a unique input
vector for every output vector. Since a matrix transformation preserves the algebraic structure of
Rn, this implies that the collection of the images of the vectors in the domain of T form a copy of
Rn inside of Rm. If we think of T as a one-to-one matrix transformation with T (x) = Ax for some
m × n matrix, then every column of A will have to be a pivot column. It follows that if there is
a one-to-one matrix transformation from Rn to Rm, we must have m ≥ n. Similarly, if a matrix
transformation T from Rn to Rm is onto, then for each b in Rm, if we select one vector in the
domain of T whose image is b, then the collection of these vectors in the domain of T is a copy of
Rm inside of Rn. So if there is an onto matrix transformation from Rn to Rm, then n ≥ m. As a
consequence, the only way a matrix transformation from Rn to Rm is both one-to-one and onto is
if n = m.

We conclude this section by adding new equivalent conditions to Theorems 5.3 and 6.7 from
Sections 5 and 6.

Theorem 7.4. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.
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(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

(5) The matrix transformation T from Rn to Rm defined by T (x) = Ax is onto.

Theorem 7.5. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.

(3) The columns of A are linearly independent.

(4) The matrix A has a pivot position in each column.

(5) The matrix transformation T from Rn to Rm defined by T (x) = Ax is one-to-one.

We will continue to add to these theorems, which will eventually give us many different but
equivalent perspectives to look at a linear algebra problem. Please keep these equivalent criteria in
mind when considering the best possible approach to a problem.

Examples

What follows are worked examples that use the concepts from this section.

Example 7.6. Let A =

 1 1 −1 −1
3 6 0 3
2 −1 −5 −8

 and let T (x) = Ax.

(a) Identify the domain of T . Explain your reasoning.

(b) Is T one-to-one. Explain.

(c) Is T onto? If yes, explain why. If no, describe the range of T as best you can, both
algebraically and graphically.

Example Solution.

(a) Since A is a 3 × 4 matrix, A has four columns. Now Ax is a linear combination of the
columns ofAwith weights from x, so x must have four entries to correspond to the columns
of A. We conclude that the domain of T is R4.

(b) Technology shows that the reduced row echelon form of A is 1 0 −2 −3
0 1 1 2
0 0 0 0

 .
SinceA contains non-pivot columns, the homogeneous systemAx = 0 has infinitely many
solutions. So T is not one-to-one. In other words, if there is a column of A that is a non-
pivot column, then A is not one-to-one.
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(c) Since the reduced row echelon form of A has rows of zeros, there will be vectors b in R3

such that the reduced row echelon form of [A b] will have a row of the form [0 00 0 c] for
some nonzero scalar c. This means that T (x) = Ax = b will have no solution and T is not
onto. In other words, if there is a row of A that does not contain a pivot, then T is not onto.

(d) To determine the vectors b =

 r
s
t

 so that T (x) = Ax = b is consistent, we row reduce

the augmented matrix [A | b]. Technology shows that an echelon form of [A b] is 1 1 −1 −1 r
0 3 3 6 s− 3r
0 0 0 0 t− 5r + s

 .
Thus, the system Ax = b is consistent if and only if −5r + s+ t = 0. We can then write
the general output vector to this system as

b =

 r
s

5r − s

 = r

 1
0
5

+ s

 0
1
−1

 ,
with r and s any scalars. Since there are two free variables, the vectors b in R3 define a
plane through the origin. Letting r = 0 and s = 1 and r = 1 and s = 0, we see that
two points that lie on this plane are (0, 1,−1) and (1, 0, 5). So the range of T is the plane
through the origin and the points (0, 1,−1) and (1, 0, 5).

Example 7.7. A matrix transformation T : R2 → R2 defined by

T

([
x
y

])
=

[
cx
y

]
is a contraction in the x direction if 0 < c < 1 and a dilation in the x direction if c > 1.

(a) Find a matrix A such that T (x) = Ax.

(b) Sketch the square S with vertices u1 =

[
0
0

]
, u2 =

[
1
0

]
, u3 =

[
1
1

]
, and u4 =

[
0
1

]
.

Determine and sketch the image of S under T if c = 2.

Example Solution.

(a) Since [
c 0
0 1

] [
x
y

]
=

[
cx
y

]
,

the matrix A =

[
c 0
0 1

]
has the property that T (x) = Ax.
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(b) We can determine the image of S under T by calculating what T does to the vertices of S.
Notice that

T (u1) =

[
2 0
0 1

] [
0
0

]
=

[
0
0

]
T (u2) =

[
2 0
0 1

] [
1
0

]
=

[
2
0

]
T (u3) =

[
2 0
0 1

] [
1
1

]
=

[
2
1

]
T (u4) =

[
2 0
0 1

] [
0
1

]
=

[
0
1

]
Since T is a linear map, the image of S under T is the polygon with vertices (0, 0), (1, 0),
(2, 1), and (0, 1) as shown in Figure 7.3. From Figure 7.3 we can see that T stretches the
figure in the x direction only by a factor of 2.

Figure 7.3: The input square S and the output T (S).

Summary

In this section we determined how to represent any matrix transformation from Rn to Rm as a
matrix transformation, and what it means for a matrix transformation to be one-to-one and onto.

• A matrix transformation is a function T : Rn → Rm defined by T (x) = Ax for some m× n
matrix A.

• A matrix transformation T from Rn to Rm satisfies

T (au + bv) = aT (u) + bT (v)

for any scalars a and b and any vectors u and v in Rn. The fact that T preserves linear
combinations is why we say that T is a linear transformation.

• An m× n matrix A defines the matrix transformation T via

T (x) = Ax.
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The domain of this transformation is Rn because the matrix-vector productAx is only defined
if x is an n× 1 vector.

• IfA is anm×nmatrix, then the codomain of the matrix transformation T defined by T (x) =
Ax is Rm. This is because the matrix-vector product Ax with x an n× 1 vector is an m× 1
vector. The range of T is the subset of the codomain of T consisting of all vectors of the form
T (x) for vectors x in the domain of T .

• A matrix transformation T from Rn to Rm is one-to-one if each b in Rm is the image of
at most one x in Rn. If T is a matrix transformation represented as T (x) = Ax, then T
is one-to-one if each column of A is a pivot column, or if the columns of A are linearly
independent.

• A matrix transformation T from Rn to Rm is onto if each b in Rm is the image of at least
one x in Rn. If T is a matrix transformation represented as T (x) = Ax, then T is onto if
each row of A contains a pivot position, or if the span of the columns of A is all of Rm.

Exercises

(1) Given matrix A =

[
1 2 1
1 0 −3

]
, write the coordinate form of the transformation T defined

by T (x) = Ax. (Note: Writing a transformation in coordinate form refers to writing the
transformation in terms of the entries of the input and output vectors.)

(2) Suppose the transformation T is defined by T (x) = Ax where

A =

 1 1 −1
2 1 1
4 1 4

 .

Determine if b =

 1
0
0

 is in the range of T . If so, find all x’s which map to b.

(3) Suppose T is a matrix transformation and

T (v1) =

[
1
2

]
, T (v2) =

[
−2

3

]
Find T (2v1 − 5v2).

(4) Given a matrix transformation defined as

T

 x1

x2

x3

 =

 2x1 − x3

−x1 + 2x2 + x3

3x2 − 4x3


determine the matrix A for which T (x) = Ax.
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(5) Suppose a matrix transformation T defined by T (x) = Ax for some unknown A matrix
satisfies

T

([
1
0

])
=

[
2
1

]
and T

([
0
1

])
=

[
−1

3

]
.

Use the matrix transformation properties to determine T (x) where x =

[
x1

x2

]
. Use the

expression for T (x) to determine the matrix A.

(6) For each of the following matrices, determine if the transformation T defined by T (x) = Ax
is onto and if T is one-to-one.

(a) A =

[
1 1 1
1 2 −3

]
(b) A =

[
1 1 2
2 2 4

]

(c) A =

 1 1 2
1 2 3
−1 1 2



(d) A =

 1 1
2 3
3 0


(7) Come up with an example of a one-to-one transformation from R3 to R4, if possible. If not,

explain why not.

(8) Come up with an example of an onto transformation from R3 to R4, if possible. If not, explain
why not.

(9) Come up with an example of a one-to-one but not onto transformation from R4 to R4, if
possible. If not, explain why not.

(10) Two students are talking about when a matrix transformation is one-to-one.

Student 1: If we have a matrix transformation, then we need to check thatAx = b
has a unique solution for every b for which Ax = b has a solution, right?

Student 2: Well, that’s the definition. Each b in the codomain has to be the image
of at most one x in the domain. So when b is in the range, corresponding to
Ax = b having a solution, then there is exactly one solution x.

Student 1: But wouldn’t it be enough to check that Ax = 0 has a unique solution?
Doesn’t that translate to the other b vectors? If there is a unique solution for one
b1, then there can’t be infinitely many solutions for another b2.

Student 2: I don’t know. It feels to me as if changing the right hand side could
change whether there is a unique solution, or infinitely many solutions, or no
solution.
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Which part of the above conversation do you agree with? Which parts need fixing?

(11) Show that if T is a matrix transformation from Rn to Rm and L is a line in Rn, then T (L),
the image of L, is a line or a single vector. (Note that a line in Rn is the set of all vectors of
the form v + cw where c is a scalar, and v,w are two fixed vectors in Rn.)

(12) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The range of a transformation is the same as the codomain of the trans-
formation.

(b) True/False The codomain of a transformation T defined by T (x) = Ax is the span
of the columns of A.

(c) True/False A one-to-one transformation is a transformation where each input has a
unique output.

(d) True/False A one-to-one transformation is a transformation where each output can
only come from a unique input.

(e) True/False If a matrix transformation from Rn to Rn is one-to-one, then it is also
onto.

(f) True/False A matrix transformation from R2 to R3 cannot be onto.

(g) True/False A matrix transformation from R3 to R2 cannot be onto.

(h) True/False A matrix transformation from R3 to R2 cannot be one-to-one.

(i) True/False If the columns of a matrix A are linearly independent, then the transfor-
mation T defined by T (x) = Ax is onto.

(j) True/False If the columns of a matrix A are linearly independent, then the transfor-
mation T defined by T (x) = Ax is one-to-one.

(k) True/False If A is an m× n matrix with n pivots, then the transformation x 7→ Ax
is onto.

(l) True/False If A is an m× n matrix with n pivots, then the transformation x 7→ Ax
is one-to-one.

(m) True/False If u is in the range of a matrix transformation T , then there is an x in the
domain of T such that T (x) = u.

(n) True/False If T is a one-to-one matrix transformation, then T (x) = 0 has a non-
trivial solution.

(o) True/False If the transformations T1 : Rm → Rn and T2 : Rn → Rp are onto, then
the transformation T2 ◦ T1 defined by T2 ◦ T1(x) = T2(T1(x)) is also onto.

(p) True/False If the transformations T1 : Rm → Rn and T2 : Rn → Rp are one-to-one,
then the transformation T2◦T1 defined by T2◦T1(x) = T2(T1(x)) is also one-to-one.
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Project: The Geometry of Matrix Transformations

In this section we will consider certain types of matrix transformations and analyze their geometry.
Much more would be needed for real computer graphics, but the essential ideas are contained in our
examples. A GeoGebra applet is available at https://www.geogebra.org/m/rh4bzxee
for you to use to visualize the transformations in this project.

Project Activity 7.1. We begin with transformations that produce the rotated dancing image in
Figure 7.1. Let R be the matrix transformation from R2 to R2 defined by

R

([
x
y

])
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
.

These matrices are the rotation matrices.

(a) Suppose θ = π
2 . Then

R

([
x
y

])
=

[
0 −1
1 0

] [
x
y

]
.

i. Find the images of u1 =

[
1
0

]
, u2 =

 √
2

2√
2

2

, and u3 =

[
0
1

]
under R.

ii. Plot the points determined by the vectors from part i. The matrix transformation R
performs a rotation. Based on this small amount of data, what would you say the
angle of rotation is for this transformation R?

(b) Now let R be the general matrix transformation defined by the matrix[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Follow the steps indicated to show that R performs a counterclockwise rotation of an angle

θ around the origin. Let P be the point defined by the vector
[
x
y

]
=

[
cos(α)
sin(α)

]
and Q

the point defined by the vector
[
w
z

]
=

[
cos(α+ θ)
sin(α+ θ)

]
as illustrated in Figure 7.4.

i. Use the angle sum trigonometric identities

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

sin(A+B) = cos(A) sin(B) + cos(B) sin(A)

to show that

w = cos(θ)x− sin(θ)y

z = sin(θ)x+ cos(θ)y.

ii. Now explain why the counterclockwise rotation around the origin by an angle θ can
be represented by left multiplication by the matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

https://www.geogebra.org/m/rh4bzxee
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α

θ

P = (x, y)

Q = (w, z)

Figure 7.4: A rotation in the plane.

Project Activity 7.1 presented the rotation matrices. Other matrices have different effects.

Project Activity 7.2. Different matrix transformations

(a) Let S be the matrix transformation from R2 to R2 defined by

S

([
x
y

])
=

[
1 0.5
0 1

] [
x
y

]
.

Determine the entries of the output vector S
([

x
y

])
and explain the action of the trans-

formation S on the dancing figure as illustrated in Figure 7.5. (The transformation S is
called a shear in the x direction.)

Figure 7.5: A dancing figure and a sheared dancing figure.

(b) Let C be the matrix transformation from R2 to R2 defined by

C

([
x
y

])
=

[
0.65 0

0 0.65

] [
x
y

]
.

Determine the entries of the output vector C
([

x
y

])
and explain the action of the trans-

formation C on the dancing figure as illustrated in Figure 7.6. (The transformation C is
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called a contraction.) How would your response change if each 0.65 was changed to 2 in
the matrix C?

Figure 7.6: A dancing figure and a contracted dancing figure.

So far we have seen specific matrix transformations perform a rotations, shears, and contrac-
tions. We can combine these, and other, matrix transformations by composition to change figures
in different ways, and to created animations of geometric figures. (As we will see later, combining
transformations needs to be done carefully in order to obtain the result we want. For example, if we
want to first rotate then translate, in what order should the matrices be applied?)
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Section 8

Matrix Operations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• Under what conditions can we add two matrices and how is the matrix sum
defined?

• Under what conditions can we multiply a matrix by a scalar and how is a
scalar multiple of a matrix defined?

• Under what conditions can we multiply two matrices and how is the matrix
product defined?

• What properties do matrix addition, scalar multiplication of matrices and
matrix multiplication satisfy? Are these properties similar to properties that
are satisfied by vector operations?

• What are two properties that make matrix multiplication fundamentally dif-
ferent than our standard product of real numbers?

• What is the interpretation of matrix multiplication from the perspective of
linear transformations?

• How is the transpose of a matrix defined?

Application: Algorithms for Matrix Multiplication

Matrix multiplication is widely used in applications ranging from scientific computing and pattern
recognition to counting paths in graphs. As a consequence, much work is being done in developing
efficient algorithms for matrix multiplication.

We will see that a matrix product can be calculated through the row-column method. Recall

143
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that the product of two 2× 2 matrices A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
is given by

AB =

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
,

This product involves eight scalar multiplications and some scalar additions. As we will see, mul-
tiplication is more computationally expensive than addition, so we will focus on multiplication. In
1969, a German mathematician named Volker Strassen showed1 that the product of two 2×2 matri-
ces can be calculated using only seven multiplications. While this is not much of an improvement,
the Strassen algorithm can be applied to larger matrices, using matrix partitions (which allow for
parallel computation), and its publication led to additional research on faster algorithms for matrix
multiplication. More details are provided later in this section.

Introduction

A vector is a list of numbers in a specified order and a matrix is an ordered array of objects. In fact,
a vector can be thought of as a matrix of size n × 1. Vectors and matrices are so alike in this way
that it would seem natural that we can define operations on matrices just as we did with vectors.

Recall that a matrix is made of rows and columns – the entries reading from left to right form
the rows of the matrix and the entries reading from top to bottom form the columns. The number of
rows and columns of a matrix is called the size of the matrix, so an m × n matrix has m rows and
n columns. If we label the entry in the ith row and jth column of a matrix A as aij , then we write
A = [aij ].

We can generalize the operations of addition and scalar multiplication on vectors to matrices
similarly. Given two matrices A = [aij ] and B = [bij ] of the same size, we define the sum A + B
by

A+B = [aij + bij ]

when the sizes of the matrices A and B match. In other words, for matrices of the same size the
matrix addition is defined by adding corresponding entries in the matrices. For example,[

1 2
−2 3

]
+

[
1 3
2 4

]
=

[
2 5
0 7

]
.

We define the scalar multiple of a matrix A = [aij ] by scalar c to be the matrix cA defined by

cA = [caij ] .

This means that we multiply each entry of the matrix A by the scalar c. As an example,

3

[
1 2
−2 3

]
=

[
3 6
−6 9

]
.

Even though we did not have a multiplication operation on vectors, we had a matrix-vector
product, which is a special case of a matrix-matrix product since a vector is a matrix with one col-
umn. However, generalizing the matrix-vector product to a matrix-matrix product is not immediate

1Strassen, Volker, Gaussian Elimination is not Optimal, Number. Math. 13, p. 354-356, 1969
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as it is not immediately clear what we can do with the other columns. We will consider this question
in this section.

Note that all of the matrix operations can be performed on a calculator. After entering each
matrix in the calculator, just use +, − and × operations to find the result of the matrix operation.
(Just for fun, try using ÷ with matrices to see if it will work.)

Preview Activity 8.1.

(1) Pick three different varying sizes of pairs of A,B matrices which can be added. For each
pair:

(a) Find the matrices A+B and B +A.

(b) How are the two matrices A + B and B + A related? What does this tell us about
matrix addition?

(2) Let A =

[
1 0
−2 8

]
, B =

[
1 1
3 4

]
, and C =

[
0 −5
1 6

]
. Determine the entries of the

matrix A+ 2B − 7C.

(3) Now we turn to multiplication of matrices. Our first goal is to find out what conditions we
need on the sizes of matrices A and B if the matrix-matrix product AB is defined and what
the size of the resulting product matrix is. We know the condition and the size of the result
in the special case of B being a vector, i.e., a matrix with one column. So our conjectures for
the general case should match what we know in the special case.

In each part of this problem, use any appropriate tool (e.g., your calculator, Maple, Math-
ematica, Wolfram|Alpha) to determine the matrix product AB, if it exists. If you obtain a
product, write it down and explain how its size is related to the sizes of A and B. If you
receive an error, write down the error and guess why the error occurred and/or what it means.

(a) A =

[
1 2 0
0 1 1

]
and B =

[
3 5 0
0 −2 1

]

(b) A =

[
1 2 0
0 1 1

]
and B =

 3 0
5 −2
0 1



(c) A =

[
1 2
3 4

]
and B =

 1 1 1
1 0 1
0 2 0



(d) A =


1 2
3 4
5 6
7 8

 and B =

[
1 2 3
−1 1 1

]

(e) Make a guess for the condition on the sizes of two matrices A,B for which the
product AB is defined. How is the size of the product matrix related to the sizes of
A and B?
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(4) The final matrix products, when defined, in problem 3 might seem unrelated to the individual
matrices at first. In this problem, we will uncover this relationship using our knowledge of
the matrix-vector product.

Let A =

[
3 −1
−2 3

]
and B =

[
0 2 1
1 3 2

]
.

(a) Calculate AB using any tool.

(b) Using the matrix-vector product, calculate Ax where x is the first column (i.e., cal-

culate A
[
0
1

]
), and then the second column of B (i.e., calculate A

[
2
3

]
), and then the

third column of B (i.e., calculate A
[
1
2

]
). Do you notice these output vectors within

AB?

(c) Describe as best you can a definition of AB using the matrix-vector product.

Properties of Matrix Addition and Multiplication by Scalars

Just as we were able to define an algebra of vectors with addition and multiplication by scalars, we
can define an algebra of matrices. We will see that the properties of these operations on matrices
are immediate generalizations of the properties of the operations on vectors. We will then see how
the matrix product arises through the connection of matrices to linear transformations. Finally,
we define the transpose of a matrix. The transpose of a matrix will be useful in applications such
as graph theory and least-squares fitting of curves, as well as in advanced topics as inner product
spaces and the dual space of a vector space.

We learned in Preview Activity 8.1 that we can add two matrices of the same size together by
adding corresponding entries and we can multiply any matrix by a scalar by multiplying each entry
of the matrix by that scalar. More generally, if A = [aij ] and B = [bij ] are m× n matrices and c is
any scalar, then

A+B = [aij + bij ] and cA = [caij ].

As we have done each time we have introduced a new operation, we ask what properties the
operation has. For example, you determined in Preview Activity 8.1 that addition of matrices is
a commutative operation. More specifically, for every two m × n matrices A and B, A + B =
B + A. We can use similar arguments to verify the following properties of matrix addition and
multiplication by scalars. Notice that these properties are very similar to the properties of addition
and scalar multiplication of vectors we discussed earlier. This should come as no surprise since the
n-dimensional vectors are n × 1 matrices. In a strange twist, we will see that matrices themselves
can be considered as vectors when we discuss vector spaces in a later section.

Theorem 8.1. Let A, B, and C be m× n matrices and let a and b be scalars. Then

(1) A+B = B +A (this property tells us that matrix addition is commutative)

(2) (A+B) + C = A+ (B + C) (this property tells us that matrix addition is associative)
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(3) The m×n matrix 0 whose entries are all 0 has the property that A+ 0 = A. The matrix 0 is
called the zero matrix (It is generally clear from the context what the size of the 0 matrix is.).

(4) The scalar multiple (−1)A of the matrixA has the property that (−1)A+A = 0. The matrix
(−1)A = −A is called the additive inverse of the matrix A.

(5) (a+ b)A = aA+ bA (this property tells us that scalar multiplication of matrices distributes
over scalar addition)

(6) a(A+B) = aA+ aB (this property tells us that scalar multiplication of matrices distributes
over matrix addition)

(7) (ab)A = a(bA)

(8) 1A = A.

Later on, we will see that these properties define the set of all m×n matrices as a vector space.
These properties just say that, regarding addition and multiplication by scalars, we can manipulate
matrices just as we do real numbers. Note, however, we have not yet defined an operation of
multiplication on matrices. That is the topic for the next section.

A Matrix Product

As we saw in Preview Activity 8.1, a matrix-matrix product can be found in a way which makes
use of and also generalizes the matrix-vector product.

Definition 8.2. The matrix product of a k×mmatrixA and anm×nmatrixB = [b1 b2 · · · bn]
with columns b1, b2, . . ., bn is the k × n matrix

[Ab1 Ab2 · · · Abn].

We now consider the motivation behind this definition by thinking about the matrix transfor-
mations corresponding to each of the matrices A,B and AB. Recall that left multiplication by an
m×nmatrixB defines a transformation T from Rn to Rm by T (x) = Bx. The domain of T is Rn
because the number of components of x have to match the number of entries in each of row of B in
order for the matrix-vector product Bx to be defined. Similarly, a k ×m matrix A defines a trans-
formation A from Rm to Rk. Since transformations are functions, we can compose them as long
as the output vectors of the inside transformation lie in the domain of the outside transformation.
Therefore if T is the inside transformation and S is the outside transformation, the composition
S ◦ T is defined. So a natural question to ask is if we are given

• a transformation T from Rn to Rm where T (x) = Bx for an m× n matrix B and

• a transformation S from Rm to Rk with S(y) = Ay for some k ×m matrix A,

is there a matrix that represents the transformation S ◦ T defined by (S ◦ T )(x) = S(T (x))? We
investigate this question in the next activity in the special case of a 2 × 3 matrix A and a 3 × 2
matrix B.
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Activity 8.1. In this activity, we look for the meaning of the matrix product from a transformation
perspective. Let S and T be matrix transformations defined by

S(y) = Ay and T (x) = Bx,

where

A =

[
1 2 0
0 1 1

]
and B =

 3 0
5 −2
0 1

 .
(a) What are the domains and codomains of S and T ? Why is the composite transformation

S ◦ T defined? What is the domain of S ◦ T ? What is the codomain of S ◦ T ? (Recall that
S ◦ T is defined by (S ◦ T )(x) = S(T (x)), i.e., we substitute the output T (x) as the input
into the transformation S.)

(b) Let x =

[
x
y

]
. Determine the components of T (x).

(c) Find the components of S ◦ T (x) = S(T (x)).

(d) Find a matrix C so that S(T (x)) = Cx.

(e) Use the definition of composition of transformations and the definitions of the S and T
transformations to explain why it is reasonable to define AB to be the matrix C. Does the
matrix C agree with the

AB =

[
13 −4
5 −1

]
you found in Preview Activity 8.1 using technology?

We now consider this result in the general case of a k ×m matrix A and an m × n matrix B,
where A and B define matrix transformations S and T , respectively. In other words, S and T are
matrix transformations defined by S(x) = Ax and T (x) = Bx. The domain of S is Rm and the
codomain is Rk. The domain of T is Rn and the codomain is Rm. The composition S ◦T is defined
because the output vectors of T are in Rm and they lie in the domain of S. The domain of S ◦ T
is the same as the domain of T since the input vectors first go through the T transformation. The
codomain of S ◦ T is the same as the codomain of S since the final output vectors are produced by
applying the S transformation.

Let us see how we can obtain the matrix corresponding to the transformation S ◦ T . Let B =

[b1 b2 · · · bn], where bj is the jth column of B, and let x =


x1

x2
...
xn

. Recall that the matrix

vector product Bx is the linear combination of the columns of B with the corresponding weights
from x. So

T (x) = Bx = x1b1 + x2b2 + · · ·+ xnbn.

Note that each of the bj vectors are in Rm since B is an m × n matrix. Therefore, each of these
vectors can be multiplied by matrix A and we can evaluate S(Bx). Therefore, S ◦ T is defined and

(S ◦ T )(x) = S(T (x)) = A(Bx) = A (x1b1 + x2b2 + · · ·+ xnbn) . (8.1)
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The properties of matrix-vector products show that

A (x1b1 + x2b2 + · · ·+ xnbn) = x1Ab1 + x2Ab2 + · · ·+ xnAbn. (8.2)

This expression is a linear combination of Abi’s with xi’s being the weights. Therefore, if we let
C be the matrix with columns Ab1, Ab2, . . ., Abn, that is

C = [Ab1 Ab2 · · · Abn],

then
x1Ab1 + x2Ab2 + · · ·+ xnAbn = Cx (8.3)

by definition of the matrix-vector product. Combining equations (8.1), (8.2), and (8.3) shows that

(S ◦ T )(x) = Cx

where C = [Ab1 Ab2 · · · Abn].

Also note that since T (x) = Bx and S(y) = Ay, we find

(S ◦ T )(x) = S(T (x)) = S(Bx) = A(B(x)) . (8.4)

Since the matrix representing the transformation S ◦ T is the matrix

[Ab1 Ab2 · · · Abn]

where b1, b2, . . ., bn are the columns of the matrix B, it is natural to define AB to be this matrix
in light of equation (8.4).

Matrix multiplication has some properties that are unfamiliar to us as the next activity illustrates.

Activity 8.2. Let A =

[
3 −1
−2 6

]
, B =

[
0 2
1 3

]
, C =

[
1 1
1 1

]
, D =

[
3 −3
−3 3

]
and E =

[
1 0
0 1

]
.

(a) Find the indicated products (by hand or using a calculator).
AB BA DC AC BC AE EB

(b) Is matrix multiplication commutative? Explain.

(c) Is there an identity element for matrix multiplication? In other words, is there a matrix I
for which AI = IA = A for any matrix A? Explain.

(d) If a and b are real numbers with ab = 0, then we know that either a = 0 or b = 0. Is this
same property true with matrix multiplication? Explain.

(e) If a, b, and c are real numbers with c 6= 0 and ac = bc, we know that a = b. Is this same
property true with matrix multiplication? Explain.

As we saw in Activity 8.2, there are matrices A,B for which AB 6= BA. On the other hand,
there are matrices for which AB = BA. For example, this equality will always hold for a square
matrix A and if B is the identity matrix of the same size. It also holds if A = B. If the equality
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AB = BA holds, we say that matrices A and B commute. So the identity matrix commutes with
all square matrices of the same size and every matrix A commutes with Ak for any power k.

There is an alternative method of calculating a matrix product that we will often use that we
illustrate in the next activity. This alternate version depends on the product of a row matrix with a

vector. Suppose A = [a1 a2 · · · an] is a 1 × n matrix and x =


x1

x2
...
xn

 is an n × 1 vector. Then

the product Ax is the 1× 1 vector

[a1 a2 · · · an]


x1

x2
...
xn

 = [a1x1 + a2x2 + · · ·+ anxn].

In this situation, we usually identify the 1× 1 matrix with its scalar entry and write

[a1 a2 · · · an] ·


x1

x2
...
xn

 = a1x1 + a2x2 + · · ·+ anxn. (8.5)

The product · in (8.5) is called the scalar or dot product of [a1 a2 · · · an] with


x1

x2
...
xn

.

Activity 8.3. Let A =

 1 −1 2
3 0 −4
2 −5 1

 and B =

 4 −2
6 0
1 3

.

Let ai be the ith row of A and bj the jth column of B. For example, a1 = [ 1 − 1 2 ] and

b2 =

 −2
0
3

.

Calculate the entries of the matrix C, where

C =

 a1 · b1 a1 · b2

a2 · b1 a2 · b2

a3 · b1 a3 · b2

 ,
where ai · bj refers to the scalar product of row i of A with column j of B.2 Compare your result
with the result of AB calculated via the product of A with the columns of B.

2Recall from Exercise 5 of Section 5 that the scalar product u ·v of a 1×n matrix u = [u1 u2 . . . un] and an n× 1

vector v =


v1
v2
...
vn

 is u · v = u1v1 + u2v2 + u3v3 + · · ·+ unvn.
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Activity 8.3 shows that these is an alternate way to calculate a matrix product. To see how this
works in general, let A = [aij ] be a k ×m matrix and B = [b1 b2 · · · bn] an m × n matrix. We
know that

AB = [Ab1 Ab2 · · · Abn].

Now let r1, r2, . . ., rk be the rows of A so that A =


r1

r2
...
rk

. First we argue that if x =


x1

x2
...
xm

,

then

Ax =


r1 · x
r2 · x

...
rk · x

 .
This is the scalar product (or dot product) definition of the matrix-vector product.

To show that this definition gives the same result as the linear combination definition of matrix-
vector product, we first let A = [c1 c2 · · · cm], where c1, c2, . . ., cm are the columns of A. By our
linear combination definition of the matrix-vector product, we obtain

Ax = x1c1 + x2c2 + · · ·+ xmcm

= x1


a11

a21
...
ak1

+ x2


a12

a22
...
ak2

+ · · ·+ xm


a1m

a2m
...

akm



=


a11x1 + a12x2 + · · ·+ a1mxm
a21x1 + a22x2 + · · ·+ a2mxm

...
ak1x1 + ak2x2 + · · ·+ akmxm



=


r1 · x
r2 · x

...
rk · x

 .
Therefore, the above work shows that both linear combination and scalar product definitions give
the same matrix-vector product.

Applying this to the matrix product AB defined in terms of the matrix-vector product, we see
that

Abj =


r1 · bj
r2 · bj

...
rk · bj

 .
So the i, jth entry of the matrix product AB is found by taking the scalar product of the ith row of
A with the jth column of B. In other words,

(AB)ij = ri · bj
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where ri is the ith row of A and bj is the jth column of B.

Properties of Matrix Multiplication

Activity 8.2 shows that we must be very careful not to assume that matrix multiplication behaves
like multiplication of real numbers. However, matrix multiplication does satisfy some familiar
properties. For example, we now have an addition and multiplication of matrices under certain
conditions, so we might ask if matrix multiplication distributes over matrix addition. To answer
this question we take two arbitrary k × m matrices A and B and an arbitrary m × n matrix
C = [c1 c2 · · · cn]. Then

(A+B)C = [(A+B)c1 (A+B)c2 · · · (A+B)cn]

= [Ac1 +Bc1 Ac2 +Bc2 · · · Acn +Bcn]

= [Ac1 Ac2 · · · Acn] + [Bc1 Bc2 · · · Bcn]

= AC +BC.

Similar arguments can be used to show the following properties of matrix multiplication.

Theorem 8.3. Let A, B, and C be matrices of the appropriate sizes for all sums and products to
be defined and let a be a scalar. Then

(1) (AB)C = A(BC) (this property tells us that matrix multiplication is associative)

(2) (A + B)C = AC + BC (this property tells us that matrix multiplication on the right dis-
tributes over matrix addition)

(3) A(B+C) = AB+AC (this property tells us that matrix multiplication on the left distributes
over matrix addition)

(4) There is a square matrix In with the property that AIn = A or InA = A for whichever
product is defined.

(5) a(AB) = (aA)B = A(aB)

We verified the second part of this theorem and will assume that all of the properties of this
theorem hold. The matrix In introduced in Theorem 8.3 is called the (multiplicative) identity matrix.
We usually omit the word multiplicative and refer to the In simply as the identity matrix. This does
not cause any confusion since we refer to the additive identity matrix as simply the zero matrix.

Definition 8.4. Let n be a positive integer. The n× n identity matrix In is the matrix In = [aij ],
where aii = 1 for each i and aij = 0 if i 6= j.

We also write the matrix In as

In =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

. . .
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1


.
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The matrix In has the property that for any n× n matrix A,

AIn = InA = A .

so In is a multiplicative identity in the set of all n × n matrices. More generally, for an m × n
matrix A,

AIn = ImA = A .

The Transpose of a Matrix

One additional operation on matrices is the transpose. The transpose of a matrix occurs in many
useful formulas in linear algebra and in applications of linear algebra.

Definition 8.5. The transpose of an m× n matrix A = [aij ] is the n×m matrix AT whose i, jth
entry is aji.

Written out, the transpose of the m× n matrix

A =


a11 a12 · · · a1n−1 a1n

a21 a22 · · · a2n−1 a2n
...

. . .
...

am1 am2 · · · amn−1 amn


is the n×m matrix

AT =


a11 a21 · · · am−11 am1

a12 a22 · · · am−12 am2
...

. . .
...

a1n a2n · · · am−1n amn

 .
In other words, the transpose of a matrix A is the matrix AT whose rows are the columns of A.
Alternatively, the transpose of A is the matrix AT whose columns are the rows of A. We can also
view the transpose of A as the reflection of A across its main diagonal, where the diagonal of a
matrix A = [aij ] consists of the entries of the form [aii].

Activity 8.4.

(a) Find the transpose of each of the indicated matrices.[
1 2 3 4
5 6 7 8

]  1
−1

0

  1 2
4 −3
0 −1


(b) Find the transpose of the new matrix for each part above. What can you conjecture based

on your results?

(c) There are certain special types of matrices that are given names.

Definition 8.6. Let A be a square matrix whose ijth entry is aij .

(1) The matrix A is a diagonal matrix if aij = 0 whenever i 6= j.
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(2) The matrix A is a symmetric matrix if AT = A.

(3) The matrix A is an upper triangular if aij = 0 whenever i > j.

(4) The matrix A is a lower triangular if aij = 0 whenever i < j.

i. Find an example of a diagonal matrix A. What can you say about AT?

ii. Find an example of a non-diagonal symmetric matrix B. If BT = B, must B be a
square matrix?

iii. Find an example of an upper triangular matrix C. What kind of a matrix is CT?

We will see later that diagonal matrices are important in that their powers are easy to calculate.
Symmetric matrices arise frequently in applications such as in graph theory as adjacency matri-
ces and in quantum mechanics as observables, and have many useful properties including being
diagonalizable and having real eigenvalues, as we will also see later.

Properties of the Matrix Transpose

As with every other operation, we want to understand what properties the matrix transpose has.
Properties of transposes are shown in the following theorem.

Theorem 8.7. Let A and B be matrices of the appropriate sizes and let a be a scalar. Then

(1)
(
AT
)T

= A

(2) (A+B)T = AT +BT

(3) (AB)T = BTAT

(4) (aA)T = aAT

The one property that might seem strange is the third one. To understand this property, suppose
A is an m× n matrix and B an n× k matrix so that the product AB is defined. We will argue that
(AB)T = BTAT by comparing the i, jth entry of each side.

• First notice that the i, jth entry of (AB)T is the j, ith entry of AB. The j, ith entry of AB is
found by taking the scalar product of the jth row of A with the ith column of B. Thus,

the i, jth entry of (AB)T is the scalar product of the jth row of A with the ith column of B.

• The i, jth entry of BTAT is the scalar product of the ith row of BT with the jth column of
AT. But the ith row of BT is the ith column of B and the jth column of AT is the jth row of
A. So

the i, jth entry of BTAT is the scalar product of the jth row of A with the ith column of B.

Since the two matrices (AB)T and BTAT have the same size and same corresponding entries, they
are the same matrix.
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Examples

What follows are worked examples that use the concepts from this section.

Example 8.8. Let

A =

 1 2 0 1
3 0 −4 5
7 6 −1 0

 B =

 −2 4 −3
5 1 9
1 1 −2



C =

 0 −1 6
3 −2 5
1 0 4

 D =

 10 −4
5 2
8 −1



E =

 1 0
4 −3
5 −1

 and F =


−2 1 5

6 3 −8
1 0 −1
7 0 −5

 .
Determine the results of the following operations, if defined. If not defined, explain why.

(a) AF (b) A(BC) (c) (BC)A

(d) (B + C)D (e) DTE (f)
(
AT + F

)T
Example Solution.

(a) Since A is a 3× 4 matrix and F is a 4× 3 matrix, the number of columns of A equals the
number of rows of F and the matrix produce AF is defined. Recall that if F = [f1 f2 f3],
where f1, f2, f3 are the columns of F , then AF = [Af1 Af2 Af3]. Recall also that Af1 is
the linear combination of the columns of A with weights from f1, so

Af1 =

 1 2 0 1
3 0 −4 5
7 6 −1 0



−2

6
1
7


= (−2)

 1
3
7

+ (6)

 2
0
6

+ (1)

 0
−4
−1

+ (7)

 1
5
0


=

 −2 + 12 + 0 + 7
−6 + 0− 4 + 35
−14 + 36− 1 + 0


=

 17
25
21

 ,
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Af2 =

 1 2 0 1
3 0 −4 5
7 6 −1 0




1
3
0
0


= (1)

 1
3
7

+ (3)

 2
0
6

+ (0)

 0
−4
−1

+ (0)

 1
5
0


=

 1 + 6 + 0 + 0
3 + 0 + 0 + 0
7 + 18 + 0 + 0


=

 7
3
25

 ,
and

Af3 =

 1 2 0 1
3 0 −4 5
7 6 −1 0




5
−8
−1
−5


= (5)

 1
3
7

− (8)

 2
0
6

− (1)

 0
−4
−1

− (5)

 1
5
0


=

 5− 16− 0− 5
15− 0 + 4− 25
35− 48 + 1− 0


=

 −16
−6
−12

 .

So AF =

 17 7 −16
25 3 −6
21 25 −12

.

Alternatively, if A =


a1

a2

a3

a4

, then the matrix product AF is the matrix whose ij entry is

ai · fj . Using this method we have

AF =

 a1 · f1 a1 · f2 a1 · f3
a2 · f1 a2 · f2 a2 · f3
a3 · f1 a3 · f2 a3 · f3

 .
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Now

a1 · f1 = (1)(−2) + (2)(6) + (0)(1) + (1)(7) = 17

a1 · f2 = (1)(1) + (2)(3) + (0)(0) + (1)(0) = 7

a1 · f3 = (1)(5) + (2)(−8) + (0)(−1) + (1)(−5) = −16

a2 · f1 = (3)(−2) + (0)(6) + (−4)(1) + (5)(7) = 25

a2 · f2 = (3)(1) + (0)(3) + (−4)(0) + (5)(0) = 3

a2 · f3 = (3)(5) + (0)(−8) + (−4)(−1) + (5)(−5) = −6

a3 · f1 = (7)(−2) + (6)(6) + (−1)(1) + (0)(7) = 21

a3 · f2 = (7)(1) + (6)(3) + (−1)(0) + (0)(0) = 25

a3 · f3 = (7)(5) + (6)(−8) + (−1)(−1) + (0)(−5) = −12,

so AF =

 17 7 −16
25 3 −6
21 25 −12

.

(b) Since BC is a 3× 3 matrix but A is 3× 4, the number of columns of A is not equal to the
number of rows of BC. We conclude that A(BC) is not defined.

(c) Since BC is a 3 × 3 matrix and A is 3 × 4, the number of columns of BC is equal to
the number of rows of A. Thus, the quantity (BC)A is defined. First we calculate BC

using the dot product of the rows of B with the columns of C. Letting B =

 b1

b2

b3

 and

C = [c1 c2 c3], where b1, b2, and b3 are the rows of B and c1, c2, and c3 are the columns
of C, we have

BC =

 b1 · c1 b1 · c2 b1 · c3

b2 · c1 b2 · c2 b2 · c3

b3 · c1 b3 · c2 b3 · c3

 .
Now

b1 · c1 = (−2)(0) + (4)(3) + (−3)(1) = 9

b1 · c1 = (−2)(−1) + (4)(−2) + (−3)(0) = −6

b1 · c1 = (−2)(6) + (4)(5) + (−3)(4) = −4

b1 · c1 = (5)(0) + (1)(3) + (9)(1) = 12

b1 · c1 = (5)(−1) + (1)(−2) + (9)(0) = −7

b1 · c1 = (5)(6) + (1)(5) + (9)(4) = 71

b1 · c1 = (1)(0) + (1)(3) + (−2)(1) = 1

b1 · c1 = (1)(−1) + (1)(−2) + (−2)(0) = −3

b1 · c1 = (1)(6) + (1)(5) + (−2)(4) = 3,

so BC =

 9 −6 −4
12 −7 71
1 −3 3

. If BC =

 r1

r2

r3

 and A = [s1 s2 s3 s4], where r1, r2, and
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r3 are the rows of BC and s1, s2, s3, and s4 are the columns of A, then

(BC)A =

 r1 · s1 r1 · s2 r1 · r3 r1 · s4

r2 · s1 r2 · s2 r2 · s3 r2 · s4

r3 · s1 r3 · s2 r3 · s3 r3 · s4

 .
Now

r1 · s1 = (9)(1) + (−6)(3) + (−4)(7) = −37

r1 · s2 = (9)(2) + (−6)(0) + (−4)(6) = −6

r1 · s3 = (9)(0) + (−6)(−4) + (−4)(−1) = 28

r1 · s4 = (9)(1) + (−6)(5) + (−4)(0) = −21

r2 · s1 = (12)(1) + (−7)(3) + (71)(7) = 488

r2 · s2 = (12)(2) + (−7)(0) + (71)(6) = 450

r2 · s3 = (12)(0) + (−7)(−4) + (71)(−1) = −43

r2 · s4 = (12)(1) + (−7)(5) + (71)(0) = −23

r3 · s1 = (1)(1) + (−3)(3) + (3)(7) = 13

r3 · s2 = (1)(2) + (−3)(0) + (3)(6) = 20

r3 · s3 = (1)(0) + (−3)(−4) + (3)(−1) = 9

r3 · s4 = (1)(1) + (−3)(5) + (3)(0) = −14,

so (BC)A =

 −37 −6 28 −21
488 450 −43 −23
13 20 9 −14

.

(d) Since B and C are both 3× 3 matrices, their sum is defined and is a 3× 3 matrix. Because
D is 3 × 2 matrix, the number of columns of B + C is equal to the number of rows of
D. Thus, the quantity (B + C)D is defined and, using the row-column method of matrix
multiplication as earlier,

(B + C)D =

 −2 4 −3
5 1 9
1 1 −2

+

 0 −1 6
3 −2 5
1 0 4

 10 −4
5 2
8 −1


=

 −2 + 0 4− 1 −3 + 6
5 + 3 1− 2 9 + 5
1 + 1 1 + 0 −2 + 4

 10 −4
5 2
8 −1


=

 −2 3 3
8 −1 14
2 1 2

 10 −4
5 2
8 −1


=

 19 11
187 −48
41 −8

 .
(e) Since DT is a 2 × 3 matrix and E is 3 × 2, the number of columns of DT is equal to the
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number of rows of E. Thus, DTE is defined and

DTE =

 10 −4
5 2
8 −1

T  1 0
4 −3
5 −1


=

[
10 5 8
−4 2 −1

] 1 0
4 −3
5 −1


=

[
70 −23
−1 −5

]
.

(f) The fact that A is a 3 × 4 matrix means that AT is a 4 × 3 matrix. Since F is also a
4 × 3 matrix, the sum AT + F is defined. The transpose of any matrix is also defined, so(
AT + F

)T is defined and

(
AT + F

)T
=


 1 2 0 1

3 0 −4 5
7 6 −1 0

T

+


−2 1 5

6 3 −8
1 0 −1
7 0 −5




T

=




1 3 7
2 0 6
0 −4 −1
1 5 0

+


−2 1 5

6 3 −8
1 0 −1
7 0 −5




T

=




1− 2 3 + 1 7 + 5
2 + 6 0 + 3 6− 8
0 + 1 −4 + 0 −1− 1
1 + 7 5 + 0 0− 5




T

=



−1 4 12

8 3 −2
1 −4 −2
8 5 −5




T

=

 −1 8 1 8
4 3 −4 5

12 −2 −2 −5

 .
Example 8.9. Let A =

[
2 −1
7 −2

]
and B =

[
4 6
−3 5

]
.

(a) Determine the matrix sum A+B. Then use this sum to calculate (A+B)2.

(b) Now calculate (A + B)2 in a different way. Use the fact that matrix multiplication dis-
tributes over matrix addition to expand (like foiling) (A + B)2 into a sum of matrix prod-
ucts. The calculate each summand and add to find (A + B)2. You should obtain the same
result as part (a). If not, what could be wrong?

Example Solution.
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(a) Adding corresponding terms shows that A+B =

[
6 5
4 3

]
. Squaring this sum yields the

result (A+B)2 =

[
56 45
36 29

]
.

(b) Expanding (A+B)2 (remember that matrix multiplication is not commutative) gives us

(A+B)2 = (A+B)(A+B)

= A2 +AB +BA+B2

=

[
−3 0

0 −3

]
+

[
11 7
34 32

]
+

[
50 −16
29 −7

]
+

[
−2 54
−27 7

]
=

[
56 45
36 29

]

just as in part (a). If instead you obtained the matrix
[

17 68
41 68

]
you likely made the

mistake of equating (A+B)2 with A2 + 2AB +B2. These two matrices are not equal in
general, because we cannot say that AB is equal to BA.

Summary

In this section we defined a matrix sum, scalar multiples of matrices, the matrix product, and the
transpose of a matrix.

• The sum of two m× n matrices A = [aij ] and B = [bij ] is the m× n matrix A+ B whose
i, jth entry is aij + bij .

• If A = [aij ] is an m × n matrix, the scalar multiple kA of A by the scalar k is the m × n
matrix whose i, jth entry is kaij .

• If A is a k ×m matrix and B = [b1 b2 · · · bn] is an m× n matrix, then the matrix product
AB of the matrices A and B is the k × n matrix

[Ab1 Ab2 · · · Abn].

The matrix product is defined in this way so that the matrix of a composite S ◦ T of linear
transformations is the product of matrices of S and T .

• An alternate way of calculating the product of an k ×m matrix A with rows r1, r2, . . ., rk
and an m × n matrix B with columns b1, b2, . . ., bn is that the product AB is the k × n
matrix whose i, jth entry is ri · bj .

• Matrix multiplication does not behave as the standard multiplication on real numbers. For
example, we can have a product of two non-zero matrices equal to the zero matrix and there
is no cancellation law for matrix multiplication.

• The transpose of an m×n matrix A = [aij ] is the n×m matrix AT whose i, jth entry is aji.
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Exercises

(1) Calculate AB for each of the following matrix pairs by hand in two ways.

(a) A =

 1 0
0 1
0 0

, B =

[
a b
c d

]

(b) A =
[

1 0 −1
]
, B =

 1 2
2 3
3 4


(2) For each of the following A matrices, find all 2× 2 matrices B =

[
a b
c d

]
which commute

with the given A. (Two matrices A and B commute with each other if AB = BA.)

(a) A =

[
2 0
0 2

]
(b) A =

[
2 0
0 3

]
(c) A =

[
0 1
0 0

]
(3) Find all possible, if any, X matrices satisfying each of the following matrix equations.

(a)
[

1 2
0 2

]
X =

[
0 1
0 0

]
(b)

[
1 −2
−2 4

]
X =

[
0 1
0 0

]
(c)

[
1 −2
−2 4

]
X =

[
0 1
0 −2

]
(4) For each of the following A matrices, compute A2 = AA,A3 = AAA,A4. Use your results

to conjecture a formula forAm. Interpret your answer geometrically using the transformation
interpretation.

(a) A =

[
2 0
0 3

]
(b) A =

[
1 1
0 1

]
(c) A =

[
0 −1
1 0

]
(5) If Av = 2v for unknown A matrix and v vector, determine an expression for A2v, A3v, . . . ,

Amv.

(6) If Av = 2v and Au = 3u, find an expression for Am(av + bu) in terms of v and u.

(7) A matrix A is a nilpotent matrix if Am = 0, i.e., Am is the zero matrix, for some positive
integer m. Explain why the matrices

A =

[
0 a
0 0

]
, B =

 0 a b
0 0 c
0 0 0


are nilpotent matrices.

(8) Suppose A is an n × n matrix for which A2 = 0. Show that there is a matrix B for which
(In +A)B = In where In is the identity matrix of size n.
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(9) Let A, B, and C be m× n matrices and let a and b be scalars. Verify Theorem 8.1. That is,
show that

(a) A+B = B +A

(b) (A+B) + C = A+ (B + C)

(c) The m× n matrix 0 whose entries are all 0 has the property that A+ 0 = A.

(d) The scalar multiple (−1)A of the matrix A has the property that (−1)A+A = 0.

(e) (a+ b)A = aA+ bA

(f) a(A+B) = aA+ aB

(g) (ab)A = a(bA)

(h) 1A = A.

(10) Let A, B, and C be matrices of the appropriate sizes for all sums and products to be defined
and let a be a scalar. Verify the remaining parts of Theorem 8.3. That is, show that

(a) (AB)C = A(BC)

(b) A(B + C) = AB +AC

(c) There is a square matrix In with the property that AIn = A or InA = A for
whichever product is defined.

(d) a(AB) = (aA)B = A(aB)

(11) Let A = [aij ] and B = [bij ] be matrices of the appropriate sizes, and let a be a scalar. Verify
the remaining parts of Theorem 8.7. That is, show that

(a)
(
AT
)T

= A

(b) (A+B)T = AT +BT

(c) (aA)T = aAT

(12) The matrix exponential is an important tool in solving differential equations. Recall from
calculus that the Taylor series expansion for ex centered at x = 0 is

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · ,

and that this Taylor series converges to ex for every real number x. We extend this idea to
define the matrix exponential eA for any square matrix A with real entries as

eA =
∞∑
n=0

1

n!
An = In +A+

1

2!
A2 +

1

3!
A3 + · · ·

We explore this idea with an example. Let B =

[
2 0
0 −1

]
.
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(a) Calculate B2, B3, B4. Explain why Bn =

[
2n 0
0 (−1)n

]
for any positive integer

n.

(b) Show that I2 +B +B2 +B3 +B4 is equal to 1 + 2 + 22

2 + 23

3! + 24

4! 0

0 1 + (−1) + (−1)2

2 + (−1)3

3! + (−1)4

4!

 .

(c) Explain why eB =

 e2 0

0 e−1

.

(13) Show that if A and B are 2× 2 rotation matrices, then AB is also a 2× 2 rotation matrix.

(14) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, assume that matrices are of the appropriate sizes so that any matrix
sums or products are defined.

(a) True/False For any three matrices A,B,C with A 6= 0, AB = AC implies B = C.

(b) True/False For any three matrices A,B,C with A 6= 0, AB = CA implies B = C.

(c) True/False If A2 is the zero matrix, then A itself is the zero matrix.

(d) True/False If AB = BA for every n× n matrix B, then A is the identity matrix In.

(e) True/False If matrix products AB and BA are both defined, then A and B are both
square matrices of the same size.

(f) True/False If x1 is a solution for Ax = b1 (i.e., that Ax1 = b1) and x2 is a solution
for Bx = b2, then x1 + x2 is a solution for (A+B)x = b1 + b2.

(g) True/False If B is an m×n matrix with two equal columns, then the matrix AB has
two equal columns for every k ×m matrix.

(h) True/False If A2 = I2, then A = −I2 or A = I2.

Project: Strassen’s Algorithm and Partitioned Matrices

Strassen’s algorithm is an algorithm for matrix multiplication that can be more efficient than the
standard row-column method. To understand this method, we begin with the 2× 2 case which will
highlight the essential ideas.

Project Activity 8.1. We first work with the 2× 2 case.

(a) Let A = [aij ] =

[
1 2
3 4

]
and B = [bij ] =

[
5 6
7 8

]
.

i. Calculate the matrix product AB.
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ii. Rather than using eight multiplications to calculate AB, Strassen came up with the
idea of using the following seven products:

h1 = (a11 + a22)(b11 + b22)

h2 = (a21 + a22)b11

h3 = a11(b12 − b22)

h4 = a22(b21 − b11)

h5 = (a11 + a12)b22

h6 = (a21 − a11)(b11 + b12)

h7 = (a12 − a22)(b21 + b22).

Calculate h1 through h7 for the given matricesA andB. Then calculate the quantities

h1 + h4 − h5 + h7, h3 + h5, h2 + h4, and h1 + h3 − h2 + h6.

What do you notice?

(b) Now we repeat part (a) in general. Suppose we want to calculate the matrix product AB

for arbitrary 2× 2 matrices A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
.

Let

h1 = (a11 + a22)(b11 + b22)

h2 = (a21 + a22)b11

h3 = a11(b12 − b22)

h4 = a22(b21 − b11)

h5 = (a11 + a12)b22

h6 = (a21 − a11)(b11 + b12)

h7 = (a12 − a22)(b21 + b22).

Show that

AB =

[
h1 + h4 − h5 + h7 h3 + h5

h2 + h4 h1 + h3 − h2 + h6

]
.

The next step is to understand how Strassen’s algorithm can be applied to larger matrices. This
involves the idea of partitioned (or block) matrices. Recall that the matrix-matrix product of the
k ×m matrix A and the m× n matrix B = [b1 b2 · · · bn] is defined as

AB = [Ab1 Ab2 · · · Abn].

In this process, we think of B as being partitioned into n columns. We can expand on this idea to
partition both A and B when calculating a matrix-matrix product.

Project Activity 8.2. We illustrate the idea of partitioned matrices with an example. Let A = 1 −2 3 −6 4
7 5 2 −1 0
3 −8 1 0 9

.We can partition A into smaller matrices

A =

 1 −2 3 −6 4
7 5 2 −1 0

3 −8 1 0 9

 ,
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which are indicated by the vertical and horizontal lines. As a shorthand, we can describe this
partition of A as

A =

[
A11 A12

A21 A22

]
,

where A11 =

[
1 −2 3
7 5 2

]
, A12 =

[
−6 4
−1 0

]
, A21 =

[
3 −8 1

]
, and A22 = [0 9]. The

submatrices Aij are called blocks. If B is a matrix such that AB is defined, then B must have five

rows. As an example, AB is defined if B =


1 3
2 0
4 1
6 5
4 2

. The partition of A breaks A up into blocks

with three and two columns, respectively. So if we partition B into blocks with three and two rows,
then we can use the blocks to calculate the matrix product AB. For example, partition B as

B =


1 3
2 0
4 1

6 5
4 2

 =

[
B11

B21

]
.

Show that

AB =

[
A11 A12

A21 A22

] [
B11

B21

]
=

[
A11B11 +A12B21

A21B11 +A22B21

]
.

An advantage to using partitioned matrices is that computations with them can be done in paral-
lel, which lessens the time it takes to do the work. In general, we can multiply partitioned matrices
as though the submatrices are scalars. That is,

A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
Ai1 Ai2 · · · Aim

...
...

. . .
...

Ak1 Ak2 · · · Akm




B11 B12 · · · B1j · · · B1n

B21 B22 · · · B2j · · · B2n
...

...
. . .

...
. . .

...
Bm1 Bm2 · · · Bmj · · · Bmn

 = [Pij ],

where

Pij = Ai1B1j +Ai2B2j + · · ·+AimBmj =

m∑
t=1

AitBtj ,

provided that all the submatrix products are defined.

Now we can apply Strassen’s algorithm to larger matrices using partitions. This method is
sometimes referred to as divide and conquer.

Project Activity 8.3. LetA andB be two r×r matrices. If r is not a power of 2, then pad the rows
and columns of A and B with zeros to make them of size 2m × 2m for some integer m. (From a
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practical perspective, we might instead just use unequal block sizes.) Let n = 2m. Partition A and
B as

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
,

where each submatrix is of size n
2 × n

2 . Now we use the Strassen algorithm just as in the 2 × 2
case, treating the submatrices as if they were scalars (with the additional constraints of making sure
that the dimensions match up so that products are defined, and ensuring we multiply in the correct
order). Letting

M1 = (A11 +A22)(B11 +B22)

M2 = (A21 +A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 +A12)B22

M6 = (A21 −A11)(B11 +B12)

M7 = (A12 −A22)(B21 +B22),

then the same algebra as in Project Activity 8.1 shows that

AB =

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 +M3 −M2 +M6

]
.

Apply Strassen’s algorithm to calculate the matrix product AB, where

A =

 1 3 −1
2 4 6
7 −2 5

 and B =

 2 5 3
2 −4 1
1 6 4

 .
While Strassen’s algorithm can be more efficient, it does not always speed up the process. We

investigate this in the next activity.

Project Activity 8.4. We introduce a little notation to help us describe the efficiency of our cal-
culations. We won’t be formal with this notation, rather work with it in an informal way. Big O
(the letter “O”) notation is used to describe the complexity of an algorithm. Generally speaking,
in computer science big O notation can be used to describe the run time of an algorithm, the space
used by the algorithm, or the number of computations required. The letter “O” is used because the
behavior described is also called the order. Big O measures the asymptotic time of an algorithm, not
its exact time. For example, if it takes 6n2−n+ 8 steps to complete an algorithm, then we say that
the algorithm grows at the order of n2 (we ignore the constants and the smaller power terms, since
they become insignificant as n increases) and we describe its growth as O

(
n2
)
. To measure the

efficiency of an algorithm to determine a matrix product, we will measure the number of operations
it takes to calculate the product.

(a) Suppose A and B are n × n matrices. Explain why the operation of addition (that is,
calculating A+B) is O

(
n2
)
.

(b) Suppose A and B are n× n matrices. How many multiplications are required to calculate
the matrix product AB? Explain.
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(c) The standard algorithm for calculating a matrix product of two n× n matrices requires n3

multiplications and a number of additions. Since additions are much less costly in terms
of operations, the standard matrix product is O

(
n3
)
. We won’t show it here, but using

Strassen’s algorithm on a product of 2m × 2m matrices is O
(
nlog2(7)

)
, where n = 2m.

That means that Strassen’s algorithm applied to an n × n matrix (where n is a power of
2) requires approximately nlog2(7) multiplications. We use this to analyze situations to
determine when Strassen’s algorithm is computationally more efficient than the standard
algorithm.

i. Suppose A and B are 5 × 5 matrices. Determine the number of multiplications re-
quired to calculate the matrix product AB using the standard matrix product. Then
determine the approximate number of multiplications required to calculate the matrix
product AB using Strassen’s algorithm. Which is more efficient? (Remember, we
can only apply Strassen’s algorithm to square matrices whose sizes are powers of 2.)

ii. Repeat part i. with 125× 125 matrices. Which method is more efficient?

As a final note, Strassen’s algorithm is approximately O
(
n2.81

)
. As of 2018, the best algorithm

for matrix multiplication, developed by Virginia Williams at Stanford University, is approximately
O
(
n2.373

)
.3

3V. V. Williams, Multiplying matrices in O
(
n2.373

)
time, Stanford University, (2014).





Section 9

Introduction to Eigenvalues and
Eigenvectors

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is an eigenvalue of a matrix?

• What is an eigenvector of a matrix?

• How do we find eigenvectors of a matrix corresponding to an eigenvalue?

• How can the action of a matrix on an eigenvector be visualized?

• Why do we study eigenvalues and eigenvectors?

• What are discrete dynamical systems and how do we analyze the long-term
behavior in them?

Application: The Google PageRank Algorithm

The World Wide Web is a vast collection of information, searchable via search engines. A search
engine looks for pages that are of interest to the user. In order to be effective, a search engine
needs to be able to identify those pages that are relevant to the search criteria provided by the user.
This involves determining the relative importance of different web pages by ranking the results of
thousands or millions of pages fitting the search criteria. For Google, the PageRank algorithm is
their method and is “the heart of our software” as they say. It is this PageRank algorithm that we
will learn about later in this section. Eigenvalues and eigenvectors play an important role in this
algorithm.

169
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Introduction

Given a matrix A, for some special non-zero vectors v the action of A on v will be same as scalar
multiplication, i.e., Av = λv for some scalar λ. Geometrically, this means that the transformation
T defined by T (x) = Ax simply stretches or contracts the vector v but does not change its direction.
Such a nonzero vector is called an eigenvector of A, while the scalar λ is called the corresponding
eigenvalue of A. The eigenvectors of a matrix tell us quite a bit about the transformation the matrix
defines.

Eigenvalues and eigenvectors are used in many applications. Social media like Facebook and
Google use eigenvalues to determine the influence of individual members on the network (which
can affect advertising) or to rank the importance of web pages. Eigenvalues and eigenvectors appear
in quantum physics, where atomic and molecular orbitals can be defined by the eigenvectors of a
certain operator. They appear in principal component analysis, used to study large data sets, to
diagonalize certain matrices and determine the long term behavior of systems as a result, and in
the important singular value decomposition of a matrix. Matrices with real entries can have real or
complex eigenvalues, and complex eigenvalues reveal a rotation that is encoded in every real matrix
with complex eigenvalues which allows us to better understand certain matrix transformations.

Definition 9.1. Let A be an n × n matrix. A non-zero vector x is an eigenvector (or character-
istic vector) of A if there is a scalar λ such that Ax = λx. The scalar λ is an eigenvalue (or
characteristic value) of A.

For example, v =

[
1
1

]
is an eigenvector of A =

[
2 1
3 0

]
corresponding to the eigenvalue

λ = 3 because Av =

[
3
3

]
, which is equal to 3v. On the other hand, w =

[
1
2

]
is not an

eigenvector of A =

[
2 1
3 0

]
because Aw =

[
4
3

]
, which is not a multiple of w.

Preview Activity 9.1.

(1) For each of the following parts, use the definition of an eigenvector to determine whether the
given vector v is an eigenvector for the given matrix A. If it is, determine the corresponding
eigenvalue.

(a) A =

[
3 2
3 8

]
, v =

[
−2

1

]
(b) A =

[
2 0
0 −3

]
, v =

[
0
1

]
(c) A =

[
3 2
3 8

]
, v =

[
1
1

]
(d) A =

[
1 2
2 4

]
, v =

[
−2

1

]
(2) We now consider how we can find the eigenvectors corresponding to an eigenvalue using

the definition. Suppose A =

[
6 −2
2 1

]
. We consider whether we can find eigenvectors
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corresponding to eigenvalues 3, and 5. Effectively, this will help us determine whether 3
and/or 5 are eigenvalues of A.

(a) Rewrite the vector equation Av = 5v where v =

[
x
y

]
as a vector equation.

(b) After writing 5v as 5Iv where I is the identity matrix, rearrange the variables to
turn this vector equation into the homogeneous matrix equation Bv = 0 where

B =

[
1 −2
2 −4

]
. If possible, find a non-zero (i.e. a non-trivial) solution to Bv = 0.

Explain what this means about 5 being an eigenvalue of A or not.

(c) Similarly, determine whether the vector equation Av = 3v has non-zero solutions.
Using your result, determine whether 3 is an eigenvalue of A or not.

Eigenvalues and Eigenvectors

Eigenvectors are especially useful in understanding the long-term behavior of dynamical systems,
an example of which we will see shortly. The long-term behavior of a dynamical system is quite
simple when the initial state vector is an eigenvector and this fact helps us analyze the system in
general.

To find eigenvectors, we are interested in determining the vectors x for which Ax has the same
direction as x. This will happen when

Ax = λx

for some scalar λ. Of course, Ax = λx when x = 0 for every A and every λ, but that is unin-
teresting. So we really want to consider when there is a non-zero vector x so that Ax = λx. This
prompts the definition of eigenvectors and eigenvalues as in Definition 9.1

In order for a matrix A to have an eigenvector, one condition A must satisfy is that A has to be
a square matrix, i.e. an n × n matrix. We will find that each n × n matrix has only finitely many
eigenvalues.

The terms eigenvalue and eigenvector seem to come from Hilbert, using the German “eigen”
(roughly translated as “own”, “proper”, or “characteristic”) to emphasize how eigenvectors and
eigenvalues are connected to their matrices. To find the eigenvalues and eigenvectors of an n × n
matrix A, we need to find the solutions to the equation

Ax = λx .

In Preview Activity 9.1, we considered this equation for A =

[
6 −2
2 1

]
and λ = 5. The homoge-

neous matrix equation we came up with was[
1 −2
2 −4

]
x = 0 .

To see the relationship between this homogeneous matrix equation and the eigenvalue-eigenvector
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equation better, let us consider the eigenvector equation using matrix algebra:

Ax = λx

Ax− λx = 0

Ax− λInx = 0

(A− λIn)x = 0,

where In is the n×n identity matrix. Notice that this description matches the homogenous equation
matrix example above since we simply subtracted 5 from the diagonal terms of the matrixA. Hence,
to find eigenvalues, we need to find the values of λ so that the homogeneous equation (A−λIn)x =
0 has non-trivial solutions.

Activity 9.1.

(a) Under what conditions onA−λIn will the matrix equation (A−λIn)x = 0 have non-trivial
solutions? Describe at least two different but equivalent conditions.

(b) The real number 0 is an eigenvalue of A =

[
1 2
2 4

]
. Check that your criteria in the

previous part agrees with this result.

(c) Determine if 5 is an eigenvalue of the matrix A =

[
1 2
2 4

]
using your criterion above.

(d) What are the two eigenvalues of the matrix A =

[
3 2
4 5

]
?

Since an eigenvector of A corresponding to eigenvalue λ is a non-trivial solution to the homo-
geneous equation (A − λIn)x = 0, the eigenvalues λ which work are those for which the matrix
A− λIn has linearly dependent columns, or for which the row echelon form of the matrix A− λIn
does not have a pivot in every column. When we need to test if a specific λ is an eigenvalue, this
method works fine. However, finding which λ’s will work in general involves row reducing a matrix
with λ’s subtracted on the diagonal algebraically. For certain types of matrices, this method still
provides us the eigenvalues quickly. For general matrices though, row reducing algebraically is not
efficient. We will later see an algebraic method which uses the determinants to find the eigenvalues.

Activity 9.2.

(a) For λ to be an eigenvalue of A, we noted that A− λIn must have a non-pivot column. Use

this criterion to explain why A =

[
−2 2

0 4

]
has eigenvalues λ = −2 and λ = 4.

(b) Determine the eigenvalues of A =


3 0 1 0
0 2 −1 0
0 0 2 0
0 0 0 1

.

(c) Generalize your results from the above parts in the form of a theorem in the most general
n× n case.
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Dynamical Systems

One real-life application of eigenvalues and eigenvectors is in analyzing the long-term behavior of
discrete dynamical systems. A dynamical system is a system of variables whose values change with
time. In discrete systems, the change is described by defining the values of the variables at time
t+ 1 in terms of the values at time t. For example, the discrete dynamical system

yt+1 = yt + t

relates the value of y at time t + 1 to the value of y at time t. This is in contrast with a differential
equation1 such as

dy

dt
= y + t,

which describes the instantaneous rate of change of y(t) in terms of y and t.

Discrete dynamical systems can be used in population modeling to provide a simplified model
of predator-prey interactions in biology (see Preview Activity 9.2). Other applications include
Markov chains (see Exercise 5), age structured population growth models, distillation of a binary
ideal mixture of two liquids, cobweb model in economics concerning the interaction of supply and
demand for a single good, queuing theory and traffic flow.

Eigenvectors can be used to analyze the long-term behavior of dynamical systems.

Preview Activity 9.2.

(1) Consider a discrete dynamical system providing a simplified model of predator-prey inter-
actions in biology, such as the system describing the populations of rabbits and foxes in a
certain area.

Suppose, for example, for a specific area the model is given by the following equations:

rk+1 = 1.14rk − 0.12fk

fk+1 = 0.08rk + 0.86fk
(9.1)

where ri represents the number of rabbits in the area i years after a starting time value, and fi
represents the number of foxes in year i. We use r0, f0 to denote the initial population values.

(a) Suppose rk = 300 and fk = 100 for one year. Calculate rabbit and fox population
values for the next year. In other words, find rk+1, fk+1 values.

(b) Consider the coefficients of the variables rk, fk in the the system of equations in (9.1).
Can you explain the reasoning behind the signs and absolute sizes of the coefficients
from the story that it models?

(c) Let xk =

[
rk
fk

]
. The vector xk is called the state vector of the system at time

k, because it describes the state of the whole system at time k. We can rewrite the
system of equations in (9.1) as a matrix-vector equation in terms of the state vectors
at time k and k + 1. More specifically, the equation will be of the form

xk+1 = Axk (9.2)
1A differential equation is an equation that involves one or more derivatives of a function.
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where A =

[
1.14 −0.12
0.08 0.86

]
. We will call this matrix the transition matrix of the

system. Check that A
[

300
100

]
gives us the population values you calculated in the

first part above.

(d) The transition matrix will help us simplify calculations of the population values. Note
that equation (9.2) implies that x1 = Ax0, x2 = Ax1, x3 = Ax2, and so on. This
is a recursive method to find the population values as each year’s population values
depend on the previous year’s population values. Using this approach, calculate xk
for k values up to 5 corresponding to the following three different initial rabbit-fox
population values (all in thousands):

r0 = 300 , f0 = 100

r0 = 100 , f0 = 200

r0 = 1200 , f0 = 750

Can you guess the long-term behavior of the population values in each case? Are
they both increasing? Decreasing? One increasing, one decreasing? How do the
rabbit and fox populations compare?

A dynamical system is a system of variables whose values change with time. In Preview Ac-
tivity 9.2, we considered the discrete dynamical system modeling the rabbit and fox population in
an area, which is an example of a predator-prey system. The system was given by the equations
from (9.1), where ri represented the number of rabbits in the area i years after a starting time value,
and fi represented the number of foxes in year i. In this notation, r0, f0 corresponded to the initial
population values.

As we saw in Preview Activity 9.2, if we define the state vector as xk =

[
rk
fk

]
, the system of

equations representing the dynamical system can be expressed as

xk+1 = Axk (9.3)

where A =

[
1.14 −0.12
0.08 0.86

]
represents the transition matrix. Note that equation (9.3) encodes

infinitely many equations including x1 = Ax0, x2 = Ax1, x3 = Ax2, and so on. This is a
recursive formula for the population values as each year’s population values are expressed in terms
of the previous year’s population values. If we want to calculate x10, this formula requires first
finding the population values for years 1-9. However, we can obtain a non-recursive formula using
matrix algebra. If we substitute x1 = Ax0 into x2 = Ax1 and simplify, we find that

x2 = Ax1 = A(Ax0) = A2x0 .

Similarly, substituting x2 = A2x1 into the formula for x3 gives

x3 = Ax2 = A(A2x0) = A3x0 .

This process can be continued inductively to show that

xk = Akx0 (9.4)
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for every k value. So to find the population values at any year k, we only need to know the initial
state vector x0.

Activity 9.3. In this activity the matrix A is the transition matrix for the rabbit and fox population
model,

A =

[
1.14 −0.12
0.08 0.86

]
.

(a) Suppose that the initial state vector x0 is an eigenvector of A corresponding to eigenvalue
λ. In this case, explain why x1 = λx0 and x2 = λ2x0. Find the formula for xk in terms of
λ, k and x0 by applying equation (9.3) iteratively.

(b) The initial state vector x0 =

[
300
100

]
is an eigenvector of A. Find the corresponding

eigenvalue and, using your formula from (a) for xk in terms of λ, k and x0, find the state
vector xk in this case.

(c) The initial state vector x0 =

[
100
200

]
is an eigenvector of A. Find the corresponding

eigenvalue and, using your formula from (a) for xk in terms of λ, k and x0, find the state
vector xk in this case.

(d) Consider now an initial state vector of the form x0 = av0 + bw0 where a, b are constants,
v0 is an eigenvector corresponding to eigenvalue λ1 and w0 corresponding to eigenvalue
λ2 (v0 and w0 are not necessarily the eigenvectors from parts (b) and (c)). Use matrix
algebra and equation (9.4) to explain why xk = aλk1v0 + bλk2w0.

(e) Express the initial state vector x0 =

[
1200
750

]
as a linear combination of the eigenvectors

v0 =

[
300
100

]
,w0 =

[
100
200

]
and use your result from the previous part to find a formula

for xk. What happens to the population values as k →∞?

As you discovered in Activity 9.3, we can use linearly independent eigenvectors of the transition
matrix to find a closed formula for the state vector of a dynamical system, as long as the initial state
vector can be expressed as a linear combination of the eigenvectors.

Examples

What follows are worked examples that use the concepts from this section.

Example 9.2. Let A =

[
1 2
2 4

]
.

(a) Find all of the eigenvalues of A.

(b) Find a corresponding eigenvector for each eigenvalue found in part (a).
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Example Solution.

(a) Recall that a scalar λ is a eigenvalue forA if there is a nonzero vector x such thatAx = λx
or (A− λI2)x = 0. For this matrix A, we have

A− λI2 =

[
1− λ 2

2 4− λ

]
.

To solve the homogeneous system (A − λI2)x = 0, we row reduce A − λI2. To do this,
we first interchange rows to get the following matrix that is row equivalent to A− λI2 (we
do this to ensure that we have a nonzero entry in the first row and column)[

2 4− λ
1− λ 2

]
.

Next we replace row two with 1
2(1 − λ) times row one minus row two to obtain the row

equivalent matrix  2 4− λ
0 1

2(4− λ)(1− λ)− 2

 .
There will be a nontrivial solution to (A− λI2)x = 0 if there is a row of zeros in this row
echelon form. Thus, we look for values of λ that make

1

2
(4− λ)(1− λ)− 2 = 0.

Applying a little algebra shows that

1

2
(4− λ)(1− λ)− 2 = 0

(4− λ)(1− λ)− 4 = 0

λ2 − 5λ = 0

λ(λ− 5) = 0.

So the eigenvalues of A are λ = 0 and λ = 5.

(b) Recall that an eigenvector for the eigenvalue λ is a nonzero vector x such that (A−λI2)x =
0. We consider each eigenvalue in turn.

• When λ = 0,

A− 0I2 = A =

[
1 2
2 4

]
.

Technology shows that the reduced row echelon form of A is[
1 2
0 0

]
.

If x =

[
x1

x2

]
, then Ax = 0 implies that x2 is free and x1 = −2x2. Choosing

x2 = 1 gives us the eigenvector
[
−2

1

]
. As a check, note that[

1 2
2 4

] [
−2

1

]
=

[
0
0

]
.
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• When λ = 5,

A− 5I2 =

[
−4 2

2 −1

]
.

Technology shows that the reduced row echelon form of A− 5I2 is 1 −1
2

0 0

 .
If x =

[
x1

x2

]
, then (A− 5I2)x = 0 implies that x2 is free and x1 = 1

2x2. Choosing

x2 = 2 gives us the eigenvector
[

1
2

]
. As a check, note that

 1 −1
2

0 0

[ 1
2

]
=

[
0
0

]
.

Example 9.3. Accurately predicting the weather has long been an important task. Meteorologists
use science, mathematics, and technology to construct models that help us understand weather pat-
terns. These models are very sophisticated, but we will consider only a simple model. Suppose, for
example, we want to learn something about whether it will be wet or dry in Grand Rapids, Michi-
gan. To do this, we might begin by collecting some data about weather conditions in Grand Rapids
and then use that to make predictions. Information taken over the course of 2017 from the National
Weather Service Climate Data shows that if it was dry (meaning no measurable precipitation, either
rain or snow) on a given day in Grand Rapids, it would be dry the next day with a probability of
64% and wet with a probability of 36%. Similarly, if it was wet on a given day it would be dry the
next day with a probability of 47% and dry with a probability of 53%. Assuming that this pattern is
one that continues in the long run, we can develop a mathematical model to make predictions about
the weather.

This data tells us how the weather transitions from one day to the next, and we can succinctly
represent this data in a transition matrix:

T =

[
0.64 0.47
0.36 0.53

]
. (9.5)

Whether it is dry or wet on a given day is called the state of that day. So our transition matrix tells
us about the transition between states. Notice that if T = [tij ], then the probability of moving from

state j to state i is given by tij . We can represent a state by a vector: the vector
[

1
0

]
represents

the dry state and the vector
[

0
1

]
represents the wet state.

(a) Calculate T
[

1
0

]
. Interpret the meaning of this output.

(b) Calculate T
[

0
1

]
. Interpret the meaning of this output.
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(c) Calculate T
[

0.3
0.7

]
. Interpret the meaning of this output.

(d) We can use the transition matrix to build a chain of probability vectors. We begin with an
initial state, say it is dry on a given day. This initial state is represented by the initial state

vector x0 =

[
1
0

]
. The probabilities that it will be dry or wet the following day are given

by the vector

x1 = Tx0 =

[
0.64
0.36

]
.

This output vector tells us that the next day will be dry with a 64% probability and wet with
a 36% probability.

For each k ≥ 1, we let
xk = Txk−1. (9.6)

Thus we create a sequence of vectors that tell us the probabilities of it being dry or wet on
subsequent days. The vector xk is called the state vector of the system at time k, because
it describes the state of the whole system at time k. We can rewrite the system of equations
in (9.1) as a matrix-vector equation in terms of the state vectors at time k and k + 1. More
specifically, the equation will be of the form

xk+1 = Txk (9.7)

for k ≥ 0.

i. Starting with x0 =

[
1
0

]
, use appropriate technology to calculate xk for k values up

to 10. Round to three decimal places. What do you notice about the entries?

ii. What does the result of the previous part tell us about eigenvalues of T ? Explain.

iii. Rewrite T as

T =

 64
100

47
100

36
100

53
100

 .
We do this so we can use exact arithmetic. Let x =

 47
83

36
83

. What is Tx? (Use exact

arithmetic, no decimals.) Explain how x is related to the previous two parts of this
problem. What does the vector x tells us about weather in Grand Rapids?

Example Solution.

(a) Here we have

T

[
1
0

]
=

[
0.64 0.47
0.36 0.53

] [
1
0

]
=

[
0.64
0.36

]
.

This output tells us the different probabilities of whether it will be dry or wet the day
following a dry day.
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(b) Here we have

T

[
0
1

]
=

[
0.64 0.47
0.36 0.53

] [
0
1

]
=

[
0.47
0.53

]
.

This output tells us the different probabilities of whether it will be dry or wet the day
following a wet day.

(c) Here we have

T

[
0.3
0.7

]
=

[
0.64 0.47
0.36 0.53

] [
0.3
0.7

]
≈
[

0.52
0.48

]
.

This output tells us there is a 52% chance of it being dry and a 48% chance of it being wet
following a day when there is a 30% chance of it being dry and a 70% chance of it being
wet.

(d) i. Technology shows that

x1 =

[
0.640
0.360

]
x2 =

[
0.579
0.421

]
x3 =

[
0.568
0.432

]
x4 =

[
0.567
0.433

]
x5 =

[
0.566
0.434

]
x6 =

[
0.566
0.434

]
x7 =

[
0.566
0.434

]
x8 =

[
0.566
0.434

]
x9 =

[
0.566
0.434

]
x10 =

[
0.566
0.434

]
.

We can see that our vectors xk are essentially the same as we let k increase.

ii. Since our sequence seems to be converging to a vector x satisfying Tx = x, we
conclude that 1 is an eigenvalue of T .

iii. A matrix vector multiplication shows that

Tx =

 64
100

47
100

36
100

53
100

 47
83

36
83

 =

 47
83

36
83

 .
In other words, x is an eigenvector for T with eigenvalue 1. Notice that

47

83
≈ 0.566 and

36

83
≈ 0.434,

so these fractions give the same results we obtained with our sequence of vectors xk.
These vectors provide a steady-state vector for Grand Rapids weather. In other words,
if there is a 56.6% chance of it being dry on a given day in Grand Rapids, then there
is a 56.6% chance it will be dry again the next day.

This is an example of a Markov process. Markov processes (named after Andrei Andreevich
Markov) are widely used to model phenomena in biology, chemistry, business, physics, engineering,
the social sciences, and much more. More specifically,
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Definition 9.4. A Markov process is a process in which the probability of the system being in a
given state depends only on the previous state.

If x0 is a vector which represents the initial state of a Markov process, then there is a matrix
T (the transition matrix) such that the state of the system after one iteration is given by the vector
Tx0. This produces a chain of state vectors Tx0, T 2x0, T 3x0, etc., where the state of the system
after n iterations is given by Tnx0. Such a chain of vectors is called a Markov chain. A Markov
process is characterized by two properties:

• the total number of observations remains fixed (this is reflected in the fact that the sum of the
entries in each column of the matrix T is 1), and

• no observation is lost (this means the entries in the matrix T cannot be negative).

Summary

We learned about eigenvalues and eigenvectors of a matrix in this section.

• A scalar λ is an eigenvalue (or characteristic value) of a square matrixA if there is a non-zero
vector x so that Ax = λx.

• A non-zero vector x is an eigenvector (or characteristic vector) of a square matrix A if there
is a scalar λ so that Ax = λx.

• To find the eigenvectors of an n×nmatrixA corresponding to an eigenvalue λ, we determine
the non-trivial solutions to (A− λIn)x = 0 where In is the n× n identity matrix.

• We study eigenvectors and eigenvalues because the eigenvectors tell us quite a bit about the
transformation corresponding to the matrix. These eigenvectors arise in many applications
in physics, chemistry, statistics, economics, biology, sociology and other areas, and help
understand the long-term behavior of dynamical systems.

• A dynamical system is a system of variables whose values change with time. In linear dynam-
ical systems, the change in the state vector from one time period to the next is expressed by
matrix multiplication by the transition matrix A. The eigenvectors of A provide us a simple
method to express the state vector at any given time period in terms of the initial state vec-
tor. Specifically, if the initial state vector is x0 = av0 + bw0 where v0,w0 are eigenvectors
corresponding to eigenvalues λ1, λ2, we have

xk = Akx0 = λk1av0 + λk2bw0 .

Exercises

(1) For each of the following matrix-vector pairs, determine whether the given vector is an eigen-
vector of the matrix.

(a) A =

[
1 2
4 3

]
, v =

[
1
−1

]



Section 9. Introduction to Eigenvalues and Eigenvectors 181

(b) A =

[
1 2
0 3

]
, v =

[
1
1

]

(c) A =

 2 1 0
0 1 0
−1 0 1

, v =

 −1
0
1


(2) For each of the following matrix-eigenvalue pairs, determine an eigenvector of A for the

given eigenvalue.

(a) A =

[
1 2
−1 4

]
, λ = 3 (b) A =

[
1 4
1 1

]
, λ = 3

(c) A =

 −1 4 1
3 3 0
0 0 1

, λ = 5 (d) A =


4 0 0 0
0 2 0 2
2 0 0 0
0 0 0 3

, λ = 4

(3) For each of the following matrix-λ pairs, determine whether the given λ will work as an
eigenvalue. You do not need to find an eigenvector as long you can justify if λ is a valid
eigenvalue or not.

(a) A =

[
4 3
4 8

]
, λ = 2 (b) A =

[
4 −2
2 −1

]
, λ = 0

(c) A =

[
1 2
−1 4

]
, λ = −1 (d) A =

[
0 −2
−1 1

]
, λ = −2

(4) For a matrix A with eigenvector v1 =

[
1
1

]
with eigenvalue λ1 = 2, and eigenvector

v2 =

[
1
2

]
with eigenvalue λ2 = −1, determine the value of the following expressions

using matrix-vector product properties:

(a) A(2v1 + 3v2)

(b) A(A(v1 + 2v2))

(c) A20(4v1 − 2v2)

(5) In this problem we consider a discrete dynamical system that forms what is called a Markov
chain (see Definition 9.4) which models the number of students attending and skipping a
linear algebra class in a semester. Assume the course starts with 1,000,000 students on day
0. For any given class day, 90% of the students who attend a class attend the next class (and
10% of these students skip next class) while only 30% of those absent are there the next time
(and 70% of these students continue skipping class).

(a) We know that there will be 900,000 students in class on the second day and 100,000
students skipping class. On the third day, 90% of the 900,000 students (attenders) and
30% of the 100,000 students (skippers) will come back to class. Therefore, 840,000
students will attend class on the third day. On the other hand, 10% of 900,000 stu-
dents and 70% of 100,000 students skip class on the third day, for a total of 160,000
students skipping class.
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We can use variables to represent these numbers. Let an represent the number of stu-
dents attending class n days after first day. So a0 = 1, 000, 000, a1 = 900, 000, a2 =
840, 000. Let sn represent the students skipping class. So s0 = 0, s1 = 100, 000, s2 =
160, 000. Find a3, s3, a4, s4.

(b) Find a linear expression for ak+1 in terms of the previous day values, ak and sk,
using the story given in the problem. Similarly, express sk+1 in terms of ak and sk.

(c) Let xk represent the state vector: xk =

[
ak
sk

]
. It describes the state of the whole

system (students attending class and skipping class) in one vector. For example,

x0 =

[
1, 000, 000

0

]
is the initial state. The state next day is x1 =

[
900, 000
100, 000

]
.

Using your answer to the previous part, find a matrix A which describes how the
system changes from one day to the other so that xk+1 = Axk.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The number 0 cannot be an eigenvalue.

(b) True/False The 0 vector cannot be an eigenvector.

(c) True/False If v is an eigenvector of A, then so is 2v.

(d) True/False If v is an eigenvector of A, then it is also an eigenvector of A2.

(e) True/False If v and u are eigenvectors of A with the same eigenvalue, then v +u is
also an eigenvector with the same eigenvalue.

(f) True/False If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2.

(g) True/False A projection matrix satisfies P 2 = P . If P is a projection matrix, then
the eigenvalues of P can only be 0 and 1.

(h) True/False If λ is an eigenvalue of an n × n matrix A, then 1 + λ is an eigenvalue
of In +A.

(i) True/False If λ is an eigenvalue of two matrices A and B of the same size, then λ is
an eigenvalue of A+B.

(j) True/False If v is an eigenvector of two matrices A and B of the same size, then it
is also an eigenvector of A+B.

(k) True/False A matrixA has 0 as an eigenvalue if and only ifA has linearly dependent
columns.

Project: Understanding the PageRank Algorithm

Sergey Brin and Lawrence Page, the founders of Google, decided that the importance of a web
page can be judged by the number of links to it as well as the importance of those pages. It is this
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idea that leads to the PageRank algorithm.2 Google uses this algorithm (and others) to order search
engine results. According to Google:3

PageRank works by counting the number and quality of links to a page to determine
a rough estimate of how important the website is. The underlying assumption is that
more important websites are likely to receive more links from other websites.

To rank how “important” a website is, we need to make some assumptions. We assume that a
person visits a page and then surfs the web by selecting a link from that page – all links on a given
page are assigned the same probability of being chosen. As an example, assume a small set of seven
pages 1, 2, 3, 4, 5, 6, and 7 with links between the pages given by the arrows as shown in Figure
9.1.4 So, for example, there is a hyperlink from page 4 to page 3, but no hyperlink in the opposite
direction. If a web surfer starts on page 5, then there is probability of 1

2 that this person will surf to
page 6 and a probability of 1

2 that the surfer will move to page 4. If there is no link leaving a page,
as in the case of page 3, then the probability of remaining there is 1.

1

2

3

4

5

6

7

Figure 9.1: A seven page internet

To rank pages, we need to know how likely it is that a surfer will land on a given page. In our
seven page example, a person can land on page 3 from page 4 with a probability of 1

2 or from page
6 with a probability of 1

3 . If there is a link from a page we assume that the surfer leaves the page,
and if there are no links from a page then the surfer stays on that page. We also assume that the
surfer does not use the “Back” key. This information for our seven page internet example can be
summarized in a transition matrix T whose i, jth entry is the probability that a surfer lands on page

2Information for this project was taken from the websites http://www.ams.org/samplings/
feature-column/fcarc-pagerank and http://faculty.winthrop.edu/polaskit/spring11/
math550/chapter.pdf.

3http://web.archive.org/web/20111104131332/http://www.google.com/competition/
howgooglesearchworks.html

4The Internet is very large and has upwards of 25 billion pages. This would leave us with an enormous transition
matrix, even though most of its entries are 0. In fact, studies show that web pages have an average of about 10 links, so
on average all but 10 entries of each column are 0. Working with such a large matrix is beyond what we want to do in
this project, so we will just amuse ourselves with small examples that illustrate the general points.

http://www.ams.org/samplings/feature-column/fcarc-pagerank
http://www.ams.org/samplings/feature-column/fcarc-pagerank
http://faculty.winthrop.edu/polaskit/spring11/math550/chapter.pdf
http://faculty.winthrop.edu/polaskit/spring11/math550/chapter.pdf
http://web.archive.org/web/20111104131332/http://www.google.com/competition/howgooglesearchworks.html
http://web.archive.org/web/20111104131332/http://www.google.com/competition/howgooglesearchworks.html
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i from page j.

T =



0 1
2 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1
2 0 1

3 0

0 1
2 0 0 1

2 0 0

0 0 0 1
2 0 1

3 1

0 0 0 0 1
2 0 0

0 0 0 0 0 1
3 0


.

Let us assume in our seven page internet that a user starts on page 6. That is, the probability
that the user is initially on page 6 is 1, and so the probability that the user is on some other page is
0. This information can be encapsulated in a state vector

x0 = [0 0 0 0 0 1 0]T .

Since there are links from page 6 to pages 3, 5, and 7, there is a 1
3 probability that the surfer will

next move to one of these pages. That means that at the next step, the state vector x1 for this user
will be

x1 =

[
0 0

1

3
0

1

3
0

1

3

]T
.

Note that
x1 = Tx0.

As the user continues to surf the internet, the probabilities that the surfer is on a given page after
the second, third, and fourth steps are given in the state vectors

x2 = Tx1 = T 2x0, x3 = Tx2 = T 3x0, x4 = Tx3 = T 4x0.

In general, the probabilities that the surfer is on a given page after the nth step is given by the state
vector

xn = Txn−1 = Tnx0.

This example illustrates the general nature of what is called a Markov process (see Definition
9.4). The two properties of the transition matrix T make T a special kind of matrix.

Definition 9.5. A stochastic matrix is a matrix in which entries are nonnegative and the sum of the
entries in every column is one.

In a Markov process, each generation depends only on the preceding generation and there may
be a limiting value as we let the process continue indefinitely. We can test to see if that happens for
this Markov process defined by T by doing some experimentation.

Project Activity 9.1. Use appropriate technology to do the following. Choose several different
initial state vectors x0 and calculate the vectors in the sequence {Tnx0} for large values of n.
(Note that, as state vectors, the entries of x0 cannot be negative and the sum of the entries of x0

must be 1.) Explain the behavior of the sequence {xn} as n gets large. Do you notice anything
strange? What aspects of our seven page internet do you think explain this behavior? Clearly
communicate all of the experimentation that you do. You may use the GeoGebra applet at https:
//www.geogebra.org/m/b3dybnux.

https://www.geogebra.org/m/b3dybnux
https://www.geogebra.org/m/b3dybnux
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If there is a limit of the sequence {Tnx0} (in other words, if there is a vector v such that
v = lim

n→∞
Tnx0), we call this limit a steady-state or equilibrium vector. Such a steady-state vector

has another important property. Since T is independent of n we have

Tv = T
(

lim
n→∞

Tnx0

)
= lim

n→∞
Tn+1x0 = v. (9.8)

Equation (9.8) shows that a steady state vector v is an eigenvector for T with eigenvalue 1. We
can interpret the steady-state vector for T in an important way. Let tj be the fraction of time we
spend on page j and let lj be the number of links on page j. Then the fraction of the time that we
end up on page i coming from page j is tj

lj
. If we sum over all the pages linked to page i we have

that
ti =

∑ tj
lj
.

Notice that this is essentially the same process we used to obtain xn from xn−1, and so we can
interpret the steady-state vector v as telling us what fraction of a random web surfer’s time was spent
at each web page. If we assume that the time spent at a web page is a measure of its importance,
then the steady-state vector tells us the relative importance of each web page. So this steady-state
vector provides the page rankings for us. In other words,

The importance of a webpage may be measured by the relative size of the correspond-
ing entry in the steady-state vector for an appropriately chosen Markov chain.

Project Activity 9.2. Show that the limiting vector you found in Project Activity 9.1 is an eigen-
vector of T with eigenvalue 1.

Project Activity 9.1 illustrates one problem with our seven page internet. The steady-state vector
shows that page 3 is the only important page, but that hardly seems reasonable in the example
since there are other pages that must have some importance. The problem is that page 3 is a
“dangling” page and does not lead anywhere. Once a surfer reaches that page, they are stuck
there, overemphasizing its importance. So this dangling page acts like a sink, ultimately drawing
all surfers to it. To adjust for dangling pages, we make the assumption that if a surfer reaches a
dangling page (one with no links emanating from it), the surfer will jump to any page on the web
with equal probability. So in our seven page example, once a surfer reaches page 3 the surfer will
jump to any page on the web with probability 1

7 .

Project Activity 9.3.

(a) Determine the transition matrix for our seven page internet with this adjustment.

(b) Approximate the steady-state vector for this adjusted matrix so that the entries are accurate
to four decimal places. Use any appropriate technology to row reduce matrices.

(c) According to this adjusted model, which web page is now the most important? Why? Does
this seem reasonable? Why?

There is one more issue to address before we can consider ourselves ready to rank web pages.
Consider the example of the five page internet shown in Figure 9.2.
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1

2

34

5

Figure 9.2: A five page internet

Project Activity 9.4.

(a) Explain why 
0 0 1 1

2
1
5

1 0 0 0 1
5

0 1 0 0 1
5

0 0 0 0 1
5

0 0 0 1
2

1
5

 .

is the transition matrix for this five page internet. (Keep in mind the adjustment we made
for dangling pages.)

(b) Start with different initial state vectors x0 and determine if there is a limit to the Markov
chain. Explain. You may use the GeoGebra applet at https://www.geogebra.org/
m/b3dybnux.

Project Activity 9.4 shows that it is possible to construct an internet so that the corresponding
Markov chain does not have a limit, even after adjusting for dangling pages. This is a significant
problem if we want to provide a relative ranking of all web pages regardless of where a surfer starts.
To fix this problem we need to make one final adjustment to arrive at a type of transition matrix that
always provides a limit for our Markov chain.

Definition 9.6. A stochastic matrix is regular if its transition matrix T has the property that for
some power k, all the entries of T k are positive.

Note that the transition matrix from Project Activity 9.4 is not regular. Regular matrices have
some especially nice properties, as the following theorem describes. We will not prove this theorem,
but use it in the remainder of this project. The theorem shows that if we have a regular transition
matrix, then there will a limit of the state vectors xn, and that this limit has a very interesting
property.

Theorem 9.7. Assume n ≥ 2 and that T is a regular n× n stochastic matrix.

(1) lim
k→∞

T k exists and is a stochastic matrix.

https://www.geogebra.org/m/b3dybnux
https://www.geogebra.org/m/b3dybnux
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(2) For any vector x,
lim
k→∞

T kx = c

for the same vector c.

(3) The columns of lim
k→∞

T k are the same vector c.

(4) The vector c is the unique eigenvector of T whose entries sum to 1.

(5) If λ is an eigenvalue of T not equal to 1, then |λ| < 1.

Having a regular transition matrix T ensures that there is always the same limit v to the sequence
T kx0 for any starting vector x0. As mentioned before, the entries in v = lim

n→∞
Tnx0 can be

interpreted as telling us what fraction of the random surfers time was spent at each webpage. If we
interpret the amount of time a surfer spends at a page as a measure of the page’s importance, then
this steady-state vector v provides a ranking of the relative importance of each page in the web.
This is the essence of Google’s PageRank.

To make our final adjustment in the transition matrix to be sure that we obtain a regular matrix,
we need to deal with the problems of “loops” in our internet. Loops, as illustrated in Project Activity
9.4, can act as sinks just like the dangling pages we saw earlier and condemn a user that enters such
a loop to spend his/her time only on those pages in the loop. Quite boring! To account for this
problem, we make a second adjustment.

Let p be a number between 0 and 1 (Google supposedly uses p = 0.85). Suppose a surfer is
on page i. We assume with probability p that the surfer will chose any link on page i with equal
probability. We make the additional assumption with probability 1 − p that the surfer will select
with equal probability any page on the web.

If T is a transition matrix, incorporating the method we used to deal with dangling pages, then
the adjusted transition matrix G (the Google matrix) is

G = pT + (1− p)Q,

where Q is the matrix all of whose entries are 1
n , where n is the number of pages in the internet

(n = 7 in our seven page example). Since all of the entries of G are positive, G is a regular
stochastic matrix.

Project Activity 9.5. Return to the seven page internet in Figure 9.1.

(a) Find the Google matrix G for this internet.

(b) Approximate, to four decimal places, the steady-state vector for this internet.

(c) What is the relative rank of each page in this internet, and approximately what percentage
of time does a random user spend on each page.

We conclude with two observations. Consider the role of the parameter p in our final adjustment.
Notice that if p = 1, then G = T and we have the original hyperlink structure of the web. However,
if p = 0, then G = 1

nIn, where In is the n× n identity matrix with n as the number of pages in the
web. In this case, every page is linked to every other page and a random surfer spends equal time
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on any page. Here we have lost all of the character of the linked structure of the web. Choosing p
close to 1 retains much of the original hyperlink structure of the web.

Finally, the matrices that model the web are HUGE, and so the methods we used in this project to
approximate the steady-state vectors are not practical. There are many methods for approximating
eigenvectors that are often used in these situations, some of which we discuss in a later section.



Section 10

The Inverse of a Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What does it mean for a matrix A to be invertible?

• How can we tell when an n× n matrix A is invertible?

• If an n× n matrix A is invertible, how do we find the inverse of A?

• If A and B are invertible n× n matrices, why is AB invertible and what is
(AB)−1?

• How can we use the inverse of a matrix in solving matrix equations?

Application: Modeling an Arms Race

Lewis Fry Richardson was a Quaker by conviction who was deeply troubled by the major wars
that had been fought in his lifetime. Richardson’s training as a physicist led him to believe that the
causes of war were phenomena that could be quantified, studied, explained, and thus controlled.
He collected considerable data on wars and constructed a model to represent an arms race. The
equations in his model caused him concern about the future as indicated by the following statement:

But it worried him that the equations also showed that the unilateral disarmament of
Germany after 1918, enforced by the Allied Powers, combined with the persistent level
of armaments of the victor countries would lead to the level of Germanys armaments
growing again. In other words, the post-1918 situation was not stable. From the model
he concluded that great statesmanship would be needed to prevent an unstable situation
from developing, which could only be prevented by a change of policies.1

1Nature 135, 830-831 (18 May 1935) “Mathematical Psychology of War” (3420).
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Analyzing Richardson’s arms race model utilizes matrix operations, including matrix inverses. We
explore the basic ideas in Richardson’s model later in this section.

Introduction

To this point we have solved systems of linear equations with matrix formsAx = b by row reducing
the augmented matrices [A | b]. These linear matrix-vector equations should remind us of linear
algebraic equations of the form ax = b, where a and b are real numbers. Recall that we solved
an equation of the form ax = b by dividing both sides by a (provided a 6= 0), giving the solution
x = b

a , or equivalently x = a−1b. The important property that the number a−1 has that allows us
to solve a linear equation in this way is that a−1a = 1, so that a−1 is the multiplicative inverse of
a. We can solve certain types of matrix equations Ax = b in the same way, provided we can find a
matrix A−1 with similar properties. We investigate this situation in this section.

Preview Activity 10.1.

(1) Before we define the inverse matrix, recall that the identity matrix In (with 1’s along the
diagonal and 0’s everywhere else) is a multiplicative identity in the set of n×nmatrices (just
like the real number 1 is the multiplicative identity in the set of real number). In particular,
InA = AIn = A for any n× n matrix A.

Now we can generalize the inverse operation to matrices. For an n × n matrix A, we define
A−1 to be the matrix which when multiplied by A gives us the identity matrix. In other
words, AA−1 = A−1A = In. We can find the inverse of a matrix in a calculator by using the
x−1 button.

For each of the following matrices, determine if the inverse exists using your calculator or
other appropriate technology. If the inverse does exist, write down the inverse and check that
it satisfies the defining property of the inverse matrix, that is AA−1 = A−1A = In. If the
inverse doesn’t exist, write down any error you received from the technology. Can you guess
why the inverse does not exist for these matrices?

(a) A =

[
1 3
0 4

]
(b) A =

[
2 3
4 6

]

(c) A =

 1 2 3
−1 −1 2

1 2 2

 (d) A =

 1 2 3
2 4 6
1 2 2


(e) A =

 1 0 0
0 2 0
0 0 3

 (f) A =

 1 2 3
−1 −1 2

0 1 5


(2) Now we turn to the question of how to find the inverse of a matrix in general. With this

approach, we will be able to determine which matrices have inverses as well.

We will consider the 2× 2 case to make the calculations easier. Suppose A is a 2× 2 matrix.
Our goal is to find a matrix B so that AB = I2 and BA = I2. If such a matrix exists, we will
call B the inverse, A−1, of A.

(a) What does the equation AB = I2 tell us about the size of the matrix B?
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(b) Now let A =

[
1 2
1 3

]
. We want to find a matrix B so that AB = I2. Suppose B

has columns b1 and b2, i.e. B = [b1 b2]. Our definition of matrix multiplication
shows that

AB = [Ab1 Ab2].

i. If AB = I2, what must Ab1 and Ab2 equal?
ii. Use the result from part (a) to set up two matrix equations to solve to find b1

and b2. Then find b1 and b2. As a result, find the matrix B.
iii. When we solve the two systems we have found a matrix B so that AB = I2. Is

this enough to say that B is the inverse of A? If not, what else do we need to
know to verify that B is in fact A−1? Verify that B is A−1.

(3) A matrix inverse is extremely useful in solving matrix equations and can help us in solving
systems of equations. Suppose that A is an invertible matrix, i.e., there exists A−1 such that
AA−1 = A−1A = In.

(a) Consider the system Ax = b. Use the inverse of A to show that this system has a
solution for every b and find an expression for this solution in terms of b and A−1.
(Note that since matrix multiplication is not commutative, we have to pay attention
to the order in which we multiply matrices. For example, A−1AB = B while we
cannot simplify ABA−1 to B unless A and B commute.)

(b) If A, B, and C are matrices and A+C = B +C, then we can subtract the matrix C
from both sides to see thatA = B. We saw in Section 8 that there is no corresponding
general cancellation property for matrix multiplication when we found that AB =
AC could hold while B 6= C. However, we can cancel A from this equation in
certain circumstances. Suppose that AB = AC and that A is an invertible matrix.
Show that we can cancel A in this case and conclude that B = C. (Note: When
simplifying the product of matrices, again keep in mind that matrix multiplication is
not commutative.)

Invertible Matrices

We now have an algebra of matrices in that we can add, subtract, and multiply matrices of the
correct sizes. But what about division? In our early mathematics education we learned about
multiplicative inverses (or reciprocals) of real numbers. The multiplicative inverse of a number a is
the real number which when multiplied by a produces 1, the multiplicative identity of real numbers.
This inverse is denoted a−1. For example, the multiplicative inverse of 2 is 2−1 = 1

2 because

2 · 1

2
= 1 =

1

2
· 2.

Of course, we didn’t have to write both products because multiplication of real numbers is a com-
mutative operation. There are a couple of important things to note about multiplicative inverses
– we can use the inverses of the number a to solve the simple linear equation ax + b = c for x
(x = a−1(c− b)), and not every real number has an inverse. The latter means that the inverse is not
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defined on the entire set of real numbers. We can extend the idea of inverses to matrices, although
we will see that there are many more matrices than just the zero matrix that do not have inverses.

To define matrix inverses2 we make an analogy with the property of inverses in the real numbers:
x · x−1 = 1 = x−1 · x.

Definition 10.1. Let A be an n× n matrix.

(1) A is invertible if there is an n× n matrix B so that AB = BA = In.

(2) If A is invertible, an inverse of A is a matrix B such that AB = BA = In.

If an n × n matrix A is invertible, its inverse will be unique (see Exercise 1), and we denote
the inverse of A as A−1. We also call an invertible matrix a non-singular matrix (with singular
meaning non-invertible).

Activity 10.1.

(a) Let A =

[
1 0
0 0

]
. Calculate AB where B =

[
a b
c d

]
. Using your result, explain why

it is not possible to have AB = I2, showing that A is non-invertible.

(b) Calculate AB where A =

[
1 2
2 4

]
and B =

[
a b
c d

]
. Using your result, explain why

the inverse of A doesn’t exist.

We saw in Activity 10.1 why the inverse does not exist for two specific matrices. We will find
in the next section an easy criterion for determining when a matrix has an inverse. In short, when
the RREF of the matrix has a pivot in every column and row, then the matrix will be invertible. We
know that this condition relates to quite a few other linear algebra concepts we have seen so far,
such as linear independence of columns and the columns spanning Rn. We will put these criteria
together in one big theorem in the next section.

Activity 10.2. Suppose that A is an invertible n× n matrix. Hence we have an inverse matrix A−1

for which AA−1 = A−1A = In. We will see how the inverse is useful in solving matrix equations
involving A.

(a) Explain why the matrix expressions

A−1(AB), A−1(A(BA)A−1) and BA−1BAA−1B−1A

can all be simplified to B. (Hint: Use the associative property of matrix multiplication.)

(b) Suppose the system Ax = b has a solution. Explain why then A−1(Ax) = A−1b. What
does this equation simplify to?

(c) Since we found one single expression for the solution x in equation Ax = b, this implies
that the equation has a unique solution. What does this imply about the matrix A?

2We usually refer to a multiplicative inverse as just an inverse. Since every matrix has an additive inverse, there is no
need to consider the existence of additive inverses.



Section 10. The Inverse of a Matrix 193

As we saw in Preview Activity 10.1, if the n × n matrix A is invertible, then the equation
Ax = b is consistent for all b in Rn and has the unique solution x = A−1b. This means that A
has a pivot in every row and column, which is equivalent to the criterion that A reduces to In, as we
noted above.

Even though x = A−1b is an explicit expression for the solution of the system Ax = b, using
the inverse of a matrix is usually not a computationally efficient way to solve a matrix equation.
Finding the RREF of a matrix computationally takes fewer steps to solve the matrix equation.

Finding the Inverse of a Matrix

The next questions for us to address are how to tell when a matrix is invertible and how to find the
inverse of an invertible matrix. Consider a 2× 2 matrix A. To find the inverse matrix B = [b1 b2]

of A, we have to solve the two matrix-vector equations Ab1 =

[
1
0

]
and Ab2 =

[
0
1

]
to find the

columns ofB. SinceA is the coefficient matrix for both systems, we apply the same row operations
on both systems to reduce A to RREF. Thus, instead of solving the two matrix-vector equations
separately, we could simply have found the RREF of[

A

∣∣∣∣ 1 0
0 1

]
and done all of the work in one pass. Note that the right hand side of the augmented matrix is now
I2. So we row reduce [A | I2], and if the systems are consistent, the reduced row echelon form of
[A | I2] must be [I2 |A−1]. You should be able to see that this same process works in any dimension.

How to find the inverse of an n× n matrix A:

• Augment A with the identity matrix In.

• Apply row operations to reduce the augmented matrix [A | In]. If the system is consistent,
then the reduced row echelon form of [A | In] will have the form [In | B] (by Activity 10.1
(d)). If the reduced row echelon form ofA is not In, then this step fails andA is not invertible.

• If A is row equivalent to In, then the matrix B in the second step has the property that
AB = In. We will show later that the matrix B also satisfies BA = In and so B is the
inverse of A.

Activity 10.3. Find the inverse of each matrix using the method above, if it exists. Compare the
result with the inverse that you get from using appropriate technology to directly calculate the
inverse.

(a)

 1 1 1
1 1 −1
1 −1 0



(b)

 1 1 1
2 2 2
0 0 1


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We can use this method of finding the inverse of a matrix to derive a concrete formula for the
inverse of a 2× 2 matrix: [

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
, (10.1)

provided that ad − bc 6= 0 (see Exercise 2). Hence, any 2 × 2 matrix
[
a b
c d

]
has an inverse if

and only if ad − bc 6= 0. We call this quantity determinant of A, det(A). We will see that the
determinant of a general n× n matrix will be essential in determining invertibility of the matrix.

Properties of the Matrix Inverse

As we have done with every new operation, we ask what properties the inverse of a matrix has.

Activity 10.4. Consider the following questions about matrix inverses. If two n×nmatricesA and
B are invertible, is the product AB invertible? If so, what is the inverse of AB? We answer these
questions in this activity.

(a) Let

A =

[
1 2
1 3

]
and B =

[
2 3
−1 2

]
.

i. Use formula (10.1) to find the inverses of A and B.

ii. Find the matrix product AB. Is AB invertible? If so, use formula (10.1) to find the
inverse of AB.

iii. Calculate the products A−1B−1 and B−1A−1. What do you notice?

(b) In part (a) we saw that the matrix product B−1A−1 was the inverse of the matrix product
AB. Now we address the question of whether this is true in general. Suppose now that C
and D are invertible n× n matrices so that the matrix inverses C−1 and D−1 exist.

i. Use matrix algebra to simplify the matrix product (CD)
(
D−1C−1

)
. (Hint: What do

you know about DD−1 and CC−1?)

ii. Simplify the matrix product
(
D−1C−1

)
(CD) in a manner similar to part i.

iii. What conclusion can we draw from parts i and ii? Explain. What property of ma-
trix multiplication requires us to reverse the order of the product when we create the
inverse of CD?

Activity 10.4 gives us one important property of matrix inverses. The other properties given in
the next theorem can be verified similarly.

Theorem 10.2. Let A and B be invertible n× n matrices. Then

(1)
(
A−1

)−1
= A.

(2) The product AB is invertible and (AB)−1 = B−1A−1.

(3) The matrix AT is invertible and
(
AT
)−1

=
(
A−1

)T.
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Examples

What follows are worked examples that use the concepts from this section.

Example 10.3. For each of the following matrices A,

• Use appropriate technology to find the reduced row echelon form of [A | I3].

• Based on the result of part (a), is A invertible? If yes, what is A−1? If no, explain why.

• Let x =

 x1

x2

x3

 and b =

 5
4
1

. If A is invertible, solve the matrix equation Ax = b using

the inverse ofA. IfA is not invertible, find all solutions, if any, to the equationAx = b using
whatever method you choose.

(a) A =

 1 2 3
1 −1 −1
1 0 1



(b) A =

 1 2 5
1 −1 −1
1 0 1


Example Solution.

(a) With A =

 1 2 3
1 −1 −1
1 0 1

, we have the following.

• The reduced row echelon form of [A | I3] is
1 0 0 1

2 1 −1
2

0 1 0 1 1 −2

0 0 1 −1
2 −1 3

2

 .
• Since A is row equivalent to I3, we conclude that A is invertible. The reduced row

echelon form of [A | I3] tells us that

A−1 =
1

2

 1 2 −1
2 2 −4
−1 −2 3

 .
• The solution to Ax = b is given by

vx = A−1b =
1

2

 1 2 −1
2 2 −4
−1 −2 3

 5
4
1

 =

 6
7
−5

 .
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(b) With A =

 1 2 5
1 −1 −1
1 0 1

, we have the following.

• The reduced row echelon form of [A | I3] is 1 0 1 0 0 1
0 1 2 0 −1 1
0 0 0 1 2 −3

 .
• Since A is not row equivalent to I3, we conclude that A is not invertible.

• The reduced row echelon form of [A | b] is 1 0 1 0
0 1 2 0
0 0 0 1

 .
The fact that the augmented column is a pivot column means that the equation Ax =
b has no solutions.

Example 10.4.

(a) Let A =

 0 1 0
0 0 1
0 0 0

.

i. Show that A2 6= 0 but A3 = 0.

ii. Show that I − A is invertible and find its inverse. Compare the inverse of I − A to
I +A+A2.

(b) Let M be an arbitrary square matrix such that M3 = 0. Show that M is invertible and find
an inverse for M .

Example Solution.

(a) Let A =

 0 1 0
0 0 1
0 0 0

.

i. Using technology to calculateA2 andA3 we find thatA3 = 0 whileA2 =

 0 0 1
0 0 0
0 0 0

.

ii. For this matrixA we have I−A =

 1 −1 0
0 1 −1
0 0 1

. The reduced row echelon form

of I −A is  1 −0 0 1 1 1
0 1 0 0 1 1
0 0 1 0 0 1

 ,
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so I −A is invertible and (I −A)−1 =

 1 1 1
0 1 1
0 0 1

.

A straightforward matrix calculation also shows that

(I −A)−1 = I +A+A2.

(b) We can try to emulate the result of part (a) here. Expanding using matrix operations gives
us

(I −M)(I +M +M2) = (I +M +M2)− (M +M2 +M3)

= (I +M +M2)− (M +M2 + 0)

= I

and

(I +M +M2)(I −M) = (I +M +M2)− (M +M2 +M3)

= (I +M +M2)− (M +M2 + 0)

= I.

So I −M is invertible and (I −M)−1 = I +M +M2.

This argument can be generalized to show that if M is a square matrix and Mn = 0 for
some positive integer n, then I −M is invertible and

(I −M)−1 = I +M +M2 + · · ·+Mn−1.

Summary

• If A is an n × n matrix, then A is invertible if there is a matrix B so that AB = BA = In.
The matrix B is called the inverse of A and is denoted A−1.

• An n × n matrix A is invertible if and only if A the reduced row echelon form of A is the
n× n identity matrix In.

• To find the inverse of an invertible n × n matrix A, augment A with the identity and row
reduce. If [A | In] ∼ [In | B], then B = A−1.

• If A and B are invertible n×n matrices, then (AB)−1 = B−1A−1. Since the inverse of AB
exists, the product of two invertible matrices is an invertible matrix.

• We can use the algebraic tools we have developed for matrix operations to solve equations
much like we solve equations with real variables. We must be careful, though, to only mul-
tiply by inverses of invertible matrices, and remember that matrix multiplication is not com-
mutative.
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Exercises

(1) Let A be an invertible n × n matrix. In this exercise we will prove that the inverse of A is
unique. To do so, we assume that both B and C are inverses of A, that is AB = BA = In
and AC = CA = In. By considering the product BAC simplified in two different ways,
show that B = C, implying that the inverse of A is unique.

(2) Let A =

[
a b
c d

]
be an arbitrary 2× 2 matrix.

(a) If A is invertible, perform row operations to determine a row echelon form of A.
(Hint: You may need to consider different cases, e.g., when a = 0 and when a 6= 0.)

(b) Under certain conditions, we can row reduce [A | I2] to [I2 | B], where

B =
1

ad− bc

[
d −b
−c a

]
.

Use the row echelon form of A from part (a) to find conditions under which the 2×2
matrix A is invertible. Then derive the formula for the inverse B of A.

(3) (a) For a few different k values, find the inverse of A =

[
1 k
0 1

]
. From these results,

make a conjecture as to what A−1 is in general.

(b) Prove your conjecture using the definition of inverse matrix.

(c) Find the inverse of A =

 1 k `
0 1 m
0 0 1

.

(Note: You can combine the first two parts above by applying the inverse finding algorithm

directly on A =

[
1 k
0 1

]
.)

(4) Solve for the matrix A in terms of the others in the following equation:

P−1(D + CA)P = B

If you need to use an inverse, assume it exists.

(5) For which c is the matrix A =

 1 2 −1
2 1 1
1 5 c

 invertible?

(6) For which c is the matrix A =

[
c 2
3 c

]
invertible?

(7) Let A and B be invertible n× n matrices. Verify the remaining properties of Theorem 10.2.
That is, show that

(a)
(
A−1

)−1
= A.

(b) The matrix AT is invertible and
(
AT
)−1

=
(
A−1

)T.
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(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If A is an invertible matrix, then for any two matrices B,C, AB = AC
implies B = C.

(b) True/False If A is invertible, then so is AB for any matrix B.

(c) True/False If A and B are invertible n× n matrices, then so is AB.

(d) True/False IfA is an invertible n×nmatrix, then the equationAx = b is consistent
for any b in Rn.

(e) True/False IfA is an invertible n×nmatrix, then the equationAx = b has a unique
solution when it is consistent.

(f) True/False If A is invertible, then so is A2.

(g) True/False If A is invertible, then it reduces to the identity matrix.

(h) True/False If a matrix is invertible, then so is its transpose.

(i) True/False If A and B are invertible n× n matrices, then A+B is invertible.

(j) True/False If A2 = 0, then I +A is invertible.

Project: The Richardson Arms Race Model

How and why a nation arms itself for defense depends on many factors. Among these factors are the
offensive military capabilities a nation deems its enemies have, the resources available for creating
military forces and equipment, and many others. To begin to analyze such a situation, we will
need some notation and background. In this section we will consider a two nation scenario, but the
methods can be extended to any number of nations. In fact, after World War I, Richardson collected
data and created a model for the countries Czechoslovakia, China, France, Germany, England, Italy,
Japan, Poland, the USA, and the USSR.3

Let N1 and N2 represent 2 different nations. Each nation has some military capability (we will
call this the armament of the nation) at time n (think of n as representing the year). Let a1(n)
represent the armament of nation N1 at time n, and a2(n) the armament of nation N2 at time n.
We could measure ai(n) in weaponry or dollars or whatever units make sense for armaments. The
Richardson arms race model provides connections between the armaments of the two nations.

Project Activity 10.1. We continue to analyze a two nation scenario. Let us suppose that our two
nations are Iran (nation N1) and Iraq (nation N2). In 1980, Iraq invaded Iran resulting in a long
and brutal 8 year war. Richardson was interested in analyzing data to see if such wars could be
predicted by the changes in armaments of each nation. We construct the two nation model in this
activity.

During each time period every nation adds or subtracts from its armaments. In our model, we
will consider three main effects on the changes in armaments: the defense effect, fatigue effect and

3The Union of Soviet Socialist Republics (USSR), headed by Russia, was a confederation of socialist republics in
Eurasia. The USSR disbanded in 1991. Czechoslovakia was a sovereign state in central Europe that peacefully split into
the Czech Republic and Slovakia in 1993.
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the grievance effect. In this activity we will discuss each effect in turn and then create a model to
represent a two nation arms race.

• We first consider the defense effect. In a two nation scenario, each nation may react to the
potential threat implied by an arms buildup of the other nation. For example, if nation N1

feels threatened by nation N2 (think of South and North Korea, or Ukraine and Russia, for
example), then nationN2’s level of armament might cause nationN1 to increase its armament
in response. We will let δ12 represent this effect of nation N2’s armament on the armament
of nation N1. Nation N1 will then increase (or decrease) its armament in time period n by
the amount δ12a2(n− 1) based on the armament of nation N2 in time period n− 1. We will
call δ12 a defense coefficient.4

• Next we discuss the fatigue effect. Keeping a strong defense is an expensive and taxing
enterprise, often exacting a heavy toll on the resources of a nation. For example, consider the
fatigue that the U.S. experienced fighting wars in Iraq and Afghanistan, losing much hardware
and manpower in these conflicts. Let δii represent this fatigue factor on nation i. Think of
δii as a measure of how much the nation has to replace each year, so a positive fatigue factor
means that the nation is adding to its armament. The fatigue factor produces an effect of
δiiai(n − 1) on the armament of nation i at time t = n that is the effect of the armament at
time t = n− 1.

• The last factor we consider is what we will call a grievance factor. This can be thought of
as the set of ambitions and/or grievances against other nations (such as the acquisition or
reacquisition of territory currently belonging to another country). As an example, Argentina
and Great Britain both claim the Falkland Islands as territory. In 1982 Argentina invaded the
disputed Falkland Islands which resulted in a two-month long undeclared Falkland Islands
war, which returned control to the British. It seems reasonable that one nation might want to
have sufficient armament in place to support its claim if force becomes necessary. Assuming
that these grievances and ambitions have a constant impact on the armament of a nation from
year to year, let gi be this “grievance” constant for nation i.5 The effect a grievance factor gi
would have on the armament of nation i in year n would be to add gi directly to ai(n − 1),
since the factor gi is constant from year to year (paying for arms and soldier’s wages, for
example) and does not depend on the amount of existing armament.

(a) Taking the three effects discussed above into consideration, explain why

a1(n) = δ11a1(n− 1) + δ12a2(n− 1) + a1(n− 1) + g1.

Then explain why

a1(n) = (δ11 + 1) a1(n− 1) + δ12a2(n− 1) + g1. (10.2)
4Of course, there are many other factors that have not been taken into account in the analysis. A nation may have

heavily armed allies (like the U.S.) which may provide enough perceived security that this analysis is not relevant. Also,
a nation might be a neutral state, such as Switzerland, and this analysis might not apply to such nations.

5It might be possible for gi to be negative if, for example, a nation feels that such disputes can and should only be
settled by negotiation.
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(b) Write an equation similar to equation (10.2) that describes a2(n) in terms of the three ef-
fects.

(c) Let an =

[
a1(n)
a2(n)

]
. Explain why

an = (D + I2)an−1 + g,

where D =

[
δ11 δ12

δ21 δ22

]
and g = [g1 g2]T.

Year Iran Iraq
1966 662 391

1967 903 378

1968 1090 495

1969 1320 615

1970 1470 600

1971 1970 618

1972 2500 589

1973 2970 785

1974 5970 2990

1975 7100 1690

Table 10.1: Military Expenditures of Iran and Iraq 1966-1975.

Project Activity 10.2. In order to analyze a specific arms race between nations, we need some data
to determine values of the δij and the gi. Table 10.1 shows the military expenditures of Iran and
Iraq in the years leading up to their war in 1975. (The data is in millions of US dollars, adjusted for
inflation and is taken from “World Military Expenditures and Arms Transfers 1966-1975” by the
U.S. Arms Control and Disarmament Agency.) We can perform regression (we will see how in a
later section) on this data to obtain the following linear approximations:

a1(n) = 2.0780a1(n− 1)− 1.7081a2(n− 1)− 126.9954 (10.3)

a2(n) = 0.9419a1(n− 1)− 1.3283a2(n− 1)− 101.2980. (10.4)

(Of course, the data does not restrict itself to only factors between the two countries, so our model
will not be as precise as we might like. However, it is a reasonable place to start.) Use the regression
equations (10.3) and (10.4) to explain why

D =

[
1.0780 −1.7081
0.94194 −2.3283

]
and g = [−126.9954 − 101.2980]T

for our Iran-Iraq arms race.

Activities 10.1 and 10.2 provide the basics to describe the general arms race model due to
Richardson. If we have an m nation arms race with D = [δij ] and g = [gi] , then

an = (D + Im)an−1 + g. (10.5)
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Project Activity 10.3. The idea of an arms race, theoretically, is to reach a point at which all parties
feel secure and no additional money needs to be spent on armament. If such a situation ever arises,
then the armament of all nations is stable, or in equilibrium. If we have an equilibrium solution,
then for large values of n we will have an = an−1. So to find an equilibrium solution, if it exists,
we need to find a vector aE so that

aE = (D + I)aE + g (10.6)

where I is the appropriate size identity matrix. If aE exists, we call aE an equilibrium state.

We can apply matrix algebra to find the equilibrium state vector aE under certain conditions.

(a) Assuming that aE exists, use matrix algebra and Equation 10.6 to show that

DaE + g = 0. (10.7)

(b) Under what conditions can we be assured that there will always be a unique equilibrium
state aE? Explain. Under these conditions, how can we find this unique equilibrium state?
Write this equilibrium state vector aE as a matrix-vector product.

(c) Does the arms race model for Iran and Iraq have an equilibrium solution? If so, find it. If
not, explain why not. Use technology as appropriate.

(d) Assuming an equilibrium exists and that both nations behave in a way that supports the
equilibrium, explain what the appropriate entry of the equilibrium state vector aE suggests
about what Iran and Iraq’s policies should be. What does this model say about why there
might have been war between these two nations?



Section 11

The Invertible Matrix Theorem

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What does it mean for two statements to be equivalent?

• How can we efficiently prove that a string of statements are all equivalent?

• What is the Invertible Matrix Theorem and why is it important?

• What are the equivalent conditions to a matrix being invertible?

Introduction

This section is different than others in this book in that it contains only one long proof of the
equivalence of statements that we have already discussed. As such, this is a theoretical section and
there is no application connected to it.

The Invertible Matrix Theorem is a theorem that provides many different statements that are
equivalent to having a matrix be invertible. To understand the Invertible Matrix Theorem, we need
to know what it means for two statements to be equivalent. By equivalent, we mean that if one of
the statements is true, then so is the other. We examine this idea in this preview activity.

Preview Activity 11.1. Let A be an n× n matrix. In this activity we endeavor to understand why
the two statements

I. The matrix A is invertible.

II. The matrix AT is invertible.

are equivalent. To demonstrate that statements I and II are equivalent, we need to argue that if
statement I is true, then so is statement II, and if statement II is true then so is statement I.

203
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(1) Let’s first show that if statement I is true, then so is statement II. So we assume statement I.
That is, we assume that A is an invertible matrix. So we know that there is an n × n matrix
B such that AB = BA = In, where In is the n × n identity matrix. To demonstrate that
statement II must also be true, we need to verify that AT is an invertible matrix.

(a) What is ITn ?

(b) Take the transpose of both sides of the equation AB = In and use the properties of
the transpose to write (AB)T in terms of AT and BT.

(c) Take the transpose of both sides of the equation BA = In and use the properties of
the transpose to write (BA)T in terms of AT and BT.

(d) Explain how the previous two parts show that BT is the inverse of AT, so that AT is
invertible. So we have shown that if statement I is true, so is statement II.1

(2) Now we prove that if statement II is true, then so is statement I. So we assume statement II.
That is, we assume that the matrix AT is invertible. We could do this in the same manner as
part (a), or we could be a bit clever. Let’s try to be clever.

(a) What matrix is
(
AT
)T?

(b) Why can we use the result of part (a) with AT in place of A to conclude that A is
invertible? As a consequence, we have demonstrated that A is invertible if AT is
invertible. This concludes our argument that statements I and II are equivalent.

The Invertible Matrix Theorem

We have been introduced to many statements about existence and uniqueness of solutions to systems
of linear equations, linear independence of columns of coefficient matrices, onto linear transforma-
tions, and many other items. In this section we will analyze these statements in light of how they
are related to invertible matrices, with the main goal to understand the Invertible Matrix Theorem.

Recall that an n×n matrix A is invertible if there is an n×n matrix B such that AB = BA =
In, where In is the n×n identity matrix. The Invertible Matrix Theorem is an important theorem in
that it provides us with a wealth of statements that are all equivalent to the statement that an n× n
matrixA is invertible, and connects many of the topics we have been discussing so far this semester
into one big picture.

Theorem 11.1 (The Invertible Matrix Theorem). Let A be an n × n matrix. The following state-
ments are equivalent:

(1) A is an invertible matrix.

(2) The equation Ax = 0 has only the trivial solution.

(3) A has n pivot columns.

(4) The columns of A span Rn.
1Note that statement I does not have to be true. We are only assuming that IF statement I is true, then statement II

must also be true.
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(5) A is row equivalent to the identity matrix In.

(6) The columns of A are linearly independent.

(7) The columns of A form a basis for Rn.

(8) The matrix transformation T from Rn to Rn defined by T (x) = Ax is one-to-one.

(9) The matrix equation Ax = b has exactly one solution for each vector b in Rn.

(10) The matrix transformation T from Rn to Rn defined by T (x) = Ax is onto.

(11) There is an n× n matrix C so that AC = In.

(12) There is an n× n matrix D so that DA = In.

(13) The scalar 0 is not an eigenvalue of A.

(14) AT is invertible.

The Invertible Matrix Theorem is a theorem that provides many different statements that are
equivalent to a matrix being invertible. As discussed in Preview Activity 11.1, two statements are
said to be equivalent if, whenever one of the statements is true, then the other is also true. So to
demonstrate, say, statements I and II are equivalent, we need to argue that

• if statement I is true, then so is statement II, and

• if statement II is true then so is statement I.

The Invertible Matrix Theorem, however, provides a long list of statements that are equivalent. It
would be inefficient to prove, one by one, that each pair of statements is equivalent. (There are(

14
2

)
= 91 such pairs.) Fortunately, there is a shorter method that we can use.

Activity 11.1. In this activity, we will consider certain parts of the Invertible Matrix Theorem and
show that one implies another in a specific order. For all parts in this activity, we assume A is an
n× n matrix.

(a) Consider the following implication:
(2) =⇒ (6):2 If the equation Ax = 0 has only the trivial solution, then the columns of
A are linearly independent. This shows that part 2 of the IMT implies part 6 of the IMT.
Justify this implication as if it is a T/F problem.

(b) Justify the following implication:
(6) =⇒ (9): If the columns of A are linearly independent, then the matrix equation
Ax = b has exactly one solution for each vector b in Rn.

(c) Justify the following implication:
(9) =⇒ (4): If the equation Ax = b has exactly one solution for every vector b in Rn,
then the columns of A span Rn.

2The symbol =⇒ is the implication symbol, so (1) =⇒ (12) is read to mean that statement (1) of the theorem
implies statement (12).
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(d) Justify the following implication:
(4) =⇒ (2): If the columns of A span Rn, then the equation Ax = 0 has only the trivial
solution.

(e) Using the above implications you proved, explain why we can conclude the following im-
plication must also be true:
(2) =⇒ (9): If the equationAx = 0 has only the trivial solution, then the matrix equation
Ax = b has exactly one solution for each vector b in Rn.

(f) Using the above implications you proved, explain why any one of the implications (2), (6),
(9), and (4) implies any of the others.

Using a similar ordering of circular implications as in Activity 11.1, we can prove the Invertible
Matrix Theorem by showing that each statement in the list implies the next statement, and that the
last statement implies the first.

Proof of the Invertible Matrix Theorem

Statement (1) implies Statement (2). This follows from work done in Activity 11.1.

Statement (2) implies Statement (3). This was done in Activity 11.1.

Statement (3) implies Statement (4). Suppose that every column of A is a pivot column. The fact
thatA is square means that every row ofA contains a pivot, and hence the columns ofA span
Rn.

Statement (4) implies Statement (5). Since the columns of A span Rn, it must be the case that
every row of A contains a pivot. This means that A must be row equivalent to In.

Statement (5) implies Statement (6). If A is row equivalent to In, there must be a pivot in every
column, which means that the columns of A are linearly independent.

Statement (6) implies Statement (7). If the columns of A are linearly independent, then there is
a pivot in every column. Since A is a square matrix, there is a pivot in every row as well.
So the columns of A span Rn. Since they are also linearly independent, the columns form a
minimal spanning set, which is a basis of Rn.

Statement (7) implies Statement (8). If the columns form a basis of Rn, then the columns are
linearly independent. This means that each column is a pivot column, which also implies
Ax = 0 has a unique solution and that T is one-to-one.

Statement (8) implies Statement (9). If T is one-to-one, then A has a pivot in every column.
Since A is square, every row of A contains a pivot. Therefore, the system Ax = b is
consistent for every b ∈ Rn and has a unique solution.

Statement (9) implies Statement (10). If Ax = b has a unique solution for every b, then the
transformation T is onto since T (x) = b has a solution for every b.
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Statement (10) implies Statement (11). Assume that T defined by T (x) = Ax is onto. For each
i, let ei be the ith column of the n× n identity matrix In. That is, ei is the vector in Rn with
1 in the ith component and 0 everywhere else. Since T is onto, for each i there is a vector ci
such that T (ci) = Aci = ei. Let C = [c1 c2 · · · cn]. Then

AC = A[c1 c2 · · · cn] = [Ac1 Ac2 · · · Acn] = [e1 e2 · · · en] = In.

Statement (11) implies Statement (12). Assume C is an n× n matrix so that AC = In. First we
show that the matrix equation Cx = 0 has only the trivial solution. Suppose Cx = 0. Then
multiplying both sides on the left by A gives us

A(Cx) = A0.

Simplifying this equation using AC = In, we find x = 0.

Since Cx = 0 has only the trivial solution, every column of C must be a pivot column. Since
C is an n × n matrix, it follows that every row of C contains a pivot position. Thus, the
matrix equation Cx = b is consistent and has a unique solution for every b in Rn. Let vi be
the vector in Rn satisfying Cvi = ei for each i between 1 and n and letM = [v1 v2 · · · vn].
Then CM = In.

Now we show that CA = In. Since
AC = In

we can multiply both sides on the left by C to see that

C(AC) = CIn.

Now we multiply both sides on the right by M and obtain

(C(AC))M = CM.

Using the associative property of matrix multiplication and the fact that CM = In shows
that

(CA)(CM) = CM

CA = In.

Thus, if A and C are n × n matrices and AC = In, then CA = In. So we have proved our
implication with D = C

Statement (12) implies Statement (13). Assume that there is an n×nmatrixD so thatDA = In.
Suppose Ax = 0. Then multiplying both sides by A on the left, we find that

D(Ax) = D0

(DA)x = 0

x = 0.

So the equation Ax = 0 has only the trivial solution and 0 is not an eigenvalue for A.
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Statement (13) implies Statement (14). If 0 is not an eigenvalue of A, then the equation Ax = 0
has only the trivial solution. Since statement 2 implies statement 11, there is an n × n
matrix C such that AC = In. The proof that statement 11 implies statement 12 shows that
CA = In as well. So A is invertible. By taking the transpose of both sides of the equation
AA−1 = A−1A = In (remembering (AB)T = BTAT) we find

(A−1)TAT = AT(A−1)T = ITn = In .

Therefore, (A−1)T is the inverse of AT by definition of the inverse.

Statement (14) implies Statement (1). Since statement (1) implies statement (14), we proved ‘If
A is invertible, then AT is invertible.” Using this implication with AT replaced by A, we
find that ‘If AT is invertible, then (AT)T is invertible.” But (AT)T = A, which proves that
statement (14) implies statement (1).

This concludes our proof of the Invertible Matrix Theorem.

Examples

What follows are worked examples that use the concepts from this section.

Example 11.2. Let M =


1 2 2 1
0 1 0 1
1 3 2 3
0 1 0 0

.

(a) Without doing any calculations, is M invertible? Explain your response.

(b) Is the equation Mx = b consistent for every b in R4? Explain.

(c) Is the equation Mx = 0 consistent? If so, how many solutions does this equation have?
Explain.

(d) Is it possible to find a 4× 4 matrix P such that PM = I4? Explain.

Example Solution.

(a) The third column of M is twice the first, so the columns of M are not linearly independent.
We conclude that M is not invertible.

(b) The equation Mx = b is not consistent for every b in R4. If it was, then the columns of
M would span R4 and, since there are exactly four columns, the columns of M would be a
basis for R4. Thus, M would have to be invertible, which it is not.

(c) The homogeneous system is always consistent. Since the columns of M are linearly de-
pendent, the equation Mx = 0 has infinitely many solutions.

(d) It is not possible to find a 4× 4 matrix P such that PM = I4. Otherwise M would have to
be invertible.
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Example 11.3. Let M be an n× n matrix whose eigenvalues are all nonzero.

(a) Let b ∈ Rn. Is the equation Mx = b consistent? If yes, explain why and find all solutions
in terms of M and b. If no, explain why.

(b) Let S be the matrix transformation defined by S(x) = Mx. Suppose S(a) = S(b) for
some vectors a and b in Rn. Must there be any relationship between a and b? If yes,
explain the relationship. If no, explain why.

(c) Let m1, m2, . . ., mn be the columns ofM . In how many ways can we write the zero vector
as a linear combination of m1, m2, . . ., mn? Explain.

Example Solution.

(a) Since 0 is not an eigenvalue of M , we know that M is invertible. Therefore, the equation
Mx = b has the unique solution x = M−1b.

(b) The fact that M is invertible implies that S is one-to-one. So if S(a) = S(b), then it must
be the case that a = b.

(c) Because M is invertible, the columns of M are linearly independent. Therefore, there is
only the trivial solution to the equation

x1m1 + x2m2 + · · ·+ xnmn = 0.

Summary

• Two statements are equivalent if, whenever one of the statements is true, then the other must
also be true.

• To efficiently prove that a string of statements are all equivalent, we can prove that each
statement in the list implies the next statement, and that the last statement implies the first.

• The Invertible Matrix Theorem gives us many conditions that are equivalent to an n × n
matrix being invertible. This theorem is important because it connects many of the concepts
we have been studying.

Exercises

(1) Consider the matrix A =

 1 2 a
−1 1 b

1 1 c

. Use the Invertible Matrix Theorem to geometri-

cally describe the vectors

 a
b
c

 which make A invertible without doing any calculations.
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(2) Suppose A is an invertible n × n matrix. Let T be the matrix transformation defined by
T (x) = Ax for x in Rn. Show that the matrix transformation S defined by S(x) = A−1x is
the inverse of the transformation T (i.e., S is the inverse function to T when the transforma-
tions are considered as functions).

(3) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If A2 is invertible, then A is invertible.

(b) True/False If A and B are square matrices with AB invertible, then A and B are
invertible.

(c) True/False If the columns of an n×nmatrixA span Rn, then the equationA−1x = 0
has a unique solution.

(d) True/False If the columns of A and columns of B form a basis of Rn, then so do the
columns of AB.

(e) True/False If the columns of a matrix A form a basis of Rn, then so do the rows of
A.

(f) True/False If the matrix transformation T defined by T (x) = Ax is one-to-one for
an n× n matrix A, then the columns of A−1 are linearly independent.

(g) True/False If the columns of an n× n matrix A span Rn, then so do the rows of A.

(h) True/False If there are two n × n matrices A and B such that AB = In, then the
matrix transformation defined by T (x) = ATx is one-to-one.
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Section 12

The Structure of Rn

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What properties make Rn a vector space?

• What is a subspace of Rn?

• What properties do we need to verify to show that a set of vectors is a
subspace of Rn? Why?

• What important structure does the span of a set of vectors in Rn have?

Application: Connecting GDP and Consumption in Romania

It is common practice in the sciences to run experiments and collect data. Once data is collected it
is necessary to find some way to analyze the data and predict future behavior from the data. One
method is to find a curve that best “fits” the data, and one widely used method for curve fitting is
called the least squares method.

For example, economists are often interested in consumption, which is the purchase of goods
and services for use by households. In “A Statistical Analysis of GDP and Final Consumption
Using Simple Linear Regression, the Case of Romania 1990-2010”,1 the authors collect data and
then use simple linear regression to compare GDP (gross domestic product) to consumption in
Romania. The data they used is seen in Table 12.1, with a corresponding scatterplot of the data
(with consumption as independent variable and GDP as dependent variable). The units for GDP

1Bălăcescu, Aniela & Zaharia, Marian. (2012). A STATISTICAL ANALYSIS OF GDP AND FINAL
CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA 1990?2010. An-
nals - Economy Series. 4. 26-31. Available from: https://www.researchgate.net/publication/
227382939_A_STATISTICAL_ANALYSIS_OF_GDP_AND_FINAL_CONSUMPTION_USING_SIMPLE_
LINEAR_REGRESSION_THE_CASE_OF_ROMANIA_1990-2010.
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and consumption are milliions of leu (the currency of Romania is the leu – on December 21, 2018,
one leu was worth approximately $0.25 U.S.) The authors conclude their paper with the following
statement:

“However, we can appreciate that linear regression model describes the correlation
between the value of gross domestic product and the value of final consumption and
may be transcribed following form:

PIB = -3127.51+ 1.22 CF.

Analysis of correlation between GDP and final consumption (private consumption and
public consumption) will result in an increase of 1.22 units of monetary value of gross
domestic product.

We can conclude that the Gross Domestic Product of our country is strongly influenced
by the private and public consumption.”

Year GDP Consumption
1990 85.8 68.0

1991 220.4 167.3

1992 602.9 464.3

1993 2003.9 1523.6

1994 4977.3 3845.2

1995 7648.9 6257.7

1996 11384.2 9713.8

1997 25529.8 21972.2

1998 37055.1 33311.2

1999 55191.4 49311.9

2000 80984.6 69587.4

2001 117945.8 100731.7

2002 152017.0 127118.8

2003 197427.6 168818.7

2004 247368.0 211054.6

2005 288954.6 251038.1

2006 344650.6 294867.6

2007 416006.8 344937.0

2008 514700.0 420917.5

2009 498007.5 402246.0

2010 513640.8 405422.4

Table 12.1: GDP and con-
sumption in Romania.

100000 200000 300000 400000

100000

200000

300000

400000

500000

Figure 12.1: GDP and consump-
tion data plot.

As we can see from the scatterplot, the relationship between the GDP and consumption is not
exactly linear, but looks to be very close. To make correlations between GDP and consumption as
the authors did, we need to understand how they determined their approximate linear relationship
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between the variables. With a good approximation function we can then compare the variables,
extrapolate from the data, and make predictions or interpolate and estimate between data points.
For example, we could use our approximation function to predict, as the authors did, how changes
in consumption affect GDP (or vice versa). Later in this section we will see how to find the least
squares line to fit this data – the best linear approximation to the data. This involves finding a vector
in a certain subspace of R2 that is closest to a given vector. Linear least squares approximation is a
special case of a more general process that we will encounter in later sections where we learn how
to project sets onto subspaces.

Introduction

The set Rn with vector addition and scalar multiplication has a nice algebraic structure. These op-
erations satisfy a number of properties, such as associativity and commutativity of vector addition,
the existence of an additive identity and additive inverse, distribution of scalar multiplication over
vector addition, and others. These properties make it easier to work with the whole space since
we can express the vectors as linear combinations of basis vectors in a unique way. This algebraic
structure makes Rn a vector space.

There are many subsets of Rn that have this same structure. These subsets are called subspaces
of Rn. These are the sets of vectors for which the addition of any two vectors is defined within the
set, the scalar multiple of any vector by any scalar is defined within the set and the set contains the
zero vector. One type of subset with this structure is the span of a set of vectors.

Recall that the span of a set of vectors {v1,v2, . . . ,vk} in Rn is the set of all linear combina-

tions of the vectors. For example, if v1 =

 1
1
0

 and v2 =

 1
0
1

, then a linear combination of

these two vectors is of the form

c1v1 + c2v2 = c1

 1
1
0

+ c2

 1
0
1

 =

 c1 + c2

c1

c2

 .
One linear combination can be obtained by letting c1 = 2, c2 = −3, which gives the vector 2v1 −

3v2 =

 −1
−3
2

. All such linear combinations form the span of the vectors v! and v2. In this case,

these vectors will form a plane through the origin in R3.

Now we will investigate if the span of two vectors form a subspace, i.e. if it has the same
structure as a vector space.

Preview Activity 12.1. Let w1 and w2 be two vectors in Rn. Let W = Span{w1,w2}.

(1) For W to be a subspace of Rn, the sum of any two vectors in W must also be in W .

(a) Pick two specific examples of vectors u,y in W (keeping w1,w2 unknown/general
vectors). For example, one specific u would be 2w1 − 3w2 as we used in the above
example. Find the sum of u,y. Is the sum also in W ? Explain. (Hint: What does it
mean for a vector to be in W ?)
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(b) Now let u and y be arbitrary vectors in W . Explain why u + y is in W .

(2) For W to be a subspace of Rn, any scalar multiple of any vector in W must also be in W .

(a) Pick a specific example u in W . Explain why 2u,−3u, πu are all also in W .

(b) Now let a be an arbitrary scalar and let u be an arbitrary vector in W . Explain why
the vector au is in W .

(3) For W to be a subspace of Rn, the zero vector must also be in W . Explain why the zero
vector is in W .

(4) Does vector addition being commutative for vectors in Rn imply that vector addition is also
commutative for vectors in W ? Explain your reasoning.

(5) Suppose we have an arbitrary u inW . There is an additive inverse of u in Rn. In other words,
there is a u′ such that u + u′ = 0. Should this u′ be also in W ? If so, explain why. If not,
give a counterexample.

(6) Look at the other properties of vector addition and scalar multiplication of vectors in Rn
listed in Theorem 4.3 in Section 4. Which of these properties should also hold for vectors in
W ?

Vector Spaces

The set of n-dimensional vectors with the vector addition and scalar multiplication satisfy many
properties, such as addition being commutative and associative, existence of an additive identity,
and others. The set Rn with these properties is an example of a vector space, a general structure
examples of which include many other algebraic structures as we will see later.

Definition 12.1. A set V on which an operation of addition and a multiplication by scalars is defined
is a vector space if for all u, v, and w in V and all scalars a and b:

(1) u + v is an element of V (we say that V is closed under the addition in V ),

(2) u + v = v + u (we say that the addition in V is commutative),

(3) (u + v) + w = u + (v + w) (we say that the addition in V is associative),

(4) there is a vector 0 in V so that u+0 = u (we say that V contains an additive identity or zero
vector 0),

(5) for each x in V there is an element y in V so that x + y = 0 (we say that V contains an
additive inverse y for each element x in V ),

(6) au is an element of V (we say that V is closed under multiplication by scalars),

(7) (a+ b)u = au + bu (we say that multiplication by scalars distributes over scalar addition),

(8) a(u + v) = au + av (we say that multiplication by scalars distributes over addition in V ),
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(9) (ab)u = a(bu),

(10) 1u = u.

Theorem 4.3 in Section 4 shows that Rn is itself a vector space. As we will see, there are many
other sets that have the same algebraic structure. By focusing on this structure and the properties
of these operations, we can extend the theory of vectors we developed so far to a broad range of
objects, making it easier to work with them. For example, we can consider linear combinations of
functions or matrices, or define a basis for different types of sets of objects. Such algebraic tools
provide us with new ways of looking at these sets of objects, including a geometric intuition when
working with these sets. In this section, we will analyze subsets of Rn which behave similar to Rn
algebraically. We will call such sets subspaces. In a later chapter we will encounter different kinds
of sets that are also vector spaces.

Definition 12.2. A subsetW of Rn is a subspace of Rn ifW itself is a vector space using the same
operations as in Rn.

The following example illustrates the process for demonstrating that a subset of Rn is a subspace
of Rn.

Example 12.3. There are many subsets of Rn that are themselves vector spaces. Consider as an
example the set W of vectors in R2 defined by

W =

{[
x
0

]∣∣∣∣x is a real number
}
.

In other words, W is the set of vectors in R2 whose second component is 0. To see thatW is itself a
vector space, we need to demonstrate that W satisfies all of the properties listed in Definition 12.1.

To prove the first property, we need to show that the sum of any two vectors in W is again in

W . So we need to choose two arbitrary vectors in W . Let u =

[
x
0

]
and v =

[
y
0

]
be vectors in

W . Note that

u + v =

[
x
0

]
+

[
y
0

]
=

[
x+ y

0

]
.

Since the second component of u + v is 0, it follows that u + v is in W . Thus, the set W is closed
under addition.

For the second property, that addition is commutative in W , we can just use the fact that if u
and v are in W , they are also vectors in R2 and u + v = v + u is satisfied in R2. So the property
also holds in W .

A similar argument can be made for property (3).

Property (4) states the existence of the additive identity inW . Note that 0 is an additive identity
in R2 and if it is also an element in W , then it will automatically be the additive identity of W .

Since the zero vector can be written as 0 =

[
x
0

]
with x = 0, 0 is in W . Thus, W satisfies

property 4.

We will postpone property (5) for a bit since we can show that other properties imply property
(5).
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Property (6) is a closure property, just like property (1). We need to verify that any scalar
multiple of any vector in W is again in W . Consider an arbitrary vector u and an arbitrary scalar a.
Now

au = a

[
x
0

]
=

[
ax
0

]
.

Since the vector au has a 0 as its second component, we see that au is in W . Thus, W is closed
under scalar multiplication.

Properties (7), (8), (9) and (10) only depend on the operations of addition and multiplication by
scalars in R2. Since these properties depend on the operations and not the vectors, these properties
will transfer to W .

We still have to justify property (5) though. Note that since 1 − 1 = 0 in real numbers, by
applying property (7) with a = 1, b = −1, we find that

0 = 0u = (a+ b)u = au + bu = u + (−1)u .

Therefore, (−1)u is an additive inverse for u. Therefore, to show that the additive inverse of any u
in W is also in W , we simply note that any multiple of u is also in W and hence (−1)u must also
be in W .

Since W satisfies all of the properties of a vector space, W is a vector space. Any subset of Rn
that is itself a vector space using the same operations as in Rn is called a subspace of Rn.

Example 12.3 and our work Preview Activity 12.1 bring out some important ideas. When
checking that a subset W of a vector space Rn is also a vector space, we can use the fact that all
of the properties of the operations in Rn are transferred to any closed subset W . This implies that
properties (2), (3), (7)-(10) are all automatically satisfied for W as well. Property (5) follows from
the others. So we only need to check properties (1), (4) and (6). In fact, as we argued in the above
example, property (4) also needs to be checked by simply checking that 0 of Rn is in W . We
summarize this result in the following theorem.

Theorem 12.4. A subset W of Rn is a subspace of Rn if

(1) whenever u and v are in W it is also true that u + v is in W (that is, W is closed under
addition),

(2) whenever u is in W and a is a scalar it is also true that au is in W (that is, W is closed
under scalar multiplication),

(3) 0 is in W .

The next activity provides some practice using Theorem 12.4.

Activity 12.1. Use Theorem 12.4 to answer the following questions. Justify your responses. For
sets which lie inside R2, sketch a pictorial representation of the set and explain why your picture
confirms your answer.

(a) Is the set W =

{[
x
y

]∣∣∣∣y = 2x

}
a subspace of R2?
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(b) Is the set W =


 x

0
1

∣∣∣∣∣∣x is a scalar

 a subspace of R3?

(c) Is the set W =

{[
x

x+ y

]∣∣∣∣x, y are scalars
}

a subspace of R2?

(d) Is the set W =

{[
x
y

]∣∣∣∣y = 2x+ 1

}
a subspace of R2?

(e) Is the set W =

{[
x
y

]∣∣∣∣y = x2

}
a subspace of R2?

(f) Is the set W =




0
0
0
0


 a subspace of R4?

(g) Is the set W =


 x
y
z

∣∣∣∣∣∣x2 + y2 + z2 ≤ 1

 a subspace of R3? Note that W is the unit

sphere (a.k.a. unit ball) in R3.

(h) Is the set W = R2 a subspace of R3?

There are several important points that we can glean from Activity 12.1.

• A subspace is a vector space within a larger vector space, similar to a subset being a set within
a larger set.

• The set containing the zero vector in Rn is a subspace of Rn, and it is the only finite subspace
of Rn.

• Every subspace of Rn must contain the zero vector.

• No nonzero subspace is bounded – since a subspace must include all scalar multiples of its
vectors, a subspace cannot be contained in a finite sphere or box.

• Since vectors in Rk have k components, vectors in Rk are not contained in Rn when n 6= k.
However, if n > k, then we can think of Rn as containing a copy (what we call an isomorphic
image) of Rk as the set of vectors with zeros as the last n− k components.

The Subspace Spanned by a Set of Vectors

One of the most convenient ways to represent a subspace of Rn is as the span of a set of vectors. In
Preview Activity 12.1 we saw that the span of two vectors is a subspace of Rn. In the next theorem
we verify this result for the span of an arbitrary number of vectors, extending the ideas you used in
Preview Activity 12.1. Expressing a set of vectors as the span of some number of vectors is a quick
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way of justifying that this set is a subspace and it also provides us a geometric intuition for the set
of vectors.

Theorem 12.5. Let v1, v2, . . ., vk be vectors in Rn. Then Span{v1,v2, . . . ,vk} is a subspace of
Rn.

Proof. Let v1, v2, . . ., vk be vectors in Rn. Let W = Span{v1,v2, . . . ,vk}. To show that W is a
subspace of Rn we need to show that W is closed under addition and multiplication by scalars and
that 0 is in W .

First we show that W is closed under addition. Let u and w be vectors in W . This means that
u and w are linear combinations of v1, v2, . . ., vk. So there are scalars a1, a2, . . ., ak and b1, b2,
. . ., bk so that

u = a1v1 + a2v2 + · · ·+ akvk and w = b1v1 + b2v2 + · · ·+ bkvk.

To demonstrate that u + w is in W , we need to show that u + w is a linear combination of v1, v2,
. . ., vk. Using the properties of vector addition and scalar multiplication, we find

u + w = (a1v1 + a2v2 + · · ·+ akvk) + (b1v1 + b2v2 + · · ·+ bkvk)

= (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ak + bk)vk.

Thus u + w is a linear combination of v1, v2, . . ., vk and W is closed under vector addition.

Next we show that W is closed under scalar multiplication. Let u be in W and c be a scalar.
Then

cu = c(a1v1 + a2v2 + · · ·+ akvk) = (ca1)v1 + (ca2)v2 + · · ·+ (cak)vk

and cu is a linear combination of v1, v2, . . ., vk and W is closed under multiplication by scalars.

Finally, we show that 0 is in W . Since

0 = 0v1 + 0v2 + · · ·+ 0vk ,

0 is in W .

Since W satisfies all of the properties of a subspace as given in definition of a subspace, we
conclude that W is a subspace of Rn. �

The subspaceW = Span{v1,v2, . . . ,vk} is called the subspace of Rn spanned by v1,v2, . . . ,vk.
We also use the phrase “subspace generated by v1,v2, . . . ,vk” since the vectors v1,v2, . . . ,vk are
the building blocks of all vectors in W .

Activity 12.2.

(a) Describe geometrically as best as you can the subspaces of R3 spanned by the following
sets of vectors.
 1

0
0


 1

0
0

 ,
 0

1
0


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(b) Express the following set of vectors as the span of some vectors to show that this set is a
subspace. Can you give a geometric description of the set?

W =




2x+ y − z
y
z

−x+ 3z

 : x, y, z real numbers


One additional conclusion we can draw from Activities 12.1 and 12.2 is that subspaces of Rn

are made up of “flat” subsets. The span of a single nonzero vector is a line (which is flat), and the
span of a set of two distinct nonzero vectors is a plane (which is also flat). So subspaces of Rn are
linear (or “flat”) subsets of Rn. That is why we can recognize that the non-flat parabola in Activity
12.1 is not a subspace of R2.

Examples

What follows are worked examples that use the concepts from this section.

Example 12.6. Let W =


 2r + s+ t

r + t
r + s

 : r, s, t ∈ R

.

(a) Show that W is a subspace of R3.

(b) Describe in detail the geometry of the subspace W (e.g., is it a line, a union of lines, a
plane, a union of planes, etc.)

Example Solution.

(a) Every vector in W has the form 2r + s+ t
r + t
r + s

 = r

 2
1
1

+ s

 1
0
1

+ t

 1
1
0


for some real numbers r, s, and t. Thus,

W = Span


 2

1
1

 ,
 1

0
1

 ,
 1

1
0

 .

As a span of a set of vectors, we know that W is a subspace of R4.

(b) Let v1 =

 2
1
1

, v2 =

 1
0
1

, and v3 =

 1
1
0

. The reduced row echelon form of

[v1 v2 v3] is

 1 0 1
0 1 −1
0 0 0

. The pivot columns of [v1 v2 v3] form a linearly independent
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set with the same span as {v1,v2,v3}, So W = Span{v1,v2} and W forms the plane in
R3 through the origin and the points (2, 1, 1) and (1, 0, 1).

Example 12.7.

(a) Let X = Span


 1

0
0

 and let Y = Span


 0

1
0

. That is, X is the x-axis and Y

the y-axis in three-space. Let

X + Y = {x + y : x ∈ X and y ∈ Y }.

i. Is

 2
3
0

 in X + Y ? Justify your answer.

ii. Is

 1
1
1

 in X + Y ? Justify your answer.

iii. Assume that X + Y is a subspace of R3. Describe in detail the geometry of this
subspace.

(b) Now let W1 and W2 be arbitrary subspaces of Rn for some positive integer n. Let

W1 +W2 = {w1 + w2 : w1 ∈W1 and w2 ∈W2}.
Show thatW1+W2 is a subspace of Rn. The setW1+W2 is called the sum of the subspaces
W1 and W2.

Example Solution.

(a) We let X = Span


 1

0
0

 and Y = Span


 0

1
0

. T

i. Let w =

 2
3
0

, x = 2

 1
0
0

, and y = 3

 0
1
0

. Since w = x + y with x ∈ X

and y ∈ Y we conclude that w ∈ X + Y .

ii. Every vector in X has the form ae1 for some scalar a (where e1 =

 1
0
0

, and every

vector in Y has the form be2 for some scalar b (where e2 =

 0
1
0

). So every vector

in X + Y is of the form ae1 + be2 =

 a
b
0

. Since the vector

 1
1
1

 does not have

a 0 in the third component, we conclude that in

 1
1
1

 is not in X + Y .
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iii. As we just argued, every vector in X + Y has the form ae1 + be2. So X + Y =
Span{e1, e2}, which is the xy-plane in R3.

(b) To see why the set W1 + W2 is a subspace of R3, suppose that x and y are in W1 + W2.
Then x = u1 + u2 and y = z1 + z2 for some u1, z1 in W1 and some u2, z2 in W2. Then

x + y = (u1 + u2) + (z1 + z2) = (u1 + z1) + (u2 + z2).

Since W1 is a subspace of R3 it follows that u1 + z1 ∈W1. Similarly, u2 + z2 ∈W2. This
makes x + y an element of W1 +W2.

Also, suppose that a is a scalar. Then

ax = a(u1 + u2) = au1 + au2.

Since W1 is a subspace of R3 it follows that au1 ∈ W1. Similarly, au2 ∈ W2. This makes
ax an element of W1 +W2.

Finally, since 0 is in both W1 and W2, and 0 = 0 + 0, it follows that 0 is an element of
W1 +W2. We conclude that W1 +W2 is a subspace of R3.

Summary

• A vector space is a set V with operations of addition and scalar multiplication defined on V
such that for all u, v, and w in V and all scalars a and b:

(1) u + v is an element of V (we say that V is closed under the addition in V ),

(2) u + v = v + u (we say that the addition in V is commutative),

(3) (u + v) + w = u + (v + w) (we say that the addition in V is associative),

(4) there is a vector 0 in V so that u + 0 = u (we say that V contains an additive identity
or zero vector 0),

(5) for each x in V there is an element y in V so that x + y = 0 (we say that V contains
an additive inverse y for each element x in V ),

(6) au is an element of V (we say that V is closed under multiplication by scalars),

(7) (a + b)u = au + bu (we say that multiplication by scalars distributes over scalar
addition),

(8) a(u+ v) = au+ av (we say that multiplication by scalars distributes over addition in
V ),

(9) (ab)u = a(bu),

(10) 1u = u.

• For every n, Rn is a vector space.

• A subset W of Rn is a subspace of Rn if W is a vector space using the same operations as in
Rn.

• To show that a subset W of Rn is a subspace of Rn, we need to prove the following:
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(1) u + v is in W whenever u and v are in W (when this property is satisfied we say that
W is closed under addition),

(2) au is in W whenever a is a scalar and u is in W (when this property is satisfied we say
that W is closed under multiplication by scalars),

(3) 0 is in W .

The remaining properties of a vector space are properties of the operation, and as long as we
use the same operations as in Rn, the operation properties follow the operations.

• The span of any set of vectors in Rn is a subspace of Rn.

Exercises

(1) Each of the following regions or graphs determines a subset W of R2. For each region, dis-
cuss each of the subspace properties of Theorem 12.4 and explain with justification if the set
W satisfies each property or not.

(a) (b)

(c) (d)

(2) Determine which of the following sets W is a subspace of Rn for the indicated value of n.
Justify your answer.

(a) W = {[x 0]T : x is a scalar}
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(b) W = {[2x+ y x− y x+ y]T : x, y are scalars}
(c) W = {[x+ 1 x− 1]T : x is a scalar}
(d) W = {[xy xz yz]T : x, y, z are scalars}

(3) Find a subset of R2 that is closed under addition and scalar multiplication, but that does not
contain the zero vector, or explain why no such subset exists.

(4) Let v be a vector in R2. What is the smallest subspace of R2 that contains v? Explain.
Describe this space geometrically.

(5) What is the smallest subspace of R2 containing the first quadrant? Justify your answer.

(6) Let u, v, and w be vectors in R3 with w = u + v. Let W1 = Span{u,v} and W2 =
Span{u,v,w}.

(a) If x is in W1, must x be in W2? Explain.

(b) If y is in W2, must y be in W1? Explain.

(c) What is the relationship between Span{u,v} and Span{u,v,w}? Be specific.

(7) Let m and n be positive integers, and let v be in Rn. Let W = {Av : A ∈Mm×n}.
(a) As an example, let v = [2 1]T in R2 with W = {Av : A ∈M2×2}.

i. Show that the vector [2 1]T is in W by finding a matrix A that places [2 1]T in
W .

ii. Show that the the vector [4 2]T is in W by finding a matrix A that places [4 2]T

in W .
iii. Show that the vector [6 −1]T is inW by finding a matrix A that places [6 −1]T

in W .
iv. Show that W = R2.

(b) Show that, regardless of the vector v selected, W is a subspace of Rm.

(c) Characterize all of the possibilities for what the subspace W can be. (Hint: There is
more than one possibility.)

(8) Let S1 and S2 be subsets of R3 such that Span S1 = Span S2. Must it be the case that S1 and
S2 contain at least one vector in common? Justify your answer.

(9) AssumeW1 andW2 are two subspaces of Rn. IsW1∩W2 also a subspace of Rn? IsW1∪W2

also a subspace of Rn? Justify your answer. (Note: The notationW1∩W2 refers to the vectors
common to both W1,W2, while the notation W1 ∪W2 refers to the vectors that are in at least
one of W1,W2.)

(10) Determine whether the plane defined by the equation 5x+ 3y − 2z = 0 is a subspace in R3.

(11) If W is a subspace of Rn and u is a vector in Rn not in W , determine whether

u +W = {u + v : v is a vector in W}

is a subspace of Rn.
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(12) Two students are talking about examples of subspaces.

Student 1: The x-axis in R2 is a subspace. It is generated by the vector
[

1
0

]
.

Student 2: Similarly R2 is a subspace of R3.

Student 1: I’m not sure if that will work. Can we fit R2 inside R3? Don’t we need
W to be a subset of R3 if it is a subspace of R3?

Student 2: Of course we can fit R2 inside R3. We can think of R2 as vectors a
b
0

. That’s the xy-plane.

Student 1: I don’t know. The vector

 a
b
0

 is not exactly same as
[
a
b

]
.

Student 2: Well, R2 is a plane and so is the xy-plane. So they must be equal,
shouldn’t they?

Student 1: But there are infinitely many planes in R3. They can’t all be equal to
R2. They all “look like” R2 but I don’t think we can say they are equal.

Which student is correct? Is R2 a subspace of R3, or not? Justify your answer.

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False Any line in Rn is a subspace in Rn.

(b) True/False Any line through the origin in Rn is a subspace in Rn.

(c) True/False Any plane through the origin in Rn is a subspace in Rn.

(d) True/False In R4, the points satisfying xy = 2t+ z form a subspace.

(e) True/False In R4, the points satisfying x+ 3y = 2z form a subspace.

(f) True/False Any two nonzero vectors generate a plane subspace in R3.

(g) True/False The space R2 is a subspace of R3.

(h) True/False If W is a subspace of Rn and u is in W , then the line through the origin
and u is in W .

(i) True/False There are four types of subspaces in R3: 0, line through origin, plane
through origin and the whole space R3.

(j) True/False There are four types of subspaces in R4: 0, line through origin, plane
through origin and the whole space R4.
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(k) True/False The vectors

 1
1
1

,

 1
2
1

 and

 2
3
2

 form a subspace in R3.

(l) True/False The vectors

 1
1
1

 and

 1
2
1

 form a basis of a subspace in R3.

Project: Least Squares Linear Approximation

We return to the problem of finding the least squares line to fit the GDP-consumption data. We will
start our work in a more general setting, determining the method for fitting a linear function to fit
any data set, like the GDP-consumption data, in the least squares sense. Then we will apply our
result to the GDP-consumption data.

Project Activity 12.1. Suppose we want to fit a linear function p(x) = mx + b to our data. For
the sake of our argument, let us assume the general case where we have n data points labeled as
(x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn). (In the GDP-consumption data n = 21.) In the unlikely
event that the graph of p(x) actually passes through these data points, then we would have the
system of equations

y1 = b+mx1

y2 = b+mx2

y3 = b+mx3 (12.1)
...

...

yn = b+mxn

in the unknowns b and m.

(a) As a small example to illustrate, write the system (12.1) using the three points (x1, y1) =
(1, 2), (x2, y2) = (3, 4), and (x3, y3) = (5, 6). Identify the unknowns and then write this
system in the form Ma = y. Explicitly identify the matrix M and the the vectors a and y.

(b) Identify the specific matrixM and the specific vectors a and y using the data in Table 12.1.
Explain why the systemMa = y is inconsistent. (Remember, we are treating consumption
as the independent variable and GDP as the dependent variable.) What does the result tell
us about the data?

Project Activity 12.1 shows that the GDP-consumption data does not lie on a line. So instead of
attempting to find coefficients b andm that give a solution to this system, which may be impossible,
we instead look for a vector a∗ that provides us with something that is “close” to a solution.

If we could find b and m that give a solution to the system Ma = y, then Ma − y would be
zero. If we can’t make Ma − y exactly equal to the vector 0, we could instead try to minimize
Ma− y in some way. One way is to minimize the length ||Ma− y|| of the vector Ma− y.

If we minimize the quantity ||Ma−y||, then we will have minimized a function given by a sum
of squares. That is, ||Ma− y|| is calculated to be√

(b+mx1 − y1)2 + (b+mx2 − y2)2 + · · ·+ (b+mxn − yn)2. (12.2)
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This is why the method we will derive is called the method of least squares. This method provides
us with a vector “solution” in a subspace that is related to M . We can visualize ||Ma − y|| as in
Figure 12.2. In this figure the data points are shown along with a linear approximation (not the best
for illustrative purposes). The lengths of the vertical line segments are the summands (b+mxi−yi)
in (12.2). So we are trying to minimize the sum of the squares of these line segments.

100000 200000 300000 400000

100000

200000

300000

400000

500000

Figure 12.2: Error in the linear approximation.

Suppose that a∗ minimizes ||Ma − y||. Then the vector Ma∗ is the vector that is closest to y
of all of the vectors of the form Mx. The fact that the vectors of the form Mx make a subspace
will be useful in what follows. We verify that fact in the next project activity.

Project Activity 12.2. LetA be an arbitrarym×k matrix. Explain why the setC = {Ax : x ∈ Rk}
is a subspace of Rm.

Project Activity 12.2 shows us that even though the GDP-consumption system Ma = y does
not have a solution, we can find a vector that is close to a solution in the subspace {Mx : x ∈ R2}.
That is, find a vector a∗ in R2 such that Ma∗ is as close (in the least squares sense) to y as we can
get. In other words, the error ||Ma∗ − y|| is as small as possible. In the following activity we see
how to find a∗.

Project Activity 12.3. Let

S =
√

(b+mx1 − y1)2 + (b+mx2 − y2)2 + · · ·+ (b+mxn − yn)2,

the quantity we want to minimize. The variables in S arem and b, so we can think of S as a function
of the two independent variables m and b. The square root makes calculations more complicated,
so it is helpful to notice that S will be a minimum when S2 is a minimum. Since S2 is also function
of the two variables b and m, the minimum value of S2 will occur when the partial derivatives of
S2 with respect to b and m are both 0 (if you haven’t yet taken a multivariable calculus course, you
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can just assume that this is correct). This yields the equations

0 =
n∑
i=1

(mxi + b− yi)xi (12.3)

0 =
n∑
i=1

(mxi + b− yi) . (12.4)

In this activity we solve equations (12.3) and (12.4) for the unknowns b andm. (Do this in a general
setting without using specific values for the xi and yi.)

(a) Let r =
∑n

i=1 x
2
i , s =

∑n
i=1 xi, t =

∑n
i=1 yi, and u =

∑n
i=1 xiyi. Show that the equations

(12.3) and (12.4) can be written in the form

0 = bs+mr − u
0 = bn+ms− t.

Note that this is a system of two linear equations in the unknowns b and m.

(b) Write the system from part (a) in matrix form Ax = b. Then use techniques from linear
algebra to solve the linear system to show that

b =
tr − us
nr − s2

=
(
∑n

i=1 yi)
(∑n

i=1 x
2
i

)
− (
∑n

i=1 xi) (
∑n

i=1 xiyi)

n
(∑n

i=1 x
2
i

)
− (
∑n

i=1 xi)
2 (12.5)

and

m =
nu− ts
nr − s2

=
n (
∑n

i=1 xiyi)− (
∑n

i=1 xi) (
∑n

i=1 yi)

n
(∑n

i=1 x
2
i

)
− (
∑n

i=1 xi)
2 . (12.6)

Project Activity 12.4. Use the formulas (12.5) and (12.6) to find the values of b and m for the
regression line to fit the GDP-consumption data in Table 12.1. You may use the fact that the sum of
the GDP data is 3.5164030 × 106, the sum of the consumption data is 2.9233750 × 106, the sum
of the squares of the consumption data is 8.806564894 × 1011, and the sum of the products of the
GDP and consumption data is 1.069946378× 1012. Compare to the results the authors obtained in
the paper “A Statistical Analysis of GDP and Final Consumption Using Simple Linear Regression,
the Case of Romania 1990-2010”.





Section 13

The Null Space and Column Space of a
Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the null space of a matrix?

• What is the column space of a matrix?

• What important structure do the null space and column space of a matrix
have?

• What is the kernel of a matrix transformation?

• How is the kernel of a matrix transformation T defined by T (x) = Ax
related to the null space of A?

• What is the range of a matrix transformation?

• How is the range of a matrix transformation T defined by T (x) = Ax
related to the column space of A?

• How do we find a basis for Nul A?

• How do we find a basis for Col A?

Application: The Lights Out Game

Lights Out (LO) is a commercial game released by Tiger Toys in 1995 (later bought out by Hasbro).
The game consists of a 5×5 grid in which each square is either lit or unlit. Pressing a square changes
the status of the square itself and all the squares to the left, right, up, or down. The player’s job
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is to turn all the lights out. You can play a sample game at https://www.geogebra.org/
m/wcmctahp. There is a method to solve any solvable Lights Out game that can be uncovered
through linear algebra that we will uncover later in this section. Column spaces and null spaces
play important roles in this method.

Introduction

Recall that a subspace of Rn is a subset of Rn which is a vector space in itself. More specifically, a
subset W or Rn is a subspace of Rn if

(1) whenever u and v are in W it is also true that u + v is in W (that is, W is closed under
addition),

(2) whenever u is in W and a is a scalar it is also true that au is in W (that is, W is closed under
scalar multiplication),

(3) 0 is in W .

Given a matrix A, there are several subspaces that are connected to A. Two specific such sub-
spaces are the null space of A and the column space of A. We will see that these subspaces provide
answers to the big questions we have been considering since the beginning of the semester, such as
“Do columns of A span Rm?” “Are the columns of A linearly independent?” “Is the transformation
T defined by matrix multiplication by A one-to-one?” “Is the transformation T onto?”

In this preview activity, we start examining the null space.

Preview Activity 13.1.

(1) Let A =

[
2 1 3
1 1 4

]
.

(a) Find the general solution to the homogeneous equationAx = 0. Write your solutions
in parametric vector form. (Recall that the parametric vector form expresses the
solutions to an equation as linear combinations of vectors with free variables as the

weights. An example would be x3


1
0
−1

0

+ x4


−2

1
0
1

.)

(b) Find two specific solutions x1 and x2 to the homogeneous equation Ax = 0. Is
x1 + x2 a solution to Ax = 0? Explain.

(c) Is 3x1 a solution to Ax = 0? Explain.

(d) Is 0 a solution to Ax = 0?

(e) What does the above seem to indicate about the set of solutions to the homogeneous
system Ax = 0?

(2) Let A be an m × n matrix. As problem 1 implies, the set of solutions to a homogeneous
matrix-vector equation Ax = 0 appears to be a subspace. We give a special name to this set.

https://www.geogebra.org/m/wcmctahp
https://www.geogebra.org/m/wcmctahp
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Definition 13.1. The null space of an m× n matrix A is the set of all solutions to Ax = 0.

We denote the null space of a matrix A as Nul A. In set notation we write

Nul A = {x : Ax = 0}.

Note that since Ax = 0 corresponds to a homogeneous system of linear equations, Nul A
also represents the solution set of a homogeneous system.

Let A =

[
2 1 3 0
1 1 4 1

]
. Find all vectors in Nul A.

(3) So far we considered specific examples of null spaces. But what are the properties of a null
space in general? Let A be an arbitrary m× n matrix.

(a) The null space of an m× n matrix is a subset of Rk for some integer k. What is k?

(b) Now suppose u and v are two vectors in Nul A. By definition, that means Au = 0,
Av = 0. Use properties of the matrix-vector product to show that u + v is also in
Nul A.

(c) Now suppose u is a vector in Nul A and a is a scalar. Explain why au is also in
Nul A.

(d) Explain why Nul A is a subspace of Rn.

The Null Space of a Matrix and the Kernel of a Matrix Transformation

In this section we explore the null space and see how the null space of a matrix is related to the
matrix transformation defined by the matrix.

Let A be an m × n matrix. In Preview Activity 13.1 we defined the null space of a matrix A
(see Definition 13.1) as the set of solutions to the matrix equation Ax = 0. Note that the null space
of an m× n matrix is a subset of Rn. We saw that the null space of A is closed under addition and
scalar multiplication – that is, if u and v are in Nul A and a and b are any scalars, then u + v and
au are also in Nul A. Since the zero vector is always in Nul A, we can conclude that the null space
of A is a subspace of Rn.

There is a connection between the null space of a matrix and the matrix transformation it defines.
Recall that any m× n matrix A defines a matrix transformation T from Rn to Rm by T (x) = Ax.
The null space of A is then the collection of vectors x in Rn so that T (x) = 0. So if T is a matrix
transformation from Rn to Rm, then the set

{x in Rn : T (x) = 0}

is a subspace of Rn equal to the null space of A. This set is is given a special name.

Definition 13.2. Let T : Rn → Rn be a matrix transformation. The kernel of T is the set

Ker(T ) = {x ∈ Rn : T (x) = 0}.
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Activity 13.1. If T is a matrix transformation defined by a matrix A, then there is a convenient way
to determine if T is one-to-one.

(a) Let T be the matrix transformation defined by T (x) = Ax, where

A =

[
1 2 −1
0 1 4

]
.

Find all of the vectors in Nul A. If Nul A contains more than one vector, can T be one-to-
one? Why?

(b) Let T be the matrix transformation defined by T (x) = Ax, where

A =

 1 0
2 1
−1 4

 .
Find all of the vectors in Nul A. Is T one-to-one? Why?

(c) To find the vectors in the null space of a matrix A we solve the system Ax = 0. Since
a homogeneous system is always consistent, there are two possibilities for Nul A: either
Nul A = {0} or Nul A contains infinitely many vectors.

i. Under what conditions on A is Nul A = {0}? What does that mean about T being
one-to-one or not? Explain.

ii. Under what conditions is Nul A infinite? What does that mean about T being one-to-
one or not? Explain.

iii. Is is possible for Nul A to be the whole space Rn? If so, give an example. If not,
explain why not.

Recall that for a function to be one-to-one, each output must come from exactly one input. Since
a matrix transformation T defined by T (x) = Ax always maps the zero vector to the zero vector,
for T to be one-to-one it must be the case that the zero vector is the only vector that T maps to the
zero vector. This means that the null space of A must be {0}. Activity 13.1 demonstrates that if the
matrix A that defines the transformation T has a pivot in every column, then T (x) = b will have
exactly one solution for each b in the range of T . So a trivial null space is enough to characterize a
one-to-one matrix transformation.

Theorem 13.3. A matrix transformation T from Rn to Rm defined by T (x) = Ax is one-to-one if
and only if

Nul A = Ker(T ) = {0}.

The Column Space of a Matrix and the Range of a Matrix Transforma-
tion

Given an m× n matrix A, we have seen that the matrix-vector product Ax is a linear combination
of the columns of A with weights from x. It follows that the equation Ax = b has a solution if and
only if b is a linear combination of the columns of A. So the span of the columns of A tells us for
which vectors the equation Ax = b is consistent. We give the span of the columns of a matrix A a
special name.
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Definition 13.4. The column space of an m× n matrix A is the span of the columns of A.

We denote the column space of A as Col A. Given that Ax is a linear combination of the
columns of A, we can also write the column space of an m× n matrix A as

Col A = {Ax : x is in Rn}.

For the matrix transformation T defined by T (x) = Ax, the set of all vectors of the form Ax is
also the range of the transformation T . So for a matrix transformation T with matrix A we have
Range(T ) = Col A.

Activity 13.2. As a span of a set of vectors, we know that Col A is a subspace of Rk for an appro-
priate value of k.

(a) Let M =


1 1 1 0 2
0 1 0 1 1
1 0 1 1 −1
0 1 0 1 1

. The space Col M is a subspace of Rk for some positive

integer k. What is k in this case?

(b) If A is an m× n matrix, then Col A is a subspace of Rk for some positive integer k. What
is k in this case?

(c) Recall that a matrix transformation T given by T (x) = Ax where A is an m× n matrix is
onto if for every b in Rm there exists a x in Rn for which T (x) = b. How does T being
onto relate to the Col A?

As you saw in Activity 13.2, a matrix transformation T defined by T (x) = Ax is onto if the
column space ofA, which consists of the image vectors under the transformation T , is equal to Rm.
In other words, we want the Range(T ) to equal Rm.

Theorem 13.5. A matrix transformation T from Rn to Rm defined by T (x) = Ax is onto if and
only if

Col A = Range(T ) = Rm.

The Row Space of a Matrix

As you might expect, if there is a column space for a matrix then there is also a row space for a
matrix. The row space is defined just as the column space as the span of the rows of a matrix.

Definition 13.6. The row space of an m× n matrix A is the span of the row of A.

There is really nothing new here, though. Since the rows of A are the columns of AT, it follows
that Row A = Col AT. So if we want to learn anything about the row space of A, we can just
translate all of our questions to the column space of AT.
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Bases for Nul A and Col A

When confronted with a subspace of Rn, we will usually want to find a minimal spanning set – a
smallest spanning set – for the space. Recall that a minimal spanning set is also called a basis for
the space. So a basis for a space must span that space, and to be a minimal spanning set we have
seen that a basis must also be linearly independent. So to prove that a set is a basis for a subspace
of Rn we need to demonstrate two things: that the set is linearly independent, and that the set spans
the subspace.

Activity 13.3. In this activity we see how to find a basis for Col A and Nul A for a specific matrix
A. Let

A =


1 1 1 0 2
0 1 0 1 1
1 0 1 1 −1
0 1 0 1 1

 .
Assume that the reduced row echelon form of A is

R =


1 0 1 0 0
0 1 0 0 2
0 0 0 1 −1
0 0 0 0 0

 .

(a) First we examine Col A. Recall that to find a minimal spanning set of a set of vectors
{v1,v2, . . . ,vk} in Rn we just select the pivot columns of the matrix [v1 v2 · · · vk].

i. Find a basis for Col A.

ii. Does Col A equal Col R? Explain.

(b) Now we look at Nul A.

i. Write the general solution to the homogeneous system Ax = 0 in vector form.

ii. Find a spanning set for Nul A.

iii. Find a basis for Nul A. Explain how you know you have a basis.

You should have noticed that Activity 13.3 (a) provides a process for finding a basis for Col A
– the pivot columns of A form a basis for Col A. Similarly, Activity 13.3 (b) shows us that we
can find a basis for Nul A by writing the general solution to the homogeneous equation Ax = 0
as a linear combination of vectors whose weights are the variables corresponding to the non-pivot
columns of A – and these vectors form a basis for Nul A. As we will argue next, these process
always give us bases for Col A and Nul A.

Let A be an m× n matrix, and let R be the reduced row echelon form of A. Suppose R has k
non-pivot columns and n − k pivot columns. We can rearrange the columns so that the non-pivot
columns of R are the last k columns (this just amounts to relabeling the unknowns in the system).

Basis for Nul A. Here we argue that the method described following Activity 13.3 to find a span-
ning set for the null space always yields a basis for the null space.
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First note that Nul R = Nul A, since the systemAx = 0 has the same solution set asRx = 0.
So it is enough to find a basis for Nul R. If every column ofR is a pivot column, thenRx = 0
has only the trivial solution and the null space ofR is {0}. Let us now consider the case where
R contains non-pivot columns. If we let x = [x1 x2 . . . xn]T, and if Rx = 0 then we can
write x1, x2, . . ., xn−k in terms of xn−k+1, xn−k+2, . . ., and xn. From these equations we
can write x as a linear combination of some vectors v1, v2, . . ., vk with xn−k+1, xn−2+2,
. . ., xn as weights. By construction, each of the vectors v1, v2, . . ., vk has a component that
is 1 with the corresponding component as 0 in all the other vi. Therefore, the vectors v1, v2,
. . ., vk are linearly independent and span Nul R (and Nul A). In other words, the method we
have developed to find the general solution to Ax = 0 always produces a basis for Nul A.

Basis for Col A. Here we explain why the pivot columns of A form a basis for Col A. Recall that
the product Ax expresses a linear combination of the columns of A with weights from x, and
every such linear combination is matched with a product Rx giving a linear combination of
the columns of R using the same weights. So if a set of columns of R is linearly indepen-
dent (or dependent), then the set of corresponding columns in A is linearly independent (or
dependent) and vice versa. Since each pivot column of R is a vector with 1 in one entry (a
different entry for different pivot columns) and zeros elsewhere, the pivot columns of R are
clearly linearly independent. It follows that the pivot columns of A are linearly independent.
All that remains is to explain why the pivot columns of A span Col A.

Let r1, r2, . . ., rn be the columns of R so that R = [r1 r2 · · · rn], and let a1, a2, . . .,
an be the columns of A so that A = [a1 a2 · · · an]. Suppose ai is a non-pivot column
for A and ri the corresponding non-pivot column in R. Each pivot column is composed of a
single 1 with the rest of its entries 0. Also, if a non-pivot column contains a nonzero entry,
then there is a corresponding pivot column that contains a 1 in the corresponding position.
So ri is a linear combination of r1, r2, . . ., rn−k – the pivot columns of R. Thus,

ri = c1r1 + c2r2 + · · ·+ cn−krn−k

for some scalars c1, c2, . . ., cn−k. Let x = [c1 c2 · · · cn−k 0 · · · 0 − 1 0 · · · 0]T, where the
−1 is in position i. Then Rx = 0 and so Ax = 0. Thus,

ai = c1a1 + c2a2 + · · ·+ cn−kan−k

and ai is a linear combination of the pivot columns of A. So every non-pivot column of A is
in the span of A and we conclude that the pivot columns of A form a basis for Col A.

IMPORTANT POINT: It is the pivot columns of A that form a basis for Col A, not the pivot
columns of the reduced row echelon form R of A. In general, Col R 6= Col A.

We can incorporate the ideas of this section to expand the Invertible Matrix Theorem.

Theorem 13.7 (The Invertible Matrix Theorem). Let A be an n × n matrix. The following state-
ments are equivalent.

(1) The matrix A is an invertible matrix.

(2) The matrix equation Ax = 0 has only the trivial solution.

(3) The matrix A has n pivot columns.
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(4) Every row of A contains a pivot.

(5) The columns of A span Rn.

(6) The matrix A is row equivalent to the identity matrix In.

(7) The columns of A are linearly independent.

(8) The columns of A form a basis for Rn.

(9) The matrix transformation T from Rn to Rn defined by T (x) = Ax is one-to-one.

(10) The matrix equation Ax = b has exactly one solution for each vector b in Rn.

(11) The matrix transformation T from Rn to Rn defined by T (x) = Ax is onto.

(12) There is an n× n matrix C so that AC = In.

(13) There is an n× n matrix D so that DA = In.

(14) The scalar 0 is not an eigenvalue of A.

(15) The matrix AT is invertible.

(16) Nul A = {0}.

(17) Col A = Rn.

Examples

What follows are worked examples that use the concepts from this section.

Example 13.8.

(a) Let A =

 1 0 −2 3
−2 −4 0 −14

1 3 1 9

.

i. Find a basis for Col A.

ii. Describe Col A geometrically (e.g., as a line, a plane, a union of lines, etc.) in the
appropriate larger space.

(b) Let B =


0 −2 1
−1 0 1

6 −10 −1
1 −4 1

.

i. Find a basis for Nul B.

ii. Describe Nul B geometrically (e.g., as a line, a plane, a union of lines, etc.) in the
appropriate larger space.

Example Solution.
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(a) We use A =

 1 0 −2 3
−2 −4 0 −14

1 3 1 9

.

i. Technology shows that the reduced row echelon form of A is

 1 0 −2 3
0 1 1 2
0 0 0 0

 .
The first two columns of A are the pivot columns of A. Since the pivot columns of A
form a basis for Col A, a basis for Col A is


 1
−2

1

 ,
 0
−4

3

 .

ii. Let v1 =

 1
−2

1

 and v2 =

 0
−4

3

. Since neither v1 nor v2 is a scalar multiple

of the other, we see that Col A is the span of two linearly independent vectors in R3.
Thus, we conclude that Col A is the plane in R3 through the origin and the points
(1,−2, 1) and (0,−4, 3).

(b) We use B =


0 −2 1
−1 0 1

6 −10 −1
1 −4 1

.

i. Technology shows that the reduced row echelon form of B is


1 0 −1

0 1 −1
2

0 0 0

0 0 0

 .

To find a basis for Nul B, we must solve the homogeneous equation Bx = 0. If

x =

 x1

x2

x3

 and Bx = 0, the reduced row echelon form of B shows that x3 is free,
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x2 = 1
2x3, and x1 = x3. So

x =

 x1

x2

x3



=


x3

1
2x3

x3



= x3


1

1
21

1

 .
Thus, a basis for Nul B is 

 2
1
2

 .

ii. Since Nul B = Span


 2

1
2

 is the span of one nonzero vector in R3, we conclude

that Nul B is the line in R3 through the origin and the point (2, 1, 2).

Example 13.9. Let A =


1 3
−1 2

0 −2
5 6

, and let T be the matrix transformation defined by T (x) =

Ax.

(a) What are the domain and codomain of T ? Why?

(b) Find all vectors x such that T (x) = 0. How is this set of vectors related to Nul A? Explain.

(c) Is T one-to-one? Explain.

(d) Is T onto? If yes, explain why. If no, find a basis for the range of T .

Example Solution.

(a) Recall that Ax is a linear combination of the columns of A with weights from x. So Ax
is defined only when the number of components of x is equal to the number of columns
of A. This explains why the domain of T is R2. Also, since each output of T is a linear
combination of the columns of A, the codomain of T is R4.

(b) The set of vectors x such that 0 = T (x) = Ax is the same as Nul A. The reduced row
echelon form of A is 

1 0
0 1
0 0
0 0

 .
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Since both columns of A are pivot columns, the columns of A are linearly independent.
This implies that Ax = 0 has only the trivial solution. Therefore, the only vector x such
that T (x) = 0 is the zero vector in R2.

(c) The previous part shows that Ker(T ) = {0}. This means that T is one-to-one by Theorem
13.3.

(d) Recall that the range of T is the same as Col A. The reduced row echelon form of A has
a row of zeros, so Ax = b is not consistent for every b in R4. We conclude that T is not
onto. To find a basis for the range of T , we just need to find a basis for Col A. The pivot
columns of A form such a basis, so a basis for the range of T is


1
−1

0
5

 ,


3
2
−2

6


 .

Summary

• The null space of an m × n matrix A is the set of vectors x in Rn so that Ax = 0. In set
notation

Nul A = {x : Ax = 0}.

• The column space of a matrix A is the span of the columns of A.

• A subset W of Rn is a subspace of Rn if

(1) u + v is in W whenever u and v are in W (when this property is satisfied we say that
W is closed under addition),

(2) au is in W whenever a is a scalar and u is in W (when this property is satisfied we say
that W is closed under multiplication by scalars),

(3) 0 is in W .

• The null space of an m × n matrix is a subspace of Rn while the column space of A is a
subspace of Rm.

• The span of any set of vectors in Rn is a subspace of Rn.

• The kernel of a matrix transformation T : Rn → Rm is the set

Ker(T ) = {x ∈ Rn : T (x) = 0}.

• The kernel of a matrix transformation T defined by T (x) = Ax is the same set as Nul A.

• The range of a matrix transformation T : Rn → Rm is the set

Range(T ) = {T (x) : x ∈ Rn}.

• The range of a matrix transformation T defined by T (x) = Ax is the same set as Col A.
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• A basis for the null space of a matrix A can be found by writing the general solution to the
homogeneous equation Ax = 0 as a linear combination of vectors whose weights are the
variables corresponding to the non-pivot columns of A. The number of vectors in a basis for
Nul A is the number of non-pivot columns of A.

• The pivot columns of a matrix A form a basis for the column space of A.

Exercises

(1) Find a basis for the null space and column space of the matrix

A =

 1 2 3 4
0 0 2 −2
1 2 5 2

 .
Of which spaces are the null and column spaces of A subspaces?

(2) If the column space of

 1 2 −1
1 1 1
1 2 c

 has basis


 1

1
1

 ,
 2

1
2

, what must c be?

(3) If the null space of
[

2 1 a
1 2 b

]
has basis


 2
−1

1

, what must a and b be?

(4) Find a matrix with at least four non-zero and distinct columns for which the column space

has basis


 1

1
1

 ,
 2

2
3

.

(5) Find a matrix with at least two rows whose null space has basis


 1

1
−1

.

(6) Find a matrix whose column space has basis


 1

1
1

 ,
 2

2
3

 and whose null space has

basis


 2

1
−1

.

(7) If possible, find a 4× 4 matrix whose column space does not equal R4 but whose null space
equals {0}. Explain your answer. If not possible, explain why not.

(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False For a 3 × 4 matrix, the null space contains vectors other than the zero
vector.
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(b) True/False For a 4 × 3 matrix, the null space contains vectors other than the zero
vector.

(c) True/False If Nul A is not the zero subspace, then the transformation x 7→ Ax is not
one-to-one.

(d) True/False If the transformation x 7→ Ax is onto where A is an m× n matrix, then
Col A = Rm.

(e) True/False For a 4× 3 matrix A, Col A cannot equal R4.

(f) True/False For a 3× 4 matrix A, Col A cannot equal R3.

(g) True/False The null space of the matrix

1 1 1
1 1 1
1 1 1

 consists of the two vectors

[−1 0 1]T and [0 − 1 1]T.

(h) True/False A basis for the null space of the matrix

1 1 1
1 1 1
1 1 1

 consists of the two

vectors [−1 0 1]T and [0 − 1 1]T.

(i) True/False There does not exist a matrix whose null space equals its column space.

(j) True/False The column space of every 4× 4 matrix is R4 and its null space is {0}.

Project: Solving the Lights Out Game

The Lights Out game starts with a 5 × 5 grid on which some of the squares are lit (on) and some
are not lit (off). We will call such a state a configuration. Pressing a square that is on turns it off
and changes the state of all adjacent (vertically and horizontally) squares, and pressing a square
that is off turns it on and changes the state of all adjacent (vertically and horizontally) squares. To
model this situation, we consider the number system Z2 = {0, 1} consisting only of 0 and 1, where
0 represents the off state and 1 the on state. We can also think of 1 as the act of pressing a square
and 0 as the act of not pressing – that is,

• 0 + 0 = 0 (not pressing an off square leaves it off),

• 0 + 1 = 1 = 1 + 0 (pressing an off square turns it on or not pressing a lit square leaves it lit),

• 1 + 1 = 0 (pressing a lit square turns it off).

The numbers 0 and 1 in Z2 will be the only numbers we use when playing the Lights Out game,
so all of our matrix entries will be in Z2 and all of our calculations are done in Z2.

There are two ways we can view a Lights Out game.

• We can view each configuration as a 5 × 5 matrix. In this situation, we label the entries in
the grid as shown in Figure 13.1. Each entry in the grid will be assigned a 0 or 1 according
to whether the light in that entry is off or on.
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• For our purposes a better way to visualize a Lights Out configuration is as a 25×1 vector. The
components in this vector correspond to the entries in the 5× 5 grid with the correspondence
given by the numbering demonstrated in Figure 13.1 (for the sake of space, this array is
shown in a row instead of a column). Again, each component is assigned a 0 or 1 according
to whether the light for that entry is off or on. In this view, each configuration is a vector with
25 components in Z2.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 13.1: Two representations of the Lights Out game.

We will take the latter perspective and view the Lights Out game as if it is played on a 25 × 1
board with entries in Z2. The space of all of these Lights Out configurations is denoted as Z25

2

(similar to R25, but with entries in Z2 rather than R). Since Z2 is a field, the space Z25
2 is a vector

space just as R25 is. This is the environment in which we will play the Lights Out game.

If we think about the game as played on a 25 × 1 board, then pressing a square correlates to
selecting one of the 25 components of a configuration vector. Each time we press a square, we make
a move that changes the status of that square and all the squares vertically or horizontally adjacent
to it from the 5 × 5 board. Recalling that adding 1 to a square has the effect of changing its status
(from on to off or off to on), and each move that we make in the game can be represented as a 25×1
vector that is added to a configuration. For example, the move of pressing the first square is given
by adding the vector

m1 = [1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T

to a configuration vector and the move of pressing the second square is represented by adding the
vector

m2 = [1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T.

Project Activity 13.1. Let mi be the move of pressing the ith square for i from 1 to 25.

(a) Find vector representations for m9 and m22.

(b) Let M = [mij ] = [m1|m2| · · · |m25]. Explain why mij = mji for each i and j. In other
words, explain why MT = M . (Such a matrix is called a symmetric matrix.)

The goal of the Lights Out game is to begin with an initial configuration c (a vector in Z25
2 ) and

determine if we can apply a sequence of moves to obtain the configuration in which all the entries
are 0 (or all the lights are off). The vector in Z25

2 of all 0s is the zero vector in Z25
2 and we will

denote it as 0. Some basic algebra of vector addition in Z2 (or mod 2) will help us understand the
strategy.
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Start with a configuration c. If we press the ith square, then we obtain the new configuration
c1 = mi + c (where each move mi is also in Z25

2 ).

Project Activity 13.2.

(a) What happens if we press the ith square twice in a row? Explain in terms of the action and
the game and verify using vector addition.

(b) Explain why applying move mi then move mj is the same as applying move mj , then mi.

(c) Explain how the answers to the previous two questions show that to play the game we only
need to determine which buttons to press (and only once each) without worrying about the
order in which the buttons are pressed.

What we have seen is that to play the game we are really looking for scalars x1, x2, . . ., x25 in
Z2 (in other words, either 0 or 1) so that

x1m1 + x2m2 + · · ·+ x25m25 + c = 0. (13.1)

Project Activity 13.3. Explain why (13.1) has the equivalent matrix equation

Mx = c, (13.2)

where M = [m1|m2| · · · |m25], or

M =



1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1



.

Explicitly identify the vector x. Also, explain why c is on the right side of this equation.
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To solve a Lights Out game now, all we need do is determine a solution, if one exists, to the
matrix equation (13.2).

Project Activity 13.4. For this activity you may use the fact that the reduced row echelon form of
the matrix M (using algebra in Z2) is as shown below.

(a) Find a basis for the column space of M .

(b) Explain why not every Lights Out puzzle can be solved. That is, explain why there are
some initial configurations of lights on and off for which it is not possible to turn out all the
lights (without turning off the game). Relate this to the column space of M .

The reduced row echelon form of the matrix M (using algebra in Z2):

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

To find conditions under which a Lights Out game is not solvable, we will demonstrate that ifA
is an n× n matrix, then the scalar product of any vector in Nul AT with any column of A is 0. Let
A = [aij ] be an n× n matrix with columns a1, a2, . . ., an. Represent the entries in the ith column
as ai = [a1i a2i . . . ani]

T for each i between 1 and n. Note that ai is also the ith row of AT. Also,
let x = [x1 x2 . . . xn]T be a vector in Nul AT. Then ATx = 0. Using the row-column method of
multiplying a matrix by a vector, when we multiply the ith row of AT with x we obtain

a1ix1 + a2ix2 + · · ·+ anixn = 0. (13.3)
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This equation is valid for each i between 1 and n. Recall that the sum in (13.3) is the scalar product
of ai and x and is denoted ai · x. That is,

ai · x = ai1x1 + ai2x2 + · · ·+ ainxn.

The fact that x is in Nul AT means ai · x = 0 for every i between 1 and n. In other words, the
scalar product of any vector in Nul AT with any column of A is 0. (When the scalar product of
two vectors is 0, we call the vectors orthogonal – a fancy word for “perpendicular”.) Since scalar
products are linear, we can extend this result to the following.

Theorem 13.10. Let A be an n × n matrix. If x is any vector in Col A and y is any vector in
Nul AT, then x · y = 0.

With Theorem 13.10 in mind we can return to our analysis of the Lights Out game, applying
this result to the matrix M .

Project Activity 13.5.

(a) Find a basis for the null space of MT. (Recall that MT = M , so you can use the reduced
row echelon form of M (using algebra in Z2) given earlier.)

(b) Use Theorem 13.10 to show that if c = [c1 c2 . . . c25]T is an initial Lights Out configura-
tion that is solvable, then c must be orthogonal to each of the vectors in a basis for Nul MT.
Then show that if c is a solvable initial Lights Out configuration, c must satisfy

c2 + c3 + c4 + c6 + c8 + c10 + c11 + c12 + c14 + c15 + c16 + c18

+ c20 + c22 + c23 + c24 = 0

and
c1 + c3 + c5 + c6 + c8 + c10 + c16 + c18 + c20 + c21 + c23 + c25 = 0.

Be very specific in your explanation.

Project Activity 13.6. Now that we know which Lights Out games can be solved, let c be an initial
configuration to a solvable Lights Out game. Explain how to find a solution to this game. Will the
solution be unique? Explain.

Now that we have a strategy for solving the Lights Out game, use it to solve random puzzles at
https://www.geogebra.org/m/wcmctahp, or create your own game to solve.

https://www.geogebra.org/m/wcmctahp
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Eigenspaces of a Matrix

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is an eigenspace of a matrix?

• How do we find a basis for an eigenspace of a matrix?

• What is true about any set of eigenvectors for a matrix that correspond to
different eigenvalues?

Application: Population Dynamics

The study of population dynamics – how and why people move from one place to another – is
important to economists. The movement of people corresponds to the movement of money, and
money makes the economy go. As an example, we might consider a simple model of population
migration to and from the state of Michigan.

According to the Michigan Department of Technology, Management, and Budget,1 from 2011
to 2012, approximately 0.05% of the U.S. population outside of Michigan moved to the state of
Michigan, while approximately 2% of Michigan’s population moved out of Michigan. A reason-
able question to ask about this situation is, if these numbers don’t change, what is the long-term
distribution of the US population inside and outside of Michigan (under the assumption that the total
US population doesn’t change.). The answer to this question involves eigenvalues and eigenvectors
of a matrix. More details can be found later in this section.

1http://michigan.gov/cgi/0,1607,7-158-54534-140915--,00.html
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Introduction

Preview Activity 14.1. Consider the matrix transformation T from R2 to R2 defined by T (x) =
Ax, where

A =

[
3 1
1 3

]
.

We are interested in understanding what this matrix transformation does to vectors in R2. The

matrix A has eigenvalues λ1 = 2 and λ2 = 4 with corresponding eigenvectors v1 =

[
−1

1

]
and

v2 =

[
1
1

]
.

(1) Explain why v1 and v2 are linearly independent.

(2) Explain why any vector b in R2 can be written uniquely as a linear combination of v1 and
v2.

(3) We now consider the action of the matrix transformation T on a linear combination of v1 and
v2. Explain why

T (c1v1 + c2v2) = 2c1v1 + 4c2v2. (14.1)

Equation (14.1) illustrates that it would be convenient to view the action of T in the coordinate
system where Span{v1} serves as the x-axis and Span{v2} as the y-axis. In this case, we can
visualize that when we apply the transformation T to a vector b = c1v1 + c2v2 in R2 the result
is an output vector is scaled by a factor of 2 in the v1 direction and by a factor of 4 in the v2

direction. For example, consider the box with vertices at (0, 0), v1, v2, and v1 + v2 as shown at
left in Figure 14.1. The transformation T stretches this box by a fact of 2 in the v1 direction and a
factor of 4 in the v2 direction as illustrated at right in Figure 14.1. In this situation, the eigenvalues
and eigenvectors provide the most convenient perspective through which to visualize the action of
the transformation T . Here, Span{v1} and Span{v2} are the eigenspaces of the matrix A.

v1v2

T (v1)

T (v2)

Figure 14.1: A box and a transformed box.

This geometric perspective illustrates how each the span of each eigenvalue of A tells us some-
thing important about A. In this section we explore the idea of eigenvalues and spaces defined by
eigenvectors in more detail.
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Eigenspaces of Matrix

Recall that the eigenvectors of an n× n matrix A satisfy the equation

Ax = λx

for some scalar λ. Equivalently, the eigenvectors of A with eigenvalue λ satisfy the equation

(A− λIn)x = 0.

In other words, the eigenvectors for A with eigenvalue λ are the non-zero vectors in Nul A− λIn.
Recall that the null space of an n × n matrix is a subspace of Rn. In Preview Activity 14.1 we
say how these subspaces provided a convenient coordinate system through which to view a matrix
transformation. These special null spaces are called eigenspaces.

Definition 14.1. Let A be an n×n matrix with eigenvalue λ. The eigenspace for A corresponding
to λ is the null space of A− λIn.

Activity 14.1. The matrix A =

 2 0 1
0 2 −1
0 0 1

 has two distinct eigenvalues.

(a) Find a basis for the eigenspace of A corresponding to the eigenvalue λ1 = 1. In other
words, find a basis for Nul A− I3.

(b) Find a basis for the eigenspace of A corresponding to the eigenvalue λ2 = 2.

(c) Is it true that if v1 and v2 are two distinct eigenvectors for A, that v1 and v2 are linearly
independent? Explain.

(d) Is it possible to have two linearly independent eigenvectors corresponding to the same
eigenvalue?

(e) Is it true that if v1 and v2 are two distinct eigenvectors corresponding to different eigenval-
ues for A, that v1 and v2 are linearly independent? Explain.

If we know an eigenvalue λ of an n × n matrix A, Activity 14.1 shows us how to find a basis
for the corresponding eigenspace – just row reduce A−λIn to find a basis for Nul A−λIn. To this
point we have always been given eigenvalues for our matrices, and have not seen how to find these
eigenvalues. That process will come a bit later. For now, we just want to become more familiar
with eigenvalues and eigenvectors. The next activity should help connect eigenvalues to ideas we
have discussed earlier.

Activity 14.2. Let A be an n× n matrix with eigenvalue λ.

(a) How many solutions does the equation (A− λIn)x = 0 have? Explain.

(b) Can A− λIn have a pivot in every column? Why or why not?

(c) Can A− λIn have a pivot in every row? Why or why not?

(d) Can the columns of A− λIn be linearly independent? Why or why not?
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Linearly Independent Eigenvectors

An important question we will want to answer about a matrix is how many linearly independent
eigenvectors the matrix has. Activity 14.1 shows that eigenvectors for the same eigenvalue may be
linearly dependent or independent, but all of our examples so far seem to indicate that eigenvectors
corresponding to different eigenvalues are linearly independent. This turns out to be universally
true as our next theorem demonstrates. The next activity should help prepare us for the proof of this
theorem

Activity 14.3. Let λ1 and λ2 be distinct eigenvalues of a matrix A with corresponding eigenvectors
v1 and v2. The goal of this activity is to demonstrate that v1 and v2 are linearly independent. To
prove that v1 and v2 are linearly independent, suppose that

x1v1 + x2v2 = 0. (14.2)

(a) Multiply both sides of equation (14.2) on the left by the matrix A and show that

x1λ1v1 + x2λ2v2 = 0. (14.3)

(b) Now multiply both sides of equation (14.2) by the scalar λ1 and show that

x1λ1v1 + x2λ1v2 = 0. (14.4)

(c) Combine equations (14.3) and (14.4) to obtain the equation

x2(λ2 − λ1)v2 = 0. (14.5)

(d) Explain how we can conclude that x2 = 0. Why does it follow that x1 = 0? What does
this tell us about v1 and v2?

Activity 14.3 contains the basic elements of the proof of the next theorem.

Theorem 14.2. Let λ1, λ2, . . ., λk be k distinct eigenvalues for a matrixA and for each i between 1
and k let vi be an eigenvector of A with eigenvalue λi. Then the vectors v1, v2, . . ., vk are linearly
independent.

Proof. LetA be a matrix with k distinct eigenvalues λ1, λ2, . . ., λk and corresponding eigenvectors
v1, v2, . . ., vk. To understand why v1, v2, . . ., vk are linearly independent, we will argue by
contradiction and suppose that the vectors v1, v2, . . ., vk are linearly dependent. Note that v1

cannot be the zero vector (why?), so the set S1 = {v1} is linearly independent. If we include v2

into this set, the set S2 = {v1,v2} may be linearly independent or dependent. If S2 is linearly
independent, then the set S3 = {v1,v2,v3} may be linearly independent or dependent. We can
continue adding additional vectors until we reach the set Sk = {v1,v2,v3, . . . ,vk} which we are
assuming is linearly dependent. So there must be a smallest integer m ≥ 2 such that the set Sm
is linearly dependent while Sm−1 is linearly independent. Since Sm = {v1,v2,v3, . . . ,vm} is
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linearly dependent, there is a linear combination of v1, v2, . . ., vm with weights not all 0 that is the
zero vector. Let c1, c2, . . ., cm be such weights, not all zero, so that

c1v1 + c2v2 + · · ·+ cm−1vm−1 + cmvm = 0 (14.6)

If we multiply both sides of (14.6) on the left by the matrix A we obtain

A(c1v1 + c2v2 + · · ·+ cmvm) = A0

c1Av1 + c2Av2 + · · ·+ cmAvm = 0

c1λ1v1 + c2λ2v2 + · · ·+ cmλmvm = 0. (14.7)

If we multiply both sides of (14.6) by λm we obtain the equation

c1λmv1 + c2λmv2 + · · ·+ cmλmvm = 0. (14.8)

Subtracting corresponding sides of equation (14.8) from (14.7) gives us

c1(λ1 − λm)v1 + c2(λ2 − λm)v2 + · · ·+ cm−1(λm−1 − λm)vm−1 = 0. (14.9)

Recall that Sm−1 is a linearly independent set, so the only way a linear combination of vectors
in Sm−1 can be 0 is if all of the weights are 0. Therefore, we must have

c1(λ1 − λm) = 0, c2(λ2 − λm) = 0, . . . , cm−1(λm−1 − λm) = 0.

Since the eigenvalues are all distinct, this can only happen if

c1 = c2 = · · · = cm−1 = 0.

But equation (14.6) then implies that cm = 0 and so all of the weights c1, c2, . . ., cm are 0. However,
when we assumed that the eigenvectors v1, v2, . . ., vk were linearly dependent, this led to having
at least one of the weights c1, c2, . . ., cm be nonzero. This cannot happen, so our assumption that
the eigenvectors v1, v2, . . ., vk were linearly dependent must be false and we conclude that the
eigenvectors v1, v2, . . ., vk are linearly independent. �

Examples

What follows are worked examples that use the concepts from this section.

Example 14.3. Let A =

 4 −3 −3
−3 4 3

3 −3 −2

 and let T be the matrix transformation defined by

T (x) = Ax.

(a) Show that 4 is an eigenvalue for A and find a basis for the corresponding eigenspace of A.

(b) Geometrically describe the eigenspace of A corresponding to the eigenvalue 4. Explain
what the transformation T does to this eigenspace.
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(c) Show that 1 is an eigenvalue for A and find a basis for the corresponding eigenspace of A.

(d) Geometrically describe the eigenspace of A corresponding to the eigenvalue 1. Explain
what the transformation T does to this eigenspace.

Example Solution.

(a) Recall that λ is an eigenvalue of A if A − λI3 is not invertible. To show that 4 is an
eigenvalue for A we row reduce the matrix

A− (4)I3 =

 0 −3 −3
3 0 −3
3 −3 −6



to

 1 0 −1
0 1 1
0 0 0

. Since the third column of A − 4I3 is not a pivot column, the matrix

A− 4I3 is not invertible. We conclude that 4 is an eigenvalue of A.

The eigenspace of A for the eigenvalue 4 is Nul (A− 4I3). The reduced row echelon form

of A− 4I3 shows that if x =

 x1

x2

x3

 and (A− 4I3)x = 0, then x3 is free, x2 = −x3, and

x1 = x3. Thus,

x =

 x1

x2

x3

 =

 x3

−x3

x3

 = x3

 1
−1

1

 .
Therefore,


 1
−1

1

 is a basis for the eigenspace of A corresponding to the eigenvalue

4.

(b) Since the eigenspace of A corresponding to the eigenvalue 4 is the span of a single nonzero

vector v =

 1
−1

1

, this eigenspace is the line in R3 through the origin and the point

(1,−1, 1). Any vector in this eigenspace has the form cv for some scalar c. Notice that

T (cv) = Acv = cAv = 4cv,

so T expands any vector in this eigenspace by a factor of 4.

(c) To show that 1 is an eigenvalue for A we row reduce the matrix

A− (1)I3 =

 3 −3 −3
−3 3 3
3 −3 −3



to

 1 −1 −1
0 0 0
0 0 0

. Since the third column of A − I3 is not a pivot column, the matrix

A− I3 is not invertible. We conclude that 1 is an eigenvalue of A.
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The eigenspace of A for the eigenvalue 1 is Nul (A − I3). The reduced row echelon form

of A − I3 shows that if x =

 x1

x2

x3

 and (A − I3)x = 0, then x2 and x3 are free, and

x1 = x2 + x3. Thus,

x =

 x1

x2

x3

 =

 x2 + x3

x2

x3

 = x2

 1
1
0

+ x3

 1
0
1

 .

Therefore,


 1

1
0

 ,
 1

0
1

 is a basis for the eigenspace of A corresponding to the

eigenvalue 1.

(d) Since the eigenspace of A corresponding to the eigenvalue 1 is the span of two linearly

independent vectors v1 =

 1
1
0

 and v2 =

 1
0
1

, this eigenspace is the plane in R3

through the origin and the points (1, 1, 0) and (1, 0, 1). Any vector in this eigenspace has
the form av1 + bv2 for some scalars a and b. Notice that

T (av1 + bv2) = A(av1 + bv2) = aAv1 + bAv2 = av1 + bv2,

so T fixes every vector in this plane.

Example 14.4.

(a) Let A =

[
1 2
2 1

]
. Note that the vector v =

[
1
1

]
satisfies Av = 3v.

i. Show that v is an eigenvector of A2. What is the corresponding eigenvalue?

ii. Show that v is an eigenvector of A3. What is the corresponding eigenvalue?

iii. Show that v is an eigenvector of A4. What is the corresponding eigenvalue?

iv. If k is a positive integer, do you expect that v is an eigenvector of Ak? If so, what do
you think is the corresponding eigenvalue?

(b) The result of part (a) is true in general. Let M be an n × n matrix with eigenvalue λ and
corresponding eigenvector x.

i. Show that λ2 is an eigenvalue of M2 with eigenvector x.

ii. Show that λ3 is an eigenvalue of M3 with eigenvector x.

iii. Suppose that λk is an eigenvalue of Mk with eigenvector x for some integer k ≥ 1.
Show then that λk+1 is an eigenvalue of Mk+1 with eigenvector x. This argument
shows that λk is an eigenvalue of Mk with eigenvector x for any positive integer k.

(c) We now investigate the eigenvalues of a special type of matrix.
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i. Let B =

 0 1 0
0 0 1
0 0 0

. Show that B3 = 0. (A square matrix M is nilpotent) if

Mk = 0 for some positive integer k, so B is an example of a nilpotent matrix.) What
are the eigenvalues of B? Explain.

ii. Show that the only eigenvalue of a nilpotent matrix is 0.

Example Solution.

(a) We use the fact that v is an eigenvector of the matrix A with eigenvalue 3.

i. We have that

A2v = A(Av) = A(3v) = 3(Av) = 3(3v) = 9v.

So v is an eigenvector of A2 with eigenvalue 9 = 32.

ii. We have that

A3v = A(A2v) = A(9v) = 9(Av) = 9(3v) = 27v.

So v is an eigenvector of A3 with eigenvalue 27 = 33.

iii. We have that

A4v = A(A3v) = A(27v) = 27(Av) = 27(3v) = 81v.

So v is an eigenvector of A4 with eigenvalue 81 = 34.

iv. The results of the previous parts of this example indicate that Akv = 3kv, or that v
is an eigenvector of Ak with corresponding eigenvalue 3k.

(b) Let M be an n× n matrix with eigenvalue λ and corresponding eigenvector x.

i. We have that

M2x = M(Mx) = M(λx) = λ(Mx) = λ(λx) = λ2x.

So x is an eigenvector of M2 with eigenvalue λ2.

ii. We have that

M3x = M(M2x) = M(λ2x) = λ2(Mx) = λ2(λx) = λ3x.

So x is an eigenvector of M3 with eigenvalue λ3.

iii. Assume that Mkx = λkx. Then

Mk+1x = M(Mkx) = M(λkx) = λk(Mx) = 2λk(λx) = λk+1x.

So x is an eigenvector of Mk+1 with eigenvalue λk+1.

(c) Now we investigate a special type of matrix.
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i. Straightforward calculations show thatB3 = 0. SinceB is an upper triangular matrix,
the eigenvalues of B are the entries on the diagonal. That is, the only eigenvalue of B
is 0.

ii. Assume that M is a nilpotent matrix. Suppose that λ is an eigenvalue of M with
corresponding eigenvector v. SinceM is a nilpotent matrix, there is a positive integer
k such that Mk = 0. But λk is an eigenvalue of Mk with eigenvector v. The only
eigenvalue of the zero matrix is 0, so λk = 0. This implies that λ = 0. We conclude
that the only eigenvalue of a nilpotent matrix is 0.

Summary

• An eigenspace of an n× n matrix A corresponding to an eigenvalue λ of A is the null space
of A− λIn.

• To find a basis for an eigenspace of a matrix A corresponding to an eigenvalue λ, we row
reduce A− λIn and find a basis for Nul A− λIn.

• Eigenvectors corresponding to different eigenvalues are always linearly independent.

Exercises

(1) For each of the following, find a basis for the eigenspace of the indicated matrix correspond-
ing to the given eigenvalue.

(a)
[

10 7
−14 −11

]
with eigenvalue 3

(b)
[

11 18
−3 −4

]
with eigenvalue 2

(c)
[

2 1
−1 0

]
with eigenvalue 1

(d)

 1 0 0
0 0 2
1 0 2

 with eigenvalue 2

(e)

 1 0 0
0 0 2
1 0 2

 with eigenvalue 1

(f)

 2 2 4
1 1 2
3 3 6

 with eigenvalue 0

(2) Suppose A is an invertible matrix.

(a) Use the definition of an eigenvalue and an eigenvector to algebraically explain why
if λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.
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(b) To provide an alternative explanation to the result in the previous part, let v be an
eigenvector of A corresponding to λ. Consider the matrix transformation TA corre-
sponding to A and TA−1 corresponding to A−1. Considering what happens to v if
TA and then TA−1 are applied, describe why this justifies v is also an eigenvector of
A−1.

(3) If A =

[
0 1
a b

]
has two eigenvalues 4 and 6, what are the values of a and b?

(4)

(a) What are the eigenvalues of the identity matrix I2? Describe each eigenspace.

(b) Now let n > 2 be a positive integer. What are the eigenvalues of the identity matrix
In? Describe each eigenspace.

(5)

(a) What are the eigenvalues of the 2× 2 zero matrix (the matrix all of whose entries are
0)? Describe each eigenspace.

(b) Now let n > 2 be a positive integer. What are the eigenvalues of the n × n zero
matrix? Describe each eigenspace.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If Av = λv, then λ is an eigenvalue of A with eigenvector v.

(b) True/False The scalar λ is an eigenvalue of a square matrix A if and only if the
equation (A− λIn)x = 0 has a nontrivial solution.

(c) True/False If λ is an eigenvalue of a matrix A, then there is only one nonzero vector
v with Av = λv.

(d) True/False The eigenspace of an eigenvalue of an n × n matrix A is the same as
Nul (A− λIn).

(e) True/False If v1 and v2 are eigenvectors of a matrix A corresponding to the same
eigenvalue λ, then v1 + v2 is also an eigenvector of A.

(f) True/False If v1 and v2 are eigenvectors of a matrix A, then v1 + v2 is also an
eigenvector of A.

(g) True/False If v is an eigenvector of an invertible matrix A, then v is also an eigen-
vector of A−1.

Project: Modeling Population Migration

As introduced earlier, data from the Michigan Department of Technology, Management, and Budget
shows that from 2011 to 2012, approximately 0.05% of the U.S. population outside of Michigan
moved to the state of Michigan, while approximately 2% of Michigan’s population moved out of
Michigan. We are interested in determining the long-term distribution of population in Michigan.
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Let xn =

[
mn

un

]
be the 2 × 1 vector where mn is the population of Michigan and un is the

U.S. population outside of Michigan in year n. Assume that we start our analysis at generation 0

and x0 =

[
m0

u0

]
.

Project Activity 14.1.

(a) Explain how the data above shows that

m1 = 0.98m0 + 0.0005u0

u1 = 0.02m0 + 0.9995u0

(b) Identify the matrix A such that x1 = Ax0.

One we have the equation x1 = Ax0, we can extend it to subsequent years:

x2 = Ax1, x3 = Ax2, , ..., xn+1 = Axn

for each n ≥ 0.

This example illustrates the general nature of what is called a Markov process (see Definition
9.4). Recall that the matrix A that provides the link from one generation to the next is called the
transition matrix.

In situations like these, we are interested in determining if there is a steady-state vector, that is
a vector that satisfies

x = Ax. (14.10)

Such a vector would show us the long-term population of Michigan provided the population dy-
namics do not change.

Project Activity 14.2.

(a) Explain why a steady-state solution to (14.10) is an eigenvector of A. What is the corre-
sponding eigenvalue?

(b) Consider again the transition matrix A from Project Activity 14.1. Recall that the solutions
to equation (14.10) are all the vectors in Nul (A−I2). In other words, the eigenvectors ofA
for this eigenvalue are the nonzero vectors in Nul (A− I2). Find a basis for the eigenspace
of A corresponding to this eigenvalue. Use whatever technology is appropriate.

(c) Once we know a basis for the eigenspace of the transition matrix A, we can use it to
estimate the steady-state population of Michigan (assuming the stated migration trends are
valid long-term). According to the US Census Bureau2, the resident US population on
December 1, 2019 was 330,073,471. Assuming no population growth in the U.S., what
would the long-term population of Michigan be? How realistic do you think this is?

2https://www.census.gov/data/tables/time-series/demo/popest/
2010s-national-total.html

https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-total.html




Section 15

Bases and Dimension

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the dimension of a subspace of Rn? What property of bases makes
the dimension a well-defined number?

• If W is a subspace of Rn with dimension k, what must be true about any
linearly independent subset S of W that contains exactly k vectors?

• If W is a subspace of Rn with dimension k, what must be true about any
subset S of W that contains exactly k vectors and spans W ?

• What is the rank of a matrix?

• What does the Rank-Nullity Theorem say?

Application: Lattice Based Cryptography

When you use your credit card, you expect that the information that is transmitted is protected
so others can’t use your card. Similarly, when you create a password for your computer or other
devices, you do so with the intention that it will be difficult for others to decipher.

Cryptology is the study of methods to maintain secure communication in the presence of other
parties (cryptography), along with the study of breaking codes (cryptanalysis). In essence, cryp-
tology is the art of keeping and breaking secrets. The creation of secure codes (cryptography) can
provide confidentiality (ensure that information is available only to the intended recipients), data
integrity (prevent data from being altered between the sender and recipient), and authentication
(making sure that the information is from the correct source).

Modern cryptology uses mathematical theory that can be implemented with computer hardware
and algorithms. The security of public key sytems is largely based on mathematical problems that

261
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are very difficult to solve. For example, the security of the RSA system relies on the fact that it
is computationally difficult to find prime factors of very large numbers, and elliptic curve cryptog-
raphy relies on the difficulty of the discrete logarithm problem for elliptic curves. However, the
continual increase in the power of computers threatens the security of these systems, and so cryp-
tographic systems have to keep adapting to the newest technology. For example, Shor’s Algorithm
(which could run on a quantum computer) can solve the public key cryptographic systems that rely
on the integer factorization problem or the discrete logarithm problem. So if a working quantum
computer was ever developed, it would threaten the existing cryptographic systems. Lattice-based
cryptography is a potential source of systems that may be secure even in such an environment. The
security of these systems is dependent on the fact that the average case of the difficulty of certain
problems in lattice theory is higher than the worst case problems that underpin current cryptosys-
tems. As we will see later in this section, lattices are built on bases for subspace of Rn.

Introduction

A basis provides a system in which we can uniquely represent every vector in the space we are
considering. More specifically, every vector in the space can be expressed as a linear combination
of the vectors in the basis in a unique way. In order to be able to cover every point in the space,
the basis has to span the space. In order to be able to provide a unique coordinate for each point,
there should not be any extra vectors in the basis, which is achieved by linear independence of the
vectors. For practical reasons, a basis simplifies many problems because we only need to solve the
problem for each of the basis vectors. Solutions of the other cases usually follow because every
vector in the space can be expressed as a unique linear combination of the basis vectors.

Recall that a basis for a subspace W of Rn is a set of vectors which are linearly independent
and which span W .

Preview Activity 15.1.

(1) For each of the following sets of vectors, determine whether the vectors form a basis of R3.
Use any appropriate technology for your computations.

(a)


 1

0
0

 ,
 1

1
0

 ,
 1

1
1


(b)


 1

0
1

 ,
 1

1
0

 ,
 2

3
1


(c)


 1

0
1

 ,
 1

1
1

 ,
 0

3
3

 ,
 −1

2
1


(d)


 1

0
0

 ,
 0

1
0


(2) In problem (1) we should have noticed that a space can have more than one basis, but that any

two bases contain the same number of elements. This is a critically important idea that we
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investigate in more detail in this problem in one specific case. Assume that W is a subspace
of Rn that has a basis B = {v1,v2} with two basis vectors. We want to see if any other basis
for W can have a different number of elements. Let us now consider a set U = {u1,u2,u3}
of three vectors in W . Our goal is to determine if U can be a basis for W . Since B is a basis
for W , any vector in W can be written as a linear combination of the vectors in B. So we can
write

u1 = a11v1 + a21v2 (15.1)

u2 = a12v1 + a22v2 (15.2)

u3 = a13v1 + a23v2 (15.3)

for some scalars aij . If U were to be a basis for W , then U would have to be a linearly
independent set. To determine the independence or dependence of U we consider the vector
equation

x1u1 + x2u2 + x3u3 = 0 (15.4)

for scalars x1, x2, and x3.

(a) Substitute for u1, u2, and u3 from (15.1), (15.2), and (15.3) into (15.4) and perform
some vector algebra to show that

0 = (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2. (15.5)

(b) Recall that B = {v1,v2} is a basis. What does that tell us about the weights in
the linear combination (15.5)? Explain why Ax = 0, where A = [aij ] and x =
[x1 x2 x3]T.

(c) With A as in part (b), how many solutions does the system Ax = 0 have? Explain.
(Hint: Consider the number of rows and columns of A.) What does this tell us about
the independence or dependence of the set U? Why?

(d) Can U be a basis for W ? Explain.

The Dimension of a Subspace of Rn

In Preview Activity 15.1 we saw that a subspace of Rn can have more than one basis. This prompts
the question of how, if at all, are any two bases for a given space related. More specifically, is it
possible to have two bases for a given subspace of Rn that contain different numbers of vectors?
As we will see the answer is no, which will lead us to the concept of dimension.

Let W be a subspace of Rn that has a basis B = {v1,v2, . . . ,vk} of k vectors. Since we
have been calling bases minimal spanning sets, we should expect that any two bases for the same
subspace have the same number of elements (otherwise one of the two bases would not be minimal).
Our goal in this section is to prove that result – that any other basis of W contains exactly k
vectors. The approach will be the same as was used in Preview Activity 15.1. We will let U =
{u1,u2, . . . ,um} be a set of vectors in W with m > k and demonstrate that U is a linearly
dependent set. To argue linear dependence, let x1, x2, . . ., xm be scalars so that

x1u1 + x2u2 + · · ·+ xmum = 0. (15.6)
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For each i there exist scalars aij so that

ui = a1iv1 + a2iv2 + · · ·+ akivk.

Substituting into (15.6) yields

0 = x1u1 + x2u2 + · · ·+ xmum

= x1(a11v1 + a21v2 + · · ·+ ak1vk) + x2(a12v1 + a22v2

+ · · ·+ ak2vk) + · · ·+ xm(a1mv1 + a2mv2 + · · ·+ akmvk)

= (x1a11 + x2a12 + x3a13 + · · ·+ xma1m)v1

+ (x1a21 + x2a22 + x3a23 + · · ·+ xma2m)v2

+ · · ·+ (x1ak1 + x2ak2 + x3ak3 + · · ·+ xmakm)vk. (15.7)

Since B is a basis, the vectors v1, v2, . . ., vk are linearly independent. So each coefficient in (15.7)
is 0 and x = [x1 x2 · · · xm]T is a solution to the homogeneous system Ax = 0, where A = [aij ].
Now A is a k×m matrix with m > k, so not every column of A is a pivot column. This means that
Ax = 0 has a nontrivial solution. It follows that the vector equation (15.6) has a nontrivial solution
and so the m vectors u1, u2, . . ., um are linearly dependent. We summarize this in the following
theorem.

Theorem 15.1. Let W be a subspace of Rn containing a basis with k vectors. If m > k, then any
set of m vectors in W is linearly dependent.

One consequence of Theorem 15.1 is that, in addition to being a minimal spanning set, a basis
is also a maximal linearly independent set.

Activity 15.1. Now let’s return to the question of the number of elements in a basis for a subspace
of Rn. Recall that we are assuming that W has a basis B = {v1,v2, . . . ,vk} of k vectors in Rn.
Suppose that B′ is another basis for W containing m vectors.

(a) Given the fact that B is a basis forW , what does Theorem 15.1 tell us about the relationship
between m and k?

(b) Given the fact thatB′ is a basis forW , what does Theorem 15.1 tell us about the relationship
between m and k?

(c) What do the results of (a) and (b) tell us about the relationship between m and k? What
can we conclude about any basis for W ?

The result of Activity 15.1 is summarized in the following theorem. Recall that the trivial space
is the single element set {0}.

Theorem 15.2. If a nontrivial subspace W of Rn has a basis of k vectors, then every basis of W
contains exactly k vectors.

This last theorem states that the number of vectors in a basis for a subspace space is a well-
defined number. In other words, the number of vectors in a basis is an invariant of the subspace.
This important number is given a name.
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Definition 15.3. The dimension of a subspace W of Rn is the number of vectors in a basis for W .
The dimension of the trivial subspace {0} of Rn is defined to be 0.

We denote the dimension of a subspace W of Rn by dim(W ). As we will see later, any two
vector spaces of the same dimension are basically the same vector space. So the dimension of a
vector space is an important number that essentially tells us all we need to know about the structure
of the space.

Activity 15.2. Find the dimensions of each of the indicated subspaces of Rn for the appropriate n.
Explain your method.

(a) Span


 1

0
0

 ,
 1

1
0

 ,
 2

3
0


(b) xy-plane in R3

(c) R3

(d) Rn

Conditions for a Basis of a Subspace of Rn

There are two items we need to confirm before we can state that a subset B of a subspace W of
Rn is a basis for W : the set B must be linearly independent and span W . However, if we have the
right number (namely, the dimension) of vectors in our set B, then either one of these conditions
will imply the other.

Activity 15.3. Let W be a subspace of Rn with dim(W ) = k. We know that every basis of W
contains exactly k vectors.

(a) Suppose that S is a subset of W that contains k vectors and is linearly independent. In this
part of the activity we will show that S must span W .

i. Suppose that S does not span W . Explain why this implies that W contains a set of
k + 1 linearly independent vectors.

ii. Explain why the result of part i. tells us that S is a basis for W .

(b) Now suppose that S is a subset ofW with k vectors that spansW . In this part of the activity
we will show that S must be linearly independent.

i. Suppose that S is not linearly independent. Explain why we can then find a proper
subset of S that is linearly independent but has the same span as S.

ii. Explain why the result of part i. tells us that S is a basis for W .

The result of Activity 15.3 is the following important theorem.

Theorem 15.4. Let W be a subspace of Rn of dimension k and let S be a subset of W containing
exactly k vectors.
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(1) If S is linearly independent, then S is a basis for W .

(2) If S spans W , then S is a basis for W .

Finding a Basis for a Subspace

Since every vector in a subspace of Rn can be written uniquely as a linear combination of vectors in
a basis for the subspace, a basis provides us with the most efficient and convenient way to represent
vectors in the subspace. Until now we have been given a set of vectors and have been asked to find
a basis from that set, so an important question to address is how we can find a basis for a subspace
W of Rn starting from scratch. Here is one way. If W = {0}, then the dimension of W is 0 and
W has no basis. So suppose dim(W ) > 0. Start by choosing any nonzero vector w1 in W . Let
B1 = {w1}. If B1 spans W , then B1 is a basis for W . If not, there is a vector w2 in W that is not
in Span(B1). Then B2 = {w1,w2} is a linearly independent set. If Span(B2) = W , then B2 is a
basis for W and we are done. If not, repeat the process. Since any basis for W can contain at most
n = dim(Rn) vectors, we know the process must stop at some point. This process also allows us
to construct a basis for a vector space that contains a given nonzero vector.

Activity 15.4. Find a basis for R3 that contains the vector

 1
2
−1

. When constructing your basis,

how do you know when to stop?

Rank of a Matrix

In this section, we define the rank of a matrix and review conditions to add to our Invertible Matrix
Theorem.

Activity 15.5. Let A =

 1 2 −1 0 0
0 0 1 0 −1
0 0 0 1 1

.

(a) Without performing any calculations, find dim(Nul A). Explain.

(b) Without performing any calculations, find dim(Col A). Explain.

(c) There is a connection between dim(Nul A), dim(Col A) and the size of A. Find this
connection and explain it.

As Activity 15.5 illustrates, the number of vectors in a basis for Nul A is the number of non-
pivot columns inA and the number of vectors in a basis for Col A is the number of pivot columns of
A. We define the rank of a matrix A (denoted rank(A)) to be the dimension of Col A and the nullity
of A to be dimension of Nul A. The dimension of the null space of A is also called the nullity of A
(denoted nullity(A)) Using this terminology we have the Rank-Nullity Theorem.

Theorem 15.5 (The Rank-Nullity Theorem). Let A be an m× n matrix. Then

rank(A) + nullity(A) = n.
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There is also a row space of a matrix A, which we define to be the span of the rows of A. We
can find the row space of A by finding the column space of AT, so the row space is really nothing
new. As it turns out, the dimension of the row space of A is always equal to the dimension of the
column space of A, and justification for this statement is in the exercises.

The Rank-Nullity Theorem allows us to add extra conditions to the Invertible Matrix Theorem.

Theorem 15.6 (The Invertible Matrix Theorem). Let A be an n × n matrix. The following state-
ments are equivalent.

(a) The matrix A is an invertible matrix.

(b) The matrix equation Ax = 0 has only the trivial solution.

(c) The matrix A has n pivot columns.

(d) Every row of A contains a pivot.

(e) The columns of A span Rn.

(f) The matrix A is row equivalent to the identity matrix In.

(g) The columns of A are linearly independent.

(h) The columns of A form a basis for Rn.

(i) The matrix transformation T from Rn to Rn defined by T (x) = Ax is one-to-one.

(j) The matrix equation Ax = b has exactly one solution for each vector b in Rn.

(k) The matrix transformation T from Rn to Rn defined by T (x) = Ax is onto.

(l) There is an n× n matrix C so that AC = In.

(m) There is an n× n matrix D so that DA = In.

(n) The scalar 0 is not an eigenvalue of A.

(o) The matrix AT is invertible.

(p) Nul A = {0}.

(q) Col A = Rn.

(r) dim(Col A) = n

(s) dim(Nul A) = 0

(t) rank(A) = n

Examples

What follows are worked examples that use the concepts from this section.
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Example 15.7. Let W =




r + s+ u
r + 3s+ 2t− u
−s− t+ u
s+ t− u

 : r, s, t, u ∈ R

.

(a) Explain why W is a subspace of R4.

(b) Find a basis for W and determine the dimension of W .

Example Solution.

(a) We can write any vector in W in the form
r + s+ u

r + 3s+ 2t− u
−s− t+ u
s+ t− u

 = r


1
1
0
0

+ s


1
3
−1

1

+ t


0
2
−1

1

+ u


1
−1

1
−1

 ,
so

W = Span




1
1
0
0

 ,


1
3
−1

1

 ,


0
2
−1

1

 ,


1
−1

1
−1


 .

As a span of a set of vectors in R4, W is a subspace of R4.

(b) Let A =


1 1 0 1
1 3 2 −1
0 −1 −1 1
0 1 1 −1

. To find a basis for W , we note that the reduced row

echelon form of A is


1 0 −1 2
0 1 1 −1
0 0 0 0
0 0 0 0

. Since the pivot columns of A form a basis for

Col A = W , we conclude that 


1
1
0
0

 ,


1
3
−1

1




is a basis for W . Therefore, dim(W ) = 2.

Example 15.8. Find a basis and the dimension of the solution set to the system

r + s− t+ 2u = 0

3r − s+ 2t− u = 0

r − 3s+ 4t− 5u = 0

5r − 3s+ 5t− 4u = 0.
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Example Solution.

The coefficient matrix of this system is

A =


1 1 −1 2
3 −1 2 −1
1 −3 4 −5
5 −3 5 −4

 ,
and the solution set to the system is Nul A. To find a basis for Nul A we row reduce A to

1 0 1
4

1
4

0 1 −5
4

7
4

0 0 0 0

0 0 0 0

 .

The general solution to the system has the form


r
s
t
u

 =


−1

4 t− 1
4u

5
4 t− 7

4u

t

u

 = t


−1

4

5
4

1

0

+ u


−1

4

−7
4

0

1

 ,

so




−1

4

5
4

1

0

 ,

−1

4

−7
4

0

1




is a basis for Nul A and dim(Nul A) = 2.

Summary

The key idea in this section is the dimension of a vector space.

• Any two bases for a vector space must contain the same number of vectors. Therefore, we
can define the dimension of a vector space W to be the number of vectors in any basis for W .

• If W is a subspace of Rn with dimension k and S is any linearly independent subset of W
with k vectors, then S is a basis for W .

• If W is a subspace of Rn with dimension k and S is any subset of W with k vectors that
spans W , then S is a basis for W .

• The rank of a matrix is the dimension of its column space.

• The Rank-Nullity Theorem states that ifA is anm×nmatrix, then rank(A)+nullity(A) = n.
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Exercises

(1) Let A =



1 3 1 2 0
0 0 0 0 1
2 6 0 0 1
1 3 2 4 1
3 9 1 2 −1
3 9 3 6 1

.

(a) Find a basis for Col A. What is the dimension of Col A? What, then, is the dimension
of Nul A?

(b) Find a basis for Nul A and verify the dimension you found in part (a).

(2) Let A =

 2 −1 1
1 0 1
1 −1 2

. The eigenvalues of A are 1 and 2. Find the dimension of each

eigenspace of A.

(3) Let A =

 1 2 −1 −1
−2 −4 2 2

1 2 −1 −1

.

(a) Find a basis for Col A. What is the rank of A?

(b) Find a basis for Nul A. What is the nullity of A.

(c) Verify the Rank-Nullity Theorem for A.

(d) The row space of A is the span of the rows of A. Find a basis for the row space of A
and the dimension of the row space of A.

(4) Let A be an m×n matrix with r pivots, where r is less than or equal to both m,n. Fill in the
blanks.

(a) The null space of A is a subspace of .

(b) The column space of A is a subspace of .

(c) Suppose r = m. Then there is a pivot in every and Col A = .

(d) Suppose r = n. Then there is a pivot in every and Nul A = .

(e) If A has 3 pivots, then the rank of A is .

(f) If A has 3 pivots, then the number of free variables in the system Ax = 0 is
.

(g) The dimension of Col A is equal to the number of , i.e.
dim Col A = .

(h) The dimension of Nul A is equal to the number of , i.e.
dim Nul A = .

(i) dim(Nul A) + dim(Col A) = .
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(j) Suppose the columns of A span Rm. Then rank A is .

(k) Suppose the columns of A are linearly independent. Then r = and the
dimension of Nul A is .

(5) Prove the remaining parts of the Invertible Matrix Theorem (Theorem 15.6). Let A be an
n× n matrix.

(a) Prove that A is invertible if and only if dim(Nul A) = 0.

(b) Prove that A is invertible if and only if dim(Col A) = n.

(6) We can convert the language of the Rank-Nullity Theorem to matrix transformation language,
as we show in this exercise. Let T be the matrix transformation defined by the matrix A.

(a) How is the kernel of T related to A?

(b) How is the range of T related to A?

(c) How is the domain of T related to A?

(d) Explain why the Rank-Nullity Theorem says that dim(Ker(T ))+dim(Range(T )) =
dim(Domain(T )).

(7) Let W be a subspace of R4. What are possible values for the dimension of W ? Explain.
What are the geometric descriptions of W in each case?

(8) Is it possible to find two subspacesW1 andW2 in R3 such thatW1∩W2 = {0} and dimW1 =
dimW2 = 2? If possible, give an example and justify that they satisfy the conditions. If not
possible, explain why not. (Hint: Dimension two leads to two linearly independent vectors
in each of Wi.)

(9) Determine the dimensions of the column space and null space of


1 2 4 3 2
1 0 2 1 4
1 1 3 1 2
1 0 2 2 5

.

(10) If possible, find a 3 × 4 matrix whose column space has dimension 3 and null space has
dimension 1. Explain how you found the matrix in addition to explaining why your answer
works. If not possible, explain why it is not possible to find such a matrix.

(11)

(a) If possible, find a 5 × 5 matrix whose column space has the same dimension as its
null space. Explain how you found the matrix in addition to explaining why your
answer works. If not possible, explain why it is not possible to find such a matrix.

(b) If possible, find a matrix A so that Col A = Nul A. Explain how you found the
matrix in addition to explaining why your answer works. If not possible, explain
why it is not possible to find such a matrix.

(12) In this exercise we examine why the dimension of a row space of a matrix is the same as the
dimension of the column space of the matrix. Let A be an m× n matrix.
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(a) Explain why row operations do not change the row space of a matrix. Then explain
why if R is the reduced row echelon form of A, then Row R = Row A, where
Row M is the row space of the matrix M .

(b) Explain why the rows of R that contain pivots form a basis for Row R, and also of
Row A.

(c) Explain why rank(A) is the number of pivots in the matrix A. Then explain why
dim(Row A) = dim(Col A).

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The dimension of the column space of a 3× 2 matrix can be three.

(b) True/False There exists a 3× 3 matrix whose column space has equal dimension as
the null space.

(c) True/False If a set of vectors spans a subspace, then that set is a basis of this sub-
space.

(d) True/False If a linearly independent set of vectors spans a subspace, then that set is
a basis of this subspace.

(e) True/False The dimension of a space is the minimum number of vectors needed to
span that space.

(f) True/False The dimension of the null space of a 3× 2 matrix can at most be 2.

(g) True/False Any basis of R4 contains 4 vectors.

(h) True/False If n vectors span Rn, then these vectors form a basis of Rn.

(i) True/False Every line in Rn is a one-dimensional subspace of Rn.

(j) True/False Every plane through origin in Rn is a two-dimensional subspace of Rn.

(k) True/False In Rn any n linearly independent vectors form a basis.

Project: The GGH Cryptosystem

A cryptographic system (or cryptosystem) allows for secure communication between two or more
parties. These systems take messages (called plaintext) and encrypt them in some way to produce
what is called ciphertext. This is the scrambled information that is transmitted to the receiver,
from which it should not be possible for someone who does not have the proper key to recover the
original message. When the message is received by the intended recipient, it must be unscrambled
or decrypted. Decryption is the process of converting ciphertext back to plaintext.

The Goldreich-Goldwasser-Halevi (GGH) public key cryptosystem1 uses lattices to encrypt
plaintext. The security of the system depends on the fact that the Closest Vector Problem (CVP) is,
in general, a very hard problem. To begin to understand these cryptosystems, we begin with lattices.

1Published in 1997 by Oded Goldreich, Shafi Goldwasser, and Shai Halevi.
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Lattices are closely related to spans of sets of vectors in Rn. If we start with a linearly in-
dependent set S = {b1,b2, . . . ,bm} in Rn, we can create the span of S – the set of all linear
combinations

c1b1 + c2b2 + · · ·+ cmbm,

where c1, c2, . . ., cm are real numbers. This span creates a subspace of Rn. If we restrict the set
from which we choose the coefficients, we can create different types of structures. An important
one is a lattice. The lattice L(S) defined by the linearly independent set S = {b1,b2, . . . ,bm} is
the set of linear combinations

c1b1 + c2b2 + · · ·+ cmbm,

where c1, c2, . . ., cm are integers. If the vectors in S have integer components, then every point
in L(S) will have integer entries. In these cases, L(S) is a subset of Zn, as illustrated in Figure
15.1. Also, if m = n we say that the lattice L(S) is full-rank. We will restrict ourselves to full-rank
lattices in this project. A basis for a lattice is any set of linearly independent vectors that generates
the lattice. There is a little special notation that is often used with lattices. If B = {b1,b2, . . . ,bn}
is a basis for Rn, we associate to B the matrix B = [b1 b2 b3 · · · bn]. We then use the notation
L(B) to also refer to the lattice defined by B.

Project Activity 15.1. We explore lattices in more detail in this activity.

(a) Let S1 = {[1 1]T, [−1 1]T}.

i. Find five distinct vectors in L(S1).

ii. Is the vector [1 0]T in L(S1)? Justify your answer.

iii. We can draw pictures of lattices by plotting the terminal points of the lattice vectors.
Draw all of the lattice points in L(S1) on the square with vertices (−4,−4), (4,−4),
(4, 4), and (−4, 4).

(b) Now let S2 = {[3 5]T, [1 2]T}. A picture of L(S2) is shown in Figure 15.1 with the basis
vectors highlighted. As we have seen, L(S1) is not the entire space Z2. Is L(S2) = Z2?
Justify your answer.

Figure 15.1: The lattice L(S2).
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Project Activity 15.1 shows that even if B is a basis for Rn, it does not follow that L(B) is all
of Zn. So latices can be complicated, and problems in lattice theory can be very difficult.

The GGH cryptosystem relies on the fact that we can convert “good” bases for lattices into
“bad” bases. We will not delve into the details of what separates a “good” basis from a “bad”
one, but suffice it to say that a good basis is one in which the basis vectors are close to being
perpendicular2 and are all short (that is, they have small norms), while any other basis is a bad
basis. An example of a good basis is the basis S1 for R2 in Project Activity 15.1, and we will see
later that {[−2 8]T, [−1 3]T} is a bad basis for the same lattice. You should draw a picture of the
vectors [−2 8]T and [−1 3]T to convince yourself that this is a bad basis for its lattice.

The GGH cryptosystem works with two keys – a public key and a private key. The keys are
based on lattices. The general process of the GGH cryptosystem is as follows. Begin with a good
basis B = {b1 b2 . . . bn} of Rn of vectors with integer components. Let B = [b1 b2 · · · bn] be
the matrix associated with B. Let B′ = {b′1,b′2, . . . ,b′n} be a bad basis for which L(B′) = L(B).
Let B′ = [b′1 b

′
2 · · · b′n] be the matrix associated to the basis B′. The bad basis can be shared with

anyone (the public key), but the good basis is kept secret (the private key). Start with a message
m = [m1 m2 · · · mn]T with integer entries to send.

First we encrypt the message, which can be done by anyone who has the public key B′.

• Create the message vector

m′ = m1b
′
1 +m2b

′
2 + · · ·+mnb

′
n = B′m

that is in the lattice using the bad basis B′.

• Choose a small error e to add to m′ to move m′ off the lattice (small enough so that m′

does not pass by another lattice point). This is an important step that will make the message
difficult to decrypt without the key. Let c = m′+e = B′m+e. The vector c is the ciphertext
that is to be transmitted to the receiver.

Only someone who knows the basis B can decode the ciphertext. This is done as follows.

• Find the vector a = a1b1 + a2b2 + · · ·+ anbn in the good basis B that is closest to c.

• We interpret the vector [a1 a2 . . . an]T as being the encoded vector without the error. So to
recreate the original message vector we need to undo the encrypting using the bad basis B′.
That is, we need to find the weights y1, y2, . . ., yn such that

[a1 a2 . . . an]T = y1b
′
1 + y2b

′
2 + · · ·+ ynb

′
n = B′[y1 y2 · · · yn]T.

We can do this by as [y1 y2 · · · yn]T = B′−1[a1 a2 . . . an]T.

There are several items to address before we can implement this algorithm. One is how we
create a bad basis B′ from B that produces the same lattice. Another is how we find the vector in
B closest to a given vector. The latter problem is called the Closest Vector Problem (CVP) and is,
in general, a very difficult problem. This is what makes lattice-based cryptosystems secure. We
address the first of these items in the next activity, and the second a bit later.

2This is also a good property in vector spaces. We will see in a later section that perpendicular basis vectors make
calculations in vector spaces relatively easy. A similar thing is true in lattices, where we are able to solve certain variants
of closest vector problem very efficiently.
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Project Activity 15.2. Consider again the basis S1 = {[1 1]T, [−1 1]T} from Project Activity 15.1,

and let B =

[
1 −1
1 1

]
be the matrix whose columns are the vectors in S1.

(a) Let T be the triangle with vertices (0, 0), (1, 1), and (−1, 1). Show that this triangle is a
right triangle, and conclude that the vectors v1 = [1 1]T, and v2 = [−1 1]T are perpendic-
ular.

(b) Let U =

[
3 1
5 2

]
. Let S3 be the set whose vectors are the columns of the matrix B1U .

Show that L(S1) = L(S3).

The two bases S1 = {[1 1]T, [−1 1]T} and S3 = {[−2 8]T, [−1 3]T} from Project Activity
15.2 are shown in Figure 15.2. This figure illustrates how the matrix U transforms the basis S1, in
which the vectors are perpendicular and short, to one in which the vectors are nearly parallel and
significantly longer. So the matrix U converts the “good” basis S1 into a “bad” basis S2, keeping
the lattice intact. This is a key idea in the GGH cryptosystem. What makes this work is the fact that

both U and U−1 have integer entries. The reason for this is that, for a 2× 2 matrix U =

[
a b
c d

]
,

we know that U−1 = 1
ad−bc

[
d −b
−c a

]
. If U has integer entries and ad − bc = ±1, then U−1

will also have integer entries. The number ad − bc is called the determinant of U , and matrices
with determinant of 1 or −1 are called unimodular. That what happened in Project Activity 15.2
happens in the general case is the focus of the next activity.

-6 -4 -2 2 4 6

-2

2

4

6

8

10

Figure 15.2: The lattices L(S1) and L(S3).

Project Activity 15.3. We will restrict ourselves to 2 × 2 matrices in this activity, but the results
generalize to n × n matrices. Let B = {b1,b2} and B′ = {b′1,b′2} be bases for R2 with integer
entries, and let B = [b1 b2] and B′ = [b′1 b′2] be the matrices associated to these bases. Show that
if B′ = BU for some unimodular matrix U with integer entries, then L(B) = L(B′).

Project Activity 15.3 is the part we need for our lattice-based cryptosysystem. Although we
won’t show it here, the converse of the statement in Project Activity 15.3 is also true. That is, if B
and B′ generate the same lattice, thenB′ = BU for some unimodular matrix U with integer entries.
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There is one more item to address before we implement the GGH cryptosystem. That item is
how to solve the Closest Vector Problem. There are some algorithms for approximating the closest
vector in a basis. One is Babai’s Closest Vector algorithm. This algorithm works in the following
way. Consider a lattice with basis {b1,b2, . . . ,bn}. To approximate the closest vector in the lattice
to a vector w, find the weights c1, c2, . . ., cn in R such that w = c1b1 + c2b2 + · · · + cnbn.
Then round the coefficients to the nearest integer. This algorithm works well for a good basis, but
is unlikely to return a lattice point that is close to w if the basis is a bad one.

Now we put this all together to illustrate the GGH algorithm.

-10 -5 5 10 15

-10

-5

5

10

15

m

c

Figure 15.3: Decrypting an encrypted message.

Project Activity 15.4. Let B = {[5 0]T, [0 3]T} be the private key, and let B =

[
5 0
0 3

]
be the

matrix whose columns are the vectors in B. Let U be the unimodular matrix U =

[
2 3
3 5

]
. Let

m = [3 − 2]T be our message and let e = [1 − 1]T be our error vector.

(a) Use the unimodular matrix U to create the bad basis B′.

(b) Determine the ciphertext message c.

(c) A picture of the message vector m and the ciphertext vector c are shown in Figure 15.3.
Although the closest vector in the lattice to c can be determined by the figure, actual mes-
sages are constructed in high dimensional spaces where a visual approach is not practical.
Use Babai’s algorithm to find the vector in L(B) that is closest to c and compare to Figure
15.3.

(d) The final step in the GGH scheme is to recover the original message. Complete the GGH
algorithm to find this message.

(e) The GGH cryptosystem works because the CVP can be reasonable solved using a good
basis. That is, Babai’s algorithm works if our basis is a good basis. To illustrate that a
bad basis will not allow us to reproduce the original message vector, show that Babai’s
algorithm does not return the closest vector to c using the bad basis B′.
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Section 16

The Determinant

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How do we calculate the determinant of an n× n matrix?

• What is one important fact the determinant tells us about a matrix?

Application: Area and Volume

Consider the problem of finding the area of a parallelogram determined by two vectors u and v,
as illustrated at left in Figure 16.1. We could calculate this area, for example, by breaking up

u

v

u
v

w

Figure 16.1: A parallelogram and a parallelepiped.

the parallelogram into two triangles and a rectangle and finding the area of each. Now consider
the problem of calculating the volume of the three-dimensional analog (called a parallelepiped)
determined by three vectors u, v, and w as illustrated at right in Figure 16.1.

It is quite a bit more difficult to break this parallelepiped into subregions whose volumes are
easy to compute. However, all of these computations can be made quickly by using determinants.
The details are later in this section.
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Introduction

We know that a non-zero vector x is an eigenvector of an n × n matrix A if Ax = λx for some
scalar λ. Note that this equation can be written as (A − λIn)x = 0. Until now, we were given
eigenvalues of matrices and have used the eigenvalues to find the eigenvectors. In this section we
will learn an algebraic technique to find the eigenvalues ourselves. We will also be able to justify
why an n× n matrix has at most n eigenvalues.

A scalar λ is an eigenvalue of A if (A−λIn)x = 0 has a non-trivial solution x, which happens
if and only if A− λIn is not invertible. In this section we will find a scalar whose value will tell us
when a matrix is invertible and when it is not, and use this scalar to find the eigenvalues of a matrix.

Preview Activity 16.1. In this activity, we will focus on 2 × 2 matrices. Let A =

[
a b
c d

]
be a

2× 2 matrix. To see if A is invertible, we row reduce A by replacing row 2 with a·(row 2) −c·(row
1): [

a b
0 ad− bc

]
.

So the only wayA can be reduced I2 is if ad−bc 6= 0. We call this quantity ad−bc the determinant
of A, and denote the determinant of A as det(A) or |A|. When det(A) 6= 0, we know that

A−1 =
1

ad− bc

[
d −b
−c a

]
.

We now consider how we can use the determinant to find eigenvalues and other information about
the invertibility of a matrix.

(1) Let A =

[
1 2
2 4

]
. Find det(A) by hand. What does this mean about the matrix A? Can

you confirm this with other methods?

(2) One of the eigenvalues of A =

[
1 3
2 2

]
is λ = 4. Recall that we can rewrite the matrix

equation Ax = 4x in the form (A − 4I2)x = 0. What must be true about A − 4I2 in order
for 4 to be an eigenvalue of A? How does this relate to det(A− 4I2)?

(3) Another eigenvalue of A =

[
1 3
2 2

]
is λ = −1. What must be true about A + I2 in order

for −1 to be an eigenvalue of A? How does this relate to det(A+ I2)?

(4) To find the eigenvalues of the matrix A =

[
3 2
2 6

]
, we rewrite the equation Ax = λx

as (A − λI2)x = 0. The coefficient matrix of this last system has the form A − λI2 =[
3− λ 2

2 6− λ

]
. The determinant of this matrix is a quadratic expression in λ. Since the

eigenvalues will occur when the determinant is 0, we need to solve a quadratic equation. Find
the resulting eigenvalues. (Note: One of the eigenvalues is 2.)

(5) Can you explain why a 2× 2 matrix can have at most two eigenvalues?
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The Determinant of a Square Matrix

Around 1900 or so determinants were deemed much more important than they are today. In fact,
determinants were used even before matrices. According to Tucker1 determinants (not matrices)
developed out of the study of coefficients of systems of linear equations and were used by Leibniz
150 years before the term matrix was coined by J. J. Sylvester in 1848. Even though determinants
are not as important as they once were, the determinant of a matrix is still a useful quantity. We saw
in Preview Activity 16.1 that the determinant of a matrix tells us if the matrix is invertible and how
it can help us find eigenvalues. In this section, we will see how to find the determinant of any size
matrix and how to use this determinant to find the eigenvalues.

The determinant of a 2 × 2 matrix A =

[
a b
c d

]
is det(A) = ad − bc. The matrix A is

invertible if and only if det(A) 6= 0. We will use a recursive approach to find the determinants of
larger size matrices building from the 2 × 2 determinants. We present the result in the 3 × 3 case
here – a more detailed analysis can be found at the end of this section.

To find the determinant of a 3×3 matrixA =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

, we will use the determinants

of three 2× 2 matrices. More specifically, the determinant of A, denoted det(A) is the quantity

a11 det

([
a22 a23

a32 a33

])
− a12 det

([
a21 a23

a31 a33

])
+ a13 det

([
a21 a22

a31 a32

])
. (16.1)

This sum is called a cofactor expansion of the determinant of A. The smaller matrices in this
expansion are obtained by deleting certain rows and columns of the matrix A. In general, when
finding the determinant of an n × n matrix, we find determinants of (n − 1) × (n − 1) matrices,
which we can again reduce to smaller matrices to calculate.

We will use the specific matrix

A =

 1 2 0
1 4 3
2 2 1


as an example in illustrating the cofactor expansion method in general.

• We first pick a row or column of A. We will pick the first row of A for this example.

• For each entry in the row (or column) we choose, in this case the first row, we will calculate
the determinant of a smaller matrix obtained by removing the row and the column the entry
is in. Let Aij be the smaller matrix found by deleting the ith row and jth column of A. For
entry a11, we find the matrix A11 obtained by removing first row and first column:

A11 =

[
4 3
2 1

]
.

For entry a12, we find

A12 =

[
1 3
2 1

]
.

1Tucker, Alan. (1993). The Growing Importance of Linear Algebra in Undergraduate Mathematics. The College
Mathematics Journal, 1, 3-9.
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Finally, for entry a13, we find

A13 =

[
1 4
2 2

]
.

• Notice that in the 3× 3 determinant formula in (16.1) above, the middle term had a (-) sign.
The signs of the terms in the cofactor expansion alternate within each row and each column.
More specifically, the sign of a term in the ith row and jth column is (−1)i+j . We then obtain
the following pattern of the signs within each row and column:

+ − + · · ·
− + − · · ·
+ − + · · ·
...


In particular, the sign factor for a11 is (−1)1+1 = 1, for a12 is (−1)1+2 = −1, and for a13 is
(−1)1+3 = 1.

• For each entry aij in the row (or column) of A we chose, we multiply the entry aij by the
determinant of Aij and the sign (−1)i+j . In this case, we obtain the following numbers

a11(−1)1+1 det(A11) = 1 det

[
4 3
2 1

]
= 1(4− 6) = −2

a12(−1)1+2 det(A12) = −2 det

[
1 3
2 1

]
= −2(1− 6) = 10

a13(−1)1+3 det(A13) = 0

Note that in the last calculation, since a13 = 0, we did not have to evaluate the rest of the
terms.

• Finally, we find the determinant by adding all these values:

det(A) = a11(−1)1+1 det(A11) + a12(−1)1+2 det(A12)

+ a13(−1)1+3 det(A13)

= 8.

Cofactors

We will now define the determinant of a general n × n matrix A in terms of a cofactor expansion
as we did in the 3× 3 case. To do so, we need some notation and terminology.

• We let Aij be the submatrix of A = [aij ] found by deleting the ith row and jth column of A.
The determinant of Aij is called the ijth minor of A or the minor corresponding to the entry
aij .
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• Notice that in the 3× 3 case, we used the opposite of the 1,2 minor in the sum. It will be the
case that the terms in the cofactor expansion will alternate in sign. We can make the signs
in the sum alternate by taking −1 to an appropriate power. As a result, we define the ijth
cofactor Cij of A as

Cij = (−1)i+j det (Aij) .

• Finally, we define the determinant of A.

Definition 16.1. If A = [aij ] is an n× n matrix, the determinant of A is the scalar

det(A) = a11C11 + a12C12 + a13C13 + · · ·+ a1nC1n

where Cij = (−1)i+j det(Aij) is the ij-cofactor of A and Aij is the matrix obtained by removing
row i and column j of matrix A.

This method for computing determinants is called the cofactor expansion or Laplace expansion
of A along the 1st row. The cofactor expansion reduces the computation of the determinant of an
n × n matrix to n computations of determinants of (n − 1) × (n − 1) matrices. These smaller
matrices can be reduced again using cofactor expansions, so it can be a long and grueling process
for large matrices. It turns out that we can actually take this expansion along any row or column of
the matrix (a proof of this fact is given in Section 21). For example, the cofactor expansion along
the 2nd row is

det(A) = a21C21 + a22C22 + · · ·+ a2nC2n

and along the 3rd column the formula is

det(A) = a13C13 + a23C23 + · · ·+ an3Cn3.

Note that when finding a cofactor expansion, choosing a row or column with many zeros makes
calculations easier.

Activity 16.1.

(a) Let A =

 1 2 −1
−2 0 4

6 3 0

. Use the cofactor expansion along the first row to calculate the

determinant of A by hand.

(b) Calculate det(A) by using a cofactor expansion along the second row whereA =

 1 4 2
0 2 0
2 5 3

.

(c) Calculate the determinant of

 1 −2 3
0 4 −3
0 0 8

.

(d) Which determinant property can be used to calculate the determinant in part (c)? Explain
how. (Determinant properties are included below for easy reference.)
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(e) Consider the matrix A =

 1 1 2
0 2 1
1 2 2

. Let B be the matrix which results when c times

row 1 is added to row 2 of A. Evaluate the determinant of B by hand to check that it is
equal to the determinant of A, which verifies one other determinant property (in a specific
case).

As with any new idea, like the determinant, we must ask what properties are satisfied. We state
the following theorem without proof for the time being. For the interested reader, the proof of many
of these properties is given in Section 21 and others in the exercises.

Theorem 16.2. Given n× n matrices A,B, the following hold:

(1) det(AB) = det(A) · det(B), and in particular det(Ak) = (detA)k for any positive integer
k.

(2) det(AT) = det(A).

(3) A is invertible if and only if det(A) 6= 0.

(4) If A is invertible, then det(A−1) = (detA)−1.

(5) For a 2× 2 matrix A =

[
a b
c d

]
, det(A) = ad− bc.

(6) If A is upper/lower triangular, then det(A) is the product of the entries on the diagonal.

(7) The determinant of a matrix is the product of the eigenvalues, with each eigenvalue repeated
as many times as its multiplicity.

(8) Effect of row operations:

• Adding a multiple of a row to another does NOT change the determinant of the matrix.

• Multiplying a row by a constant multiplies the determinant by the same constant.

• Row swapping multiplies the determinant by (−1).

(9) If the row echelon form U of A is obtained by adding multiples of one row to another, and
row swapping, then det(A) is equal to det(U) multiplied by (−1)r where r is the number of
row swappings done during the row reduction.

Note that if we were to find the determinant of a 4 × 4 matrix using the cofactor method, we
will calculate determinants of 4 matrices of size 3 × 3, each of which will require 3 determinant
calculations again. So, we will need a total of 12 calculations of determinants of 2 × 2 matrices.
That is a lot of calculations. There are other, more efficient, methods for calculating determinants.
For example, we can row reduce the matrix, keeping track of the effect that each row operation has
on the determinant.
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The Determinant of a 3× 3 Matrix

Earlier we defined the determinant of a 3× 3 matrix. In this section we endeavor to understand the
motivation behind that definition.

We will repeat the process we went through in the 2×2 case to see how to define the determinant
of a 3× 3 matrix. Let

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
To find the inverse of A we augment A by the 3× 3 identity matrix

[A | I3] =

 a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1


and row reduce the matrix (using appropriate technology) to obtain

1 0 0
a33a22 − a32a23

d
−a33a12 − a32a13

d

−a13a22 + a12a23

d

0 1 0 −a33a21 − a31a23

d

a33a11 − a31a13

d
−a23a11 − a21a13

d

0 0 1
−a31a22 + a32a21

d
−a32a11 − a31a12

d

a22a11 − a21a12

d

 ,

where
d = a33a11a22 − a33a21a12 − a31a13a22

− a32a11a23 + a32a21a13 + a31a12a23.
(16.2)

In this case, we can see that the inverse of the 3 × 3 matrix A will be defined if and only if
d 6= 0. So, in the 3× 3 case the determinant of A will be given by the value of d in Equation (16.2).
What remains is for us to see how this is related to determinants of 2× 2 sub-matrices of A.

To start, we collect all terms involving a11 in d. A little algebra shows that

det(A) = a11 (a33a22 − a32a23)− a33a21a12 − a31a13a22 + a32a21a13 + a31a12a23.

Now let’s collect the remaining terms involving a12:

det(A) = a11 (a33a22 − a32a23)− a12 (a33a21 − a31a23)− a31a13a22 + a32a21a13.

Finally, we collect the terms involving a13:

det(A) = a11 (a33a22 − a32a23)− a12 (a33a21 − a31a23) + a13 (a32a21 − a31a22) .

Now we can connect the determinant of A to determinants of 2× 2 sub-matrices of A.

• Notice that
a33a22 − a32a23

is the determinant of the 2×2 matrix
[
a22 a23

a32 a33

]
obtained fromA by deleting the first row

and first column.
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• Similarly, the expression
a33a21 − a31a23

is the determinant of the 2×2 matrix
[
a21 a23

a31 a33

]
obtained fromA by deleting the first row

and second column.

• Finally, the expression
a32a21 − a31a22

is the determinant of the 2×2 matrix
[
a21 a22

a31 a32

]
obtained fromA by deleting the first row

and third column.

Putting this all together gives us formula (16.1) for the determinant of a 3 × 3 matrix as we
defined earlier.

Two Devices for Remembering Determinants

There are useful ways to remember how to calculate the formulas for determinants of 2 × 2 and

3× 3 matrices. In the 2× 2 case of A =

[
a11 a12

a21 a22

]
, we saw that

|A| = a11a22 − a21a22.

This makes |A| the product of the diagonal elements a11 and a22 minus the product of the off-
diagonal elements a12 and a21. We can visualize this in an array by drawing arrows across the
diagonal and off-diagonal, with a plus sign on the diagonal arrow indicting that we add the product
of the diagonal elements and a minus sign on the off-diagonal arrow indicating that we subtract the
product of the off-diagonal elements as shown in Figure 16.2.

a11

a21

a12

a22

@
@
@@R

�
�
��	 +−

Figure 16.2: A diagram to remember the 2× 2 determinant.

We can do a similar thing for the determinant of a 3 × 3 matrix. In this case, we extend the
3 × 3 array to a 3 × 5 array by adjoining the first two columns onto the matrix. We then add the
products along the diagonals going from left to right and subtract the products along the diagonals
going from right to left as indicated in Figure 16.3.

Examples

What follows are worked examples that use the concepts from this section.

Example 16.3. For each of the following
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a31

a12
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a32
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Figure 16.3: A diagram to remember the 3× 3 determinant.

• Identify the sub-matrices A1,j

• Determine the cofactors C1,j .

• Use the cofactor expansion to calculate the determinant.

(a) A =

 3 6 2
0 4 −1
5 0 1



(b) A =


3 0 1 1
2 1 2 1
1 −2 2 −1
−3 2 3 1


Example Solution.

(a) With a 3 × 3 matrix, we will find the sub-matrices A11, A12, and A13. Recall that Aij is
the sub-matrix of A obtained by deleting the ith row and jth column of A. Thus,

A11 =

[
4 −1
0 1

]
A12 =

[
0 −1
5 1

]
and A13 =

[
0 4
5 0

]
.

The ijth cofactor is Cij = (−1)i+j det(Aij), so

C11 = (−1)2

[
4 −1
0 1

]
= 4

C12 = (−1)3

[
0 −1
5 1

]
= −5

C13 = (−1)4

[
0 4
5 0

]
= −20.

Then

det(A) = a11C11 + a12C12 + a13C13 = (3)(4) + (6)(−5) + (2)(−20) = −58.
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(b) With a 4× 4 matrix, we will find the sub-matrices A11, A12, A13, and A14. We see that

A11 =

 1 2 1
−2 2 −1

2 3 1


A12 =

 2 2 1
1 2 −1
−3 3 1


A13 =

 2 1 1
1 −2 −1
−3 2 1


A14 =

 2 1 2
1 −2 2
−3 2 3

 .
To calculate the ijth cofactor Cij = (−1)i+j det(Aij), we need to calculate the determi-
nants of the A1j . Using the device for calculating the determinant of a 3 × 3 matrix we
have that

det(A11) = det

 1 2 1
−2 2 −1

2 3 1


= (1)(2)(1) + (2)(−1)(2) + (1)(−2)(3)

− (1)(2)(2)− (1)(−1)(3)− (2)(−2)(1)

= −5,

det(A12) = det

 2 2 1
1 2 −1
−3 3 1


= (2)(2)(1) + (2)(−1)(−3) + (1)(1)(3)

− (1)(2)(−3)− (2)(−1)(3)− (2)(1)(1)

= 23,

det(A13) = det

 2 1 1
1 −2 −1
−3 2 1


= (2)(−2)(1) + (1)(−1)(−3) + (1)(1)(2)

− (1)(−2)(−3)− (2)(−1)(2)− (1)(1)(1)

= −2,
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and

det(A14) = det

 2 1 2
1 −2 2
−3 2 3


= (2)(−2)(3) + (1)(2)(−3) + (2)(1)(2)

− (2)(−2)(−3)− (2)(2)(2)− (1)(1)(3)

= −37.

Then

C11 = (−1)2 det(A11) = −5

C12 = (−1)3 det(A12) = −23

C13 = (−1)4 det(A13) = −2

C14 = (−1)5 det(A13) = 37

and so

det(B) = b11C11 + b12C12 + b13C13 + b14C14

= (3)(−5) + (0)(−23) + (1)(−2) + (1)(37)

= 20.

Example 16.4. Show that for any 2× 2 matrices A and B,

det(AB) = det(A) det(B).

Example Solution.

Let A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
. Then

AB =

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

So

det(AB) = (a11b11 + a12b21)(a21b12 + a22b22)

− (a11b12 + a12b22)(a21b11 + a22b21)

= (a11b11a21b12 + a11b11a22b22 + a12b21a21b12 + a12b21a22b22)

− (a11b12a21b11 + a11b12a22b21 + a12b22a21b11 + a12b22a22b21)

= a11b11a22b22 + a12b21a21b12 − a11b12a22b21 − a12b22a21b11.

Also,

det(A) det(B) = (a11a22 − a12a21)(b11b22 − b12b21)

= a11a22b11b22 − a11a22b12b21 − a12a21b11b22 + a12a21b12b21.

We conclude that det(AB) = det(A) det(B) if A and B are 2× 2 matrices.
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Summary

• The determinant of an n × n matrix A = [aij ] is found by taking the cofactor expansion of
A along the first row. That is

det(A) = a11C11 + a12C12 + a13C13 + · · ·+ a1nC1n,

where

– Aij is the sub-matrix of A found by deleting the ith row and jth column of A.

– Cij = (−1)i+j det (Aij) is the ijth cofactor of A.

• The matrix A is invertible if and only if det(A) 6= 0.

Exercises

(1) Use the cofactor expansion to explain why multiplying each of the entries of a 3 × 3 matrix
A by 2 multiplies the determinant of A by 8.

(2) Use the determinant criterion to determine for which c the matrix A =

 1 1 2
1 0 c
2 −1 2

 is

invertible.

(3) Let A be a square matrix.

(a) Explain why det(A2) = [det(A)]2

(b) Expand on the argument from (a) to explain why det(Ak) = [det(A)]k for any
positive integer k.

(c) Suppose that A is an invertible matrix and k is a positive integer. Must Ak be an
invertible matrix? Why or why not?

(4) Let A be an invertible matrix. Explain why det(A−1) =
1

det(A)
using determinant proper-

ties.

(5) Simplify the following determinant expression using determinant properties:

det(PA4P−1AT (A−1)3)

(6) Find the eigenvalues of the following matrices. Find a basis for and the dimension of each
eigenspace.

(a) A =

 1 1 1
1 1 1
1 1 1


(b) A =

 2 0 3
0 1 0
0 1 2


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(7) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False For any two n× n matrices A and B, det(A+B) = detA+ detB.

(b) True/False For any square matrix A, det(−A) = −det(A).

(c) True/False For any square matrix A, det(−A) = det(A).

(d) True/False The determinant of a square matrix with all non-zero entries is non-zero.

(e) True/False If the determinant of A is non-zero, then so is the determinant of A2.

(f) True/False If the determinant of a matrix A is 0, then one of the rows of A is a linear
combination of the other rows.

(g) True/False For any square matrix A, det(A2) > det(A).

(h) True/False If A and B are n × n matrices and AB is invertible, then A and B are
invertible.

(i) True/False If A2 is the zero matrix, then the only eigenvalue of A is 0.

(j) True/False If 0 is an eigenvalue of A, then 0 is an eigenvalue of AB for any B of the
same size as A.

(k) True/False Suppose A is a 3× 3 matrix. Then any three eigenvectors of A will form
a basis of R3.

Project: Area and Volume Using Determinants

The approach we will take to connecting area (volume) to the determinant will help shed light on
properties of the determinant that we will discuss from an algebraic perspective in a later section.
First, we mention some basic properties of area (we focus on area for now, but these same properties
are valid for volumes as well). volume). As a shorthand, we denote the area of a region R by
Area(R).

• Area cannot be negative.

• If two regions R1 and R2 don’t overlap, then the area of the union of the regions is equal
to the sum of the areas of the regions. That is, if R1 ∩ R2 = ∅, then Area(R1 ∪ R2) =
Area(R1) + Area(R2).

• Area is invariant under translation. That is, if we move a geometric region by the same
amount uniformly in a given direction, the area of the original region and the area of the
transformed region are the same. A translation of a region is done by just adding a fixed
vector to each vector in the region. That is, a translation by a vector v is a function Tv such
that the image Tv(R) of a region R is defined as

Tv(R) = {r + v : r ∈ R}.

Since area is translation invariant, Area(Tv(R)) = Area(R).
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• The area of a one-dimensional object like a line segment is 0.

Now we turn our attention to areas of parallelograms. Let u and v be vectors in R2. The
parallelogram P (u,v) defined by u and v with point Q as basepoint is the set

P (u,v) = {−−→OQ+ ru + sv : 0 ≤ r, s ≤ 1}.

An illustration of such a parallelogram is shown at left in Figure 16.4. If u = [u1 u2]T and v =

θ

u

v

Q

u′

v′

O

Figure 16.4: A parallelogram and a translated, rotated parallelogram.

[v1 v2]T, then we will also represent P (u,v) as P
([

u1 u2

v1 v2

])
.

Since area is translation and rotation invariant, we can translate our parallelogram by −−−→OQ to
place its basepoint at the origin, then rotate by an angle θ (as shown at left in Figure 16.4. This
transforms the vector v to a vector v′ and the vector u to a vector u′ as shown at right in Figure
16.4. With this in mind we can always assume that our parallelograms have one vertex at the origin,
with u along the x-axis, and v in standard position. Now we can investigate how to calculate the
area of a parallelogram.

Project Activity 16.1. There are two situations to consider when we want to find the area of a
parallelogram determined by vectors u and v, both shown in Figure 16.5. The parallelogram will
be determined by the lengths of these vectors.

u

v

h

O D A E

B C

u

v

O DA E

B C

h

Figure 16.5: Parallelograms formed by u and v

(a) In the situation depicted at left in Figure 16.5, use geometry to explain why Area(P (u,v)) =
h|u|. (Hint: What can we say about the triangles ODB and EAC?)
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(b) In the situation depicted at right in Figure 16.5, use geometry to again explain why
Area(P (u,v)) = h|u|. (Hint: What can we say about Area(AEC) and Area(ODB)?)

The result of Project Activity 16.1 is that the area of P (u,v) is given by h|u|, where h is the
height of the parallelogram determined by dropping a perpendicular from the terminal point of v to
the line determined by the vector u.

Now we turn to the question of how the determinant is related to area of a parallelogram. Our
approach will use some properties of the area of P (u,v).

Project Activity 16.2. Let u and v be vectors that determine a parallelogram in R2.

kuu

v

h

v + ku

u

v

h h

Figure 16.6: Parallelograms formed by ku and v and by u and v + ku.

(a) Explain why
Area(P (u,v)) = Area(P (v,u)) (16.3)

(b) If k is any scalar, then ku either stretches or compresses u. Use this idea, and the result of
Project Activity 16.1, to explain why

Area(P (ku,v)) = Area(P (u, kv)) = |k|Area(P (u,v)) (16.4)

for any real number k. A representative picture of this situation is shown at left in Figure
16.5 for a value of k > 1. You will also need to consider what happens when k < 0.

(c) Finally, use the result of Project Activity 16.1 to explain why

Area(P (u + kv,v)) = Area(P (u,v + ku)) = Area(P (u,v)) (16.5)

for any real number k. A representative picture is shown at right in Figure 16.6.

Properties (16.4) and (16.5) will allow us to calculate the area of the parallelogram determined
by vectors u and v.

Project Activity 16.3. Let u = [u1 u2]T and v = [v1 v2]T. We will now demonstrate that

Area(P (u,v)) =

∣∣∣∣det

(∣∣∣∣ u1 u2

v1 v2

])∣∣∣∣ .
Before we begin, note that if both u1 and v1 are 0, then u and v are parallel. This makes P (u,v) a
line segment and so Area(P (u,v)) = 0. But if u1 = v1 = 0, it is also the case that

det

(∣∣∣∣ u1 u2

v1 v2

])
= u1v2 − u2v1 = 0

as well. So we can assume that at least one of u1, v1 is not 0. Since P (u,v) = P (v,u), we can
assume without loss of generality that u1 6= 0.



294 Section 16. The Determinant

(a) Explain using properties (16.4) and (16.5) as appropriate why

Area(P (u,v)) = Area
(
P

(
u,

[
0 v2 −

v1

u1
u2

]))
.

(b) Let v1 =
[
0 v2 − v1

u1
u2

]T
. Recall that our alternate representation of P (u,v)) allows us

to write

Area(P (u,v1)) = Area
(
P

([
u1 u2

0 v2 − v1
u1
u2

]))
.

This should seem very suggestive. We are essentially applying the process of Gaussian
elimination to our parallelogram matrix to reduce it to a diagonal matrix. From there,
we can calculate the area. The matrix form should indicate the next step – applying an
operation to eliminate the entry in the first row and second column. To do this, we need to
consider what happens if v2 − v1

u1
u2 = 0 and if v2 − v1

u1
u2 6= 0.

i. Assume that v2 − v1
u1
u2 = 0. Explain why Area(P (u,v)) = 0. Then explain why

Area(P (u,v)) = 0 = det

([
u1 u2

v1 v2

])
.

ii. Now we consider the case when v2 − v1
u1
u2 6= 0. Complete the process as in part (a),

using properties (16.4) and (16.5) (compare to Gaussian elimination) to continue to re-
duce the problem of calculating Area(P (u,v)) to one of calculating Area(P (e1, e2)).
Use this process to conclude that

Area(P (u,v)) =

∣∣∣∣det

([
u1 u2

v1 v2

])∣∣∣∣ .
We can apply the same arguments as above using rotations, translations, shearings, and scalings

to show that the properties of area given above work in any dimension. Given vectors u1, u2, . . .,
un in Rn, we let

P (u1,u2, . . . ,un) = {−−→OQ+ x1u1 + x2u2 + · · ·+ xnun : 0 ≤ xi ≤ 1 for each i}.

If n = 2, then P (u1,u2) is the parallelogram determined by u1 and u2 with basepoint Q. If
n = 3, then P (u1,u2,u3) is the parallelepiped with basepoint Q determined by u1, u2, and u3.
In higher dimensions the sets P (u1,u2, . . . ,un) are called parallelotopes, and we use the nota-
tion Vol(P (u1,u2, . . . ,un)) for their volume. The n-dimensional volumes of these paralleotopes
satisfy the following properties:

Vol(P (u1,u2, . . . ,ui−1,ui,ui+1, . . . ,uj−1,uj ,uj+1, . . . ,un))

= Vol(P (u1,u2, . . . ,ui−1,uj ,ui+1, . . . ,uj−1,ui,uj+1, . . . ,un)) (16.6)

for any i and j.

Vol(P (u1,u2, . . . ,ui−1, kui,ui+1, . . . ,un)) = |k|Vol(P (u1,u2, . . . ,un)) (16.7)

for any real number k and any i.

Vol(P (u1,u2, . . . ,ui−1,ui + kuj ,ui+1, . . . ,un)) = Vol(P (u1,u2, . . . ,un)) (16.8)

for any real number k and any distinct i and j.
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Project Activity 16.4. We now show that Vol(P (u1,u2,u3)) is the absolute value of the determi-

nant of

 u1

u2

u3

. For easier notation, let u = [u1 u2 u3]T, v = [v1 v2 v3]T, and w = [w1 w2 w3]T.

As we argued in the 2-dimensional case, we can assume that all terms that we need to be nonzero
are nonzero, and we can do so without verification.

(a) Explain how property (16.7) shows that Vol(P (u,v,w)) is equal to

Vol

P
 u1 u2 u3

0 1
u1

(v2u1 − v1u2) 1
u1

(v3u1 − v1u3)

0 1
u1

(w2u1 − w1u2) 1
u1

(w3u1 − w1u3)

 .

(Hint: Think about how these properties are related to row operations.)

(b) Now let v1 =
[
0 1
u1

(v2u1 − v1u2) 1
u1

(v3u1 − v1u3)
]T

and

w1 =
[
0 1
u1

(w2u1 − w1u2) 1
u1

(w3u1 − w1u3)
]T

. Explain how property (16.7) shows that
Vol(P (u,v,w)) is equal to

Vol

P
 u1 u2 u3

0 1
u1

(v2u1 − v1u2) 1
u1

(v3u1 − v1u3)

0 0 d

 ,

where

d =
1

u1v2 − u2v1
(u1(v2w3 − v3w2)− u2(v1w3 − v3w1) + u3(v1w2 − v2w1)).

(c) Just as we saw in the 2-dimensional case, we can proceed to use the diagonal entries to
eliminate the entries above the diagonal without changing the volume to see that

Vol(P (u,v,w)) = Vol

P
 u1 0 0

0 1
u1

(v2u1 − v1u2) 0

0 0 d

 .

Complete the process, applying appropriate properties to explain why

Vol(P (u,v,w)) = xVol(P (e1, e2, e3))

for some constant x. Find the constant and, as a result, find a specific expression for
Vol(P (u,v,w)) involving a determinant.

Properties (16.6), (16.7), and (16.8) involve the analogs of row operations on matrices, and we
will prove algebraically that the determinant exhibits the same properties. In fact, the determinant
can be uniquely defined by these properties. So in a sense, the determinant is an area or volume
function.





Section 17

The Characteristic Equation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the characteristic polynomial of a matrix?

• What is the characteristic equation of a matrix?

• How and why is the characteristic equation of a matrix useful?

• How many different eigenvalues can an n× n matrix have?

• How large can the dimension of the eigenspace corresponding to an eigen-
value be?

Application: Modeling the Second Law of Thermodynamics

Pour cream into your cup of coffee and the cream spreads out; straighten up your room and it soon
becomes messy again; when gasoline is mixed with air in a car’s cylinders, it explodes if a spark is
introduced. In each of these cases a transition from a low energy state (your room is straightened
up) to a higher energy state (a messy, disorganized room) occurs. This can be described by entropy
– a measure of the energy in a system. Low energy is organized (like ice cubes) and higher energy
is not (like water vapor). It is a fundamental property of energy (as described by the second law of
thermodynamics) that the entropy of a system cannot decrease. In other words, in the absence of
any external intervention, things never become more organized.

The Ehrenfest model1 is a Markov process proposed to explain the statistical interpretation
of the second law of thermodynamics using the diffusion of gas molecules. This process can be
modeled as a problem of balls and bins, as we will do later in this section. The characteristic

1named after Paul and Tatiana Ehrenfest who introduced it in “Über zwei bekannte Einwände gegen das Boltz-
mannsche H-Theorem,” Physikalishce Zeitschrift, vol. 8 (1907), pp. 311-314)
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polynomial of the transition matrix will help us find the eigenvalues and allow us to analyze our
model.

Introduction

We have seen that the eigenvalues of an n × n matrix A are the scalars λ so that A − λIn has
a nontrivial null space. Since a matrix has a nontrivial null space if and only if the matrix is not
invertible, we can also say that λ is an eigenvalue of A if

det(A− λIn) = 0. (17.1)

This equation is called the characteristic equation of A. It provides us an algebraic way to find
eigenvalues, which can then be used in finding eigenvectors corresponding to each eigenvalue.

Suppose we want to find the eigenvalues of A =

[
1 1
1 3

]
. Note that

A− λI2 =

[
1− λ 1

1 3− λ

]
,

with determinant (1−λ)(3−λ)−1 = λ2−4λ+2. Hence, the eigenvalues λ1, λ2 are the solutions
of the characteristic equation λ2− 4λ+ 2 = 0. Using quadratic formula, we find that λ1 = 2 +

√
2

and λ2 = 2−
√

2 are the eigenvalues.

In this activity, our goal will be to use the characteristic equation to obtain information about
eigenvalues and eigenvectors of a matrix with real entries.

Preview Activity 17.1.

(1) For each of the following parts, use the characteristic equation to determine the eigenvalues of
A. Then, for each eigenvalue λ, find a basis of the corresponding eigenspace, i.e., Nul (A−
λI). You might want to recall how to find a basis for the null space of a matrix from Section
13. Also, make sure that your eigenvalue candidate λ yields nonzero eigenvectors in Nul (A−
λI) for otherwise λ will not be an eigenvalue.

(a) A =

[
2 0
0 −3

]
(b) A =

[
1 2
0 1

]
(c) A =

[
1 4
2 3

]
(2) Use your eigenvalue and eigenvector calculations of the above problem as a guidance to

answer the following questions about a matrix with real entries.

(a) At most how many eigenvalues can a 2 × 2 matrix have? Is it possible to have no
eigenvalues? Is it possible to have only one eigenvalue? Explain.

(b) If a matrix is an upper-triangular matrix (i.e., all entries below the diagonal are 0’s,
as in the first two matrices of the previous problem), what can you say about its
eigenvalues? Explain.

(c) How many linearly independent eigenvectors can be found for a 2 × 2 matrix? Is it
possible to have a matrix without 2 linearly independent eigenvectors? Explain.

(3) Using the characteristic equation, determine which matrices have 0 as an eigenvalue.
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The Characteristic Equation

Until now, we have been given eigenvalues or eigenvectors of a matrix and determined eigenvectors
and eigenvalues from the known information. In this section we use determinants to find (or ap-
proximate) the eigenvalues of a matrix. From there we can find (or approximate) the corresponding
eigenvectors. The tool we will use is a polynomial equation, the characteristic equation, of a square
matrix whose roots are the eigenvalues of the matrix. The characteristic equation will then provide
us with an algebraic way of finding the eigenvalues of a square matrix.

We have seen that the eigenvalues of a square matrix A are the scalars λ so that A − λI has
a nontrivial null space. Since a matrix has a nontrivial null space if and only if the matrix is not
invertible, we can also say that λ is an eigenvalue of A if

det(A− λI) = 0. (17.2)

Note that if A is an n× n matrix, then det(A− λI) is a polynomial of degree n. Furthermore, if A
has real entries, the polynomial has real coefficients. This polynomial, and the equation (17.2) are
given special names.

Definition 17.1. Let A be an n× n matrix. The characteristic polynomial of A is the polynomial

det(A− λIn),

where In is the n× n identity matrix. The characteristic equation of A is the equation

det(A− λIn) = 0.

So the characteristic equation of A gives us an algebraic way of finding the eigenvalues of A.

Activity 17.1.

(a) Find the characteristic polynomial of the matrix A =

 3 −2 5
1 0 7
0 0 1

, and use the charac-

teristic polynomial to find all of the eigenvalues of A.

(b) Verify that 1 and 2 are the only eigenvalues of the matrix


1 0 0 1
1 2 0 0
0 0 1 0
0 0 0 1

.

As we argued in Preview Activity 17.1, a 2 × 2 matrix can have at most 2 eigenvalues. For
an n × n matrix, the characteristic polynomial will be a degree n polynomial, and we know from
algebra that a degree n polynomial can have at most n roots. Since an eigenvalue of a matrix is a
root of the characteristic polynomial of that matrix, we can conclude that an n× n matrix can have
at most n distinct eigenvalues. Activity 17.1 (b) shows that a 4 × 4 matrix may have fewer than 4
eigenvalues, however. Note that one of these eigenvalues, the eigenvalue 1, appears three times as
a root of the characteristic polynomial of the matrix. The number of times an eigenvalue appears as
a root of the characteristic polynomial is called the (algebraic) multiplicity of the eigenvalue. More
formally:
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Definition 17.2. The (algebraic) multiplicity of an eigenvalue λ of a matrixA is the largest integer
m so that (x− λ)m divides the characteristic polynomial of A.

Thus, in Activity 17.1 (b) the eigenvalue 1 has multiplicity 3 and the eigenvalue 2 has multi-
plicity 1. Notice that if we count the eigenvalues of an n × n matrix with their multiplicities, the
total will always be n.

If A is a matrix with real entries, then the characteristic polynomial will have real coefficients.
It is possible that the characteristic polynomial can have complex roots, and that the matrix A has
complex eigenvalues. The Fundamental Theorem of Algebra shows us that if a real matrix has
complex eigenvalues, then those eigenvalues will appear in conjugate pairs, i.e., if λ1 = a + ib is
an eigenvalue of A, then λ2 = a − ib is another eigenvalue of A. Furthermore, for an odd degree
polynomial, since the complex eigenvalues will come in conjugate pairs, we will be able to find at
least one real eigenvalue.

We now summarize the information we have so far about eigenvalues of an n× n real matrix:

Theorem 17.3. Let A be an n× n matrix with real entries. Then

(1) There are at most n eigenvalues of A. If each eigenvalue (including complex eigenvalues) is
counted with its multiplicity, there are exactly n eigenvalues.

(2) If A has a complex eigenvalue λ, the complex conjugate of λ is also an eigenvalue of A.

(3) If n is odd, A has at least one real eigenvalue.

(4) If A is upper or lower-triangular, the eigenvalues are the entries on the diagonal.

Eigenspaces, A Geometric Example

Recall that for each eigenvalue λ of an n × n matrix A, the eigenspace of A corresponding to
the eigenvalue λ is Nul (A − λIn). These eigenspaces can tell us important information about the
matrix transformation defined by A. For example, consider the matrix transformation T from R3 to
R3 defined by T (x) = Ax, where

A =

 1 0 1
0 1 1
0 0 2

 .
We are interested in understanding what this matrix transformation does to vectors in R3. First we
note that A has eigenvalues λ1 = 1 and λ2 = 2, with λ1 having multiplicity 2. There is a pair

v1 =

 1
0
0

 and v2 =

 0
1
0

 of linearly independent eigenvectors for A corresponding to the

eigenvalue λ1 and an eigenvector v3 =

 1
1
1

 for A corresponding to the eigenvalue λ2. Note

that the vectors v1, v2, and v3 are linearly independent (recall from Theorem that eigenvectors
corresponding to different eigenvalues are always linearly independent). So any vector b in R3 can
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be written uniquely as a linear combination of v1, v2, and v3. Let’s now consider the action of the
matrix transformation T on a linear combination of v1, v2, and v2. Note that

T (c1v1 + c2v2 + c3v3) = c1T (v1) + c2T (v2) + c3T (v3)

= c1λ1v1 + c2λ1v2 + c3λ2v3

= (1)(c1v1 + c2v2) + (2)c3v3. (17.3)

Equation (17.3) illustrates that it is most convenient to view the action of T in the coordinate system
where Span{v1} serves as the x-axis, Span{v2} serves as the y-axis, and Span{v3} as the z-
axis. In this case, we can visualize that when we apply the transformation T to a vector b =
c1v1 + c2v2 + c3v3 in R3 the result is an output vector that is unchanged in the v1-v2 plane and
scaled by a factor of 2 in the v3 direction. For example, consider the box whose sides are determined
by the vectors v1, v2, and v3 as shown in Figure 17.1. The transformation T stretches this box by
a factor of 2 in the v3 direction and leaves everything else alone, as illustrated in Figure 17.1. So
the entire Span{v1,v2}) is unchanged by T , but Span{v3}) is scaled by 2. In this situation, the
eigenvalues and eigenvectors provide the most convenient perspective through which to visualize
the action of the transformation T .

v1

v2

v3

0 2 3

0

1

2

2
3

z

x

y

Figure 17.1: A box and a transformed box.

This geometric perspective illustrates how each eigenvalue and the corresponding eigenspace of
A tells us something important about A. So it behooves us to learn a little more about eigenspaces.

Dimensions of Eigenspaces

There is a connection between the dimension of the eigenspace of a matrix corresponding to an
eigenvalue and the multiplicity of that eigenvalue as a root of the characteristic polynomial. Recall
that the dimension of a subspace of Rn is the number of vectors in a basis for the eigenspace. We
investigate the connection between dimension and multiplicity in the next activity.

Activity 17.2.
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(a) Find the dimension of the eigenspace for each eigenvalue of matrix A =

 3 −2 5
1 0 7
0 0 1


from Activity 17.1 (a).

(b) Find the dimension of the eigenspace for each eigenvalue of matrix A =


1 0 0 1
1 2 0 0
0 0 1 0
0 0 0 1


from Activity 17.1 (b).

(c) Consider now a 3× 3 matrix with 3 distinct eigenvalues λ1, λ2, λ3.

i. Recall that a polynomial of degree can have at most three distinct roots. What does
that say about the multiplicities of λ1, λ2, λ3?

ii. Use the fact that eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent to find the dimensions of the eigenspaces for λ1, λ2, λ3.

The examples in Activity 17.2 all provide instances of the principle that the dimension of an
eigenspace corresponding to an eigenvalue λ cannot exceed the multiplicity of λ. Specifically:

Theorem 17.4. If λ is an eigenvalue of A, the dimension of the eigenspace corresponding to λ is
less than or equal to the multiplicity of λ.

The examples we have seen raise another important point. The matrix A =

 1 0 1
0 1 1
0 0 2

 from

our geometric example has two eigenvalues 1 and 2, with the eigenvalue 1 having multiplicity 2.
If we let Eλ represent the eigenspace of A corresponding to the eigenvalue λ, then dim(E1) = 2

and dim(E2) = 1. If we change this matrix slightly to the matrix B =

 2 0 1
0 1 1
0 0 1

 we see that

B has two eigenvalues 1 and 2, with the eigenvalue 1 having multiplicity 2. However, in this case
we have dim(E1) = 1 (like the example in from Activities 17.1 (a) and 17.2 (a)). In this case the
vector v1 = [1 0 0]T forms a basis for E2 and the vector v2 = [0 1 0]T forms a basis for E1. We
can visualize the action of B on the square formed by v1 and v2 in the xy-plane as a scaling by 2
in the v1 direction as shown in Figure 17.2, but since we do not have a third linearly independent
eigenvector, the action of B in the direction of [0 0 1]T is not so clear.

So the action of a matrix transformation can be more easily visualized if the dimension of each
eigenspace is equal to the multiplicity of the corresponding eigenvalue. This geometric perspective
leads us to define the geometric multiplicity of an eigenvalue.

Definition 17.5. The geometric multiplicity of an eigenvalue of an n×nmatrixA is the dimension
of the corresponding eigenspace Nul (A− λIn).

Examples

What follows are worked examples that use the concepts from this section.
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v1

v2

0 2 3

0

1

2

z

x

y

Figure 17.2: A box and a transformed box.

Example 17.6. Let A =

 −1 0 −2
2 1 2
0 0 1

.

(a) Find the characteristic polynomial of A.

(b) Factor the characteristic polynomial and find the eigenvalues of A.

(c) Find a basis for each eigenspace of A.

(d) Is it possible to find a basis for R3 consisting of eigenvectors of A? Explain.

Example Solution.

(a) The characteristic polynomial of A is

p(λ) = det(A− λI3)

= det

 −1− λ 0 −2
2 1− λ 2
0 0 1− λ


= (−1− λ)(1− λ)(1− λ).

(b) The eigenvalues of A are the solutions to the characteristic equation. Since

p(λ) = (−1− λ)(1− λ)(1− λ) = 0

implies λ = −1 or λ = 1, the eigenvalues of A are 1 and −1.

(c) To find a basis for the eigenspace of A corresponding to the eigenvalue 1, we find a ba-

sis for Nul (A − I3). The reduced row echelon form of A − I3 =

 −2 0 −2
2 0 2
0 0 0

 is
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 1 0 1
0 0 0
0 0 0

. If x =

 x1

x2

x3

, then (A− I3)x = 0 has general solution

x =

 x1

x2

x3

 =

 −x3

x2

x3

 = x2

 0
1
0

+ x3

 −1
0
1

 .

Therefore, {[0 1 0]T, [−1 0 1]T} is a basis for the eigenspace of A corresponding to the
eigenvalue 1.

To find a basis for the eigenspace of A corresponding to the eigenvalue −1, we find a

basis for Nul (A + I3). The reduced row echelon form of A + I3 =

 0 0 −2
2 2 2
0 0 2

 is 1 1 0
0 0 1
0 0 0

. If x =

 x1

x2

x3

, then (A+ I3)x = 0 has general solution

x =

 x1

x2

x3

 =

 −x2

x2

0

 = x2

 −1
1
0

 .

Therefore, a basis for the eigenspace ofA corresponding to the eigenvalue−1 is {[−1 1 0]T}.

(d) Let v1 = [0 1 0]T, [−1 0 1]T, v2 = [−1 0 1]T, and v3 = [−1 1 0]T. Since eigenvectors
corresponding to different eigenvalues are linearly independent, and since neither v1 nor
v2 is a scalar multiple of the other, we can conclude that the set {v1,v2,v3} is a linearly
independent set with 3 = dim(R3) vectors. Therefore, {v1,v2,v3} is a basis for R3

consisting of eigenvectors of A.

Example 17.7. Find a 3 × 3 matrix A that has an eigenvector v1 = [1 0 1]T with corresponding
eigenvalue λ1 = 2, an eigenvector v2 = [0 2 − 3]T with corresponding eigenvalue λ2 = −3, and
an eigenvector v3 = [−4 0 5]T with corresponding eigenvalue λ3 = 5. Explain your process.

Example Solution. We are looking for a 3 × 3 matrix A such that Av1 = 2v1, Av2 = −3v2 and
Av3 = 5v3. Since v1, v2, and v3 are eigenvectors corresponding to different eigenvalues, v1, v2,
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and v3 are linearly independent. So the matrix [v1 v2 v3] is invertible. It follows that

A[v1 v2 v3] = [Av1 Av2 Av3]

A

 1 0 −4
0 2 0
1 −3 5

 = [2v1 − 3v2 5v3]

A

 1 0 −4
0 2 0
1 −3 5

 =

 2 0 −20
0 −6 0
2 9 25


A =

 2 0 −20
0 −6 0
2 9 25

 1 0 −4
0 2 0
1 −3 5

−1

A =

 2 0 −20
0 −6 0
2 9 25




5
9

2
3

4
9

0 1
2 0

−1
9

1
6

1
9



A =


10
3 −2 −4

3

0 −3 0

−5
3 10 11

3

 .

Summary

In this section we studied the characteristic polynomial of a matrix and similar matrices.

• If A is an n× n matrix, the characteristic polynomial of A is the polynomial

det(A− λIn),

where In is the n× n identity matrix.

• If A is an n× n matrix, the characteristic equation of A is the equation

det(A− λIn) = 0.

• The characteristic equation of a square matrix provides us an algebraic method to find the
eigenvalues of the matrix.

• The eigenvalues of an upper or lower-triangular matrix are the entries on the diagonal.

• There are at most n eigenvalues of an n× n matrix.

• For a real matrix A, if an eigenvalue λ of A is complex, then the complex conjugate of λ is
also an eigenvalue.

• The algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as a root of the charac-
teristic equation.

• The dimension of the eigenspace corresponding to an eigenvalue λ is less than or equal to the
algebraic multiplicity of λ.
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Exercises

(1) There is interesting relationship2 between a matrix and its characteristic equation that we
explore in this exercise.

(a) We first illustrate with an example. Let B =

[
1 2
1 −2

]
.

i. Show that λ2 + λ− 4 is the characteristic polynomial for B.
ii. Calculate B2. Then compute B2 +B − 4I2. What do you get?

(b) The first part of this exercise presents an example of a matrix that satisfies its own
characteristic equation. Explain for a general n× n matrix, why A satisfies its char-
acteristic equation.

(2) There is a useful relationship between the determinant and eigenvalues of a matrix A that we
explore in this exercise.

(a) Let B =

[
2 3
8 4

]
. Find the determinant of B and the eigenvalues of B, and com-

pare det(B) to the eigenvalues of B.

(b) Let A be an n × n matrix. In this part of the exercise we argue the general case
illustrated in the previous part – that det(A) is the product of the eigenvalues of A.
Let p(λ) = det(A− λIn) be the characteristic polynomial of A.

i. Let λ1, λ2, . . ., λn be the eigenvalues of A (note that these eigenvalues may not
all be distinct). Recall that if r is a root of a polynomial q(x), then (x − r) is a
factor of q(x). Use this idea to explain why

p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn).

ii. Explain why p(0) = λ1λ2 · · ·λn.
iii. Why is p(0) also equal to det(A). Explain how we have shown that det(A) is

the product of the eigenvalues of A.

(3) Find the eigenvalues of the following matrices. For each eigenvalue, determine its algebraic
and geometric multiplicity.

(a) A =

 1 1 1
1 1 1
1 1 1



(b) A =

 2 0 3
0 1 0
0 1 2


(4) Let A be an n× n matrix. Use the characteristic equation to explain why A and AT have the

same eigenvalues.

2This result is known as the Cayley-Hamilton Theorem and is one of the fascinating results in linear algebra.
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(5) Find three 3×3 matrices whose eigenvalues are 2 and 3, and for which the dimensions of the
eigenspaces for λ = 2 and λ = 3 are different.

(6) Suppose A is an n× n matrix and B is an invertible n× n matrix. Explain why the charac-
teristic polynomial of A is the same as the characteristic polynomial of BAB−1, and hence,
as a result, the eigenvalues of A and BAB−1 are the same.

(7) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If the determinant of a 2× 2 matrix A is positive, then A has two distinct
real eigenvalues.

(b) True/False If two 2× 2 matrices have the same eigenvalues, then the have the same
eigenvectors.

(c) True/False The characteristic polynomial of an n× n matrix has degree n.

(d) True/False If R is the reduced row echelon form of an n × n matrix A, then A and
R have the same eigenvalues.

(e) True/False If R is the reduced row echelon form of an n × n matrix A, and v is an
eigenvector of A, then v is an eigenvector of R.

(f) True/False Let A and B be n × n matrices with characteristic polynomials pA(λ)
and pB(λ), respectively. If A 6= B, then pA(λ) 6= pB(λ).

(g) True/False Every matrix has at least one eigenvalue.

(h) True/False Suppose A is a 3 × 3 matrix with three distinct eigenvalues. Then any
three eigenvectors, one for each eigenvalue, will form a basis of R3.

(i) True/False If an eigenvalue λ is repeated 3 times among the eigenvalues of a matrix,
then there are at most 3 linearly independent eigenvectors corresponding to λ.

Project: The Ehrenfest Model

To realistically model the diffusion of gas molecules we would need to consider a system with a
large number of balls as substitutes for the gas molecules. However, the main idea can be seen in
a model with a much smaller number of balls, as we will do now. Suppose we have two bins that
contain a total of 4 balls between them. Label the bins as Bin 1 and Bin 2. In this case we can
think of entropy as the number of different possible ways the balls can be arranged in the system.
For example, there is only 1 way for all of the balls to be in Bin 1 (low entropy), but there are 4
ways that we can have one ball in Bin 1 (choose any one of the four different balls, which can be
distinguished from each other) and 3 balls in Bin 2 (higher entropy). The highest entropy state has
the balls equally distributed between the bins (with 6 different ways to do this).

We assume that there is a way for balls to move from one bin to the other (like having gas
molecules pass through a permeable membrane). A way to think about this is that we select a ball
(from ball 1 to ball 4, which are different balls) and move that ball from its current bin to the other
bin. Consider a “move” to be any instance when a ball changes bins. A state is any configuration of
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balls in the bins at a given time, and the state changes when a ball is chosen at random and moved
to the other bin. The possible states are to have 0 balls in Bin 1 and 4 balls in Bin 2 (State 0, entropy
1), 1 ball in Bin 1 and 3 in Bin 2 (State 1, entropy 4), 2 balls in each Bin (State 2, entropy 6), 3 balls
in Bin 1 and 1 ball in Bin 2 (State 3, entropy 4), and 4 balls in Bin 1 and 0 balls in Bin 2 (State 4,
entropy 1). These states are shown in Figure 17.3.

Bin 1 Bin 2

x0

Bin 1 Bin 2

x1

Bin 1 Bin 2

x2

Bin 1 Bin 2

x3

Bin 1 Bin 2

x4

Figure 17.3: States

Project Activity 17.1. To model the system of balls in bins we need to understand how the system
can transform from one state to another. It suffices to count the number of balls in Bin 1 (since the
remaining balls will be in Bin 2). Even though the balls are labeled, our count only cares about how
many balls are in each bin. Let x0 = [x0, x1, x2, x3, x4]T, where xi is the probability that Bin 1
contains i balls, and let x1 =

[
x1

0, x
1
1, x

1
2, x

1
3, x

1
4

]T, where x1
i is the probability that Bin 1 contains

i balls after the first move. We will call the vectors x0 and x1 probability distributions of balls in
bins. Note that since all four balls have to be placed in some bin, the sum of the entries in our
probability distribution vectors must be 1. Recall that a move is an instance when a ball changes
bins. We want to understand how x1 is obtained from x0. In other words, we want to figure out
what the probability that Bin 1 contains 0, 1, 2, 3, or 4 balls after one ball changes bins if our initial
probability distribution of balls in bins is x0.

We begin by analyzing the ways that a state can change. For example,

• Suppose there are 0 balls in Bin 1. (In our probability distribution x0, this happens with
probability x0.) Then there are four balls in Bin 2. The only way for a ball to change bins is
if one of the four balls moves from Bin 2 to Bin 1, putting us in State 1. Regardless of which
ball moves, we will always be put in State 1, so this happens with a probability of 1. In other
words, if the probability that Bin 1 contains 0 balls is x0, then there is a probability of (1)x0

that Bin 1 will contain 1 ball after the move.

• Suppose we have 1 ball in Bin 1. There are four ways this can happen (since there are four
balls, and the one in Bin 1 is selected at random from the four balls), so the probability of a
given ball being in Bin 1 is 1

4 .
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– If the ball in Bin 1 moves, that move puts us in State 0. In other words, if the probability
that Bin 1 contains 1 ball is x1, then there is a probability of 1

4x1 that Bin 1 will contain
0 balls after a move.

– If any of the 3 balls in Bin 2 moves (each moves with probability 3
4 ), that move puts us

in State 2. In other words, if the probability that Bin 1 contains 1 ball is x1, then there
is a probability of 3

4x1 that Bin 1 will contain 2 balls after a move.

(a) Complete this analysis to explain the probabilities if there are 2, 3, or 4 balls in Bin 1.

(b) Explain how the results of part (a) show that

x1
0 = 0x0 + 1

4x1 + 0x2 + 0x3 + 0x4

x1
1 = 1x0 + 0x1 + 1

2x2 + 0x3 + 0x4

x1
2 = 0x0 + 3

4x1 + 0x2 + 3
4x3 + 0x4

x1
3 = 0x0 + 0x1 + 1

2x2 + 0x3 + 1x4

x1
4 = 0x0 + 0x1 + 0x2 + 1

4x3 + 0x4

The system we developed in Project Activity 17.1 has matrix form

x1 = Tx0,

where T is the transition matrix

T =


0 1

4 0 0 0

1 0 1
2 0 0

0 3
4 0 3

4 0

0 0 1
2 0 1

0 0 0 1
4 0

 .

Subsequent moves give probability distribution vectors

x2 = Tx1

x3 = Tx2

...
...

xk = Txk−1.

This example is an example of a Markov process (see Definition 9.4). There are several ques-
tions we can ask about this model. For example, what is the long-term behavior of this system,
and how does this model relate to entropy? That is, given an initial probability distribution vector
x0, the system will have probability distribution vectors x1, x2, . . . after subsequent moves. What
happens to the vectors xk as k goes to infinity, and what does this tell us about entropy? To answer
these questions, we will first explore the sequence {xk} numerically, and then use the eigenvalues
and eigenvectors of T to analyze the sequence {xk}.

Project Activity 17.2. Use appropriate technology to do the following.
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(a) Suppose we begin with a probability distribution vector x0 = [1 0 0 0 0]T. Calculate
vectors xk for enough values of k so that you can identify the long term behavior of the
sequence. Describe this behavior.

(b) Repeat part (a) with

i. x0 =
[
0 1

2
1
2 0 0

]T
ii. x0 =

[
0 1

3
1
3 0 1

3

]T
iii. x0 =

[
1
5

1
5

1
5

1
5

1
5

]T
Describe the long term behavior of the sequence {xk} in each case.

In what follows, we investigate the behavior of the sequence {xk} that we uncovered in Project
Activity 17.2.

Project Activity 17.3. We use the characteristic polynomial to find the eigenvalues of T .

(a) Find the characteristic polynomial of T . Factor the characteristic polynomial into a product
of linear polynomials to show that the eigenvalues of T are 0, 1, −1, 1

2 and −1
2 .

(b) As we will see a bit later, certain eigenvectors for T will describe the end behavior of
the sequence {xk}. Find eigenvectors for T corresponding to the eigenvalues 1 and −1.
Explain how the eigenvector for T corresponding to the eigenvalue 1 explains the behavior
of one of the sequences was saw in Project Activity 17.2. (Any eigenvector of T with
eigenvalue 1 is called an equilibrium or steady state vector.)

Now we can analyze the behavior of the sequence {xk}.
Project Activity 17.4. To make the notation easier, we will let v1 be an eigenvector of T cor-
responding to the eigenvalue 0, v2 an eigenvector of T corresponding to the eigenvalue 1, v3 an
eigenvector of T corresponding to the eigenvalue −1, v4 an eigenvector of T corresponding to the
eigenvalue 1

2 , and v5 an eigenvector of T corresponding to the eigenvalue −1
2 .

(a) Explain why {v1,v2,v3,v4,v5} is a basis of R5.

(b) Let x0 be any initial probability distribution vector. Explain why we can write x0 as

x0 = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 =

5∑
i=1

aivi

for some scalars a1, a2, a3, a4, and a5.

We can now use the eigenvalues and eigenvectors of T to write the vectors xk in a convenient
form. Let λ1 = 0, λ2 = 1, λ3 = −1, λ4 = 1

2 , and λ5 = −1
2 . Notice that

x1 = Tx0

= T (a1v1 + a2v2 + a3v3 + a4v4 + a5v5)

= a1Tv1 + a2Tv2 + a3Tv3 + a4Tv4 + a5Tv5

= a1λ1v1 + a2λ2v2 + a3λ3v3 + a4λ4v4 + a5λ5v5

=
5∑
i=1

aiλivi.
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Similarly

x2 = Tx1 = T

(
5∑
i=1

aiλivi

)
=

5∑
i=1

aiλiTvi =

5∑
i=1

aiλ
2
ivi.

We can continue in this manner to ultimately show that for each positive integer k we have

xk =
5∑
i=1

aiλ
k
i vi (17.4)

when x0 =
∑5

i=1 aivi.

Project Activity 17.5. Recall that we are interested in understanding the behavior of the sequence
{xk} as k goes to infinity.

(a) Equation (17.4) shows that we need to know limk→∞ λki for each i in order to analyze
limk→∞ xk. Calculate or describe these limits.

(b) Use the result of part (a), Equation (17.4), and Project Activity 17.3 (b) to explain why the
sequence {xk} is either eventually fixed or oscillates between two states. Compare to the
results from Project Activity 17.2. How are these results related to entropy? You may use
the facts that

• v1 = [1 0 − 2 0 1]T is an eigenvector for T corresponding to the eigenvalue 0,

• v2 = [1 4 6 4 1]T is an eigenvector for T corresponding to the eigenvalue 1,

• v3 = [1 − 4 6 − 4 1]T is an eigenvector for T corresponding to the eigenvalue −1,

• v4 = [−1 − 2 0 2 1]T is an eigenvector for T corresponding to the eigenvalue 1
2 ,

• v5 = [−1 2 0 − 2 1]T is an eigenvector for T corresponding to the eigenvalue −1
2 .





Section 18

Diagonalization

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a diagonal matrix?

• What does it mean to diagonalize a matrix?

• What does it mean for two matrices to be similar?

• What important properties do similar matrices share?

• Under what conditions is a matrix diagonalizable?

• When a matrix A is diagonalizable, what is the structure of a matrix P that
diagonalizes A?

• Why is diagonalization useful?

Application: The Fibonacci Numbers

In 1202 Leonardo of Pisa (better known as Fibonacci) published Liber Abaci (roughly translated
as The Book of Calculation), in which he constructed a mathematical model of the growth of a
rabbit population. The problem Fibonacci considered is that of determining the number of pairs of
rabbits produced in a given time period beginning with an initial pair of rabbits. Fibonacci made the
assumptions that each pair of rabbits more than one month old produces a new pair of rabbits each
month, and that no rabbits die. (We ignore any issues about that might arise concerning the gender
of the offspring.) If we let Fn represent the number of rabbits in month n, Fibonacci produced the
model

Fn+2 = Fn+1 + Fn, (18.1)

313
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for n ≥ 0 where F0 = 0 and F1 = 1. The resulting sequence

1, 1, 2, 3, 5, 8, 13, 21, . . .

is a very famous sequence in mathematics and is called the Fibonacci sequence. This sequence is
thought to model many natural phenomena such as number of seeds in a sunflower and anything
which grows in a spiral form. It is so famous in fact that it has a journal devoted entirely to it. As
a note, while Fibonacci’s work Liber Abaci introduced this sequence to the western world, it had
been described earlier Sanskrit texts going back as early as the sixth century.

By definition, the Fibonacci numbers are calculated by recursion. This is a vey ineffective way
to determine entries Fn for large n. Later in this section we will derive a fascinating and unexpected
formula for the Fibonacci numbers using the idea of diagonalization.

Introduction

As we have seen when studying Markov processes, each state is dependent on the previous state. If
x0 is the initial state and A is the transition matrix, then the nth state is found by Anx0. In these
situations, and others, it is valuable to be able to quickly and easily calculate powers of a matrix.
We explore a way to do that in this section.

Preview Activity 18.1. Consider a very simplified weather forecast. Let us assume there are two
possible states for the weather: rainy (R) or sunny(S). Let us also assume that the weather patterns
are stable enough that we can reasonably predict the weather tomorrow based on the weather today.
If is is sunny today, then there is a 70% chance that it will be sunny tomorrow, and if it is rainy

today then there is a 40% chance that it will be rainy tomorrow. If x0 =

[
s
r

]
is a state vector that

indicates a probability s that it is sunny and probability r that it is rainy on day 0, then

x1 =

[
0.70 0.40
0.30 0.60

]
x0

tells us the likelihood of it being sunny or rainy on day 1. Let A =

[
0.70 0.40
0.30 0.60

]
.

(1) Suppose it is sunny today, that is x0 =

[
1
0

]
. Calculate x1 = Ax0 and explain how this

matrix-vector product tells us the probability that it will be sunny tomorrow.

(2) Calculate x2 = Ax1 and interpret the meaning of each component of the product.

(3) Explain why x2 = A2x0. Then explain in general why xn = Anx0.

(4) The previous result demonstrates that to determine the long-term probability of a sunny or
rainy day, we want to be able to easily calculate powers of the matrix A. Use a computer
algebra system (e.g., Maple, Mathematica, Wolfram|Alpha) to calculate the entries of x10,
x20, and x30. Based on this data, what do you expect the long term probability of any day
being a sunny one?
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Diagonalization

In Preview Activity 18.1 we saw how if we can powers of a matrix we can make predictions about
the long-term behavior of some systems. In general, calculating powers of a matrix can be a very
difficult thing, but there are times when the process is straightforward.

Activity 18.1. Let D =

[
2 0
0 3

]
.

(a) Show that D2 =

[
22 0
0 32

]
.

(b) Show that D3 =

[
23 0
0 33

]
. (Hint: D3 = DD2.)

(c) Explain in general why Dn =

[
2n 0
0 3n

]
for any positive integer n.

Activity 18.1 illustrates that calculating powers of square matrices whose only nonzero entries
are along the diagonal is rather simple. In general, if

D =


d11 0 0 · · · 0 0
0 d22 0 · · · 0 0
... 0 0

. . .
...

0 0 0 · · · 0 dnn

 ,
then

Dk =


dk11 0 0 · · · 0 0
0 dk22 0 · · · 0 0
... 0 0

. . .
...

0 0 0 · · · 0 dknn


for any positive integer k. Recall that a diagonal matrix is a matrix whose only nonzero elements
are along the diagonal (see Definition 8.6). In this section we will see that matrices that are sim-
ilar to diagonal matrices have some very nice properties, and that diagonal matrices are useful in
calculations of powers of matrices.

We can utilize the method of calculating powers of diagonal matrices to also easily calculate
powers of other types of matrices.

Activity 18.2. Let D be any matrix, P an invertible matrix, and let A = P−1DP .

(a) Show that A2 = P−1D2P .

(b) Show that A3 = P−1D3P .

(c) Explain in general why An = P−1DnP for positive integers n.

As Activity 18.2 illustrates, to calculate the powers of a matrix of the form P−1DP we only
need determine the powers of the matrix D. If D is a diagonal matrix, this is especially straightfor-
ward.
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Similar Matrices

Similar matrices play an important role in certain calculations. For example, Activity 18.2 showed
that if we can write a square matrix A in the form A = P−1DP for some invertible matrix P and
diagonal matrix D, then finding the powers of A is straightforward. As we will see, the relation
A = P−1DP will imply that the matrices A and D share many properties.

Definition 18.1. The n×nmatrixA is similar to the n×nmatrixB if there is an invertible matrix
P such that A = P−1BP .

Activity 18.3. Let A =

[
1 1
2 0

]
and B =

[
2 2
0 −1

]
. Assume that A is similar to B via the

matrix P =

[
2 1
2 2

]
.

(a) Calculate det(A) and det(B). What do you notice?

(b) Find the characteristic polynomials of A and B. What do you notice?

(c) What can you say about the eigenvalues of A and B? Explain.

(d) Explain why x =

[
1
1

]
is an eigenvector for A with eigenvalue 2. Is x an eigenvector for

B with eigenvalue 2? Why or why not?

Activity 18.3 suggests that similar matrices share some, but not all, properties. Note that if
A = P−1BP , then B = Q−1AQ with Q = P−1. So if A is similar to B, then B is similar to A.
Similarly (no pun intended), since A = I−1AI (where I is the identity matrix), then any square
matrix is similar to itself. Also, if A = P−1BP and B = M−1CM , then A = (MP )−1C(MP ).
So if A is similar to B and B is similar to C, then A is similar to C. If you have studied relations,
these three properties show that similarity is an equivalence relation on the set of all n×nmatrices.
This is one reason why similar matrices share many important traits, as the next activity highlights.

Activity 18.4. Let A and B be similar matrices with A = P−1BP .

(a) Use the multiplicative property of the determinant to explain why det(A) = det(B). So
similar matrices have the same determinants.

(b) Use the fact that P−1IP = I to show that A− λI is similar to B − λI .

(c) Explain why it follows from (a) and (b) that

det(A− λI) = det(B − λI).

So similar matrices have the same characteristic polynomial, and the same eigenvalues.

We summarize some properties of similar matrices in the following theorem.

Theorem 18.2. Let A and B be similar n× n matrices and I the n× n identity matrix. Then

(1) det(A) = det(B),
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(2) A− λI is similar to B − λI ,

(3) A and B have the same characteristic polynomial,

(4) A and B have the same eigenvalues.

Similarity and Matrix Transformations

When a matrix is similar to a diagonal matrix, we can gain insight into the action of the correspond-
ing matrix transformation. As an example, consider the matrix transformation T from R2 to R2

defined by Tx = Ax, where

A =

[
3 1
1 3

]
. (18.2)

We are interested in understanding what this matrix transformation does to vectors in R2. First we

note that A has eigenvalues λ1 = 2 and λ2 = 4 with corresponding eigenvectors v1 =

[
−1

1

]
and

v2 =

[
1
1

]
. If we let P = [v1 v2], then you can check that

P−1AP = D

and
A = PDP−1,

where

D =

[
2 0
0 4

]
.

Thus,
T (x) = PDP−1x.

A simple calculation shows that

P−1 =
1

2

[
−1 1

1 1

]
.

Let us apply T to the unit square whose sides are formed by the vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
as shown in the first picture in Figure 18.1.

To apply T we first multiply e1 and e2 by P−1. This gives us

P−1e1 =
1

2
v1 and P−1v2 =

1

2
v2.

So P−1 transforms the standard coordinate system into a coordinate system in which v1 and v2

determine the axes, as illustrated in the second picture in Figure 18.1. Applying D to the output
scales by 2 in the v1 direction and 4 in the v2 direction as depicted in the third picture in Figure
18.1. Finally, we apply P to translate back into the standard xy coordinate system as shown in the
last picture in Figure 18.1.
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This example illustrates that it is most convenient to view the action of T in the coordinate
system where v1 serves as the x-direction and v2 as the y-direction. In this case, we can visualize
that when we apply the transformation T to a vector in this system it is just scaled in both directions
by the matrixD. Then the matrix P translates everything back to the standard xy coordinate system.

e1

e2
P−1e1 P−1e2

DP−1e1

DP−1e2

T (e1)

T (e2)

Figure 18.1: The matrix transformation.

This geometric perspective provides another example of how having a matrix similar to a di-
agonal matrix informs us about the situation. In what follows we determine the conditions that
determine when a matrix is similar to a diagonal matrix.

Diagonalization in General

In Preview Activity 18.1 and in the matrix transformation example we found that a matrix A was
similar to a diagonal matrix whose columns were eigenvectors of A. This will work for a general
n×n matrix A as long as we can find an invertible matrix P whose columns are eigenvectors of A.
More specifically, suppose A is an n × n matrix with n linearly independent eigenvectors v1, v1,
. . ., vn with corresponding eigenvalues λ1, λ1, . . ., λn (not necessarily distinct). Let

P = [v1 v2 v3 · · · vn].
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Then

AP = [Av1 Av2 Av3 · · · Avn]

= [λ1v1 λ2v2 λ3v3 · · · λnvn]

= [v1 v2 v3 · · · vn]


λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

... · · · ...
...

0 0 0 · · · λn−1 0
0 0 0 · · · 0 λn


= PD.

where

D =


λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

... · · · ...
...

0 0 0 · · · λn−1 0
0 0 0 · · · 0 λn

 .
Since the columns of P are linearly independent, we know P is invertible, and so

P−1AP = D.

Definition 18.3. An n × n matrix A is diagonalizable if there is an invertible n × n matrix P so
that P−1AP is a diagonal matrix.

In other words, a matrix A is diagonalizable if A is similar to a diagonal matrix.

IMPORTANT NOTE: The key notion to the process described above is that in order to diago-
nalize an n × n matrix A, we have to find n linearly independent eigenvectors for A. When A is
diagonalizable, a matrix P so that P−1AP is diagonal is said to diagonalize A.

Activity 18.5. Find an invertible matrix P that diagonalizes A.

(a) A =

[
1 1
0 2

]

(b) A =

 3 2 4
2 0 2
4 2 3

. (Hint: The eigenvalues of A are 8 and −1.)

It should be noted that there are square matrices that are not diagonalizable. For example,

the matrix A =

[
1 1
0 1

]
has 1 as its only eigenvalue and the dimension of the eigenspace of

A corresponding to the eigenvalue is one. Therefore, it will be impossible to find two linearly
independent eigenvectors for A.

We showed previously that eigenvectors corresponding to distinct eigenvalue are always linearly
independent, so if an n × n matrix A has n distinct eigenvalues then A is diagonalizable. Activity
18.5 (b) shows that it is possible to diagonalize an n × n matrix even if the matrix does not have
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n distinct eigenvalues. In general, we can diagonalize a matrix as long as the dimension of each
eigenspace is equal to the multiplicity of the corresponding eigenvalue. In other words, a matrix
is diagonalizable if the geometric multiplicity is the same is the algebraic multiplicity for each
eigenvalue.

At this point we might ask one final question. We argued that if an n×nmatrixA has n linearly
independent eigenvectors, thenA is diagonalizable. It is reasonable to wonder if the converse is true
– that is, if A is diagonalizable, must A have n linearly independent eigenvectors? The answer is
yes, and you are asked to show this in Exercise 6. We summarize the result in the following theorem.

Theorem 18.4 (The Diagonalization Theorem). An n × n matrix A is diagonalizable if and only
if A has n linearly independent eigenvectors. If A is diagonalizable and has linearly independent
eigenvectors v1, v2, . . ., vn with Avi = λivi for each i, then n×n matrix P [v1 v2 · · · vn] whose
columns are linearly independent eigenvectors of A satisfies P−1AP = D, where D[dij ] is the
diagonal matrix with diagonal entries dii = λi for each i.

Examples

What follows are worked examples that use the concepts from this section.

Example 18.5. Let A =

 1 −2 1
0 3 −1
0 −2 2

 and B =

 1 2 0
0 1 0
0 0 4

. You should use appropriate

technology to calculate determinants, perform any row reductions, or solve any polynomial equa-
tions.

(a) Determine if A is diagonalizable. If diagonalizable, find a matrix P that diagonalizes A.

(b) Determine if B is diagonalizable. If diagonalizable, find a matrix Q that diagonalizes B.

(c) Is it possible for two matricesR and S to have the same eigenvalues with the same algebraic
multiplicities, but one matrix is diagonalizable and the other is not? Explain.

Example Solution.

(a) Technology shows that the characteristic polynomial of A is

p(λ) = det(A− λI3) = (4− λ)(1− λ)2.

The eigenvalues of A are the solutions to the characteristic equation p(λ) = 0. Thus, the
eigenvalues of A are 1 and 4.

To find a basis for the eigenspace of A corresponding to the eigenvalue 1, we find the
general solution to the homogeneous system (A − I3)x = 0. Using technology we see

that the reduced row echelon form of A − I3 =

 0 −2 1
0 2 −1
0 −2 1

 is


0 1 −1

2

0 0 0

0 0 0

. So
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if x =

 x1

x2

x3

, then the general solution to (A− I3)x = 0 is

x =


x1

1
2x3

x3



= x1

 1
0
0

+ x3


0
1
2

1

 .
So a basis for the eigenspace of A corresponding to the eigenvalue 1 is{

[1 0 0]T , [0 1 2]T
}
.

To find a basis for the eigenspace of A corresponding to the eigenvalue 4, we find the
general solution to the homogeneous system (A − 4I3)x = 0. Using technology we see

that the reduced row echelon form of A − 4I3 =

 −3 −2 1
0 −1 −1
0 −2 −2

 is

 0 1 −1
0 1 1
0 0 0

.

So if x =

 x1

x2

x3

, then the general solution to (A− 4I3)x = 0 is

x = [x1 x2 x3]T

= [x3 − x3 x3]T

= x3 [1 − 1 1]T .

So a basis for the eigenspace of A corresponding to the eigenvalue 4 is{
[1 − 1 0]T

}
.

Eigenvectors corresponding to different eigenvalues are linearly independent, so the set{
[1 0 0]T , [0 1 2]T , [1 − 1 0]T

}
is a basis for R3. Since we can find a basis for R3 consisting of eigenvectors of A, we
conclude that A is diagonalizable. Letting

P =

 1 0 1
0 1 −1
0 2 1


gives us

P−1AP =

 1 0 0
0 1 0
0 0 4


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(b) Technology shows that the characteristic polynomial of B is

p(λ) = det(B − λI3) = (4− λ)(1− λ)2.

The eigenvalues of B are the solutions to the characteristic equation p(λ) = 0. Thus, the
eigenvalues of B are 1 and 4.

To find a basis for the eigenspace of B corresponding to the eigenvalue 1, we find the
general solution to the homogeneous system (B − I3)x = 0. Using technology we see

that the reduced row echelon form of B − I3 =

 0 2 0
0 0 0
0 0 3

 is

 0 1 0
0 0 1
0 0 0

. So if

x =

 x1

x2

x3

, then the general solution to (B − I3)x = 0 is

x = [x1 x2 x3]T

= [x1 0 0]T

= x1 [1 0 0]T .

So a basis for the eigenspace of B corresponding to the eigenvalue 1 is{
[1 0 0]T

}
.

To find a basis for the eigenspace of B corresponding to the eigenvalue 4, we find the
general solution to the homogeneous system (B − 4I3)x = 0. Using technology we see

that the reduced row echelon form of B − 4I3 =

 −3 2 0
0 −3 0
0 0 0

 is

 1 0 0
0 1 0
0 0 0

. So if

x =

 x1

x2

x3

, then the general solution to (B − 4I3)x = 0 is

x = [x1 x2 x3]T

= [0 0 x3]T

= x3 [0 0 1]T .

So a basis for the eigenspace of B corresponding to the eigenvalue 4 is{
[0 0 1]T

}
.

Since each eigenspace is one-dimensional, we cannot find a basis for R3 consisting of
eigenvectors of B. We conclude that B is not diagonalizable.

(c) Yes it is possible for two matrices R and S to have the same eigenvalues with the same
multiplicities, but one matrix is diagonalizable and the other is not. An example is given
by the matrices A and B in this problem.
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Example 18.6.

(a) Is it possible to find diagonalizable matrices A and B such that AB is not diagonalizable?
If yes, provide an example. If no, explain why.

(b) Is it possible to find diagonalizable matricesA andB such thatA+B is not diagonalizable?
If yes, provide an example. If no, explain why.

(c) Is it possible to find a diagonalizable matrix A such that AT is not diagonalizable? If yes,
provide an example. If no, explain why.

(d) Is it possible to find an invertible diagonalizable matrix A such that A−1 is not diagonaliz-
able? If yes, provide an example. If no, explain why.

Example Solution.

(a) Let A =

[
1 1
0 2

]
and B =

[
2 −2
0 1

]
. Since A and B are both diagonal matrices,

their eigenvalues are their diagonal entries. With 2 distinct eigenvalues, both A and B are

diagonalizable. In this case we have AB =

[
2 −1
0 2

]
, whose only eigenvector is 2. The

reduced row echelon form of AB − 2I2 is
[

0 1
0 0

]
. So a basis for the eigenspace of AB

is {[1 0]T}. Since there is no basis for R2 consisting of eigenvectors of AB, we conclude
that AB is not diagonalizable.

(b) Let A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
. Since A and B are both diagonal matrices,

their eigenvalues are their diagonal entries. With 2 distinct eigenvalues, both A and B are

diagonalizable. In this case we have A+B =

[
3 3
0 3

]
, whose only eigenvector is 3. The

reduced row echelon form of (A+B)− 3I2 is
[

0 1
0 0

]
. So a basis for the eigenspace of

A+ B is {[1 0]T}. Since there is no basis for R2 consisting of eigenvectors of A+ B, we
conclude that A+B is not diagonalizable.

(c) It is not possible to find a diagonalizable matrix A such that AT is not diagonalizable. To
see why, suppose that matrix A is diagonalizable. That is, there exists a matrix P such that
P−1AP = D, where D is a diagonal matrix. Recall that

(
P−1

)T
=
(
PT
)−1. So

D = DT

=
(
P−1AP

)T
= PTAT

(
P−1

)T
= PTAT

(
PT
)−1

.

Letting A =
(
PT
)−1, we conclude that

Q−1ATQ = D.
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Therefore, Q diagonalizes AT.

(d) It is not possible to find an invertible diagonalizable matrix A such that A−1 is not diag-
onalizable. To see why, suppose that matrix A is diagonalizable. That is, there exists a
matrix P such that P−1AP = D, where D is a diagonal matrix. Thus, A = PDP−1.
Since A is invertible, det(A) 6= 0. It follows that det(D) 6= 0. So none of the diagonal
entries of D can be 0. Thus, D is invertible and D−1 is a diagonal matrix. Then

D−1 =
(
P−1AP

)−1
= PA−1P−1

and so P−1 diagonalizes A−1.

Summary

• A matrix D = [dij ] is a diagonal matrix if dij = 0 whenever i 6= j.

• A matrix A is diagonalizable if there is an invertible matrix P so that P−1AP is a diagonal
matrix.

• Two matrices A and B are similar if there is an invertible matrix P so that

B = P−1AP.

• Similar matrices have the same determinants, same characteristic polynomials, and same
eigenvalues. Note that similar matrices do not necessarily have the same eigenvectors corre-
sponding to the same eigenvalues.

• An n×nmatrixA is diagonalizable if and only ifA has n linearly independent eigenvectors.

• When an n × n matrix A is diagonalizable, then P = [v1 v2 v3 · · · vn] is invertible and
P−1AP is diagonal, where v1, v2, . . ., vn are n linearly independent eigenvectors for A.

• One use for diagonalization is that once we have diagonalized a matrix A we can quickly
and easily compute powers of A. Diagonalization can also help us understand the actions of
matrix transformations.

Exercises

(1) Determine if each of the following matrices is diagonalizable or not. For diagonalizable
matrices, clearly identify a matrix P which diagonalizes the matrix, and what the resulting
diagonal matrix is.

(a) A =

[
2 −1
1 4

]

(b) A =

 −1 4 −2
−3 4 0
−3 1 3


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(2) The 3 × 3 matrix A has two eigenvalues λ1 = 2 and λ2 = 3. The vectors

 1
2
1

,

 1
−1

2

,

and

 2
4
2

 are eigenvectors for λ1 = 2, while the vectors

 1
1
1

 ,
 2

2
2

 are eigenvectors

for λ2 = 3. Find the matrix A.

(3) Find a 2 × 2 non-diagonal matrix A and two different pairs of P and D matrices for which
A = PDP−1.

(4) Find a 2 × 2 non-diagonal matrix A and two different P matrices for which A = PDP−1

with the same D.

(5) Suppose a 4 × 4 matrix A has eigenvalues 2, 3 and 5 and the eigenspace for the eigenvalue
3 has dimension 2. Do we have enough information to determine if A is diagonalizable?
Explain.

(6) LetA be a diagonalizable n×nmatrix. Show thatA has n linearly independent eigenvectors.

(7)

(a) Let A =

[
1 1
0 1

]
and B =

[
1 2
0 1

]
. Find the eigenvalues and eigenvectors of A

and B. Conclude that it is possible for two different n× n matrices A and B to have
exactly the same eigenvectors and corresponding eigenvalues.

(b) A natural question to ask is if there are any conditions under which n×nmatrices that
have exactly the same eigenvectors and corresponding eigenvalues must be equal.
Determine the answer to this question if A and B are both diagonalizable.

(8)

(a) Show that if D and D′ are n× n diagonal matrices, then DD′ = D′D.

(b) Show that ifA andB are n×nmatrices and P is an invertible n×nmatrix such that
P−1AP = D and P−1BP = D′ withD andD′ diagonal matrices, thenAB = BA.

(9) Exercise 2 in Section 17 shows that the determinant of a matrix is the product of its eigen-
values. In this exercise we show that the trace of a diagonalizable matrix is the sum of its
eigenvalues.1 First we define the trace of a matrix.

Definition 18.7. The trace of an n × n matrix A = [aij ] is the sum of the diagonal entries
of A. That is,

trace(A) = a11 + a22 + · · ·+ ann =

n∑
i=1

aii.

(a) Show that ifR = [rij ] and S = [sij ] are n×nmatrices, then trace(RS) = trace(SR).

1This result is true for any matrix, but the argument is more complicated.
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(b) LetA be a diagonalizable n×nmatrix, and let p(λ) = det(A−λIn) be the character-
istic polynomial of A. Let P be an invertible matrix such that P−1AP = D, where
D is the diagonal matrix whose diagonal entries are λ1, λ2, . . ., λn, the eigenvalues
of A (note that these eigenvalues may not all be distinct).

i. Explain why trace(A) = trace(D).
ii. Show that the trace of an n × n diagonalizable matrix is the sum of the eigen-

values of the matrix.

(10) In this exercise we generalize the result of Exercise 12 in Section 8 to arbitrary diagonalizable
matrices.

(a) Show that if

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 ,
then

eD =


eλ1 0 0 · · · 0
0 eλ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eλn

 .
(b) Now suppose that an n × n matrix A is diagonalizable, with P−1AP equal to a

diagonal matrix D. Show that eA = PeDP−1.

(11) Let A =

[
1 1
0 0

]
and let B =

[
0 −1
0 0

]
.

(a) Use the result of Exercise 10 to calculate eA.

(b) Calculate eB . (Hint: Explain why B is not diagonalizable.)

(c) Use the result of Exercise 10 to calculate eA+B .

(d) The real exponential function satisfies some familiar properties. For example, exey =
eyex and ex+y = exey for any real numbers x and y. Does the matrix exponential
satisfy the corresponding properties. That is, if X and Y are n × n matrices, must
eXeY = eY eX and eX+Y = eXeY ? Explain.

(12) In Exercise 11 we see that we cannot conclude that eX+Y = eXeY for n×n matrices X and
Y . However, a more limited property is true.

(a) Follow the steps indicated to show that if A is an n × n matrix and s and t are any
scalars, then eAseAt = eA(s+t). (Although we will not use it, you may assume that
the series for eA converges for any square matrix A.)

i. Use the definition to show that

eAseAt =
∑
k≥0

∑
m≥0

sktm

k!
m!Ak+m.
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ii. Relabel and reorder terms with n = k +m to show that

eAseAt = sumn≥0
1

n!
An

n∑
m=0

n!

(n−m)!m!
sn−mtm.

iii. Complete the problem using the Binomial Theorem that says

(s+ t)n =
n∑

m=0

n!

(n−m)!m!
sn−mtm.

(b) Use the result of part (a) to show that eA is an invertible matrix for any n× n matrix
A.

(13) There is an interesting connection between the determinant of a matrix exponential and the
trace of the matrix. LetA be a diagonalizable n×nmatrix with real entries. LetD = P−1AP
for some invertible matrix P , where D is the diagonal matrix with entries λ1, λ2, . . ., λn the
eigenvalues of A.

(a) Show that eA = PeDP−1.

(b) Use Exercise 9 to show that

det
(
eA
)

= etrace(A).

(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If matrix A is diagonalizable, then so is AT .

(b) True/False If matrix A is diagonalizable, then A is invertible.

(c) True/False If an n×n matrix A is diagonalizable, then A has n distinct eigenvalues.

(d) True/False If matrix A is invertible and diagonalizable, then so is A−1.

(e) True/False If an n × n matrix C is diagonalizable, then there exists a basis of Rn
consisting of the eigenvectors of C.

(f) True/False An n× n matrix with n distinct eigenvalues is diagonalizable.

(g) True/False If A is an n × n diagonalizable matrix, then there is a unique diagonal
matrix such that P−1AP = D for some invertible matrix P .

(h) True/False If A is an n × n matrix with eigenvalue λ, then the dimension of the
eigenspace of A corresponding to the eigenvalue λ is n− rank(A− λIn).

(i) True/False If λ is an eigenvalue of an n × n matrix A, then eλ is an eigenvalue of
eA. (See Exercise 12 in Section 8 for information on the matrix exponential.)

Project: Binet’s Formula for the Fibonacci Numbers

We return to the Fibonacci sequence Fn where Fn+2 = Fn+1 +Fn, for n ≥ 0, F0 = 0, and F1 = 1.
Since Fn+2 is determined by previous values Fn+1 and Fn, the relation Fn+2 = Fn+1 + Fn is
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called a recurrence relation. The recurrence relation Fn+2 = Fn+1 + Fn is very time consuming
to use to compute Fn for large values of n. It turns out that there is a fascinating formula that gives
the nth term of the Fibonacci sequence directly, without using the relation Fn+2 = Fn+1 + Fn.

Project Activity 18.1. The recurrence relationFn+2 = Fn+1 + Fn gives the equations

Fn+1 = Fn + Fn−1 (18.3)

Fn = Fn. (18.4)

Let xn =

[
Fn+1

Fn

]
for n ≥ 0. Explain how the equations (18.3) and (18.3) can be described with

the matrix equation
xn = Axn−1, (18.5)

where A =

[
1 1
1 0

]
.

The matrix equation (18.5) shows us how to find the vectors xn using powers of the matrix A:

x1 = Ax0

x2 = Ax1 = A(Ax0) = A2x0

x3 = Ax2 = A(A2x0) = A3x0

...
...

xn = Anx0.

So if we can somehow easily find the powers of the matrixA, then we can find a convenient formula
for Fn. As we have seen, we know how to do this if A is diagonalizable

Project Activity 18.2. Let A =

[
1 1
1 0

]
.

(a) Show that the eigenvalues of A are ϕ = 1+
√

5
2 and ϕ = 1−

√
5

2 .

(b) Find bases for each eigenspace of A.

Now that we have the eigenvalues and know corresponding eigenvectors for A, we can return
to the problem of diagonalizing A.

Project Activity 18.3.

(a) Why do we know that A is diagonalizable?

(b) Find a matrix P such that P−1AP is a diagonal matrix. What is the diagonal matrix?

Now we can find a formula for the nth Fibonacci number.

Project Activity 18.4. Since P−1AP = D, where D is a diagonal matrix, we also have A =
PDP−1. Recall that when A = PDP−1, it follows that An = PDnP−1. Use the equation
An = PDnP−1 to show that

Fn =
ϕn − ϕn√

5
. (18.6)

(Hint: We just need to calculate the second component of Anx0.)
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Formula (18.6) is called Binet’s formula. It is a very surprising formula in the fact that the
expression on the right hand side of (18.6) is an integer for each positive integer n. Note that with
Binet’s formula we can quickly compute Fn for very large values of n. For example,

F150 = 9969216677189303386214405760200.

The number ϕ = 1+
√

5
2 , called the golden mean or golden ratio is intimately related to the

Fibonacci sequence. Binet’s formula provides a fascinating relationship between the Fibonacci
numbers and the golden ratio. The golden ratio also occurs often in other areas of mathematics. It
was an important number to the ancient Greek mathematicians who felt that the most aesthetically
pleasing rectangles had sides in the ratio of ϕ : 1.

Project Activity 18.5. You might wonder what happens if we use negative integer exponents in
Binet’s formula. In other words, are there negatively indexed Fibonacci numbers? For any integer
n, including negative integers, let

Fn =
ϕn − ϕn√

5

There is a specific relationship between F−n and Fn. Find it and verify it.





Section 19

Approximating Eigenvalues and
Eigenvectors

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the power method for?

• How does the power method work?

• How can we use the inverse power method to approximate any eigen-
value/eigenvector pair?

Application: Leslie Matrices and Population Modeling

The Leslie Matrix (also called the Leslie Model) is a powerful model for describing an age dis-
tributed growth of a population that is closed to migration. In a Leslie model, it is usually the case
that only one gender (most often female) is considered. As an example, we will later consider a
population of sheep that is being grown commercially. A natural question that we will address is
how we can harvest the population to build a sustainable environment.

When working with populations, the matrices we use are often large. For large matrices, using
the characteristic polynomial to calculate eigenvalues is too time and resource consuming to be
practical, and we generally cannot find the exact values of the eigenvalues. As a result, approxi-
mation techniques are very important. In this section we will explore a method for approximating
eigenvalues. The eigenvalues of a Leslie matrix are important because they describe the limiting or
steady-state behavior of a population. The matrix and model were introduced by Patrick H. Leslie
in “On the Use of Matrices in Certain Population Mathematics”, Leslie, P.H., Biometrika, Volume
XXXIII, November 1945, pp. 183-212.
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Introduction

We have used the characteristic polynomial to find the eigenvalues of a matrix, and for each eigen-
value row reduced a corresponding matrix to find the eigenvectors This method is only practical for
small matrices – for more realistic applications approximation techniques are used. We investigate
one such technique in this section, the power method.

Preview Activity 19.1. Let A =

[
2 6
5 3

]
. Our goal is to find a scalar λ and a nonzero vector v

so that Av = λv.

(1) If we have no prior knowledge of the eigenvalues and eigenvectors of this matrix, we might
just begin with a guess. Let x0 = [1 0]T be such a guess for an eigenvector. Calculate Ax0.
Is x0 an eigenvector of A? Explain.

(2) If x0 is not a good approximation to an eigenvector ofA, then we need to make a better guess.
We have little to work with other than just random guessing, but we can use x1 = Ax0 as
another guess. We calculated x1 in part 1. Is x1 an eigenvector for A? Explain.

(3) In parts (a) and (b) you might have noticed that in some sense x1 is closer to being an eigen-
vector ofA than x0 was. So maybe continuing this process will get us closer to an eigenvector
of A. In other words, for each positive integer k we define xk as Axk−1. Before we proceed,
however, we should note that as we calculate the vectors x1, x2, x3, . . ., the entries in the
vectors get large very quickly. So it will be useful to scale the entries so that they stay at a
reasonable size, which makes it easier to interpret the output. One way to do this is to divide
each vector xi by its largest component in absolute value so that all of the entries stay between
−1 and 1.1 So in our example we have x0 = [1 0]T, x1 = [2/5 1]T, and x2 = [1 25/34]T.
Explain why scaling our vectors will not affect our search for an eigenvector.

(4) Use an appropriate technological tool to find the vectors xk up to k = 10. What do you think
the limiting vector limk→∞ xk is? Is this limiting vector an eigenvector of A? If so, what is
the corresponding eigenvalue?

The Power Method

While the examples we present in this text are small in order to highlight the concepts, matrices that
appear in real life applications are often enormous. For example, in Google’s PageRank algorithm
that is used to determine relative rankings of the importance of web pages, matrices of staggering
size are used (most entries in the matrices are zero, but the size of the matrices is still huge). Finding
eigenvalues of such large matrices through the characteristic polynomial is impractical. In fact,
finding the roots of all but the smallest degree characteristic polynomials is a very difficult problem.
As a result, using the characteristic polynomial to find eigenvalues and then finding eigenvectors is
not very practical in general, and it is often a better option to use a numeric approximation method.
We will consider one such method in this section, the power method.

1There are several other ways to scale, but we won’t consider them here.
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In Preview Activity 19.1, we saw an example of a matrix A =

[
2 6
5 3

]
so that the sequence

{xk}, where xk = Axk−1, converged to a dominant eigenvector of A for an initial guess vector
x0 = [1 0]T. The vectors xi for i from 1 to 6 (with scaling) are approximately

x1 =

 0.4

1

 x2 =

 1

0.7353

 x3 =

 0.8898

1


x4 =

 1

0.9575

 x5 =

 0.9838

1

 x6 =

 1

0.9939

.

Numerically we can see that the sequence {xk} approaches the vector [1 1]T, and Figure 19.1
illustrates this geometrically as well. This method of successive approximations xk = Axk−1 is

x0

x1

x2

x3

x4

x5 x6

Figure 19.1: The power method.

called the power method (since we could write xk as Akx0). Our task now is to show that this
method works in general. In the next activity we restrict our argument to the 2 × 2 case, and then
discuss the general case afterwards.

Let A be an arbitrary 2 × 2 matrix with two linearly independent eigenvectors v1 and v2 and
corresponding eigenvalues λ1 and λ2, respectively. We will also assume |λ1| > |λ2|. An eigenvalue
whose absolute value is larger than that of any other eigenvalue is called a dominant eigenvalue.
Any eigenvector for a dominant eigenvalue is called a dominant eigenvector. Before we show that
our method can be used to approximate a dominant eigenvector, we recall that since v1 and v2 are
eigenvectors corresponding to distinct eigenvalues, then v1 and v2 are linearly independent. So
there exist scalars a1 and a2 such that

x0 = a1v1 + a2v2.

We have seen that for each positive integer k we can write xn as

xk = a1λ
k
1v1 + a2λ

k
2v2. (19.1)

With this representation of x0 we can now see why the power method approximates a dominant
eigenvector of A.
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Activity 19.1. Assume as above that A is an arbitrary 2 × 2 matrix with two linearly independent
eigenvectors v1 and v2 and corresponding eigenvalues λ1 and λ2, respectively. (We are assuming
that we don’t know these eigenvectors, but we can assume that they exist.) Assume that λ1 is the
dominant eigenvalue forA, x0 is some initial guess to an eigenvector forA, that x0 = a1v1 +a2v2,
and that xk = Axk−1 for k ≥ 1.

(a) We divide both sides of equation (19.1) by λk1 (since λ1 is the dominant eigenvalue, we
know that λ1 is not 0) to obtain

1

λk1
xk = a1v1 + a2

(
λ2

λ1

)k
v2. (19.2)

Recall that λ1 is the dominant eigenvalue for A. What happens to
(
λ2
λ1

)k
as k → ∞?

Explain what happens to the right hand side of equation (19.2) as k →∞.

(b) Explain why the previous result tells us that the vectors xk are approaching a vector in the
direction of v1 or −v1 as k → ∞, assuming a1 6= 0. (Why do we need a1 6= 0? What
happens if a1 = 0?)

(c) What does all of this tell us about the sequence {xk} as k →∞?

The power method is straightforward to implement, but it is not without its drawbacks. We
began by assuming that we had a basis of eigenvectors of a matrix A. So we are also assuming that
A is diagonalizable. We also assumed that A had a dominant eigenvalue λ1. That is, if A is n× n
we assume that A has eigenvalues λ1, λ2, . . ., λn, not necessarily distinct, with

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

and with vi an eigenvector of A with eigenvalue λi. We could then write any initial guess x0 in the
form

x0 = a1v1 + a2v2 + · · ·+ anvn.

The initial guess is also called a seed.

Then
xk = a1λ

k
1v1 + a2λ

k
2v2 + · · ·+ anλ

k
nvn

and
1

λk1
xk = a1v1 + a2

(
λ2

λ1

)k
v2 + · · ·+ an

(
λn
λ1

)k
vn. (19.3)

Notice that we are not actually calculating the vectors xk here – this is a theoretical argument and
we don’t know λ1 and are not performing any scaling like we did in Preview Activity 19.1. We are

assuming that λ1 is the dominant eigenvalue of A, though, so for each i the terms
(
λi
λ1

)k
converge

to 0 as k goes to infinity. Thus,
xk ≈ λk1a1v1

for large values of k, which makes the sequence {xk} converge to a vector in the direction of a
dominant eigenvector v1 provided a1 6= 0. So we need to be careful enough to choose a seed that
has a nonzero component in the direction of v1. Of course, we generally don’t know that our matrix
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is diagonalizable before we make these calculations, but for many matrices the sequence {xk} will
approach a dominant eigenvector.

Once we have an approximation to a dominant eigenvector, we can then approximate the dom-
inant eigenvalue.

Activity 19.2. Let A be an n× n matrix with eigenvalue λ and corresponding eigenvector v.

(a) Explain why λ = λ(v·v)
v·v .

(b) Use the result of part (a) to explain why λ = (Av)·v
v·v .

The result of Activity 19.2 is that, when the vectors in the sequence {xk} approximate a domi-
nant eigenvector of a matrix A, the quotients

(Axk) · xk
xk · xk

=
xT
kAxk

xT
kxk

(19.4)

approximate the dominant eigenvalue of A. The quotients in (19.4) are called Rayleigh quotients.

To summarize, the procedure for applying the power method for approximating a dominant
eigenvector and dominant eigenvalue of a matrix A is as follows.

Step 1: Select an arbitrary nonzero vector x0 as an initial guess to a dominant eigenvector.

Step 2: Let x1 = Ax0. Let k = 1.

Step 3: To avoid having the magnitudes of successive approximations become excessively large,
scale this approximation xk. That is, find the entry αk of xk that is largest in absolute value.
Then replace xk by 1

|αk|xk. Note that this does not change the direction of this approximation,
only its magnitude.

Step 4: Calculate the Rayleigh quotient rk = (Axk)·xk
xk·xk .

Step 5: Let let xk+1 = Axk. Increase k by 1 and repeat Steps 3 through 5.

If the sequence {xk} converges to a dominant eigenvector of A, then the sequence {rk} converges
to the dominant eigenvalue of A.

The power method can be useful for approximating a dominant eigenvector as long as the suc-
cessive multiplications by A are fairly simple – for example, if many entries of A are zero.2 The
rate of convergence of the sequence {xk} depends on the ratio λ2

λ1
. If this ratio is close to 1, then

it can take many iterations before the power
(
λ2
λ1

)k
makes the v2 term negligible. There are other

methods for approximating eigenvalues and eigenvectors, e.g., the QR factorization, that we will
not discuss at this point.

2A matrix in which most entries are zero is called a sparse matrix.
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The Inverse Power Method

The power method only allows us to approximate the dominant eigenvalue and a dominant eigen-
vector for a matrix A. It is possible to modify this method to approximate other eigenvectors and
eigenvalues under certain conditions. We consider an example in the next activity to motivate the
general situation.

Activity 19.3. Let A =

[
2 6
5 3

]
be the matrix from Preview Activity 19.1. Recall that 8 is an

eigenvalue for A, and a quick calculation can show that −3 is the other eigenvalue of A. Consider

the matrix B = (A− (−2)I2)−1 = 1
10

[
−5 6

5 −4

]
.

(a) Show that 1
8−(−2) and 1

−3−(−2) are the eigenvalues of B.

(b) Recall that v1 = [1 1]T is an eigenvector ofA corresponding to the eigenvalue 8 and assume
that v2 = [−6 5]T is an eigenvector for A corresponding to the eigenvalue −3. Calculate
the products Bv1 and Bv2. How do the products relate to the results of part (a)?

Activity 19.3 provides evidence that we can translate the matrixA having a dominant eigenvalue
to a different matrix B with the same eigenvectors as A and with a dominant eigenvalue of our
choosing. To see why, let A be an n × n matrix with eigenvalues λ1, λ2, . . ., λn, and let α be any
real number distinct from the eigenvalues. Let B = (A− αIn)−1. In our example in Activity 19.3
the numbers

1

λ1 − α
,

1

λ2 − α
,

1

λ3 − α
, . . . ,

1

λn − α
were the eigenvalues of B, and that if vi is an eigenvector for A corresponding to the eigenvalue
λi, then vi is an eigenvector of B corresponding to the eigenvalue 1

λi−α . To see why, let λ be an
eigenvalue of an n× n matrix A with corresponding eigenvector v. Let α be a scalar that is not an
eigenvalue of A, and let B = (A− αIn)−1. Now

Av = λv

Av − αv = λv − αv
(A− αIn)v = (λ− α)v

1

λ− αv = (A− αIn)−1v.

So 1
λ−α is an eigenvalue of B with eigenvector v.

Now suppose that A is an n × n matrix with eigenvalues λ1, λ2, . . ., λn, and that we want to
approximate an eigenvector and corresponding eigenvalue λi of A. If we can somehow find a value
of α so that |λi − α| < |λj − α| for all j 6= i, then

∣∣∣ 1
λi−α

∣∣∣ > ∣∣∣ 1
λj−α

∣∣∣ for any j 6= i. Thus, the

matrix B = (A − αIn)−1 has 1
λi−α as its dominant eigenvalue and we can use the power method

to approximate an eigenvector and the Rayleigh quotient to approximate the eigenvalue 1
λi−α , and

hence approximate λi.

Activity 19.4. Let A = 1
8

 7 3 3
30 22 −10
15 −21 11

.
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(a) Apply the power method to the matrix B = (A− I3)−1 with initial vector x0 = [1 0 0]T to
fill in Table 19.1 (to four decimal places). Use this information to estimate an eigenvalue
for A and a corresponding eigenvector.

k 10 15 20

xk

xT
kAxk
xT
kxk

Table 19.1: Applying the power method to (A− I3)−1.

(b) Applying the power method to the matrix B = (A − 0I3)−1 with initial vector x0 =
[1 0 0]T yields the information in Table 19.2 (to four decimal places). Use this information
to estimate an eigenvalue for A and a corresponding eigenvector.

k 10 15 20

xk


0.3344

−0.6677

−1.0000




−0.3333

0.6666

1.0000




0.3333

−0.6666

−1.0000


xT
kAxk
xT
kxk

−1.0014 −1.0000 −1.0000

Table 19.2: Applying the power method to (A− 0I3)−1.

(c) Applying the power method to the matrix B = (A − 5I3)−1 with initial vector x0 =
[1 0 0]T yields the information in Table 19.3 (to four decimal places). Use this information
to estimate an eigenvalue for A and a corresponding eigenvector.

Examples

What follows are worked examples that use the concepts from this section.

Example 19.1. Let A =

 1 2 3
4 5 6
7 8 9

.

(a) Approximate the dominant eigenvalue of A accurate to two decimal places using the power
method. Use technology as appropriate.
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k 10 15 20

xk


0.0000

1.0000

−1.0000




0.0000

−1.0000

1.0000




0.0000

1.0000

−1.0000


xT
kAxk
xT
kxk

−1.0000 −1.0000 −1.0000

Table 19.3: Applying the power method to (A− 5I3)−1.

(b) Find the characteristic polynomial p(λ) of A. Then find the the root of p(λ) farthest from
the origin. Compare to the result of part (a). Use technology as appropriate.

Example Solution.

(a) We use technology to calculate the scaled vectorsAkx0 for values of k until the components
don’t change in the second decimal place. We start with the seed x0 = [1 1 1]T. For
example, to two decimal places we have xk = [0.28 0.64 1.00]T for k ≥ 20. So we suspect
that [0.28 0.64 1.00]T is close to a dominant eigenvector for A.

For the dominant eigenvalue, we can calculate the Rayleigh quotients (Axk)·xk
xk·xk until they

do not change to two decimal places. For k ≥ 4, our Rayleigh quotients are all (to two
decimal places) equal to 16.12. So we expect that the dominant eigenvalue of A is close to
16.12. Notice that

A[0.28 0.64 1.00]T = [4.56 10.32 16.08]T,

which is not far off from 16.12[0.28 0.64 1.00]T.

(b) The characteristic polynomial of A is

p(λ) = −λ3 + 15λ2 + 18λ = −λ(λ2 − 15λ− 18).

The quadratic formula gives the nonzero roots of p(λ) as

15±
√

152 + 4(18)

2
=

15± 3
√

33

2
.

The roots farthest from the origin is approximately 16.12, as was also calculated in part (a).

Example 19.2. Let A =

 2 1 0
1 3 1
0 1 2

.

(a) Use the power method to approximate the dominant eigenvalue and a corresponding eigen-
vector (using scaling) accurate to two decimal places. Use x0 = [1 1 1]T as the seed.
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(b) Determine the exact value of the dominant eigenvalue ofA and compare to your result from
part (a).

(c) Approximate the remaining eigenvalues of A using the inverse power method. (Hint: Try
α = 0.5 and α = 1.8.)

Example Solution.

(a) We use technology to calculate the scaled vectorsAkx0 for values of k until the components
don’t change in the second decimal place. For example, to two decimal places we have
xk = [0.50 1.00 0.50]T for k ≥ 4. So we suspect that

[
1
2 1 1

2

]T is a dominant eigenvector
for A.

For the dominant eigenvalue, we can calculate the Rayleigh quotients (Axk)·xk
xk·xk until they

do not change to two decimal places. For k ≥ 2, our Rayleigh quotients are all (to two
decimal places) equal to 4. So we expect that the dominant eigenvalue of A is 4. We could
also use the fact that

A

[
1

2
1

1

2

]T
= [2 4 2]T = 4

[
1

2
1

1

2

]T
to see that

[
1
2 1 1

2

]T is a dominant eigenvector for A with eigenvalue 4.

(b) Technology shows that the characteristic polynomial of A− λI3 is

p(λ) = −λ3 + 7λ2 − 14λ+ 8 = −(λ− 1)(λ− 2)(λ− 4).

We can see from the characteristic polynomial that 4 is the dominant eigenvalue of A.

(c) Applying the power method to B = (A − 0.5I3)−1 with seed x0 = [1 1 1]T gives xk ≈
[0.50 1.00 0.50]T for k ≥ 5, with Rayleigh quotients of 2 (to several decimal places). So 2
is the dominant eigenvalue of B. But 1

λ−0.5 is also the dominant eigenvalue of B, where λ
is the corresponding eigenvalue of A. . So to find λ, we note that 1

λ−0.5 = 2 implies that
λ = 1 is an eigenvalue of A.

Now applying the power method to B = (A − 1.8I3)−1 with seed x0 = [1 1 1]T gives
xk ≈ [1.00 − 1.00 1.00]T for large enough k, with Rayleigh quotients of 5 (to several
decimal places). To find the corresponding eigenvalue λ for A, we note that 1

λ−1.8 = 5, or
λ = 2 is an eigenvalue of A.

Admittedly, this method is very limited. Finding good choices for α often depends on
having some information about the eigenvalues of A. Choosing α close to an eigenvalue
provides the best chance of obtaining that eigenvalue.

Summary

• The power method is an iterative method that can be used to approximate the dominant eigen-
value of an n × n matrix A that has n linearly independent eigenvectors and a dominant
eigenvalue.
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• To use the power method we start with a seed x0 and then calculate the sequence {xk} of
vectors, where xk = Axk−1. If x0 is chosen well, then the sequence {xk} converges to a
dominant eigenvector of A.

• If A is an n × n matrix with eigenvalues λ1, λ2, . . ., λn, to approximate an eigenvector
of A corresponding to the eigenvalue λi, we apply the power method to the matrix B =

(A− αIn)−1, where α is not a eigenvalue of A and
∣∣∣ 1
λi−α

∣∣∣ > ∣∣∣ 1
λj−α

∣∣∣ for any j 6= i.

Exercises

(1) Let A =

[
1 2
2 1

]
. Let x0 = [1 0]T.

(a) Find the eigenvalues and corresponding eigenvectors for A.

(b) Use appropriate technology to calculate xk = Akx0 for k up to 10. Compare to a
dominant eigenvector for A.

(c) Use the eigenvectors from part (b) to approximate the dominant eigenvalue for A.
Compare to the exact value of the dominant eigenvalue of A.

(d) Assume that the other eigenvalue forA is close to 0. Apply the inverse power method
and compare the results to the remaining eigenvalue and eigenvectors for A.

(2) Let A =

 1 2 0
−2 1 2

1 3 1

. Use the power method to approximate a dominant eigenvector for

A. Use x0 = [1 1 1]T as the seed. Then approximate the dominant eigenvalue of A.

(3) Let A =

[
3 −1
−1 3

]
. Use the power method starting with x0 = [1 1]T. Explain why the

method fails in this case to approximate a dominant eigenvector, and how you could adjust
the seed to make the process work.

(4) Let A =

[
0 1
1 0

]
.

(a) Find the eigenvalues and an eigenvector for each eigenvalue.

(b) Apply the power method with an initial starting vector x0 = [0 1]T. What is the
resulting sequence?

(c) Use equation (19.3) to explain the sequence you found in part (b).

(5) Let A =

[
2 6
5 3

]
. Fill in the entries in Table 19.4, where xk is the kth approximation to a

dominant eigenvector using the power method, starting with the seed x0 = [1 0]T. Compare
the results of this table to the eigenvalues of A and limk→∞

xk+1·xk
xk·xk . What do you notice?

(6) Let A =

[
4 −5
2 15

]
. The power method will approximate the dominant eigenvalue λ = 14.

In this exercise we explore what happens if we apply the power method to A−1.
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v x0 x1 x2 x3 x4 x5

vTAv
vTv

v x6 x7 x8 x9 x10 x11

vTAv
vTv

Table 19.4: Values of the Rayleigh quotient.

(a) Apply the power method to A−1 to approximate the dominant eigenvalue of A−1.
Use [1 1]T as the seed. How is this eigenvalue related to an eigenvalue of A?

(b) Explain in general why applying the power method to the inverse of an invertible
matrix B might give an approximation to an eigenvalue of B of smallest magnitude.
When might this not work?

(7) There are other algebraic methods that do not rely on the determinant of a matrix that can be
used to find eigenvalues of a matrix. We examine one such method in this exercise. Let A be
any n× n matrix, and let v be any vector in Rn.

(a) Explain why the vectors
v, Av, A2v, . . . , Anv

are linearly independent.

(b) Let c0, c1, . . ., cn be scalars, not all 0, so that

c0v + c1Av + c2A
2v + · · ·+ cnA

nv = 0.

Explain why there must be a smallest positive integer k so that there are scalars a0,
a1, . . ., ak with ak 6= 0. such that

a0v + a1Av + a2A
2v + · · ·+ akA

kv = 0.

(c) Let
q(t) = a0 + a1t+ a2t

2 + · · ·+ akt
k.

Then
q(A) = a0 + a1A+ a2A

2 + · · ·+ akA
k

and

q(A)v = (a0 + a1A+ a2A
2 + · · ·+ akA

k)v

= a0v + a1Av + a2A
2v + · · ·+ akA

kv

= 0.

Suppose the polynomial q(t) has a linear factor, say q(t) = (t − λ)Q(t) for some
degree k−1 polynomialQ(t). Explain why, ifQ(A)v is non-zero, λ is an eigenvalue
of A with eigenvector Q(A)v.
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(d) This method allows us to find certain eigenvalues and eigenvectors, the roots of
the polynomial q(t). Any other eigenvector must lie outside the eigenspaces we
have already found, so repeating the process with a vector v not in any of the
known eigenspaces will produce different eigenvalues and eigenvectors. Let A = 2 2 −1

2 2 2
0 0 6

.

i. Find the polynomial q(t). Use v = [1 1 1]T.
ii. Find all of the roots of q(t).

iii. For each root λ of q(t), find the polynomial Q(t) and use this polynomial to
determine an eigenvector of A. Verify your work.

(8) We don’t need to use the Rayleigh quotients to approximate the dominant eigenvalue of a
matrix A if we instead keep track of the scaling factors. Recall that the scaling in the power
method can be used to make the magnitudes of the successive approximations smaller and
easier to work with. Let A be an n × n matrix and begin with a non-zero seed v0. We
now want to keep track of the scaling factors, so let α0 be the component of v0 with largest
absolute value and let x0 = 1

|α0|v0. For k ≥ 0, let vk = Axk−1, let αk be the component of
vk with largest absolute value and let xk = 1

αk
vk.

(a) Let A =

[
0 1
−8 6

]
. Use x0 = [1 1]T as the seed and calculate αk for k from 1 to

10. Compare to the dominant eigenvalue of A.

(b) Assume that for large k the vectors xk approach a dominant eigenvector with dom-
inant eigenvalue λ. Show now in general that the sequence of scaling factors αk
approaches λ.

(9) Let A be an n× n matrix and let α be a scalar that is not an eigenvalue of A. Suppose that x
is an eigenvector of B = (A− αIn)−1 with eigenvalue β. Find an eigenvalue of A in terms
of β and α with corresponding eigenvector x.

(10) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The largest eigenvalue of a matrix is a dominant eigenvalue.

(b) True/False If an n × n matrix A has n linearly independent eigenvectors and a
dominant eigenvalue, then the sequence {Akx0} converges to a dominant eigenvector
of A for any initial vector x0.

(c) True/False If λ is an eigenvalue of an n× n matrix A and α is not an eigenvalue of
A, then λ− α is an eigenvalue of A− αIn.

(d) True/False Every square matrix has a dominant eigenvalue.

Project: Managing a Sheep Herd

Sheep farming is a significant industry in New Zealand. New Zealand is reported to have the
highest density of sheep in the world. Sheep can begin to reproduce after one year, and give birth
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only once per year. Table 19.5 gives Birth and Survival Rates for Female New Zealand Sheep (from
G. Caughley, “Parameters for Seasonally Breeding Populations,” Ecology, 48, (1967), 834-839).
Since sheep hardly ever live past 12 years, we will only consider the population through 12 years.

Age (years) Birth Rate Survival Rate
0-1 0.000 0.845
1-2 0.045 0.975
2-3 0.391 0.965
3-4 0.472 0.950
4-5 0.484 0.926
5-6 0.546 0.895
6-7 0.543 0.850
7-8 0.502 0.786
8-9 0.468 0.691
9-10 0.459 0.561
10-11 0.433 0.370
11-12 0.421 0.000

Table 19.5: New Zealand female sheep data by age group.

As sheep reproduce, they add to the 0-1 sheep (lamb) population. The potential to produce
offspring is called fecundity (derived from the word fecund which generally refers to reproductive
ability) and determines how many lamb are added to the population. Let Fk (the fecundity rate) be
the rate at which females in age class k give birth to female offspring. Not all members of a given
age group survive to the next age groups, so let sk be the fraction of individuals that survives from
age group k to age group k + 1. With these ideas in mind, we can create a life cycle chart as in
Figure 19.2 that illustrates how the population of sheep changes on a farm (for the sake of space,
we illustrate with four age classes).

F2

F3

F4

1 2 3 4
s1 s2 s3

F1

Figure 19.2: Life cycle with four age classes.

To model the sheep population, we need a few variables. Let n(0)
1 be the number of sheep in

age group 0-1, n(0)
2 the number in age group 1-2, n3 the number in age group 2-3 and, in general,

n
(0)
k the number of sheep in age group (k − 1)-k at some initial time (time 0), and let

x0 =
[
n

(0)
1 n

(0)
2 n

(0)
3 · · · n(0)

12

]T
.
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We wish to determine the populations in the different groups after one year. Let

x1 =
[
n

(1)
1 n

(1)
2 n

(1)
3 · · · n(1)

12

]T
,

where n(1)
1 denotes the number of sheep in age group 0-1, n(1)

2 the number of sheep in age group
1-2 and, in general, n(1)

k the number of tilapia in age group (k − 1)-k after one year.

Project Activity 19.1. Table 19.5 shows that, on average, each female in age group 1-2 produces
0.045 female offspring in a year. Since there are n2 females in age group 1-2, the lamb population
increases by 0.045n2 in a year.

(a) Continue this analysis to explain why

n
(1)
1 = 0.045n2 + 0.391n3 + 0.472n4 + 0.484n5 + 0.546n6 + 0.543n7

+ 0.502n8 + 0.468n9 + 0.459n10 + 0.433n11 + 0.421n12.

(b) Explain why n(1)
2 = 0.845n1.

(c) Now explain why
x1 = Lx0, (19.5)

where L is the matrix

0 0.045 0.391 0.472 0.484 0.546 0.543 0.502 0.468 0.459 0.433 0.421
0.845 0 0 0 0 0 0 0 0 0 0 0

0 0.975 0 0 0 0 0 0 0 0 0 0
0 0 0.965 0 0 0 0 0 0 0 0 0
0 0 0 0.950 0 0 0 0 0 0 0 0
0 0 0 0 0.926 0 0 0 0 0 0 0
0 0 0 0 0 0.895 0 0 0 0 0 0
0 0 0 0 0 0 0.850 0 0 0 0 0
0 0 0 0 0 0 0 0.786 0 0 0 0
0 0 0 0 0 0 0 0 0.691 0 0 0
0 0 0 0 0 0 0 0 0 0.561 0 0
0 0 0 0 0 0 0 0 0 0 0.370 0


. (19.6)

Notice that our matrix L has the form

F1 F2 F3 · · · Fn−1 Fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
0 0 s3 · · · 0 0

. . .
0 0 0 · · · sn−1 0


.

Such a matrix is called a Leslie matrix.

Leslie matrices have certain useful properties, and one eigenvalue of a Leslie matrix can tell us
a lot about the long-term behavior of the situation being modeled. You can take these properties as
fact unless otherwise directed.

(1) A Leslie matrix L has a unique positive eigenvalue λ1 with a corresponding eigenvector v1

whose entries are all positive.
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(2) If λi (i > 1) is any other eigenvalue (real or complex) of L, then |λi| ≤ λ1. If λ1 is the largest
magnitude eigenvalue of a matrix L, we call λ1 a dominant eigenvalue of L.

(3) If any two successive entries in the first row of L are both positive, then |λi| < λ1 for every
i > 1. In this case we say that λ1 is a strictly dominant eigenvalue ofL. In a Leslie model, this
happens when the females in two successive age classes are fertile, which is almost always
the case.

(4) If λ1 is a strictly dominant eigenvalue, then xk is approximately a scalar multiple of v1 for
large values of k, regardless of the initial state x0. In other words, large state vectors are close
to eigenvectors for λ1.

We can use these properties to determine the long-term behavior of the sheep herd.

Project Activity 19.2. Assume that L is defined by (19.6), and let

xm =
[
n

(m)
1 n

(m)
2 n

(m)
3 · · · n(m)

12

]T
,

where n(m)
1 denotes the number of sheep in age group 0-1, n(m)

2 the number of sheep in age group
1-2 and, in general, n(m)

k the number of sheep in age group (k − 1)-k after k years.

(a) Assume that x0 = [100 100 100 · · · 100]T. Use appropriate technology to calculate x22,
x23, x24, and x25. Round to the nearest whole number. What do you notice about the sheep
population? You may use the GeoGebra applet at https://www.geogebra.org/m/
yqss88xq.

(b) We can use the third and fourth properties of Leslie matrices to better understand the long-
term behavior of the sheep population. Since successive entries in the first row of the Leslie
matrix in (19.6) are positive, our Leslie matrix has a strictly dominant eigenvalue λ1. Given
the dimensions of our Leslie matrix, finding this dominant eigenvalue through algebraic
means is not feasible. Use the power method to approximate the dominant eigenvalue λ1

of the Leslie matrix in (19.6) to five decimal places. Explain your process. Then explain
how this dominant eigenvalue tells us that, unchecked, the sheep population grows at a rate
that is roughly exponential. What is the growth rate of this exponential growth? You may
use the GeoGebra applet at https://www.geogebra.org/m/yqss88xq.

Project Activity 19.2 indicates that, unchecked, the sheep population will grow without bound,
roughly exponentially with ratio equal to the dominant eigenvalue of our Leslie matrixL. Of course,
a sheep farmer cannot provide the physical environment or the resources to support an unlimited
population of sheep. In addition, most sheep farmers cannot support themselves only by shearing
sheep for the wool. Consequently, some harvesting of the sheep population each year for meat and
skin is necessary. A sustainable harvesting policy allows for the regular harvesting of some sheep
while maintaining the population at a stable level. It is necessary for the farmer to find an optimal
harvesting rate to attain this stable population and the following activity leads us through an analysis
of how such a harvesting rate can be determined.

Project Activity 19.3. The Leslie model can be modified to consider harvesting. It is possible to
harvest different age groups at different rates, and to harvest only some age groups and not others.

https://www.geogebra.org/m/yqss88xq
https://www.geogebra.org/m/yqss88xq
https://www.geogebra.org/m/yqss88xq
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In the case of sheep, it might make sense to only harvest from the youngest population since lamb
is more desirable than mutton and the lamb population grows the fastest. Assume that this is our
harvesting strategy and that we harvest our sheep from only the youngest age group at the start of
each year. Let h be the fraction of sheep we harvest from the youngest age group each year after
considering growth.

(a) If we begin with an initial population x0, then the state vector after births and expected
deaths is Lx0. Now we harvest. Explain why if we harvest a fraction h from the youngest
age group after considering growth, then the state vector after 1 year will be

x1 = Lx0 −HLx0,

where

H =



h 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.

(b) Our goal is to find a harvesting rate that will lead to a steady state in which the sheep
population remains the same each year. In other words, we want to find a value of h, if one
exists, that satisfies

x = Lx−HLx. (19.7)

Show that (19.7) is equivalent to the matrix equation

x = (I12 −H)Lx. (19.8)

(c) Use appropriate technology to experiment numerically with different values of h to find the
value you think gives the best uniform harvest rate. Explain your reasoning. You may use
the GeoGebra applet at https://www.geogebra.org/m/yqss88xq.

(d) Now we will use some algebra to find an equation that explicitly gives us the harvest rate in
the general setting. This will take a bit of work, but none of it is too difficult. To simplify
our work but yet illustrate the overall idea, let us consider the general 4 × 4 case with
arbitrary Leslie matrix

L =


F1 F2 F3 F4

s1 0 0 0
0 s2 0 0
0 0 s3 0

 .

https://www.geogebra.org/m/yqss88xq
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Recall that we want to find a value of h that satisfies (19.8) with H =


h 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Let x = [x1 x2 x3 x4]T.

i. Calculate the matrix product (I4 −H)L. Explain why this product is again a Leslie
matrix and why (I4 −H)L will have a dominant eigenvalue of 1.

ii. Now calculate (I4 −H)Lx and set it equal to x. Write down the resulting system of
4 equations that must be satisfied. Be sure that your first equation is

x1 = (1− h)F1x1 + (1− h)F2x2 + (1− h)F3x3 + (1− h)F4x4. (19.9)

iii. Equation (19.9) as written depends on the entries of the vector x, but we should be
able to arrive at a result that is independent of x. To see how we do this, we assume
the population of the youngest group is never 0, so we can divide both sides of (19.9)
by x1 to obtain

1 = (1− h)F1 + (1− h)F2
x2

x1
+ (1− h)F3

x3

x1
+ (1− h)F4

x4

x1
. (19.10)

Now we need to write the fractions x2
x1

, x3x1 , and x4
x1

so that they do not involve the xi.
Use the remaining equations in your system to show that

x2

x1
= s1

x3

x1
= s1s2

x4

x1
= s1s2s3.

iv. Now conclude that the harvesting value h must satisfy the equation

1 = (1− h)[F1 + F2s1 + F3s1s2 + F4s1s2s3]. (19.11)

The value R = F1 +F2s1 +F3s1s2 +F4s1s2s3 is called the net reproduction rate of
the population and turns out to be the average number of daughters born to a female
in her expected lifetime.

(e) Extend (19.11) to the 12 age group case of the sheep herd. Calculate the value of R for this
sheep herd and then find the value of h. Compare this h to the value you obtained through
experimentation earlier. Find the fraction of the lambs that should be harvested each year
and explain what the stable population state vector x tells us about the sheep population for
this harvesting policy.





Section 20

Complex Eigenvalues

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What properties do complex eigenvalues of a real matrix satisfy?

• What properties do complex eigenvectors of a real matrix satisfy?

• What is a rotation-scaling matrix?

• How do we find a rotation-scaling matrix within a matrix with complex
eigenvalues?

Application: The Gershgorin Disk Theorem

We have now seen different methods for calculating/approximating eigenvalues of a matrix. The
algebraic method using the characteristic polynomial can provide exact values, but only in cases
where the size of the matrix is small. Methods like the power method allow us to approximate
eigenvalues in many, but not all, cases. These approximation techniques can be made more efficient
if we have some idea of where the eigenvalues are. The Gershgorin Disc Theorem is a useful
tool that can quickly provide bounds on the location of eigenvalues using elementary calculations.
For example, using the Gershsgorin Disk Theorem we can quickly tell that the real parts of the
eigenvalues of the matrix  3 1 −1

0 −1 + i i
2 1 −2i


lie between −4 and 5 and the imaginary parts lie between −5 and 2. Even more, we can say that
the eigenvalues lie in the disks (called Gershgorin disks) shown in Figure 20.1. We will learn more
details about the Gershgorin Disk Theorem at the end of this section.

349
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Re(z)

Im(z)

3

−2i

−1+ i

Figure 20.1: Gershgorin disks.

Introduction

So far we have worked with real matrices whose eigenvalues are all real. However, the characteristic
polynomial of a matrix with real entries can have complex roots. In this section we investigate the
properties of these complex roots and their corresponding eigenvectors, how these complex eigen-
vectors are found, and the geometric interpretation of the transformations defined by matrices with
complex eigenvalues. Although we can consider matrices that have complex numbers as entries,
we will restrict ourselves to matrices with real entries.

Preview Activity 20.1. Let A =

[
2 4
−2 2

]
.

(1) Find the characteristic polynomial of A.

(2) Find the eigenvalues of A. You should get two complex numbers. How are these complex
numbers related?

(3) Find an eigenvector corresponding to each eigenvalue of A. You should obtain vectors with
complex entries.

Complex Eigenvalues

As you noticed in Preview Activity 20.1, the complex roots of the characteristic equation of a real
matrixA come in complex conjugate pairs. This should come as no surprise since we know through
our use of the quadratic formula that complex roots of (real) quadratic polynomials come in complex
conjugate pairs. More generally, if p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n is a polynomial with real

coefficients and z is a root of this polynomial, meaning p(z) = 0, then

0 = p(z) = a0 + a1z + a2z2 + · · ·+ anzn = a0 + a1z + a2z
2 + · · ·+ anz

n = p(z) .

Therefore, z is also a root of p(x).
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Activity 20.1. Let A =

[
0 −1
1 0

]
.

(a) The linear transformation T : R2 → R2 defined by T (x) = Ax is a rotation transformation.
What is the angle of rotation?

(b) Find the eigenvalues of A. For each eigenvalue, find an eigenvector.

In Preview Activity 20.1 and in Activity 20.1, you found that if v is an eigenvector of A corre-
sponding to λ, then v obtained by taking the complex conjugate of each entry in v is an eigenvector
of A corresponding to λ. Specifically, if v = u + iw where both u and w are real vectors is an
eigenvector of A, then so is v = u − iw. We can justify this property using matrix algebra as
follows:

Av = Av = Av = λv = λv .

In the first equality, we used the fact that A is a real matrix, so A = A. In all the other equalities,
we used the properties of the conjugation operation in complex numbers.

Rotation and Scaling Matrices

Recall that a rotation matrix is of the form

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
where the rotation is counterclockwise about the origin by an angle of θ radians. In Activity 20.1,
we considered the rotation matrix with angle π/2 in counterclockwise direction. We will soon see
that rotation matrices play an important role in the geometry of a matrix transformation for a matrix
that has complex eigenvalues. In this activity, we will restrict ourselves to the 2×2 case, but similar
arguments can be made in higher dimensions.

Activity 20.2. Let A =

[
1 1
−1 1

]
.

(a) Explain why A is not a rotation matrix.

(b) AlthoughA is not a rotation matrix, there is a rotation matrixB insideA. To find the matrix
B, factor out

√
2 from all entries ofA. In other words, writeA as a product of two matrices

in the form

A =

[ √
2 0

0
√

2

]
B .

(c) The B matrix is a rotation matrix with an appropriate θ. Find this θ.

(d) If we think about the product of two matrices as applying one transformation after another,
describe the effect of the matrix transformation defined by A geometrically.
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More generally, if we have a matrix A of the form A =

[
a −b
b a

]
, then

A =

[ √
a2 + b2 0

0
√
a2 + b2

] [ a√
a2+b2

−b√
a2+b2

b√
a2+b2

a√
a2+b2

]
.

The first matrix in the decomposition is a scaling matrix with a scaling factor of s =
√
a2 + b2. So

if s > 1, the transformation stretches vectors, and if s < 1, the transformation shrinks vectors. The
second matrix in the decomposition is a rotation matrix with angle θ such that cos(θ) = a√

a2+b2

and sin(θ) = b√
a2+b2

. This angle is also the angle between the positive x-axis and the vector

v =

[
a
b

]
. We will refer to the matrices of the form

[
a −b
b a

]
as rotation-scaling matrices.

Matrices with Complex Eigenvalues

Now we will investigate how a general 2 × 2 matrix with complex eigenvalues can be seen to be
similar (both in a linear algebra and a colloquial meaning) to a rotation-scaling matrix.

Activity 20.3. Let B =

[
1 −5
2 3

]
. The eigenvalues of B are 2 ± 3i. An eigenvector for the

eigenvalue 2 − 3i is v =

[
−5

1− 3i

]
. We will use this eigenvector to show that B is similar to a

rotation-scaling matrix.

(a) Any complex vector v can be written as v = u + iw where both u and w are real vectors.
What are these real vectors u and w for the eigenvector v above?

(b) Let P = [u w] be the matrix whose first column is the real part of v and whose second
column is the imaginary part of v (without the i). Find R = P−1BP .

(c) Express R as a product of a rotation and a scaling matrix. What is the factor of scaling?
What is the rotation angle?

In Activity 20.3, we saw that the matrix B with complex eigenvalues 2 ± 3i is similar to a
rotation-scaling matrix. Specifically R = P−1BP , where the columns of P are the real and imagi-
nary parts of an eigenvector ofB, is the rotation-scaling matrix with a factor of scaling by

√
22 + 32

and a rotation by angle θ = arccos( 2√
22+32

).

Does a similar decomposition result hold for a general 2× 2 matrix with complex eigenvalues?
We investigate this question in the next activity.

Activity 20.4. Let A be a 2 × 2 matrix with complex eigenvalue λ = a − bi, b 6= 0, and corre-
sponding complex eigenvector v = u + iw.

(a) Explain why Av = Au + iAw.

(b) Explain why λv = (au + bw) + i(aw − bu).
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(c) Use the previous two results to explain why

• Au = au + bw and
• Aw = aw − bu.

(d) Let P = [u w]. We will now show that AP = PR where R =

[
a −b
b a

]
.

i. Without any calculation, explain why

AP = [Au Aw].

ii. Recall that if M is an m× n matrix and x is an n× 1 vector, then the matrix product
Mx is a linear combination of the columns of M with weights the corresponding
entries of the vector x. Use this idea to show that

PR = [au + bw − bu + aw].

iii. Now explain why AP = PR.
iv. Assume for the moment that P is an invertible matrix. Show that A = PRP−1.

Your work in Activity 20.4 shows that any 2 × 2 matrix is similar to a rotation-scaling matrix
with a factor of scaling by

√
a2 + b2 and a rotation by angle θ = arccos( a√

a2+b2
) if b ≥ 0, and

θ = − arccos( a√
a2+b2

) if b < 0. Geometrically, this means that every 2×2 real matrix with complex
eigenvalues is just a scaled rotation (R) with respect to the basis B formed by u and w from the
complex eigenvector v. Multiplying by P−1 and P simply provides the change of basis from the
standard basis to the basis B, as we will see in detail when we learn about linear transformations.

Theorem 20.1. Let A be a real 2 × 2 matrix with complex eigenvalue a − bi and corresponding
eigenvector v = u + iw. Then

A = PRP−1 , where P = [u w] and R =

[
a −b
b a

]
.

The one fact that we have not yet addressed is why the matrix P = [u w] is invertible. We do
that now to complete the argument.

Let A be a real 2 × 2 matrix with Av = λv, where λ = a − bi, b 6= 0 and v = u + iw. To
show that u and w are linearly independent, we need to show that no nontrivial linear combination
of u and w can be the zero vector. Suppose

x1u + x2w = 0

for some scalars x1 and x2. We will show that x1 = x2 = 0. Assume to the contrary that one of
x1, x2 is not zero. First, assume x1 6= 0. Then u = −x2

x1
w. Let c = −x2

x1
. Then

Au = A(cw)

Au = cAw

au + bw = c(au− bw)

(a+ cb)u = (ca− b)w
(a+ cb)(cu) = (ca− b)w.
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So we must have (a+cb)c = ca−b. This equation simplifies to c2b = −b. Since b 6= 0, we conclude
that c2 = −1 which is impossible for a real constant c. Therefore, we cannot have x1 6= 0. A similar
argument (left to the reader) shows that x2 = 0. Thus we can conclude that u and w are linearly
independent.

Examples

What follows are worked examples that use the concepts from this section.

Example 20.2. Let A =

 0 1 0
−1 0 −1

1 1 1

.

(a) Without doing any computations, explain why not all of the eigenvalues of A can be com-
plex.

(b) Find all of the eigenvalues of A.

Example Solution.

(a) Since complex eigenvalues occur in conjugate pairs, the complex eigenvalues with nonzero
imaginary parts occur in pairs. Since A can have at most 3 different eigenvalues, at most
two of them can have nonzero imaginary parts. So at least one eigenvalue of A is real.

(b) For this matrixAwe haveA−λI3 =

 −λ 1 0
−1 −λ −1

1 1 −λ+ 1

. Using a cofactor expansion

along the first row gives us

det(A− λI3) = (−λ) ((−λ)(1− λ) + 1)− ((−1)(1− λ) + 1)

= −λ3 + λ2 − λ+ 1− λ− 1

= λ3 + λ2 − 2λ

= −λ(λ2 − λ+ 2).

The roots of the characteristic polynomial are λ = 0 and

λ =
1±

√
1− 4(2)

2
=

1

2
(1±

√
7i).

Example 20.3. Let A =

[
1 2
−1 3

]
. Find a rotation scaling matrix R that is similar to A. Identify

the rotation and scaling factor.

Example Solution. The eigenvalues of A are the roots of the characteristic polynomial

p(λ) = det(A− λI2)

= det

([
1− λ 2
−1 3− λ

])
= (1− λ)(3− λ) + 2

= λ2 − 4λ+ 5.
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The quadratic formula shows that the roots of p(λ) are

4±
√
−4

2
= 2± i.

To find an eigenvector for A with eigenvalue 2− i, we row reduce

A− (2− i)I3 =

[
−1 + i 2
−1 1 + i

]
to [

1 −i− 1
0 0

]
.

An eigenvector for A with eigenvalue 2− i is then

[1 + i 1]T = [1 1]T + i[1 0]T.

Letting P =

[
1 1
1 0

]
, we have

R = P−1AP =

[
2 −1
1 2

]
.

The scaling is determined by the determinant of R which is 5, and the angle θ of rotation satisfies
sin(θ) = 1

5 . This makes θ ≈ 0.2014 radians or approximately 11.5370◦ counterclockwise.

Summary

• For a real matrix, complex eigenvalues appear in conjugate pairs. Specifically, if λ = a+ ib
is an eigenvalue of a real matrix A, then λ = a− ib is also an eigenvalue of A.

• For a real matrix, if a v is an eigenvector corresponding to λ, then the vector v obtained by
taking the complex conjugate of each entry in v is an eigenvector corresponding to λ.

• The rotation-scaling matrix A =

[
a −b
b a

]
can be written as

[ √
a2 + b2 0

0
√
a2 + b2

] [ a√
a2+b2

−b√
a2+b2

b√
a2+b2

a√
a2+b2

]
.

This decomposition geometrically means that the transformation corresponding to A can be
viewed as a rotation by angle θ = arccos

(
a√

a2+b2

)
if b ≥ 0, or θ = − arccos

(
a√

a2+b2

)
if

b < 0, followed by a scaling by factor
√
a2 + b2.

• IfA is a real 2×2 matrix with complex eigenvalue a−bi and corresponding eigenvector v =

u + iw, then A is similar to the rotation-scaling matrix R =

[
a −b
b a

]
. More specifically,

A = PRP−1 , where P = [u w] .
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Exercises

(1) Find eigenvalues and eigenvectors of each of the following matrices.

(a)
[

2 4
−2 2

]
(b)

[
3 2
−1 1

]
(c)

[
1 −2
4 −3

]
(2) Find a rotation-scaling matrix where the rotation angle is θ = 3π/4 and scaling factor is less

than 1.

(3) Determine which rotation-scaling matrices have determinant equal to 1. Be as specific as
possible.

(4) Determine the rotation-scaling matrix inside the matrix
[

2 4
−2 2

]
.

(5) Find a real 2× 2 matrix with eigenvalue 1 + 2i.

(6) Find a real 2× 2 matrix which is not a rotation-scaling matrix with eigenvalue −1 + 2i.

(7) We have seen how to find the characteristic polynomial of an n × n matrix. In this exercise
we consider the revers question. That is, given a polynomial p(λ) of degree n, can we find
an n× n matrix whose characteristic polynomial is p(λ)?

(a) Find the characteristic polynomial of the 2 × 2 matrix C =

[
0 −a0

1 −a1

]
. Use this

result to find a real valued matrix whose eigenvalues are 1 + i and 1− i.
(b) Repeat part (a) by showing that −p(λ) = −

(
λ2 + a2λ

2 + a1λ+ a0

)
is the charac-

teristic polynomial of the 3× 3 matrix C =

 0 0 −a0

0 1 −a1

0 0 −a2

.

(c) We can generalize this argument. Prove, using mathematical induction, that the poly-
nomial

p(λ) = (−1)n
(
λn + an−1λ

n−1 + an−2λ
n−2 + · · ·+ a1λ+ a0

)
is the characteristic polynomial of the matrix

C =


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 1 −an−1

 .

The matrix C is called the companion matrix for p(λ).
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(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If 3− 4i is an eigenvalue of a real matrix, then so is 3 + 4i.

(b) True/False If 2 + 3i is an eigenvalue of a 3 × 3 real matrix A, then A has three
distinct eigenvalues.

(c) True/False Every 2 × 2 real matrix with complex eigenvalues is a rotation-scaling
matrix.

(d) True/False Every square matrix with real entries has real number eigenvalues.

(e) True/False If A is a 2 × 2 matrix with complex eigenvalues similar to a rotation-
scaling matrix R, the eigenvalues of A and R are the same.

(f) True/False IfA is a real matrix with complex eigenvalues, all eigenvectors ofAmust
be non-real.

Project: Understanding the Gershgorin Disk Theorem

To understand the Gershgorin Disk Theorem, we need to recall how to visualize a complex number
in the plane. Recall that a complex number z is a number of the form z = a + bi where a and
b are real numbers and i2 = −1. The number a is the real part of z, denoted as <(z), and b is
the imaginary part of z, denoted =(z). The set of all complex numbers is denoted C. We define
addition and multiplication on C as follows. For a+ bi, c+ di ∈ C,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Note that the product is what we would expect if we “expanded” the product in the normal way and
used the fact that i2 = −1. The set of complex numbers forms a field – that is, C satisfies all of the
same properties as R as stated in Theorem 4.2.

We can visualize the complex number a + bi in the plane as the point (a, b). Here we are
viewing the horizontal axis as the real axis and the vertical axis as the imaginary axis. The length
(or magnitude) of the complex number z = a+ bi, which we denote as |z|, is the distance from the
origin to z. So by the Pythagorean Theorem we have |a+ bi| =

√
a2 + b2. Note that the magnitude

of z = a+ bi can be written as a complex product

|z| =
√

(a+ bi)(a− bi).

The complex number a − bi is called the complex conjugate of z = a + bi and is denoted as z. A
few important properties of real numbers and their conjugates are the following. Let z = a+ bi and
w = c+ di be complex numbers. Then

• z + w = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = (a− bi) + (c− di) = z + w,

• zw = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i = (a− bi)(c− di) = zw,

• z = z,
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• |z| =
√
a2 + b2 ≥

√
a2 = |a| = |<(z)|,

• |z| =
√
a2 + b2 ≥

√
b2 = |b| = |=(z)|,

• |z| = |z|,

• |z| = 0 if and only if z = 0,

• If p(x) is a polynomial with real coefficients and the complex number z satisfies p(z) = 0,
then p (z) = 0 as well.

Using these facts we can show that the triangle inequality is true for complex numbers. That is,

|z + w| ≤ |z|+ |w|.

To see why, notice that

|z + w|2 = (z + w)(z + w)

= (z + w)(z + w)

= zz + zw + wz + ww

= zz + zw + zww + ww

= |z|2 + 2<(zw) + |w|2

≤ |z|2 + 2|zw|+ |w|2

= |z|2 + 2|z||w|+ |w|2

= (|z|+ |w|)2.

Since |z+w|, |z|, and |w| are all non-negative, taking square roots of both sides gives us |z+w| ≤
|z| + |w| as desired. We can extend this triangle inequality to any number of complex numbers.
That is, if z1, z2, . . ., zk are complex numbers, then

|z1 + z2 + · · ·+ zk| ≤ |z1|+ |z2|+ · · ·+ |zk|. (20.1)

We can prove Equation (20.1) by mathematical induction. We have already done the k = 2 case
and so we assume that Equation (20.1) is true for any sum of k complex numbers. Now suppose
that z1, z2, . . ., zk, zk+1 are complex numbers. Then

|z1 + z2 + · · ·+ zk + zk+1| = |(z1 + z2 + · · ·+ zk) + zk+1|
≤ |z1 + z2 + · · ·+ zk|+ |zk+1|
≤ (|z1|+ |z2|+ · · ·+ |zk|) + |zk+1|
= |z1|+ |z2|+ · · ·+ |zk|+ |zk+1|.

To prove the Gershgorin Disk Theorem, we will use the Levy-Desplanques Theorem, which
gives conditions that guarantee that a matrix is invertible. We illustrate with an example in the
following activity.

Project Activity 20.1. Let A =

[
3 2
−1 4

]
. Since det(A) 6= 0, we know that A is an invertible

matrix. Let us assume for a moment that we don’t know that A is invertible and try to determine
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if 0 is an eigenvalue of A. In other words, we want to know if there is a nonzero vector v so that
Av = 0. Assuming the existence of such a vector v = [v1 v2]T, for Av to be 0 it must be the case
that

3v1 + 2v2 = 0 and − v1 + 4v2 = 0.

Since the vector v is not the zero vector, at least one of v1, v2 is not zero. Note that if one of v1, v2

is zero, the so is the other. So we can assume that v1 and v2 are nonzero.

(a) Use the fact that 3v1 + 2v2 = 0 to show that |v2| > |v1|.

(b) Use the fact that −v1 + 4v2 = 0 to show that |v1| > |v2|. What conclusion can we draw
about whether 0 is an eigenvalue of A? Why does this mean that A is invertible?

What makes the arguments work in Project Activity 20.1 is that |3| > |2| and |4| > | − 1|. This
argument can be extended to larger matrices, as described in the following theorem.

Theorem 20.4 (Levy-Desplanques Theorem). Any square matrix A = [aij ] satisfying |aii| >∑
j 6=i |aij | for all i is invertible.

Proof. Let A = [aij ] be an n× n matrix satisfying |aii| >
∑

j 6=i |aij | for all i. Let us assume that
A is not invertible, that is that there is a vector v 6= 0 such that Av = 0. Let v = [v1 v2 · · · vn]
and t be between 1 and n so that |vt| ≥ |vi| for all i. That is, choose vt to be the component of v
with the largest absolute value.

Expanding the product Av using the row-column product along the tth row shows that

at1v1 + at2v2 + · · · atnvn = 0.

Solving for the att term gives us

attvt = −(at1v1 + at2v2 + · · · at(t−1)vt−1 + at(t+1)vt+1 + · · ·+ atnvn).

Then

|att||vt| = | − (at1v1 + at2v2 + · · · at(t−1)vt−1 + at(t+1)vt+1 + · · ·+ atnvn|
= |at1v1 + at2v2 + · · · at(t−1)vt−1 + at(t+1)vt+1 + · · ·+ atnvn|
≤ |at1||v1|+ |at2||v2|+ · · · |at(t−1)||vt−1|+ |at(t+1)||vt+1|+ · · ·+ |atn||vn|
≤ |at1||vt|+ |at2||vt|+ · · · |at(t−1)||vt|+ |at(t+1)||vt|+ · · ·+ |atn||vt|
= (|at1|+ |at2|+ · · · |at(t−1)|+ |at(t+1)|+ · · ·+ |atn|)|vt|.

Since |vt| 6= 0, we cancel the |vt| term to conclude that

|att| ≤ |at1|+ |at2|+ · · · |at(t−1)|+ |at(t+1)|+ · · ·+ |atn|.

But this contradicts the condition that |aii| >
∑

j 6=i |aij | for all i. We conclude that 0 is not an
eigenvalue for A and A is invertible. �

Any matrix A = [aij ] satisfying the condition of the Levy-Desplanques Theorem is given a
special name.
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Definition 20.5. A square matrix A = [aij ] is strictly diagonally dominant if |aii| >
∑

j 6=i |aij |
for all i.

So any strictly diagonally dominant matrix is invertible. A quick glance can show that a matrix
is strictly diagonally dominant. For example, since |3| > |1| + | − 1|, |12| > |5| + |6|, and
| − 8| < | − 2|+ |4|, the matrix

A =

 3 1 −1
5 12 6
−2 4 −8


is strictly diagonally dominant and therefore invertible. However, just because a matrix is not
strictly diagonally dominant, it does not follow that the matrix is non-invertible. For example, the

matrix B =

[
1 2
0 1

]
is invertible, but not strictly diagonally dominant.

Now we can address the Gershgorin Disk Theorem.

Project Activity 20.2. Let A be an arbitrary n×n matrix and assume that λ is an eigenvalue of A.

(a) Explain why the matrix A− λI is singular.

(b) What does the Levy-Desplanques Theorem tell us about the matrix A− λI?

(c) Explain how we can conclude the Gershgorin Disk Theorem.

Theorem 20.6 (Gershgorin Disk Theorem). LetA = [aij ] be an n×nmatrix with complex
entries. Then every eigenvalue of A lies in one of the Gershgorin discs

{z ∈ C : |z − aii| ≤ ri},

where ri =
∑

j 6=i |aij |.

Based on this theorem, we define a Gershgorin disk to beD(aii, ri), where ri =
∑

j 6=i |aij |.

(d) Use the Gershgorin Disk Theorem to give estimates on the locations of the eigenvalues of

the matrix A =

[
−1 2
−3 2

]
.

The Gershgorin Disk Theorem has a consequence that gives additional information about the
eigenvalues if some of the Gershgorin disks do not overlap.

Theorem 20.7. If S is a union of m Gershgorin disks of a matrix A such that S does not intersect
any other Gershgorin disk, then S contains exactly m eigenvalues (counting multiplicities) of A.

Proof. Most proofs of this theorem require some results from topology. For that reason, we will
not present a completely rigorous proof but rather give the highlights. Let A = [aij ] be an n × n
matrix. Let Di be a collection of Gershgorin disks of A for 1 ≤ i ≤ m such that S = ∪1≤i≤mDi

does not intersect any other Gershgorin disk of A, and let S′ be the union of the Gershgorin disks
of A that are different from the Di. Note that S ∩ S′ = ∅. Let C be the matrix whose ith column is
aiiei, that is C is the diagonal matrix whose diagonal entries are the corresponding diagonal entries
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of A. Note that the eigenvalues of C are aii and the Gershgorin disks of C are just the points aii.
So our theorem is true for this matrix C. To prove the result, we build a continuum of matrices
from C to A as follows: let B = A − C (so that B is the matrix whose off-diagonal entries are
those of A and whose diagonal entries are 0), and let A(t) = tB + C for t in the interval [0, 1].
Note that A(1) = A. Since the diagonal entries of A(t) are the same as those of A, the Gershgorin
disks of A(t) have the same centers as the corresponding Gershgorin disks of A, while the radii
of the Gershgorin disks of A(t) are those of A but scaled by t. So the Gershgorin disks of A(t)
increase from points (the aii) to the Gershgorin disks of A as t increases from 0 to 1. While the
centers of the disks all remain fixed, it is important to recognize that the eigenvalues of A(t) move
as t changes. An illustration of this is shown in Figure 20.2 with the eigenvalues as the black points

and the changing Gershgorin disks dashed in magenta, using the matrix
[
i 1

2
1 −2 + i

]
. We can

learn about how the eigenvalues move with the characteristic polynomial.

-3 -2 -1

1

2

Re(z)

Im(z)

Figure 20.2: How eigenvalues move.

Let p(t, x) be the characteristic polynomial of A(t). Note that these characteristic polynomials
are functions of both t and x. Since polynomials are continuous functions, their roots (the eigen-
values of A(t)) are continuous for t ∈ [0, 1] as well. Let λ(t) be an eigenvalue of A(t). Note that
λ(1) is an eigenvalue of A, and λ(0) is one of the aii and is therefore in S. We will argue that λ(t)
is in S for every value of t in [0, 1]. Let ri be the radius of Di and let D(t)i be the Gershgorin
disk of A(t) with the same center as Di and radius r(t)i = tri. Let S(t) = ∪1≤i≤mD(s)i. Since
r(s)i ≤ ri, it follows that D(s)i ⊆ Di and so S(t) ∩ S′ = ∅ as well. From topology, we know that
since the disks Di are closed, the union S of these disks is also closed. Similarly, S(t) and S′ are
closed. Thus, λ(t) is continuous in a closed set and so does not leave the set. Thus, λ(t) is in S for
every value of t in [0, 1].

�





Section 21

Properties of Determinants

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How do elementary row operations change the determinant?

• How can we represent elementary row operations via matrix multiplica-
tion?

• How can we use elementary row operations to calculate the determinant
more efficiently?

• What is the Cramer’s rule for the explicit formula for the inverse of a ma-
trix?

• How can we interpret determinants from a geometric perspective?

Introduction

This section is different than others in that it contains mainly proofs of previously stated results and
only a little new material. Consequently, there is no application attached to this section.

We have seen that an important property of the determinant is that it provides an easy criteria for
the invertibility of a matrix. As a result, we obtained an algebraic method for finding the eigenvalues
of a matrix, using the characteristic equation. In this section, we will investigate other properties of
the determinant related to how elementary row operations change the determinant. These properties
of the determinant will help us evaluate the determinant in a more efficient way compared to using
the cofactor expansion method, which is computationally intensive for large n values due to it being
a recursive method. Finally, we will derive a geometrical interpretation of the determinant.

Preview Activity 21.1.

363
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(1) We first consider how the determinant changes if we multiply a row of the matrix by a con-
stant.

(a) Let A =

[
2 3
1 4

]
. Pick a few different values for the constant k and compare the

determinant of A and that of
[

2k 3k
1 4

]
. What do you conjecture that the effect of

multiplying a row by a constant on the determinant is?

(b) If we want to make sure our conjecture is valid for any 2 × 2 matrix, we need to

show that for A =

[
a b
c d

]
, the relationship between det(A) and the determinant

of
[
a · k b · k
c d

]
follows our conjecture. We should also check that the relation-

ship between det(A) and the determinant of
[

a b
c · k d · k

]
follows our conjecture.

Verify this.

(c) Make a similar conjecture for what happens to the determinant when a row of a 3×3
matrix A is multiplied by a constant k, and explain why your conjecture is true using
the cofactor expansion definition of the determinant.

(2) The second type of elementary row operation we consider is row swapping.

(a) Take a general 2× 2 matrix A =

[
a b
c d

]
and determine how row swapping effects

the determinant.

(b) Now choose a few different 3 × 3 matrices and see how row swapping changes the
determinant in these matrices by evaluating the determinant with a calculator or any
other appropriate technology.

(c) Based on your results so far, conjecture how row swapping changes the determinant
in general.

(3) The last type of elementary row operation is adding a multiple of a row to another. Determine
the effect of this operation on a 2× 2 matrix by evaluating the determinant of a general 2× 2
matrix after a multiple of one row is added to the other row.

(4) All of the elementary row operations we discussed above can be achieved by matrix mul-
tiplication with elementary matrices. For each of the following elementary matrices, de-
termine what elementary operation it corresponds to by calculating the product EA, where

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 is a general 3× 3 matrix.

(a) E =

 0 1 0
1 0 0
0 0 1

 (b) E =

 1 0 0
0 3 0
0 0 1

 (c) E =

 1 0 0
0 1 2
0 0 1


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Elementary Row Operations and Their Effects on the Determinant

In Preview Activity 21.1, we conjectured how elementary row operations affect the determinant of
a matrix. In the following activity, we prove how the determinant changes when a row is multiplied
by a constant using the cofactor expansion definition of the determinant.

Activity 21.1. In this activity, assume that the determinant of A can be determined by a cofactor
expansion along any row or column. (We will prove this result independently later in this section.)
Consider an arbitrary n× n matrix A = [aij ].

(a)

(b) Write the expression for det(A) using the cofactor expansion along the second row.

(c) Let B be obtained by multiplying the second row of A by k. Write the expression for
det(B) if the cofactor expansion along the second row is used.

(d) Use the expressions you found above, to express det(B) in terms of det(A).

(e) Explain how this method generalizes to prove the relationship between the determinant of
a matrix A and that of the matrix obtained by multiplying a row by a constant k.

Your work in Activity 21.1 proves the first part of the following theorem on how elementary
row operations change the determinant of a matrix.

Theorem 21.1. Let A be a square matrix.

(1) If B is obtained by multiplying a row of A by a constant k, then det(B) = k det(A).

(2) If B is obtained by swapping two rows of A, then det(B) = −det(A).

(3) If B is obtained by adding a multiple of a row of A to another, then det(B) = det(A).

In the next section, we will use elementary matrices to prove the last two properties of Theorem
21.1.

Elementary Matrices

As we saw in Preview Activity 21.1, elementary row operations can be achieved by multiplication
by elementary matrices.

Definition 21.2. An elementary matrix is a matrix obtained by performing a single elementary
row operation on an identity matrix.

The following elementary matrices correspond, respectively, to an elementary row operation
which swaps rows 2 and 4; an elementary row operation which multiplies the third row by 5; and an
elementary row operation which adds four times the third row to the first row on any 4× 4 matrix:
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E1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , E2 =


1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

 , and E3 =


1 0 4 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
To obtain an elementary matrix corresponding an elementary row operation, we simply per-

form the elementary row operation on the identity matrix. For example, E1 above is obtained by
swapping rows 2 and 4 of the identity matrix.

With the use of elementary matrices, we can now prove the result about how the determinant
is affected by elementary row operations. We first rewrite Theorem 21.1 in terms of elementary
matrices:

Theorem 21.3. Let A be an n × n matrix. If E is an n × n elementary matrix, then det(EA) =
det(E) det(A) where

det(E) =


r if E corresponds to multiplying a row by r
−1 if E corresponds to swapping two rows

1 if E corresponds to adding a multiple of a row to another.

Notes on Theorem 21.3. An elementary matrix E obtained by multiplying a row by r is a diagonal
matrix with one r along the diagonal and the rest 1s, so det(E) = r. Similarly, an elementary
matrix E obtained by adding a multiple of a row to another is a triangular matrix with 1s along
the diagonal, so det(E) = 1. The fact that the the determinant of an elementary matrix obtained
by swapping two rows is −1 is a bit more complicated and is verified independently later in this
section. Also, the proof of 21.3 depends on the fact that the cofactor expansion of a matrix is the
same along any two rows. A proof of this can also be found later in this section.

Proof of Theorem 21.3. We will prove the result by induction on n, the size of the matrix A. We
verified these results in Preview Activity 21.1 for n = 2 using elementary row operations. The
elementary matrix versions follow immediately.

Now assume the theorem is true for k × k matrices with k ≥ 2 and consider an n × n matrix
A where n = k + 1. If E is an n × n elementary matrix, we want to show that det(EA) =
det(E) det(A). Let EA = B. (Although it is an abuse of language, we will refer to both the
elementary matrix and the elementary row operation corresponding to it by E.)

When finding det(B) = det(EA) we will use a cofactor expansion along a row which is not
affected by the elementary row operation E. Since E affects at most two rows and A has n ≥ 3
rows, it is possible to find such a row, say row i. The cofactor expansion along row i of B is

bi1(−1)i+1 det(Bi1) + bi2(−1)i+2 det(Bi2) + · · ·+ bin(−1)i+n det(Bin) . (21.1)

Since we chose a row of A which was not affected by the elementary row operation, it follows
that bij = aij for 1 ≤ j ≤ n. Also, the matrix Bij obtained by removing row i and column j from
matrix B = EA can be obtained from Aij by an elementary row operation of the same type as E.
Hence there is an elementary matrix Ek of the same type as E with Bij = EkAij . Therefore, by
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induction, det(Bij) = det(Ek) det(Aij) and det(Ek) is equal to 1, -1 or r depending on the type
of elementary row operation. If we substitute this information into equation (21.1), we obtain

det(B) = ai1(−1)i+1 det(Ek) det(Ai1) + ai2(−1)i+2 det(Ek) det(Ai2)

+ · · ·+ ain(−1)i+n det(Ek) det(Ain)

= det(Ek) det(A) .

This equation proves det(EA) = det(Ek) det(A) for any n × n matrix A where Ek is the corre-
sponding elementary row operation on the k × k matrices obtained in the cofactor expansion.

The proof of the inductive step will be finished if we show that det(Ek) = det(E). This
equality follows if we let A = In in det(EA) = det(Ek) det(A). Therefore, det(E) is equal to
r, or 1, or −1, depending on the type of the elementary row operation E since the same is true of
det(Ek) by inductive hypothesis.

Therefore, by the principle of induction, the claim is true for every n ≥ 2. �

As a corollary of this theorem, we can prove the multiplicativity of determinants:

Theorem 21.4. Let A and B be n× n matrices. Then

det(AB) = det(A) det(B) .

Proof. If A is non-invertible, then AB is also non-invertible and both det(A) and det(AB) are 0,
proving the equality in this case.

Suppose now that A is invertible. By the Invertible Matrix Theorem, we know that A is row
equivalent to In. Expressed in terms of elementary matrices, this means that there are elementary
matrices E1, E2, . . . , E` such that

A = E1E2 · · ·E`In = E1E2 · · ·E` . (21.2)

Therefore, repeatedly applying Theorem 21.3, we find that

det(A) = det(E1) det(E2) · · · det(E`) . (21.3)

If we multiply equation (21.2) by B on the right, we obtain

AB = E1E2 · · ·E`B .

Again, by repeatedly applying Theorem 21.3 with this product of matrices, we find

det(AB) = det(E1E2 · · ·E`B) = det(E1) det(E2) · · · det(E`) det(B) .

From equation (21.3), the product of det(Ei)’s equals det(A), so

det(AB) = det(A) det(B)

which finishes the proof of the theorem. �

We can use the multiplicative property of the determinant and the determinants of elementary
matrices to calculate the determinant of a matrix in a more efficient way than using the cofactor
expansion. The next activity provides an example.
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Activity 21.2. Let A =

 1 1 2
2 2 6
−1 2 1

.

(a) Use elementary row operations to reduce A to a row echelon form. Keep track of the
elementary row operation you use.

(b) Taking into account how elementary row operations affect the determinant, use the row
echelon form of A to calculate det(A).

Your work in Activity 21.2 provides an efficient method for calculating the determinant. If A is
a square matrix, we use row operations given by elementary matrices E1, E2, . . ., Ek to row reduce
A to row echelon form R. That is

R = EkEk−1 · · ·E2E1A.

We know det(Ei) for each i, and since R is a triangular matrix we can find its determinant. Then

det(A) = det(E1)−1 det(E2)−1 · · · det(E2)−1 det(R).

In other words, if we keep track of how the row operations affect the determinant, we can calculate
the determinant of a matrix A using row operations.

Activity 21.3. Theorems 21.3 and 21.4 can be used to prove the following (part c of Theorem 16.2)
thatA is invertible if and only if det(A) 6= 0. We see how in this activity. LetA be an n×nmatrix.
We can row reduce A to its reduced row echelon form R by elementary matrices E1, E2, . . ., Ek
so that

R = E1E2 · · ·EkA.

(a) Suppose A is invertible. What, then, is R? What is det(R)? Can the determinant of an
elementary matrix ever be 0? How do we conclude that det(A) 6= 0?

(b) Now suppose that det(A) 6= 0. What can we conclude about det(R)? What, then, must R
be? How do we conclude that A is invertible?

Summary: Let A be an n × n matrix. Suppose we swap rows s times and divide rows by
constants k1, k2, . . . , kr while computing a row echelon form REF(A) of A. Then det(A) =
(−1)sk1k2 · · · kr det(REF(A)).

Geometric Interpretation of the Determinant

Determinants have interesting and useful applications from a geometric perspective. To understand
the geometric interpretation of the determinant of an n× n matrix A, we consider the image of the
unit square under the transformation T (x) = Ax and see how its area changes based on A.

Activity 21.4.
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(a) Let A =

[
2 0
0 3

]
. Start with the unit square in R2 with corners at the origin and at (1, 1).

In other words, the unit square we are considering consists of all vectors v =

[
x
y

]
where

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, visualized as points in the plane.

i. Consider the collection of image vectorsAv obtained by multiplying v’s byA. Sketch
the rectangle formed by these image vectors.

ii. Explain how the area of this image rectangle and the unit square is related via det(A).

iii. Does the relationship you found above generalize to an arbitrary A =

[
a 0
0 b

]
? If

not, modify the relationship to hold for all diagonal matrices.

(b) Let A =

[
2 1
0 3

]
.

i. Sketch the image of the unit square under the transformation T (v) = Av. To make
the sketching easier, find the images of the vectors [0 0]T, [1 0]T, [0 1]T, [1 1]T as
points first and then connect these images to find the image of the unit square.

ii. Check that the area of the parallelogram you obtained in the above part is equal to
det(A).

iii. Does the relationship between the area and det(A) still hold if A =

[
−2 1

0 3

]
? If

not, how will you modify the relationship?

It can be shown that for all 2× 2 matrices a similar relationship holds.

Theorem 21.5. For a 2 × 2 matrix A, the area of the image of the unit square under the transfor-
mation T (x) = Ax is equal to |det(A)|. This is equivalent to saying that | det(A)| is equal to the
area of the parallelogram defined by the columns of A. The area of the parallelogram is also equal
to the lengths of the column vectors of A multiplied by | sin(θ)| where θ is the angle between the
two column vectors.

There is a similar geometric interpretation of the determinant of a 3 × 3 matrix in terms of
volume.

Theorem 21.6. For a 3× 3 matrix A, the volume of the image of the unit cube under the transfor-
mation T (x) = Ax is equal to |det(A)|. This is equivalent to saying that | det(A)| is equal to the
volume of the parallelepiped defined by the columns of A.

The sign of det(A) can be interpreted in terms of the orientation of the column vectors of A.
See the project in Section 16 for details.

An Explicit Formula for the Inverse and Cramer’s Rule

In Section 10 we found the inverse A−1 using row reduction of the matrix obtained by augmenting
A with In. However, in theoretical applications, having an explicit formula for A−1 can be handy.
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Such an explicit formula provides us with an algebraic expression for A−1 in terms of the entries
of A. A consequence of the formula we develop is Cramer’s Rule, which can be used to provide
formulas that give solutions to certain linear systems.

We begin with an interesting connection between a square matrix and the matrix of its cofactors
that we explore in the next activity.

Activity 21.5. Let A =

 2 1 3
1 4 5
2 −1 2

.

(a) Calculate the (1, 1), (1, 2), and (1, 3) cofactors of A.

(b) IfCij represents the (i, j) cofactor ofA, then the cofactor matrixC is the matrixC = [Cij ].
The adjugate matrix of A is the transpose of the cofactor matrix. In our example, the
adjugate matrix of A is

adj(A) =

 13 −5 −7
8 −2 −7
−9 4 7

 .
Check the entries of this adjugate matrix with your calculations from part (a). Then calcu-
late the matrix product

A adj(A).

(c) What do you notice about the product A adj(A)? How is this product related to det(A)?

The result of Activity 21.5 is rather surprising, but it is valid in general. That is, if A = [aij ] is
an invertible n× n matrix and Cij is the (i, j) cofactor of A, then A adj(A) = det(A)In. In other

words, A
(

adj(A)
det(A)

)
= In and so

A−1 =
1

det(A)
adj(A).

This gives us another formulation of the inverse of a matrix. To see why A adj(A) = det(A)In, we
use the row-column version of the matrix product to find the ijth entry of A adj(A) as indicated by
the shaded row and column

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

ai1 ai2 · · · ain
...

...
...

an1 an2 · · · ann




C11 C21 · · · Cj1 · · · Cn1

C12 C22 · · · Cj2 · · · Cn2
...

...
...

C1n C2n · · · Cjn · · · Cnn

 .

Thus the ijth entry of A adj(A) is

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn. (21.4)

Notice that if i = j, then expression (21.4) is the cofactor expansion of A along the ith row. So
the iith entry of A adj(A) is det(A). It remains to show that the ijth entry of A adj(A) is 0 when
i 6= j.
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When i 6= j, the expression (21.4) is the cofactor expansion of the matrix

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

ai1 ai2 · · · ain
...

...
...

aj−11 aj−12 · · · aj−1n

ai1 ai2 · · · ain
aj+11 ai+12 · · · aj+1n

...
...

...
an1 an2 · · · ann


along the jth row. This matrix is the one obtained by replacing the jth row of A with the ith row
of A. Since this matrix has two identical rows, it is not row equivalent to the identity matrix and
is therefore not invertible. Thus, when i 6= j expression (21.4) is 0. This makes A adj(A) =
det(A)In.

One consequence of the formula A−1 = 1
det(A)adj(A) is Cramer’s rule, which describes the

solution to the equation Ax = b.

Activity 21.6. Let A =

[
3 1
4 2

]
, and let b =

[
2
6

]
.

(a) Solve the equation Ax = b using the inverse of A.

(b) Let A1 =

[
2 1
6 2

]
, the matrix obtained by replacing the first column of A with b. Calcu-

late det(A1)
det(A) and compare to your solution from part (a). What do you notice?

(c) Now let A2 =

[
3 2
4 6

]
, the matrix obtained by replacing the second column of A with b.

Calculate det(A2)
det(A) and compare to your solution from part (a). What do you notice?

The result from Activity 21.6 may seem a bit strange, but turns out to be true in general. The
result is called Cramer’s Rule.

Theorem 21.7 (Cramer’s Rule). Let A be an n×n invertible matrix. For any b in Rn, the solution
x of Ax = b has entries

xi =
det(Ai)

det(A)

where Ai represents the matrix formed by replacing ith column of A with b.

To see why Cramer’s Rule works in general, let A be an n × n invertible matrix and b =
[b1 b2 · · · bn]T. The solution to Ax = b is

x = A−1b =
1

det(A)
adj(A)b =

1

det(A)


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn



b1
b2
...
bn

 .
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Expanding the product gives us

x =
1

det(A)


b1C11 + b2C21 + · · ·+ bnCn1

b1C12 + b2C22 + · · ·+ bnCn2
...

b1C1n + b2C2n + · · ·+ bnCnn

 .
The expression

b1C1j + b2C2j + · · ·+ bnCnj

is the cofactor expansion of the matrix

Aj =


a11 a12 · · · a1j−1 b1 a1j+1 · · · a1n

a21 a22 · · · a2j−1 b2 a2j+1 · · · a2n
...

...
...

an1 an2 · · · anj−1 bn anj+1 · · · ann


along the jth column, giving us the formula in Cramer’s Rule.

Cramer’s Rule is not a computationally efficient method. To find a solution to a linear system of
n equations in n unknowns using Cramer’s Rule requires calculating n + 1 determinants of n × n
matrices – quite inefficient when n is 3 or greater. Our standard method of solving systems using
Gaussian elimination is much more efficient. However, Cramer’s Rule does provide a formula for
the solution to Ax = b as long as A is invertible.

The Determinant of the Transpose

In this section we establish the fact that the determinant of a square matrix is the same as the
determinant of its transpose.

The result is easily verified for 2× 2 matrices, so we will proceed by induction and assume that
the determinant of the transpose of any (n− 1)× (n− 1) matrix is the same as the determinant of
its transpose. Suppose A = [aij ] is an n× n matrix. By definition,

det(A) = a11C11 + a12C12 + a13C13 + · · ·+ a1nC1n

and
det(AT) = a11C11 + a21C21 + a31C31 + · · ·+ an1Cn1.

Note that the only terms in either determinant that contains a11 is a11C11. This term is the same
in both determinants, so we proceed to examine other elements. Let us consider all terms in the
cofactor expansion for det(AT) that contain ai1a1j . The only summand that contains ai1 is ai1Ci1.
Letting Aij be the sub-matrix of A obtained by deleting the ith row and jth column, we see that
ai1Ci1 = (−1)i+1ai1 det(Ai1). Now let’s examine the sub-matrix Ai1:

a12 a13 · · · a1j · · · a1n−1 a1n

a22 a23 · · · a2j · · · a2n−1 a2n
...

. . .
...

. . .
ai−12 ai−13 · · · ai−1j · · · ai−1n−1 ai−1n

ai+12 ai+13 · · · ai+1j · · · ai+1n−1 ai+1n

an2 an3 · · · anj · · · ann−1 ann


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When we expand along the first row to calculate det(Ai1), the only term that will involve a1j is

(−1)j−1+1a1j det(Ai1,1j),

where Aik,jm denotes the sub-matrix of A obtained by deleting rows i and k and columns j and m
from A. So the term that contains ai1a1j in the cofactor expansion for det(AT) is

(−1)i+ 1ai1(−1)ja1j det(Ai11j ) = (−1)i+j+1ai1a1j det(Ai1,1j). (21.5)

Now we examine the cofactor expansion for det(A) to find the terms that contain ai1a1j . The
quantity a1j only appears in the cofactor expansion as

a1jC1j = (−1)1+ja1j det(A1j).

Now let’s examine the sub-matrix A1j :

a21 a22 · · · a2j−1 a2j+1 · · · a2n

a31 a32 · · · a3j−1 a3j+1 · · · a3n
...

. . .
...

. . .
ai1 ai2 · · · aij−1 aij+1 · · · ain
...

...
...

an1 an2 · · · anj−1 anj+1 · · · ann


Here is where we use the induction hypothesis. Since A1j is an (n − 1) × (n − 1) matrix, its
determinant can be found with a cofactor expansion down the first column. The only term in this
cofactor expansion that will involve ai1 is

(−1)i−1+1ai1 det(A1i,j1).

So the term that contains ai1a1j in the cofactor expansion for det(A) is

(−1)1+ja1j(−1)i−1+1ai1 det(A1ji1) = (−1)i+j+1ai1a1j det(A1i,j1). (21.6)

Since the quantities in (21.5) and (21.6) are equal, we conclude that the terms in the two cofactor
expansions are the same and

det(AT) = det(A).

Row Swaps and Determinants

In this section we determine the effect of row swaps to the determinant. Let Ers be the elementary
matrix that swaps rows r and s in the n × n matrix A = [aij ]. Applying E12 to a 2 × 2 matrix

A =

[
a b
c d

]
, we see that

det(A) = ad− bc = −(ad− bc) = det

([
c d
a b

])
= det(E12A).

So swapping rows in a 2× 2 matrix multiplies the determinant by −1. Suppose that row swapping
on any (n−1)×(n−1) matrix multiplies the determinant by−1 (in other words, we are proving our
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statement by mathematical induction). Now supposeA is an n×nmatrix and letB = [bij ] = ErsA.
We first consider the case that s = r + 1 – that we swap adjacent rows. We consider two cases,
r > 1 and r = 1. First let us suppose that r > 1. Let Cij be the (i, j) cofactor of A and C ′ij the
(i, j) cofactor of B. We have

det(A) = a11C11 + a12C12 + · · ·+ a1nC1n

and
det(B) = b11C

′
11 + b12C

′
12 + · · ·+ b1nC

′
1n.

Since r > 1,it follows that a1j = b1j for every j. For each j the sub-matrix B1j obtained from B
by deleting the ith row and jth column is the same matrix as obtained from Aij by swapping rows
r and s. So by our induction hypothesis, we have C ′1j = −C1j for each j. Then

det(B) = b11C
′
11 + b12C

′
12 + · · ·+ b1nC

′
1n

= a11(−C11) + a12(−C12) + · · ·+ a1n(−C1n)

= −(a11C11 + a12C12 + · · ·+ a1nC1n)

= −det(A).

Now we consider the case where r = 1, where B is the matrix obtained from A by swapping the
first and second rows. Here we will use the fact that det(A) = det(AT) which allows us to calculate
det(A) and det(B) with the cofactor expansions down the first column. In this case we have

det(A) = a11C11 + a21C21 + · · ·+ an1Cn1

and

det(B) = b11C
′
11 + b21C

′
21 + · · ·+ bn1C

′
n1

= a21C
′
11 + a11C

′
21 + a31C

′
31 + · · ·+ an1C

′
n1.

For each i ≥ 3, the sub-matrix Bi1 is just Ai1 with rows 1 and 2 swapped. So we have C ′i1 = −Ci1
by our induction hypothesis. Since we swapped rows 1 and 2, we have B21 = A11 and B11 = A21.
Thus,

b11C
′
11 = (−1)1+1b11 det(A21) = a21 det(A21) = −a21C21

and
b21C

′
21 = (−1)2+1a11 det(A11) = −a11 det(A11) = −a11C11.

Putting this all together gives us

det(B) = b11C
′
11 + b21C

′
21 + · · ·+ bn1C

′
n1

= −a21C21 − a11C11 + a31(−C31) + · · ·+ an1(−Cn1)

= − (a11C11 + a21C21 + · · ·+ an1Cn1)

= −det(A).

So we have shown that if B is obtained from A by interchanging two adjacent rows, then det(B) =
−det(A). Now we consider the general case. SupposeB is obtained fromA by interchanging rows
r and s, with r < s. We can perform this single row interchange through a sequence of adjacent
row interchanges. First we swap rows r and r + 1, then rows r + 1 and r + 2, and continue until
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we swap rows s − 1 and s. This places the original row r into the row s position, and the process
involved s − r adjacent row interchanges. Each of these interchanges multiplies the determinant
by a factor of −1. At the end of this sequence of row swaps, the original row s is now row s − 1.
So it will take one fewer adjacent row interchanges to move this row to be row r. This sequence of
(s− r) + (s− r − 1) = 2(s− r − 1)− 1 row interchanges produces the matrix B. Thus,

det(B) = (−1)2(s−r)−1 det(A) = −det(A),

and interchanging any two rows multiplies the determinant by −1.

Cofactor Expansions

We have stated that the determinant of a matrix can be calculated by using a cofactor expansion
along any row or column. We use the result that swapping rows introduces a factor of −1 in the
determinant to verify that result in this section. Note that in proving that det(AT) = det(A), we
have already shown that the cofactor expansion along the first column is the same as the cofactor
expansion along the first row. If we can prove that the cofactor expansion along any row is the same,
then the fact that det(AT) = det(A) will imply that the cofactor expansion along any column is
the same as well.

Now we demonstrate that the cofactor expansions along the first row and the ith row are the
same. Let A = [aij ] be an n× n matrix. The cofactor expansion of A along the first row is

a11C11 + a12C12 + · · ·+ a1nC1n

and the cofactor expansion along the ith row is

ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

Let B be the matrix obtained by swapping row i with previous rows so that row i becomes the first
row and the order of the remaining rows is preserved.

B =



ai1 ai2 · · · aij · · · ain
a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

ai−11 ai−12 · · · ai−1j · · · ai−1n

ai+11 ai+12 · · · ai+1j · · · ai+1n
...

. . .
...

. . .
an1 an2 · · · anj · · · ann


Then

det(B) = (−1)i−1 det(A).

So, letting C ′ij be the (i, j) cofactor of B we have

det(A) = (−1)i−1 det(B) = (−1)i−1
(
ai1C

′
11 + ai2C

′
12 + · · ·+ ainC

′
1n

)
.
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Notice that for each j we have B1j = Aij . So

det(A) = (−1)i−1
(
ai1C

′
11 + ai2C

′
12 + · · ·+ ainC

′
1n

)
= (−1)i−1

(
ai1(−1)(1 + 1) det(B11) + ai2(−1)1+2 det(B12)

+ · · ·+ ain(−1)1+n det(B1n)
)

= (−1)i−1
(
ai1(−1)(1 + 1) det(Ai1) + ai2(−1)1+2 det(Ai2)

+ · · ·+ ain(−1)1+n det(Ain)
)

= ai1(−1)(i+ 1) det(Ai1) + ai2(−1)i+2 det(Ai2)

+ · · ·+ ain(−1)i+n det(Ain)

= ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The LU Factorization of a Matrix

There are many instances where we have a number of systems to solve of the form Ax = b, all
with the same coefficient matrix. The system may evolve over time so that we do not know the
constant vectors b in the system all at once, but only determine them as time progresses. Each time
we obtain a new vector b, we have to apply the same row operations to reduce the coefficient matrix
to solve the new system. This is time repetitive and time consuming. Instead, we can keep track of
the row operations in one row reduction and save ourselves a significant amount of time. One way
of doing this is the LU -factorization (or decomposition).

To illustrate, suppose we can write the matrix A as a product A = LU , where

L =


1 0 0 0
−1 1 0 0

0 1 1 0
1 0 0 1

 and U =


1 0 1 0
0 1 3 −2
0 0 0 3
0 0 0 0

 .
Let b = [3 1 1 3]T and x = [x1 x2 x3 x4]T, and consider the linear system Ax = b. If Ax = b,
then LUx = b. We can solve this system without applying row operations as follows. Let Ux = z,
where z = [z1 z2 z3 z4]T. We can solve Lz = b by using forward substitution.

The equation Lz = b is equivalent to the system

z1 = 3

−z1 + z2 = 1

z2 + z3 = 1

z4 = 3.

The first equation shows that z1 = 3. Substituting into the second equation gives us z2 = 4. Using
this information in the third equation yields z3 = −3, and then the fourth equation shows that
z4 = 0. To return to the original system, since Ux = z, we now solve this system to find the
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solution vector x. In this case, since U is upper triangular, we use back substitution. The equation
Ux = z is equivalent to the system

x1 + x3 = 3

x2 + 3x3 − 2x4 = 4

3x4 =−3.

Note that the third column of U is not a pivot column, so x3 is a free variable. The last equation
shows that x4 = −1. Substituting into the second equation and solving for x2 yields x2 = 2− 3x3.
The first equation then gives us x1 = 3− x3. So the general solution

x =


3
2
0
−1

+


−1
−3

1
0

x3

to Ax = b can be found through L and U via forward and backward substitution. If we can find a
factorization of a matrix A into a lower triangular matrix L and an upper triangular matrix U , then
A = LU is called an LU -factorization or LU -decomposition.

We can use elementary matrices to obtain a factorization of certain matrices into products of
lower triangular (the“L” in LU) and upper triangular (the “U” in LU) matrices. We illustrate with
an example. Let

A =


1 0 1 0
−1 1 2 −2

0 1 3 1
1 0 1 0

 .
Our goal is to find an upper triangular matrix U and a lower triangular matrix L so that A = LU .
We begin by row reducingA to an upper triangular matrix, keeping track of the elementary matrices
used to perform the row operations. We start by replacing the entries below the (1, 1) entry in A
with zeros. The elementary matrices that perform these operations are

E1 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 and E2 =


1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

 ,
and

E2E1A =


1 0 1 0
0 1 3 −2
0 1 3 1
0 0 0 0

 .
We next zero out the entries below the (2, 2) entry as

E3E2E1A =


1 0 1 0
0 1 3 −2
0 0 0 3
0 0 0 0

 ,
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where

E3 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

 .
The product E3E2E1A is an upper triangular matrix U . So we have

E3E2E1A = U

and
A = E−1

1 E−1
2 E−1

3 U,

where

E−1
1 E−1

2 E−1
3 =


1 0 0 0
−1 1 0 0

0 1 1 0
1 0 0 1


is a lower triangular matrix L. So we have decomposed the matrixA into a productA = LU , where
L is lower triangular and U is upper triangular. Since every matrix is row equivalent to a matrix in
row echelon form, we can always find an upper triangular matrix U in this way. However, we may
not always obtain a corresponding lower triangular matrix, as the next example illustrates.

Suppose we change the problem slightly and consider the matrix

B =


1 0 1 0
−1 1 2 −2

0 1 3 1
1 0 0 1

 .
Using the same elementary matrices E1, E2, and E3 as earlier, we have

E3E2E1B =


1 0 1 0
0 1 3 −2
0 0 0 3
0 0 −1 1

 .
To reduce B to row-echelon form now requires a row interchange. Letting

E4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


brings us to

E4E3E2E1B =


1 0 1 0
0 1 3 −2
0 0 −1 1
0 0 0 3

 .
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So in this case we have U = E4E3E2E1B, but

E−1
1 E−1

2 E−1
3 E−1

4 =


1 0 0 0
−1 1 0 0

0 1 0 1
1 0 1 0


is not lower triangular. The difference in this latter example is that we needed a row swap to obtain
the upper triangular form.

Examples

What follows are worked examples that use the concepts from this section.

Example 21.8.

(a) If A, B are n × n matrices with det(A) = 3 and det(B) = 2, evaluate the following
determinant values. Briefly justify.

i. det(A−1)

ii. det(ABAT)

iii. det(A3(BA)−1(AB)2)

(b) If the determinant of

 a b c
d e f
g h i

 is m, find the determinant of each of the following

matrices.

i.

 a b c
2d 2e 2f
g h i


ii.

 d e f
g h i
a b c


iii.

 a b c
g − 2d h− 2e i− 2f
a+ d b+ e c+ f


Example Solution.

(a) Assume that det(A) = 3 and det(B) = 2.

i. Since det(A) 6= 0, we know that A is invertible. Since 1 = det(In) = det(AA−1) =
det(A) det(A−1), it follows that det(A−1) = 1

det(A) = 1
3 .



380 Section 21. Properties of Determinants

ii. We know that det(AT) = det(A), so

det(ABAT) = det(A) det(B) det(AT)

= det(A) det(B) det(A)

= (3)(2)(3)

= 18.

iii. Using properties of determinants gives us

det(A3(BA)−1(AB)2) = det(A3) det((BA)−1) det((AB)2)

= (det(A))3

(
1

det(AB)

)
(det(AB))2

= 27

(
1

det(A) det(B)

)
(det(A) det(B))2

=
(27)(62)

6
= 162.

(b) Assume that det

 a b c
d e f
g h i

 = m.

i. Multiplying a row by a scalar multiples the determinant by that scalar, so

det

 a b c
2d 2e 2f
g h i

 = 2m.

ii. Interchanging two rows multiples the determinant by −1. It takes two row swaps in
the original matrix to obtain this one, so

det

 d e f
g h i
a b c

 = (−1)2m = m.

iii. Adding a multiple of a row to another does not change the determinant of the matrix.
Since there is a row swap needed to get this matrix from the original we have

det

 a b c
g − 2d h− 2e i− 2f
a+ d b+ e c+ f

 = −m.

Example 21.9. Let A =

 2 8 0
2 2 −3
1 2 7

.

(a) Find an LU factorization for A.
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(b) Use the LU factorization with forward substitution and back substitution to solve the system
Ax = [18 3 12]T.

Example Solution.

(a) We row reduce A to an upper triangular matrix by applying elementary matrices. First

notice that if E1 =

 1 0 0
−1 1 0

0 0 1

, then

E1A =

 2 8 0
0 −6 −3
1 2 7

 .

Letting E2 =


1 0 0

0 1 0

−1
2 0 1

 gives us

E2E1A =

 2 8 0
0 −6 −3
0 −2 7

 .

Finally, when E3 =


1 0 0

0 1 0

0 −1
3 1

 we have

U = E3E2E1A =

 2 8 0
0 −6 −3
0 0 8

 .
This gives us E3E2E1A = U , so we can take

L = E−1
1 E−1

2 E−1
3 =


1 0 0

1 1 0

1
2

1
3 1

 .
(b) To solve the system Ax = b, where b = [18 3 12]T, we use the LU factorization of A

and solve LUx = b. Let x = [x1 x2 x3]T and let z = [z1 z2 z3]T with Ux = z so
that Lz = L(Ux) = Ax = b. First we solve Lz = [18 3 12]T to find z using forward
substitution. The first row of L shows that z1 = 18 and the second row that z1 + z2 = 3.
So z2 = −15. The third row of L gives us 1

2z1 + 1
3z2 + z3 = 12, so z3 = 12− 9 + 5 = 8.

Now to find x we solve Ux = z using back substitution. The third row of U tells us that
8x3 = 8 or that x3 = 1. The second row of U shows that −6x2 − 3x3 = −15 or x2 = 2.
Finally, the first row of U gives us 2x1 + 8x2 = 18, or x1 = 1. So the solution to Ax = b
is x = [1 2 1]T.
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Summary

• The elementary row operations have the following effects on the determinant:

(a) If we multiply a row of a matrix by a constant k, then the determinant is multiplied
by k.

(b) If we swap two rows of a matrix, then the determinant changes sign.

(c) If we add a multiple of a row of a matrix to another, the determinant does not change.

• Each of the elementary row operations can be achieved by multiplication by elementary ma-
trices. To obtain the elementary matrix corresponding to an elementary row operation, we
perform the operation on the identity matrix.

• Let A be an n× n invertible matrix. For any b in Rn, the solution x of Ax = b has entries

xi =
det(Ai(b))

det(A)

where Ai(b) represents the matrix formed by replacing ith column of A with b.

• Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj A

where the adj A matrix, the adjugate of A, is defined as the matrix whose ij-th entry is Cji,
the ji-th cofactor of A.

• For a 2 × 2 matrix A, the area of the image of the unit square under the transformation
T (x) = Ax is equal to |det(A)|, which is also equal to the area of the parallelogram defined
by the columns of A.

• For a 3 × 3 matrix A, the volume of the image of the unit cube under the transformation
T (x) = Ax is equal to |det(A)|, which is also equal to the volume of the parallelepiped
defined by the columns of A.

Exercises

(1) Find a formula for det(rA) in terms of r and det(A), where A is an n× n matrix and r is a
scalar. Explain why your formula is valid.

(2) Find det(A) by hand using elementary row operations where

A =


1 2 −1 3
−1 −2 3 −1
−2 −1 2 −3

1 8 −3 8

 .
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(3) Consider the matrix A =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

. We will find det(A) using elementary

row operations. (This matrix arises in graph theory, and its determinant gives the number of
spanning trees in the complete graph with 5 vertices. This number is also equal to the number
of labeled trees with 5 vertices.)

(a) Add rows R2, R3 and R4 to the first row in that order.

(b) Then add the new R1 to rows R2, R3 and R4 to get a triangular matrix B.

(c) Find the determinant of B. Then use det(B) and properties of how elementary row
operations affect determinants to find det(A).

(d) Generalize your work to find the determinant of the n× n matrix

A =


n −1 −1 · · · −1 −1
−1 n −1 · · · −1 −1

...
...

... · · · ...
...

−1 −1 −1 · · · −1 n

 .
(4) For which matrices A, if any, is det(A) = −det(−A)? Justify your answer.

(5) Find the inverse A−1 of A =

 1 0 1
0 1 0
2 0 1

 using the adjugate matrix.

(6) For an invertible n × n matrix A, what is the relationship between det(A) and det(adj A)?
Justify your result.

(7) Let A =

 a b 1
c d 2
e f 3

, and assume that det(A) = 2. Determine the determinants of each of

the following.

(a) B =

 a b 1
3c 3d 6
e+ a f + b 4


(b) C =

 2e 2f 6
2c− 2e 2d− 2f −2

2a 2b 2


(8) Find the area of the parallelogram with one vertex at the origin and adjacent vertices at (1, 2)

and (a, b). For which (a, b) is the area 0? When does this happen geometrically?

(9) Find the volume of the parallelepiped with one vertex at the origin and three adjacent vertices
at (3, 2, 0), (1, 1, 1) and (1, 3, c) where c is unknown. For which c, is the volume 0? When
does this happen geometrically?

(10) Label each of the following statements as True or False. Provide justification for your re-
sponse.
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(a) True/False If two rows are equal in A, then det(A) = 0.

(b) True/False If A is a square matrix and R is a row echelon form of A, then det(A) =
det(R).

(c) True/False If a matrix A is invertible, then 0 is not an eigenvalue of A.

(d) True/False If A is a 2 × 2 matrix for which the image of the unit square under the
transformation T (x) = Ax has zero area, then A is non-invertible.

(e) True/False Row operations do not change the determinant of a square matrix.

(f) True/False If Aij is the matrix obtained from a square matrix A = [aij ] by deleting
the ith row and jth column of A, then

ai1(−1)i+1 det(Ai1) + ai2(−1)i+2 det(Ai2) + · · ·
+ ain(−1)i+n det(Ain)

= a1j(−1)j+1 det(A1j) + a2i(−1)j+2 det(A2i) + · · ·
+ anj(−1)j+n det(Anj)

for any i and j between 1 and n.

(g) True/False If A is an invertible matrix, then det
(
ATA

)
> 0.
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Section 22

Vector Spaces

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a vector space?

• What is a subspace of a vector space?

• What is a linear combination of vectors in a vector space V ?

• What is the span of a set of vectors in a vector space V ?

• What special structure does the span of a set of vectors in a vector space V
have?

• Why is the vector space concept important?

Application: The Hat Puzzle

In a New York Times article (April 10, 2001) “Why Mathematicians Now Care About Their Hat
Color”, the following puzzle is posed.

“Three players enter a room and a red or blue hat is placed on each person’s head. The
color of each hat is determined by a coin toss, with the outcome of one coin toss having
no effect on the others. Each person can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy session before
the game begins. Once they have had a chance to look at the other hats, the players
must simultaneously guess the color of their own hats or pass. The group shares a
hypothetical $3 million prize if at least one player guesses correctly and no players
guess incorrectly.”

387
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The game can be played with more players, and the problem is to find a strategy for the group
that maximizes its chance of winning. One strategy is for a designated player to make a random
guess and for the others to pass. This gives a 50% chance of winning. However, there are much
better strategies that provide a nearly 100% probability of winning as the number of players in-
creases. One such strategy is based on Hamming codes and subspaces of a particular vector space
to implement the most effective approach.

Introduction

We have previously seen that Rn and the set of fixed size matrices have a nice algebraic structure
when endowed with the addition and scalar multiplication operations. In fact, as we will see, there
are many other sets of elements that have the same kind of structure with natural addition and scalar
multiplication operations. Due to this underlying similar structure, these sets are connected in some
way and can all be studied jointly. Mathematicians look for these kinds of connections between
seemingly dissimilar objects and, from a mathematical standpoint, it is convenient to study all of
these similar structures at once by combining them into a larger collection. This motivates the idea
of a vector space that we will investigate in this chapter.

An example of a set that has a structure similar to vectors is a collection of polynomials. Let P1

be the collection of all polynomials of degree less than or equal to 1 with real coefficients. That is,

P1 = {a0 + a1t : a0, a1 ∈ R}.

So, for example, the polynomials 2 + t, 5t, −7, and
√

12 − πt are in P1, but
√
t is not in P1.

Two polynomials a(t) = a0 + a1t and b(t) = b0 + b1t in P1 are equal if a0 = b0 and a1 = b1.

We define addition of polynomials in P1 by adding the coefficients of the like degree terms. So
if a(t) = a0 + a1t and b(t) = b0 + b1t, then the polynomial sum of a(t) and b(t) is

a(t) + b(t) = (a0 + a1t) + (b0 + b1t) = (a0 + b0) + (a1 + b1)t.

So, for example,

(2 + 3t) + (−1 + 5t) = (2 + (−1)) + (3 + 5)t = 1 + 8t.

We now consider the properties of the addition operation. For example, we can ask if polyno-
mial addition is commutative. That is, if a(t) and b(t) are in P1, must it be the case that

a(t) + b(t) = b(t) + a(t)?

To show that addition is commutative in P1, we choose arbitrary polynomials a(t) = a0 + a1t and
b(t) = b0 + b1t in P1. Then we have

a(t) + b(t) = (a0 + b0) + (a1 + b1)t

= (b0 + a0) + (b1 + a1)t

= b(t) + a(t).

Note that in the middle step, we used the definition of equality of polynomials since a0+b0 = b0+a0

and a1 + b1 = b1 + a1 due to the fact that addition of real numbers is commutative. So addition of
elements in P1 is a commutative operation.
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Preview Activity 22.1.

(1) Now we investigate other properties of addition in P1.

(a) To show addition is associative in P1, we need to verify that if a(t) = a0 + a1t,
b(t) = b0 + b1t, and c(t) = c0 + c1t are in P1, it must be the case that

(a(t) + b(t)) + c(t) = a(t) + (b(t) + c(t)).

Either verify this property by using the definition of two polynomials being equal, or
give a counterexample to show the equality fails in that case.

(b) Find a polynomial z(t) ∈ P1 such that

a(t) + z(t) = a(t)

for all a(t) ∈ P1. This polynomial is called the zero polynomial or the additive
identity polynomial in P1.

(c) If a(t) = a0 + a1t is an element of P1, is there an element p(t) ∈ P1 such that

a(t) + p(t) = z(t),

where z(t) is the additive identity polynomial you found above? If not, why not? If
so, what polynomial is p(t)? Explain.

(2) We can also define a multiplication of polynomials by scalars (real numbers).

(a) What element in P1 could be the scalar multiple 1
2(2 + 3t)?

(b) In general, if k is a scalar and a(t) = a0 + a1t is in P1, how do we define the scalar
multiple ka(t) in P1?

(c) If k is a scalar and a(t) = a0 + a1t and b(t) = b0 + b1t are elements in P1, is it true
that

k(a(t) + b(t)) = ka(t) + kb(t)?

If no, explain why. If yes, verify your answer using the definition of two polynomials
being equal.

(d) If k and m are scalars and a(t) = a0 + a1t is an element in P1, is it true that

(k +m)a(t) = ka(t) +ma(t)?

If no, explain why. If yes, verify your answer.

(e) If k and m are scalars and a(t) = a0 + a1t is an element in P1, is it true that

(km)a(t) = k(ma(t))?

If no, explain why. If yes, verify your answer.

(f) If a(t) = a0 + a1t is an element of P1, is it true that

1a(t) = a(t)?

If no, explain why. If yes, verify your answer.
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Spaces with Similar Structure to Rn

Mathematicians look for patterns and for similarities between mathematical objects. In doing so,
mathematicians often consider larger collections of objects that are sorted according to their sim-
ilarities and then study these collections rather than just the objects themselves. This perspective
can be very powerful – whatever can be shown to be true about an arbitrary element in a collection
will then be true for every specific element in the collection. In this section we study the larger
collection of sets that share the algebraic structure of vectors in Rn. These sets are called vector
spaces.

In Preview Activity 22.1, we showed that the set P1 of polynomials of degree less than or equal
to one with real coefficients, with the operations of addition and scalar multiplication defined by

(a0 + a1t) + (b0 + b1t) = (a0 + b0) + (a1 + b1)t and k(a0 + a1t) = (ka0) + (ka1)t,

has a structure similar to R2.

By structure we mean how the elements in the set relate to each other under addition and multi-
plication by scalars. That is, if a(t) = a0 + a1t, b(t), and c(t) are elements of P1 and k and m are
scalars, then

(1) a(t) + b(t) is an element of P1,

(2) a(t) + b(t) = b(t) + a(t),

(3) (a(t) + b(t)) + c(t) = a(t) + (b(t) + c(t)),

(4) there is a zero polynomial z(t) (namely, 0 + 0t) in P1 so that a(t) + z(t) = a(t),

(5) there is an element −a(t) in P1 (namely, (−a0) + (−a1)t) so that a(t) + (−a(t)) = z(t),

(6) ka(t) is an element of P1,

(7) (k +m)a(t) = ka(t) +ma(t),

(8) k(a(t) + b(t)) = ka(t) + kb(t),

(9) (km)a(t) = k(ma(t)),

(10) 1a(t) = a(t).

The properties we saw for polynomials in P1 stated above are the same as the properties for
vector addition and multiplication by scalars in Rn, as well as matrix addition and multiplication
by scalars identified in Section 8. This indicates that polynomials in P1, vectors in Rn, and the
set of m × n matrices behave in much the same way as regards their addition and multiplication
by scalars. There is an even closer connection between linear polynomials and vectors in R2. An

element a(t) = a0 + a1t in P1 can be naturally associated with the vector
[
a0

a1

]
in R2. All the

results of polynomial addition and multiplication by scalars then translate to corresponding results
of addition and multiplication by scalars of vectors in R2. So for all intents and purposes, as far as
addition and multiplication by scalars is concerned, there is no difference between elements in P1
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and vectors in R2 – the only difference is how we choose to present the elements (as polynomials
or as vectors). This sameness of structure of our sets as it relates to addition and multiplication
by scalars is the type of similarity mentioned in the introduction. We can study all of the types of
objects that exhibit this same structure at one time by studying vector spaces.

Vector Spaces

We defined vector spaces in the context of subspaces of Rn in Definition 12.1. In general, any set
that has the same kind of additive and multiplicative structure as our sets of vectors, matrices, and
linear polynomials is called a vector space. As we will see, the ideas that we introduced about
subspaces of Rn apply to vector spaces in general, so the material in this chapter should have a
familiar feel.

Definition 22.1. A set V on which an operation of addition and a multiplication by scalars is defined
is a vector space if for all u, v, and w in V and all scalars a and b:

(1) u + v is an element of V (we say that V is closed under the addition in V ),

(2) u + v = v + u (we say that the addition in V is commutative),

(3) (u + v) + w = u + (v + w) (we say that the addition in V is associative),

(4) there is a zero vector 0 in V so that u + 0 = u (we say that V contains an additive identity
0),

(5) for each x in V there is an element y in V so that x + y = 0 (we say that V contains an
additive inverse y for each element x in V ),

(6) au is an element of V (we say that V is closed under multiplication by scalars),

(7) (a+ b)u = au + bu (we say that multiplication by scalars distributes over scalar addition),

(8) a(u + v) = au + av (we say that multiplication by scalars distributes over addition in V ),

(9) (ab)u = a(bu),

(10) 1u = u.

Note. Unless otherwise stated, in this book the scalars will refer to real numbers. However, we can
define vector spaces where scalars are complex numbers, or rational numbers, or integers modulo
p where p is a prime number, or, more generally, elements of a field. A field is an algebraic
structure which generalizes the structure of real numbers and rational numbers under the addition
and multiplication operations. Since we will focus on the real numbers as scalars, the reader is not
required to be familiar with the concept of a field.

Because of the similarity of the way elements in vector spaces behave compared to vectors in
Rn, we call the elements in a vector space vectors. There are many examples of vectors spaces,
which is what makes this idea so powerful.

Example 22.2.
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(1) The space Rn of all vectors with n components is a vector space using the standard vector ad-
dition and multiplication by scalars. The zero element is the zero vector 0 whose components
are all 0.

(2) The set P1 of all polynomials of degree less than or equal to 1 with addition and scalar
multiplication as defined earlier. Recall that P1 is essentially the same as R2.

(3) The properties listed in the introduction for P1 are equally true for the collection of all poly-
nomials of degree less than or equal to some fixed number. We label as Pn this set of all
polynomials of degree less than or equal to n, with the standard addition and scalar multi-
plication. Note that Pn is essentially the same as Rn+1. More generally, the space P of all
polynomials is also a vector space with standard addition and scalar multiplication.

(4) As a subspace of Rn, the eigenspace of an n× n matrix corresponding to an eigenvalue λ is
a vector space.

(5) As a subspace of Rn, the null space of an m× n matrix is a vector space.

(6) As a subspace of Rm, the column space of an m× n matrix is a vector space.

(7) The span of a set of vectors in Rn is a subspace of Rn, and is therefore a vector space.

(8) Let V be a vector space and let 0 be the additive identity in V . The set {0} is a vector space
in which 0+0 = 0 and k0 = 0 for any scalar k. This space is called the trivial vector space.

(9) The space Mm×n (or Mm×n(R) when it is important to indicate that the entries of our
matrices are real numbers) of all m× n matrices with real entries with the standard addition
and multiplication by scalars we have already defined. In this case,Mm×n is essentially the
same vector space as Rmn.

(10) The space F of all functions from R to R, where we define the sum of two functions f and g
in F as the function f + g satisfying

(f + g)(x) = f(x) + g(x)

for all real numbers x, and the scalar multiple cf of the function f by the scalar c to be the
function satisfying

(cf)(x) = cf(x)

for all real numbers x. The verification of the vector space properties for this space is left to
the reader.

(11) The space R∞ of all infinite real sequences (x1, x2, x3, . . .). We define addition and scalar
multiplication termwise:

(x1, x2, x3, . . .) + (y1, y2, y3, . . .) = (x1 + y1, x2 + y2, x3 + y3, . . .) ,

c(x1, x2, x3, . . .) = (cx1, cx2, cx3, . . .)

is a vector space. In addition, the set of convergent sequences inside R∞ forms a vector
space using this addition and multiplication by scalars (as we did in Rn, we will call this set
of convergent sequences a subspace of R∞).
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(12) (For those readers who are familiar with differential equations). The set of solutions to a
second order homogeneous differential equation forms a vector space under addition and
scalar multiplication defined as in the space F above.

(13) The set of polynomials of positive degree in P1 is not a vector space using the standard
addition and multiplication by scalars in P1 is not a vector space. Notice that t+ (−t) is not
a polynomial of positive degree, and so this set is not closed under addition.

(14) The color space where each color is assigned an RGB (red, green, blue) coordinate between 0
and 255, with addition and scalar multiplication defined component-wise, however, does not
define a vector space. The color space is not closed under either operation due to the color
coordinates being integers ranging from 0 to 255.

It is important to note that the set of defining properties of a vector space is intended to be a
minimum set. Any other properties of a vector space must be verified or proved using the defining
properties. For example, in Rn it is clear that the scalar multiple 0v is the zero vector for any vector
v in Rn. This might be true in any vector space, but it is not a defining property. Therefore, if this
property is true, then we must be able to prove it using just the defining properties. To see how this
might work, let v be any vector in a vector space V . We want to show that 0v = 0 (the existence
of the zero vector is property (4)). Using the fact that 0 + 0 = 0 and that scalar multiplication
distributes over scalar addition, we can see that

0v = (0 + 0)v = 0v + 0v.

Property (5) tells us that V contains an additive inverse for every vector in V , so let u be an additive
inverse of the vector 0v in V . Then 0v + u = 01 and so

0v + u = (0v + 0v) + u

0 = 0v + (0v + u)

0 = 0v + 0.

Now 0 has the property that 0 + w = w + 0 = w for any vector w in V (by properties (4) and
(2)), and so we can conclude that

0 = 0v.

Activity 22.1. Another property that will be useful is a cancellation property. In the set of real
numbers we know that if a + b = c + b, then a = c, and we verify this by subtracting b from both
sides. This is the same as adding the additive inverse of b to both sides, so we ought to be able to
make the same argument using additive inverses in a vector space. To see how, let u, v, and w be
vectors in a vector space and suppose that

u + w = v + w. (22.1)

(a) Why does our space contain an additive inverse z of w?

1It is very important to keep track of the different kinds of zeros here – the boldface zero 0 is the additive identity in
the vector space and the non-bold 0 is the scalar zero.
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(b) Now add the vector z to both sides of equation (22.1) to obtain

(u + w) + z = (v + w) + z. (22.2)

Which property of a vector space allows us to state the following equality?

u + (w + z) = v + (w + z). (22.3)

(c) Now use the properties of additive inverses and the additive identity to explain why u = v.
Conclude that we have a cancellation law for addition in any vector space.

We should also note that the definition of a vector space only states the existence of a zero vector
and an additive inverse for each vector in the space, and does not say that there cannot be more than
one zero vector or more than one additive inverse of a vector in the space. The reason why is that
the uniqueness of the zero vector and an additive inverse of a vector can be proved from the defining
properties of a vector space, and so we don’t list this consequence as a defining property. Similarly,
the defining properties of a vector space do not state that the additive inverse of a vector v is the
scalar multiple (−1)v. Verification of these properties are left for the exercises. We summarize the
results of this section in the following theorem.

Theorem 22.3. Let V be any vector space with identity 0.

• 0v = 0 for any vector v in V .

• The vector 0 is unique.

• c0 = 0 for any scalar c.

• For any v in V , the additive inverse of v is unique.

• The additive inverse of a vector v in V is the vector (−1)v.

• If u, v, and w are in V and u + w = v + w, then u = v.

Subspaces

In Section 12 we saw that Rn contained subsets that we called subspaces that had the same algebraic
structure as Rn. The same idea applies to vector spaces in general.

Activity 22.2. Let H = {at : a ∈ R}. Notice that H is a subset of P1.

(a) Is H closed under the addition in P1? Verify your answer.

(b) Does H contain the zero vector from P1? Verify your answer.

(c) Is H closed under multiplication by scalars? Verify your answer.

(d) Explain why H satisfies every other property of the definition of a vector space automati-
cally just by being a subset of P1 and using the same operations as in P1. Conclude that H
is a vector space.
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Activity 22.2 illustrates an important point. There is a fundamental difference in the types of
properties that define a vector space. Some of the properties that define a vector space are true for
any subset of the vector space because they are properties of the operations (such as the commutative
and associative properties). The other properties (closure, the inclusion of the zero vector, and the
inclusion of additive inverses) are set properties, not properties of the operations. So these three
properties have to be specifically checked to see if a subset of a vector space is also a vector space.
This leads to the definition of a subspace, a subset of a vector space which is a vector space itself.

Definition 22.4. A subset H of a vector space V is a subspace of V if

(1) whenever u and v are in H it is also true that u + v is in H (that is, H is closed under
addition),

(2) whenever u is in H and a is a scalar it is also true that au is in H (that is, H is closed under
scalar multiplication),

(3) 0 is in H .

Activity 22.3. Is the given subset H a subspace of the indicated vector space V ? Verify your
answer.

(a) V is any vector space and H = {0}

(b) V = M2×2, the vector space of 2× 2 matrices and

H =

{[
2x y
0 x

] ∣∣ x and y are scalars
}

.

(c) V = P2, the vector space of all polynomials of degree less than or equal to 2 and H ={
2at2 + 1 | a is a scalar

}
.

(d) V = P2 and H = {at | a is a scalar} ∪
{
bt2 | b is a scalar

}
.

(e) V = F and H = P2.

There is an interesting subspace relationship between the spaces P1,P2,P3, . . . and P. For every
i, Pi is a subspace of P. Furthermore, P1 is a subspace of P2, P2 is a subspace of P3, and so on.
Note however that a similar relationship does NOT hold for Rn, even though Pi looks like Ri+1. For
example, R1 is NOT a subspace of R2. Similarly, R2 is NOT a subspace of R3. Since the vectors
in different Rn’s are of different sizes, none of the Ri’s is a subset of another Rn with i 6= n, and
hence, Ri is not a subspace of Rn when i < n.

The Subspace Spanned by a Set of Vectors

In Rn we showed that the span of any set of vectors forms a subspace of Rn. The same is true in
any vector space. Recall that the span of a set of vectors in Rn is the set of all linear combinations
of those vectors. So before we can discuss the span of a set of vectors in a vector space, we need to
extend the definition of linear combinations to vector spaces (compare to Definitions 4.4 and 4.6).
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Definition 22.5. Let V be a vector space. A linear combination of vectors v1, v2, . . ., vk in V is
a vector of the form

x1v1 + x2v2 + · · ·+ xkvk,

where x1, x2, . . ., xk are scalars. The span of the vectors v1, v2, . . ., vk is the collection of all
linear combinations of v1, v2, . . ., vk. That is,

Span{v1,v2, . . . ,vk} = {x1v1 + x2v2 + · · ·+ xkvk | x1, x2, . . . , xk are scalars}.

The argument that the span of any finite set of vectors in a vector space forms a subspace is the
same as we gave for the span of a set of vectors in Rn (see Theorem 12.5). The proof is left for the
exercises.

Theorem 22.6. Given a vector space V and vectors v1, v2, . . ., vm in V , Span{v1,v2, . . . ,vm}
is a subspace of V .

The subspace Span{v1,v2, . . . ,vm} is called the subspace of V spanned by v1,v2, . . . ,vm.

Activity 22.4.

(a) Let H =
{
a2t

2 − a1t : a2 and a1 are real numbers
}

. Note that H is a subset of P2. Find
two vectors v1,v2 in P2 so that H = Span{v1,v2} and hence conclude that H is a sub-
space of P2. (Note that the vectors v1,v2 are not unique.)

(b) Let p1(t) = 1− t2 and p2(t) = 1 + t2, and let S = {p1(t), p2(t)} in P2. Is the polynomial
q(t) = 3−2t2 in Span S? (Hint: Create a matrix equation of the formAx = b by setting up
an appropriate polynomial equation involving p1(t), p2(t) and q(t). Under what conditions
on A is the system Ax = b consistent?)

(c) With S as in part (b), describe as best you can the subspace Span S of P2.

Given a subspace H , the set S such that H = Span S is called a spanning set of H . In order to
determine if a set S = {v1,v2, . . . ,vk} is a spanning set for H , all we need to do is to show that
for every b in H , the equation

x1v1 + x2v2 + · · ·+ xkvk = b

has a solution. We will see important uses of special spanning sets called bases in the rest of this
chapter.

Examples

What follows are worked examples that use the concepts from this section.

Example 22.7. Determine if each of the following sets is a vector space.

(a) V = {(x, y, z) : x, y, z ∈ R} with addition and multiplication by scalars defined by

(a, b, c)⊕ (x, y, z) = (a+ x, c+ z, b+ y) and k(x, y, z) = (kx, kz, ky),

where (a, b, c) and (x, y, z) are in V and k ∈ R
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(b) V = {x ∈ R : x > 0} with addition ⊕ and multiplication by scalars defined by

x⊕ y = xy and kx = xk,

where x and y are in V , k ∈ R, and xy is the standard product of x and y

(c) The set W of all 2×2 matrices of the form
[
a 0
b 0

]
where a and b are real numbers using

the standard addition and multiplication by scalars on matrices.

(d) The set W of all functions f from R to R such that f(0) ≥ 0 using the standard addition
and multiplication by scalars on functions.

Example Solution.

(a) We consider the vector space properties in Definition 22.1. Let (a, b, c), (u, v, w), and
(x, y, z) be in V and let k,m ∈ R. By the definition of addition and multiplication by
scalars, both (a, b, c) + (x, y, z) and k(x, y, z) are in V . Note also that

(a, b, c)⊕ (x, y, z) = (a+ x, c+ z, b+ y)

= (x+ a, z + c, y + b)

= (x, y, z)⊕ (a, b, c),

and so addition is commutative in V .

Since
((1, 1, 0)⊕ (0, 1, 1))⊕ (0, 0, 1) = (1, 1, 2)⊕ (0, 0, 1) = (1, 3, 1)

and
(1, 1, 0)⊕ ((0, 1, 1)⊕ (0, 0, 1)) = (1, 1, 0)⊕ (0, 2, 1) = (1, 1, 3),

we see that addition is not associative and conclude that V is not a vector space. At this
point we can stop since we have shown that V is not a vector space.

(b) We consider the vector space properties in Definition 22.1. Let x, y, and z be in V and let
k,m ∈ R. Since x and y are both positive real numbers, we know that xy is a positive real
number. Thus, x ⊕ y ∈ V and V is closed under its addition. Also, xk is a positive real
number, so xk ∈ V as well.

Now
x⊕ y = xy = yx = y ⊕ x

and addition is commutative in V .

Also,

(x⊕ y)⊕ z = (xy)⊕ z = (xy)z = x(yz) = x⊕ (yz) = x⊕ (y ⊕ z)

and addition is associative in V .

Since
1⊕ x = 1x = x,
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V contains an additive identity, which is 1. The fact that x is a positive real number implies
that 1

x is a positive real number. Thus, 1
x ∈ V and

x⊕ 1

x
= x

(
1

x

)
= 1

and V contains an additive inverse for each of its elements.

We have that

(k +m)x = xk+m = xkxm = xk ⊕ xm = k(x)⊕m(x),

k(x⊕+y) = k(xy) = xkyk = xk ⊕ yk = k(x)⊕ k(y),

(km)x = xkm = (xm)k = (m(x))k = k(m(x))

1x = x1 = x.

So V satisfies all of the properties of a vector space.

(c) Recall thatM2×2 is a vector space using the standard addition and multiplication by scalars

on matrices. Any matrix of the form
[
a 0
b 0

]
can be written as

[
a 0
b 0

]
= a

[
1 0
0 0

]
+ b

[
0 0
1 0

]
.

SoW = Span
{[

1 0
0 0

]
,

[
0 0
1 0

]}
andW is a subspace ofM2×2. Thus,W is a vector

space.

(d) We will show that W is not a vector space. Let f : R → R be defined by f(x) = 1. Then
f(0) ≥ 0 and f ∈ W . However, if h = (−1)f , then h(0) = (−1)f(0) = −1 and h /∈ W .
It follows that W is not closed under multiplication by scalars and W is not a vector space.

Example 22.8. Let V be a vector space and u and v vectors in V . Also, let a and b be scalars. You
may use the result of Exercise 4 that c0 = 0 for any scalar c in any vector space.

(a) If av = bv and v 6= 0, must a = b? Use the properties of a vector space or provide a
counterexample to justify your answer.

(b) If au = av and a 6= 0, must u = v? Use the properties of a vector space or provide a
counterexample to justify your answer.

(c) If au = bv, must a = b and u = v? Use the properties of a vector space or provide a
counterexample to justify your answer.

Example Solution.

(a) We will show that this statement is true. Suppose av = bv and v 6= 0. Then 0 = av−bv =
(a− b)v. If a = b, then we are done. So suppose a 6= b. Then a− b 6= 0 and 1

a−b is a real
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number. Then

1

a− b0 =
1

a− b((a− b)v)

0 =

(
1

a− b(a− b)
)
v

0 = v.

But we assumed that v 6= 0, so we can conclude that a = b as desired.

(b) We will show that this statement is true. Suppose au = av and a 6= 0. Then 0 = au−av =
a(u− v). Since a 6= 0, we know that 1

a is a real number. Thus,

1

a
0 =

1

a
(a(u− v))

0 =

(
1

a
a

)
(u− v)

0 = u− v

u = v.

(c) We will demonstrate that this statement is false with a counterexample. Let a = 1, b = 2,
u = [2 0]T and v = [1 0]T in R2. Then

au = 1[2 0]T = [2 0]T = 2[1 0]T = bv,

but a 6= b and u 6= v.

Summary

• A set V on which an operation of addition and a multiplication by scalars is defined is a
vector space if for all u, v, and w in V and all scalars a and b:

(1) u + v is an element of V ,

(2) u + v = v + u,

(3) (u + v) + w = u + (v + w),

(4) there is a zero vector 0 in V so that u + 0 = u,

(5) for each x in V there is an element y in V so that x + y = 0,

(6) au is an element of V ,

(7) (a+ b)u = au + bu,

(8) a(u + v) = au + av,

(9) (ab)u = a(bu),

(10) 1u = u.

• A subset H of a vector space V is a subspace of V if
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(1) whenever u and v are in H it is also true that u + v is in H ,

(2) whenever u is in H and a is a scalar it is also true that au is in H ,

(3) 0 is in H .

• A linear combination of vectors v1, v2, . . ., vk in a vector space V is a vector of the form

x1v1 + x2v2 + · · ·+ xkvk,

where x1, x2, . . ., xk are scalars.

• The span of the vectors v1, v2, . . ., vk in a vector space V is the collection of all linear
combinations of v1, v2, . . ., vk. That is,

Span{v1,v2, . . . ,vk} = {x1v1 + x2v2 + · · ·+ xkvk : x1, x2, . . . , xk are scalars}.

• The span of any finite set of vectors in a vector space V is always a subspace of V .

• This concept of vector space is important because there are many different types of sets (e.g.,
Rn,Mm×n, Pn, F) that have similar structure, and we can relate them all as members of this
larger collection of vector spaces.

Exercises

(1) The definition of a vector space only states the existence of a zero vector and does not say
how many zero vectors the space might have. In this exercise we show that the zero vector in
a vector space is unique. To show that the zero vector is unique, we assume that two vectors
01 and 02 have the zero vector property.

(a) Using the fact that 01 is a zero vector, what vector is 01 + 02?

(b) Using the fact that 02 is a zero vector, what vector is 01 + 02?

(c) How do we conclude that the zero vector is unique?

(2) The definition of a vector space only states the existence of an additive inverse for each vector
in the space, but does not say how many additive inverses a vector can have. In this exercise
we show that the additive inverse of a vector in a vector space is unique. To show that a vector
v has only one additive inverse, we suppose that v has two additive inverses, u and w, and
demonstrate that u = w.

(a) What equations must u and w satisfy if u and w are additive inverses of v?

(b) Use the equations from part (a) to show that u = w. Clearly identify all vector space
properties you use in your argument.

(3) Let V be a vector space and v a vector in V . In all of the vector spaces we have seen to
date, the additive inverse of the vector v is equal to the scalar multiple (−1)v. This seems
reasonable, but it is important to note that this result is not stated in the definition of a vector
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space, so this it is something that we need to verify. To show that (−1)v is an additive inverse
of the vector v, we need to demonstrate that

v + (−1)v = 0.

Verify this equation, explicitly stating which properties you use at each step.

(4) It is reasonable to expect that if c is any scalar and 0 is the zero vector in a vector space V ,
then c0 = 0. Use the fact that 0 + 0 = 0 to prove this statement.

(5) LetW1,W2 be two subspaces of a vector space V . Determine whetherW1∩W2 andW1∪W2

are subspaces of V . Justify each answer clearly.

(6) Find three vectors v1,v2,v3 to express

W =


 a+ 2b+ c

b− 3c
a− c

 : a, b, c in R


as Span{v1,v2,v3}. How does this justify why W is a subspace of R3?

(7) Find three vectors v1,v2,v3 to express

W =

{[
a+ b a− 2c
3b+ c a+ b− c

]
: a, b, c in R

}
as Span{v1,v2,v3}. How does this justify why W is a subspace ofM2×2?

(8) Let F be the set of all functions from R to R, where we define the sum of two functions f
and g in F as the function f + g satisfying

(f + g)(x) = f(x) + g(x)

for all real numbers x, and the scalar multiple cf of the function f by the scalar c to be the
function satisfying

(cf)(x) = cf(x)

for all real numbers x. Show that F is a vector space using these operations.

(9) Prove Theorem 22.6. (Hint: Compare to Theorem 12.5).

(10) Determine if each of the following sets of elements is a vector space or not. If appropriate,
you can identify a set as a subspace of another vector space, or as a span of a collection of
vectors to shorten your solution.

(a) A line through the origin in Rn.

(b) The first quadrant in R2.

(c) The set of vectors
{[

a
0

]
: a in Z

}
.

(d) The set of all differentiable functions from R to R.
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(e) The set of all functions from R to R which are increasing for every x. (Assume that
a function f is increasing if f(a) > f(b) whenever a > b.)

(f) The set of all functions f from R to R for which f(c) = 0 for some fixed c in R.

(g) The set of polynomials of the form a+ bt, where a+ b = 0.

(h) The set of all upper triangular 4× 4 real matrices.

(i) The set of complex numbers C where scalar multiplication is defined as multiplica-
tion by real numbers.

(11) A reasonable way to extend the idea of the vector space Rn to infinity is to let R∞ be the set
of all sequences of real numbers. Define addition and multiplication by scalars on R∞ by

{xn}+ {yn} = {xn + yn} and c{xn} = {cxn}

where {xn} denotes the sequence x1, x2, x3, . . ., {yn} denotes the sequence y1, y2, y3, . . .
and c is a scalar.

(a) Show that R∞ is a vector space using these operations.

(b) Is the set of sequences that have infinitely many zeros a subspace of R∞? Verify
your answer.

(c) Is the set of sequences which are eventually zero a subspace of R∞? Verify your
answer. (A sequence {xn} is eventually zero if there is an index k0 such that xn = 0
whenever n ≥ k0.)

(d) Is the set of decreasing sequences a subspace of R∞? Verify your answer. (A se-
quence {xn} is decreasing if xn+1 ≤ xn for each n.)

(e) Is the set of sequences in R∞ that have limits at infinity a subspace of R∞?

(f) Let `2 be the set of all square summable sequences in R∞, that is sequences {xn}
so that

∑∞
k=1 x

2
k is finite. So, for example, the sequence

{
1
n

}
is in `2. Show that

`2 is a subspace of R∞ (the set `2 is an example of what is called a Hilbert space
by defining the inner product 〈{xn}, {yn}〉 =

∑∞
n=1 xnyn). (Hint: show that 2u2 +

2v2 − (u+ v)2 ≥ 0 for any real numbers u and v.)

(12) Given two subspaces H1, H2 of a vector space V , define

H1 +H2 = {w | w = u + v where u in H1,v in H2} .

Show that H1 + H2 is a subspace of V containing both H1, H2 as subspaces. The space
H1 +H2 is the sum of the subspaces H1 and H2.

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The intersection of any two subspaces of V is also a subspace.

(b) True/False The union of any two subspaces of V is also a subspace.

(c) True/False If H is a subspace of a vector space V , then −H = {(−1)v : v in H} is
equal to H .
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(d) True/False If v is a nonzero vector in H , a subspace of Rn, then H contains the line
through the origin and v in Rn.

(e) True/False If v1,v2 are nonzero, non-parallel vectors in H , a subspace of Rn, then
H contains the plane through the origin, v1 and v2 in Rn.

(f) True/False The smallest subspace in Rn containing a vector v is a line through the
origin.

(g) True/False The largest subspace of V is V .

(h) True/False The space P1 is a subspace of Pn for n ≥ 1.

(i) True/False The set of constant functions from R to R is a subspace of F .

(j) True/False The set of all polynomial functions with rational coefficients is a sub-
space of F .

Project: Hamming Codes and the Hat Puzzle

Recall the hat problem from the beginning of this section. Three players are assigned either a red
or blue hat and can only see the colors of the hats of the other players. The goal is to devise a
high probability strategy for one player to correctly guess the color of their hat. The players have
a 50% chance of winning if one player guesses randomly and all of the others pass. However, the
group can do better than 50% with a reasonably simple strategy. There are 2 possibilities for each
hat color for a total of 23 = 8 possible distributions of hat colors. Of these, only red-red-red and
blue-blue-blue contain only one hat color, so 6/8 of 3/4 of the possible hat distributions have two
hats of one color and one of the other color. So if a player sees two hats of the same color, that
player guesses the other color and passes otherwise. This gives a 75% chance of winning. This
strategy will only work for three players, though. We want to develop an effective strategy that
works for larger groups of players.

There is a strategy, based on Hamming codes that can be utilized when the number of players is
of the form 2k − 1 with k ≥ 2. This strategy will provide a winning probability of

1− 2−k.

Note that as k → ∞, this probability has a limit of 1. Note also that if k = 2 (so that there are 3
players), then the probability is 3

4 or 75% – the same strategy we came up with earlier.

To understand this strategy, we need to build a slightly different kind of vector space than we
have seen until now, one that is based on a binary choice of red or blue. To do so, we identify the
hat colors with numbers – 0 for red and 1 for blue. So let F = {0, 1}. Assume there are n = 2k − 1
players for some integer k ≥ 2. We can then view a distribution of hats among the n = 2k − 1
players as a vector with n components from F. That is,

Fn = {[α1 α2 · · · αn]T : αi ∈ F}.

We can give some structure to both F and Fn by noting that we can define addition and multi-
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plication in F by

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0

0 · 0 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Project Activity 22.1. Show that F has the same structure as R. That is, show that for all x, y, and
z in F, the following properties are satisfied.

(a) x+ y ∈ F and xy ∈ F

(b) x+ y = y + x and xy = yx

(c) (x+ y) + z = x+ (y + z) and (xy)z = x(yz)

(d) There is an element 0 in F such that x+ 0 = x

(e) There is an element 1 in F such that (1)x = x

(f) There is an element −x in F such that x+ (−x) = 0

(g) If x 6= 0, there is an element 1
x in F such that x

(
1
x

)
= 1

(h) x(y + z) = (xy) + (xz)

Project Activity 22.1 shows that F has the same properties as R – that is that F is a field. Until
now, we have worked with vector spaces whose scalars come from the set of real numbers, but that
is not necessary. None of the results we have discovered so far about vector spaces require our
scalars to come from R. In fact, we can replace R with any field and all of the same vector space
properties hold. It follows that V = Fn is a vector space over F. As we did in Rn, we define the
standard unit vectors e1 = [1 0 0 · · · 0]T, e2 = [0 1 0 0 . . . 0]T, . . ., en = [0 0 0 . . . 0 1]T in
V = Fn.

Now we return to the hat puzzle. We have n = 2k − 1 players. Label the players 1, 2, . . ., n.
We can now represent a random placements of hats on heads as a vector v = [α1 α2 · · · αn]T in
V = Fn, where αi = 0 in the ith entry represents a red hat and αi = 1 a blue hat on player i. Since
player i can see all of the other hats, from player i’s perspective the distribution of hats has the form

v = vi + βiei,

where βi is the unknown color of hat on player i’s head and

vi = [α1 α2 · · · αi−1 0 αi+1 · · ·αn]T.

In order to analyze the vectors v from player i’s perspective and to devise an effective strategy, we
will partition the set V into an appropriate disjoint union of subsets.

To provide a different way to look at players, we will use a subspace of V . LetW be a subspace
of V that has a basis of k vectors. The elements ofW are the linear combinations of k basis vectors,
and each basis vector in a linear combination has 2 possibilities for its weight (from F). Thus, W
contains exactly 2k = n + 1 vectors. We can then use the n = 2k − 1 nonzero vectors in W to
represent our players. Each distribution of hats can be seen as a linear combination of the vectors
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in W . Let w1, w2, . . ., w2k−1 be the nonzero vectors in W . We then define a function ϕ : V →W
as

ϕ([α1 α2 · · · αn]T) =
n∑
i=1

αiwi

that identifies a distribution of hats with a vector in W . The subspace that we need to devise our
strategy is what is called a Hamming code.

Project Activity 22.2. Let

H =

{
[α1 α2 · · · αn]T ∈ V :

n∑
i=1

αiwi = 0

}
.

Show that H is a subspace of V . (The subspace H is called the
(
2k − 1, 2k − k − 1

)
Hamming

code (where the first component is the number of elements in a basis for V and the second the
number of elements in a basis for H). Hamming codes are examples of linear codes – those codes
that are subspaces of the larger vector space.)

Now for each i between 0 and n we define Hi = ei +H as

Hi = ei +H = {ei + h : h ∈ H},

where we let e0 = 0. The sets Hi are called cosets of H .

Project Activity 22.3. To complete our strategy for the hat puzzle, we need to know some addi-
tional information about the sets Hi.

(a) Show that the sets Hi are disjoint. That is, show that Hi ∩ Hj = ∅ if i 6= j. (Hint: If
v ∈ Hi and v ∈ Hj , what can we say about ei − ej?)

(b) Since Hi ⊆ V for each i, it follows that
⋃n
i=0Hi ⊆ V . Now we show that V =

⋃n
i=0Hi

by demonstrating that
⋃n
i=0Hi has exactly the same number of elements as V . We will

need one fact for our argument. We will see in a later section that H has a basis of n − k
elements, so the number of elements in H is 2n−k.

i. Since the sets Hi are disjoint, the number of elements in
⋃n
i=1Hi is equal to the sum

of the number of elements in each Hi. Show that each Hi has the same number of
elements as H .

ii. Now use the fact that the number of elements in
⋃n
i=0Hi is equal to the sum of the

number of elements in each Hi to argue that V =
⋃n
i=0Hi.

The useful idea from Project Activity 22.3 is that any hat distribution in V is in exactly one of
the sets Hi. Recall that a hat distribution v = [α1 α2 · · · αn]T in V can be written from player i’s
perspective as

v = vi + βiei,

where vi = [α1 α2 · · · αi−1 0 αi+1 · · · · · · αn]T. Our strategy for the hat game can now be
revealed.

• If vi + βiei is not in H for either choice of βi, then player i should pass.
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• If vi + βiei is in H , then player i guesses 1 + βi.

Project Activity 22.4. Let us analyze this strategy.

(a) Explain why every player guesses wrong if v is in H .

(b) Now we see determine that our strategy is a winning strategy for all hat distributions v that
are not in H . First we need to know that these two options are the only ones. That is, show
that it is not possible for vi + βiei to be in H for both choices of βi.

(c) Now we want to demonstrate that this is a winning strategy if v /∈ H . That is, at least one
player guesses a correct hat color and no one else guesses incorrectly. So assume v /∈ H .

i. We know that v ∈ Hi for some unique choice of i, so let v = ei+h for some h ∈ H .
Explain why player i can correctly choose color 1 + αi.

ii. Finally, we need to argue that every player except player i must pass. So consider
player j, with j 6= i. Recall that

v = vj + αjej .

Analyze our strategy and the conditions under which player j does not pass. Show
that this leads to a contradiction.

Project Activity 22.4 completes our analysis of this strategy and shows that our strategy results
in a win with probability

1− |H||V | = 1− 22k−k−1

22k−1
= 1− 2−k.



Section 23

Bases for Vector Spaces

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What does it mean for a set {v1,v2, . . . ,vk} of vectors in a vector space
V to be linearly independent?

• What is another equivalent characterization of a linearly independent set?

• What does is mean for a set {v1,v2, . . . ,vk} of vectors in a vector space
V to be linearly dependent?

• Describe another characterization of a linearly dependent set.

• What is a basis for a vector space V ?

• What makes a basis for a vector space useful?

• How can we find a basis for a vector space V ?

Application: Image Compression

If you painted a picture with a sky, clouds, trees, and flowers, you would use a different
size brush depending on the size of the features. Wavelets are like those brushes.
− Ingrid Daubechies

The advent of the digital age has presented many new opportunities for the collection, analysis,
and dissemination of information. Along with these opportunities come new difficulties as well.
All of this digital information must be stored in some way and be retrievable in an efficient manner.
One collection of tools that is used to deal with these problems is wavelets. For example, The FBI
fingerprint files contain millions of cards, each of which contains 10 rolled fingerprint impressions.
Each card produces about 10 megabytes of data. To store all of these cards would require an enor-

407
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mous amount of space, and transmitting one full card over existing data lines is slow and inefficient.
Without some sort of image compression, a sortable and searchable electronic fingerprint database
would be next to impossible. To deal with this problem, the FBI adopted standards for fingerprint
digitization using a wavelet compression standard.

Another problem with electronics is noise. Noise can be a big problem when collecting and
transmitting data. Wavelet decomposition filters data by averaging and detailing. The detailing
coefficients indicate where the details are in the original data set. If some details are very small in
relation to others, eliminating them may not substantially alter the original data set. Similar ideas
may be used to restore damaged audio,1 video, photographs, and medical information.2

We will consider wavelets as a tool for image compression. The basic idea behind using
wavelets to compress images is that we start with a digital image, made up of pixels. Each pixel
can be assigned a number or a vector (depending on the makeup of the image). The image can then
be represented as a matrix (or a set of matrices) M , where each entry in M represents a pixel in
the image. As a simple example, consider the 16× 16 image of a flower as shown at left in Figure
23.1. (We will work with small images like this to make the calculations more manageable, but the
ideas work for any size image. We could also extend our methods to consider color images, but
for the sake of simplicity we focus on grayscale.) This flower image is a gray-scale image, so each

Figure 23.1: Left: A 16 by 16 pixel image. Right: The image compressed.

pixel has a numeric representation between 0 and 255, where 0 is black, 255 is white, and numbers

1see https://ccrma.stanford.edu/groups/edison/brahms/brahms.html for a discussion of the
denoising of a Brahms recording

2A review of wavelets in biomedical applications. M. Unser, A. Aldroubi. Proceedings of the IEEE, Volume: 84,
Issue: 4 , Apr 1996

https://ccrma.stanford.edu/groups/edison/brahms/brahms.html
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between 0 and 255 represent shades of gray. The matrix for this flower image is

240 240 240 240 130 130 240 130 130 240 240 240 240 240 240 240
240 240 240 130 175 175 130 175 175 130 240 240 240 240 240 240
240 240 130 130 175 175 130 175 175 130 130 240 240 240 240 240
240 130 175 175 130 175 175 175 130 175 175 130 240 240 240 240
240 240 130 175 175 130 175 130 175 175 130 240 240 240 240 240
255 240 240 130 130 175 175 175 130 130 240 240 225 240 240 240
240 240 130 175 175 130 130 130 175 175 130 240 225 255 240 240
240 240 130 175 130 240 130 240 130 175 130 240 255 255 255 240
240 240 240 130 240 240 75 240 240 130 240 255 255 255 255 255
240 240 240 240 240 240 75 240 240 240 240 240 240 240 240 240
240 240 240 75 75 240 75 240 75 75 240 240 240 240 240 240
50 240 240 240 75 240 75 240 75 240 240 240 240 50 240 240
240 75 240 240 240 75 75 75 240 240 50 240 50 240 240 50
240 240 75 240 240 240 75 240 240 50 240 50 240 240 50 240
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75



. (23.1)

Now we can apply wavelets to the image and compress it. Essentially, wavelets act by averaging
and differencing. The averaging creates smaller versions of the image and the differencing keeps
track of how far the smaller version is from a previous copy. The differencing often produces many
small (close to 0) entries, and so replacing these entries with 0 doesn’t have much effect on the
image (this is called thresholding). By introducing long strings of zeros into our data, we are able
to store a (compressed) copy of the image in a smaller amount of space. For example, using a
threshold value of 10 produces the flower image shown at right in Figure 23.1.

The averaging and differencing is done with special vectors (wavelets) that form a basis for a
suitable function space. More details of this process can be found at the end of this section.

Introduction

In Rn we defined a basis for a subspace W of Rn to be a minimal spanning set for W , or a linearly
independent spanning set (see Definition 6.6). So to consider the idea of a basis in a vector space,
we will need the notion of linear independence in that context.

Since we can add vectors and multiply vectors by scalars in any vector space, and because we
have a zero vector in any vector space, we can define linear independence of a finite set of vectors
in any vector space as follows (compare to Definition 6.1).

Definition 23.1. A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly independent if
the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

If a set of vectors is not linearly independent, then the set is linearly dependent.

Alternatively, we say that the vectors v1,v2, . . . ,vk are linearly independent (or dependent) if
the set {v1,v2, . . . ,vk} is linearly independent (or dependent).

Preview Activity 23.1.
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(1) We can use the tools we developed to determine if a set of vectors in Rn is linearly indepen-
dent to answer the same questions for sets of vectors in other vector spaces. For example,
consider the question of whether the set {1 + t, 1 − t} in P1 is linearly independent or de-
pendent. To answer this question we need to determine if there is a non-trivial solution to the
equation

x1(1 + t) + x2(1− t) = 0. (23.2)

Note that equation (23.2) can also be written in the form

(x1 + x2) + (x1 − x2)t = 0.

(a) Recall that two polynomials are equal if all coefficients of like powers are the same.
By equating coefficients of like power terms, rewrite equation (23.2) as an equivalent
system of two equations in the two unknowns x1 and x2, and solve for x1, x2.

(b) What does your answer to the previous part tell you about the linear independence or
dependence of the set {1 + t, 1− t} in P1?

(c) Recall that in Rn, a set of two vectors is linearly dependent if and only if one of the
vectors in the set is a scalar multiple of the other and linearly independent if neither
vector is a scalar multiple of the other. Verify your answer to part (c) from a similar
perspective in P1.

(2) We can use the same type of method as in problem (1) to address the question of whether the
set {[

1 3
1 2

]
,

[
1 −9
1 8

]
,

[
1 −1
1 4

]}
is linearly independent or dependent inM2×2. To answer this question we need to determine
if there is a non-trivial solution to the equation

x1

[
1 3
1 2

]
+ x2

[
1 −9
1 8

]
+ x3

[
1 −1
1 4

]
= 0 (23.3)

for some scalars x1, x2, and x3. Note that the linear combination on the left side of equation
(23.3) has entries [

x1 + x2 + x3 3x1 − 9x2 − x3

x1 + x2 + x3 2x1 + 8x2 + 4x3

]
.

(a) Recall that two matrices are equal if all corresponding entries are the same. Equate
corresponding entries of the matrices in equation (23.3) to rewrite the equation as an
equivalent system of four equations in the three unknowns x1, x2, and x3.

(b) Use appropriate matrix tools and techniques to find all solutions to the system from
part (a).

(c) What does the set of solutions to the system from part (a) tell you about the linear
independence or dependence of the set{[

1 3
1 2

]
,

[
1 −9
1 8

]
,

[
1 −1
1 4

]}
?
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(d) Recall that in Rn, a set of vectors is linearly dependent if and only if one of the
vectors in the set is a linear combination of the others and linearly independent if no
vector in the set is a linear combination of the others. Verify your answer to part (c)
from a similar perspective inM2×2.

(3) We will define a basis for a vector space to be a linearly independent spanning set. Which, if
any, of the sets in parts (1) and (2) is a basis for its vector space? Explain.

Linear Independence

The concept of linear independence, which we formally defined in Preview Activity 23.1, provides
us with a process to determine if there is redundancy in a spanning set to obtain an efficient spanning
set.

The definition tells us that a set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly
dependent if there are scalars x1, x2, . . ., xn, not all of which are 0 so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

As examples, we saw in Preview Activity 23.1 that the set {1 + t, 1− t} is linearly independent
in P1. The set {1 + t,−1 + 2t + t2, 1 − 8t − 3t2}, on the other hand, is linearly dependent in P2

since 2(1 + t) + 3(−1 + 2t+ t2) + (1− 8t− 3t2) = 0.

In addition to the definition, there are other ways to characterize linearly independent and de-
pendent sets in vector spaces as the next theorems illustrate. These characterizations are the same
as those we saw in Rn, and the proofs are essentially the same as well. The proof of Theorem 23.2
is similar to that of Theorem 6.2 and is left for the exercises.

Theorem 23.2. A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly dependent if and
only if at least one of the vectors in the set can be written as a linear combination of the remaining
vectors in the set.

Theorem 23.2 is equivalent to the following theorem that provides the corresponding result for
linearly independent sets.

Theorem 23.3. A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly independent if and
only if no vector in the set can be written as a linear combination of the remaining vectors in the
set.

One consequence of Theorems 23.2 and 23.3 is that if a spanning set is linearly dependent, then
one of the vectors in the set can be written as a linear combination of the others. In other words,
at least one of the vectors is redundant. In that case, we can find a smaller spanning set as the
next theorem states. The proof of this theorem is similar to that of Theorem 6.5 and is left for the
exercises.

Theorem 23.4. Let {v1,v2, . . . ,vk} be a set of vectors in a vector space V . If for some i between
1 and k, vi is in Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}, then

Span{v1,v2, . . . ,vk} = Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.
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Bases

A basis for a vector space is a spanning set that is as small as it can be. We already saw how to
define bases formally in Rn. We will now formally define a basis for a vector space and understand
why with this definition a basis is a minimal spanning set. Bases are important because any vector
in a vector space can be uniquely represented as a linear combination of basis vectors. We will see
in later sections that this representation will allow us to identify any vector space with a basis of n
vectors with Rn.

To obtain the formal definition of a basis, which is a minimal spanning set, we consider what
additional property makes a spanning set a minimal spanning set. As a consequence of Theorem
23.4, if S is a spanning set that is linearly dependent, then we can find a proper subset of S that
has the same span. Thus, the set S cannot be a minimal spanning set. However, if S is linearly
independent, then no vector in S is a linear combination of the others and we need all of the vectors
in S to form the span. This leads us to the following formal characterization of a minimal spanning
set, called a basis.

Definition 23.5. A basis for a vector space V is a subset S of V if

(1) Span S = V and

(2) S is a linearly independent set.

In other words, a basis for a vector space V is a linearly independent spanning set for V . To
put it another way, a basis for a vector space is a minimal spanning set for the vector space. Similar
reasoning will show that a basis is also a maximal linearly independent set.

The key ideas to take from the previous theorems are:

• A basis for a vector space V is a minimal spanning set for V .

• A basis for V is a subset S of V so that

(1) S spans V and

(2) S is linearly independent.

• No vector in a basis can be written as a linear combination of the other vectors in the basis.

• If a subset S of a vector space V has the property that one of the vectors in S is a linear
combination of the other vectors in S, then S is not a basis for V .

As an example of a basis of a vector space, we saw in Preview Activity 23.1 that the set S =
{1− t, 1 + t} is both linearly independent and spans P1, and so S is a basis for P1.

Activity 23.1.

(a) Is S = {1 + t, t, 1− t} a basis for P1? Explain.

(b) Explain why the set S = {1, t, t2, . . . , tn} is a basis for Pn. This basis is called the standard
basis for Pn.
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(c) Show that the set {[
1 0
1 1

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]
,

[
1 1
0 1

]}
is a basis forM2×2.

It should be noted that not every vector space has a finite basis. For example, the space P of all
polynomials with real coefficients (of any degree) is a vector space, but no finite set of vectors will
span P. In fact, the infinite set {1, t, t2, . . .} is both linearly independent and spans P, so P has an
infinite basis.

Finding a Basis for a Vector Space

We already know how to find bases for certain vector spaces, namely Nul A and Col A, where A is
any matrix. Finding a basis for a different kind of vector space will require other methods. Since a
basis for a vector space is a minimal spanning set, to find a basis for a given vector space we might
begin from scratch, starting with a given vector in the space and adding one vector at a time until
we have a spanning set.

Activity 23.2. Let W = {a+ bt+ ct3 | a, b, c are scalars}. We will find a basis of W that contains
the polynomial 3 + t− 3t3.

(a) Let S1 = {3 + t − t3}. Find a polynomial p(t) in W that is not in Span S1. Explain why
this means that the set S1 does not span W .

(b) Let S2 = {3 + t− t3, p(t)}. Find a polynomial q(t) that is not in Span S2. What does this
mean about S2 being a possible spanning set of W ?

(c) Let S3 = {3 + t− t3, p(t), q(t)}. Explain why the set S3 is a basis for W .

Alternatively, we might construct a basis from a known spanning set.

Activity 23.3. Let W =

{[
v + z w + z
x y

]
| v, w, x, y, z are scalars

}
. Assume that W is a

subspace ofM2×2.

(a) Find a set S of five 2 × 2 matrices that spans W (since W is a span of a set of vectors in
M2×2, W is a subspace of M2×2). Without doing any computation, can this set S be a
basis for W ? Why or why not?

(b) Find a subset B of S that is a basis for W .

Activities 23.2 and 23.3 give us two ways of finding a basis for a subspace W of a vector space
V , assuming W has a basis with finitely many vectors. One way (illustrated in Activity 23.2 is to
start by choosing any non-zero vector w1 in W . Let S1 = {w1}. If S1 spans W , then S1 is a basis
for W . If not, there is a vector w2 in W that is not in Span S1. Then S2 = {w1,w2} is a linearly
independent set. If Span S2 = W , then S2 is a basis for W and we are done. If not, repeat the
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process. We will show later that this process must stop as long as we know that W has a basis with
finitely many vectors.

Another way (illustrated in Activity 23.3 to find a basis for W is to start with a spanning set
S1 of W . If S1 is linearly independent, then S1 is a basis for W . If S1 is linearly dependent, then
one vector in S1 is a linear combination of the others and we can remove that vector to obtain a
new set S2 that also spans W . If S2 is linearly independent, then S2 is a basis for W . If not, we
repeat the process as many times as needed until we arrive until at a subset Sk of S1 that is linearly
independent and spans W . We summarize these results in the following theorem.

Theorem 23.6. Let W be a subspace of a finite-dimensional vector space V . Then

(1) any linearly independent subset of W can be extended to a basis of W ,

(2) any subset of W that spans W can be reduced to a basis of W .

We conclude this section with the result mentioned in the introduction – that every vector in a
vector space with basis B can be written in one and only one way as a linear combination of basis
vectors. The proof is similar to that of Theorem 6.4 and is left to the exercises.

Theorem 23.7. Let v1, v2, . . ., vn be vectors in a vector space V that make up a basis B for V .
If u is a vector in V , then u can be written in one and only one way as a linear combination of
vectors v1, v2, . . ., vn in B.

Examples

What follows are worked examples that use the concepts from this section.

Example 23.8. Let S = {1, 1 + t, 2− t2, 1 + t+ t2, t− t2}.

(a) Does S span P2? Explain.

(b) Explain why S is not a basis for P2.

(c) Find a subset of S that is a basis for P2. Explain your reasoning.

Example Solution.

(a) Let p(t) = a0 + a1t+ a2t
2 be an arbitrary vector in P2. If p(t) is in Span S, then there are

weights c1, c2, c3, c4, and c5 such that

a0 + a1t+ a2t
2 = c1(1) + c2(1 + t) + c3(2− t2) + c4(1 + t+ t2) + c5(t− t2).

Equating coefficients of like powers gives us the system

c1 + c2 + 2c3 + c4 = a0

c2 + c4 + c5 = a1

−c3 + c4 − c5 = a2.
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The reduced row echelon form of the coefficient matrix A is 1 0 0 2 −3
0 1 0 1 1
0 0 1 −1 1

 .
Since there is a pivot in every row of A, the system Ax = b is always consistent. We
conclude that S does span P2.

(b) The fact that the coefficient matrix A of our system has non-pivot columns means that each
vector in P2 can be written in more than one way as a linear combination of vectors in S.
This means that S is not linearly independent and so cannot be a basis for P2.

(c) That the first three columns of A are pivot columns implies that the polynomials 1, 1 + t,
and 2 − t2 are linearly independent. Since there is a pivot in every row of A, the three
polynomials 1, 1 + t, and 2− t2 also span P2. So {1, 1 + t, 2− t2} is a subset of S that is
a basis for P2.

Example 23.9. Let U be the set of all matrices of real numbers of the form
[
u −u− x
0 x

]
and

W be the set of all real matrices of the form
[
v 0
w −v

]
.

(a) Find a basis for U and a basis for W .

(b) Let U + W = {A + B : A is in U and B is in W}. Show that U + W is a subspace of
M2×2 and find a basis for U +W .

Example Solution.

(a) Every matrix in U has the form[
u −u− x
0 x

]
= u

[
1 −1
0 0

]
+ x

[
0 −1
0 1

]
.

Let SU =

{[
1 −1
0 0

]
,

[
0 −1
0 1

]}
. Then U = Span SU and U is a subspace ofM2×2.

If

c1

[
1 −1
0 0

]
+ c2

[
0 −1
0 1

]
= 0,

then c1 = c2 = 0 and SU is also linearly independent. This makes SU a basis for U .

Similarly, every matrix in W has the form[
v 0
w −v

]
= v

[
1 0
0 −1

]
+ w

[
0 0
1 0

]
.

Let SW =

{[
1 0
0 −1

]
,

[
0 0
1 0

]}
. Then W = Span SW and W is a subspace of

M2×2. If

c1

[
1 0
0 −1

]
+ c2

[
0 0
1 0

]
= 0,

then c1 = c2 = 0 and SW is also linearly independent. This makes SW a basis for W .
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(b) Every matrix in U +W has the form[
u −u− x
0 x

]
+

[
v 0
w −v

]
=

[
u+ v −u− x
w x− v

]
= u

[
1 −1
0 0

]
+ x

[
0 −1
0 1

]
+ v

[
1 0
0 −1

]
+ w

[
0 0
1 0

]
.

Let S =

{[
1 −1
0 0

]
,

[
0 −1
0 1

]
,

[
1 0
0 −1

]
,

[
0 0
1 0

]}
. Then U + W = Span S

and U +W is a subspace ofM2×2. If

c1

[
1 −1
0 0

]
+ c2

[
0 −1
0 1

]
+ c3

[
1 0
0 −1

]
+ c4

[
0 0
1 0

]
= 0,

then

c1 + c3 =0

−c1 − c2 =0

c4 =0

c2 − c3 =0.

The reduced row echelon form of


1 0 1 0
−1 −1 0 0

0 0 0 1
0 1 −1 0

 is


1 0 1 0
0 1 −1 0
0 0 0 1
0 0 0 0

. The vec-

tors that correspond to the pivot columns are linearly independent and span U + W , so a
basis for U +W is {[

1 −1
0 0

]
,

[
0 −1
0 1

]
,

[
0 0
1 0

]}
.

Summary

The important idea in this section is that of a basis for a vector space. A basis is a minimal spanning
set and another equivalent characterization of the “minimal” property is linear independence.

• A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

If a set of vectors is not linearly independent, then the set is linearly dependent.
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• A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly independent if and only if
none of the vectors in the set can be written as a linear combination of the remaining vectors
in the set.

• A set {v1,v2, . . . ,vk} of vectors in a vector space V is linearly dependent if and only if at
least one of the vectors in the set can be written as a linear combination of the remaining
vectors in the set.

• A basis for a vector space V is a subset S of V if

(1) Span S = V and

(2) S is a linearly independent set.

• A basis is important in that it provides us with an efficient way to represent any vector in the
vector space – any vector can be written in one and only one way as a linear combination of
vectors in a basis.

• To find a basis of a vector space, we can start with a spanning set S and toss out any vector
in S that can be written as a linear combination of the remaining vectors in S. We repeat the
process with the remaining subset of S until we arrive at a linearly independent spanning set.
Alternatively, we can find a spanning set for the space and remove any vector that is a linear
combination of the others in the spanning set. We can repeat this process until we wind up
with a linearly independent spanning set.

Exercises

(1) Determine if the given sets are linearly independent or dependent in the indicated vector
space. If dependent, write one of the vectors as a linear combination of the others. If inde-
pendent, determine if the set is a basis for the vector space.

(a) {[1 4 6]T, [2 − 1 3]T, [0 1 5]T} in R3

(b) {1− 2t2 + t3, 3− t+ 4t3, 2− 3t} in P3

(c) {1 + t,−1− 5t+ 4t2 + t3, 1 + t2 + t3, t+ 2t3} in P3

(d)
{[

1 2 0
0 1 1

]
,

[
1 −2 0
0 −1 1

]
,

[
1 2 0
0 1 −1

]}
inM3×2.

(2) Let S = {1 + t+ t2, t+ t2, 1 + t, 1 + t2} in P2.

(a) Show that the set S spans P2.

(b) Show that the set S is linearly dependent.

(c) Find a subset of S that is a basis for P2. Be sure to verify that you have a basis.

(3) Find two different bases forM2×2. Explain how you know that each set is a basis.

(4) The set W = {at+ bt2 | a and b are scalars} is a subspace of P3.

(a) Find a set of vectors in P3 that spans W .
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(b) Find a basis for W . Be sure to verify that you have a basis.

(5) Suppose that the set {u,v,w} is a basis for a vector space V . Is the set {u+v,u+w,v+w}
a basis for V ? Verify your result.

(6) Determine all scalars c so that the set {c2 + t2, c+ 2t, 1 + t2} is a basis for P2.

(7) A symmetric matrix is a matrix A so that AT = A. Is it possible to find a basis forM2×2

consisting entirely of symmetric matrices? If so, exhibit one such basis. If not, explain why
not.

(8) Find a basis of the subspace of M2×3 consisting of all matrices of the form
[
a b c
d e f

]
where c = a− 2d and f = b+ 3e.

(9) Prove Theorem 23.2. (Hint: Compare to Theorem 6.2.)

(10) Prove Theorem 23.4. (Hint: Compare to Theorem 6.5.)

(11) Prove Theorem 23.7. (Hint: Compare to Theorem 6.4.)

(12) Show that if W1,W2 are subspaces of V such that W1 ∩W2 = {0}, then for any linearly
independent vectors u1,u2, . . . ,uk in W1 and v1,v2, . . . ,v` in W2, the set {u1, u2, . . ., uk,
v1, v2, . . ., v`} is linearly independent in V .

(13) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, let V be a vector space.

(a) True/False If v is in V , then the set {v} is linearly independent.

(b) True/False If a set of vectors span a subspace, then the set forms a basis of this
subspace.

(c) True/False If a linearly independent set of vectors spans a subspace, then the set
forms a basis of this subspace.

(d) True/False If the set S spans V and removing any vector from S makes it not a
spanning set anymore, then S is a basis.

(e) True/FalseIf S is a linearly independent set in V and for every u in V , adding u to
S makes it not linearly independent anymore, then S is a basis.

(f) True/False If a subset S of V spans V , then S must be linearly independent.

(g) True/False If a subset S of V is linearly independent, then S must span V .

(h) True/False If S is a linearly dependent set in V , then every vector in S is a linear
combination of the other vectors in S.

(i) True/False A vector space cannot have more than one basis.

(j) True/False If u is a non-zero vector in V , then there is a basis of V containing u.

(k) True/False If u,v are two linearly independent vectors in V , then there is a basis of
V containing u,v.

(l) True/False If u is in a basis of V , then 2u cannot be in a basis of V .
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Project: Image Compression with Wavelets

We return to the problem of image compression introduced at the beginning of this section. The first
step in the wavelet compression process is to digitize an image. There are two important ideas about
digitalization to understand here: intensity levels and resolution. In grayscale image processing, it
is common to think of 256 different intensity levels, or scales, of gray ranging from 0 (black) to
255 (white). A digital image can be created by taking a small grid of squares (called pixels) and
coloring each pixel with some shade of gray. The resolution of this grid is a measure of how many
pixels are used per square inch. An example of a 16 by 16 pixel picture of a flower was shown in
Figure 23.1.

An image can be thought of in several ways: as a two-dimensional array; as one long vector
by stringing the columns together one after another; or as a collection of column vectors. For
simplicity, we will use the last approach in this project. We call each column vector in a picture
a signal. Wavelets are used to process signals. After processing we can apply some technique to
compress the processed signals.

To process a signal we select a family of wavelets. There are many different families of wavelets
– which family to use depends on the problem to be addressed. The simplest family of wavelets
is the Haar family. More complicated families of wavelets are usually used in applications, but
the basic ideas in wavelets can be seen through working with the Haar wavelets, and their relative
simplicity will make the details easier to follow. Each family of wavelets has a father wavelet
(usually denoted ϕ) and a mother wavelet (ψ).

Wavelets are generated from the mother wavelet by scalings and translations. To further sim-
plify our work we will restrict ourselves to wavelets on [0,1], although this is not necessary. The
advantage the wavelets have over other methods of data analysis (Fourier analysis for example) is
that with the scalings and translations we are able to analyze both frequency on large intervals and
isolate signal discontinuities on very small intervals. The way this is done is by using a large col-
lection (infinite, in fact) of basis functions with which to transform the data. We’ll begin by looking
at how these basis functions arise.

If we sample data at various points, we can consider our data to represent a piecewise constant
function obtained by partitioning [0,1] into n equal sized subintervals, where n represents the num-
ber of sample points. For the purposes of this project we will always choose n to be a power of 2.
So we can consider all of our data to represent functions. For us, then, it is natural to look at these
functions in the vector space of all functions from R to R. Since our data is piecewise constant, we
can really restrict ourselves to a subspace of this larger vector space – subspaces of piecewise con-
stant functions. The most basic piecewise constant function on the interval [0, 1] is the one whose
value is 1 on the entire interval. We define ϕ to be this constant function (called the characteristic
function of the unit interval). That is

ϕ(x) =

{
1 if 0 ≤ x < 1

0, otherwise.

This function ϕ is the Father Haar wavelet.

This function ϕ may seem to be a very simple function but it has properties that will be im-
portant to us. One property is that ϕ satisfies a scaling equation. For example, Figure 23.2 shows
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Figure 23.2: Graphs of ϕ(x), ϕ(2x), and ϕ(2x− 1) from left to right.

that
ϕ(x) = ϕ(2x) + ϕ(2x− 1)

while Figure 23.3 shows that

ϕ(x) = ϕ(22x) + ϕ(22x− 1) + ϕ(22x− 2) + ϕ(22x− 3).

So ϕ is a sum of scalings and translations of itself. In general, for each positive integer n and
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Figure 23.3: Graphs of ϕ(22x), ϕ(22x− 1), ϕ(22x− 2), and ϕ(22x− 3), from left to right.

integers k between 0 and 2n − 1 we define

ϕn,k(x) = ϕ (2nx− k) .

Then ϕ(x) =
∑2n−1

k=0 ϕn,k(x) for each n.

These functions ϕn,k are useful in that they form a basis for the vector space Vn of all piecewise
constant functions on [0, 1] that have possible breaks at the points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n . This is

exactly the kind of space in which digital signals live, especially if we sample signals at 2n evenly
spaced points on [0, 1]. Let Bn = {ϕn,k : 0 ≤ k ≤ 2n − 1}. You may assume without proof that
Bn is a basis of Vn.

Project Activity 23.1.

(a) Draw the linear combination 2ϕ2,0− 3ϕ2,1 + 17ϕ2,2 + 30ϕ2,3. What does this linear com-
bination look like? Explain the statement made previously “Notice that these 2n functions
ϕn,k form a basis for the vector space of all piecewise constant functions on [0, 1] that have
possible breaks at the points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n ”.

(b) Remember that we can consider our data to represent a piecewise constant function ob-
tained by partitioning [0, 1] into n subintervals, where n represents the number of sample
points. Suppose we collect the following data: 10, 13, 21, 55, 3, 12, 4, 18. Explain how we
can use this data to define a piecewise constant function f on [0, 1]. Express f as a linear
combination of suitable functions ϕn,k. Plot this linear combination of ϕn,k to verify.
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Working with functions can be more cumbersome than working with vectors in Rn, but the
digital nature of our data makes it possible to view our piecewise constant functions as vectors in
Rn for suitable n. More specifically, if f is an element in Vn, then f is a piecewise constant function
on [0, 1] with possible breaks at the points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n . If f has the value of yi on the

interval between i−1
2n and i

2n , then we can identify f with the vector [y1 y1 . . . y2n ]T.

Project Activity 23.2.

(a) Determine the vector in R8 that is identified with ϕ.

(b) Determine the value of m and the vectors in Rm that are identified with ϕ2,0, ϕ2,1, ϕ2,2,
and ϕ2,3.

We can use the functions ϕn,k to represent digital signals, but to manipulate the data in useful
ways we need a different perspective. A different basis for Vn (a wavelet basis) will allow us to
identify the pieces of the data that are most important. We illustrate in the next activity with the
spaces V1 and V2.

Project Activity 23.3. The space V1 consists of all functions that are piecewise constant on [0, 1]
with a possible break at x = 1

2 . The functions ϕ = ϕn,k are used to records the values of a
signal, and by summing these values we can calculate their average. Wavelets act by averaging and
differencing, and so ϕ does the averaging. We need functions that will perform the differencing.

(a) Define {ψ0,0} as

ψ0,0(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise

.

A picture of ψ0,0 is shown in Figure 23.4. Since ψ0,0 assumes values of 1 and −1, we
can use ψ0,0 to perform differencing. The function ψ = ψ0,0 is the Mother Haar wavelet.3

Show that {ϕ,ψ} is a basis for V1.
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Figure 23.4: The graphs of ψ0,0, ψ1,0 and ψ1,1 from left to right.

(b) We continue in a manner similar to the one in which we constructed bases for Vn. For
k = 0 and k = 1, let ψ1,k = ψ

(
21x− k

)
. Graphs of ψ1,0 and ψ1,1 are shown in Figure

23.4. The functions ψ1,k assume the values of 1 and −1 on smaller intervals, and so can be
used to perform differencing on smaller scale than ψ0,0. Show that {ϕ0,0, ψ0,0, ψ1,0, ψ1,1}
is a basis for V2.

3The first mention of wavelets appeared in an appendix to the thesis of A. Haar in 1909.
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As Project Activity 23.3 suggests, we can make a basis for Vn from ϕ0,0 and functions of the
form ψn,k defined by ψn,k(x) = ψ (2nx− k) for k from 0 to 2n − 1. More specifically, if we let
Sn = {ψn,k : 0 ≤ k ≤ 2n − 1}, then the set

Wn = {ϕ0,0} ∪
n−1⋃
j=0

Sj

is a basis for V ⊥n (we state this without proof). The functions ψn,k are the wavelets.

Project Activity 23.4. We can now write any function in Vn using the basisWn. As an example,
the string 50, 16, 14, 28 represents a piecewise constant function which can be written as 50ϕ2,0 +
16ϕ2,1 + 14ϕ2,2 + 28ϕ2,3, an element in V2.

(a) Specifically identify the functions inW0,W1, andW2, andW3.

(b) As mentioned earlier, we can identify a signal, and each wavelet function, with a vector
in Rm for an appropriate value of m. We can then use this identification to decompose
any signal as a linear combination of wavelets. We illustrate this idea with the signal
[50 16 14 28]T in R4. Recall that we can represent this signal as the function f = 50ϕ2,0 +
16ϕ2,1 + 14ϕ2,2 + 28ϕ2,3.

i. Find the the vectors w1, w2, w3, and w4 in Rm that are identified with ϕ0,0, ψ0,0,
ψ1,0, and ψ1,1, respectively.

ii. Any linear combination c1ϕ0,0 + c2ψ0,0 + c3ψ1,0 + c4ψ1,1 is then identified with the
linear combination c1w1 + c2w2 + c3w3 + c4w4. Use this idea to find the weights to
write the function f as a linear combination of ϕ0,0, ψ0,0, ψ1,0, and ψ1,1.

Although is it not necessarily easy to observe, the weights in the decomposition f = 27ϕ0,0 +
6ψ0,0 + 17ψ1,0 − 7ψ1,1 are just averages and differences of the original weights in f = 50ϕ2,0 +
16ϕ2,1 + 14ϕ2,2 + 28ϕ2,3. To see how, notice that if we take the overall average of the original
weights we obtain the value of 27. If we average the original weights in pairs (50 and 16, and 14 and
28) we obtain the values 33 and 21, and if we take average differences of the original weights in pairs
(50 and 16, and 14 and 28) we obtain the values 17 and−7. We can treat the signal [33 21]T formed
from the average of the pairs of the original weights as a smaller copy of the original signal. The
average difference of the entries of this new signal is 6. So the weights in our final decomposition
are obtained by differences between successive averages and certain coefficients. The coefficients
in our final decomposition 27ϕ0,0 + 6ψ0,0 + 17ψ1,0 − 7ψ1,1 are called wavelet coefficients. This is
the idea that makes wavelets so useful for image compression. In many images, pixels that are near
to each other often have similar coloring or shading. These pixels are coded with numbers that are
close in value. In the differencing process, these numbers are replaced with numbers that are close
to 0. If there is little difference in the shading of the adjacent pixels, the image will be changed only
a little if the shadings are made the same. This results in replacing these small wavelet coefficients
with zeros. If the processed vectors contain long strings of zeros, the vectors can be significantly
compressed.

Once we have recognized the pattern in expressing our original function as an overall average
and wavelet coefficients we can perform these operations more quickly with matrices.
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Project Activity 23.5. The process of averaging and differencing discussed in and following Project
Activity 23.4 can be viewed as a matrix-vector problem. As we saw in Project Activity 23.4, we
can translate the problem of finding wavelet coefficients to the matrix world.

(a) Consider again the problem of finding the wavelet coefficients contained in the vector
[27 6 17 − 7]T for the signal [50 16 14 28]T. Find the matrix A4 that has the property
that A4[50 16 14 28]T = [27 6 17 − 7]T. (You have already done part of this problem in
Project Activity 23.4.) Explain how A4 performs the averaging and differencing discussed
earlier.

(b) Repeat the process in part (a) to find the matrix A8 that converts a signal to its wavelet
coefficients.

(c) The matrix Ai is called a forward wavelet transformation matrix and A−1
i is the inverse

wavelet transform matrix. Use A8 to show that the wavelet coefficients for the data string
[80 48 4 36 28 64 6 50]T are contained in the vector [39.5 2.5 22 9 16 − 16 − 18 − 22]T.

Now we have all of the necessary background to discuss image compression. Suppose we want
to store an image. We partition the image vertically and horizontally and record the color or shade
at each grid entry. The grid entries will be our pixels. This gives a matrix, M , of colors, indexed
by pixels or horizontal and vertical position. To simplify our examples we will work in gray-scale,
where our grid entries are integers between 0 (black) and 255 (white). We can treat each column of
our grid as a piecewise constant function. As an example, the image matrix M that produced the
picture at left in Figure 23.1 is given in (23.1).

We can then apply a 16 by 16 forward wavelet transformation matrix A16 to M to convert the
columns to averages and wavelet coefficients that will appear in the matrix A16M . These wavelet
coefficients allow us to compress the image – that is, create a smaller set of data that contains the
essence of the original image.

Recall that the forward wavelet transformation matrix computes weighted differences of con-
secutive entries in the columns of the image matrix M . If two entries in M are close in values, the
weighted difference in A16M will be close to 0. For our example, the matrix A16M is approxi-
mately 

208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0
33.4 24.1 −0.625 0.938 −2.50 −5.94 42.8 −5.94 −2.50 12.8 0.938 24.7 30.6 33.4 32.5 31.6
−1.88 −13.8 19.4 2.50 0.0 −2.50 8.12 −2.50 0.0 2.50 19.4 −13.8 1.88 −3.75 −1.88 0.0
17.5 61.9 61.9 6.88 0.0 61.9 0.0 61.9 0.0 30.6 65.0 66.9 66.9 19.4 66.9 66.9
0.0 27.5 43.8 16.2 0.0 −11.2 16.2 −11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
3.75 0.0 27.5 −11.2 0.0 −16.2 22.5 −16.2 0.0 −11.2 27.5 0.0 −3.75 −7.50 −3.75 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 82.5 13.8 0.0 3.75 3.75 51.2 3.75 3.75
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 82.5 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 −22.5 −22.5 55.0 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 −22.5 −22.5 22.5 0.0 −22.5 0.0 22.5 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0
−7.50 0.0 −55.0 22.5 22.5 −22.5 0.0 −22.5 22.5 22.5 −55.0 0.0 7.50 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22.5 −55.0 0.0 −55.0 22.5 0.0 0.0 0.0 −15.0 0.0 −7.50 0.0
0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 −55.0 0.0 7.50 7.50 7.50 7.50 7.50
95.0 0.0 0.0 −82.5 0.0 0.0 0.0 0.0 0.0 −82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 −82.5 82.5 0.0 0.0 −82.5 0.0 −82.5 0.0 95.0 −95.0 95.0 −95.0 0.0 95.0 −95.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


.

Note that there are many wavelet coefficients that are quite small compared to others – the ones
where the weighted averages are close to 0. In a sense, the weighted differences tell us how much
“detail” about the whole that each piece of information contains. If a piece of information contains
only a small amount of information about the whole, then we shouldn’t sacrifice much of the picture
if we ignore the small “detail” coefficients. One way to ignore the small “detail” coefficients is to
use thresholding.
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With thresholding (this is hard thresholding or keep or kill), we decide on how much of the
detail we want to remove (this is called the tolerance). So we set a tolerance and then replace each
entry in our matrixA16M whose absolute value is below the tolerance with 0 to obtain a new matrix
M1. In our example, if you use a threshold value of 10 we obtain the new matrix M1:

208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0
33.4 24.1 0.0 0.0 0.0 0.0 42.8 0.0 0.0 12.8 0.0 24.7 30.6 33.4 32.5 31.6
0.0 −13.8 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.4 −13.8 0.0 0.0 0.0 0.0
17.5 61.9 61.9 0.0 0.0 61.9 0.0 61.9 0.0 30.6 65.0 66.9 66.9 19.4 66.9 66.9
0.0 27.5 43.8 16.2 0.0 −11.2 16.2 −11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
0.0 0.0 27.5 −11.2 0.0 −16.2 22.5 −16.2 0.0 −11.2 27.5 0.0 0.0 0.0 0.0 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 82.5 13.8 0.0 0.0 0.0 51.2 0.0 0.0
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 82.5 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 −22.5 −22.5 55.0 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 −22.5 −22.5 22.5 0.0 −22.5 0.0 22.5 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0
0.0 0.0 −55.0 22.5 22.5 −22.5 0.0 −22.5 22.5 22.5 −55.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22.5 −55.0 0.0 −55.0 22.5 0.0 0.0 0.0 −15.0 0.0 0.0 0.0
0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 0.0
95.0 0.0 0.0 −82.5 0.0 0.0 0.0 0.0 0.0 −82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 −82.5 82.5 0.0 0.0 −82.5 0.0 −82.5 0.0 95.0 −95.0 95.0 −95.0 0.0 95.0 −95.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


.

We now have introduced many zeros in our matrix. This is where we compress the image. To
store the original image, we need to store every pixel. Once we introduce strings of zeros we can
identify a new code (say 256) that indicates we have a string of zeros. We can then follow that code
with the number of zeros in the string. So if we had a string of 15 zeros in a signal, we could store
that information in 2 bytes rather than 15 and obtain significant savings in storage. This process
removes some detail from our picture, but only the small detail. To convert back to an image, we just
undo the forward processing by multiplying our thresholded matrix M1 by A−1

16 . The ultimate goal
is to obtain significant compression but still have A−1

16 M1 retain all of the essence of the original
image.

In our example using M1, the reconstructed image matrix is A−1
16 M1 (rounded to the nearest

whole number) is

242 240 241 237 132 138 232 138 132 238 239 240 238 244 242 240
242 240 241 127 178 183 122 183 178 128 239 240 238 244 242 240
242 240 131 127 178 183 122 183 178 128 129 240 238 244 242 240
242 130 176 172 132 183 167 183 132 172 174 130 238 244 242 240
242 240 131 177 178 133 183 133 178 178 129 240 238 244 242 240
242 240 241 132 132 178 183 178 132 132 239 240 238 244 242 240
242 240 131 177 178 133 138 133 178 178 129 240 223 244 242 240
242 240 131 177 132 243 138 243 132 178 129 240 253 244 242 240
240 240 239 124 238 234 75 234 238 130 241 244 244 248 244 244
240 240 239 234 238 234 75 234 238 240 241 244 244 248 244 244
240 240 239 69 73 234 75 234 73 75 241 244 244 240 244 244
50 240 239 234 73 234 75 234 73 240 241 244 244 50 244 244
240 75 239 248 238 69 75 69 238 240 51 240 50 240 240 50
240 240 74 248 238 234 75 234 238 50 241 50 240 240 50 240
75 75 74 83 73 69 75 69 73 75 76 75 75 75 75 75
75 75 74 83 73 69 75 69 73 75 76 75 75 75 75 75



.

We convert this into a gray-scale image and obtain the image at right in Figure 23.1. Compare
this image to the original at right in Figure 23.1. It is difficult to tell the difference.

There is a Sage file you can use at
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http://faculty.gvsu.edu/schlicks/Wavelets_Sage.html

that allows you to create your own 16 by 16 image and process, process your image with the Haar
wavelets in R16, apply thresholding, and reconstruct the compressed image. matrix. You can create
your own image, experiment with several different threshold levels, and choose the one that you
feel gives the best combination of strings of 0s while reproducing a reasonable copy of the original
image.

http://faculty.gvsu.edu/schlicks/Wavelets_Sage.html




Section 24

The Dimension of a Vector Space

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a finite dimensional vector space?

• What is the dimension of a finite dimensional vector space? What impor-
tant result about bases of finite dimensional vector spaces makes dimension
well-defined?

• What must be true about any linearly independent subset of n vectors in a
vector space with dimension n? Why?

• What must be true about any subset of n vectors in a vector space with
dimension n that spans the vector space? Why?

Application: Principal Component Analysis

The discipline of statistics is based on the idea of analyzing data. In large data sets it is usually the
case that one wants to understand the relationships between the different data in the set. This can be
difficult to do when the data set is large and it is impossible to visually examine the data for patterns.
Principal Component Analysis (PCA) is a tool for identifying and representing underlying patterns
in large data sets, and PCA has been called one of the most important and valuable linear algebra
tools for statistical analysis. PCA is used to transform a collection of variables into a (usually
smaller) number of uncorrelated variables called principal components. The principal components
form the most meaningful basis from which to view data by removing extraneous information and
revealing underlying relationships in the data. This presents a framework for how to reduce a
complex data set to a lower dimension while retaining the important attributes of the data set. The
output helps the experimenter determine which dynamics in the data are important and which can
be ignored.

427
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Introduction

In Section 15 we learned that any two bases for a subspace of Rn contain the same number of
vectors. This allowed us to define the dimension of a subspace of Rn. In this section we extend the
arguments we made in Section 15 to arbitrary vector spaces and define the dimension of a vector
space.

Preview Activity 24.1. The main tool we used to prove that any two bases for a subspace of Rn
must contain the same number of elements was Theorem 15.1. In this preview activity we will show
that the same argument can be used for vector spaces. More specifically, we will prove a special
case of the following theorem generalizing Theorem 15.1.

Theorem 24.1. If V is a vector space with a basis B = {v1,v2, . . . ,vk} of k vectors, then any
subset of V containing more than k vectors is linearly dependent.

Suppose V is a vector space with basis B = {v1,v2}. Consider the set U = {u1,u2,u3} of
vectors in V . We will show that U is linearly dependent using a similar approach to the Preview
Activity 15.1.

(1) What vector equation involving u1,u2,u3 do we need to solve to determine linear indepen-
dence/dependence of these vectors? Use x1, x2, x3 for coefficients.

(2) Since B is a basis of V , it spans V . Using this information, rewrite the vectors ui in terms of
vj and substitute into the above equation to obtain another equation in terms of vj .

(3) Since B is a basis of V , the vectors v1,v2 are linearly independent. Using the equation in the
previous part, determine what this means about the coefficients x1, x2, x3.

(4) Express the conditions on x1, x2, x3 in the form of a matrix-vector equation. Explain why
there are infinitely many solutions for xi’s and why this means the vectors u1,u2,u3 are
linearly dependent.

Finite Dimensional Vector Spaces

Theorem 24.1 shows that if sets B1 and B2 are finite bases for a vector space V , which are linearly
independent by definition, then each cannot contain more elements than the other, so the number of
elements in each basis must be equal.

Theorem 24.2. If a non-trivial vector space V has a basis of n vectors, then every basis of V
contains exactly n vectors.

Theorem 24.2 states that if a vector space V has a basis with a finite number of vectors, then
the number of vectors in a basis for that vector space is a well-defined number. In other words, the
number of vectors in a basis is an invariant of the vector space. This important number is given a
name.

Definition 24.3. A finite-dimensional vector space is a vector space that can be spanned by a finite
number of vectors. The dimension of a non-trivial finite-dimensional vector space is the number of
vectors in a basis for V . The dimension of the trivial vector space is defined to be 0.
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We denote the dimension of a finite dimensional vector space V by dim(V ).

Not every vector space is finite dimensional. We have seen, for example, that the vector space
P of all polynomials, regardless of degree, is not a finite-dimensional vector space. In fact, the
polynomials

1, t, t2, . . . , tn, . . .

are linearly independent, so P has an infinite linearly independent set and therefore has no finite
basis. A vector space that has an infinite basis is called an infinite dimensional vector space.

Activity 24.1. Since columns of the n×n identity matrix span Rn and are linearly independent, the
columns of In form a basis for Rn (the standard basis). Consequently, we have that dim(Rn) = n.
In this activity we determine the dimensions of other familiar vector spaces. Find the dimensions
of each of the indicated vector spaces. Verify your answers.

(a) P1 (b) P2 (c) Pn
(d) M2×3 (e) M3×4 (f) Mk×n

Finding the dimension of a finite-dimensional vector space amounts to finding a basis for the
space.

Activity 24.2. Let W = {(a+ b) + (a− b)t+ (2a+ 3b)t2 | a, b are scalars}.

(a) Find a finite set of polynomials in W that span W .

(b) Determine if the spanning set from part (a) is linearly independent or dependent. Clearly
explain your process.

(c) What is dim(W )? Explain.

The Dimension of a Subspace

Every subspace of a finite-dimensional vector space is a vector space, and since a subspace is
contained in a vector space it is natural to think that the dimension of a subspace should be less than
or equal to the dimension of the larger vector space. We verify that fact in this section.

Activity 24.3. Let V be a finite dimensional vector space of dimension n and let W be a subspace
of V . Explain why W cannot have dimension larger than dim(V ), and if W 6= V then dim(W ) <
dim(V ). (Hint: Use Theorem 24.1.)

Conditions for a Basis of a Vector Space

There are two items we need to confirm before we can state that a subset B of a subspace W of a
vector space is a basis for W : the set B must be linearly independent and span W . We can reduce
the amount of work it takes to show that a set is a basis if we know the dimension of the vector
space in advance.

Activity 24.4. Let W be a subspace of a vector space V with dim(W ) = k. We know that every
basis of W contains exactly k vectors.
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(a) Suppose that S is a subset of W that contains k vectors and is linearly independent. In this
part of the activity we will show that S must span W .

i. Suppose that S does not span W . Explain why this implies that W contains a set of
k + 1 linearly independent vectors.

ii. Explain why the result of i tells us that S is a basis for W .

(b) Now suppose that S is a subset ofW with k vectors that spansW . In this part of the activity
we will show that S must be linearly independent.

i. Suppose that S is not linearly independent. Explain why we can then find a proper
subset of S that is linearly independent but has the same span as S.

ii. Explain why the result of i tells us that S is a basis for W .

The result of Activity 24.4 is summarized in the following theorem (compare to Theorem 15.4).

Theorem 24.4. Let W be a subspace of dimension k of a vector space V and let S be a subset of
W containing exactly k vectors.

(1) If S is linearly independent, then S is a basis for W .

(2) If S spans W , then S is a basis for W .

Examples

What follows are worked examples that use the concepts from this section.

Example 24.5. Find a basis and dimension for each of the indicated subspaces of the given vector
spaces.

(a) {a+ b(t+ t2) : a, b ∈ R} in P2

(b) Span
{

1, 1
1+x2

, 2+x2

1+x2
, arctan(x)

}
in F

(c) {p(t) ∈ Pn : p(−t) = p(t)} in P4 (The polynomials with the property that p(−t) = p(t)
are called even polynomials.)

Example Solution.

(a) Let W = {a+ b(t+ t2) : a, b ∈ R}. Every element in W has the form

a+ b(t+ t2) = a(1) + b(t+ t2).

So W = Span{1, t+ t2}. Since neither 1 nor t+ t2 is a scalar multiple of the other, the set
{1, t+ t2} is linearly independent. Thus, {1, t+ t2} is a basis for W and dim(W ) = 2.
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(b) Let W = Span
{

1, 1
1+x2

, 2+x2

1+x2
, arctan(x)

}
. To find a basis for W , we find a linearly

independent subset of
{

1, 1
1+x2

, 2+x2

1+x2
, arctan(x)

}
. Consider the equation

c1(1) + c2

(
1

1 + x2

)
+ c3

(
2 + x2

1 + x2

)
+ c4 arctan(x) = 0.

To find the weights ci for which this equality of functions holds, we use the fact that the
we must have equality for every x. So we pick four different values for x to obtain a linear
system that we can solve for the weights. Evaluating both sides of the equation at x = 0,
x = 1, x = −1, and x = 2 yields the equations

c1 + c2 + 2c3 = 0

c1 +
1

2
c2 +

3

2
c3 +

π

4
c4 = 0

c1 +
1

2
c2 +

3

2
c3 −

π

4
c4 = 0

c1 +
1

5
c2 +

6

5
c3 + arctan(2)c4 = 0.

The reduced row echelon form of the coefficient matrix
1 1 2 0

1 1
2

3
2

π
4

1 1
2

3
2 −π

4

1 1
5

6
5 arctan(2)



is


1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

. The general solution to this linear system is c1 = c2 = −c3 and

c4 = 0. Notice that

(−1)(1) + (−1)

(
1

1 + x2

)
+

2 + x2

1 + x2
= 0

or
2 + x2

1 + x2
= 1 +

(
1

1 + x2

)
,

so 2+x2

1+x2
is a linear combination of the other vectors. The vectors corresponding to the pivot

columns are linearly independent, so it follows that 1, 1
1+x2

, and arctan(x) are linearly

independent. We conclude that
{

1, 1
1+x2

, arctan(x)
}

is a basis for W and dim(W ) = 3.

(c) Let W = {p(t) ∈ Pn : p(−t) = p(t)} in P4. Let p(t) ∈ W and suppose that p(t) =
a0 + a1t + a2t

2 + a3t
3 + a4t

4. Since p(−t) = p(t), we must have p(1) = p(−1) and
p(3) = p(−3). Since p(1) = p(−1), it follows that

a0 + a1 + a2 + a3 + a4 = a0 − a1 + a2 − a3 + a4
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or
a1 + a3 = 0.

Similarly, the fact that p(3) = p(−3) yields the equation

a0 + 3a1 + 9a2 + 27a3 + 81a4 = a0 − 3a1 + 9a2 − 27a3 + 81a4

or
a1 + 9a3 = 0.

The reduced row echelon form of the coefficient matrix of system a1 + a3 = 0 and a1 +
9a3 = 0 is I2, so it follows that a1 = a3 = 0. Thus, p(t) = a0 + a2t

2 + a4t
4 and so

W = Span{1, t2, t4}. Equating like terms in the equation

c1(1) + c2(t2) + c3(t4) = 0

yields c1 = c2 = c3 = 0. We conclude that {1, t2, t4} is linearly independent and is
therefore a basis for W . Thus, dim(W ) = 3.

As an alternative solution, notice that p(t) = t is not in W . So W 6= V and we know that
dim(W ) < dim(V ). Since 1, t2, and t4 are in W , we can show as above that 1, t2, and t4

are linearly independent. We can conclude that dim(W ) = 3 since it cannot be 4.

Example 24.6. Let Un×n be the set of all n × n upper triangular matrices. Recall that a matrix
A = [aij ] is upper triangular if aij = 0 whenever i > j. That is, a matrix is upper triangular if all
entries below the diagonal are 0.

(a) Show that Un×n is a subspace ofMn×n.

(b) Find the dimensions of U2×2 and U3×3. Explain. Make a conjecture as to what dim(Un×n)
is in terms of n.

Example Solution.

(a) Since the n × n zero matrix 0n×n has all entries equal to 0, it follows that 0n×n is in
Un×n. Let A = [aij ] and B = [bij ] be in Un×n, and let C = [cij ] = A + B. Then
cij = aij + bij = 0 + 0 when i > j. So C is an upper triangular matrix and Un×n is closed
under addition. Let c be a scalar. The ijth entry of cA is caij = c(0) = 0 whenever i > j.
So cA is an upper triangular matrix and Un×n is closed under multiplication by scalars. We
conclude that Un×n is a subspace ofMn×n.

(b) Let M11 =

[
1 0
0 0

]
, M12 =

[
0 1
0 0

]
, and M22 =

[
0 0
0 1

]
. We will show that

S = {M11,M12,M22} is a basis for U2×2. Consider the equation

x1M11 + x2M12 + x3M22 = 0.

Equating like entries shows that x1 = x2 = x3 = 0, and so S is linearly independent. If[
a b
0 c

]
is in U2×2, then

[
a b
0 c

]
= aM11 + bM12 + cM22
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and so S spans U2×2. Thus, S is a basis for U2×2 and so dim(U2×2) = 3.

Similarly, for the 3× 3 case let Mij for i ≤ j be the 3× 3 matrix with a 1 in the ij position
and 0 in every other position. Let

S = {M11,M12,M13,M22,M23,M33}.

Equating corresponding entries shows that if

x1M11 + x2M12 + x3M13 + x4M22 + x5M23 + x6M33 = 0,

then x1 = x2 = x3 = x4 = x5 = x6 = 0. So S is a linearly independent set. If A = [aij ]
is in U3×3, then A =

∑
i≥j aijMij and S spans U3×3. We conclude that S is a basis for

U3×3 and dim(U3×3) = 6.

In general, for an n×nmatrix, the set of matricesMij , one for each entry on and above the
diagonal, is a basis for Un×n. There are n such matrices for the entries on the diagonal. The
number of entries above the diagonal is equal to half the total number of entries (n2) minus
half the number of entries on the diagonal (n). So there is a total of n

2−n
2 such matrices for

the entries above the diagonal. Therefore,

dim(Un×n) = n+
n2 − n

2
=
n2 + n

2
.

Summary

• A finite dimensional vector space is a vector space that can be spanned by a finite set of
vectors.

• We showed that any two bases for a finite dimensional vector space must contain the same
number of vectors. Therefore, we can define the dimension of a finite dimensional vector
space V to be the number of vectors in any basis for V .

• If V is a vector space with dimension n and S is any linearly independent subset of V with n
vectors, then S is a basis for V . Otherwise, we could add vectors to S to make a basis for V
and then V would have a basis of more than n vectors.

• If V is a vector space with dimension n and S is any subset of V with n vectors that spans
V , then S is a basis for V . Otherwise, we could remove vectors from S to obtain a basis for
V and then V would have a basis of fewer than n vectors.

• For any finite dimensional space V and a subspace W of V , dim(W ) ≤ dim(V ).

Exercises

(1) Let W = Span{1 + t2, 2 + t + 2t2 + t3, 1 + t + t3, t− t2 + t3} in P3. Find a basis for W .
What is the dimension of W ?

(2) Let A =

[
1 2
1 0

]
and B =

[
1 0
1 −1

]
.
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(a) Are A and B linearly independent or dependent? Verify your result.

(b) Extend the set S = {A,B} to a basis forM2×2. That is, find a basis forM2×2 that
contains both A and B.

(3) LetA =

[
1 2 0
3 0 2

]
,B =

[
−1 1 1

2 4 0

]
,C =

[
5 1 −3
0 −12 4

]
,D =

[
5 4 −2
5 −8 6

]
,

and E =

[
2 0 0
−2 0 1

]
inM2×3 and let S = {A,B,C,D,E}.

(a) Is S a basis forM2×3? Explain.

(b) Determine if S is a linearly independent or dependent set. Verify your result.

(c) Find a basis B for Span S that is a subset of S and write all of the vectors in S as
linear combinations of the vectors in B.

(d) Extend your basis B from part (c) to a basisM2×3. Explain your method.

(4) Determine the dimension of each of the following vector spaces.

(a) Span{2, 1 + t, t2} in P2

(b) The space of all polynomials in P3 whose constant terms is 0.

(c) Nul
[

1 2
2 4

]
(d) Span

{
[1 2 0 1 − 1]T, [0 1 1 1 0]T, [0 3 2 3 0]T, [−1 0 1 1 1]T

}
in R5

(5) Let W be the set of matrices inM2×2 whose diagonal entries sum to 0. Show that W is a
subspace ofM2×2, find a basis for W , and then find dim(W ).

(6) Show that if W is a subspace of a finite dimensional vector space V , then any basis of W can
be extended to a basis of V .

(7) Let W be the set of all polynomials a+ bt+ ct2 in P2 such that a+ b+ c = 0. Show that W
is a subspace of P2, find a basis for W , and then find dim(W ).

(8) Suppose W1,W2 are subspaces in a finite-dimensional space V .

(a) Show that it is not true in general that dim(W1) + dim(W2) ≤ dim(V ).

(b) Are there any conditions onW1 andW2 that will ensure that dim(W1)+dim(W2) ≤
dim(V )? (Hint: See problem 12 in the previous section.)

(9) SupposeW1 ⊆W2 are two subspaces of a finite-dimensional space. Show that if dim(W1) =
dim(W2), then W1 = W2.

(10) Suppose W1,W2 are both three-dimensional subspaces inside R4. In this exercise we will
show that W1 ∩W2 contains a plane. Let {u1,u2,u3} be a basis for W1 and let {v1,v2,v3}
be a basis for W2.

(a) If v1, v2, and v3 are all in W1, explain why W1 ∩W2 must contain a plane.

(b) Now we consider the case where not all of v1, v2, and v3 are in W1. Since the
arguments will be the same, let us assume that v1 is not in W1.
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i. Explain why the set S = {u1,u2,u3,v1} is a basis for R4.
ii. Explain why v2 and v3 can be written as linear combinations of the vectors in
S . Use these linear combinations to find two vectors that are in W1 ∩W2. Then
show that these vectors span a plane in W1 ∩W2.

(11) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The dimension of a finite dimensional vector space is the minimum num-
ber of vectors needed to span that space.

(b) True/False The dimension of a finite dimensional vector space is the maximum num-
ber of linearly independent vectors that can exist in that space.

(c) True/False If n vectors span an n-dimensional vector space V , then these vectors
form a basis of V .

(d) True/False Any set of n vectors form a basis in an n-dimensional vector space.

(e) True/False Every vector in a vector space V spans a one-dimensional subspace of
V .

(f) True/False Any set of n linearly independent vectors in a vector space V of dimen-
sional n is a basis for V .

(g) True/False If {v1,v2, . . . ,vk} is linearly independent in V , then dim(V ) ≥ k.

(h) True/False If a set of k vectors span V , then any set of more than k vectors in V is
linearly dependent.

(i) True/False If an infinite set of vectors span V , then V is infinite-dimensional.

(j) True/False If W1,W2 are both two-dimensional subspaces of R3, then W1 ∩W2 6=
{0}.

(k) True/False If dim(V ) = n and W is a subspace of V with dimension n, then W =
V .

Project: Understanding Principal Component Analysis

Suppose we were to film an experiment involving a ball that is bouncing up and down. Naively,
we set up several cameras to follow the process of the experiment from different perspectives and
collect the data. All of this data tells us something about the bouncing ball, but there may be no
perspective that tells us the most important piece of information – that axis along which the ball
bounces. The question, then, is how we can extract from the data this most important piece of
information. Principal Component Analysis (PCA) is a tool for just this type of analysis.

We will use an example to illustrate important concepts we will need. To realistically apply
PCA we will have much more data than this, but for now we will restrict ourselves to only two
variables so that we can visualize our results. Table 24.1 presents information from ten states on
two attributes related to the SAT – Evidence-Based Reading and Writing (EBRW) score and Math
score. The SAT is made up of three sections: Reading, Writing and Language (also just called
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State 1 2 3 4 5 6 7 8 9 10

EBRW 595 540 522 508 565 512 643 574 534 539
Math 571 536 493 493 554 501 655 566 534 539

Table 24.1: SAT data.

Writing), and Math. The The EBRW score is calculated by combining the Reading and Writing
section scores – both the Math and EBRW are scored on a scale of 200-800.

Each attribute (Math, EBRW score) creates a vector whose entries are the student responses for
that attribute. The data provides the average scores from participating students in each state. In this
example we have two attribute vectors:

x1 = [595 540 522 508 565 512 643 574 534 539]T and

x2 = [571 536 493 493 554 501 655 566 534 539]T.

These vectors form the rows of a 2× 10 matrix

X0 =

[
xT

1

xT
2

]
=

[
595 540 522 508 565 512 643 574 534 539
571 536 493 493 554 501 655 566 534 539

]
that makes up our data set. A plot of the data is shown at left in Figure 24.1, where the EBRW score
is along the horizontal axis and the math score is along the vertical axis. The question we want to
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Figure 24.1: Two views of the data set (EBRW horizontal, math vertical).

answer is, how do we represent our data set so that the most important features in the data set are
revealed?

Project Activity 24.1. Before analyzing a data set there is often some initial preparation that needs
to be made. Issues that have to be dealt with include the problem that attributes might have different
units and scales. For example, in a data set with attributes about people, height could be measured
in inches while weight is measured in pounds. It is difficult to compare variables when they are
on different scales. Another issue to consider is that some attributes are independent of the others
(height, for example does not depend on hair color), while some are interrelated (body mass index
depends on height and weight). To simplify our work, we will not address these type of problems.
The only preparation we will do with our data is to center it.
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(a) An important piece of information about a one-dimensional data set x = [x1 x2 x3 · · · xn]T

is the sample average or mean

x =
n∑
i=1

xi.

Calculate the means x1 and x2 for our SAT data from the matrix X0.

(b) We can use these sample means to center our data at the origin by translating the data so
that each column of our data matrix has mean 0. We do this by subtracting the mean for
that row vector from each component of the vector. Determine the matrix X that contains
the centered data for our SAT data set from matrix X0.

A plot of the centered data for our SAT data is shown at right in Figure 24.1. Later we will see
why centering the data is useful – it will more easily allow us to project onto subspaces. The goal of
PCA is to find a matrix P so that PX = Y , and Y is suitably transformed to identify the important
aspects of the data. We will discuss what the important aspects are shortly. Before we do so, we
need to discuss a way to compare the one dimensional data vectors x1 and x2.

Project Activity 24.2. To compare the two one dimensional data vectors, we need to consider
variance and covariance.

(a) With data it is useful to know how spread out the data is, something the average doesn’t
tell us. For example, the data sets [1 2 3]T and [−2 0 8]T both have averages of 2, but the
data in [−2 0 8]T is more spread out. Variance provides one measure of how spread out a
one-dimensional data set x = [x1 x2 x3 · · · xn]T is. Variance is defined as

var(x) =
1

n− 1

n∑
i=1

(xi − x)2 .

The variance provides a measure of how far from the average the data is spread.1

Determine the variances of the two data vectors x1 and x2. Which is more spread out?

(b) In general, we will have more than one-dimensional data, as in our SAT data set. It will
be helpful to have a way to compare one-dimensional data sets to try to capture the idea of
variance for different data sets – how much the data in two different data sets varies from the
mean with respect to each other. One such measure is covariance – essentially the average
of all corresponding products of deviations from the means. We define the covariance of
two data vectors x = [x1 x2 · · · xn]T and y = [y1 y2 · · · yn]T as

cov(x,y) =
1

n− 1

n∑
i=1

(xi − x) (yi − y) .

Determine all covariances

cov(x1,x1), cov(x1,x2), cov(x2,x1), and cov(x2,x2).

1It might seem that we should divide by n instead of n− 1 in the variance, but it is generally accepted to do this for
reasons we won’t get into. Suffice it to say that if we are using a sample of the entire population, then dividing by n− 1
provides a variance whose square root is closer to the standard deviation than we would get if we divide by n. If we are
calculating the variance of an entire population, then we would divide by n.
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How are cov(x1,x2) and cov(x2,x1) related? How are cov(x1,x1) and cov(x2,x2) related
to variances?

(c) What is most important about covariance is its sign. Suppose y = [y1 y2 . . . yn]T, z =
[z1 z2 . . . zn]T and cov(y, z) > 0. Then if yi is larger than yj it is likely that zi is also
larger than zj . For example, if y is a vector that records a persons height from age 2 to
10 and z records tha same person’s weight in the same years, we might expect that when
yi increases so does zi. Similarly, if cov(y, z) < 0, then as one data set increases, the
other decreases. As an example, if y records the number of hours a student spends playing
video games each semester ad z gives the students GPA for each semester, then we might
expect that zi decreases as yi increases. When cov(y, z) = 0, then y and z are said to be
uncorrelated or independent of each other.

For our example x1 and x2, what does cov(x1,x2) tell us about the relationship between
x1 and x2? Why should we expect this from the context?

(d) The covariance gives us information about the relationships between the attributes. So
instead of working with the original data, we work with the covariance data. If we have
m data vectors x1, x2, . . ., xm in Rn, the covariance matrix C = [cij ] satisfies cij =
cov(xi,xj). Calculate the covariance matrix for our SAT data. Then explain why C =

1
n−1XX

T.

Recall that the goal of PCA is to find a matrix P such that PX = Y where P transforms the
data set to a coordinate system in which the important aspects of the data are revealed. We are now
in a position to discuss what that means.

An ideal view of our data would be one in which we can see the direction of greatest variance
and one that minimizes redundancy. With redundant data the variables are not independent – that
is, covariance is nonzero. So we would like the covariances to all be zero (or as close to zero
as possible) to remove redundancy in our data. In other words, we want covariance for Y to be
diagonal.

Project Activity 24.3. Consider the covariance matrix C =

[
1760.18 1967.62
1967.62 2319.29

]
. Find a matrix

P whose columns are unit vectors that diagonalizes C. Use technology as appropriate.

The matrix P from Project Activity 24.3 has some especially important properties: the columns
of P are unit vectors and, moreover, P−1 = PT (you should check this - such a matrix is called
an orthogonal matrix). For our purposes, we want to diagonalize XXT with PXXTP−1, so
the matrix P that serve our purposes is the one whose rows are the eigenvectors of XXT. To
understand why this matrix is the one we want, recall that we want to have PX = Y , and we want
to diagonalize XXT to a diagonal covariance matrix Y Y T. In this situation we will have (recalling
that P−1 = PT)

1

n− 1
Y Y T =

1

n− 1
(PX)(PX)T =

1

n− 1
P
(
XXT

)
PT = P

(
XXT

)
P−1.

So the matrix P that we want is exactly the one that diagonalizes XXT.

Project Activity 24.4. There are two useful ways we can interpret the results of our work so far.
The eigenvector of XXT that corresponds to the largest (also called the dominant) eigenvalue λ1
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is [−0.66 − 0.76]T. A plot of the centered data along with the eigenspace Eλ1 of XXT spanned
by v1 = [−0.66 − 0.76]T is shown at left in Figure 24.2. The eigenvector v1 is called the first
principal component of X . Notice that this line Eλ1 indicates the direction of greatest variation in
the data. In other words, when we project the data points ontoEλ1 , as shown at right in Figure 24.2,
the variation of the resulting points is larger than it is for any other line. In other words, the data is
most spread out in this direction.

(a) There is another way we can interpret this result. If we drop a perpendicular from one of
our data points to the space Eλ1 it creates a right triangle with sides of length a, b, and c
as illustrated in the middle of Figure 24.2. Use this idea to explain why maximizing the
variation also minimizes the sum of the squares of the distances from the data points to this
line. As a result, we have projected our two-dimensional data onto the one-dimensional
space that maximizes the variance of the data.
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b
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Figure 24.2: The principal component.

(b) Recall that the matrix (to two decimal places) P =

[
−0.66 −0.76
−0.76 0.66

]
transforms the data

set X to a new data set Y whose covariance matrix is diagonal. Notice that P looks like a
rotation matrix, but is not exactly a rotation matrix. To understand what P does toX , a plot
of the original data from X is shown with solid blue circles and a plot of the transformed
data from Y in solid magenta diamonds is at left in Figure 24.3. The form of the matrix
P looks similar to a rotation matrix, but is not exactly a rotation matrix. Show that P
is a combination of a rotation matrix (and find the rotation angle) and a reflection (and
specifically identify the reflection). Explain how this relates to Figure 24.3. Also explain
how the x-axis is related to the transformed data set Y .

The result of Project Activity 24.4 is that we have reduced the problem from considering the
data in a two-dimensional space to a one-dimensional space Eλ1 where the most important aspect
of the data is revealed. Of course, we eliminate some of the characteristics of the data, but the most
important aspect is still included and highlighted.

The second eigenvector of XXT also has meaning. A picture of the eigenspace Eλ2 corre-
sponding to the smaller eigenvector λ2 ofXXT is shown in Figure 24.4. The second eigenvector of
XXT is perpendicular to the first, and the direction of the second eigenvector tells us the direction
of the second most amount of variance as can be seen in Figure 24.4.

To summarize, the unit eigenvector for the largest eigenvalue of XXT indicates the direction
in which the data has the greatest variance. The direction of the unit eigenvector for the smaller
eigenvalue shows the direction in which the data has the second largest variance. This direction is
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Figure 24.3: Applying P .
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Figure 24.4: The second principal component.

also perpendicular to the first (indicating 0 covariance). The directions of the eigenvectors are called
the principal components of X . The eigenvector with the highest eigenvalue is the first principal
component of the data set and the other eigenvectors are ordered by the eigenvalues, highest to
lowest. The principal components provide a new coordinate system from which to view our data –
one in which we can see the maximum variance and in which there is zero covariance.

Project Activity 24.5. We can use the eigenvalues of XXT to quantify the amount of variance that
is accounted for by our projections. Notice that the points along the x-axis at right in Figure 24.3
are exactly the numbers in the first row of Y . These numbers provide the projections of the data in
Y onto the x-axis – the axis along which the data has its greatest variance.

(a) Calculate the variance of the data given by the first row of Y . This is the variance of the
data i the direction of the eigenspace Eλ1 . How does the result compare to entries of the
covariance matrix for Y .

(b) Repeat part (a) for the data along the second row of Y .

(c) The total variance of the data set is the sum of the variances. Calculate the sum of the
variances for X and Y . What do you notice? Explain why the percentage of variance in
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the data that is accounted for in the direction of Eλ1 is

λ1

λ1 + λ2
.

Then calculate this amount for the SAT data.

In general, PCA is most useful for larger data sets. The process is the same.

• Start with a set of data that forms the rows of an m × n matrix. We center the data by
subtracting the mean of each row from the entries of that row to create a centered data set in
a matrix X .

• The principal components ofX are the eigenvectors ofXXT, ordered so that they correspond
to the eigenvalues of XXT in decreasing order.

• Let P be the matrix whose rows are the principal components of X , ordered from highest to
lowest. Then Y = PX is suitably transformed to identify the important aspects of the data.

• If λ1, λ2, . . ., λn are the eigenvalues ofXXT in decreasing order, then the amount of variance
in the data accounted for by the first r principal components is given by

λ1 + λ2 + · · ·+ λr
λ1 + λ2 + · · ·+ λn

.

• The first r rows of Y = PX provide the projection of the data set X onto an r-dimensional
space spanned by the first r principal components of X .

Project Activity 24.6. Let us now consider a problem with more than two variables. We continue
to keep the data set small so that we can conveniently operate with it. Table 24.2 presents additional
information from ten states on four attributes related to the SAT – Participation rates, Evidence-
Based Reading and Writing (EBRW) score, Math score, and average SAT score. Use technology as
appropriate for this activity.

State 1 2 3 4 5 6 7 8 9 10

Rate 6 60 97 100 64 99 4 23 79 70
EBRW 595 540 522 508 565 512 643 574 534 539
Math 571 536 493 493 554 501 655 566 534 539
SAT 1166 1076 1014 1001 1120 1013 1296 1140 1068 1086

Table 24.2: SAT data.

(a) Determine the centered data matrix X for this data set.

(b) Find the covariance matrix for this data set. Round to four decimal places.

(c) Find the principal components of X . Include at least four decimal places accuracy.

(d) How much variation is accounted for in the data by the first principal component? In other
words, if we reduce this data to one dimension, how much of the variation do we retain?
Explain.
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(e) How much variation is accounted for in the data by the first two principal components? In
other words, if we reduce this data to two dimensions, how much of the variation do we
retain? Explain.



Section 25

Coordinate Vectors and Coordinate
Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How do we find the coordinate vector of a vector x with respect to a basis
B = {v1,v2, . . . ,vn}?
• How can we visualize coordinate systems?

• How do we identify a vector space of dimension n with Rn?

• What properties does the coordinate transformation x 7→ [x]B have?

• How are the coordinates of a vector with respect to a basis related to its
coordinates with respect to the standard basis?

Application: Calculating Sums

Consider the problem of calculating sums of powers of integers. For example,

n−1∑
t=0

t =
1

2

(
n2 − n

)
n−1∑
t=0

t2 =
1

6

(
2n3 − 3n2 + 1

)
n−1∑
t=0

t3 =
1

4

(
n4 − 2n3 + n2

)
443
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and so on. It is possible to prove these formulas if we have an idea of what the formula is, but how
can one come up with these formulas in the first place? As we will see later in this section, we can
make use of coordinate vectors to find and verify such formulas.

Introduction

In this section we will investigate how a basis of a vector space provides a coordinate system in
which each vector in the vector space has a unique set of coordinates. Such a coordinate system
will make any n-dimensional vector space look like Rn. If the vector space is already Rn, then each
basis will provide us with a new perspective to visualize Rn. We begin our analysis of coordinate
systems by looking at how a basis in R2 gives us a different view of R2.

Preview Activity 25.1. Two vectors v1 and v2 are shown in Figure 25.1.
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Figure 25.1: Vectors v1 and v2.

(1) Explain why B = {v1,v2} is a basis for R2.

(2) Draw the vector b = −3v1 + 2v2 in Figure 25.1. Explain your process.

(3) In part (1) we were given the weights (−3 and 2) of the linear combination of v1 and v2 that

produced b. We call the vector
[
−3

2

]
the coordinate vector of b with respect to the basis

{v1,v2}.
Explain why any vector b in R2 can be written as a linear combination of vectors v1,v2.
This shows that each vector in R2 has a coordinate vector in the coordinate system defined
by v1 and v2.

(4) Since {v1,v2} is a basis for R2, any vector b in R2 has a coordinate vector in the coordinate
system defined by v1 and v2. But we also need to make sure that each vector has a unique
coordinate vector. Explain why there is no vector in R2 which has two different coordinate
vectors.
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(5) We can think of the vectors v1 and v2 as defining a coordinate system, with Span{v1} as the
“x”-axis and Span{v2} as the “y”-axis. Any vector b in R2 can be written uniquely in the
form

b = x1v1 + x2v2

and the weights serve as the coordinates of b in the v1, v2 coordinate system. In this case

the coordinate vector
[
x1

x2

]
of b with respect to the basis B = {v1,v2} is written as [b]B.

Let B =

{[
−1

4

]
,

[
2
0

]}
.

(a) Show that B is a basis for R2.

(b) Find [b]B if b =

[
0
6

]
. Draw a picture to illustrate how b is expressed as a linear

combination of the vectors in B.

Bases as Coordinate Systems

Bases are useful for many reasons. A basis provides us with a unique representation of the elements
in the space as linear combinations of the coordinate system defined by the basis vectors. The
characterization of a vector space in terms of such a coordinate system will ultimately provide us
with a powerful way to identify any vector space of dimension n geometrically and algebraically
with Rn through coordinate assignment.

As we saw in Preview Activity 25.1, we can think of a basis B of R2 as determining a coordinate

system of R2. For example, let B = {v1,v2} where v1 =

[
2
−2

]
and v2 =

[
1
3

]
. The vector

b =

[
−4
12

]
can be written as b = −3v1 + 2v2. Figure 25.2 shows that if we plot the point that

is −3 units in the v1 direction (where a “unit” is a copy of v1) and 2 units in the v2 direction, then
the result is the vector from the origin to point defined by b.

As discussed in Preview Activity 25.1, we can think of the vectors v1 and v2 as defining a
coordinate system, with Span{v1} as the “x”-axis and Span{v2} as the “y”-axis. Since B is a
basis, any vector b in R2 can be written uniquely in the form

b = x1v1 + x2v2

and the weights serve as the coordinates of b in the v1, v2 coordinate system. We call the vector[
x1

x2

]
the coordinate vector of b with respect to the basis B and write this vector as [b]B.

This is actually a familiar idea, one we have used for years. The standard coordinates of a vector

a =

[
a1

a2

]
in R2 are just the coordinates of a with respect to the standard basis {e1, e2} of R2.

While we can draw pictures in R2, there is no reason to restrict this idea to R2.
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Figure 25.2: A Coordinate System Defined by a Basis.

Definition 25.1. Let B = {v1,v2, . . . ,vn} be a basis for a vector space V . For any vector x in V ,
the coordinate vector of x with respect to B is the vector

[x]B =


x1

x2
...
xn

 ,
where

x = x1v1 + x2v2 + · · ·+ xnvn.

The scalars x1, x2, . . ., xn are the coordinates of the vector x with respect to the basis.

Recall that there is exactly one way to write a vector as a linear combination of basis vectors,
so there is only one coordinate vector of a given vector with respect to a basis. Therefore, the
coordinate vector of any vector is well-defined.

Activity 25.1. Let S = {1, t} and B = {3 + 2t, 1 − t}. Assume that S and B are bases for P1.
Find [3 + 7t]S and [3 + 7t]B. Note that the coordinate vector depends on the basis that is used.

IMPORTANT NOTE: We have defined the coordinate vector of a vector x in a vector space V
with respect to a basis B = {v1,v2, . . . ,vn} as the vector [x1 x2 . . . xn]T if

x = x1v1 + x2v2 + · · ·+ xnvn.

Until now we have listed a basis as a set without regard to the order in which the basis elements are
written. That is, the set {v1,v2} is the same as the set {v2,v1}. Notice, however, that if we change
the order of the vectors in our basis, say from {v1,v2, . . . ,vn} to {v2,v1,v3, . . . ,vn}, then the
coordinate vector of x with respect to B will be different. To avoid this problem, when discussing
coordinate vectors we will consider our bases to be ordered bases, so that the order in which we
write the elements in our basis is fixed. So, for example, the ordered basis {v1,v2, . . . ,vn} is
different than the ordered basis {v2,v1,v3, . . . ,vn}.
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The Coordinate Transformation

We have seen that both R2 and P1 are vector spaces of dimension 2. Moreover, we can pair the
polynomial a0 + a1t in P1 with the vector [a0 a1] in R2 as the coordinate vector of a0 + a1t with
respect to the standard basis for P1. In this way we can see that the vector space P1 “looks” like the
vector space R2. In fact, using this same idea, we can show that any vector space of dimension n
“looks” like Rn. The key idea to make this work is the coordinate transformation.

As we saw in Activity 25.1, the coordinate vector of a vector with respect to a basis depends on
the basis we choose. In this activity we found that [3+7t]S = [3 7]T and [3+7t]B = [2 −3]T, where
S = {1, t} and B = {3 + 2t, 1 − t}. These coordinate vectors allow us to identify polynomials
in P1 with vectors in R2. In this way, the coordinate vectors provide an identification between the
vector space P1 and the vector space R2 via a coordinate transformation.

Definition 25.2. Let V be a vector space of dimension n with basis B. The coordinate transfor-
mation T from V to Rn with respect to the basis B is the mapping defined by

T (x) = [x]B

for any vector x in V .

Coordinate transformations have several useful properties that allow us to use them to compare
the structure of vector spaces.

Activity 25.2. Let a(t) = 8 + 2t and b(t) = −5 + t in P1. Suppose we know C = {1 + t, 2− t} is
a basis of P1. Let T (x) = [x]C for x in P1.

(a) What are T (a(t)) and T (b(t))?

(b) Find T (a(t)) + T (b(t)).

(c) What is T (a(t) + b(t)) = [a(t) + b(t)]C?

(d) What is the relationship between T (a(t)) + T (b(t)) and T (a(t) + b(t))?

(e) Show that if c is any scalar, then T (ca(t)) = cT (a(t)).

(f) Where have we seen functions with these properties before?

Activity 25.2 shows that coordinate transformations behave in ways similar to matrix transfor-
mations. Recall that if A is an m× n matrix, then

A(u + w) = Au +Aw and A(cu) = cAu

for any vectors u and w in Rn and any scalar c. Because of these properties, the transformation A
preserves linear combinations. That is, if v1, v2, . . ., and vn are any vectors in Rn and c1, c2, . . .,
cn are any scalars, then

A(c1v1 + c2v2 + · · ·+ cnvn) = c1Av1 + c2Av2 + · · ·+ cnAvn.
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Activity 25.2 contains the essential ideas to show that if T is a coordinate transformation from a
vector space V with basis B to Rn, then

T (u + w) = T (u) + T (w) and T (cu) = cT (u)

for any vectors u and w in V and any scalar c. The fact that any coordinate transformation satisfies
these properties is contained in the following theorem.

Theorem 25.3. If a vector space V has a basis B of n vectors, then the coordinate mapping T :
V → Rn defined by T (x) = [x]B satisfies

(1) T (u + w) = T (u) + T (w) and

(2) T (cu) = cT (u)

for any vectors u and w in V and any scalar c.

Proof. Let v1, v2, . . ., and vn be vectors that form a basis B for a vector space V . To verify the first
property, let u and w be two arbitrary vectors from V . We will show that T (u)+T (w) = T (u+w)
for these two vectors. Consider T (u). If T (u) = [u1 u2 . . . un]T, then the fact that T (u) = [u]B
implies that

u = u1v1 + u2v2 + · · ·+ unvn .

Similarly, if T (w) = [w1 w2 . . . wn]T, then T (w) = [w]B implies that

w = w1v1 + w2v2 + · · ·+ wnvn .

We then obtain

u + w = (u1v1 + u2v2 + · · ·+ unvn) + (w1v1 + w2v2 + · · ·+ wnvn)

= (u1 + w1)v1 + (u2 + w2)v2 + · · ·+ (un + wn)vn.

Thus, by definition of T again,

T (u + w) = [u + w]B = [(u1 + w1) (u2 + w2) . . . (un + wn)]T.

To show that T (u + w) = T (u) + T (w), note that

T (u) + T (w) = [u1 u2 . . . un]T + [w1 w2 . . . wn]T

= [(u1 + w1) (u2 + w2) . . . (un + wn)]T

= [u + w]B
= T (u + w).

The proof of the second property is left for the exercises.

�
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The first result of Theorem 25.3 can be extended to any finite number of vectors by mathematical
induction. That is, if T : V → Rn is the coordinate mapping defined by T (x) = [x]B for some
basis B, and if u1, u2, . . ., um are vectors in V , then T (u1 +u2 + · · ·+um) = T (u1) + T (u2) +
· · ·+ T (um). In other words,

[u1 + u2 + · · ·+ um]B = [u1]B + [u2]B + · · ·+ [um]B

for any vectors u1, u2, . . ., um in a vector space V with basis B.

In essence, a coordinate transformation makes an identification of any vector space of dimension
n with Rn. One of the driving forces behind this identification is the fact that, just as in Rn, if a
vector space V has a basis of n elements, then any basis for V will have exactly n elements. The
fact that any coordinate transformation from a vector space V to Rn is linear means that elements
in V behave the same way with respect to addition and multiplication by scalars in V as do their
images in Rn under the coordinate transformation. To make this identification complete, there are
still two questions to address. First, given a coordinate transformation T from a vector space V to
Rn, is is possible for two vectors in V to have the same image in Rn (in other words, is T one-to-
one), and is every vector in Rn the image of some vector in V under T (in other words, does T map
V onto Rn)? If the coordinate transformations are one-to-one and onto, then, in essence, any vector
space of dimension n is just a copy of Rn. As a result, to understand any vector space with a basis
of n vectors, it is enough to understand Rn.

Activity 25.3. Let V be a vector space with an ordered basis B = {v1,v2, . . . ,vn}. Then T maps
V into Rn. We want to show that T maps V onto Rn. Recall that a function f from a set X to
a set Y is onto if for any element y in Y , there is an element x in X such that f(x) = y. Let
b = [b1 b2 . . . bn]T be a vector in Rn. Must there be a vector v in V so that T (v) = b? If so, find
such a vector. If not, explain why not.

Activity 25.3 shows that a coordinate transformation maps an n-dimensional vector space V
onto Rn. What’s more, any coordinate transformation is also one-to-one (the proof that T is one-
to-one is left for the exercises). We summarize these results in the following theorem.

Theorem 25.4. If a vector space V has a basis B of n vectors, then the coordinate mapping T :
V → Rn defined by T (x) = [x]B is both one-to-one and onto.

Theorems 25.3 and 25.4 show that a coordinate transformation from an n-dimensional vector
space V with basis B to Rn provides an identification of V with Rn, where a vector v in V is
identified with the vector [v]B. This identification allows us to transfer questions (linear depen-
dence, independence, span) in V to Rn where we can apply our knowledge of matrices to answer
the questions.

Activity 25.4. Let V = P3 and let B = {1, t, t2, t3}. Let S = {1 + t+ t2 + t3, t− t3, 1 + 2t2, 1 +
5t− t3}.

(a) Find each of [1 + t+ t2 + t3]B, [t− t3]B, [1 + 2t2]B, and [1 + 5t− t3]B.

(b) Are the vectors [1+t+t2+t3]B, [t−t3]B, [1+2t2]B, and [1+5t−t3]B linearly independent
or dependent? Explain. If the vectors are linearly independent, write one of the vectors as
a linear combination of the others.
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(c) The coordinate transformation identifies the vectors in S = {1 + t + t2 + t3, t − t3, 1 +
2t2, 1 + 5t− t3} with their coordinate vectors in R4. Use that information to determine if
S is a linearly independent or dependent set. If dependent, write one of the vectors in S as
a linear combination of the others.

Examples

What follows are worked examples that use the concepts from this section.

Example 25.5.

(a) Find the coordinate vector of v with respect to the ordered basis B in the indicated vector
space.

i. B = {1 + t, 2− t} in P1 with v = 4 + t

ii. B =

{[
1 0
0 1

]
,

[
1 0
−1 1

]
,

[
1 1
0 1

]
,

[
0 0
0 1

]}
inM2×2 with v =

[
2 3
1 0

]
(b) Find the vector v in the indicated vector space V given the basis B of V and [v]B.

i. V = P2, B = {1 + t2, 1 + t, t+ t2}, [v]B = [2 1 3]T

ii. B =
{

cos(x), 1
1+x2

}
, V = Span B as a subspace of F , [x]B = [2 − 1]T

Example Solution.

(a) Find the coordinate vector of v with respect to the ordered basis B in the indicated vector
space.

i. We need to write v = 4 + t as a linear combination of 1 + t and 2 − t. If 4 + t =
c1(1+t)+c2(2−t), then equating coefficients of like power terms yields the equations
4 = c1 + 2c2 and 1 = c1 − c2. The solution to this system is c1 = 2 and c2 = 1, so
[4 + t]B = [2 1]T.

ii. We need to write v as a linear combination of the vectors in B. If[
2 3
1 0

]
= c1

[
1 0
0 1

]
+ c2

[
1 0
−1 1

]
+ c3

[
1 1
0 1

]
+ c4

[
0 0
0 1

]
,

equating corresponding components produces the system

c1 + c2 + c3 = 2

c3 = 3

−c2 = 1

c1 + c2 + c3 + c4 = 0.

The solution to this system is c1 = 0, c2 = −1, c3 = 3, and c4 = −2, so [v]B =
[0 − 1 3 − 2]T.
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(b) Find the vector v in the indicated vector space V given the basis B of V and [v]B.

i. Since [v]B = [2 1 3]T, it follows that

v = 2(1 + t2) + 1(1 + t) + 3(t+ t2) = 3 + 4t+ 5t2.

ii. Since [x]B = [2 − 1]T, it follows that

v = 2 cos(x)− 1

1 + x2
.

Example 25.6. Let p1(t) = 1, p2(t) = 2 − t, p3(t) = 3 + t − t2, p4(t) = t + t3, and p5(t) =
2t+ t2 + t4 be in P4. Also, let B = {1, t, t2, t3, t4} be the standard basis for P4.

(a) Find [p1(t)]B, [p2(t)]B, [p3(t)]B, [p4(t)]B, and [p5(t)]B.

(b) Use the result of part (a) to explain why {p1(t), p2(t), p3(t), p4(t), p5(t)} is a basis for P4.

(c) Let p(t) = 2− t+ t2 − 3t3 + 4t4. Find [p(t)]B.

(d) Use the coordinate vectors in parts (a) and (c) to write p(t) as a linear combination of p1(t),
p2(t), p3(t), p4(t), and p5(t)

Example Solution.

(a) The coordinate vectors of a polynomial with respect to the standard basis in P4 is found by
just reading off the coefficients of the polynomial. So

[p1(t)]B = [1 0 0 0 0]T [p2(t)]B = [2 − 1 0 0 0]T

[p3(t)]B = [3 1 − 1 0 1]T [p4(t)]B = [0 1 0 1 0]T

[p5(t)]B = [0 2 1 0 1]T.

(b) Let

C = {p1(t), p2(t), p3(t), p4(t), p5(t)} and

S = {[p1(t)]B, [p2(t)]B, [p3(t)]B, [p4(t)]B, [p5(t)]B}.

Since the coordinate transformation is one-to-one and onto, the two sets C and S are either
both linearly dependent or linearly independent. Technology shows that the reduced row
echelon form of

[[p1(t)]B [p2(t)]B [p3(t)]B [p4(t)]B [p5(t)]B]

is I5, so the sets C and S are both linearly linearly independent. Since dim(P4) = 5, it
follows that any linearly independent set of five vectors in P4 is a basis for P4. Therefore,
the set C is a basis for P4.

(c) Similar to part (a), we have [p(t)]B = [2 − 1 1 − 3 4]T.
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(d) Technology shows that the reduced row echelon form of the augmented matrix

[[p1(t)]B [p2(t)]B [p3(t)]B [p4(t)]B [p5(t)]B | [p(t)]B]

is 
1 0 0 0 0 −25
0 1 0 0 0 9
0 0 1 0 0 3
0 0 0 1 0 −3
0 0 0 0 1 4

 .
So

[p(t)]B = −25[p1(t)]B + 9[p2(t)]B + 3[p3(t)]B − 3[p4(t)]B + 4[p5(t)]B

and
p(t) = −25p1(t) + 9p2(t) + 3p3(t)− 3p4(t) + 4p5(t).

Summary

The key idea in this handout is the coordinate vector with respect to a basis.

• If B = {v1,v2,v3, . . . ,vn} is a basis for a vector space V , then the coordinate vector of x
in V with respect to B is the vector

[x]B = [x1, x2, . . . , xn]T,

where
x = x1v1 + x2v2 + · · ·+ xnvn.

• The coordinate transformation x 7→ [x]B is a one-to-one and onto transformation from an
n-dimensional vector space V to Rn which preserves linear combinations.

• The coordinate transformation x 7→ [x]B allows us to translate problems in arbitrary vector
spaces to Rn where we have already developed tools to solve the problems.

Exercises

(1) Let B =


 0

1
−1

 ,
 1

2
0

 be a basis of the subspace defined by the equation y−4x+z =

0. Find the coordinates of the vector b =

 3
4
2

 with respect to the basis B.

(2) Given basis B = {1 + t, 2 + t2, t+ t2} of P2,

(a) For which p(t) in P2 is [p(t)]B = [1 − 1 3]T?

(b) Determine coordinates of q(t) = −1 + t+ 2t2 in P2 with respect to basis B.



Section 25. Coordinate Vectors and Coordinate Transformations 453

(3) Find two different bases B1 and B2 of R2 so that [b]B1 = [b]B2 =

[
2
1

]
, where b =

[
5
3

]
.

(4) If [b1]B =

[
1
2

]
and [b2]B =

[
2
1

]
with respect to some basis B, where b1 =

 1
2
3

 and

b2 =

 2
1
3

, what are the coordinates of

 −2
3
1

?

(5) If [b1]B =

[
1
1

]
and [b2]B =

[
2
1

]
with respect to some basis B, where b1 =

 3
1
3

 and

b2 =

 4
1
5

, what are the vectors in B?

(6) Let B = {v1,v2, . . . ,vn} be a basis for a vector space V . Describe how the coordinates of a
vector with respect to B will change if v1 is replaced with 1

2v1.

(7) Let B = {1, t, 1 + t2} in P2.

(a) Show that B is a basis for P2.

(b) Let p1(t) = 1 + 2t2, p2(t) = 1 + t+ 2t2, and p3(t) = 2− t+ t2 in P2.

i. Find [p1(t)]B, [p2(t)]B, and [p3(t)]B.
ii. Use the coordinate vectors in part i. to determine if the set {p1(t), p2(t), p3(t)}

is linearly independent or dependent.

(8) LetW = Span{2+4t+6t3, 3− t2, 3− t2 +9t3} in P3. Let B = {1, t, t2, t3} be the standard
basis for P3.

(a) Calculate [2 + 4t+ 6t3]B, [3− t2]B and [3− t2 + 9t3]B.

(b) Use the coordinate vectors from part (a) to determine if the polynomials 2+4t+6t3,
3− t2, and 3− t2 + 9t3 are linearly independent or dependent.

(c) Let p(t) = 4 + 2t− t2 + 9t3. Find [p(t)]B.

(d) Use the calculations from parts (a) and (c) to determine if p(t) is in W . If so, write
p(t) as a linear combination of the polynomials 2+4t+6t3, 3− t2, and 3− t2 +9t3.
If not, explain why not.

(9) Let B =

{[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 2
2 1

]}
in M2×2.

(a) Show that B is a basis of M2×2.

(b) Let

A =

[
1 2
2 1

]
, B =

[
1 1
1 1

]
, C =

[
2 1
1 1

]
, D =

[
1 1
1 0

]
.

Find [A]B, [B]B, [C]B, [D]B.
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(c) Determine if the set {A,B,C,D} is linearly dependent or independent.

(10) Let V be a vector space of dimension n and let B be a basis for V . Show that the coordinate
transformation T from V to Rn defined by T (x) = [x]B satisfies T (0V ) = 0, where 0V is
the additive identity in V .

(11) Prove the second property of Theorem 25.3. That is, if a vector space V has a basis of n
vectors, then the coordinate mapping T : V → Rn defined by T (x) = [x]B satisfies

T (cu) = cT (u)

for any vector u in V and any scalar c.

(12) Prove Theorem 25.4 by demonstrating that if V is a vector space with ordered basis B =
{v1,v2, . . . ,vn}, then the coordinate mapping T : V → Rn defined by T (x) = [x]B is
one-to-one.

(13) The coordinate transformation T is one-to-one, so it has an inverse T−1. Let V be an n-
dimensional vector space that has a basis B, and let T : V → Rn be the coordinate trans-
formation defined by T (x) = [x]B. Let S = {u1,u2, . . . ,uk} be a subset of V and let
R = {[u1]B, [u2]B, . . . , [uk]B} in Rn.

(a) Suppose x is in V with x = x1u1 + x2u2 + · · · + xkuk. Write the vector [x]B as
a linear combination of the vectors in R. Explain your reasoning and explain how
your result shows that T preserves linear combinations.

(b) Now suppose w is in V so that [w]B = w1[u1]B + w2[u2]B + · · ·+ wk[uk]B. Write
the vector w as a linear combination of the vectors in S. Explain your reasoning and
explain how your result shows that T−1 preserves linear combinations.

(14) Let S = {u1,u2, . . . ,uk} be a subset of an n-dimensional vector space V with basis B. Let
R = {[u1]B, [u2]B, . . . , [uk]B} in Rn.

(a) Show that if S is linearly independent in V , then R is linearly independent in Rn.

(b) Is the converse of part (a) true? That is, if R is linearly independent in Rn, must S
be linearly independent in V ? Justify your answer.

(c) Repeat parts (a) and (b), replacing ‘linearly independent” with “linearly dependent”.

(15) Let V be an n-dimensional vector space with basis B, and let S = {w1,w2, . . . ,wk} be a
subset of V that spans V . Prove that {[w1]B, [w2]B, . . . , [wk]B} spans Rn.

(16) Suppose B1 is a basis of a vector space V with n elements and B2 is a basis of W with n
elements. Show that the map TVW which sends every x in V to the vector y in W such that
[x]B1 = [y]B2 is one-to-one and onto.

(17) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The coordinates of a non-zero vector cannot be the same in the coordinate
systems defined by two different bases.
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(b) True/False The coordinate vector of the zero vector with respect to any basis is
always the zero vector.

(c) True/False If W is a k dimensional subset of an n dimensional vector space V , and
B is a basis of W , then [w]B is a vector in Rn for any w in W .

(d) True/False The order of vectors in a basis do not affect the coordinates of vectors
with respect to this basis.

(e) True/False If T is a coordinate transformation from a vector space V with basis B
to Rn, then the vector [x]B is unique to the vector x in V .

(f) True/False If T is a coordinate transformation from a vector space V with basis B
to Rn, then there is always a vector x in V that maps to any vector b in Rn.

(g) True/False A coordinate transformation from a vector space V with basis B to Rn
always maps the additive inverse of a vector x in V to the additive inverse of the
vector [x]B in Rn.

(h) True/False A coordinate transformation provides a unique identification of vectors
in an n-dimensional vector space with vectors in Rn in a way that preserves the
algebraic structure of the spaces.

(i) True/False If the coordinate vector of x in a vector space V is

 1
−1

2

, then the

coordinate vector of 2x is

 2
−2

4

.

Project: Finding Formulas for Sums of Powers

One way to derive formulas for sums of powers of whole numbers is to use different bases and
coordinate vectors. One basis that will be useful is a basis of polynomials created by the binomial
coefficients. Recall that the binomial coefficient

(
n
k

)
is equal to(

n

k

)
=

n!

k!(n− k)!
,

with
(
n
k

)
= 0 if n < k.

The binomial coefficient can be rewritten in a way to make it applicable to polynomials as(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
= Πn

i=1

1

i
(n− i+ 1).

With this representation of
(
n
k

)
, we can define a new polynomial in t of degree k as

pk(t) =
1

k!
(t)(t− 1)(t− 2) · · · (t− k + 1)
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with p0(t) = 1. For example,

p1(t) =
1

1!
t = t

p2(t) =
1

2
(t)(t− 1) =

1

2

(
t2 − t

)
p3(t) =

1

6
(t)(t− 1)(t− 2) =

1

6

(
t3 − 3t2 + 2t

)
.

These “generalized binomial coefficients” appear in Newton’s generalized binomial theorem.

Two facts will make these polynomials useful for our sums.

Project Activity 25.1. Our polynomials pk(t) are defined in terms of binomial coefficients. A
useful identity will relate sums of binomial coefficients to other binomial coefficients. This identity,
called the hockey-stick identity after the way it can be visualized on Pascal’s triangle, is as follows:

n−1∑
k=0

(
k

r

)
=

(
n

r + 1

)
for positive integers r. Use the definition of the binomial coefficients and some algebra to verify
the hockey-stick identity.

The second useful fact about our polynomials pk(t) is that they form a basis for Pn.

Project Activity 25.2.

(a) Let k be a positive integer. Explain why pk(0) = pk(1) = pk(2) = · · · = pk(k − 1) = 0
and pk(k) = 1.

(b) Let Pn = {p0(t), p1(t), p2(t), . . . , pn(t)}. Show that Pn is a basis for Pn. (Hint: Let c1,
c2, . . ., cn be scalars and consider the equation

c0p0(t) + c1p1(t) + c2p2(t) + · · ·+ cnpn(t) = 0.

Evaluate this equation at t = 0, t = 1, . . ., t = n and use the result of part (a).)

Now we have the tools we need to derive our formulas. To simplify computations, we will
change coordinates to the standard basis Sn = {1, t, t2, . . . , tn} for Pn.

We will illustrate the process of deriving formulas for our sums with the sum
∑n−1

t=0 t. We want
to write t as a linear combination of the vectors inP1 so that we can utilize the hockey-stick identity.
In this case, by definition we have t = p1(t). It follows by the hockey-stick identity and the fact
that p1(t) =

(
t
1

)
that

n−1∑
t=0

t =
n−1∑
t=0

p1(t)

=

n−1∑
t=0

(
t

1

)
=

(
n

2

)
=

1

2

(
n2 − n

)
.
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This is exactly the formula we saw at the beginning of this section. The cases for sums of higher
powers work the same way, but we will need to do a little more work to write tn in terms of the
basis vectors in Pn.

Project Activity 25.3. Consider the sum
∑n−1

t=0 t
2. We want to write t2 as a linear combination of

p0(t), p1(t) and p2(t). To do so, we will use the coordinate vectors with respect to S2 and do our
work in R3.

(a) Find [p0(t)]S2 , [p1(t)]S2 , [p2(t)]S2 , and [t2]S2 .

(b) Use the coordinate vectors from part (a) to write t2 as a linear combination of the vectors
in P2.

(c) Use the result of pat (b) and, the hockey-stick identity, and the fact that pk(t) =
(
t
k

)
to find

a formula for
∑n−1

t=0 t
2.

Deriving formulas for higher powers involves the same process, just with more algebra.

Project Activity 25.4. Use the process outlined in Project Activity 25.3 to derive formulas for the
following sums.

(a)
∑n−1

t=0 t
3

(b)
∑n−1

t=0 t
4





Section 26

Change of Basis

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a change of basis matrix?

• Why is a change of basis useful?

• How can we use coordinate transformations to find a change of basis ma-
trix?

• What are three important properties of change of basis matrices?

Application: Describing Orbits of Planets

Consider a planet orbiting the sun (or an object like a satellite orbiting the Earth). According
to Kepler’s Laws, we assume an elliptical orbit. There are many different ways to describe this
orbit, and which description we use depends on our perspective and the application. One important
perspective is to make the description of the orbit as simple as possible for earth-based observations.
Two problems arise. One is that the earth’s orbit and the orbit of the planet do not lie in the
same plane. A second problem is that it is complicated to describe the orbit of a planet using
the perspective of the plane of the earth’s orbit. A reasonable approach, then, is to establish two
different coordinate systems, one for the earth’s orbit and one for the planet’s orbit. We can then
use a change of basis to move back and forth from these two perspectives.

Introduction

In calculus we changed coordinates, from rectangular to polar, for example, to make certain calcu-
lations easier. In order for us to be able to work effectively in different coordinate systems, and to

459
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easily change back and forth as needed, we will want to have a way to effectively transition from
one coordinate system to another. In other words, if we have two different bases for a vector space
V , we want a straightforward way to translate between the coordinate vectors of any given vector
in V with respect to the two bases.

Preview Activity 26.1.

(1) Let b1(t) = 4 + 2t, b2(t) = −6 + 8t, c1(t) = 1 + t, c2(t) = 1− t, and let B = {b1(t), b2(t)}
and C = {c1(t), c2(t)}.

(a) Show that B and C are bases for P1.

(b) Let p(t) = 3b1(t) + 2b2(t). What is [p(t)]B?

(c) Since C is also a basis for P1, there is also a coordinate vector for p(t) with respect to
C, and it is reasonable to ask how [p(t)]C is related to [p(t)]B. Recall that a coordinate
transformation respects linear combinations – that is

[rx + sy]S = r[x]S + s[y]S

for any vectors x and y in a vector space with basis S, and any scalars r and s. Use
the fact that p(t) = 3b1(t) + 2b2(t) and the linearity of the coordinate transforma-
tion with respect to the basis C to express [p(t)]C in terms of [b1(t)]C and [b2(t)]C
(don’t actually calculate [b1(t)]C and [b2(t)]C yet, just leave your result in terms of
the symbols [b1(t)]C and [b2(t)]C .)

(d) The result of part (c) can be expressed as a matrix-vector product of the form

[p(t)]C = P [p(t)]B.

Describe how the columns of the matrix P are related to [b1(t)]C and [b2(t)]C .

(e) Now calculate [b1(t)]C , [b2(t)]C ], and [p(t)]C . Determine the entries of the matrix P
and verify in this example that [p(t)]C = P [p(t)]B.

(2) The matrix P that we constructed in problem (1) allows us to quickly and easily switch from
coordinates with respect to a basis B to coordinates with respect to another basis C, providing
a way to effectively transition from one coordinate system to another as described in the
introduction. This matrix P is called a change of basis matrix. In problem (1) we explained
why the change of basis matrix exists, and in this problem we will see another perspective
from which to view this matrix. Let B = {b1,b2} and C = {c1, c2} be two bases for a vector
space V . The change of basis matrix P from B to C has the property that P [x]B = [x]C for
every vector x in V . We can determine the entries of P by applying this formula to specific
vectors in V .

(a) What are [b1]B and [b2]B? Why?

(b) If A is an n × n matrix and e1, e2, . . ., en are the standard unit vectors in Rn (that
is, ei is the ith column of the n× n identity matrix), then what does the product Aei
tell us about the matrix A?

(c) Combine the results of parts (a) and (b) and the equation P [x]B = [x]C to explain
why P = [[b1]C [b2]C ].
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The Change of Basis Matrix

Suppose we have two different finite bases B and C for a vector space V . In Preview Activity 26.1
we learned how to translate between the two bases in the 2-dimensional case – if B = {b1,b2}
and C = {c1, c2}, then the change of basis matrix from B to C is the matrix [[b1]C [b2]C ]. This
result in the 2-dimensional case generalizes to the n-dimensional case, and we can determine a
straightforward method for calculating a change of basis matrix. The essential idea was introduced
in Preview Activity 26.1.

Let B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} be two bases for a vector space V . If
x is in V , we have defined the coordinate vectors [x]B and [x]C for x with respect to B and C,

respectively. Recall that [x]B =


x1

x2
...
xn

 if

x = x1b1 + x2b2 + · · ·+ xnbn.

To see how to convert from the coordinates of x with respect to B to coordinates of x with respect
to C, note that

[x]C = [x1b1 + x2b2 + · · ·+ xnbn]C
= x1[b1]C + x2[b2]C + · · ·+ xn[bn]C

= [[b1]C [b2]C · · · [bn]C ]


x1

x2
...
xn


= [[b1]C [b2]C · · · [bn]C ][x]B.

So we can convert from coordinates with respect to the basis B to coordinates with respect to the
basis C by multiplying [x]B on the left by the matrix

[[b1]C [b2]C · · · [bn]C ].

This matrix is called the change of basis matrix from B to C and is denoted P
C←B

.

Definition 26.1. Let B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} be two bases for a vector
space V . The change of basis matrix from B to C is the matrix

P
C←B

= [[b1]C [b2]C · · · [bn]C ].

The change of basis matrix allows us to convert from coordinates with respect to one basis to
coordinates with respect to another. The result is summarized in the following theorem.

Theorem 26.2. Let B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} be two bases for a vector
space V . Then

[x]C = P
C←B

[x]B

for any vector x in V .
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Finding a Change of Basis Matrix

We can use matrix techniques we have developed to quickly find a change of basis matrix in a finite
dimensional vector space. The coordinate transformation will allow us to transfer our calculations
into Rn, and especially useful are the coordinate vectors with respect to a standard basis. These
coordinate vectors are easy to find – for example, if p(t) = 1 + t − 2t2 in P2 and S = {1, t, t2}
is the standard basis for P2, then we can see by inspection that [p(t)]S = [1 1 − 2]T. We will
also utilize the same process we developed for calculating the inverse of an invertible n× n matrix
A. Recall that this process involved solving the n matrix equations Ax = ei, where ei is the ith
column of the n × n identity matrix In. We were able to solve these n systems all at one time by
augmenting A with all of the vectors ei at once, which amounted to augmenting A with In and row
reducing. Keep these ideas in mind for the following activity.

Activity 26.1. Let b1(t) = 4 + t, b2(t) = 2 + 5t, c1(t) = −1 + 2t, and c2(t) = −1 − t. The sets
B = {b1(t), b2(t)} and C = {c1(t), c2(t)} are bases for P1. Our goal is to find the change of basis
matrix P

C←B
from B to C. We will use the coordinate transformation with respect to the standard

basis S = {1, t} for P1 to transfer our work into R2.

(a) What are [b1(t)]S , [b2(t)]S , [c1(t)]S , and [c2(t)]S?

(b) What matrix equation must we solve to write [b1(t)]S as a linear combination of the vectors
[c1(t)]S and [c2(t)]S? How do we solve this equation? (Don’t solve the equation yet.)

(c) What matrix equation must we solve to write [b2(t)]S as a linear combination of the vectors
[c1(t)]S and [c2(t)]S? How do we solve this equation? (Don’t solve the equation yet.)

(d) Let A be the coefficient matrix of the systems you wrote in parts (b) and (c). Find the
reduced row echelon form of the augmented matrix [A | [b1(t)]S [b2(t)]S ].

(e) Use the result of part (d) to write b1(t) and b2(t) as linear combinations of c1(t) and c2(t).

(f) Based on your responses to (b) and (c), if [I2 | P ] is the reduced row echelon form of the
matrix [A | [b1(t)]S [b2(t)]S ], what property will the matrix P have? Explain.

Activity 26.1 demonstrates how we can find a change of basis matrix in an n-dimensional vector
space V . If B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} are two bases for V , then the change
of basis matrix from B to C is given by

P
C←B

= [[b1]C [b2]C · · · [bn]C ].

To find [bi]C , we need to write bi as a linear combination of the vectors in C. That is, we need to
find weights x1.i, x2,i, . . ., xn,i so that

bi = x1,ic1 + x2,ic2 + · · ·+ xn,icn. (26.1)

The weights in equation (26.1) are also the weights that satisfy the equation

[bi]S = x1,i[c1]S + x2,i[c2]S + · · ·+ xn,i[cn]S
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where S is any basis for V . So to find these weights, we choose a convenient basis S (often the
standard basis, if one exists, is a good choice) and then row reduce the matrix

[[c1]S [c2]S · · · [cn]S | [bi]S ].

The row operations we will apply to row reduce the coefficient matrix

[[c1]S [c2]S · · · [cn]S ]

will be the same regardless of the augmented column, so we can solve all of the systems at one time
by row reducing the matrix

[[c1]S [c2]S · · · [cn]S | [b1]S [b2]S · · · [bn]S ].

The result of the row reduction will be the matrix[
In | PC←B

]
.

Let us return to our example in Activity 26.1. For ease of computation we choose S = {1, t}
to be the standard basis for P1. Then [b1(t)]S = [4 1]T, [b2(t)]S = [2 5]T, [c1(t)]S = [−1 2]T, and
[c2(t)]S = [−1 − 1]T. Row reducing

[[c1(t)]S [c2(t)]S | [b1(t)]S [b2(t)]S ] =

[
−1 −1 4 2

2 −1 1 5

]
gives us [

1 0 −1 1
0 1 −3 −3

]
.

So the change of basis matrix from B to C is

P
C←B

=

[
−1 1
−3 −3

]
.

Note that columns of P
C←B

tell us how to write our basis vectors in B as linear combinations of

the basis vectors in C. So we can check our work by noting that b1(t) = −c1(t) − 3c2(t) and
b2(t) = c1(t)− 3c2(t).

The coordinate transformations, along with the change of basis matrix, allow us to visualize
finite dimensional vector spaces in Rn. In our example from Activity 26.1 we can view the vectors
in the bases B and C as their coordinate vectors [b1(t)]S , [b2(t)]S , [c1(t)]S , and [c2(t)]S as illustrated
at left in Figure 26.1. The change of basis matrix P

C←B
tells us how to transform a vector whose

coordinates are given in the coordinate system defined by the basis B to the coordinate system
defined by the basis C. For example, let p(t) = 6−3t. Then [p(t)]S = [6−3]. We can find [p(t)]B by

row reducing the matrix [[b1(t)]S [b2(t)]S | [p(t)]S ] to its reduced row echelon form
[

1 0 2
0 1 −1

]
.

So [p(t)]S = 2[b1(t)]S − [b2(t)]S (and p(t) = 2b1(t) − b2(t)). Therefore, [p(t)]B = [2 − 1]T as
shown at right in Figure 26.1. Using the change of basis matrix we can see that

[p(t)]C = P
C←B

[p(t)]B =

[
−1 1
−3 −3

] [
2
−1

]
=

[
−3
−3

]
.

So [p(t)]C = (−3)[c1(t)]S − 3[c2(t)]S (and p(t) = (−3)c1(t) − 3c2(t)). Therefore, [p(t)]C =
[−3 − 3]T as shown at right in Figure 26.1.
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Figure 26.1: Two coordinate systems in R2 determined by the bases B and C.

Properties of the Change of Basis Matrix

A vector space can have more than one basis, so it is natural to ask how change of bases matrices
might be related to one another.

Activity 26.2. The sets B = {3, 4− t} and C = {1 + 2t,−1 + t} are bases for P1.

(a) Find the change of basis matrix P
C←B

from the basis B to the basis C.

(b) Let p(t) = 2 + 4t. Find [p(t)]B and [p(t)]C .

(c) Verify by matrix multiplication that [p(t)]C = P
C←B

[p(t)]B.

(d) Find the change of basis matrix P
B←C

from the basis C to the basis B.

(e) Verify by matrix multiplication that [p(t)]B = P
B←C

[p(t)]C .

(f) How, specifically, are the matrices P
C←B

and P
B←C

related? (Hint: If you don’t see a relation-

ship right away, what is the product of these two matrices?)

Activity 26.2 seems to indicate that the inverse of a change of basis matrix is also a change
of basis matrix, which assumes that a change of basis matrix is always invertible. The follow-
ing theorem provides some properties about change of basis matrices. The proofs are left for the
exercises.

Theorem 26.3. Let V be a finite dimensional vector space, and let B, C, and S be bases for V .
Then

(1) the change of basis matrix P
C←B

is invertible,

(2) P
C←B

−1 = P
B←C

,

(3) P
S←C

P
C←B

= P
S←B

.
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Examples

What follows are worked examples that use the concepts from this section.

Example 26.4. Let B = {1 + t2, 2− t, 3 + t} and C = {t+ 2t2, 3 + t2, t}. Let p(t) = 6− 4t+ 8t2

and q(t) = 9− t+ 7t2.

(a) Show that B and C are bases for P2.

(b) Find [p(t)]B and [q(t)]B.

(c) Find the change of basis matrix P
C←B

from B to C.

(d) Use P
C←B

to calculate [p(t)]C and [q(t)]C . Verify that these are the correct coordinate vectors.

Example Solution.

(a) Let S = {1, t, t2} be the standard basis for P2. If {[1 + t2]S , [2− t]S , [3 + t]S} and {[t+
2t2]S , [3+ t2]S , [t]S} are bases for R3, then by the coordinate transformation, both B and C
are bases for P2. Now [1 + t2]S = [1 0 1]T, [2− t]S = [2 − 1 0]T, and [3 + t]S = [3 1 0]T.
Technology shows that the reduced row echelon form of [[1 + t]S [2− t]S [3 + t]S ] is I3, so
B is a basis for P2. Similarly, [t+2t2]S = [0 1 2]T, [3+t2]S = [0 0 1]T, and [t]S = [0 1 0]T.
Technology shows that the reduced row echelon form of [[t+ 2t2]S [3 + t2]S [t]S ] is I3, so
C is also a basis for P2.

(b) To find [p(t)]B and [q(t)]B, we need to write p(t) and q(t) as linear combinations of the
basis elements in B. This is equivalent to writing [p(t)]S and [q(t)]S in terms of [1 + t2]S ,
[2− t]S , [3 + t]S . Technology shows that the reduced row echelon form of 1 2 3 6 9

0 −1 1 −4 −1
1 0 0 8 7


is  1 0 0 8 7

0 1 0 2 1
0 0 1 −2 0

 .
It follows that

[p(t)]B = [8 2 − 2]T and [q(t)]B = [7 1 0]T.

(c) We know that the change of basis matrix P
C←B

from B to C can be found by row reducing

[[t+ 2t2]S [3 + t2]S [t]S | [1 + t]S [2− t]S [3 + t]S ].

Technology shows that the reduced row echelon form of 0 3 0 1 2 3
1 0 1 0 −1 1
2 1 0 1 0 1


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is 
1 0 0 1

3 −1
3 −1

2

0 1 0 1
3

2
3 1

0 0 1 −1
3 −2

3
3
2

 .
So

P
C←B

=
1

6

 2 −2 −3
2 4 6
−2 −4 9

 .
(d) We know that P

C←B
[r(t)]B = [r(t)]C for any polynomial r(t) in P2. Technology shows that

[p(t)]C =
1

6

 2 −2 −3
2 4 6
−2 −4 9

 8
2
−2

 =

 3
2
−7


[q(t)]C =

1

6

 2 −2 −3
2 4 6
−2 −4 9

 7
1
0

 =

 2
3
−3

 .
Since 3(t+ 2t2) + 2(3 + t2)− 7(t) = p(t) and 2(t+ 2t2) + 3(3 + t2)− 3(t) = q(t), we
see that we have the correct coordinate vectors.

Example 26.5. Let D2×2 be the set of diagonal matrices inM2×2.

(a) Show that the set B = {B1, B2}, where B1 =

[
1 0
0 0

]
and B2 =

[
0 0
0 1

]
is a basis for

D2.

(b) If M =

[
a 0
0 b

]
in D2×2, find [M ]B.

(c) Now show that the set C = {C1, C2}, where C1 =

[
1 0
0 2

]
and C2 =

[
2 0
0 1

]
is a basis

for D2×2. If M =

[
a 0
0 b

]
in D, find [M ]C .

(d) Find the change of basis matrix P
C←B

. Use the change of basis matrix to verify your result

from part (b).

Example Solution.

(a) If x1B1 +x2B2 = 0, then equating the 1, 1 entries shows that x1 = 0 and equating the 2, 2

entries gives us x2 = 0. So B1 and B2 are linearly independent. If A =

[
x1 0
0 x2

]
is in

D, then A = x1B1 + x2B2 and B spans D2×2. Therefore, B is a basis for D2×2.

(b) Since M = aB1 + bB2, we have [M ]B =

[
a
b

]
.
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(c) Consider the equation x1C1 + x2C2 = C, where C is any matrix in D2×2. The coefficient

matrix of this system is A =

[
1 2
2 1

]
. Since det(A) = −3 6= 0, it follows that A is

invertible and so the Invertible Matrix Theorem tells us that the only solution to Ax = 0
is the trivial solution and that the system Ax = b is always consistent. Thus, C is linearly
independent and spans D2×2. So C is a basis for D2×2.

Let M =

[
a 0
0 b

]
. Then x1C1 + x2C2 = M if A

[
x1

x2

]
=

[
a
b

]
. So

[
x1

x2

]
= A−1

[
a
b

]
= −1

3

[
1 −2
−2 1

] [
a
b

]
= −1

3

[
a− 2b
b− 2a

]
.

So [M ]C = −1
3

[
a− 2b
b− 2a

]
.

(d) We use the basis B and row reduce

[[C1]B [C2]B | [B1]B [B2]B] =

[
1 2 1 0
2 2 0 1

]
to [

1 0 −1
3

2
3

0 1 2
3 −1

3

]
.

So P
C←B

=

[
−1

3
2
3

2
3 −1

3

]
. Let M =

[
a 0
0 b

]
. Then

[M ]C = P
C←B

[M ]B =

[
−1

3
2
3

2
3 −1

3

][
a
b

]
=

[
−1

3a+ 2
3b

2
3a− 1

3b

]
as calculated in part (b).

Summary

• If B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} are two bases for a vector space V , then
the change of basis matrix from B to C is the matrix

P
C←B

= [[b1]C [b2]C · · · [bn]C ]

that satisfies
[x]C = P

C←B
[x]B

for any vector x in V .

• Change of basis matrices allow us to effectively and efficiently transition from one coordinate
system to another.
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• To find a change of basis matrix we can use the coordinate transformation to transfer all of
our calculations to Rn. In particular, if B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} are
two bases for a vector space V , then for any basis S of V the reduced row echelon form of
the augmented matrix

[[c1]S [c2]S · · · [cn]S | [b1]S [b2]S · · · [bn]S ]

is [
In | PC←B

]
.

• A change of basis matrix is always invertible. What’s more, P
C←B

−1 = P
B←C

, and P
S←C

P
C←B

=

P
S←B

for any bases B, C, and S of a vector space V .

Exercises

(1) Calculate the change of basis matrix P
C←B

in each of the following cases.

(a) B = {[1 2 −1]T, [−1 1 0]T, [0 0 1]T} and C = {[0 1 0]T, [1 −1 1]T, [0 1 1]T} in R3.

(b) B = {1 + t3, t− t2, t, t3} and C = {1, t, 1 + t2, t+ t3} in P3.

(c) B =

{[
1 0
−1 1

]
,

[
−1 0

1 1

]
,

[
1 −1
0 1

]
,

[
−1 1
−1 1

]}
and

C =

{[
1 0
0 0

]
,

[
0 0
1 1

]
,

[
0 1
0 1

]
,

[
0 0
0 1

]}
inM2×2.

(2) A permutation matrix is a change of basis matrix that is obtained when the order of the basis
vectors is switched. Let B = {b1,b2,b3,b4} and C = {b2,b3,b1,b4} be two ordered
bases for a vector space V . Find P

C←B
.

(3)

(a) Suppose V = P1, B = {1 + 2t, 2− 3t} and C = {t, 2− t}. You may assume that B
and C are bases for V . Calculate P

C←B
and P

B←C
. How are these matrices related?

(b) Now let V be an arbitrary n-dimensional vector space and B and C arbitrary bases
for V . In the remainder of this exercise we demonstrate that the result of part (a) is
true in general.

i. Show that P
C←B

is an invertible matrix.

ii. Explain why P
C←B

−1 is the change of basis matrix P
B←C

.

(4)

(a) Let A1 =

[
1 2
0 1

]
, A2 =

[
0 1
1 1

]
, A3 =

[
1 0
2 1

]
, A4 =

[
0 2
1 1

]
, A5 =[

0 2
0 1

]
, A6 =

[
1 1
1 1

]
. Suppose V = M2×2, and that B = {A1, A2, A3, A4},

C = {A1, A3, A4, A5}, and S = {A2, A4, A5, A6}. Calculate each of P
S←C

, P
C←B

,

and P
S←B

. How is the product P
S←C

P
C←B

related to P
S←B

?
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(b) Now let V be an arbitrary n-dimensional vector space and B, C, and S arbitrary
bases for V . Prove that the result of part (a) is true in general. That is, show that
P
S←C

P
C←B

= P
S←B

.

(5) We can view the matrix transformation that performs a counterclockwise rotation by an angle
θ around the origin in R2 as a change of basis matrix. Let B = {e1, e2} be the standard basis
for R2, and let C = {v1,v2}, where v1 = [cos(θ) sin(θ)]T and v2 = [cos(θ+ π/2) sin(θ+
π/2)]T. Note that v1 is a vector rotated counterclockwise from the positive x-axis by the
angle θ, and v2 is a vector rotated counterclockwise from the positive y-axis by the angle θ.

(a) Use necessary trigonometric identities to show that the change of basis matrix from
C to B is [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Then find the change of basis matrix from B to C.

(b) Let x =

[
2
3

]
in R2. Find [x]B. Then find [x]C , where C = {v1,v2} with θ = 30◦.

Draw a picture to illustrate how the components of [x]C determine coordinates of
(2, 1) in the coordinate system with axes v1 and v2.

(c) Let y be the vector such that [y]C = [2 3]T. Find [y]B. Draw a picture to illustrate
how the components of [y]B determine coordinates of y in the coordinate system
with axes e1 and e2.

(6) Let B = {t, 1 + t, t2} be a basis for P2. Suppose C is another basis for P2 and

P
C←B

=

 1 1 0
0 2 −1
2 0 2

 .
Find the polynomials in the basis C.

(7) Activity 26.1 showed how we can find a change of basis matrix from a basis B to a basis C.
We can approach this problem in other ways as well. Let B and C be bases for a vector space
V , and assume that there is some convenient standard basis S for V .

(a) Explain why the matrices P
S←B

and P
S←C

will be easy to find.

(b) How can we combine the matrices P
S←B

and P
S←C

to calculate the change of basis

matrix P
C←B

? (Hint: There may be inverses involved.)

(c) Explain why row reducing the augmented matrix
[
P
S←C
| P
S←B

]
will result in the ma-

trix
[
In | PC←B

]
.

(8) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, the sets B = {b1,b2, . . . ,bn} and C = {c1, c2, . . . , cn} are bases for
an n-dimensional vector space V .
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(a) True/False The columns of P
C←B

span V .

(b) True/False The columns of P
C←B

span Rn.

(c) True/False The columns of P
C←B

are linearly independent.

(d) True/False The matrix [b1 b2 · · · bn | c1 c2 · · · cn] row reduces to [In | PC←B].

Project: Planetary Orbits and Change of Basis

We are interested in determining the orbit of planet that orbits the sun. Finding the equation of such
an orbit is not difficult, but just having an equation is not enough. For many purposes, it is important
to know where the planet is fro the perspective or earth observation. This is a more complicated
question, one we can address through change of bases matrices.1

Project Activity 26.1. Since planetary orbits are elliptical, not circular, we need to understand
ellipses. An ellipse is a shape like a flattened circle. More specifically, while a circle is the set of
points equidistant from a fixed point, and ellipse is a set of points so that the sum of the distances
from a point on the ellipse to two fixed points (called foci) is a constant. We can use this definition
to derive an equation for an ellipse. We will simplify our we by rotating and translating an ellipse
so that its foci are at points (−c, 0) and (c, 0), and the constant sum is 2a. Let (x, y) be a point on
the ellipse as illustrated in Figure 26.2. Use the fact that the sum of the distances from (x, y) to the
foci is 2a to show that (x, y) satisfies the equation

x2

a2
+
y2

b2
= 1, (26.2)

where the points (0, b) and (0,−b) are the y intercepts of the ellipse.

x

y
(x, y)

(c, 0)(−c, 0)

(0, b)

(a, 0)

Figure 26.2: An ellipse.

The longer axis of an ellipse is called the major axis and the axis perpendicular to the major
axis through the origin is the minor axis. Half of these axes (from the origin) are the semi-major

1This project is based on the paper “Planetary Orbits: Change of Basis in R3”, Donald Teets, Teaching Mathematics
and its Applications: An International Journal of the IMA, Volume 17, Issue 2, 1 June 1998, Pages 66-68.
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axis and the semi-minor axis. So the parameter a in (26.2) is the length of the semi-major axis and
the parameter b is the length of the semi-minor axis. Note that the points (0, b) and (0,−b) are
the y intercepts and the points (a, 0) and (−a, 0) are the x intercepts of this ellipse. Note that if a
and b are equal, then the ellipse is a circle. How far the ellipse deviates from a circle is called the
eccentricity (usually denoted as e) of the ellipse. In other words, the eccentricity is a measure of
how flattened en ellipse is, and this is determined by how close c is to a, or how close the ratio c

a is
to 1. Thus, we define the eccentricity of an ellipse by

e =
c

a
=

√
1− b2

a2
.

Now we assume we have a planet (different from the earth) orbiting the sun and we establish
how to convert back and forth from the coordinate system of earth’s orbit to the coordinate system
of the planet’s orbit. To do so we need to establish some coordinate systems. We assume the orbit
of earth is in the standard xy plane, with the sun (one of the foci) at the origin. The elliptical orbit of
the planet is in some other plane with coordinate axes x′ and y′. The two orbital planes intersect in
a line. Let this line be the x′ axis and let α be the angle the positive x′ axis makes with the positive
x axis. We can represent the elliptical orbit of the planet in the x′y′ plane, but the x′ and y′ axes are
not likely to be the best axes for this orbit. So we define a third coordinate system x′′y′′ in the x′y′

plane so that the origin (the position of the sun) is at one focus of the planet’s orbit and the x′′ axis
is the major axis of the orbit and the y′′ axis is the minor axis of the orbit of the planet. The unit
vectors b1, b2, and b3 in the positive x, y, and z directions define a basis B = {b1,b2,b3} for R3,
the unit vectors b′1, b′2, b′3 in the positive x′, y′, and z′ directions define a basis B′ = {b′1,b′2,b′3}
for R3, and the unit vectors b′′1 , b′′2 , b′′3 in the positive x′′, y′′, and z′′ directions define a basis
B′′ = {b′′1,b′′2,b′′3} for R3. See Figure 26.3 for illustrations. Finally, let γ be the angle between the

x′′
y′′

γF1

F2

P

x

y

H G

β

α

b′
1

b′
2

b′
3

b1
b2

b3

Figure 26.3: Left: The planet’s orbit in the x′′y′′ system. Right: The planes of the planet and earth
orbits.

positive x′ axis and the positive x′′ axis as shown at left in Figure 26.3. Our first step is to find the
change of basis matrix from B′′ to B′.
Project Activity 26.2. Explain why the change of basis matrix P

B′←B′′
is given by

P
B′←B′′

=

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 .
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More complicated is the change of basis matrix from B′ to B.

Project Activity 26.3. Now we look for P
B←B′

= [[b′1]B [b′2]B [b′3]B]. Assume that the plane p in

which the planet’s orbit lies has equation z = ax+ by.

(a) Explain why b′1 = cos(α)b1 + sin(α)b2.

(b) The x′ axis is the intersection of the plane z = ax+by with the plane z = 0, so the equation
of x′ axis in terms of x and y is ax+ by = 0. Now we determine the coordinates of b′2 in
terms of the basis B.

i. Explain why the vector [b − a 0]T lies on the x′ axis. We take this vector to point
in the positive x′ direction. This gives us another representation of b′1 – namely that
b′1 = 1√

a2+b2
[b − a 0]T.

ii. Explain why a vector in the plane z = ax+ by orthogonal to b′1 is
[
a b a2 + b2

]T.

iii. From the previous part we have

b′2 =
1√

a2 + b2 + (a2 + b2)2

[
b a a2 + b2

]T
.

Let G =

(
b√

a2+b2+(a2+b2)2
, a√

a2+b2+(a2+b2)2
, 0

)
be the terminal point of the pro-

jection of b′2 onto the xy plane. Show that
−−→
OG is orthogonal to b′1.

iv. Let β be the angle between the plane p and the xy plane as illustrated at right in Figure
26.3. Explain why ||−−→OG|| = cos(β). Then explain why

b′2 = [− cos(β) sin(α) cos(β) cos(α) sin(β)]T.

(Hint: Use the trigonometric identities cos
(
A+ π

2

)
= − sin(A) and sin

(
A+ π

2

)
=

cos(A).)

(c) Finally, we find [b′3]B. The cross product of b′1 and b′2 is a vector orthogonal to b′1 and b′2,
so

b′3 =
1√

(a2 + b2)2 + 4a2b2

[
−a(a2 + b2) − b(a2 + b2) 2ab

]T
.

Let H be the terminal point of the projection of b′3 onto the xy plane as illustrated at right
in Figure 26.3.

i. Explain why the angle between b′1 and
−−→
OH is π

2 .

ii. Explain why ||−−→OH|| = sin(β). (Hint: Use the trigonometric identity cos
(
π
2 −A

)
=

sin(A).)

iii. Since the angle from b1 to
−−→
OH is negative, this angle is α− π

2 . Use this angle and the
previous information to find the coordinates of the pointH and, consequently, explain
why

b′3 = [sin(β) sin(α) − sin(β) cos(α) cos(β)]T.

(Hint: Use the trigonometric identities cos
(
A− π

2

)
= sin(A) and sin

(
A− π

2

)
=

− cos(A).)
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(d) Explain why the change of basis matrix P
B←B′

from B′ to B is

P
B←B′

=

 cos(α) − cos(β) sin(α) sin(β) sin(α)
sin(α) cos(β) cos(α) − sin(β) cos(α)

0 sin(β) cos(β)

 .

r
θ x

y

(x, y)

O F2F1

Figure 26.4: Points on the ellipse in terms of angles.

With the change of basis matrices we can convert from any one coordinate system to the other.
Note that all of the change of basis matrices are written in terms of angles, so it will be convenient
to have a way to express points on our ellipses using angles as well. Given any point on an ellipse
(or any point in the plane), we can represent the coordinates of that point in terms of the angle θ
the vector through the origin and the point makes with the positive x-axis and the distance r from
the origin to the point as shown in Figure 26.4. In this representation we have x = r cos(θ) and
y = r sin(θ).

So we can start in the x′′y′′ coordinate system with the coordinate vector of a point
[−−→
OP
]
B′′

=

[r cos(θ) r sin(θ) 0]T. Then to view this point in the xy system, we apply the change of basis
matrices [−−→

OP
]
B

= P
B←B′

P
B′←B′′

[r cos(θ) r sin(θ) 0]T.

Of course we can also covert from B coordinates to B′′ coordinates by applying the inverses of our
change of basis matrices.
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Section 27

The Dot Product in Rn

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the dot product of two vectors? Under what conditions is the dot
product defined?

• How do we find the angle between two nonzero vectors in Rn?

• How does the dot product tell us if two vectors are orthogonal?

• How do we define the length of a vector in any dimension and how can the
dot product be used to calculate the length?

• How do we define the distance between two vectors?

• What is the orthogonal projection of a vector u in the direction of the vector
v and how do we find it?

• What is the orthogonal complement of a subspace W of Rn?

Application: Hidden Figures in Computer Graphics

In video games, the speed at which a computer can render changing graphics views is vitally im-
portant. To increase a computer’s ability to render a scene, programs often try to identify those
parts of the images a viewer could see and those parts the viewer could not see. For example, in
a scene involving buildings, the viewer could not see any images blocked by a solid building. In
the mathematical world, this can be visualized by graphing surfaces. In Figure 27.1 we see a crude
image of a house made up of small polygons (this is how programs generally represent surfaces).
On the left in Figure 27.1 we see all of the polygons that are needed to construct the entire surface,
even those polygons that lie behind others which we could not see if the surface was solid. On the

477
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right in Figure 27.1 we have hidden the parts of the polygons that we cannot see from our view. We

Figure 27.1: Images of a house.

also see this idea in mathematics when we graph surfaces. Figure 27.2 shows the graph of the sur-
face defined by f(x, y) =

√
4− x2 that is made up of polygons. At left we see all of the polygons

and at right only those parts that would be visible from our viewing perspective. By eliminating

0 2
0

1

2

0

-2

z

y

x
0 2

0

1

2

0

-2

z

y

x

Figure 27.2: Graphs of f(x, y) =
√

4− x2.

the parts of the polygons we cannot see from our viewing perspective, the computer program can
more quickly render the viewing image. Later in this section we will explore one method for how
programs remove the hidden portions of images. This process involves the dot product of vectors.

Introduction

Orthogonality, a concept which generalizes the idea of perpendicularity, is an important concept in
linear algebra. We use the dot product to define orthogonality and more generally angles between
vectors in Rn for any dimension n. The dot product has many applications, e.g., finding components
of forces acting in different directions in physics and engineering. The dot product is also an
example of a larger concept, inner products, that we will discuss a bit later. We introduce and
investigate dot products in this section.

We will illustrate the dot product in R2, but the process we go through will translate to any
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dimension. Recall that we can represent the vector v =

[
v1

v2

]
as the directed line segment (or ar-

row) from the origin to the point (v1, v2) in R2, as illustrated in Figure 27.3. Using the Pythagorean
Theorem we can then define the length (or magnitude or norm) of the vector v in R2 as

||v|| =
√
v2

1 + v2
2.

We can also write this norm as √
v1v1 + v2v2.

The expression under the square root is an important one and we extend it and give it a special
name.

O
x

y

(v1, v2)

v1

v2v

Figure 27.3: A vector in R2 from the origin to a point.

If u = [u1 u2]T and v = [v1 v2]T are vectors in R2, then we call the expression u1v1 + u2v2

the dot product of u and v, and denote it as u · v. With this idea in mind, we can rewrite the norm
of the vector v as

||v|| =
√
v · v.

The definition of the dot product translates naturally to Rn (see Exercise 5 in Section 5).

Definition 27.1. Let u = [u1 u2 · · · un] and v = [v1 v2 · · · vn] be vectors in Rn. The dot product
(or scalar product) of u and v is the scalar

u · v = u1v1 + u2v2 + · · ·+ unvn =

n∑
i=1

uivi.

The dot product then allows us to define the norm (or magnitude or length) of any vector in Rn.

Definition 27.2. The norm ||v|| of the vector v ∈ Rn is

||v|| =
√
v · v.

We also use the words magnitude or length as alternatives for the word norm. We can equiva-
lently write the norm of the vector v = [v1 v2 · · · vn]T as

||v|| =
√
v2

1 + v2
2 + · · ·+ v2

n.
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We can also realize the dot product as a matrix product. If u = [u1 u2 · · · un]T and v =
[v1 v2 · · · vn]T, then

u · v = uTv.1

IMPORTANT NOTE: The dot product is only defined between two vectors with the same number
of components.

Preview Activity 27.1.

(1) Find u · v if u = [2 3 − 1 4]T and v = [4 6 7 − 5]T in R4.

(2) The dot product satisfies some useful properties as given in the next theorem.

Theorem 27.3. Let u, v, and w be vectors in Rn, and let c be a scalar. Then

(a) u · v = v · u (the dot product is commutative),

(b) (u + v) ·w = (u ·w) + (v ·w) (the dot product distributes over vector addition),

(c) (cu) · v = u · (cv) = c(u · v),

(d) u · u ≥ 0 with equality if and only if u = 0,

(e) ||cu|| = |c|||u||.

Verification of some of these properties is left to the exercises. Let u and v be vectors in R5

with u · v = −1, ||u|| = 2 and ||v|| = 3. Use the properties of the dot product given in
Theorem 27.3 to find each of the following.

(a) u · 2v

(b) (u + v) · v

(c) (2u + 4v) · (u− 7v)

(3) At times we will want to find vectors in the direction of a given vector that have a certain
magnitude. Let u = [2 2 1]T in R3.

(a) What is ||u||?

(b) Show that
∣∣∣∣∣∣ 1
||u||u

∣∣∣∣∣∣ = 1.

(c) Vectors with magnitude 1 are important and are given a special name.

Definition 27.4. A vector v in Rn is a unit vector if ||v|| = 1.

We can use unit vectors to find vectors of a given length in the direction of a given
vector. Let c be a positive scalar and v a vector in Rn. Use properties from Theorem
27.3 to show that the magnitude of the vector c v

||v|| is c.

1Technically, uTv is a 1× 1 matrix and not a scalar, but we usually think of 1× 1 matrices as scalars.
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The Distance Between Vectors

Finding optimal solutions to systems is an important problem in applied mathematics. It is often
the case that we cannot find an exact solution that satisfies certain constraints, so we look instead
for the “best” solution that satisfies the constraints. An example of this is fitting a least squares line
to a set of data. As we will see, the dot product (and inner products in general) will allow us to
find “best” solutions to certain types of problems, where we measure accuracy using the notion of
a distance between vectors. Geometrically, we can represent a vector u as a directed line segment
from the origin to the point defined by u. If we have two vectors u and v, we can think of the
length of the difference u− v as a measure of how far apart the two vectors are from each other. It
is natural, then to define the distance between vectors as follows.

Definition 27.5. Let u and v be vectors in Rn. The distance between u and v is the length of the
difference u− v or

||u− v||.

As Figure 27.4 illustrates, if vectors u and v emanate from the same initial point, and P and
Q are the terminal points of u and v, respectively, then the difference ||u − v|| is the standard
Euclidean distance between the points P and Q.

P

Q

u

v

u− v

Figure 27.4: ||u− v||.

The Angle Between Two Vectors

Determining a “best” solution to a problem often involves finding a solution that minimizes a dis-
tance. We generally accomplish a minimization through orthogonality – which depends on the angle
between vectors. Given two vectors u and v in Rn, we position the vectors so that they emanate
from the same initial point. If the vectors are nonzero, then they determine a plane in Rn. In that
plane there are two angles that these vectors create. We will define the angle between the vectors
to be the smaller of these two angles. The dot product will tell us how to find the angle between
vectors. Let u and v be vectors in Rn and θ the angle between them as illustrated in Figure 27.5.
Using the Law of Cosines, we have

||u− v||2 = ||u||2 + ||v||2 − 2||u|| ||v|| cos(θ) .
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u

v

u− v

θ

Figure 27.5: The angle between u and v

By rearranging, we obtain

||u|| ||v|| cos(θ) =
1

2

(
||u||2 + ||v||2 − ||u− v||2

)
=

1

2
(||u||2 + ||v||2 − (u− v) · (u− v))

=
1

2
(||u||2 + ||v||2 − u · u + 2u · v − v · v)

= u · v .

So the angle θ between two nonzero vectors u and v in Rn satisfies the equation

cos(θ) =
u · v
||u|| ||v|| . (27.1)

Of particular interest to us will be the situation where vectors u and v are orthogonal (perpen-
dicular).2 Intuitively, we think of two vectors as orthogonal if the angle between them is 90◦.

Activity 27.1.

(a) The vectors e1 = [1 0]T and e2 = [0 1]T are perpendicular in R2. What is e1 · e2?

(b) Now let u and v be any vectors in Rn.

i. Suppose the angle between nonzero vectors u and v is 90◦. What does Equation
(27.1) tell us about u · v?

ii. Now suppose that u · v = 0. What does Equation (27.1) tell us about the angle
between u and v? Why?

iii. Explain why the following definition makes sense.

Definition 27.6. Two vectors u and v in Rn are orthogonal if u · v = 0.

iv. According to Definition 27.6, to which vectors is 0 orthogonal? Does this make sense
to you intuitively? Explain.

Activity 27.2.
2We use the term orthogonal instead of perpendicular because we will be able to extend this idea to situations where

we normally don’t think of objects as being perpendicular.
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(a) Find the angle between the two vectors u = [1 3 − 2 5]T and v = [5 2 3 − 1]T.

(b) Find, if possible, two non-parallel vectors orthogonal to u =


0
3
−2

1

.

Orthogonal Projections

When running a sprint, the racers may be aided or slowed by the wind. The wind assistance is a
measure of the wind speed that is helping push the runners down the track. It is much easier to run
a very fast race if the wind is blowing hard in the direction of the race. So that world records aren’t
dependent on the weather conditions, times are only recorded as record times if the wind aiding the
runners is less than or equal to 2 meters per second. Wind speed for a race is recorded by a wind
gauge that is set up close to the track. It is important to note, however, that weather is not always as
cooperative as we might like. The wind does not always blow exactly in the direction of the track,
so the gauge must account for the angle the wind makes with the track. If the wind is blowing in
the direction of the vector u in Figure 27.6 and the track is in the direction of the vector v in Figure
27.6, then only part of the total wind vector is actually working to help the runners. This part is
called the orthogonal projection of the vector u onto the vector v and is denoted projvu. The next
activity shows how to find this projection.

u

v

proj⊥vu

projvu

θ

Figure 27.6: The orthogonal projection of u onto v.

Activity 27.3. Since the orthogonal projection projvu is in the direction of v, there exists a constant
c such that projvu = cv. If we solve for c, we can find projvu.

(a) The wind component that acts perpendicular to the direction of v is called the projection of
u orthogonal to v and is denoted proj⊥vu as shown in Figure 27.6. Write an equation that
involves projvu, proj⊥vu, and u. Then solve that equation for proj⊥vu.

(b) Given that v and proj⊥vu are orthogonal, what does that tell us about v·proj⊥vu? Combine
this fact with the result of part (a) and that projvu = cv to obtain an equation involving v,
u, and c.

(c) Solve for c using the equation you found in the previous step.

(d) Use your value of c to identify projvu.
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To summarize:

Definition 27.7. Let u and v be vectors in Rn with v 6= 0.

(1) The orthogonal projection of u onto v is the vector

projvu =
u · v
||v||2v. (27.2)

(2) The projection of u orthogonal to v is the vector

proj⊥vu = u− projvu.

Activity 27.4. Let u =

[
5
8

]
and v =

[
6

−10

]
. Find projvu and proj⊥vu and draw a picture to

illustrate.

Orthogonal Complements

In Activity 27.1 we defined two vectors u and v in Rn to be orthogonal (or perpendicular) if
u · v = 0. With this in mind we can define the orthogonal complement of a subspace of Rn.

Definition 27.8. Let W be a subspace of Rn for some n ≥ 1. The orthogonal complement of W
is the set

W⊥ = {x ∈ Rn : x ·w = 0 for all w ∈W}.

Preview Activity 27.2. Let W = Span{[1 − 1]T} in R2. Completely describe all vectors in W⊥

both algebraically and geometrically.

The orthogonal projection of a vector u onto a vector v is really a projection of the vector u
onto the vector space Span{v}. The vector projvu is the best approximation to u of all the vectors
in Span{v} in the sense that projvu is the closest to u among all vectors in Span{v}, as we will
prove later. Another familiar example where we see this type of behavior is when we look at planes
in 3-space. Remember that a plane through the origin in R3 is a two dimensional subspace of R3.
We define a plane through the origin to be the set of all vectors in R3 that are orthogonal to a given
vector (called a normal vector). For example, to find the equation of the plane through the origin in
R3 orthogonal to the normal vector n = [1 2 − 1]T, we seek all the vectors v = [x y z]T such that

v · n = 0.

This gives us the equation
x+ 2y − z = 0

as the equation of this plane.

There is a more general idea here as defined in Preview Activity 27.2. If we have a set S of
vectors in Rn, we let S⊥ (read as “S perp”, called the orthogonal complement of S) be the set of
all vectors in Rn that are orthogonal to every vector in S. In our plane example, the set S is {n}
and S⊥ is the plane with equation x+ 2y − z = 0.
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Activity 27.5. We have seen another example of orthogonal complements. Let A be an m × n
matrix with rows r1, r2 , . . ., rm in order. Consider the three spaces Nul A, Row A, and Col A
related to A, where Row A = Span{r1, r2, . . . , rm} (that is, Row A is the span of the rows of A).
Let x be a vector in Row A.

(a) What does it mean for x to be in Row A?

(b) Now let y be a vector in Nul A. Use the result of part (a) and the fact that Ay = 0 to
explain why x · y = 0. (Hint: Calculate Ay using scalar products of rows of A with y.)
Explain how this verifies (Row A)⊥ = Nul A.

(c) Use AT in place of A in the result of the previous part to show (Col A)⊥ = Nul AT.

The activity proves the following theorem:

Theorem 27.9. Let A be an m× n matrix. Then

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT.

To show that a vector is in the orthogonal complement of a subspace, it is not necessary to
demonstrate that the vector is orthogonal to every vector in the subspace. If we have a basis for
the subspace, it suffices to show that the vector is orthogonal to every vector in that basis for the
subspace, as the next theorem demonstrates.

Theorem 27.10. Let B = {w1,w2, . . . ,wm} be a basis for a subspace W of Rn. A vector v in
Rn is orthogonal to every vector in W if and only if v is orthogonal to every vector in B.

Proof. Let B = {w1,w2, . . . ,wm} be a basis for a subspace W of Rn and let v be a vector in Rn.
Our theorem is a biconditional, so we need to prove both implications. Since B ⊂ W , it follows
that if v is orthogonal to every vector in W , then v is orthogonal to every vector in B. This proves
the forward implication. Now we assume that v is orthogonal to every vector in B and show that v
is orthogonal to every vector in W . Let x be a vector in W . Then

x = x1w1 + x2w2 + · · ·+ xmwm

for some scalars x1, x2, . . ., xm. Then

v · x = v · (x1w1 + x2w2 + · · ·+ xmwm)

= x1(v ·w1) + x2(v ·w2) + · · ·+ xm(v ·wm)

= 0.

Thus, v is orthogonal to x and v is orthogonal to every vector in W . �

Activity 27.6. Let W = Span


 1

1
0

 ,
 0

0
1

. Find all vectors in W⊥.

We will work more closely with projections and orthogonal complements in later sections.



486 Section 27. The Dot Product in Rn

Examples

What follows are worked examples that use the concepts from this section.

Example 27.11. Let ` be the line defined by the equation ax + by + c = 0 with in R2 and let
P = (x0, y0) be a point in the plane. In this example we will learn how to find the distance from P
to `.

(a) Show that n = [a b]T is orthogonal to the line `. That is, n is orthogonal to any vector on
the line `.

(b) Let Q = (x1, y1) be any point on line `. Draw a representative picture of P , n with its
initial point at P , along with Q and `. Explain how to use a projection to determine the
distance from P to `.

(c) Use the idea from part (b) to show that the distance d from P to ` satisfies

d =
|ax0 + by0 + c|√

a2 + b2
. (27.3)

(d) Use Equation (27.3) to find the distance from the point (3, 4) to the line y = 2x+ 1.

Example Solution.

(a) Any vector on the line ` is a vector between two points on the line. Let Q = (x1, y1) and
R = (x2, y2) be points on the line `. Then u =

−−→
QR = [x2−x1 y2−y1]T is a vector on line

`. Since Q and R are on the line, we know that ax1 + by1 + c = 0 and ax2 + by2 + c = 0.
So −c = ax1 + by1 = ax2 + by2 and

0 = a(x2 − x1) + b(y2 − y1) = [a b]Tu.

Thus, n = [a b]T is orthogonal to every vector on the line `.

(b) A picture of the situation is shown in Figure 27.7. If v =
−−→
PQ, then the distance from point

P to line ` is given by ||projnv||.

n

v

projnv

Q = (x1, y1)

P = (x0, y0)

l

Figure 27.7: Distance from a point to a line.
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(c) Recall that n = [a b]T and v =
−−→
PQ = [x1 − x0 y1 − y0]T. Since ax1 + by1 + c = 0, we

have

projnv =
v · v
||n||2n

=
a(x1 − x0) + b(y1 − y0)

a2 + b2
[a b]T

=
ax1 + by1 − ax0 − by0

a2 + b2
[a b]T

=
−c− ax0 − by0

a2 + b2
[a b]T.

So

||projnv|| =
|ax0 + by0 + c|

a2 + b2

√
a2 + b2 =

|ax0 + by0 + c|√
a2 + b2

.

(d) Here we have P = (3, 4), and the equation of our line is 2x−y+1 = 0. So a = 2, b = −1,
and c = −1. Thus, the distance from P to the line is

|ax0 + by0 + c|√
a2 + b2

=
|2(3)− (4) + 1|√

4 + 1
=

3√
5
.

Example 27.12. Let a, b, and c be scalars with a 6= 0, and let

W = {ax+ by + cz = 0 : x, y, z ∈ R} .

(a) Find two vectors that span W , showing that W is a subspace of R3. (In fact, W is a plane
through the origin in R3.)

(b) Find a vector n that is orthogonal to the two vectors you found in part (a).

(c) Explain why {n} is a basis for W⊥.

Example Solution.

(a) The coefficient matrix for the system ax + by + cz = 0 is [a b c]T. The first column is a
pivot column and the others are not. So y and z are free variables and

[x y z]T =

[
− b
a
y − c

a
z, y, z

]T
= y

[
− b
a

1 0

]T
+ z

[
− c
a

0 1
]T
.

So W = Span
{[
− b
a 1 0

]T
,
[
− c
a 0 1

]T}.

(b) If we let n = [a b c]T, then

n ·
[
− b
a

1 0

]T
= −b+ b = 0

n ·
[
− c
a

0 1
]T

= −c+ c = 0.

Thus, [a b c]T is orthogonal to both
[
− b
a 1 0

]T
and

[
− c
a 0 1

]T.
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(c) Let u =
[
− b
a 1 0

]T
and v =

[
− c
a 0 1

]T. Every vector in W has the form xu + yv for
some scalars x and y, and

n · (xu + yv) = x(n · u) + y(n · v) = 0.

So n ∈W⊥.

Now we need to verify that {n} spans W⊥. Let w = [w1 w2 w3]T be in W⊥. Then
w · z = 0 for every z ∈W . In particular, w · u = 0 or − b

aw1 + w2 = 0, and w · v = 0 or
− c
aw1 + w3 = 0. Equivalently, we have w2 = b

aw1 and w3 = c
aw1. So

w = [w1 w2 w3]T

=

[
w1

b

a
w1

c

a
w1

]T
=

1

a
[a b c]Tw1

=
w1

a
n.

So every vector in W⊥ is a multiple of n, and {n} spans W⊥. We conclude that {n} is a
basis for W⊥. Thus, the vector [a b c]T is a normal vector to the plane ax + by + cz = 0
if a 6= 0. The same reasoning works if at least one of a, b,or c is nonzero, so we can say in
every case that [a b c]T is a normal vector to the plane ax+ by + cz = 0.

Summary

• The dot product of vectors u = [u1 u2 · · · un]T and v = [v1 v2 · · · vn]T in Rn is the scalar

u · v = u1v1 + u2v2 + · · ·+ unvn =
n∑
i=1

uivi.

• The angle θ between two nonzero vectors u and v in Rn satisfies the equation

cos(θ) =
u · v
||u|| ||v||

and 0 ≤ θ ≤ 180.

• Two vectors u and v are orthogonal if u · v = 0.

• The length, or norm, of the vector u can be found as ||u|| =
√
u · u.

• The distance between the vectors u and v in Rn is ||u − v||, which is the length of the
difference u− v.

• Let u and v be vectors in Rn.

– The orthogonal projection of u onto v is the vector

projvu =
u · v
||v||2v.
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– The projection of u perpendicular to v is the vector

proj⊥vu = u− projvu.

• The orthogonal complement of the subspace W of Rn is the set

W⊥ = {x ∈ Rn : x ·w = 0 for all w ∈W}.

Exercises

(1) For each of the following pairs of vectors, find u · v, calculate the angle between u and v,
determine if u and v are orthogonal, find ||u|| and ||v||, calculate the distance between u and
v, and determine the orthogonal projection of u onto v.

(a) u = [1 2]T, v = [−2 1]T

(b) u = [2 − 2]T, v = [1 − 1]T

(c) u = [2 − 1]T, v = [1 3]T

(d) u = [1 2 0]T, v = [−2 1 1]T

(e) u = [0 0 1]T, v = [1 1 1]T

(2) Given u = [2 1 2]T, find a vector v so that the angle between u and v is 60◦ and the
orthogonal projection of v onto u has length 2.

(3) For which value(s) of h is the angle between [1 1 h]T and [1 2 1]T equal to 60◦?

(4) Let A = [aij ] be a k ×m matrix with rows r1, r2, . . ., rk, and let B = [b1 b2 · · · bn] be an
m× n matrix with columns b1, b2, . . ., bn. Show that we can write the matrix product AB
in a shorthand way as AB = [ri · bj ].

(5) Let A be an m× n, u a vector in Rn and v a vector in Rm. Show that

Au · v = u ·ATv.

(6) Let u, v, and w be vectors in Rn. Show that

(a) (u + v) ·w = (u ·w) + (v ·w) (the dot product distributes over vector addition)

(b) If c is an arbitrary constant, then (cu) · v = u · (cv) = c(u · v)

(7) The Pythagorean Theorem states that if a and b are the lengths of the legs of a right triangle
whose hypotenuse has length c, then a2 + b2 = c2. If we think of the legs as defining vectors
u and v, then the hypotenuse is the vector u+v and we can restate the Pythagorean Theorem
as

||u + v||2 = ||u||2 + ||v||2.
In this exercise we show that this result holds in any dimension.

(a) Let u and v be orthogonal vectors in Rn. Show that ||u + v||2 = ||u||2 + ||v||2.
(Hint: Rewrite ||u + v||2 using the dot product.)
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(b) Must it be true that if u and v are vectors in Rn with ||u + v||2 = ||u||2 + ||v||2,
then u and v are orthogonal? If not, provide a counterexample. If true, verify the
statement.

(8) The Cauchy-Schwarz inequality,

|u · v| ≤ ||u|| ‖|v|| (27.4)

for any vectors u and v in Rn, is considered one of the most important inequalities in mathe-
matics. We verify the Cauchy-Schwarz inequality in this exercise. Let u and v be vectors in
Rn.

(a) Explain why the inequality (27.4) is true if either u or v is the zero vector. As a
consequence, we assume that u and v are nonzero vectors for the remainder of this
exercise.

(b) Let w = projvu = u·v
||v||2v and let z = u−w. We know that w ·z = 0. Use Exercise

7. of this section to show that

||u||2 ≥ ||w||2.

(c) Now show that ||w||2 = |u·v|2
||v||2 .

(d) Combine parts (b) and (c) to explain why equation (27.4) is true.

(9) Let u and v be vectors in Rn. Then u, v and u + v form a triangle. We should then expect
that the length of any one side of the triangle is smaller than the sum of the lengths of the
other sides (since the straight line distance is the shortest distance between two points). In
other words, we expect that

||u + v|| ≤ ||u||+ ||v||. (27.5)

Equation (27.5) is called the Triangle Inequality. Use the Cauchy-Schwarz inequality (Exer-
cise 8) to prove the triangle inequality.

(10) Let W be a subspace of Rn for some n. Show that W⊥ is also a subspace of Rn.

(11) Let W be a subspace of Rn. Show that W is a subspace of (W⊥)⊥.

(12) If W is a subspace of Rn for some n, what is W ∩W⊥? Verify your answer.

(13) Suppose W1 ⊆W2 are two subspaces of Rn. Show that W⊥2 ⊆W⊥1 .

(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The dot product is defined between any two vectors.

(b) True/False If u and v are vectors in Rn, then u · v is another vector in Rn.

(c) True/False If u and v are vectors in Rn, then u · v is always non-negative.

(d) True/False If v is a vector in Rn, then v · v is never negative.

(e) True/False If u and v are vectors in Rn and u · v = 0, then u = v = 0.
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(f) True/False If v is a vector in Rn and v · v = 0, then v = 0.

(g) True/False The norm of the sum of vectors is the sum of the norms of the vectors.

(h) True/False If u and v are vectors in Rn, then projvu is a vector in the same direction
as u.

(i) True/False The only subspace W of Rn for which W⊥ = {0} is W = Rn.

(j) True/False If a vector u is orthogonal to v1 and v2, then u is also orthogonal to
v1 + v2.

(k) True/False If a vector u is orthogonal to v1 and v2, then u is also orthogonal to all
linear combinations of v1 and v2.

(l) True/False If u 6= 0 and v are parallel, then the orthogonal projection of v onto u
equals v.

(m) True/False If u 6= 0 and v are orthogonal, then the orthogonal projection of v onto
u equals v.

(n) True/False For any vector v and u 6= 0, ||projuv|| ≤ ||v||.
(o) True/False Given an m× n matrix, dim(Row A) + dim(Row A)⊥ = n.

(p) True/False If A is a square matrix, then the columns of A are orthogonal to the
vectors in Nul A.

(q) True/False The vectors in the null space of anm×nmatrix are orthogonal to vectors
in the row space of A.

Project: Back-Face Culling

To identify hidden polygons in a surface, we will utilize a technique called back face culling. This
involves identifying which polygons are back facing and which are front facing relative to the
viewer’s perspective. The first step is to assign a direction to each polygon in a surface.

Project Activity 27.1. Consider the polygon ABCD in Figure 27.8. Since a polygon is flat, every
vector in the polygon is perpendicular to a fixed vector (which we call a normal vector to the
polygon). A normal vector n for the polygon ABCD in Figure 27.8 is shown. In this activity we
learn how to find a normal vector to a polygon.

Let x = [x1 x2 x3]T and y = [y1 y2 y3]T be two vectors in R3. If x and y are linearly
independent, then x and y determine a polygon as shown in Figure 27.8. Our goal is to find a
vector n that is orthogonal to both x and y. Let w = [w1 w2 w3]T be another vector in R3 and let

C =

 wT

xT

yT

 be the matrix whose rows are w, x, and y. Let Cij be the ijth cofactor of C, that

is Cij is (−1)i+j times the determinant of the submatrix of C obtained by deleting the ith row and
jth column of C. Now define the vector x× y as follows:

x× y = C11e1 + C12e2 + C13e3.
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The vector x × y is called the cross product of the vectors x and y. (Note that the cross product
is only defined for vectors in R3.) We will show that x× y is orthogonal to both x and y, making
x× y a normal vector to the polygon defined by x and y.

y

x

n

A B

CD

Figure 27.8: Normal vector to a polygon.

(a) Show that

x× y =

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .
(b) Use a cofactor expansion of C along the first row and properties of the dot product to show

that
det(C) = w · (x× y).

(c) Use the result of part (b) and properties of the determinant to calculate x · (x × y) and
y · (x × y). Explain why x × y is orthogonal to both x and y and is therefore a normal
vector to the polygon determined by x and y.

Project Activity 27.1 shows how we can find a normal vector to a parallelogram – take two
vectors x and y between the vertices of the parallelogram and calculate their cross products. Such
a normal vector can define a direction for the parallelogram. There is still a problem, however.

Project Activity 27.2. Let x = [x1 x2 x3]T and y = [y1 y2 y3]T be any vectors in R3. There is a
relationship between x× y and y × x. Find and verify this relationship.

Project Activity 27.2 shows that the cross product is anticommutative, so we get different direc-
tions if we switch the order in which we calculate the cross product. To fix a direction, we establish
the convention that we always label the vertices of our parallelogram in the counterclockwise di-
rection as shown in Figure 27.8. This way we always use x as the vector from vertex A to vertex
B rather than the reverse. With this convention established, we can now define the direction of a
parallelogram as the direction of its normal vector.

Once we have a normal vector established for each polygon, we can now determine which
polygons are back-face and which are front-face. Figure 27.9 at left provides the gist of the idea,
where we represent the polygons with line segments to illustrate. If the viewer’s eye is at point P
and views the figures, the normal vectors of the visible polygons point in a direction toward the
viewer (front-face) and the normal vectors of the polygons hidden from the viewer point away from
the viewer (back-face). What remains is to determine an effective computational way to identify
the front and back facing polygons.
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n
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n

C

n

D

n E n

F

v

θ

CAB

A

B

n

v
θ

CRS

R

S n

Figure 27.9: Left: Hidden faces. Right: Back face culling.

Project Activity 27.3. Consider the situation as depicted at right in Figure 27.9. Assume that AB
and RS are polygons (rendered one dimensionally here) with normal vectors n at their centers as
shown. The viewer’s eye is at point P and the viewer’s line of vision to the centers CAB and CRS
are indicated by the vectors v. Each vector v makes an angle θ with the normal to the polygon.

(a) What can be said about the angle θ for a front-facing polygon? What must be true about
v · n for a front-facing polygon? Why?

(b) What can be said about the angle θ for a back-facing polygon? What must be true about
v · n for a back-facing polygon? Why?

(c) The dot product then provides us with a simple computational tool for identifying back-
facing polygons (assuming we have already calculated all of the normal vectors). We can
then create an algorithm to cull the back-facing polygons. Assuming that we the viewpoint
P and the coordinates of the polygons of the surface, complete the pseudo-code for a back-
face culling algorithm:

for all polygons on the surface do
calculate the normal vector n using the product for the current polygon
calculate the center C of the current polygon
calculate the viewing vector

if then
render the current polygon

end if
end for

As a final comment, back-face culling generally reduces the number of polygons to be rendered
by half. This algorithm is not perfect and does not always do what we want it to do (e.g., it may
not remove all parts of a polygon that we don’t see), so there are other algorithms to use in concert
with back-face culling to correctly render objects.





Section 28

Orthogonal and Orthonormal Bases in
Rn

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is an orthogonal set in Rn? What is one useful fact about orthogonal
subsets of Rn?

• What is an orthogonal basis for a subspace of Rn? What is an orthonormal
basis?

• How does orthogonality help us find the weights to write a vector as a linear
combination of vectors in an orthogonal basis?

• What is an orthogonal matrix and why are orthogonal matrices useful?

Application: Rotations in 3D

An aircraft in flight, like a plane or the space shuttle, can perform three independent rotations: roll,
pitch, and yaw. Roll is a rotation about the axis through the nose and tail of the aircraft, pitch is
rotation moving the nose of the aircraft up or down through the axis from wingtip to wingtip, and
yaw is the rotation when the nose of the aircraft turns left or right about the axis though the plane
from top to bottom. These rotations take place in 3-space and the axes of the rotations change as the
aircraft travels through space. To understand how aircraft maneuver, it is important to know about
general rotations in space. These are more complicated than rotations in 2-space, and, as we will
see later in this section, involve orthogonal sets.

495
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Introduction

If B = {v1,v2, . . . ,vm} is a basis for a subspace W of Rn, we know that any vector w in W
can be written uniquely as a linear combination of the vectors in B. In the past, the way we have
found the coordinates of x with respect to B, i.e. the weights needed to write a vector x as a linear
combination of the elements in B, has been to row reduce the matrix [v1 v2 · · · vn | x] to solve
the corresponding system. This can be a cumbersome process, especially if we need to do it many
times. For certain types of bases, namely the orthogonal and orthonormal bases, there is a much
easier way to find the individual weights for this linear combination.

Recall that two nonzero vectors u and v in Rn are orthogonal if u · v = 0. We can extend
this idea to an entire set. For example, the standard basis S = {e1, e2, e3} for R3 has the prop-
erty that any two distinct vectors in S are orthogonal to each other. The basis vectors in S make
a very nice coordinate system for R3, where the basis vectors provide the directions for the coor-
dinate axes. We could rotate this standard basis, or multiply any of the vectors in the basis by a
nonzero constant, and retain a basis in which all distinct vectors are orthogonal to each other (e.g.,
{[2 0 0]T, [0 3 0]T, [0 0 1]T}). We define this idea of having all vectors be orthogonal to each other
for sets, and then later for bases.

Definition 28.1. A non-empty subset S of Rn is orthogonal if u · v = 0 for every pair of distinct
vector u and v in S.

Preview Activity 28.1.

(1) Determine if the set S = {[1 2 1]T, [2 − 1 0]T} is an orthogonal set.

(2) Orthogonal bases are especially important.

Definition 28.2. An orthogonal basis B for a subspace W of Rn is a basis of W that is also
an orthogonal set.

Let B = {v1,v2,v3}, where v1 = [1 2 1]T, v2 = [2 − 1 0]T, and v3 = [1 2 − 5]T.

(a) Explain why B is an orthogonal basis for R3.

(b) Suppose x has coordinates x1, x2, x3 with respect to the basis B, i.e.

x = x1v1 + x2v2 + x3v3 .

Substitute for x in x · v1 and use the orthogonality property of the basis B to show
that x1 = x·v1

v1·v1
. Then determine x2 and x3 similarly. Finally, calculate the values of

x1, x2, and x3 if x = [1 1 1]T.

(c) Find components of x = [1 1 1]T by reducing the augmented matrix [v1 v2 v3 | x].
Does this result agree with your work from the previous part?

Orthogonal Sets

We defined orthogonal sets in Rn and bases of subspaces of Rn in Definitions 28.1 and 28.2. We
saw that the standard basis in R3 is an orthogonal set and an orthogonal basis of R3, and there are
many other examples as well.
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Activity 28.1. Let w1 =

 −2
1
−1

, w2 =

 0
1
1

, and w3 =

 1
1
−1

. In the same manner as in

Preview Activity 28.1, we can show that the set S1 = {w1,w2,w3} is an orthogonal subset of R3.

(a) Is the set S2 =


 −2

1
−1

 ,
 0

1
1

 ,
 1

1
−1

 ,
 1

2
0

 an orthogonal subset of R3?

(b) Suppose a vector v is a vector so that S1∪{v} is an orthogonal subset of R3. Then wi ·v =

0 for each i. Explain why this implies that v is in Nul A, where A =

 −2 1 −1
0 1 1
1 1 −1

.

(c) Assuming that the reduced row echelon form of the matrix A is I3, explain why it is not
possible to find a nonzero vector v so that S1 ∪ {v} is an orthogonal subset of R3.

The example from Activity 28.1 suggests that we can have three orthogonal nonzero vectors in
R3, but no more. Orthogonal vectors are, in a sense, as far apart as they can be. So we might expect
that there is no linear relationship between orthogonal vectors. The following theorem makes this
clear.

Theorem 28.3. Let {v1,v2, . . . ,vm} be a set of nonzero orthogonal vectors in Rn. Then the
vectors v1,v2, . . . ,vm are linearly independent.

Proof. Let S = {v1,v2, . . . ,vm} be a set of nonzero orthogonal vectors in Rn. To show that v1,
v2, . . ., vm are linearly independent, assume that

x1v1 + x2v2 + · · ·+ xmvm = 0 (28.1)

for some scalars x1, x2, . . ., xm. We will show that xi = 0 for each i from 1 tom. Since the vectors
in S are orthogonal to each other, we know that vi ·vj = 0 whenever i 6= j. Fix an index k between
1 and m. We evaluate the dot product of both sides of (28.1) with vk and simplify using the dot
product properties:

vk · (x1v1 + x2v2 + · · ·+ xmvm) = vk · 0
(vk · x1v1) + (vk · x2v2) + · · ·+ (vk · xmvm) = 0

x1(vk · v1) + x2(vk · v2) + · · ·+ xm(vk · vm) = 0. (28.2)

Now all of the dot products on the left are 0 except for vk · vk, so (28.2) becomes

xk(vk · vk) = 0.

We assumed that vk 6= 0 and since vk · vk = ||vk||2 6= 0, we conclude that xk = 0. We chose k
arbitrarily, so we have shown that xk = 0 for each k between 1 and m. Therefore, the only solution
to equation (28.1) is the trivial solution with x1 = x2 = · · · = xm = 0 and the set S is linearly
independent. �
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Properties of Orthogonal Bases

Orthogonality is a useful and important property for a basis to have. In Preview Activity 28.1 we
saw that if a vector x in the span of an orthogonal basis {v1,v2,v3} could be written as a linear
combination of the basis vectors as x = x1v1 + x2v2 + x3v3, then x1 = x·v1

v1·v1
. If we continued

that same argument we could show that

x =

(
x · v1

v1 · v1

)
v1 +

(
x · v2

v2 · v2

)
v2 +

(
x · v3

v3 · v3

)
v3.

We can apply this idea in general to see how the orthogonality of an orthogonal basis allows
us to quickly and easily determine the weights to write a given vector as a linear combination of
orthogonal basis vectors. To see why, let B = {v1,v2, . . . ,vm} be an orthogonal basis for a
subspace W of Rn and let x be any vector in W . We know that

x = x1v1 + x2v2 + · · ·+ xmvm

for some scalars x1, x2, . . ., xm. Let 1 ≤ k ≤ m. Then, using orthogonality of vectors v1,v2, . . . ,vm,
we have

vk · x = x1(vk · v1) + x2(vk · v2) + · · ·+ xm(vk · vm) = xkvk · vk.
So

xk =
x · vk
vk · vk

.

Thus, we can calculate each weight individually with two simple dot products. We summarize this
discussion in the next theorem.

Theorem 28.4. Let B = {v1,v2, . . . ,vm} be an orthogonal basis for a subspace of Rn. Let x be
a vector in W . Then

x =
x · v1

v1 · v1
v1 +

x · v2

v2 · v2
v2 + · · ·+ x · vm

vm · vm
vm. (28.3)

Activity 28.2. Let v1 = [1 0 1]T, v2 = [0 1 0]T, and v3 = [0 01]T. The set B = {v1,v2,v3} is a
basis for R3. Let x = [1 0 0]T. Calculate

x · v1

v1 · v1
v1 +

x · v2

v2 · v2
v2 +

x · v3

v3 · v3
v3.

Compare to x. Does this violate Theorem 28.4? Explain.

Orthonormal Bases

The decomposition (28.3) is even simpler if vk · vk = 1 for each k, that is, if vk is a unit vector for
each k. In this case, the denominators are all 1 and we don’t even need to consider them. We have
a familiar example of such a basis for Rn, namely the standard basis S = {e1, e2, . . . , en}.

Recall that
v · v = ||v||2,

so the condition v · v = 1 implies that the vector v has norm 1. An orthogonal basis with this
additional condition is a very nice basis and is given a special name.
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Definition 28.5. An orthonormal basis B = {u1,u2, . . . ,um} for a subspace W of Rn is an
orthogonal basis such that ||uk|| = 1 for 1 ≤ k ≤ m.

In other words, an orthonormal basis is an orthogonal basis in which every basis vector is a
unit vector. A good question to ask here is how we can construct an orthonormal basis from an
orthogonal basis.

Activity 28.3.

(a) Let v1 and v2 be orthogonal vectors. Explain how we can obtain unit vectors u1 in the
direction of v1 and u2 in the direction of v2.

(b) Show that u1 and u2 from the previous part are orthogonal vectors.

(c) Use the ideas from this problem to construct an orthonormal basis for R3 from the orthog-

onal basis S =


 −2

1
−1

 ,
 0

1
1

 ,
 1

1
−1

.

In general, we can construct an orthonormal basis {u1,u2, . . . ,um} from an orthogonal basis
B = {v1,v2, . . . ,vm} by normalizing each vector in B (that is, dividing each vector by its norm).

Orthogonal Matrices

We have seen in the diagonalization process that we diagonalize a matrix A with a matrix P whose
columns are linearly independent eigenvectors ofA. In general, calculating the inverse of the matrix
whose columns are eigenvectors of A in the diagonalization process can be time consuming, but if
the columns form an orthonormal set, then the calculation is very straightforward.

Activity 28.4. Let u1 = 1
3 [2 1 2]T, u2 = 1

3 [−2 2 1]T, and u3 = 1
3 [1 2 − 2]T. It is not difficult to

see that the set {u1,u2,u3} is an orthonormal basis for R3. Let

A = [u1 u2 u3] =
1

3

 2 −2 1
1 2 2
2 1 −2

 .

(a) Use the definition of the matrix-matrix product to find the entries of the second row of the
matrix product ATA. Why should you have expected the result? (Hint: How are the rows
of AT related to the columns of A?)

(b) With the result of part (a) in mind, what is the matrix product ATA? What does this tell us
about the relationship between AT and A−1? Use technology to calculate A−1 and confirm
your answer.

(c) Suppose P is an n× n matrix whose columns form an orthonormal basis for Rn. Explain
why PTP = In.
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The result of Activity 28.4 is that if the columns of a square matrix P form an orthonormal set,
then P−1 = PT. This makes calculating P−1 very easy. Note, however, that this only works if
the columns of P form an orthonormal basis for Col P . You should also note that if P is an n× n
matrix satisfying PTP = In, then the columns of P must form an orthonormal set. Matrices like
this appear quite often and are given a special name.

Definition 28.6. An orthogonal matrix is an n× n matrix P such that PTP = In.1

Activity 28.5. As a special case, we apply the result of Activity 28.4 to a 2 × 2 rotation matrix

P =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

(a) Show that the columns of P form an orthonormal set.

(b) Use the fact that P−1 = PT to find P−1. Explain how this shows that the inverse of a
rotation matrix by an angle θ is just another rotation matrix but by the angle −θ.

Orthogonal matrices are useful because they satisfy some special properties. For example, if P
is an orthogonal n× n matrix and x,y ∈ Rn, then

(Px) · (Py) = (Px)T(Py) = xTPTPy = xTy = x · y.
This property tells us that the linear transformation T defined by T (x) = Px preserves dot products
and, hence, orthogonality. In addition,

||Px||2 = Px · Px = x · x = ||x||2,
so ||Px|| = ||x||. This means that T preserves length. Such a transformation is called an isometry
and it is convenient to work with functions that don’t expand or contract things. Moreover, if x and
y are nonzero vectors, then

Px · Py
||Px|| ||Py|| =

x · y
||x|| ||y|| .

Thus T also preserves angles. Transformations defined by orthogonal matrices are very well be-
haved transformations. To summarize,

Theorem 28.7. Let P be an n× n orthogonal matrix and let x,y ∈ Rn. Then

(1) (Px) · (Py) = x · y,

(2) ||Px|| = ||x||, and

(3) Px·Py
||Px|| ||Py|| = x·y

||x|| ||y|| if x and y are nonzero.

We have discussed orthogonal and orthonormal bases for subspaces of Rn in this section. There
are several questions that follow, such as

• Can we always find an orthogonal (or orthonormal) basis for any subspace of Rn?

• Given a vector v in W , can we find an orthogonal basis of W that contain v?

• Can we extend the concept of orthogonality to other vector spaces?

We will answer these questions in subsequent sections.
1It isn’t clear why such matrices are called orthogonal since the columns are actually orthonormal, but that is the

standard terminology in mathematics.
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Examples

What follows are worked examples that use the concepts from this section.

Example 28.8. Let S = {v1,v2,v3}, where v1 = [1 1 −4]T, v2 = [2 2 1]T, and v3 = [1 −1 0]T.

(a) Show that S is an orthogonal set.

(b) Create an orthonormal set S′ = {u1,u2,u3} from the vectors in S.

(c) Just by calculating dot products, write the vector w = [2 1 − 1]T as a linear combination
of the vectors in S′.

Example Solution.

(a) Using the dot product formula, we see that v1 ·v2 = 0, v1 ·v3 = 0, and v2 ·v3 = 0. Thus,
the set S is an orthogonal set.

(b) To make an orthonormal set S′ = {u1,u2,u3} from S, we divide each vector in S by its
magnitude. This gives us

u1 =
1√
18

[1 1 − 4]T, u2 =
1

3
[2 2 1]T, and u3 =

1√
2

[1 − 1 0]T.

(c) Since S′ is an orthonormal basis for R3, we know that

w = (w · u1)u1 + (w · u2)u2 + (w · u3)u3

=
7√
18

[1 1 − 4]T +
5

3
[2 2 1]T +

1√
2

[1 − 1 0]T.

Example 28.9. Let u1 = 1√
3
[1 1 1]T, u2 = 1√

2
[1 − 1 0]T, and u3 = 1√

6
[1 1 − 2]T. Let

B = {u1,u2,u3}.

(a) Show that B is an orthonormal basis for R3.

(b) Let w = [1 2 1]T. Find [w]B.

(c) Calculate ||w|| and ||[w]B||. What do you notice?

(d) Show that the result of part (c) is true in general. That is, if S = {v1,v2, . . . ,vn} is an
orthonormal basis for Rn, and if z = c1v1 + c2v2 + · · ·+ cnvn, then

||z|| =
√
c2

1 + c2
2 + · · ·+ c2

n.

Example Solution.

(a) Using the dot product formula, we see that ui ·uj = 0 if i 6= j and that ui ·ui = 1 for each
i. Since orthogonal vectors are linearly independent, the set B is a linearly independent set
with 3 vectors in a 3-dimensional space. It follows that B is an orthonormal basis for R3.
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(b) Since B is an orthonormal basis for R3, we know that

w = (w · u1)u1 + (w · u2)u2 + (w · u3)u3.

Therefore,

[w]B = [(w · u1) (w · u2) (w · u3)]T =

[
4√
3
− 1√

2

1√
6

]T
.

(c) Using the definition of the norm of a vector we have

||w|| =
√

12 + 22 + 12 =
√

6∣∣∣∣[w]|CB
∣∣∣∣ =

√(
4√
3

)2

+

(
− 1√

2

)2

+

(
1√
6

)2

=
√

6.

So in this case we have ||w|| = ||[w]B||.

(d) Let S = {v1,v2, . . . ,vn} be an orthonormal basis for Rn, and suppose that z = c1v1 +
c2v2 + · · ·+ cnvn. Then

||z|| =
√
z · z

=
√

(c1v1 + c2v2 + · · ·+ cnvn) · (c1v1 + c2v2 + · · ·+ cnvn). (28.4)

Since S is an orthonormal basis for Rn, it follows that vi · vj = 0 if i 6= j and v·vi = 1.
Expanding the dot product in (28.4), the only terms that won’t be zero are the ones that
involve vi · vi. This leaves us with

||z|| =
√

(c1v1 + · · ·+ cnvn) · (c1v1 + · · ·+ cnvn)

=
√
c1c1(v1 · v1) + c2c2(v2 · v2) + · · ·+ cncn(vn · vn)

=
√
c2

1 + c2
2 + · · ·+ c2

n.

Summary

• A subset S of Rn is an orthogonal set if u · v = 0 for every pair of distinct vector u and v in
S.

• Any orthogonal set of nonzero vectors is linearly independent.

• A basis B for a subspace W of Rn is an orthogonal basis if B is also an orthogonal set.

• An orthogonal basis B for a subspace W of Rn is an orthonormal basis if each vector in B
has unit length.

• If B = {v1,v2, . . . ,vm} is an orthogonal basis for a subspace of Rn and x is any vector in
W , then

x =

m∑
i=1

civi

where ci = x·vi
vi·vi .

• An n×nmatrix P is an orthogonal matrix if PTP = In. Orthogonal matrices are important,
in part, because the matrix transformations they define are isometries.
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Exercises

(1) Find an orthogonal basis for the subspace W = {[x y z] : 4x− 3z = 0} of R3.

(2) Let {v1,v2, . . . ,vn} be an orthogonal basis for Rn and, for some k between 1 and n, let
W = Span{v1,v2, . . . ,vk}. Show that {vk+1,vk+2, . . . ,vn} is a basis for W⊥.

(3) Let W be a subspace of Rn for some n, and let {w1,w2, . . . ,wk} be an orthogonal basis for
W . Let x be a vector in Rn. and define w as

w =
x ·w1

w1 ·w1
w1 +

x ·w2

w2 ·w2
w2 + · · ·+ x ·wk

wk ·wk
wk.

(a) Explain why w is in W .

(b) Let z = x−w. Show that z is in W⊥.

(c) Explain why x can be written as a sum of vectors, one in W and one in W⊥.

(d) Suppose x = w + w1 and x = u + u1, where w and u are in W and w1 and u1 are
in W⊥. Show that w = u and w1 = u1, so that the representation of x as a sum of
a vector in W and a vector in W⊥ is unique.

(4) Use the result of problem (3.) above and that W ∩ W⊥ = {0} to show that dim(W ) +
dim(W⊥) = n for a subspace W of Rn. (See Exercise 12 in Section 22 for the definition of
the sum of subspaces.)

(5) Let P be an n× n matrix. We showed that if P is an orthogonal matrix, then (Px) · (Py) =
x · y for any vectors x and y in Rn. Now we ask if the converse of this statement is true.
That is, determine the validity of the following statement: if (Px) · (Py) = x · y for any
vectors x and y in Rn, then P is an orthogonal matrix? Verify your answer. (Hint: Consider
(Pei) · (Pej) where et is the tth standard basis vector for Rn.)

(6) In this exercise we completely describe the 2×2 orthogonal matrices. Let P be an orthogonal
2× 2 matrix.

(a) The columns of P must be orthonormal vectors, so if we place the initial point of
either of the columns of P at the origin, explain why its terminal point must have the
form (cos(t), sin(t)) for some real number t.

(b) As a consequence of part (a), let [cos(θ) sin(θ)]T be the first column of P . Let the
second column of P be [cos(α) sin(α)]T. Since the columns of P are orthogonal,
how must the angle α be related to θ?

(c) Use a trigonometric identity to explain why

P =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

So the only orthogonal matrices in R2 are the rotation matrices.

(7) Suppose A,B are orthogonal matrices of the same size.
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(a) Show that AB is also an orthogonal matrix.

(b) Show that AT is also an orthogonal matrix.

(c) Show that A−1 is also an orthogonal matrix.

(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False Any orthogonal subset of Rn is linearly independent.

(b) True/False Every single vector set is an orthogonal set.

(c) True/False If S is an orthogonal set in Rn with exactly n nonzero vectors, then S is
a basis for Rn.

(d) True/False Every set of three linearly independent vectors in R3 is an orthogonal set.

(e) True/False If A and B are n × n orthogonal matrices, then A + B must also be an
orthogonal matrix.

(f) True/False If the set S = {v1,v2, . . . ,vn} is an orthogonal set in Rn, then so is the
set {c1v1, c2v2, . . . , cnvn} for any scalars c1, c2, . . ., cn.

(g) True/False If B = {v1,v2, . . . ,vn} is an orthogonal basis of Rn, then so is {c1v1,
c2v2, . . ., cnvn} for any nonzero scalars c1, c2, . . ., cn.

(h) True/False If A is an n × n orthogonal matrix, the rows of A form an orthonormal
basis of Rn.

(i) True/False IfA is an orthogonal matrix, any matrix obtained by interchanging columns
of A is also an orthogonal matrix.

Project: Understanding Rotations in 3-Space

Recall that a counterclockwise rotation of 2-space around the origin by an angle θ is accomplished

by left multiplication by the matrix
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. Notice that the columns of this rotation

matrix are orthonormal, so this rotation matrix is an orthogonal matrix. As the next activity shows,
rotation matrices in 3D are also orthogonal matrices.

Project Activity 28.1. Let R be a rotation matrix in 3D. A rotation does not change lengths of
vectors, nor does it change angles between vectors. Let e1 = [1 0 0]T, e2 = [0 1 0]T, and e3 =
[0 0 1]T be the standard unit vectors in R3.

(a) Explain why the columns of R form an orthonormal set. (Hint: How are Re1, Re2, and
Re3 related to the columns of R?)

(b) Explain why R is an orthogonal matrix. What must be true about det(R)? (Hint: What is
RT and what is det(RTR)?)

By Project Activity 28.1 we know that the determinant of any rotation matrix is either 1 or
−1. Having a determinant of 1 preserves orientation, and we will identify these rotations as being
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counterclockwise, and we will identify the others with determinant of −1 as being clockwise. We
will set the convention that a rotation is always measured counterclockwise (as we did in R2), and
so every rotation matrix will have determinant 1.

Returning to the counterclockwise rotation of 2-space around the origin by an angle θ deter-

mined by left multiplication by the matrix
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, we can think of this rotation in

3-space as the rotation that keeps points in the xy plane in the xy plane, but rotates these points
counterclockwise around the z axis. In other words, in the standard xyz coordinate system, with
standard basis e1, e2, e3, our rotation matrix R has the property that Re3 = e3. Now Re3 is the
third column of R, so the third column of R is e3. Similarly, Re1 is the first column of R and Re2

is the second column of R. Since R is a counterclockwise rotation of the xy plane space around the
origin by an angle θ it follows that this rotation is given by the matrix

Re3(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (28.5)

In this notation in (28.5), the subscript gives the direction of the line fixed by the rotation and the
angle provides the counterclockwise rotation in the plane perpendicular to this vector. This vector
is called a normal vector for the rotation. Note also that the columns of Re3(θ) form an orthogonal
set such that each column vector has norm 1.

This idea describes a general rotation matrix Rn(θ) in 3D by specifying a normal vector n and
an angle θ. For example, with roll, a normal vector points from the tail of the aircraft to its tip. It
is our goal to understand how we can determine an arbitrary rotation matrix of the form Rn(θ). We
can accomplish this by using the rotation around the z axis and change of basis matrices to find
rotation matrices around other axes. Let S = {e1, e2, e3} be the standard basis for R3

Project Activity 28.2. In this activity we see how to determine the rotation matrix around the x
axis using the matrix Re3(θ) and a change of basis.

(a) Define a new ordered basis B so that our axis of rotation is the third vector. So in this case
the third vector in B will be e1. The other two vectors need to make B an orthonormal
set. So we have plenty of choices. For example, we could set B = {e2, e3, e1}. Find the
change of basis matrix P

S←B
from B to S.

(b) Use the change of basis matrix from part (a) to find the change of basis matrix P
B←S

from S
to B.

(c) To find our rotation matrix around the x axis, we can first change basis from S to B, then
perform a rotation around the new z axis using (28.5), then changing basis back from B to
S . In other words,

Re1(θ) = P
S←B

Re3(θ) P
B←S

.

Find the entries of this matrix Re1(θ).

IMPORTANT NOTE: We could have considered using B1 = {e3, e2, e1} in Project Activity 28.2
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instead of B = {e2, e3, e1}. Then we would have

P
S←B1

=

 0 0 1
0 1 0
1 0 0

 .
The difference between the two options is that, in the first we have det

(
P
S←B1

)
= −1 while

det

(
P
S←B

)
= 1 in the second. Using B1 will give clockwise rotations while B gives counterclock-

wise rotations (this is the difference between a left hand system and a right hand system). So it is
important to ensure that our change of basis matrix is one with determinant 1.

Project Activity 28.3. Repeat Project Activity 28.3 to find the 3D rotation around the y axis.

We do one more example to illustrate the process before tackling the general case.

Project Activity 28.4. In this activity we find the rotation around the axis given by the line x =
y/2 = z. This line is in the direction of the vector n = [1 2 1]T. So we start with making a unit
vector in the direction of n as the third vector in an ordered basis B. The other two vectors need to

make B an orthonormal set with det

(
P
S←B

)
= 1.

(a) Find a unit vector w in the direction of n.

(b) Show that [2 − 1 0]T is orthogonal to the vector w from part (a). Then find a unit vector v
that is in the same direction as [2 − 1 0]T.

(c) Let v be as in the previous part. Now the trick is to find a third unit vector u so that
B = {u,v,w} is an orthonormal set. This can be done with the cross product. If a =
[a1 a2 a3]T and b = [b1 b2 b3]T, then the cross product a× b of a and b is the vector

a× b = (a2b3 − a3b2) e1 − (a1b3 − a3b1) e2 + (a1b2 − a2b1) e3.

(You can check that {a × b,a,b} is an orthogonal set that gives the correct determinant
for the change of basis matrix.) Use the cross product to find a unit vector u so that B =
{u,v,w} is an orthonormal set.

(d) Find the entries of the matrix Rw(θ).

In the next activity we summarize the general process to find a 3D rotation matrix Rn(θ)
for any normal vector n. There is a GeoGebra applet at https://www.geogebra.org/m/
n9gbjhfx that allows you to visualize rotation matrices in 3D.

Project Activity 28.5. Let n = [n1 n2 n3]T be a normal vector (nonzero) for our rotation. We need
to create an orthonormal basis B = {u,v,w} where w is a unit vector in the direction of n so that
the change of basis matrix P

S←B
has determinant 1.

(a) Find, by inspection, a vector y that is orthogonal to n. (Hint: You may need to consider
some cases to ensure that v is not the zero vector.)

https://www.geogebra.org/m/n9gbjhfx
https://www.geogebra.org/m/n9gbjhfx
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(b) Once we have a normal vector n and a vector y orthogonal to n, the vector z = y×n gives
us an orthogonal set {z,y,n}. We then normalize each vector to create our orthonormal
basis B = {u,v,w}. Use this process to find the matrix that produces a 45◦ counterclock-
wise rotation around the normal vector [1 0 − 1]T.





Section 29

Inner Products

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is an inner product? What is an inner product space?

• What is an orthogonal set in an inner product space?

• What is an orthogonal basis for an inner product space?

• How do properties of orthogonality in Rn generalize to orthogonality in an
inner product space?

• How do we find the coordinate vector for a vector in an inner product space
relative to an orthogonal basis for the space?

• What is the projection of a vector orthogonal to a subspace and why are
such orthogonal projections important?

Application: Fourier Series

In calculus, a Taylor polynomial for a function f is a polynomial approximation that fits f well
around the center of the approximation. For this reason, Taylor polynomials are good local approx-
imations, but they are not in general good global approximations. In particular, if a function f has
periodic behavior it is impossible to model f well globally with polynomials that have infinite limits
at infinity. For these kinds of functions, trigonometric polynomials are better choices. Trigonomet-
ric polynomials lead us to Fourier series, and we will investigate how inner products allow us to use
trigonometric polynomials to model musical tones later in this section.

509
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Introduction

We have seen that orthogonality in Rn is an important concept. We can extend the idea of orthogo-
nality, as well as the notions of length and angles, to a variety of different vector spaces beyond just
Rn as long as we have a product like a dot product. Such products are called inner products. Inner
products lead us to many important ideas like Fourier series, wavelets, and others.

Recall that the dot product on Rn assigns to each pair of vectors u and v the scalar u · v.
Thus, the dot product defines a mapping from Rn × Rn to R. Recall also that the dot product is
commutative, distributes over vector addition, and respects scalar multiplication. Additionally, the
dot product of a vector by itself is always non-negative and is equal to 0 only when the vector is
the zero vector. There is nothing special about using Rn as the source for our vectors, and we can
extend the notion of a dot product to any vector space using these properties.

Definition 29.1. An inner product 〈 , 〉 on a vector space V is a mapping from V × V → R
satisfying

(1) 〈u,v〉 = 〈v,u〉 for all u and v in V ,

(2) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u, v, and w in V ,

(3) 〈cu,v〉 = c〈u,v〉 for all u, v in V and all scalars c,

(4) 〈u,u〉 ≥ 0 for all u in V and 〈u,u〉 = 0 if and only if u = 0.

An inner product space is a vector space on which an inner product is defined.

Preview Activity 29.1.

(1) Suppose we are given the mapping from R2 × R2 to R defined by

〈u,v〉 = u1v1 + 2u2v2

for u = [u1 u2]T and v = [v1 v2]T in R2. Check that this mapping satisfies all of the
properties of an inner product.

(2)

(3) Now consider the mapping from R2 × R2 to R defined by

〈u,v〉 = 2u1v1 − 3u2v2

for u = [u1 u2]T and v = [v1 v2]T in R2. Show that this mapping does not satisfy the fourth
property of an inner product.

(4) Finally, show that the mapping from P1 × P1 → R defined by

〈a0 + a1t, b0 + b1t〉 = a0b0 + a1b1

for a0 + a1t, b0 + b1t in P1 is an inner product on P1.
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Inner Product Spaces

As we saw in Definition 29.1, the idea of the dot product in Rn can be extended to define inner
products on different types of vector spaces. Preview Activity 29.1 provides two examples of inner
products. The examples below provide some important inner products on vector spaces. Verification
of the following as inner products is left to the exercises.

• If a1, a2, . . ., an are positive scalars, then

〈[u1 u2 · · · un]T, [v1 v2 · · · vn]T〉 = a1u1v1 + a2u2v2 + · · ·+ anunvn

defines an inner product on Rn.

• Every invertible n× n matrix A defines an inner product on Rn by

〈u,v〉 = (Au) · (Av).

• The definite integral defines an inner product:

〈f, g〉 =

∫ b

a
f(x)g(x) dx

for f, g ∈ C[a, b] (where C[a, b] is the vector space of all continuous functions on the interval
[a, b] – that C[a, b] is a vector space is left for Exercise 1.)

• We can use the trace of a matrix (see Definition 18.7) to define an inner product on matrix
spaces. If A and B are in the spaceMn×n of n× n matrices with real entries, we define the
product 〈A,B〉 as

〈A,B〉 = trace
(
ABT

)
.

This defines an inner inner product on the spaceMn×n called the Frobenius inner product.

Since we defined inner products using the properties of the dot product, we might wonder if
inner products actually satisfy all of the other properties of the dot product. For example, u · 0 = 0
for any vector u in Rn; but is it true that 〈u,0〉 = 0 in every inner product space? This property is
not part of the definition of an inner product, so we need to verify it if true.

Activity 29.1. Let u be a vector in an inner product space V .

(a) Why is 〈u,0〉 = 〈u,0〉+ 〈u,0〉?

(b) How does the equation in part (a) show that 〈u,0〉 = 0?

Activity 29.1 suggests that inner products share the defining properties of the dot product. Some
properties of the inner product are given in the following theorem (the proofs of the remaining parts
are left to the Exercises).

Theorem 29.2. Let 〈 , 〉 be an inner product on a vector space V and let u,v, and w be vectors in
V and c a scalar. Then
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(1) 〈0,v〉 = 〈v,0〉 = 0

(2) 〈u, cv〉 = c〈u,v〉

(3) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉

(4) 〈u− v,w〉 = 〈u,w〉 − 〈v,w〉

Inner products will allow us to extend ideas of orthogonality, lengths of vectors, and angles
between vectors to any inner product space.

The Length of a Vector

We can use inner products to define the length of any vector in an inner product space and the
distance between two vectors in an inner product space. The idea comes right from the relationship
between lengths of vectors in Rn and the dot product (compare to Definition 27.2).

Definition 29.3. Let v be a vector in an inner product space V . The length of v is the real number

||v|| =
√
〈v,v〉.

The length of a vector in a vector space is also called magnitude or norm. Just as in Rn we can
use the notion of length to define unit vectors in inner product spaces (compare to Definition 27.4).

Definition 29.4. A vector v in inner product space is a unit vector if ||v|| = 1.

We can find a unit vector in the direction of a nonzero vector v in an inner product space V by
dividing by the norm of the vector. That is, the vector

v

||v|| is a unit vector in the direction of the

vector v, provided that v is not zero.

We define the distance between vectors u and v in an inner product space V in the same way
we defined distance in Rn (compare to Definition 27.5).

Definition 29.5. Let u and v be vectors in an inner product space V . The distance between u and
v is the length of the difference u− v or

||u− v||.

Activity 29.2. Find the indicated length or distance in the inner product space.

(a) Find the length of the vectors u = [1 3]T and v = [3 1]T using the inner product

〈[u1 u2]T, [v1 v2]T〉 = 2u1v1 + 3u2v2

in R2.

(b) Find the distance between the polynomials p(t) = t+ 1 and q(t) = t2 − 1 in C[0, 1] using
the inner product 〈f, g〉 =

∫ 1
0 f(x)g(x) dx. (You may assume that 〈 , 〉 defines an inner

product on C[0, 1], the space of continuous functions defined on the interval [0, 1].
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Orthogonality in Inner Product Spaces

We defined orthogonality in Rn using the dot product (see Definition 27.6) and the angle between
vectors in Rn. We can extend that idea to any inner product space.

We can define the angle between two vectors in an inner product space just as we did in Rn. If
u and v are nonzero vectors in an inner product space V , then the angle θ between u and v is such
that

cos(θ) =
|〈u,v〉|
||u|| ||v|| .

and 0 ≤ θ ≤ π. This angle is well-defined due to the Cauchy-Schwarz inequality |〈u,v〉| ≤
||u|| ||v|| whose proof is left to the exercises.

With the angle between vectors in mind, we can define orthogonal vectors in an inner product
space.

Definition 29.6. Vectors u and v in an inner product space V are orthogonal if

〈u,v〉 = 0.

Note that this defines the zero vector to be orthogonal to every vector.

Activity 29.3.

(a) Find a nonzero vector in R2 orthogonal to the vector u = [3 1]T using the inner product
〈[u1 u2]T, [v1 v2]T〉 = 2u1v1 + 3u2v2.

(b) Determine if the vector v =

 0
3
−2

 is orthogonal to the vector w =

 −1
0
1

 using the

inner product 〈u,v〉 = (Au) · (Av) on R3, where A =

 0 1 1
1 1 0
0 1 0

.

(c) Find the angle between the two polynomials p(t) = 1 and q(t) = t in P1 with inner product
〈r(t), s(t)〉 =

∫ 1
0 r(t)s(t) dt.

Using orthogonality we can generalize the notions of orthogonal sets and bases, orthonormal
bases and orthogonal complements we defined in Rn to all inner product spaces in a natural way.

Orthogonal and Orthonormal Bases in Inner Product Spaces

As we did in Rn, we define an orthogonal set to be one in which all of the vectors in the set are
orthogonal to each other (compare to Definition 28.1).

Definition 29.7. A subset S of an inner product space V for which 〈u,v〉 = 0 for all u 6= v in S
is called an orthogonal set.

As in Rn, an orthogonal set of nonzero vectors is always linearly independent. The proof is
similar to that of Theorem 28.3 and is left to the Exercises.
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Theorem 29.8. Let {v1,v2, . . . ,vm} be a set of nonzero orthogonal vectors in an inner product
space V . Then the vectors v1, v2, . . ., vm are linearly independent.

A basis that is also an orthogonal set is given a special name (compare to Definition 28.2).

Definition 29.9. An orthogonal basis B for a subspace W of an inner product space V is a basis
of W that is also an orthogonal set.

Using the dot product in Rn, we saw that the representation of a vector as a linear combination
of vectors in an orthogonal or orthonormal basis was quite elegant. The same is true in any inner
product space. To see this, let B = {v1,v2, . . . ,vm} be an orthogonal basis for a subspace W of
an inner product space V and let x be any vector in W . We know that

x = x1v1 + x2v2 + · · ·+ xmvm

for some scalars x1, x2, . . ., xm. If 1 ≤ k ≤ m, then, using inner product properties and the
orthogonality of the vectors vi, we have

〈vk,x〉 = x1〈vk,v1〉+ x2〈vk,v2〉+ · · ·+ xm〈vk,vm〉 = xk〈vk,vk〉.
So

xk =
〈x,vk〉
〈vk,vk〉

.

Thus, we can calculate each weight individually with two simple inner product calculations.

In other words, the coordinate vector [x]B of x in an inner product space V with orthogonal
basis B = {v1,v2, . . . ,vm} is given by

[x]B =


〈x,v1〉
〈v1,v1〉
〈x,v2〉
〈v2,v2〉

...
〈x,vm〉
〈vm,vm〉

 .
We summarize this discussion in the next theorem (compare to Theorem 28.4).

Theorem 29.10. Let B = {v1,v2, . . . ,vm} be an orthogonal basis for a subspace of an inner
product space V . Let x be a vector in W . Then

x =
〈x,v1〉
〈v1,v1〉

v1 +
〈x,v2〉
〈v2,v2〉

v2 + · · ·+ 〈x,vm〉
〈vm,vm〉

vm. (29.1)

Activity 29.4. Let p1(t) = 1 − t, p2(t) = −2 + 4t + 4t2, and p3(t) = 7 − 41t + 40t2 be vectors
in the inner product space P2 with inner product defined by 〈p(t), q(t)〉 =

∫ 1
0 p(t)q(t) dt. Let

B = {p1(t), p2(t), p3(t)}. You may assume that B is an orthogonal basis for P2. Let z(t) = 4−2t2.
Find the weight x3 so that z(t) = x1p1(t) + x2p2(t) + x3p3(t). Use technology as appropriate to
evaluate any integrals.

The decomposition (29.1) is even simpler if 〈vk,vk〉 = 1 for each k. Recall that

〈v,v〉 = ||v||2,
so the condition 〈v,v〉 = 1 implies that the vector v has norm 1. As in Rn, an orthogonal basis
with this additional condition is given a special name (compare to Definition 28.5).
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Definition 29.11. An orthonormal basis B = {v1,v2, . . . ,vm} for a subspace W of an inner
product space V is an orthogonal basis such that ||vk|| = 1 for 1 ≤ k ≤ m.

If B = {v1,v2, . . . ,vm} is an orthonormal basis for a subspace W of an inner product space
V and x is a vector in W , then (29.1) becomes

x = 〈x,v1〉v1 + 〈x,v2〉v2 + · · ·+ 〈x,vm〉vm. (29.2)

A good question to ask here is how we can construct an orthonormal basis from an orthogonal
basis.

Activity 29.5. Consider vectors from an inner product space V .

(a) Let v1 and v2 be orthogonal vectors. Explain how we can obtain unit vectors u1 in the
direction of v1 and u2 in the direction of v2.

(b) Show that u1 and u2 from the previous part are orthogonal vectors.

(c) Use the ideas from this problem to construct an orthonormal basis for the subspace

W = Span




1
1
1
0

 ,

−1

1
−1

2

 ,


8
5

−31
−3




of the inner product space R4 with inner product

〈[u1 u2 u3 u4]T, [v1 v2 v3 v4]T〉 = 2u1v1 + 3u2v2 + u3v3 + 5u4v4.

(Note that you need to check for orthogonality.)

Orthogonal Projections onto Subspaces

Preview Activity 29.2. Let B = {w1,w2} be a basis for a subspaceW of R3, where w1 = [1 0 0]T

and w2 = [0 1 0]T. Note that B is an orthonormal basis for W using the dot product as inner
product. Let v = [1 2 1]T. Notice also that W is the xy-plane and that v is not in W as illustrated
in Figure 29.1.

(1) Find the orthogonal projection u1 of v onto W1 = Span{w1}. (Hint: See Equation (27.2).)

(2) Find the orthogonal projection u2 of v onto W2 = Span{w2}.

(3) Calculate the distance between v and u1 and v and u2. Which of u1 and u2 is closer to v?

(4) Show that the vector 1
2 [1 4 0]T is in W and find the distance between v and 1

2 [1 4 0]T.

(5) Part (4) shows that neither vector u1 = projw1
v nor u2 = projw2

v is the vector in W that
is closest to v. We should probably expect this since neither projection uses the fact that the
other vector might contribute to the closest vector. Our goal is to find the linear combination
w of w1 and w2 in W that makes ||w − v|| the smallest. Letting w = aw1 + bw2, we have
that ||w − v|| =

√
(a− 1)2 + (b− 2)2 + 1. Find the weights a and b that minimize this

norm ||w − v||.
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(6) A picture of w1, w2, W , and v is shown in Figure 29.1. Draw in u1, u2, and the vector w
you found in part (5). There is a specific relationship between this vector w and u1 and u2.
Describe this relationship algebraically and illustrate it graphically in Figure 29.1.

x

y

w1

w2

v

z

Figure 29.1: The space W and vectors w1, w2, and v

Preview Activity 29.2 gives an indication of how we can project a vector v in Rn onto a sub-
space W of Rn. If we have an orthogonal basis for W , we can just add the orthogonal projections
of v onto each basis vector. The resulting vector is called the orthogonal projection of v onto the
subspace W . As we did with orthogonal projections onto vectors, we can also define the projection
of v orthogonal to W . All of this can be done in the context of inner product spaces. Note that to
make this all work out properly, we will need an orthogonal basis for W .

Definition 29.12. LetW be a subspace of an inner product space V and let B = {w1,w2, . . . ,wm}
be an orthogonal basis for W . For a vector v in V , the orthogonal projection of v onto W is the
vector

projWv =
〈v,w1〉
〈w1,w1〉

w1 +
〈v,w2〉
〈w2,w2〉

w2 + · · ·+ 〈v,wm〉
〈wm,wm〉

wm.

The projection of v orthogonal to W is the vector

projW⊥v = v − projWv.

The notation projW⊥v indicates that we expect this vector to be orthogonal to every vector in
W .

Activity 29.6. Let W = Span{w1,w2,w3} in R4, where w1 =


1
1
1
0

, w2 =


−1

1
−1

2

, and

w3 =


8
5

−31
−3

. Recall that we showed in Activity 29.5 that this was an orthogonal basis. Find
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the projection of the vector v =


2
0
0
1

 onto W using the inner product

〈[u1 u2 u3 u4]T, [v1 v2 v3 v4]T〉 = 2u1v1 + 3u2v2 + u3v3 + 5u4v4.

Show directly that projW⊥v is orthogonal to the basis vectors for W .

Activity 29.6 indicates that the vector projW⊥v is in fact orthogonal to every vector in W . To
see that this is true in general, let B = {w1,w2, . . . ,wm} be an orthogonal basis for a subspace W
of an inner product space V and let v be a vector in V . Let

w = projWv =
〈v,w1〉
〈w1,w1〉

w1 +
〈v,w2〉
〈w2,w2〉

w2 + · · ·+ 〈v,wm〉
〈wm,wm〉

wm.

Then v−w is the projection of v orthogonal to W . We will show that v−w is orthogonal to every
basis vector for W . Since B is an orthogonal basis for W , we know that wi ·wj = 0 for i 6= j. So
if k is between 1 and m then

〈wk,v −w〉 = 〈wk,v〉 − 〈wk,w〉

= 〈wk,v〉 −
[
〈wk,

〈v,w1〉
〈w1,w1〉

w1 + · · ·+ 〈v,wm〉
〈wm,wm〉

wm〉
]

= 〈wk,v〉 −
( 〈v,wk〉
〈wk,wk〉

)
〈wk,wk〉

= 〈wk,v〉 − 〈v,wk〉
= 0.

So the vector v −w is orthogonal to every basis vector for W , and therefore to every vector in W
(see Theorem 27.10). So, in fact, projW⊥v is the projection of v onto the orthogonal complement
of W , which will be defined shortly.

Best Approximations

In many situations we are interested in approximating a vector that is not in a subspace with a vector
in the subspace (e.g., linear regression to fit a line to a set of data). In these cases we usually want
to find the vector in the subspace that “best” approximates the given vector using a specified inner
product. As we will soon see, the projection of a vector onto a subspace has the property that the
projection is the “best” approximation over all vectors in the subspace in terms of the length. In
other words, projWv is the vector in W closest to v and therefore the best approximation of v by a
vector in W . To see that this is true in any inner product space, we first need a generalization of the
Pythagorean Theorem that holds in inner product spaces.

Theorem 29.13 (Generalized Pythagorean Theorem). Let u and v be orthogonal vectors in an
inner product space V . Then

||u− v||2 = ||u||2 + ||v||2.
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Proof. Let u and v be orthogonal vectors in an inner product space V . Then

||u− v||2 = 〈u− v,u− v〉
= 〈u,u〉 − 2〈u,v〉+ 〈v,v〉
= 〈u,u〉 − 2(0) + 〈v,v〉
= ||u||2 + ||v||2.

�

Note that replacing v with −v in the theorem also shows that ||u + v||2 = ||u||2 + ||v||2 if u
and v are orthogonal.

Now we will prove that the projection of a vector u onto a subspace W of an inner product
space V is the best approximation in W to the vector u.

Theorem 29.14. Let W be a subspace of an inner product space V and let u be a vector in V .
Then

||u− projWu|| < ||u− x||
for every vector x in W different from projWu.

Proof. Let W be a subspace of an inner product space V and let u be a vector in V . Let x be a
vector in W . Now

u− x = (u− projWu) + (projWu− x).

Since both projWu and x are in W , we know that projWu − x is in W . Since projW⊥u = u −
projWu is orthogonal to every vector in W , we have that u− projWu is orthogonal to projWu−x.
We can now use the Generalized Pythagorean Theorem to conclude that

||u− x||2 = ||u− projWu||2 + ||projWu− x||2.
Since x 6= projWu, it follows that ||projWu− x||2 > 0 and

||u− x||2 > ||u− projWu||2.
Since norms are nonnegative, we can conclude that ||u− projWu|| < ||u− x|| as desired. �

Theorem 29.14 shows that the distance from projWv to v is less than the distance from any
other vector in W to v. So projWv is the best approximation to v of all the vectors in W .

In Rn using the dot product as inner product, if v = [v1 v2 v3 . . . vn]T and projWv =
[w1 w2 w3 . . . wn]T, then the square of the error in approximating v by projWv is given by

||v − projWv||2 =
n∑
i=1

(vi − wi)2.

So projWv minimizes this sum of squares over all vectors in W . As a result, we call projWv the
least squares approximation to v.

Activity 29.7. The set B = {1, t− 1
2 , t

3− 9
10 t+ 1

5} is an orthogonal basis for a subspace W of the
inner product space P3 using the inner product 〈p(t), q(t)〉 =

∫ 1
0 p(t)q(t) dt. Find the polynomial

in W that is closest to the polynomial r(t) = t2 and give a numeric estimate of how good this
approximation is.
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Orthogonal Complements

If we have a set of vectors S in an inner product space V , we can define the orthogonal complement
of S as we did in Rn (see 27.8).

Definition 29.15. The orthogonal complement of a subset S of an inner product space V is the
set

S⊥ = {v ∈ V : 〈v,u〉 = 0 for all u ∈ S}.

As we saw in Rn, to show that a vector is in the orthogonal complement of a subspace, it
is enough to show that the vector is orthogonal to every vector in a basis for that subspace (see
Theorem 27.10). The proof is left for the exercises.

Theorem 29.16. Let B = {w1,w2, . . . ,wm} be a basis for a subspace W of an inner product
space V . A vector v in V is orthogonal to every vector in W if and only if v is orthogonal to every
vector in B.

Activity 29.8. Consider P2 with the inner product 〈p(t), q(t)〉 =
∫ 1

0 p(t)q(t) dt.

(a) Find 〈p(t), 1− t〉 where p(t) = a+ bt+ ct2 is in P2.

(b) Describe as best you can the orthogonal complement of Span{1 − t} in P2. Is p(t) =
1− 2t− 2t2 in this orthogonal complement? Is p(t) = 1 + t− t2?

To conclude this section we will investigate an important connection between a subspace W
and W⊥.

Activity 29.9. Let V be an inner product space of dimension n, and let W be a subspace of V . Let
x be any vector in V . We will demonstrate that x can be written uniquely as a sum of a vector in
W and a vector in W⊥.

(a) Explain why projWx is in W .

(b) Explain why projW⊥x is in W⊥.

(c) Explain why x can be written as a sum of vectors, one in W and one in W⊥.

(d) Now we demonstrate the uniqueness of this decomposition. Suppose x = w + w1 and
x = u + u1, where w and u are in W and w1 and u1 are in W⊥. Show that w = u and
w1 = u1, so that the representation of x as a sum of a vector in W and a vector in W⊥ is
unique. (Hint: What is W ∩W⊥?)

We summarize the result of Activity 29.9.

Theorem 29.17. Let V be a finite dimensional inner product space, and let W be a subspace of V .
Any vector in V can be written in a unique way as a sum of a vector in W and a vector in W⊥.

Theorem 29.17 is useful in many applications. For example, to compress an image using
wavelets, we store the image as a collection of data, then rewrite the data using a succession of
subspaces and their orthogonal complements. This new representation allows us to visualize the
data in a way that compression is possible.
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Examples

What follows are worked examples that use the concepts from this section.

Example 29.18. Let V = P3 be the inner product space with inner product

〈p(t), q(t)〉 =

∫ 1

−1
p(t)q(t) dt.

Let p1(t) = 1 + t, p2(t) = 1− 3t, p3(t) = 3t− 5t3, and p4(t) = 1− 3t2.

(a) Show that the set B = {p1(t), p2(t), p3(t), p4(t)} is an orthogonal basis for V .

(b) Use 29.10 to write the polynomial q(t) = t2+t3 as a linear combination of the basis vectors
in B.

Example Solution. All calculations are done by hand or with a computer algebra system, so we
leave those details to the reader.

(a) If we show that the set B is an orthogonal set, then Theorem 29.8 shows that B is linearly
independent. Since dim(P3) = 4, the linearly independent set B that contains four vectors
must be a basis for P3.

To determine if the set B is an orthogonal set, we must calculate the inner products of pairs
of distinct vectors in B. Since 〈1+t, 1−3t〉 = 0, 〈1+t, 3t−5t3〉 = 0, 〈1+t, 1−3t2〉 = 0,
〈1 − 3t, 3t − 5t3〉 = 0, 〈1 − 3t, 1 − 3t2〉 = 0, and 〈3t − 5t3, 1 − 3t2〉 = 0, we conclude
that B is an orthogonal basis for P3.

(b) We can write the polynomial q(t) = 1 + t + t2 + t3 as a linear combination of the basis
vectors in B as follows:

q(t) =
〈q(t), p1(t)〉
〈p1(t), p1(t)〉p1(t) +

〈q(t), p2(t)〉
〈p2(t), p2(t)〉p2(t)

+
〈q(t), p3(t)〉
〈p3(t), p3(t)〉p3(t) +

〈q(t), p4(t)〉
〈p4(t), p4(t)〉p4(t).

Now
〈q(t), p1(t)〉 = 16

15 , 〈q(t), p2(t)〉 = − 8
15 , 〈q(t), p3(t)〉 = − 8

35 ,
〈q(t), p4(t)〉 = − 8

15 , 〈p1(t), p1(t)〉 = 8
3 , 〈p2(t), p2(t)〉 = 8,

〈p3(t), p3(t)〉 = 8
7 , 〈p4(t), p4(t)〉 = 8

5

so

q(t) =
16
15
8
3

p1(t)−
8
15

8
p2(t)−

8
35
8
7

p3(t)−
8
15
8
5

p4(t)

2

5
p1(t)− 1

15
p2(t)− 1

5
p3(t)− 1

3
p4(t).

Example 29.19. Let V be the inner product space R4 with inner product defined by

〈[u1 u2 u3 u4]T, [v1 v2 v3 v4]T〉 = u1v1 + 2u2v2 + 3u3v3 + 4u4v4.
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(a) Let W be the plane spanned by [−1 1 0 1]T and [6 1 7 1]T in V . Find the vector in W that
is closest to the vector [2 0 − 1 3]T. Exactly how close is your best approximation to the
vector [2 0 − 1 3]T?

(b) Express the vector [2 0 − 1 3]T as the sum of a vector in W and a vector orthogonal to W .

Example Solution.

(a) The vector we’re looking for is the projection of [2 0 − 1 3]T onto the plane. A spanning
set for the plane is B = {[−1 1 0 1]T, [6 1 7 1]T}. Neither vector in B is a scalar multiple
of the other, so B is a basis for the plane. Since

〈[−1 1 0 1]T, [6 1 7 1]T〉 = −6 + 2 + 0 + 4 = 0,

the set B is an orthogonal basis for the plane.

The projection of the vector v = [2 0 −1 3]T onto the plane spanned by w1 = [−1 1 0 1]T

and w2 = [6 1 7 1]T is given by

〈v,w1〉
〈w1,w1〉

w1 +
〈v,w2〉
〈w2,w2〉

w2 =
10

7
[−1 1 0 1]T +

3

189
[6 1 7 1]T

=
1

189
[−252 273 21 273]T

=

[
−4

3

13

9

1

9

13

9

]
.

To measure how close close
[
−4

3
13
9

1
9

13
9

]
is to [2 0 − 1 3]T, we calculate∣∣∣∣∣∣∣∣[−4

3

13

9

1

9

13

9

]
− [2 0 − 1 3]T

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣[−10

3

13

9

10

9
− 14

9

]∣∣∣∣∣∣∣∣
=

√
100

9
+

338

81
+

300

81
+

784

81

=
1

9

√
2322

≈ 5.35.

(b) If v = [2 0 − 1 3]T, then projWv is in W and

projW⊥v = v − projWv =

[
−10

3

13

9

10

9
− 14

9

]
is in W⊥, and v = projWv + projW⊥v.

Summary

• An inner product 〈 , 〉 on a vector space V is a mapping from V × V → R satisfying

(1) 〈u,v〉 = 〈v,u〉 for all u and v in V ,
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(2) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u, v, and w in V ,

(3) 〈cu,v〉 = c〈u,v〉 for all u, v in V and c ∈ R,

(4) 〈u,u〉 ≥ 0 for all u in V and 〈u,u〉 = 0 if and only if u = 0.

• An inner product space is a pair V , 〈 , 〉 where V is a vector space and 〈 , 〉 is an inner
product on V .

• The length of a vector v in an inner product space V is defined to be the real number ||v|| =√
〈v,v〉.

• The distance between two vectors u and v in an inner product space V is the scalar ||u−v||.

• The angle θ between two vectors u and v is the angle which satisfies 0 ≤ θ ≤ π and

cos(θ) =
〈u,v〉
||u||||v|| .

• Two vectors u and v in an inner product space V are orthogonal if 〈u,v〉 = 0.

• A subset S of an inner product space is an orthogonal set if 〈u,v〉 = 0 for all u 6= v in S.

• A basis for a subspace of an inner product space is an orthogonal basis if the basis is also an
orthogonal set.

• Let B = {v1,v2, . . . ,vm} be an orthogonal basis for a subspace of an inner product space
V . Let x be a vector in W . Then

x =
m∑
i=1

civi,

where

ci =
〈x,vi〉
〈vi,vi〉

for each i.

• An orthogonal basis B = {v1,v2, . . . ,vm} for a subspace W of an inner product space V is
an orthonormal basis if ||vk|| = 1 for each k from 1 to m.

• If B = {w1,w2, . . . ,wm} is an orthogonal basis for V and x ∈ V , then

[x]B =


〈x,w1〉
〈w1,w1〉
〈x,w2〉
〈w2,w2〉

...
〈x,wm〉
〈wm,wm〉

 .

• The projection of the vector v in an inner product space V onto a subspace W of V is the
vector

projWv =
〈v,w1〉
〈w1,w1〉

w1 +
〈v,w2〉
〈w2,w2〉

w2 + · · ·+ 〈v,wm〉
〈wm,wm〉

wm,

where {w1,w2, . . . ,wm} is an orthogonal basis of W . Projections are important in that
projWv is the best approximation of the vector v by a vector in W in the least squares sense.
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• With W as in (a), the projection of v orthogonal to W is the vector

projW⊥v = v − projWv.

The norm of projW⊥v provides a measure of how well projWv approximates the vector v.

• The orthogonal complement of a subset S of an inner product space V is the set

S⊥ = {v ∈ V : 〈v,u〉 = 0 for all u ∈ S}.

Exercises

(1) Let C[a, b] be the set of all continuous real valued functions on the interval [a, b]. If f is in
C[a, b], we can extend f to a continuous function from R to R by letting F be the function
defined by

F (x) =


f(a) if x < a

f(x) if a ≤ x ≤ b
f(b) if b < x

.

In this way we can view C[a, b] as a subset of F , the vector space of all functions from R to
R. Verify that C[a, b] is a vector space.

(2) Use the definition of an inner product to determine which of the following defines an inner
product on the indicated space. Verify your answers.

(a) 〈u,v〉 = u1v1 − u2v1 − u1v2 + 3u2v2 for u = [u1 u2]T and v = [v1 v2]T in R2

(b) 〈f, g〉 =
∫ b
a f(x)g(x) dx for f, g ∈ C[a, b] (where C[a, b] is the vector space of all

continuous functions on the interval [a, b])

(c) 〈f, g〉 = f ′(0)g′(0) for f, g ∈ D(−1, 1) (where D(a, b) is the vector space of all
differentiable functions on the interval (a, b))

(d) 〈u,v〉 = (Au) · (Av) for u,v ∈ Rn and A an invertible n× n matrix

(3) We can sometimes visualize an inner product in R2 or R3 (or other spaces) by describing the
unit circle S1, where

S1 = {v ∈ V : ||v|| = 1}
in that inner product space. For example, in the inner product space R2 with the dot product
as inner product, the unit circle is just our standard unit circle. Inner products, however, can
distort this familiar picture of the unit circle. Describe the points on the unit circle S1 in
the inner product space R2 with inner product 〈[u1 u2], [v1 v2]〉 = 2u1v1 + 3u2v2 using the
following steps.

(a) Let x = [x y] ∈ R2. Set up an equation in x and y that is equivalent to the vector
equation ||x|| = 1.

(b) Describe the graph of the equation you found in R2. It should have a familiar form.
Draw a picture to illustrate. What do you think of calling this graph a “circle”?
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(4) Define 〈 , 〉 on R2 by 〈[u1 u2]T, [v1 v2]T〉 = 4u1v1 + 2u2v2.

(a) Show that 〈 , 〉 is an inner product.

(b) The inner product 〈 , 〉 can be represented as a matrix transformation 〈u,v〉 =
uTAv, where u and v are written as column vectors. Find a matrix A that repre-
sents this inner product.

(5) This exercise is a generalization of Exercise 4. Define 〈 , 〉 on Rn by

〈[u1 u2 · · · un]T, [v1 v2 · · · vn]T〉 = a1u1v1 + a2u2v2 + · · ·+ anunvn

for some positive scalars a1, a2, . . ., an.

(a) Show that 〈 , 〉 is an inner product.

(b) The inner product 〈 , 〉 can be represented as a matrix transformation 〈u,v〉 =
uTAv, where u and v are written as column vectors. Find a matrix A that repre-
sents this inner product.

(6) Is the sum of two inner products on an inner product space V an inner product on V ? If yes,
prove it. If no, provide a counterexample. (By the sum of inner products we mean a function
〈 , 〉 satisfying

〈u,v〉 = 〈u,v〉1 + 〈u,v〉2
for all u and v in V , where 〈 , 〉1 and 〈 , 〉2 are inner products on V .)

(7) (a) Does 〈u,v〉 = uTAv define an inner product on Rn for every n × n matrix A?
Verify your answer.

(b) If your answer to part (a) is no, are there any types of matrices for which 〈u,v〉 =
uTAv defines an inner product? (Hint: See Exercises 4 and 5..)

(8) The trace of an n× n matrix A = [aij ] has some useful properties.

(a) Show that trace(A+B) = trace(A) + trace(B) for any n× n matrices A and B.

(b) Show that trace(cA) = ctrace(A) for any n× n matrix A and any scalar c.

(c) Show that trace
(
AT
)

= trace(A) for any n× n matrix.

(9) Let V be an inner product space and u,v be two vectors in V .

(a) Check that if v = 0, the Cauchy-Schwarz inequality

|〈u,v〉| ≤ ||u||||v||

holds.

(b) Assume v 6= 0. Let λ = 〈u,v〉/||v||2 and w = u−λv. Use the fact that ||w||2 ≥ 0
to conclude the Cauchy-Schwarz inequality in this case.

(10) The Frobenius inner product is defined as

〈A,B〉 = trace
(
ABT

)
.

for n× n matrices A and B. Verify that 〈A,B〉 defines an inner product onMn×n.
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(11) Let A = [aij ] and B = [bij ] be two n× n matrices.

(a) Show that if n = 2, then the Frobenius inner product (see Exercise 10) of A and B is

〈A,B〉 = a11b11 + a12b12 + a21b21 + a22b22.

(b) Extend part (a) to the general case. That is, show that for an arbitrary n,

〈A,B〉 =
n∑
i=1

n∑
j=1

aijbij .

(c) Compare the Frobenius inner product to the scalar product of two vectors.

(12) Let B = {[1 1 1]T, [1 − 1 0]T} and let W = Span B in R3.

(a) Show that B is an orthogonal basis for W , using the dot product as inner product.

(b) Explain why the vector v = [0 2 2]T is not in W .

(c) Find the vector in W that is closest to v. How close is this vector to v?

(13) Let R3 be the inner product space with inner product

〈[u1 u2 u3]T, [v1 v2 v3]T〉 = u1v1 + 2u2v2 + u3v3.

Let B = {[1 1 1]T, [1 − 1 1]T} and let W = Span B in R3.

(a) Show that B is an orthogonal basis for W , using the given inner product.

(b) Explain why the vector v = [0 2 2]T is not in W .

(c) Find the vector in W that is closest to v. How close is this vector to v?

(14) Let P2 be the inner product space with inner product

〈p(t), q(t)〉 =

∫ 1

0
p(t)q(t) dt.

Let B = {1, 1− 2t} and let W = Span B in P2.

(a) Show that B is an orthogonal basis for W , using the given inner product.

(b) Explain why the polynomial q(t) = t2 is not in W .

(c) Find the vector in W that is closest to q(t). How close is this vector to q(t)?

(15) Prove the remaining properties of Theorem 29.2. That is, if 〈 , 〉 is an inner product on a
vector space V and u,v, and w are vectors in V and c is any scalar, then

(a) 〈0,v〉 = 〈v,0〉 = 0

(b) 〈u, cv〉 = c〈u,v〉
(c) 〈v + w,u〉 = 〈v,u〉+ 〈w,u〉
(d) 〈u− v,w〉 = 〈w,u− v〉 = 〈u,w〉 − 〈v,w〉 = 〈w,u〉 − 〈w,v〉
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(16) Prove Theorem 29.16. (Hint: Refer to Theorem 27.10.)

(17) Prove Theorem 29.8. (Hint: Compare to Theorem 28.3.)

(18) Let V be a vector space with basis {v1,v2, . . . ,vn}. Define 〈 , 〉 as follows:

〈u,w〉 =
n∑
i=1

uiwi

if u =
∑n

i=1 uivi and w =
∑n

i=1wivi in V . (Since the representation of a vector as a linear
combination of basis elements is unique, this mapping is well-defined.) Show that 〈 , 〉 is an
inner product on V and conclude that any finite dimensional vector space can be made into
an inner product space.

(19) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The only inner product on Rn is the dot product.

(b) True/False IfW is a subspace of an inner product space and a vector v is orthogonal
to every vector in a basis of W , then v is in W⊥.

(c) True/False If {v1,v2,v3} is an orthogonal basis for R3, then so is {cv1,v2,v3} for
any nonzero scalar c.

(d) True/False An inner product 〈u,v〉 in an inner product space V results in another
vector in V .

(e) True/False An inner product in an inner product space V is a function that maps
pairs of vectors in V to the set of non-negative real numbers.

(f) True/False The vector space of all n×n matrices can be made into an inner product
space.

(g) True/False Any non-zero multiple of an inner product on space V is also an inner
product on V .

(h) True/False Every set of k non-zero orthogonal vectors in a vector space V of dimen-
sion k is a basis for V .

(i) True/False For any finite-dimensional inner product space V and a subspace W of
V , W is a subspace of (W⊥)⊥.

(j) True/False If W is a subspace of an inner product space, then W ∩W⊥ = {0}.

Project: Fourier Series and Musical Tones

Joseph Fourier first studied trigonometric polynomials to understand the flow of heat in metallic
plates and rods. The resulting series, called Fourier series, now have applications in a variety
of areas including electrical engineering, vibration analysis, acoustics, optics, signal processing,
image processing, geology, quantum mechanics, and many more. For our purposes, we will focus
on synthesized music.
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Pure musical tones are periodic sine waves. Simple electronic circuits can be designed to gen-
erate alternating current. Alternating current is current that is periodic, and hence is described by
a combination of sin(kx) and cos(kx) for integer values of k. To synthesize an instrument like
a violin, we can project the instrument’s tones onto trigonometric polynomials – and then we can
produce them electronically. As we will see, these projections are least squares approximations
onto certain vector spaces. The website http://www.falstad.com/fourier/ provides a
tool for hearing sounds digitally created by certain functions. For example, you can listen to the
sound generated by a sawtooth function f of the form

f(x) =


x if − π < x ≤ π,
f(x− 2π), if π < x,

f(x+ 2π), if x ≤ −π.

Try out some of the tones on this website (click on the Sound button to hear the tones). You can
also alter the tones by clicking on any one of the white dots and moving it up or down. and play
with the buttons. We will learn much about what this website does in this project.

Pure tones are periodic and so are modeled by trigonometric functions. In general, trigonometric
polynomials can be used to produce good approximations to periodic phenomena. A trigonometric
polynomial is an object of the form

c0 + c1 cos(x) + d1 sin(x) + c2 cos(2x) + d2 sin(2x) + · · ·
+ cn cos(nx) + dn sin(nx) + · · · ,

where the ci and dj are real constants. With judicious choices of these constants, we can approx-
imate periodic and other behavior with trigonometric polynomials. The first step for us will be to
understand the relationships between the summands of these trigonometric polynomials in the inner
product space C[−π, π]1 of continuous functions from [π, π] to R with the inner product

〈f, g〉 =
1

π

∫ π

−π
f(x)g(x) dx. (29.3)

Our first order of business is to verify that (29.3) is, in fact, an inner product.

Project Activity 29.1. Let C[a, b] be the set of continuous real-valued functions on the interval
[a, b]. In Exercise 1. in Section 29 we are asked to show that C[a, b] is a vector space, while
Exercise 2 in Section 29 asks us to show that 〈f, g〉 =

∫ b
a f(x)g(x) dx defines an inner product on

C[a, b]. However, 29.3 is slightly different than this inner product. Show that any positive scalar
multiple of an inner product is an inner product, and conclude that (29.3) defines an inner product
on C[−π, π]. (We will see why we introduce the factor of 1

π later.)

Now we return to our inner product space C[−π, π] with inner product (29.3). Given a func-
tion g in C[−π, π], we approximate g using only a finite number of the terms in a trigonometric
polynomial. Let Wn be the subspace of C[−π, π] spanned by the functions

1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx).

One thing we need to know is the dimension of Wn.
1With suitable adjustments, we can work over any interval that is convenient, but for the sake of simplicity in this

project, we will restrict ourselves to the interval [−π, π].

http://www.falstad.com/fourier/
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Project Activity 29.2. We start with the initial case of W1.

(a) Show directly that the functions 1, cos(x), and sin(x) are orthogonal.

(b) What is the dimension of W1? Explain.

Now we need to see if what happened in Project Activity 29.2 happens in general. A few tables
of integrals and some basic facts from trigonometry can help.

Project Activity 29.3. A table of integrals shows the following for k 6= m (up to a constant):∫
cos(mx) cos(kx) dx =

1

2

(
sin((k −m)x)

k −m +
sin((k +m)x)

k +m

)
(29.4)∫

sin(mx) sin(kx) dx =
1

2

(
sin((k −m)x)

k −m − sin((k +m)x)

k +m

)
(29.5)∫

cos(mx) sin(kx) dx =
1

2

(
cos((m− k)x)

m− k − sin((m+ k)x)

m+ k

)
(29.6)∫

cos(mx) sin(mx) dx = − 1

2m
cos2(mx) (29.7)

(a) Use (29.4) to show that cos(mx) and cos(kx) are orthogonal in C[−π, π] if k 6= m.

(b) Use (29.5) to show that sin(mx) and sin(kx) are orthogonal in C[−π, π] if k 6= m.

(c) Use (29.6) to show that cos(mx) and sin(kx) are orthogonal in C[−π, π] if k 6= m.

(d) Use (29.7) to show that cos(mx) and sin(mx) are orthogonal in C[−π, π].

(e) What is dim(Wn)? Explain.

Once we have an orthogonal basis for Wn, we might want to create an orthonormal basis for
Wn. Throughout the remainder of this project, unless otherwise specified, you should use a table of
integrals or any appropriate technological tool to find integrals for any functions you need.

Project Activity 29.4. Show that the set

Bn =

{
1√
2
, cos(x), cos(2x), . . . , cos(nx), sin(x), sin(2x), . . . , sin(nx)

}
is an orthonormal basis for Wn. Use the fact that the norm of a vector v in an inner product space
with inner product 〈 , 〉 is defined to be

√
〈v,v〉. (This is where the factor of 1

π will be helpful.)

Now we need to recall how to find the best approximation to a vector by a vector in a subspace,
and apply that idea to approximate an arbitrary function g with a trigonometric polynomial in Wn.
Recall that the best approximation of a function g in C[−π, π] is the projection of g onto Wn. If we
have an orthonormal basis {h0, h1, h2, . . . , h2n} of Wn, then the projection of g onto Wn is

projWn
g = 〈g, h0〉h0 + 〈g, h1〉h1 + 〈g, h2〉h2 + . . .+ 〈g, h2n〉h2n.

With this idea, we can find formulas for the coefficients when we project an arbitrary function onto
Wn.
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Project Activity 29.5. If g is an arbitrary function in C[−π, π], we will write the projection of g
onto Wn as

a0

(
1√
2

)
+ a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + · · ·

+ an cos(nx) + bn sin(nx).

The ai and bj are the Fourier coefficients for f . The expression an cos(nx) + bn sin(nx) is called
the nth harmonic of g. The first harmonic is called the fundamental frequency. The human ear
cannot hear tones whose frequencies exceed 20000 Hz, so we only hear finitely many harmonics
(the projections onto Wn for some n).

(a) Show that

a0 =
1√
2π

∫ π

−π
g(x) dx. (29.8)

Explain why a0√
2

gives the average value of g on [−π, π]. You may want to go back and
review average value from calculus. This is saying that the best constant approximation of
g on [−π, π] is its average value, which makes sense.

(b) Show that for m ≥ 1,

am =
1

π

∫ π

−π
g(x) cos(mx) dx. (29.9)

(c) Show that for m ≥ 1,

bm =
1

π

∫ π

−π
g(x) sin(mx) dx. (29.10)

Let us return to the sawtooth function defined earlier and find its Fourier coefficients.

Project Activity 29.6. Let f be defined by f(x) = x on [−π, π] and repeated periodically after-
wards with period 2π. Let pn be the projection of f onto Wn.

(a) Evaluate the integrals to find the projection p1.

(b) Use appropriate technology to find the projections p10, p20, and p30 for the sawtooth func-
tion f . Draw pictures of these approximations against f and explain what you see.

(c) Now we find formulas for all the Fourier coefficients. Use the fact that x cos(mx) is an odd
function to explain why am = 0 for each m. Then show that bm = (−1)m+1 2

m for each m.

(d) Go back to the website http://www.falstad.com/fourier/ and replay the saw-
tooth tone. Explain what the white buttons represent.

Project Activity 29.7. This activity is not connected to the idea of musical tones, so can be safely
ignored if so desired. We conclude with a derivation of a very fascinating formula that you may

have seen for
∞∑
n=1

1

n2
. To do so, we need to analyze the error in approximating a function g with a

function in Wn.

http://www.falstad.com/fourier/
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Let pn be the projection of g onto Wn. Notice that pn is also in Wn+1. It is beyond the scope of
this project, but in “nice” situations we have ||g − pn|| → 0 as n→∞. Now g − pn is orthogonal
to pn, so the Pythagorean theorem shows that

||g − pn||2 + ||pn||2 = ||g||2.

Since ||g − pn||2 → 0 as n→∞, we can conclude that

lim
n→∞

||pn||2 = ||g||2. (29.11)

We use these ideas to derive a formula for
∞∑
n=1

1

n2
.

(a) Use the fact that Bn is an orthonormal basis to show that

||pn||2 = a2
0 + a2

1 + b21 + · · ·+ a2
n + b2n.

Conclude that
||g||2 = a2

0 + a2
1 + b21 + · · ·+ a2

n + b2n + · · · . (29.12)

(b) For the remainder of this activity, let f be the sawtooth function defined by f(x) = x on
[−π, π] and repeated periodically afterwards. We determined the Fourier coefficients ai
and bj of this function in Project Activity 29.6.

i. Show that

a2
0 + a2

1 + b21 + · · ·+ a2
n + b2n + · · · = 4

∞∑
n=1

1

n2
.

ii. Calculate ||f ||2 using the inner product and compare to (29.12) to find a surprising
formula for

∑∞
n=1

1
n2 .
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The Gram-Schmidt Process

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the Gram-Schmidt process and why is it useful?

• What is the QR-factorization of a matrix and why is it useful?

Application: Gaussian Quadrature

Since integration of functions is difficult, approximation techniques for definite integrals are very
important. In calculus we are introduced to various methods, e.g., the midpoint, trapezoid, and
Simpson’s rule, for approximating definite integrals. These methods divide the interval of inte-
gration into subintervals and then use values of the integrand at the endpoints to approximate the
integral. These are useful methods when approximating integrals from tabulated data, but there are
better methods for other types of integrands. If we make judicious choices in the points we use
to evaluate the integrand, we can obtain more accurate results with less work. One such method
is Gaussian quadrature (which, for example, is widely used in solving problems of radiation heat
transfer in direct integration of the equation of transfer of radiation over space), which we explore
later in this section. This method utilizes the Gram-Schmidt process to produce orthogonal polyno-
mials.

Introduction

We have seen that orthogonal bases make computations very convenient. So one question we might
want to address is how we can create an orthogonal basis from any basis. We have already done
this in the case that W = Span{w1} is the span of a single vector in Rn – we can project the vector
v in the direction of w1. Our goal is to generalize this to project a vector v onto an entire subspace

531
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in a useful way, and then use that projection to create a vector orthogonal to the subspace.

The Gram-Schmidt Process

To make best approximations by orthogonal projections onto subspaces we need to be able to find
orthogonal bases for vector spaces. We now address the question of how to do that.

Preview Activity 30.1. Let W = Span{v1,v2,v3} in R4 (using the dot product), where v1 =
[1 1 1 1]T, v2 = [−1 4 4 − 1]T, and v3 = [2 − 1 1 0]T}. Our goal in this preview activity
is to begin to understand how we can find an orthogonal set B = {w1,w2,w3} in R4 so that
Span B = W . To begin, we could start by letting w1 = v1.

(1) Now we want to find a vector in W that is orthogonal to w1. Let W1 = Span{w1}. Explain
why w2 = proj⊥W1

v2 is in W and is orthogonal to w1. Then calculate the vector w2.

(2) Next we need to find a third vector w3 that is in W and is orthogonal to both w1 and w2. Let
W2 = Span{w1,w2}. Explain why w3 = proj⊥W2

v3 is in W and is orthogonal to both w1

and w2. Then calculate the vector w3.

(3) Explain why the set {w1,w2,w3} is an orthogonal basis for W .

Preview Activity 30.1 shows the first steps of the Gram-Schmidt process to construct an orthog-
onal basis from any basis of a subspace in Rn. Of course, there is nothing special about using the
dot product in Preview Activity 30.1 – the same argument works in any inner product space. To
understand why the process works in general, let {v1,v2, . . . ,vm} be a basis for a subspace W of
an inner product space V . Let w1 = v1 and let W1 = Span{w1}. Since w1 = v1 we have that
W1 = Span{w1} = Span{v1}. Now consider the subspace

W2 = Span{v1,v2}

of W . The vectors v1 = w1 and v2 are possibly not orthogonal, but we know the orthogonal
projection of v2 onto W⊥1 is orthogonal to w1. Let

w2 = proj⊥W1
v2 = v2 −

〈v2,w1〉
〈w1,w1〉

w1.

Then {w1,w2} is an orthogonal set. Note that w1 = v1 6= 0, and the fact that v2 /∈W1 implies that
w2 6= 0. So the set {w1,w2} is linearly independent, being a set of non-zero orthogonal vectors.
Now the question is whether Span{w1,w2} = Span{v1,v2}. Note that w2 is a linear combination
of v1 and v2, so w2 is in Span{v1,v2}. Since Span{w1,w2} is a 2-dimensional subspace of the
2-dimensional space W2, it must be true that Span{w1,w2} = W2 = Span{v1,v2}.

Now we take the next step, adding v3 into the mix. Let

W3 = Span{v1,v2,v3} = Span{w1,w2,v3}.

The vector

w3 = proj⊥W2
v3 = v3 −

〈v3,w1〉
〈w1,w1〉

w1 −
〈v3,w2〉
〈w2,w2〉

w2
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is orthogonal to both w1 and w2 and, by construction, w3 is a linear combination of v1, v2, and
v3. So w3 is in W3. The fact that v3 /∈ W2 implies that w3 6= 0 and {w1,w2,w3} is a linearly
independent set. Since Span{w1,w2,w3} is a 3-dimensional subspace of the 3-dimensional space
W3, we conclude that Span{w1,w2,w3} equals Span{v1,v2,v3}.

We continue inductively in this same manner. If we have constructed a set {w1, w2, w3, . . .,
wk−1} of k − 1 orthogonal vectors such that

Span{w1,w2,w3, . . . ,wk−1} = Span{v1,v2,v3, . . . ,vk−1},

then we let

wk = proj⊥Wk−1
vk

= vk −
〈vk,w1〉
〈w1,w1〉

w1 −
〈vk,w2〉
〈w2,w2〉

w2 − · · · −
〈vk,wk−1〉
〈wk−1,wk−1〉

wk−1,

where
Wk−1 = Span{w1,w2,w3, . . . ,wk−1}.

We know that wk is orthogonal to w1, w2, . . ., wk−1. Since w1, w2, . . ., wk−1, and vk are all
in Wk = Span{v1,v2, . . . ,vk} we see that wk is also in Wk. Since vk /∈ Wk−1 implies that
wk 6= 0 and {w1,w2, . . . ,wk} is a linearly independent set. Then Span{w1,w2,w3, . . . ,wk} is
a k-dimensional subspace of the k-dimensional space Wk, so it follows that

Span{w1,w2,w3, . . . ,wk} = Wk = Span{v1,v2,v3, . . . ,vk}.

This process will end when we have an orthogonal set {w1, w2, w3, . . ., wm} with Span{w1, w2,
w3, . . ., wm} = W .

We summarize the process in the following theorem.

Theorem 30.1 (The Gram-Schmidt Process). Let {v1,v2, . . . ,vm} be a basis for a subspace W
of an inner product space V . The set {w1,w2,w3, . . . ,wm} defined by

• w1 = v1,

• w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1,

• w3 = v3 −
〈v3,w1〉
〈w1,w1〉

w1 −
〈v3,w2〉
〈w2,w2〉

w2,

...

• wm = vm −
〈vm,w1〉
〈w1,w1〉

w1 −
〈vm,w2〉
〈w2,w2〉

w2 − · · · −
〈vm,wm−1〉
〈wm−1,wm−1〉

wm−1.

is an orthogonal basis for W . Moreover,

Span{w1,w2,w3, . . . ,wk} = Span{v1,v2,v3, . . . ,vk}

for 1 ≤ k ≤ m.
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The Gram-Schmidt process builds an orthogonal basis {w1,w2,w3, . . . ,wm} for us from a
given basis. To make an orthonormal basis {u1,u2,u3, . . . ,um}, all we need do is normalize each
basis vector: that is, for each i, we let

ui =
wi

||wi||
.

Activity 30.1. Use the Gram-Schmidt process to find an orthogonal basis for W .

(a) W = Span


 1

1
0

 ,
 1

1
1

 using the dot product as the inner product

(b) W = Span{1, t, t2} in P2 using the inner product

〈p(t), q(t)〉 =

∫ 1

0
p(t)q(t) dt

The QR Factorization of a Matrix

There are several different factorizations, or decompositions, of matrices where each matrix is writ-
ten as a product of certain types of matrices: LU decomposition using lower and upper triangular
matrices (see Section 21), EVD (EigenVector Decomposition) decomposition using eigenvectors
and diagonal matrices (see Section 18, and in this section we will introduce the QR decomposition
using orthogonal matrix and upper triangular matrices. The QR factorization has applications to
solving least squares problems and approximating eigenvalues of matrices.

Activity 30.2. Let A =

 1 0
0 0
0 2

.

(a) Find an orthonormal basis for Col A. Let B be the basis formed by these vectors. Let Q be
the matrix whose columns are these orthonormal basis vectors.

(b) Write the columns ofA as linear combinations of the columns ofQ. That is, ifA = [a1 a2],
find [a1]B and [a2]B. Let R = [[a1]B [a2]B].

(c) Find the product QR and compare to Q.

Activity 30.2 contains the main ideas to find the QR factorization of a matrix. Let

A = [a1 | a2 | a3 | · · · | an]

be an m × n matrix with rank1 n. We can use the Gram-Schmidt process to find an orthonormal
basis {u1,u2, . . . ,un} for Col A. Recall also that Span{u1,u2, . . . ,uk} = Span{a1,a2, . . . ,ak}
for any k between 1 and n. Let

Q = [u1 u2 u3 · · · un].

If k is between 1 and n, then ak is in Span{u1,u2, . . . ,uk} and

ak = rk1u1 + rk2u2 + · · ·+ rkkuk
1Recall that the rank of a matrix A is the dimension of the column space of A.
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for some scalars rk1, rk2, . . ., rkk. Then

Q



rk1

rk2
...
rkk
0
...
0


= ak.

If we let rk =



rk1

rk2
...
rkk
0
...
0


for k from 1 to n, then

A = [Qr1 Qr2 Qr3 · · · Qrk].

This is the QR factorization of A into the product

A = QR

where the columns of Q form an orthonormal basis for Col A and

R = [r1 r2 r3 · · · rn] =


r11 r12 r13 · · · r1n−1 r1n

0 r22 r23 · · · r2n−1 r2n

0 0 r33 · · · r3n−1 r3n
...

...
...

...
...

...
0 0 0 · · · 0 rnn


is an upper triangular matrix. Note that Q is an m× n matrix and R is an n× n matrix.

Activity 30.3. Let A =

[
1 0 2
0 2 0

]
. Find the QR factorization of the following matrices or

explain why the matrix does not have a QR factorization.

The QR factorization provides a widely used algorithm (the QR algorithm) for approximat-
ing all of the eigenvalues of a matrix. The computer system MATLAB utilizes four versions of
the QR algorithm to approximate the eigenvalues of real symmetric matrices, eigenvalues of real
nonsymmetric matrices, eigenvalues of pairs of complex matrices, and singular values of general
matrices.

The algorithm works as follows.

• Start with an n× n matrix A. Let A1 = A.
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• Find the QR factorization for A1 and write it as A1 = Q1R1, where Q1 is orthogonal and R1

is upper triangular.

• Let A2 = Q−1
1 A1Q1 = QT

1AQ1 = R1Q1. Find the QR factorization of A2 and write it as
A2 = Q2R2.

• Let A3 = Q−1
2 A2Q2 = QT

2AQ2 = R2Q2. Find the QR factorization of A3 and write it as
A3 = Q3R3.

• Continue in this manner to obtain a sequence {Ak} where Ak = QkRk and Ak+1 = RkQk.

Note thatAk+1 = Q−1
k AkQk and so all of the matricesAk are similar to each other and therefore all

have the same eigenvalues. We won’t go into the details, but it can be shown that if the eigenvalues
of A are real and have distinct absolute values, then the sequence {Ai} converges to an upper
triangular matrix with the eigenvalues of A as the diagonal entries. If some of the eigenvalues of
A are complex, then the sequence {Ai} converges to a block upper triangular matrix, where the
diagonal blocks are either 1× 1 (approximating the real eigenvalues of A) or 2× 2 (which provide
a pair of conjugate complex eigenvalues of A).

Examples

What follows are worked examples that use the concepts from this section.

Example 30.2. Let W be the subspace of R4 spanned by w1 = [1 0 0 0]T, w2 = [1 1 1 0]T, and
w3 = [1 2 0 1]T.

(a) Use the Gram-Schmidt process to find an orthonormal basis for the subspace W of R4

spanned by w1 = [1 0 0 0]T, w2 = [1 1 1 0]T, and w3 = [1 2 0 1]T.

(b) Find a QR factorization of the matrix A =


1 1 1 0
0 1 2 0
0 1 0 0
0 0 1 1

.

Example Solution.

(a) First note that w1, w2, and w3 are linearly independent. We let v1 = w1 and the Gram-
Schmidt process gives us

v2 = w2 −
w2 · v1

v1 · v1
v1

= [1 1 1 0]T − 1

1
[1 0 0 0]T

= [0 1 1 0]T

and

v3 = w3 −
w3 · v1

v1 · v1
v1 −

w3 · v2

v2 · v2
v2

= [1 2 0 1]T − 1

1
[1 0 0 0]T − 2

2
[0 1 1 0]T

= [0 1 − 1 1]T.
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So {v1,v2,v3} is an orthogonal basis for W . An orthonormal basis is found by dividing
each vector by its magnitude, so

{[1 0 0 0]T,
1√
2

[0 1 1 0]T,
1√
3

[0 1 − 1 1]T}

is an orthonormal basis for W .

(b) Technology shows that the reduced row echelon form of A is I4, so the columns of A are
linearly independent and A has rank 4. From part (a) we have an orthogonal basis for the
span of the first three columns ofA. To find a fourth vector to add so that the span is Col A,
we apply the Gram-Schmidt process one more time with w4 = [0 0 0 1]T:

v4 = w4 −
w4 · v1

v1 · v1
v1 −

w4 · v2

v2 · v2
v2 −

w4 · v3

v3 · v3
v3

= [0 0 0 1]T − 0

1
[1 0 0 0]T − 0

2
[0 1 1 0]T − 1

3
[0 1 − 1 1]T

=
1

3
[0 − 1 1 2]T.

So {u1,u2,u3,u4} is an orthonormal basis for Col A, where

u1 = [1 0 0 0]T u2 =
√

2
2 [0 1 1 0]T

u3 =
√

3
3 [0 1 − 1 1]T u4 =

√
6

6 [0 − 1 1 2]T.

This makes

Q =


1 0 0 0

0
√

2
2

√
3

3 −
√

6
6

0
√

2
2 −

√
3

3

√
6

6

0 0
√

3
3

√
6

3

 .
To find the matrix R, we write the columns of A in terms of the basis vectors u1, u2, u3,
and u4. Technology shows that the reduced row echelon form of [Q | A] is

1 0 0 0 1 1 1 0

0 1 0 0 0
√

2
√

2 0

0 0 1 0 0 0
√

3
√

3
3

0 0 0 1 0 0 0
√

6
3

 .

So

R =


1 1 1 0

0
√

2
√

2 0

0 0
√

3
√

3
3

0 0 0
√

6
3

 .

Example 30.3. Consider the space V = C[0, 1] with inner product 〈f, g〉 =
∫ 1

0 f(x)g(x) dx.
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(a) Find the polynomial in P2 (considered as a subspace of V ) that is closest to h(x) =
√
x.

Use technology to calculate any required integrals. Draw a graph of your approximation
against the graph of h.

(b) Provide a numeric measure of the error in approximating
√
x by the polynomial you found

in part (a).

Example Solution.

(a) Our job is to find projP2
h(x). To do this, we need an orthogonal basis of P2. We apply the

Gram-Schmidt process to the standard basis {1, t, t2} of P2 to obtain an orthogonal basis
{p1(t), p2(t), p3(t)} of P2. We start with p1(t) = 1, then

p2(t) = t− 〈t, 1〉〈1, 1〉(1)

= t− 1

2

and

p3(t) = t2 −
〈
t2, 1

〉
〈1, 1〉 (1)−

〈
t2, t− 1

2

〉〈
t− 1

2 , t− 1
2

〉 (t− 1

2

)
= t2 − 1

3
−

1
12
1
12

(
t− 1

2

)
= t2 − t+

1

6
.

Then

projP2

√
x =

〈√x, 1〉
〈1, 1〉 (1) +

〈√
x, x− 1

2

〉〈
x− 1

2 , x− 1
2

〉 (x− 1

2

)
+

〈√
x, x2 − x+ 1

12

〉〈
x2 − x+ 1

6 , x
2 − x+ 1

6

〉 (x2 − x+
1

6

)
=

2
3

1
(1) +

1
15
1
12

(
x− 1

2

)
−

1
315
1

180

(
x2 − x+

1

6

)
=

2

3
+

(
4

5

)(
x− 1

2

)
− 4

7

(
x2 − x+

1

6

)
= −4

7
x2 +

48

35
x+

6

35
.

A graph of the approximation and h are shown in Figure 30.1

(b) The norm of projP⊥2
√
x =

√
x −

(
−4

7x
2 + 48

35x+ 6
35

)
tells us how well our projection

−4
7x

2 + 48
35x+ 6

35 approximates
√
x. Technology shows that

||projP⊥2
√
x|| =

√
〈projP⊥2

√
x, projP⊥2

√
x〉 =

√
2

70
≈ 0.02.
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Figure 30.1: The graphs of
√
x and −4

7x
2 + 48

35x+ 6
35 .

Summary

• The Gram-Schmidt process produces an orthogonal basis from any basis. It works as follows.
Let {v1,v2, . . . ,vm} be a basis for a subspace W of an inner product space V . The set {w1,
w2, w3, . . ., wm} defined by

– w1 = v1,

– w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1,

– w3 = v3 −
〈v3,w1〉
〈w1,w1〉

w1 −
〈v3,w2〉
〈w2,w2〉

w2,

...

– wm = vm −
〈vm,w1〉
〈w1,w1〉

w1 −
〈vm,w2〉
〈w2,w2〉

w2 − · · · −
〈vm,wm−1〉
〈wm−1,wm−1〉

wm−1.

is an orthogonal basis for W . Moreover,

Span{w1,w2,w3, . . . ,wk} = Span{v1,v2,v3, . . . ,vk}
for each k between 1 and m.

• The QR factorization has applications to solving least squares problems and approximating
eigenvalues of matrices. The QR factorization writes an m × n matrix with rank n as a
product A = QR, where the columns of Q form an orthonormal basis for Col A and

R = [r1 | r2 | r3 | · · · | rn] =


r11 r12 r13 · · · r1n−1 r1n

0 r22 r23 · · · r2n−1 r2n

0 0 r33 · · · r3n−1 r3n
...

...
...

...
...

...
0 0 0 · · · 0 rnn


is an upper triangular matrix.
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Exercises

(1) Let w1 = [1 2 1]T and w2 = [1 − 1 1]T}, and Let W = Span{w1,w2} in R3 with the dot
product as inner product. Let v = [1 0 0]T.

(a) Find projWv and projW⊥v

(b) Find the vector in W that is closest to v. How close is this vector to v?

(2) Let B =




1
0
−1

0

 ,


0
1
0
−1

 ,

−1

1
−1

1


 and let W = Span(B) in R4. Find the best

approximation in W to the vector v =


2
3
1
−1

 in W and give a numeric estimate of how

good this approximation is.

(3) Let V = C[0, 1] with the inner product 〈f(t), g(t)〉 =
∫ 1

0 f(t)g(t) dt. Let W = P2. Note
that W is a subspace of V .

(a) Find the polynomial q(t) inW that is closest to the function h defined by h(t) = 2
1+t2

in the least squares sense. That is, find the projection of h(t) onto W . (Hint: Recall
the work done in Activity 30.1.)

(b) Find the second order Taylor polynomial P2(t) for h(t) centered at 0.

(c) Plot h(t), q(t), and P2(t) on the same set of axes. Which approximation provides a
better fit to h on this interval. Why?

(4) In this exercise we determine the least-squares line (the line of best fit in the least squares
sense) to a set of k data points (x1, y1), (x2, y2), . . ., (xk, yk) in the plane. In this case, we
want to fit a line of the form f(x) = mx+ b to the data. If the data were to lie on a line, then
we would have a solution to the system

mx1 + b = y1

mx2 + b = y2

...
...

mxk + b = yk

This system can be written as
mw1 + bw2 = y,

where w1 = [x1 x2 · · · xk]T, w2 = [1 1 · · · 1]T, and y = [y1 y2 · · · yk]T. If the data does
not lie on a line, then the system won’t have a solution. Instead, we want to minimize the
square of the distance between y and a vector of the form mw1 + bw2. That is, minimize

||y − (mw1 + bw2)||2. (30.1)
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Rephrasing this in terms of projections, we are looking for the vector in W = Span{w1,w2}
that is closest to y. In other words, the values of m and b will occur as the weights when we
write projWy as a linear combination of w1 and w2. The one wrinkle in this problem is that
we need an orthogonal basis for W to find this projection. Find the least squares line for the
data points (1, 2), (2, 4) and (3, 5) in R2.

(5) Each set S is linearly independent. Use the Gram-Schmidt process to create an orthogonal
set of vectors with the same span as S. Then find an orthonormal basis for the same span.

(a) S =


 1

1
1

 ,
 5
−1

2

 in R3 using the dot product as the inner product

(b) S = {1 + t, 1− t, t− t2} in P2 using the inner product

〈p(t), q(t)〉 =

∫ 1

−1
p(t)q(t) dt

(c) S =


 1

0
2

 ,
 −1

1
1

 ,
 1

1
0

 in R3 using the inner product 〈u,v〉 = (Au) ·

(Av), where A =

 1 0 1
0 1 1
1 1 0



(d) S =





1
0
1
0
1
0
1


,



−1
2
3
0
1
0
1


,



1
0
4
−1

2
0
1


,



1
1
1
1
1
1
1




in R7 with the weighted inner product

〈[u1 u2 u3 u4 u5 u6 u7]T, [v1 v2 v3 v4 v5 v6 v7]T〉
= u1v1 + u2v2 + u3v3 + 2u4v4 + 2u5v5 + u6v6 + u7v7

(6) Let S = {v1,v2,v3} be a set of linearly dependent vectors in an inner product space V .
What is the result if the Gram-Schmidt process is applied to the set S? Explain.

(7) Let S = {1, cos(t), sin(t)}.
(a) Show that S is a linearly independent set in C[0, π].

(b) Use the Gram-Schmidt process to find an orthogonal basis from S using the inner
product

〈f(t), g(t)〉 =

∫ π

0
f(t)g(t) dt

(8) The Legendre polynomials form an orthonormal basis for the infinite dimensional inner prod-
uct space P of all polynomials using the inner product

〈p(t), q(t)〉 =

∫ 1

−1
p(t)q(t) dt.
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The Legendre polynomials have applications to differential equations, statistics, numerical
analysis, and physics (e.g., they appear when solving Schrdinger equation in three dimensions
for a central force). The Legendre polynomials are found by using the Gram-Schmidt process
to find an orthogonal basis from the standard basis {1, t, t2, · · · } for P. Find the first four
Legendre polynomials by creating a orthonormal basis from the set {1, t, t2, t3}.

(9) A fellow student wants to find a QR factorization for a 3 × 4 matrix. What would you tell
this student and why?

(10) Label each of the following statements as True or False. Provide justification for your re-
sponse. Throughout, let V be a vector space.

(a) True/False If {w1,w2} is a basis for a subspace W of an inner product space V ,
then the vector v·w1

w1·w1
w1 + v·w2

w2·w2
w2 is the vector in W closest to v.

(b) True/False If W is a subspace of an inner product space V , then the vector v −
projWv is orthogonal to every vector in W .

(c) True/False If u1, u2, u3 are vectors in an inner product space V , then the Gram-
Schmidt process constructs an orthogonal set of vectors {v1,v2,v3} with the same
span as {u1,u2,u3}.

(d) True/False Any set {u1,u2, . . . ,uk} of orthogonal vectors in an inner product space
V can be extended to an orthogonal basis of V .

(e) True/False If A is an n × n matrix with AAT = In, then the rows of A form an
orthogonal set.

(f) True/False Every nontrivial finite dimensional subspace of an inner product space
has an orthogonal basis.

(g) True/False In any inner product space V , if W is a subspace satisfying W⊥ = {0},
then W = V .

Project: Gaussian Quadrature and Legendre Polynomials

Simpson’s rule is a reasonably accurate method for approximating definite integrals since it models
the integrand on subintervals with quadratics. For that reason, Simpson’s rule provides exact values
for integrals of all polynomials of degree less than or equal to 2. In Gaussian quadrature, we
will use a family of polynomials to determine points at which to evaluate an integral of the form∫ 1
−1 f(t) dt. By allowing ourselves to select evaluation points that are not uniformly distributed

across the interval of integration, we will be able to approximate our integrals much more efficiently.
The method is constructed so as to obtain exact values for as large of degree polynomial integrands
as possible. As a result, if we can approximate our integrand well with polynomials, we can obtain
very good approximations with Gaussian quadrature with minimal effort.

The Gaussian quadrature approximation has the form∫ 1

−1
f(t) dt ≈ w1f(t1) + w2f(t2) + · · ·+ wnf(tn) =

n∑
i=1

wif(ti), (30.2)
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where the wi (weights) and the ti (nodes) are points in the interval [−1, 1]2. Gaussian quadrature
describes how to find the weights and the points in (30.2) to obtain suitable approximations. We
begin to explore Gaussian quadrature with the simplest cases.

Project Activity 30.1. In this activity we find through direct calculation the node and weight with
n = 1 so that

w1f(t1) ≈
∫ 1

−1
f(t) dt. (30.3)

There are two unknowns in this situation (w1 and t1) and so we will need 2 equations to find these
unknowns. Keep in mind that we want to have the approximation (30.3) be exact for as large of
degree polynomials as possible.

(a) Assume equality in (30.3) if we choose f(t) = 1. Use the resulting equation to find w1.

(b) Assume equality in (30.3) if we choose f(t) = t. Use the resulting equation to find t1.

(c) Verify that (30.3) is in fact an equality for any linear polynomial of the form f(t) = a0+a1t,
using the values of w1 and t1 you found

We do one more specific case before considering the general case.

Project Activity 30.2. In this problem we find through direct calculation the nodes and weights
with n = 2 so that

w1f(t1) + w2f(t2) ≈
∫ 1

−1
f(t) dt. (30.4)

There are four unknowns in this situation (w1, w2 and t1, t2) and so we will need 4 equations to
find these unknowns. Keep in mind that we want to have the approximation (30.4) be exact for as
large of degree polynomials as possible. In this case we will use f(t) = 1, f(t) = t, f(t) = t2, and
f(t) = t3.

(a) Assume equality in (30.4) if we choose f(t) = 1. This gives us an equation in w1 and w2.
Find this equation.

(b) Assume equality in (30.4) if we choose f(t) = t. This gives us an equation in w1, w2 and
t1, t2. Find this equation.

(c) Assume equality in (30.4) if we choose f(t) = t2. This gives us an equation in w1, w2 and
t1, t2. Find this equation.

(d) Assume equality in (30.4) if we choose f(t) = t3. This gives us an equation in w1, w2 and
t1, t2. Find this equation.

(e) Solve this system of 4 equations in 4 unknowns. You can do this by hand or with any other
appropriate tool. Show that t1 and t2 are the roots of the polynomial t2 − 1

3 .

(f) Verify that (30.4) is in fact an equality with the values of w1, w2 and t1, t2 you found for
any polynomial of the form f(t) = a0 + a1t+ a2t

2 + a3t
3.

2As we will see later, integrations over [a, b] can be converted to an integral over [−1, 1] with a change of variable.
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Other than solving a system of linear equations as in Project Activity 30.2, it might be reason-
able to ask what the connection is between Gaussian quadrature and linear algebra. We explore that
connection now.

In the general case, we want to find the weights and nodes to make the approximation exact for
as large degree polynomials as possible. We have 2n unknowns w1, w2, . . ., wn and t1, t2, . . ., tn,
so we need to impose 2n conditions to determine the unknowns. We will require equality for the
2n functions ti for i from 0 to 2n− 1. This yields the equations

w1 · 1 + w2 · 1 + · · ·+ wn · 1 =

∫ 1

−1
1 dt = t

∣∣∣∣1
−1

= 2

w1t1 + w2t2 + · · ·+ wntn =

∫ 1

−1
t dt =

t2

2

∣∣∣∣1
−1

= 0

w1t
2
1 + w2t

2
2 + · · ·+ wnt

2
n =

∫ 1

−1
t2 dt =

t3

3

∣∣∣∣1
−1

=
2

3

...
...

w1t
2n−1
1 + w2t

2n−1
2 + · · ·+ wnt

2n−1
n =

∫ 1

−1
t2n−1 dt =

t2n

2n

∣∣∣∣1
−1

= 0.

In the ith equation the right hand side is

∫ 1

−1
ti dt =

ti+1

i+ 1

∣∣∣∣1
−1

=

{
2
i+1 if i is even,
0 if i is odd.

Project Activity 30.3. It is inefficient to always solve these systems of equations to find the nodes
and weights, especially since there is a more elegant way to find the nodes.

(a) Use appropriate technology to find the equations satisfied by the ti for n = 3, n = 4, and
n = 5.

(b) Now we will see the more elegant way to find the nodes. As we will show for some cases,
the nodes can be found as roots of a set of orthogonal polynomials in Pn with the inner
product 〈f(t), g(t)〉 =

∫ 1
−1 f(t)g(t) dt. Begin with the basis Sn = {1, t, t2, . . . , tn} of

Pn. Use appropriate technology to find an orthogonal basis B5 for P5 obtained by applying
the Gram-Schmidt process to Sn. The polynomials in this basis are called Legendre poly-
nomials. Check that the nodes are roots of the Legendre polynomials by finding roots of
these polynomials using any method. Explain why the ti appear to be roots of the Legendre
polynomials.

Although it would take us beyond the scope of this project to verify this fact, the nodes in
the nth Gaussian quadrature approximation (30.2) are in fact the roots of the nth order Legendre
polynomial. In other words, if pn(t) is the nth order Legendre polynomial, then t1, t2, . . ., tn are
the roots of pn(t) in [−1, 1]. Gaussian quadrature as described in (30.2) using the polynomial pn(t)
is exact if the integrand f(t) is a polynomial of degree less than 2n.
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We can find the corresponding weights, wi, using the formula3

wi =
2

(1− t2i )(q′n(ti))2
, (30.5)

where qi(t) is the ith order Legendre polynomial scaled so that qi(1) = 1.

Project Activity 30.4. Let us see now how good the integral estimates are with Gaussian quadrature
method using an example. Use Gaussian quadrature with the indicated value of n to approximate∫ 1

−1
et cos(t) dt. Be sure to explain how you found your nodes and weights (approximate the nodes

and weights to 8 decimal places). Compare the approximations with the actual value of the integral.
Use technology as appropriate to help with calculations.

(a) n = 3

(b) n = 4

(c) n = 5

Our Gaussian quadrature formula was derived for integrals on the interval [−1, 1]. We conclude
by seeing how a definite integral on an interval can be converted to one on the interval [−1, 1].

Project Activity 30.5. Consider the problem of approximating an integral of the form I =
∫ b
a g(x) dx.

Show that the change of variables x = (b−a)t
2 + a+b

2 , f(t) = (b−a)g(x)
2 reduces the integral I to the

form I =
∫ 1
−1 f(t) dt. (This change of variables can be derived by finding a linear function that

maps the interval [a, b] to the interval [−1, 1].)

3Abramowitz, Milton; Stegun, Irene A., eds. (1972), 25.4, Integration, Handbook of Mathematical Functions (with
Formulas, Graphs, and Mathematical Tables), Dover,
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Section 31

Orthogonal Diagonalization

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What does it mean for a matrix to be orthogonally diagonalizable and why
is this concept important?

• What is a symmetric matrix and what important property related to diago-
nalization does a symmetric matrix have?

• What is the spectrum of a matrix?

Application: The Multivariable Second Derivative Test

In single variable calculus, we learn that the second derivative can be used to classify a critical point
of the type where the derivative of a function is 0 as a local maximum or minimum.

Theorem 31.1 (The Second Derivative Test for Single-Variable Functions). If a is a critical number
of a function f so that f ′(a) = 0 and if f ′′(a) exists, then

• if f ′′(a) < 0, then f(a) is a local maximum value of f ,

• if f ′′(a) > 0, then f(a) is a local minimum value of f , and

• if f ′′(a) = 0, this test yields no information.

In the two-variable case we have an analogous test, which is usually seen in a multivariable
calculus course.

Theorem 31.2 (The Second Derivative Test for Functions of Two Variables). Suppose (a, b) is a
critical point of the function f for which fx(a, b) = 0 and fy(a, b) = 0. Let D be the quantity

549
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defined by
D = fxx(a, b)fyy(a, b)− fxy(a, b)2.

• If D > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).

• If D > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).

• If D < 0, then f has a saddle point at (a, b).

• If D = 0, then this test yields no information about what happens at (a, b).

A proof of this test for two-variable functions is based on Taylor polynomials, and relies on
symmetric matrices, eigenvalues, and quadratic forms. The steps for a proof will be found later in
this section.

Introduction

We have seen how to diagonalize a matrix – if we can find n linearly independent eigenvectors of
an n× n matrix A and let P be the matrix whose columns are those eigenvectors, then P−1AP is
a diagonal matrix with the eigenvalues down the diagonal in the same order corresponding to the
eigenvectors placed in P . We will see that in certain cases we can take this one step further and
create an orthogonal matrix with eigenvectors as columns to diagonalize a matrix. This is called
orthogonal diagonalization. Orthogonal diagonalizability is useful in that it allows us to find a
“convenient” coordinate system in which to interpret the results of certain matrix transformations.
A set of orthonormal basis vectors for an orthogonally diagonalizable matrix A is called a set of
principal axes for A. Orthogonal diagonalization will also play a crucial role in the singular value
decomposition of a matrix, a decomposition that has been described by some as the “pinnacle” of
linear algebra.

Definition 31.3. An n×nmatrixA is orthogonally diagonalizable if there is an orthogonal matrix
P such that

PTAP

is a diagonal matrix. We say that the matrix P orthogonally diagonalizes the matrix A.

Preview Activity 31.1.

(1) For each matrixAwhose eigenvalues and corresponding eigenvectors are given, find a matrix
P such that P−1AP is a diagonal matrix.

(a) A =

[
1 2
2 1

]
with eigenvalues −1 and 3 and corresponding eigenvectors v1 =[

−1
1

]
and v2 =

[
1
1

]
.

(b) A =

[
1 2
1 2

]
with eigenvalues 0 and 3 and corresponding eigenvectors v1 =[

−2
1

]
and v2 =

[
1
1

]
.
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(c) A =

 1 0 1
0 1 1
1 1 2

 with eigenvalues 0, 1, and 3 and corresponding eigenvectors

v1 =

 −1
−1

1

, v2 =

 −1
1
0

, and v3 =

 1
1
2

.

(2) Which matrices in part 1 seem to satisfy the orthogonal diagonalization requirement? Do you
notice any common traits among these matrices?

Symmetric Matrices

As we saw in Preview Activity 31.1, matrices that are not symmetric need not be orthogonally
diagonalizable, but the symmetric matrix examples are orthogonally diagonalizable. We explore
that idea in this section.

If P is a matrix that orthogonally diagonalizes the matrix A, then PTAP = D, where D is a
diagonal matrix. Since DT = D and A = PDPT, we have

A = PDPT

= PDTPT

=
(
PT
)T

DTPT

=
(
PDPT

)T
= AT.

Therefore, AT = A and matrices with this property are the only matrices that can be orthogonally
diagonalized. Recall that any matrix A satisfying AT = A is a symmetric matrix.

While we have just shown that the only matrices that can be orthogonally diagonalized are the
symmetric matrices, the amazing thing about symmetric matrices is that every symmetric matrix
can be orthogonally diagonalized. We will prove this shortly.

Symmetric matrices have useful properties, a few of which are given in the following activity
(we will use some of these properties later in this section).

Activity 31.1. Let A be a symmetric n× n matrix and let x and y be vectors in Rn.

(a) Show that xTAy = (Ax)Ty.

(b) Show that (Ax) · y = x · (Ay).

(c) Show that the eigenvalues of a 2× 2 symmetric matrix A =

[
a b
b c

]
are real.

Activity 31.1 (c) shows that a 2 × 2 symmetric matrix has real eigenvalues. This is a general
result about real symmetric matrices.



552 Section 31. Orthogonal Diagonalization

Theorem 31.4. Let A be an n × n symmetric matrix with real entries. Then the eigenvalues of A
are real.

Proof. Let A be an n × n symmetric matrix with real entries and let λ be an eigenvalue of A with
eigenvector v. To show that λ is real, we will show that λ = λ. We know

Av = λv. (31.1)

Since A has real entries, we also know that λ is an eigenvalue for A with eigenvector v. Multiply
both sides of (31.1) on the left by vT to obtain

vTAv = vTλv = λ
(
vTv

)
. (31.2)

Now
vTAv = (Av)Tv = (λ v)Tv = λ

(
vTv

)
and equation (31.2) becomes

λ
(
vTv

)
= λ

(
vTv

)
.

Since v 6= 0, this implies that λ = λ and λ is real. �

To orthogonally diagonalize a matrix, it must be the case that eigenvectors corresponding to
different eigenvalues are orthogonal. This is an important property and it would be useful to know
when it happens.

Activity 31.2. Let A be a real symmetric matrix with eigenvalues λ1 and λ2 and corresponding
eigenvectors v1 and v2, respectively.

(a) Use Activity 31.1 (b) to show that λ1v1 · v2 = λ2v1 · v2.

(b) Explain why the result of part (a) shows that v1 and v2 are orthogonal if λ1 6= λ2.

Activity 31.2 proves the following theorem.

Theorem 31.5. If A is a real symmetric matrix, then eigenvectors corresponding to distinct eigen-
values are orthogonal.

Recall that the only matrices than can be orthogonally diagonalized are the symmetric matrices.
Now we show that every real symmetric matrix can be orthogonally diagonalized, which completely
characterizes the matrices that are orthogonally diagonalizable.

Theorem 31.6. Let A be a real symmetric matrix. Then A is orthogonally diagonalizable.

Proof. We will assume that all matrices are real matrices. To prove that every symmetric matrix
is orthogonally diagonalizable, we will proceed by contradiction and assume that there are n × n
symmetric matrices that are not orthogonally diagonalizable for some values of n. Since n must be
positive (greater than 1, in fact, since every 1×1 matrix is orthogonally diagonalizable), there must
be a smallest value of n so that there is an n × n symmetric matrix that is not orthogonally diago-
nalizable. Let A be one of these smallest n×n matrices that is not orthogonally diagonalizable. By
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our assumption, every k×k symmetric matrixM with k < n is orthogonally diagonalizable. Since
A is not orthogonally diagonalizable, there cannot exist an orthogonal basis for Rn that consists of
eigenvectors of A. We will now show that this is impossible, which will force our assumption that
A is not orthogonally diagonalizable to be false.

Since A is a symmetric matrix, we know that A has n (counting multiplicities) real eigenvalues
(not necessarily distinct). Let λ1 be one of these real eigenvalues and u1 a corresponding unit
eigenvector. Let

W = Span{u1}⊥.
So x ∈ W if 0 = u1 · x = uT

1 x. Now W is a subspace of Rn and Span{u1} has dimension 1, so
dim(W ) = n− 1. We can then construct an orthonormal basis B = {u2,u3, . . . ,un} for W .

Note that W is invariant under left multiplication by A. To see why, let w ∈W . Then

u1 ·Aw = (Au1)Tw = λ1u
T
1 w = λ1u1 ·w = 0,

so Aw is orthogonal to u1 and is therefore in W .

Since W is invariant under left multiplication by A, we can think of left multiplication by A
as a linear transformation from the n − 1 dimensional vector space W to itself. We call this the
restriction of A to W and will denote it by A|W . The coordinate transformation T defined by
T (x) = [x]B maps the n − 1 dimensional vector space W to Rn−1 and we know that T is an
invertible map. We can then view left multiplication by A on W as a composite of the coordinate
map T , a matrix transformation M from Rn−1 to Rn−1 and then T−1 as shown in Figure 31.1.

Rn−1 - Rn−1

W - W

?

6
T

x→ [x]B
T−1

[x]B → x

M

A|W

Figure 31.1: Composite diagram

Let us focus on the coordinate mapping T for a moment. This mapping has two important
properties that we will need.

Claim.

(1) T (x) · T (y) = x · y for every x,y in W .

(2) T−1 ([x]B) · T−1 ([y]B) = [x]B · [y]B for every [x]B, [y]B in Rn−1.

Proof of the Claim: Let x,y in W . Since B is a basis for W , we know that

x = x2u2 + x3u3 + · · ·+ xnun and y = y2u2 + y3u3 + · · ·+ ynun

for some scalars x2, x3, . . ., xn and y2, y3, . . ., yn. So [x]B = [x2 x3 . . . xn]T and [y]B =
[y2 y3 . . . yn]T and it follows that

T (x) · T (y) = [x]B · [y]B = x2y2 + x3y3 + · · ·+ xnyn. (31.3)
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Now B is an orthonormal basis, so ui · uj = 0 for i 6= j, ui · ui = 1 for all i, and

x · y = (x2u2 + x3u3 + · · ·+ xnun) · (y2u2 + y3u3 + · · ·+ ynun)

= (x2y2u2 · u2) + (x3y3u3 · u3) + · · ·+ (xnynun · un)

= x2y2 + x3y3 + · · ·+ xnyn. (31.4)

Thus, T (x) · T (y) = x · y, proving part 1 of the claim.

For part 2, note that

T−1 ([x]B) · T−1 ([y]B) = x · y = [x]B · [y]B

by (31.3) and (31.4), verifying part 2 of the claim. �

We now apply this claim to show that the matrixM is a symmetric matrix. Since the coordinate
transformation T is an onto mapping, every vector in Rn−1 can be written as [x]B for some x
in W . Let [x]B and [y]B be arbitrary vectors in Rn−1. From Figure 31.1 we can see that M =
TA|WT−1 = TAT−1, so

M [x]B · [y]B = TAT−1([x]B) · [y]B

= TAT−1([x]B) · TT−1 ([y]B)

= AT−1([x]B) · T−1 ([y]B)

= T−1([x]B) ·AT−1 ([y]B)

= TT−1([x]B) · TAT−1 ([y]B)

= [x]B ·M [y]B.

Therefore, M is a symmetric matrix. Since M is (n − 1) × (n − 1), we can conclude that M
is orthogonally diagonalizable. Thus, there is an orthonormal basis {[x2]B, [x3]B, . . . , [xn]B} for
Rn−1 consisting of eigenvectors of M . Let M [xi]B = λi[xi]B for each 2 ≤ i ≤ n.

Finally, we will show that the set C = {u1,x2,x3, . . . ,xn} is an orthonormal set of eigenvec-
tors of A. This will contradict the fact that we assumed that A was not orthogonally diagonalizable.
The set B is an orthonormal subset of W and so by the definition of W each vector in B is orthog-
onal to u1. Thus the set C is an orthogonal set. To complete our proof we only need show that each
xi is an eigenvector of A. Choose an i arbitrarily between 2 and n. Now

Axi = T−1MT (xi) = T−1M [xi]B = T−1 (λi[xi]B) = λiT
−1 ([xi]B) = λixi.

Therefore, the set C = {u1,x2,x3, . . . ,xn} is an orthogonal set of eigenvectors of A. Since the
transformations T and T−1 preserve dot products, they also preserve lengths. So, in fact, C is an
orthonormal set of eigenvectors of A as desired. This completes our proof. �

The set of eigenvalues of a matrix A is called the spectrum of A and we have just proved the
following theorem.

Theorem 31.7 (The Spectral Theorem for Real Symmetric Matrices). LetA be an n×n symmetric
matrix with real entries. Then

(1) A has n real eigenvalues (counting multiplicities)
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(2) the dimension of each eigenspace of A is the multiplicity of the corresponding eigenvalue as
a root of the characteristic polynomial

(3) eigenvectors corresponding to different eigenvalues are orthogonal

(4) A is orthogonally diagonalizable.

So any real symmetric matrix is orthogonally diagonalizable. We have seen examples of the
orthogonal diagonalization of n × n real symmetric matrices with n distinct eigenvalues, but how
do we orthogonally diagonalize a symmetric matrix having eigenvalues of multiplicity greater than
1? The next activity shows us the process.

Activity 31.3. Let A =

 4 2 2
2 4 2
2 2 4

. The eigenvalues of A are 2 and 8, with eigenspace of

dimension 2 and dimension 1, respectively.

(a) Explain why A can be orthogonally diagonalized.

(b) Two linearly independent eigenvectors for A corresponding to the eigenvalue 2 are v1 = −1
0
1

 and v2 =

 −1
1
0

. Note that v1,v2 are not orthogonal, so cannot be in an or-

thogonal basis of R3 consisting of eigenvectors of A. So find a set {w1,w2} of orthogonal
eigenvectors of A so that Span{w1,w2} = Span{v1,v2}.

(c) The vector v3 =

 1
1
1

 is an eigenvector for A corresponding to the eigenvalue 8. What

can you say about the orthogonality relationship between wi’s and v3?

(d) Find a matrix P that orthogonally diagonalizes A. Verify your work.

The Spectral Decomposition of a Symmetric Matrix A

Let A be an n × n symmetric matrix with real entries. The Spectral Theorem tells us we can find
an orthonormal basis {u1,u2, . . . ,un} of eigenvectors of A. Let Aui = λiui for each 1 ≤ i ≤ n.
If P = [u1 u2 u3 · · · un], then we know that

PTAP = P−1AP = D,

where D is the n× n diagonal matrix
λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 λn

 .



556 Section 31. Orthogonal Diagonalization

Since A = PDPT we see that

A = [u1 u2 u3 · · · un]


λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 λn




uT
1

uT
2

uT
3
...
uT
n



= [λ1u1 λ2u2 λ3u3 · · · λnun]


uT

1

uT
2

uT
3
...
uT
n


= λ1u1u

T
1 + λ2u2u

T
2 + λ3u3u

T
3 + · · ·+ λnunu

T
n , (31.5)

where the last product follows from Exercise 4. The expression in (31.5) is called a spectral de-
composition of the matrix A. Let Pi = uiu

T
i for each i. The matrices Pi satisfy several special

conditions given in the next theorem. The proofs are left to the exercises.

Theorem 31.8. Let A be an n× n symmetric matrix with real entries, and let {u1,u2, . . . ,un} be
an orthonormal basis of eigenvectors of A with Aui = λiui for each i. For each i, let Pi = uiu

T
i .

Then

(1) A = λ1P1 + λ2P2 + · · ·+ λnPn,

(2) Pi is a symmetric matrix for each i,

(3) Pi is a rank 1 matrix for each i,

(4) P 2
i = Pi for each i,

(5) PiPj = 0 if i 6= j,

(6) Piui = ui for each i,

(7) Piuj = 0 if i 6= j,

(8) For any vector v in Rn, Piv = projSpan{ui}v.

The consequence of Theorem 31.8 is that any symmetric matrix can be written as the sum
of symmetric, rank 1 matrices. As we will see later, this kind of decomposition contains much
information about the matrix product ATA for any matrix A.

Activity 31.4. Let A =

 4 2 2
2 4 2
2 2 4

. Let λ1 = 2, λ2 = 2, and λ3 = 8 be the eigenvalues of A.

A basis for the eigenspace E8 of A corresponding to the eigenvalue 8 is {[1 1 1]T} and a basis for
the eigenspace E2 of A corresponding to the eigenvalue 2 is {[1 − 1 0]T, [1 0 − 1]T}. (Compare
to Activity 31.3.)
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(a) Find orthonormal eigenvectors u1, u2, and u3 of A corresponding to λ1, λ2, and λ3, re-
spectively.

(b) Compute λ1u1u
T
1

(c) Compute λ2u2u
T
2

(d) Compute λ3u3u
T
3

(e) Verify that A = λ1u1u
T
1 + λ2u2u

T
2 + λ3u3u

T
3 .

Examples

What follows are worked examples that use the concepts from this section.

Example 31.9. For each of the following matrices A, determine if A is diagonalizable. If A is
not diagonalizable, explain why. If A is diagonalizable, find a matrix P so that P−1AP is a di-
agonal matrix. If the matrix is diagonalizable, is it orthogonally diagonalizable? If orthogonally
diagonalizable, find an orthogonal matrix that diagonalizes A. Use appropriate technology to find
eigenvalues and eigenvectors.

(a) A =

 2 0 0
−1 3 2

1 −1 0

 (b) A =

 1 1 0
0 1 0
0 0 0

 (c) A =

 4 2 1
2 7 2
1 2 4


Example Solution.

(a) Recall that an n× n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors, and A is orthogonally diagonalizable if and only if A is symmetric. Since A
is not symmetric, A is not orthogonally diagonalizable. Technology shows that the eigen-
values ofA are 2 and 1 and bases for the corresponding eigenspaces are {[1 1 0]T, [2 0 1]T}

and {[0 − 1 1]T}. So A is diagonalizable and if P =

 1 2 0
1 0 −1
0 1 1

, then

P−1AP =

 2 0 0
0 2 0
0 0 1

 .
(b) SinceA is not symmetric, A is not orthogonally diagonalizable. Technology shows that the

eigenvalues of A are 0 and 1 and bases for the corresponding eigenspaces are {[0 0 1]T}
and {[1 0 0]T}. We cannot create a basis of R3 consisting of eigenvectors of A, so A is not
diagonalizable.

(c) Since A is symmetric, A is orthogonally diagonalizable. Technology shows that the eigen-
values ofA are 3 and 9 and bases for the eigenspaces {[−1 0 1]T, [−2 1 0]T} and {[1 2 1]T},
respectively. To find an orthogonal matrix that diagonalizesA, we must find an orthonormal
basis of R3 consisting of eigenvectors of A. To do that, we use the Gram-Schmidt process
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to obtain an orthogonal basis for the eigenspace of A corresponding to the eigenvalue 3.
Doing so gives an orthogonal basis {v1,v2}, where v1 = [−1 0 1]T and

v2 = [−2 1 0]T − [−2 1 0]T · [−1 0 1]T

[−1 0 1]T · [−1 0 1]T
[−1 0 1]T

= [−2 1 0]T − [−1 0 1]T

= [−1 1 − 1]T.

So an orthonormal basis for R3 of eigenvectors of A is{
1√
2

[−1 0 1]T,
1√
3

[−1 1 − 1]T,
1√
6

[1 1 1]T
}
.

Therefore, A is orthogonally diagonalizable and if P is the matrix


− 1√

2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2
− 1√

3
1√
6

,

then

P−1AP =

 3 0 0
0 3 0
0 0 9

 .

Example 31.10. Let A =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. Find an orthonormal basis for R4 consisting of eigen-

vectors of A.

Example Solution.

Since A is symmetric, there is an orthogonal matrix P such that P−1AP is diagonal. The
columns of P will form an orthonormal basis for R4. Using a cofactor expansion along the first row
shows that

det(A− λI4) = det



−λ 0 0 1

0 −λ 1 0
0 1 −λ 0
1 0 0 −λ




=
(
λ2 − 1

)2
= (λ+ 1)2(λ− 1)2.

So the eigenvalues of A are 1 and −1. The reduced row echelon forms of A − I4 and A + I4 are,
respectively, 

1 0 0 −1
0 1 −1 0
0 0 0 0
0 0 0 0

 and


1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

 .
Thus, a basis for the eigenspace E1 of A is {[0 1 1 0]T, [1 0 0 1]T} and a basis for the eigenspace
E−1 of A is {[0 1 −1 0]T, [1 0 0 −1]T}. The set {[0 1 1 0]T, [1 0 0 1]T, [0 1 −1 0]T, [1 0 0 −1]T}
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is an orthogonal set, so an orthonormal basis for R4 consisting of eigenvectors of A is

{
1√
2

[0 1 1 0]T,
1√
2

[1 0 0 1]T,
1√
2

[0 1 − 1 0]T,
1√
2

[1 0 0 − 1]T
}
.

Summary

• An n × n matrix A is orthogonally diagonalizable if there is an orthogonal matrix P such
that PTAP is a diagonal matrix. Orthogonal diagonalizability is useful in that it allows us
to find a “convenient” coordinate system in which to interpret the results of certain matrix
transformations. Orthogonal diagonalization also a plays a crucial role in the singular value
decomposition of a matrix.

• An n×nmatrixA is symmetric ifAT = A. The symmetric matrices are exactly the matrices
that can be orthogonally diagonalized.

• The spectrum of a matrix is the set of eigenvalues of the matrix.

Exercises

(1) For each of the following matrices, find an orthogonal matrix P so that PTAP is a diagonal
matrix, or explain why no such matrix exists.

(a) A =

[
3 −4
−4 −3

]
(b) A =

 4 1 1
1 1 4
1 4 1

 (c) A =


1 2 0 0
0 1 2 1
1 1 1 1
3 0 5 2


(2) For each of the following matrices find an orthonormal basis of eigenvectors of A. Then find

a spectral decomposition of A.

(a) A =

[
3 −4
−4 −3

]
(b) A =

 4 1 1
1 1 4
1 4 1


(c) A =

 −4 0 −24
0 −8 0

−24 0 16

 (d) A =

 1 0 0
0 0 2
0 2 −3


(3) Find a non-diagonal 4 × 4 matrix with eigenvalues 2, 3 and 6 which can be orthogonally

diagonalized.

(4) Let A = [aij ] = [c1 c2 · · · cm] be an k ×m matrix with columns c1, c2, . . ., cm, and let
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B = [bij ] =


r1

r2
...
rm

 be an m× n matrix with rows r1, r2, . . ., rm. Show that

AB = [c1 c2 · · · cm]


r1

r2
...
rm

 = c1r1 + c2r2 + · · ·+ cmrm.

(5) Let A be an n × n symmetric matrix with real entries and let {u1,u2, . . . ,un} be an or-
thonormal basis of eigenvectors of A. For each i, let Pi = uiu

T
i . Prove Theorem 31.8 – that

is, verify each of the following statements.

(a) For each i, Pi is a symmetric matrix.

(b) For each i, Pi is a rank 1 matrix.

(c) For each i, P 2
i = Pi.

(d) If i 6= j, then PiPj = 0.

(e) For each i, Piui = ui.

(f) If i 6= j, then Piuj = 0.

(g) If v is in Rn, show that
Piv = projSpan{ui}v.

For this reason we call Pi an orthogonal projection matrix.

(6) Show that if M is an n × n matrix and (Mx) · y = x · (My) for every x,y in Rn, then M
is a symmetric matrix. (Hint: Try x = ei and y = ej .)

(7) Let A be an n × n symmetric matrix and assume that A has an orthonormal basis {u1, u2,
. . ., un} of eigenvectors of A so that Aui = λiui for each i. Let Pi = uiu

T
i for each i. It is

possible that not all of the eigenvalue of A are distinct. In this case, some of the eigenvalues
will be repeated in the spectral decomposition of A. If we want only distinct eigenvalues to
appear, we might do the following. Let µ1, µ2, . . ., µk be the distinct eigenvalues of A. For
each j between 1 and k, let Qj be the sum of all of the Pi that have µj as eigenvalue.

(a) The eigenvalues for the matrix A =


0 2 0 0
2 3 0 0
0 0 0 2
0 0 2 3

 are −1 and 4. Find a basis for

each eigenspace and determine each Pi. Then find k, µ1, . . ., µk, and each Qj .

(b) Show in general (not just for the specific example in part (a), that the Qj satisfy the
same properties as the Pi. That is, verify the following.

i. A = µ1Q1 + µ2Q2 + · · ·µkQk
ii. Qj is a symmetric matrix for each j

iii. Q2
j = Qj for each j
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iv. QjQ` = 0 when j 6= `

v. if Eµj is the eigenspace for A corresponding to the eigenvalue µj , and if v is in
Rn, then Qjv = projEµjv.

(c) What is the rank of Qj? Verify your answer.

(8) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False Every real symmetric matrix is diagonalizable.

(b) True/False If P is a matrix whose columns are eigenvectors of a symmetric matrix,
then the columns of P are orthogonal.

(c) True/False If A is a symmetric matrix, then eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

(d) True/False If v1 and v2 are distinct eigenvectors of a symmetric matrix A, then v1

and v2 are orthogonal.

(e) True/False Any symmetric matrix can be written as a sum of symmetric rank 1
matrices.

(f) True/False If A is a matrix satisfying AT = A, and u and v are vectors satisfying
Au = 2u and Av = −2v, then u · v = 0.

(g) True/False If an n×nmatrixA has n orthogonal eigenvectors, thenA is a symmetric
matrix.

(h) True/False If an n × n matrix has n real eigenvalues (counted with multiplicity),
then A is a symmetric matrix.

(i) True/False For each eigenvalue of a symmetric matrix, the algebraic multiplicity
equals the geometric multiplicity.

(j) True/False If A is invertible and orthogonally diagonalizable, then so is A−1.

(k) True/False If A,B are orthogonally diagonalizable n× n matrices, then so is AB.

Project: The Second Derivative Test for Functions of Two Variables

In this project we will verify the Second Derivative Test for functions of two variables.1 This test
will involve Taylor polynomials and linear algebra. As a quick review, recall that the second order
Taylor polynomial for a function f of a single variable x at x = a is

P2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2. (31.6)

As with the linearization of a function, the second order Taylor polynomial is a good approximation
to f around a – that is f(x) ≈ P2(x) for x close to a. If a is a critical number for f with f ′(a) = 0,

1Many thanks to Professor Paul Fishback for sharing his activity on this topic. Much of this project comes from his
activity.
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then

P2(x) = f(a) +
f ′′(a)

2
(x− a)2.

In this situation, if f ′′(a) < 0, then f ′′(a)
2 (x−a)2 ≤ 0 for x close to a, which makes P2(x) ≤ f(a).

This implies that f(x) ≈ P2(x) ≤ f(a) for x close to a, which makes f(a) a relative maximum
value for f . Similarly, if f ′′(a) > 0, then f(a) is a relative minimum.

We now need a Taylor polynomial for a function of two variables. The complication of the
additional independent variable in the two variable case means that the Taylor polynomials will
need to contain all of the possible monomials of the indicated degrees. Recall that the linearization
(or tangent plane) to a function f = f(x, y) at a point (a, b) is given by

P1(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Note that P1(a, b) = f(a, b), ∂P1
∂x (a, b) = fx(a, b), and ∂P1

∂y (a, b) = fy(a, b). This makes P1(x, y)
the best linear approximation to f near the point (a, b). The polynomial P1(x, y) is the first order
Taylor polynomial for f at (a, b).

Similarly, the second order Taylor polynomial P2(x, y) centered at the point (a, b) for the func-
tion f is

P2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +
fxx(a, b)

2
(x− a)2

+ fxy(a, b)(x− a)(y − b) +
fyy(a, b)

2
(y − b)2.

Project Activity 31.1. To see that P2(x, y) is the best approximation for f near (a, b), we need to
know that the first and second order partial derivatives of P2 agree with the corresponding partial
derivatives of f at the point (a, b). Verify that this is true.

We can rewrite this second order Taylor polynomial using matrices and vectors so that we can
apply techniques from linear algebra to analyze it. Note that

P2(x, y) = f(a, b) +∇f(a, b)T
[
x− a
y − b

]
+

1

2

[
x− a
y − b

]T [
fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

] [
x− a
y − b

]
, (31.7)

where ∇f(x, y) =

[
fx(x, y)
fy(x, y)

]
is the gradient of f and H is the Hessian of f , where H(x, y) =[

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
.2

Project Activity 31.2. Use Equation (31.7) to compute P2(x, y) for f(x, y) = x4 + y4 − 4xy + 1
at (a, b) = (2, 3).

2Note that under reasonable conditions (e.g., that f has continuous second order mixed partial derivatives in some

open neighborhood containing (x, y)) we have that fxy(x, y) = fyx(x, y) and H(x, y) =

[
fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

]
is

a symmetric matrix. We will only consider functions that satisfy these reasonable conditions.
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The important idea for us is that if (a, b) is a point at which fx and fy are zero, then ∇f is the
zero vector and Equation (31.7) reduces to

P2(x, y) = f(a, b) +
1

2

[
x− a
y − b

]T [
fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

] [
x− a
y − b

]
, (31.8)

To make the connection between the multivariable second derivative test and properties of the
Hessian, H(a, b), at a critical point of a function f at which ∇f = 0, we will need to connect the
eigenvalues of a matrix to the determinant and the trace.

Let A be an n× n matrix with eigenvalues λ1, λ2, . . ., λn (not necessarily distinct). Exercise 2
in Section 17 shows that

det(A) = λ1λ2 · · ·λn. (31.9)

In other words, the determinant of a matrix is equal to the product of the eigenvalues of the matrix.
In addition, Exercise 9 in Section 18 shows that

trace(A) = λ1 + λ2 + · · ·+ λn. (31.10)

for a diagonalizable matrix, where trace(A) is the sum of the diagonal entries of A. Equation
(31.10) is true for any square matrix, but we don’t need the more general result for this project.

The fact that the Hessian is a symmetric matrix makes it orthogonally diagonalizable. We
denote the eigenvalues of H(a, b) as λ1 and λ2. Thus there exists an orthogonal matrix P and a

diagonal matrix D =

[
λ1 0
0 λ2

]
such that PTH(a, b)P = D, or H(a, b) = PDPT. Equations

31.9 and 31.10 show that

λ1λ2 = fxx(a, b)fyy(a, b)− fxy(a, b)2 and λ1 + λ2 = fxx(a, b) + fyy(a, b).

Now we have the machinery to verify the Second Derivative Test for Two-Variable Functions.
We assume (a, b) is a point in the domain of a function f so that ∇f(a, b) = 0. First we consider
the case where fxx(a, b)fyy(a, b)− fxy(a, b)2 < 0.

Project Activity 31.3. Explain why if fxx(a, b)fyy(a, b)− fxy(a, b)2 < 0, then[
x− a
y − b

]T
H(a, b)

[
x− a
y − b

]
is indefinite. Explain why this implies that f is “saddle-shaped” near (a, b). (Hint: Substitute

w =

[
w1

w2

]
= PT

[
x− a
y − b

]
. What does the graph of f look like in the w1 and w2 directions?)

Now we examine the situation when fxx(a, b)fyy(a, b)− fxy(a, b)2 > 0.

Project Activity 31.4. Assume that fxx(a, b)fyy(a, b)− fxy(a, b)2 > 0.

(a) Explain why either both fxx(a, b) and fyy(a, b) are positive or both are negative.

(b) If fxx(a, b) > 0 and fyy(a, b) > 0, explain why λ1 and λ2 must be positive.
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(c) Explain why, if fxx(a, b) > 0 and fyy(a, b) > 0, then f(a, b) is a local minimum value for
f .

When fxx(a, b)fyy(a, b) − fxy(a, b)2 > 0 and either fxx(a, b) or fyy(a, b) is negative, a slight
modification of the preceding argument leads to the fact that f has a local maximum at (a, b) (the
details are left to the reader). Therefore, we have proved the Second Derivative Test for functions
of two variables!

Project Activity 31.5. Use the Hessian to classify the local maxima, minima, and saddle points of
f(x, y) = x4 + y4 − 4xy + 1. Draw a graph of f to illustrate.



Section 32

Quadratic Forms and the Principal Axis
Theorem

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a quadratic form on Rn?

• What does the Principal Axis Theorem tell us about quadratic forms?

Application: The Tennis Racket Effect

Try an experiment with a tennis racket (or a squash racket, or a ping pong paddle). Let us define a
3D coordinate system with the center of the racket as the origin with the head of the racket lying
in the xy-plane. We let u1 be the vector in the direction of the handle and u2 the perpendicular
direction (still lying in the plane defined by the head) as illustrated in Figure 32.1. We then let
u3 be a vector perpendicular to the plane of the head. Hold the racket by the handle and spin it
to make one rotation around the u1 axis. This is pretty easy. It is also not difficult to throw the
racket so that it rotates around the u3. Now toss the racket into the air to make one complete
rotation around the axis of the vector u2 and catch the handle. Repeat this several times. You
should notice that in most instances, the racket will also have made a half rotation around the u1

axis so that the other face of the racket now points up. This is quite different than the rotations
around the u1 and u3 axes. A good video that illustrates this behavior can be seen at https:
//www.youtube.com/watch?v=4dqCQqI-Gis.

This effect is a result in classical mechanics that describes the rotational movement of a rigid
body in space, called the tennis racket effect (or the Dzhanibekov effect, after the Russian cos-
monaut Vladimir Dzhanibekov who discovered the theorem’s consequences while in zero gravity
in space – you can see an illustration of this in the video at https://www.youtube.com/
watch?v=L2o9eBl_Gzw). The result is simple to see in practice, but is difficult to intuitively
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u1

u2

Figure 32.1: Two principal axes of a tennis racket.

understand why the behavior is different around the intermediate axis. There is a story of a student
who asked the famous physicist Richard Feynman if there is any intuitive way to understand the
result; Feynman supposedly went into deep thought for about 10 or 15 seconds and answered, ”no.”
As we will see later in this section, we can understand this effect using the principal axes of a rigid
body.

Introduction

We are familiar with quadratic equations in algebra. Examples of quadratic equations include x2 =
1, x2 + y2 = 1, and x2 + xy + y2 = 3. We don’t, however, have to restrict ourselves to two
variables. A quadratic equation in n variables is any equation in which the sum of the exponents in
any monomial term is 2. So a quadratic equation in the variables x1, x2, . . ., xn is an equation in
the form

a11x
2
1 + a22x

2
2 + a33x

2
3 + · · ·+ annx

2
n

+ a12x1x2 + a13x1x3 + · · · a1nx1xn

+ a23x2x3 + a24x2x4 + · · · a2nx2xn + · · ·
+ an−1nxn−1xn

= c

for some constant c. In matrix notation this expression on the left of this equation has the form
n∑
i=1

n∑
j=1

aijxixj = xTAx

where x =


x1

x2
...
xn

 and A is the n × n matrix A = [aij ]. For example, if A =

 1 3 −2
−1 1 2

0 2 −2

,

then we get the quadratic expression x2
1 + 3x1x2 − 2x1x3 − x2x1 + x2

2 + 2x2x3 + 2x3x2 − 2x2
3.

We should note here that the terms involving xixj and xjxi are repeated in our sum, but

aijxixj + ajixjxi = 2

(
aij + aji

2

)
xixj

and so we could replace aij and aji both with
(
aij+aji

2

)
without changing the quadratic form.

With this alteration in mind, we can then assume that A is a symmetric matrix. So in the previous
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example, the symmetric matrix A′ =

 1 1 −1
1 1 2
−1 2 −2

 gives the same quadratic expression. This

leads to the following definition.

Definition 32.1. A quadratic form on Rn is a function Q defined by

Q(x) = xTAx

for some n× n symmetric matrix A.

As we show in Exercise 7., the symmetric matrix A is unique to the quadratic form, so we call
the symmetric matrix A is the matrix of the quadratic form. It is these quadratic forms that we will
study in this section.

Preview Activity 32.1.

(1) To get a little more comfortable with quadratic forms, write the quadratic forms in matrix
form, explicitly identifying the vector x and the symmetric matrix A of the quadratic form.

(a) 3x2
1 − 2x2

2 + 4x1x2 + x2x3

(b) x1x4 + 4x2x3 − x2
2 + 10x1x5

(2) Some quadratic forms form equations in R2 that are very familiar: x2 +y2 = 1 is an equation
of a circle, 2x2 + 3y2 = 2 is an equation of an ellipse, and x2 − y2 = 1 is an equation
of a hyperbola. Of course, these do not represent all of the quadratic forms in R2 – some
contain cross-product terms. We can recognize the equations above because they contain no
cross-product terms (terms involving xy). We can more easily recognize the quadratic forms
that contain cross-product terms if we can somehow rewrite the forms in a different format
with no cross-product terms. We illustrate how this can be done with the quadratic form Q
defined by Q(x) = x2 − xy + y2.

(a) Write Q(x) in the form xTAx, where A is a 2× 2 symmetric matrix.

(b) Since A is a symmetric matrix we can orthogonally diagonalize A. Given that the

eigenvalues of A are 3
2 and 1

2 with corresponding eigenvectors
[
−1

1

]
and

[
1
1

]
,

respectively, find a matrix P that orthogonally diagonalizes A.

(c) Define y =

[
w
z

]
to satisfy x = Py. Substitute for x in the quadratic formQ(x) to

write the quadratic form in terms of w and z. What kind of graph does the quadratic
equation Q(x) = 1 have?

Equations Involving Quadratic Forms in R2

When we consider equations of the form Q(x) = d, where Q is a quadratic form in R2 and d is a
constant, we wind up with old friends like x2 + y2 = 1, 2x2 + 3y2 = 2, or x2− y2 = 1. As we saw
in Preview Activity 32.1 these equations are relatively easy to recognize. However, when we have
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cross-product terms, like in x2 − xy + y2 = 1, it is not so easy to identify the curve the equation
represents. If there was a way to eliminate the cross-product term xy from this form, we might be
more easily able to recognize its graph. The discussion in this section will focus on quadratic forms
in R2, but we will see later that the arguments work in any number of dimensions. While working
in R2 we will use the standard variables x and y instead of x1 and x2.

In general, the equation of the form Q(x) = d, where Q is a quadratic form in R2 defined by a

matrix A =

[
a b/2
b/2 c

]
and d is a constant looks like

ax2 + bxy + cy2 = d.

The graph of an equation like this is either an ellipse (a circle is a special case of an ellipse), a
hyperbola, two non-intersecting lines, a point, or the empty set (see Exercise 5.). The quadratic
forms do not involve linear terms, so we don’t consider the cases of parabolas. One way to see into
which category one of these quadratic form equations falls is to write the equation in standard form.

The standard forms for quadratic equations in R2 are as follows, where a and b are nonzero
constants and h and k are any constants.

Lines: ax2 = 1 or ay2 = 1 (a > 0)

Ellipse:
(x− h)2

a2
+

(y − k)2

b2
= 1

Hyperbola:
(x− h)2

a2
− (y − k)2

b2
= 1 or

(y − k)2

b2
− (x− h)2

a2
= 1

Preview Activity 32.1 contains the main tool that we need to convert a quadratic form into one
of these standard forms. By this we mean that if we have a quadratic formQ in the variables x1, x2,
. . ., xn, we want to find variables y1, y2, . . ., yn in terms of x1, x2, . . ., xn so that when written in
terms of the variables y1, y2, . . ., yn the quadratic form Q contains no cross terms. In other words,

we want to find a vector y =


y1

y2
...
yn

 so that Q(x) = yTDy, where D is a diagonal matrix. Since

every real symmetric matrix is orthogonally diagonalizable, we will always be able to find a matrix
P that orthogonally diagonalizes A. The details are as follows.

Let Q be the quadratic form defined by Q(x) = xTAx, where A is an n×n symmetric matrix.
As in Preview Activity 32.1, the fact that A is symmetric means that we can find an orthogonal
matrix P = [p1 p2 p3 · · · pn] whose columns are orthonormal eigenvectors of A corresponding
to eigenvalues λ1, λ2, . . ., λn, respectively. Letting y = PTx give us x = Py and

xTAx = (Py)TA(Py) = yT(PTAP )y = yTDy,

where D is the diagonal matrix whose ith diagonal entry is λi.

Moreover, the set B = {p1,p2, · · · ,pn} is an orthonormal basis for Rn and so defines a
coordinate system for Rn. Note that if y = [y1 y2 · · · yn]T, then

x = Py = y1p1 + y2p2 + · · ·+ ynpn.
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Thus, the coordinate vector of x with respect to B is y, or [x]B = y. We summarize in Theorem
32.2.

Theorem 32.2 (Principal Axis Theorem). Let A be an n × n symmetric matrix. There is an or-
thogonal change of variables x = Py so that the quadratic form Q defined by Q(x) = xTAx is
transformed into the quadratic form yTDy where D is a diagonal matrix.

The columns of the orthogonal matrix P in the Principal Axis Theorem form an orthogonal
basis for Rn and are called the principal axes for the quadratic form Q. Also, the coordinate vector
of x with respect to this basis is y.

Activity 32.1. Let Q be the quadratic form defined by Q(x) = 2x2 + 4xy + 5y2 = xTAx, where

x =

[
x
y

]
and A =

[
2 2
2 5

]
.

(a) The eigenvalues of A are λ1 = 6 and λ2 = 1 with corresponding eigenvectors v1 =
[1 2]T and v2 = [−2 1]T, respectively. Find an orthogonal matrix P with determinant 1
that diagonalizes A. Is P unique? Explain. Is there a matrix without determinant 1 that
orthogonally diagonalizes A? Explain.

(b) Use the matrix P to write the quadratic form without the cross-product.

(c) We can view P as a change of basis matrix from the coordinate system defined by y = PTx
to the standard coordinate system. In other words, in the standard xy coordinate system,
the quadratic form is written as xTAx, but in the new coordinate system defined by y the
quadratic form is written as (Py)TA(Py). As a change of basis matrix, P performs a
rotation. See if you can recall what we learned about rotation matrices and determine the
angle of rotation P defines. Plot the graph of the quadratic equation Q(x) = 1 in the new
coordinate system and identify this angle on the graph. Interpret the result.

Classifying Quadratic Forms

If we draw graphs of equations of the type z = Q(x), whereQ is a quadratic form, we can see that a
quadratic form whose matrix does not have 0 as an eigenvalue can take on all positive values (except
at x = 0) as shown at left in Figure 32.2, all negative values (except at x = 0) as shown in the
center of Figure 32.2, or both positive and negative values as depicted at right in Figure 32.2. We can
see when these cases happen by analyzing the eigenvalues of the matrix that defines the quadratic
form. Let A be a 2 × 2 symmetric matrix with eigenvalues λ1 and λ2, and let P be a matrix that

orthogonally diagonalizes A so that PTAP = D =

[
λ1 0
0 λ2

]
. If we let y =

[
w
z

]
= PTx,

then

Q(x) = xTAx

= yTDy

= λ1w
2 + λ2z

2.

Then Q(x) ≥ 0 if all of the eigenvalues of A are positive (with Q(x) > 0 when x 6= 0) and
Q(x) ≤ 0 if all of the eigenvalues ofA are negative (withQ(x) < 0 when x 6= 0). If one eigenvalue
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ofA is positive and the other negative, thenQ(x) will take on both positive and negative values. As
a result, we classify symmetric matrices (and their corresponding quadratic forms) quadratic forms
according to these behaviors.

-1 0 1
0

1

2

0
-1

z

y
x

-1 0 1
-1

0

1

0
-1

z

y
x

-1 0 1
-2

-1

0

0
-1

z

y
x

Figure 32.2: Left: Paraboloid Q(x) = x2 + y2. Center: Hyperbolic Paraboloid Q(x) = x2 − y2.
Right: Paraboloid Q(x) = −x2 − y2.

Definition 32.3. A symmetric matrix A (and its associated quadratic form Q) is

(a) positive definite if xTAx > 0 for all x 6= 0,

(b) positive semidefinite if xTAx ≥ 0 for all x,

(c) negative definite if xTAx < 0 for all x 6= 0,

(d) negative semidefinite if xTAx ≤ 0 for all x,

(e) indefinite if xTAx takes on both positive and negative values.

For example, the quadratic form Q(x) = x2 + y2 at left in Figure 32.2 is positive definite (with
repeated eigenvalue 1), the quadratic form Q(x) = −(x2 + y2) in the center of Figure 32.2 is
negative definite (repeated eigenvalue −1), and the hyperbolic paraboloid Q(x) = x2 − y2 at right
in Figure 32.2 is indefinite (eigenvalues 1 and −1).

So we have argued that a quadratic form Q(x) = xTAx is positive definite if A has all positive
eigenvalues, negative definite if A has all negative eigenvalues, and indefinite if A has both positive
and negative eigenvalues. Similarly, the quadratic form is positive semidefinite if A has all nonneg-
ative eigenvalues and negative semidefinite if A has all nonpositive eigenvalues. Positive definite
matrices are important, as the following activity illustrates.

Activity 32.2. Let A be a symmetric n× n matrix, and define 〈 , 〉 : Rn × Rn → R by

〈u,v〉 = uTAv. (32.1)

(a) Explain why it is necessary for A to be positive definite in order for (32.1) to define an
inner product on Rn.

(b) Show that (32.1) defines an inner product on Rn if A is positive definite.
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(c) Let 〈 , 〉 be the mapping from R2 × R2 → R defined by〈[
x1

x2

]
,

[
y1

y2

]〉
= 2x1y1 − x1y2 − x2y1 + x2y2.

Find a matrix A so that 〈x,y〉 = xTAy and explain why 〈 , 〉 defines an inner product.

Examples

What follows are worked examples that use the concepts from this section.

Example 32.4. Write the given quadratic equation in a system in which it has no cross-product
terms.

(a) 8x2 − 4xy + 5y2 = 1

(b) x2 + 4xy + y2 = 1

(c) 4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz − 3 = 0

Example Solution.

(a) We write the quadratic form Q(x, y) = 8x2 − 4xy + 5y2 as xTAx, where x =

[
x
y

]
and

A =

[
8 −2
−2 5

]
. The eigenvalues for A are 9 and 4, and bases for the corresponding

eigenspaces E9 and E4 are {[−2 1]T} and {[1 2]T}, respectively. An orthogonal matrix P
that orthogonally diagonalizes A is

P =

[
− 2√

5
1√
5

1√
5

2√
5

]
.

If y = [u v]T and we let x = Py, then we can rewrite the quadratic equation 8x2 − 4xy +
5y2 = 1 as

8x2 − 4xy + 5y2 = 1

xTAx = 1

(Py)TA(Py) = 1

yTPTAPy = 1

yT

[
9 0
0 4

]
y = 1

9u2 + 4v2 = 1.

So the quadratic equation 8x2 − 4xy + 5y2 = 1 is an ellipse.
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(b) We write the quadratic form Q(x, y) = x2 + 4xy + y2 as xTAx, where x =

[
x
y

]
and

A =

[
1 2
2 1

]
. The eigenvalues for A are 3 and −1, and bases for the corresponding

eigenspaces E3 and E−1 are {[1 1]T} and {[−1 1]T}, respectively. An orthogonal matrix
P that orthogonally diagonalizes A is

P =

[
1√
2

1√
2

− 1√
2

1√
2

]
.

If y = [u v]T and we let x = Py, then we can rewrite the quadratic equation x2 + 4xy +
y2 = 1 as

x2 + 4xy + y2 = 1

xTAx = 1

(Py)TA(Py) = 1

yTPTAPy = 1

yT

[
3 0
0 −1

]
y = 1

3u2 − v2 = 1.

So the quadratic equation x2 + 4xy + y2 = 1 is a hyperbola.

(c) We write the quadratic form Q(x, y, z) = 4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz as xTAx,

where x =

 x
y
z

 and A =

 4 2 2
2 4 2
2 2 4

. The eigenvalues for A are 2 and 8, and bases

for the corresponding eigenspaces E2 and E8 are {[−1 0 1]T, [−1 1 0]T} and {[1 1 1]T},
respectively. Applying the Gram-Schmidt process to the basis forE2 gives us an orthogonal
basis {w1,w2} of E2, where w1 = [−1 0 1]T and

w2 = [−1 1 ]T − [−1 0 1]T · [−1 1 0]T

[−1 0 1]T · [−1 0 1]T
[−1 0 1]T

= [−1 1 0]T − 1

2
[−1 0 1]T

=
1

2
[−1 2 − 1]T.

An orthogonal matrix P that orthogonally diagonalizes A is

P =


− 1√

2
− 1√

6
1√
3

0 2√
6

1√
3

1√
2
− 1√

6
1√
3

 .
If y = [u v w]T and we let x = Py, then we can rewrite the quadratic equation 4x2 +
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4y2 + 4z2 + 4xy + 4xz + 4yz = 3 as

4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz = 3

xTAx = 3

(Py)TA(Py) = 3

yTPTAPy = 3

yT

 2 0 0
0 2 0
0 0 8

y = 3

2u2 + 2v2 + 8w2 = 3.

So the quadratic equation 4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz − 3 = 0 is a ellipsoid.

Example 32.5. Let A and B be positive definite matrices, and let C =

[
5 −3
−3 3

]
.

(a) Must A be invertible? Justify your answer.

(b) Must A−1 be positive definite? Justify your answer.

(c) Must A2 be positive definite? Justify your answer.

(d) Must A+B be positive definite? Justify your answer.

(e) Is C positive definite? Justify your answer.

Example Solution.

(a) SinceA has all positive eigenvalues and det(A) is the product of the eigenvalues ofA, then
det(A) > 0. Thus, A is invertible.

(b) The fact that A is positive definite means that A is also symmetric. Recall that
(
A−1

)T
=(

AT
)−1. Since A is symmetric, it follows that

(
A−1

)T
= A−1 and A−1 is symmetric. The

eigenvalues of A−1 are the reciprocals of the eigenvalues of A. Since the eigenvalues of A
are all positive, so are the eigenvalues of A−1. Thus, A−1 is positive definite.

(c) Notice that (
A2
)T

= (AA)T = ATAT = A2,

so A2 is symmetric. The eigenvalues of A2 are the squares of the eigenvalues of A. Since
no eigenvalue of A is 0, the eigenvalues of A2 are all positive and A2 is positive definite.

(d) We know that B is symmetric, and

(A+B)T = AT +BT = A+B,

so A+B is symmetric. Also, the fact that xTAx > 0 and xTBx > 0 for all x implies that

xT(A+B)x = xTAx + xTBx > 0

for all x. Thus, A+B is positive definite.
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(e) The matrix C is symmetric and

det(C − λI2) = (5− λ)(3− λ)− 9 = λ2 − 8λ+ 6.

So the eigenvalues of C are 4 +
√

10 and 4 −
√

10 ≈ 0.8. Since the eigenvalues of C are
both positive, C is positive definite.

Summary

• A quadratic form on Rn is a function Q defined by

Q(x) = xTAx

for some n× n symmetric matrix A.

• The Principal Axis Theorem tells us that there is a change of variable x = Py that will
remove the cross-product terms from a quadratic form and allow us to identify the form and
determine the principal axes for the form.

Exercises

(1) Find the matrix for each quadratic form.

(a) x2
1 − 2x1x2 + 4x2

2 if x is in R2

(b) 10x2
1 + 4x1x3 + 2x2x3 + x2

3 if x is in R3

(c) 2x1x2 + 2x1x3 − x1x4 + 5x2
2 + 4x3x4 + 8x2

4 if x is in R4

(2) For each quadratic form, identify the matrix A of the form, find a matrix P that orthogonally
diagonalizes A, and make a change of variable that transforms the quadratic form into one
with no cross-product terms.

(a) x2
1 + 2x1x2 + x2

2

(b) −2x2
1 + 2x1x2 + 4x1x3 − 2x2

2 − 4x2x3 − x2
3

(c) 11x2
1 − 12x1x2 − 12x1x3 − 12x1x4 − x2

2 − 2x3x4

(3) One topic in multivariable calculus is constrained optimization. We can use the techniques of
this section to solve certain types of constrained optimization problems involving quadratic
forms. As an example, we will find the maximum and minimum values of the quadratic form

defined by the matrix
[

2 1
1 2

]
on the unit circle.

(a) First we determine some bounds on the values of a quadratic form. Let Q be the
quadratic form defined by the n× n real symmetric matrix A. Let λ1 ≥ λ2 ≥ · · · ≥
λn be the eigenvalues of A, and let P be a matrix that orthogonally diagonalizes A,
with PTAP = D as the matrix with diagonal entries λ1, λ2, . . ., λn in order. Let
y = [y1 y2 · · · yn]T = PT[x1 x2 · · · xn]T.
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i. Show that
Q(x) = λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n.

ii. Use the fact that λ1 ≥ λi for each i and the fact that P (and PT) is an orthogonal
matrix to show that

Q(x) ≤ λ1||x||.
iii. Now show that Q(x) ≥ λn||x||.

(b) Use the result of part (a) to find the maximum and minimum values of the quadratic

form defined by the matrix
[

2 1
1 2

]
on the unit circle.

(4) In this exercise we characterize the symmetric, positive definite, 2 × 2 matrices with real

entries in terms of the entries of the matrices. Let A =

[
a b/2
b/2 c

]
for some real numbers

a, b, and c.

(a) Assume that A is positive definite.

i. Show that a must be positive.
ii. Use the fact that the eigenvalues of A must be positive to show that ac > b2. We

conclude that if A is positive definite, then a > 0 and ac > b2.

(b) Now show that if a > 0 and ac > b2, then A is positive definite. This will complete
our classification of positive definite 2× 2 matrices.

(5) In this exercise we determine the form of

xTAx = 1, (32.2)

where A is a symmetric 2 × 2 matrix. Let P be a matrix that orthogonally diagonalizes A
and let y = PTx.

(a) Substitute y for PTx in the equation xTAx = 1. What form does the resulting
equation have (write this form in terms of the eigenvalues of A)?

(b) What kind of graph does the equation (32.2) have if A is positive definite? Why?

(c) What kind of graph does the equation (32.2) have if A has both positive and negative
eigenvalues? Why?

(d) What kind of graph does the equation (32.2) have if one eigenvalue of A is zero and
the other non-zero? Why?

(6) Let A = [aij ] be a symmetric n× n matrix.

(a) Show that eTi Aej = aij , where ei is the ith standard unit vector for Rn. (This result
will be useful in Exercise 7..)

(b) Let u be a unit eigenvector of A with eigenvalue λ. Find uTAu in terms of λ.

(7) Suppose A and B are symmetric n × n matrices, and let QA(x) = xTAx and QB(x) =
xTBx. If QA(x) = QB(x) for all x in Rn, show that A = B. (Hint: Use Exercise 6 (a) to
compare QA(ei) and QB(ei), then compare QA(ei + ej) to QB(ei + ej) for i 6= j.) Thus,
quadratic forms are uniquely determined by their symmetric matrices.
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(8) In this exercise we analyze all inner products on Rn. Let 〈 , 〉 be an inner product on Rn. Let
x = [x1 x2 . . . xn]T and y = [y1 y2 . . . yn]T be arbitrary vectors in Rn. Then

x =

n∑
i=1

xiei and y =

n∑
j=1

yjej ,

where ei is the ith standard vector in Rn.

(a) Explain why

〈x,y〉 =
n∑
i=1

n∑
j=1

xi〈ei, ej〉yj . (32.3)

(b) Calculate the matrix product

xT


〈e1, e1〉 〈e1, e2〉 · · · 〈e1, en〉
〈e2, e1〉 〈e2, e2〉 · · · 〈e2, en〉

...
...

...
〈en, e1〉 〈en, e2〉 · · · 〈en, en〉

y

and compare to (32.3). What do you notice?

(c) Explain why any inner product on Rn is of the form xTAy for some symmetric,
positive definite matrix A.

(9) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If Q is a quadratic form, then there is exactly one matrix A such that
Q(x) = xTAx.

(b) True/False The matrix of a quadratic form is unique.

(c) True/False If the matrix of a quadratic form is a diagonal matrix, then the quadratic
form has no cross-product terms.

(d) True/False The eigenvectors of the symmetric matrix A form the principal axes of
the quadratic form xTAx.

(e) True/False The principal axes of a quadratic form are orthogonal.

(f) True/False If a and c are positive, then the quadratic equation ax2 + bxy + cy2 = 1
defines an ellipse.

(g) True/False If the entries of a symmetric matrix A are all positive, then the quadratic
form xTAx is positive definite.

(h) True/False If a quadratic form xTAx defined by a symmetric matrix A is positive
definite, then the entries of A are all non-negative.

(i) True/False If a quadratic form Q(x) on R2 is positive definite, then the graph of
z = Q(x) is a paraboloid opening upward.

(j) True/False If a quadratic form Q(x) on R2 is negative definite, then the graph of
z = Q(x) is a paraboloid opening downward.
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(k) True/False If a quadratic form Q(x) on R2 is indefinite, then there is a nonzero
vector x such that Q(x) = 0.

(l) True/False If Q(x) is positive definite, then so is the quadratic form aQ(x) for a >
0.

(m) True/False If If Q(x) = xTAx is indefinite, then at least one of the eigenvalues of
A is negative and at least one positive.

(n) True/False If n × n symmetric matrices A and B define positive definite quadratic
forms, then so does A+B.

(o) True/False If an invertible symmetric matrix A defines a positive definite quadratic
form, then so does A−1.

Project: The Tennis Racket Theorem

If a particle of mass m and velocity v is moving in a straight line, its kinetic energy KE is given
by KE = 1

2mv
2. If, instead, the particle rotates around an axis with angular velocity ω (in radians

per unit of time), its linear velocity is v = rω, where r is the radius of the particle’s circular path.
Substituting into the kinetic energy formula shows that the kinetic energy of the rotating particle
is then KE = 1

2

(
mr2

)
ω2. The quantity mr2 is called the moment of inertia of the particle and

is denoted by I . So KE = 1
2Iω

2 for a rotating particle. Notice that the larger the value of r, the
larger the inertia. You can imagine this with a figure skater. When a skater spins along their major
axis with their arms outstretched, the speed at which they rotate is lower than when they bring their
arms into their bodies. The moment of inertia for rotational motion plays a role similar to the mass
in linear motion. Essentially, the inertia tells us how resistant the particle is to rotation.

To understand the tennis racket effect, we are interested in rigid bodies as they move through
space. Any rigid body in three space has three principal axes about which it likes to spin. These
axes are at right angles to each other and pass through the center of mass. Think of enclosing the
object in an ellipsoid – the longest axis is the primary axis, the middle axis is the intermediate axis,
and the third axis is the third axis. As a rigid body moves through space, it rotates around these
axes and there is inertia along each axis. Just like with a tennis racket, if you were to imagine an
axle along any of the principal axes and spin the object along that axel, it will either rotate happily
with no odd behavior like flipping, or it won’t. The former behavior is that of a stable axis and the
latter an unstable axis. The Tennis Racket Theorem is a statement about the rotation of the body.
Essentially, the Tennis Racket Theorem states that the rotation of a rigid object around its primary
and third principal axes is stable, while rotation around its intermediate axis is not. To understand
why this is so, we need to return to moments of inertia.

Assume that we have a rigid body moving through space. Euler’s (rotation) equation describes
the rotation of a rigid body with respect to the body’s principal axes of inertia. Assume that I1,
I2, and I3 are the moments of inertia around the primary, intermediate, and third principal axes
with I1 > I2 > I3. Also assume that ω1, ω2, and ω3 are the components of the angular velocity
along each axis. When there is no torque applied, using a principal orthogonal coordinates, Euler’s
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equation tells us that

I1ω̇1 = (I2 − I3)ω2ω3 (32.4)

I2ω̇2 = (I3 − I1)ω3ω1 (32.5)

I3ω̇3 = (I1 − I2)ω1ω2. (32.6)

(The dots indicate a derivative with respect to time, which is common notation in physics.) We will
use Euler’s equations to understand the Tennis Racket Theorem.

Project Activity 32.1. To start, we consider rotation around the first principal axis. Our goal is to
show that rotation around this axis is stable. That is, small perturbations in angular velocity will
have only small effects on the rotation of the object. So we assume that ω2 and ω3 are small. In
general, the product of two small quantities will be much smaller, so (32.4) implies that ω̇1 must be
very small. So we can disregard ω̇1 in our calculations.

(a) Differentiate (32.5) with respect to time to explain why

I2ω̈2 ≈ (I3 − I1)ω̇3ω1.

(b) Substitute for ω̇3 from (32.6) to show that ω2 is an approximate solution to

ω̈2 = −kω2 (32.7)

for some positive constant k.

(c) The equation (32.7) is a differential equation because it is an equation that involves deriva-
tives of a function. Show by differentiating twice that, if

ω2 = A cos
(√

kt+B
)

(32.8)

(where A and B are any scalars), then ω2 is a solution to (32.7). (In fact, ω2 is the general
solution to (32.7), which is verified in just about any course in differential equations.)

Equation 32.8 shows that ω2 is is bounded, so that any slight perturbations in angular velocity
have a limited effect on ω2. A similar argument can be made for ω3. This implies that the rotation
around the principal axes is stable – slight changes in angular velocity have limited effects on the
rotations around the other axes.

We can make a similar argument for rotation around the third principal axes.

Project Activity 32.2. In this activity, repeat the process from Project Activity to show that rotation
around the third principal axis is stable. So assume that ω1 and ω3 are small, which implies by (32.6)
implies that ω̇3 must be very small and can be disregarded in calculations.

Now the issue is why is rotation around the second principal axis different.

Project Activity 32.3. Now assume that ω1 and ω3 are small. Thus, ω̇2 is very small by (32.5), and
we consider ω̇2 to be negligible.

(a) Differentiate (32.4) to show that

I1ω̈1 ≈ (I2 − I3)ω2ω̇3.
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(b) Substitute for ω̇3 from (32.6) to show that ω1 is an approximate solution to

ω̈1 = kω1 (32.9)

for some positive scalar k.

(c) The fact that the constant multiplier in (32.9) is positive instead of negative as in (32.7)
completely changes the type of solution. Show that

ω1 = Ae
√
kt+B (32.10)

(whereA andB are any scalars) is a solution to (32.9) (and, in fact, is the general solution).
Explain why this shows that rotation around the second principal axis is not stable.





Section 33

The Singular Value Decomposition

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the operator norm of a matrix and what does it tell us about the
matrix?

• What is a singular value decomposition of a matrix? Why is a singular
value decomposition important?

• How does a singular value decomposition relate fundamental subspaces
connected to a matrix?

• What is an outer product decomposition of a matrix and how is it useful?

Application: Search Engines and Semantics

Effective search engines search for more than just words. Language is complex and search engines
must deal with the fact that there are often many ways to express a given concept (this is called
synonymy, that multiple words can have the same meaning), and that a single word can have multiple
meanings (polysemy). As a consequence, a search on a word may provide irrelevant matches (e.g.,
searching for derivative could provide pages on mathematics or financial securities) or you might
search for articles on cats but the paper you really want uses the word felines. A better search engine
will not necessarily try to match terms, but instead retrieve information based on concept or intent.
Latent Semantic Indexing (LSI) (or Latent Semantic Analysis), developed in the late 1980s, helps
search engines determine concept and intent in order to provide more accurate and relevant results.
LSI essentially works by providing underlying (latent) relationships between words (semantics) that
search engines need to provide context and understanding (indexing). LSI provides a mapping of
both words and documents into a lower dimensional “concept” space, and makes the search in this
new space. The mapping is provided by the singular value decomposition.

581



582 Section 33. The Singular Value Decomposition

Introduction

The singular value decomposition (SVD) of a matrix is an important and useful matrix decompo-
sition. Unlike other matrix decompositions, every matrix has a singular value decomposition. The
SVD is used in a variety of applications including scientific computing, digital signal processing,
image compression, principal component analysis, web searching through latent semantic indexing,
and seismology. Recall that the eigenvector decomposition of an n×n diagonalizable matrixM has
the form P−1MP , where the columns of the matrix P are n linearly independent eigenvectors of
M and the diagonal entries of the diagonal matrix P−1MP are the eigenvalues of M . The singular
value decomposition does something similar for any matrix of any size. One of the keys to the SVD
is that the matrix ATA is symmetric for any matrix A.

The Operator Norm of a Matrix

Before we introduce the Singular Value Decomposition, let us work through some preliminaries
to motivate the idea. The first is to provide an answer to the question “How ‘big’ is a matrix?”
There are many ways to interpret and answer this question, but a substantial (and useful) answer
should involve more than just the dimensions of the matrix. A good measure of the size of a matrix,
which we will refer to as the norm of the matrix, should take into account the action of the linear
transformation defined by the matrix on vectors. This then will lead to questions about how difficult
or easy is it to solve a matrix equation Ax = b.

If we want to incorporate the action of a matrix A into a calculation of the norm of A, we might
think of measuring how much A can change a vector x. This could lead us to using ||Ax|| as some
sort of measure of a norm of A. However, since ||A(cx)|| = |c| ||Ax|| for any scalar c, scaling x
by a large scalar will produce a large norm, so this is not a viable definition of a norm. We could

instead measure the relative effect that A has on a vector x as
||Ax||
||x|| , since this ratio does not

change when x is multiplied by an scalar. The largest of all of these ratios would provide a good
sense of how much A can change vectors. Thus, we define the operator norm of a matrix A as
follows.

Definition 33.1. The operator norm1 of a matrix A is

||A|| = max
||x||6=0

{ ||Ax||
||x||

}
.

Due to the linearity of matrix multiplication, we can restrict ourselves to unit vectors for an
equivalent definition of the operator norm of the matrix A as

||A|| = max
||x||=1

{||Ax||}.

Preview Activity 33.1.

(1) Determine ||A|| if A is the zero matrix.
1Technically this definition should be in terms of a supremum, but because the equivalent definition restricts the x’s

to a compact subset, the sup is achieved and we can use max.
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(2) Determine ||In||, where In is the n× n identity matrix.

(3) Let A =

[
1 0
0 2

]
. Find ||A||. Justify your answer. (Hint: x2

1 + 4x2
2 ≤ 4(x2

1 + x2
2).)

(4) If P is an orthogonal matrix, what is ||P ||? Why?

The operator norm of a matrix tells us that how big the action of an m × n matrix is can be
determined by its action on the unit sphere in Rn (the unit sphere is the set of terminal point of unit
vectors). Let us consider two examples.

Example 33.2. Let A =

[
2 1
2 5

]
. We can draw a graph to see the action of A on the unit circle.

A picture of the set {Ax : ||x|| = 1} is shown in Figure 33.1.

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Figure 33.1: The image of the unit circle under the action of A

It appears that A transforms the unit circle into an ellipse. To find ||A|| we want to maximize
||Ax|| for x on the unit circle. This is the same as maximizing

||Ax||2 = (Ax)T(Ax) = xTATAx.

Now ATA =

[
8 12
12 26

]
is a symmetric matrix, so we can orthogonally diagonalize ATA. The

eigenvalues of ATA are 32 and 2. Let P = [u1 u2], where u1 =
[√

5
5

2
√

5
5

]T
is a unit eigenvector

of ATA with eigenvalue 32 and u2 =
[
−2
√

5
5

√
5

5

]T
is a unit eigenvector of ATA with eigenvalue

2. Then P is an orthogonal matrix such that PT(ATA)P =

[
32 0
0 2

]
= D. It follows that

xT(ATA)x = xTPDPTx = (PTx)TD(PTx).

Now PT is orthogonal, so ||PTx|| = ||x|| and PT maps the unit circle to the unit circle. Moreover,
if x is on the unit circle, then y = Px is also on the unit circle and PTy = PTPx = x. So every
point x on the unit circle corresponds to a point Px on the unit circle. Thus, the forms xT(ATA)x
and (PTx)TD(PTx) take on exactly the same values over all points on the unit circle. Now we
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just need to find the maximum value of (PTx)TD(PTx). This turns out to be relatively easy since
D is a diagonal matrix.

Let’s simplify the notation. Let y = PTx. Then our job is to maximize yTDy. If y = [y1 y2]T,
then

yTDy = 32y2
1 + 2y2

2.

We want to find the maximum value of this expression for y on the unit circle. Note that 2y2
2 ≤ 32y2

2

and so
32y2

1 + 2y2
2 ≤ 32y2

1 + 32y2
2 = 32(y2

1 + y2
2) = 32||y||2 = 32.

Since [1 0]T is on the unit circle, the expression 32y2
1 + 2y2

2 attains the value 32 at some point on
the unit circle, so 32 is the maximum value of yTDy over all y on the unit circle. While we are at
it, we can similarly find the minimum value of yTDy for y on the unit circle. Since 2y2

1 ≤ 32y2
1

we see that
32y2

1 + 2y2
2 ≥ 2y2

1 + 2y2
2 = 2(y2

1 + y2
2) = 2||y||2 = 2.

Since the expression yTDy attains the value 2 at [0 1]T on the unit circle, we can see that yTDy
attains the minimum value of 2 on the unit circle.

Now we can return to the expression xT(ATA)x. Since yTDy assumes the same values as
xT(ATA)x, we can say that the maximum value of xT(ATA)x for x on the unit circle is 32 (and
the minimum value is 2). Moreover, the quadratic form (PTx)TD(PTx) assumes its maximum
value when PTx = [1 0]T or [−1 0]T. Thus, the form xT(ATA)x assumes its maximum value
at the vector x = P [1 0]T = u1 or −u1. Similarly, the quadratic form xT(ATA)x attains its
minimum value at P [0 1]T = u2 or −u2. We conclude that ||A|| =

√
32.

Figure 33.2 shows the image of the unit circle under the action of A and the images of Au1 and
Au2 where u1,u2 are the two unit eigenvectors of ATA. The image also supports that Ax assumes
its maximum and minimum values for points on the unit circle at u1 and u2.

-6 -4 -2 2 4 6
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4

6 Au1

Au2

Figure 33.2: The image of the unit circle under the action of A, and the vectors Au1 and Au2

IMPORTANT NOTE 1: What we have just argued is that the maximum value of ||Ax|| for x on the
unit sphere in Rn is the square root of the largest eigenvalue of ATA and occurs at a corresponding
unit eigenvector.
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Example 33.3. This same process works for matrices other than 2× 2 ones. For example, consider

A =

[
−2 8 20
14 19 10

]
. In this case A maps R3 to R2. The image of the unit sphere {x ∈ R3 :

||x|| = 1} under left multiplication by A is a filled ellipse as shown in Figure 33.3. As with the

-24 -16 -8 8 16 24

-24

-16

-8

8

16

24

Figure 33.3: The image of the unit circle under the action of A, and the vectors Au1 and Au2

previous example, the norm of A is the square root of the maximum value of xT(ATA)x and this

maximum value is the dominant eigenvalue of ATA =


200 250 100

250 425 350

100 350 500

. The eigenvalues of

A are λ1 = 900, λ2 = 225, and λ3 = 0 with corresponding unit eigenvectors u1 =
[

1
3

2
3

2
3

]T,

u1 =
[
−2

3 − 1
3

2
3

]T, and u3 =
[

2
3 − 2

3
1
3

]T. So in this case we have ||A|| =
√

900 = 30. The
transformation defined by matrix multiplication by A from R3 to R2 has a one-dimensional kernel
which is spanned by the eigenvector corresponding to λ3. The image of the transformation is 2-
dimensional and the image of the unit circle is an ellipse where Au1 gives the major axis of the
ellipse and Au2 gives the minor axis. Essentially, the square roots of the eigenvalues of ATA tell
us how A stretches the image space in each direction.

IMPORTANT NOTE 2: We have just argued that the image of the unit n-sphere under the action
of an m× n matrix is an ellipsoid in Rm stretched the greatest amount,

√
λ1, in the direction of an

eigenvector for the largest eigenvalue (λ1) of ATA; the next greatest amount,
√
λ2, in the direction

of a unit vector for the second largest eigenvalue (λ2) of ATA; and so on.

Activity 33.1. Let A =

 0 5
4 3
−2 1

 . Then ATA =

[
20 10
10 35

]
. The eigenvalues of ATA are

λ1 = 40 and λ2 = 15 with respective eigenvectors v1 =

[
1
2
1

]
and v2 =

[
−2

1

]
.

(a) Find ||A||.

(b) Find a unit vector x at which ||Ax|| assumes its maximum value.
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The SVD

The Singular Value Decomposition (SVD) is essentially a concise statement of what we saw in the
previous section that works for any matrix. We will uncover the SVD in this section.

Preview Activity 33.2. Let A =

[
1 1 0
0 1 1

]
. Since A is not square, we cannot diagonalize A.

However, the matrix

ATA =

 1 1 0
1 2 1
0 1 1


is a symmetric matrix and can be orthogonally diagonalized. The eigenvalues of ATA are 3, 1, and
0 with corresponding eigenvectors 1

2
1

 ,
 −1

0
1

 , and

 1
−1

1

 ,
respectively. Use appropriate technology to do the following.

(1) Find an orthogonal matrix V = [v1 v2 v3] that orthogonally diagonalizes ATA, where

V T
(
ATA

)
V =

 3 0 0
0 1 0
0 0 0

 .
(2) For i = 1, 2, let ui = Avi

||Avi|| . Find each ui. Why don’t we define u3 in this way?

(3) Let U = [u1 u2]. What kind of matrix is U? Explain.

(4) Calculate the matrix product UTAV . What do you notice? How is this similar to the eigen-
vector decomposition of a matrix?

Preview Activity 33.2 contains the basic ideas behind the Singular Value Decomposition. Let
A be an m × n matrix with real entries. Note that ATA is a symmetric n × n matrix and, hence,
it can be orthogonally diagonalized. Let V = [v1 v2 v3 · · · vn] be an n × n orthogonal matrix
whose columns form an orthonormal set of eigenvectors for ATA. For each i, let (ATA)vi = λivi.
We know

V T(ATA)V =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

...
0 0 0 · · · λn

 .
Now notice that for each i we have

||Avi||2 = (Avi)
T(Avi) = vT

i (ATA)vi = vT
i λivi = λi||vi||2 = λi, (33.1)

so λi ≥ 0. Thus, the matrix ATA has no negative eigenvalues. We can always arrange the eigen-
vectors and eigenvalues of ATA so that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
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Also note that

(Avi) · (Avj) = (Avi)
T(Avj) = vT

i (ATA)vj = vT
i λj vj = λjvi · vj = 0

if i 6= j. So the set {Av1, Av2, . . . , Avn} is an orthogonal set in Rm. Each of the vectors Avi
is in Col A, and so {Av1, Av2, . . . , Avn} is an orthogonal subset of Col A. It is possible that
Avi = 0 for some of the vi (if ATA has 0 as an eigenvalue). Let v1, v2, . . ., vr be the eigenvectors
corresponding to the nonzero eigenvalues. Then the set

B = {Av1, Av2, . . . , Avr}
is a linearly independent set of nonzero orthogonal vectors in Col A. Now we will show that B is a
basis for Col A. Let y be a vector in Col A. Then y = Ax for some vector x in Rn. Recall that the
vectors v1, v2, . . ., vn form an orthonormal basis of Rn, so

x = x1v1 + x2v2 + · · ·+ xnvn

for some scalars x1, x2, . . ., xn. Since Avj = 0 for r + 1 ≤ j ≤ n we have

y = Ax

= A(x1v1 + x2v2 + · · ·+ xnvn)

= x1Av1 + x2Av2 + · · ·+ xrAvr + xr+1Avr+1 + · · ·+ xnAvn

= x1Av1 + x2Av2 + · · ·+ xrAvr.

So Span B = Col A and B is an orthogonal basis for Col A.

Now we are ready to find the Singular Value Decomposition of A. First we create an orthonor-
mal basis {u1,u2, . . . ,ur} for Col A by normalizing the vectors Avi. So we let

ui =
Avi
||Avi||

for i from 1 to r.

Remember from (33.1) that ||Avi||2 = λi, so if we let σi =
√
λi, then we have

ui =
Avi
σi

and Avi = σiui.

We ordered the λi so that λ1 ≥ λ2 ≥ · · · ≥ λn, so we also have

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The scalars σ1, σ2, . . ., σn are called the singular values of A.

Definition 33.4. Let A be an m × n matrix. The singular values of A are the square roots of the
eigenvalues of ATA.

The vectors u1, u2, . . ., ur are r orthonormal vectors in Rm. We can extend the set {u1, u2,
. . ., ur} to an orthonormal basis C = {u1,u2, . . . ,ur,ur+1ur+2, . . . ,um} of Rm. Recall that
Avi = σiui for 1 ≤ i ≤ r and Avj = 0 for r + 1 ≤ j ≤ n, so

AV = A[v1 v2 · · · vn]

= [Av1 Av2 · · · Avn]

= [σ1u1 σ2u2 · · · σrur 0 0 · · · 0].
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We can write the matrix [σ1v1 σ2v2 · · · σrvr 0 0 · · · 0] in another way. Let Σ be the m × n
matrix defined as

Σ =



σ1 0
σ2 0

σ3

. . .
0 σr

0 0


.

Now
[u1 u2 · · · um]Σ = [σ1u1 σ1u2 · · · σrur 0 0 · · · 0] = AV.

So if U = [u1 u2 · · · um], then
UΣ = AV.

Since V is an orthogonal matrix, we have that

UΣV T = AV V T = A.

This is the Singular Value Decomposition of A.

Theorem 33.5 (The Singular Value Decomposition). Let A be an m × n matrix of rank r. There
exist anm×m orthogonal matrix U , an n×n orthogonal matrix V , and anm×n matrix Σ whose
first r diagonal entries are the singular values σ1, σ2, . . ., σr and whose other entries are 0, such
that

A = UΣV T.

SVD Summary: A Singular Value Decomposition of an m × n matrix A of rank r can be found
as follows.

(1) Find an orthonormal basis {v1,v2,v3, . . . ,vn} of eigenvectors ofATA such that (ATA)vi =
λivi for i from 1 to n with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with the first r eigenvalues being posi-
tive. The vectors v1, v2, v3, . . ., vn are the right singular vectors of A.

(2) Let
V = [v1 v2 v3 · · · vn].

Then V orthogonally diagonalizes ATA.

(3) The singular values of A are the numbers σi, where σi =
√
λi > 0 for i from 1 to r. Let Σ

be the m× n matrix

Σ =



σ1 0
σ2 0

σ3

. . .
0 σr

0 0


(4) For i from 1 to r, let ui = Avi

||Avi|| . Then the set {u1,u2, . . . ,ur} forms an orthonormal basis
of Col A.
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(5) Extend the set {u1,u2, . . . ,ur} to an orthonormal basis

{u1,u2, . . . ,ur,ur+1ur+2, . . . ,um}

of Rm. Let

U = [u1 u2 · · · um].

The vectors u1, u2, . . ., um are the left singular vectors of A.

(6) Then A = UΣV T is a singular value decomposition of A.

Activity 33.2. Let A =


0 5

4 3

−2 1

 . Then ATA =

[
20 10

10 35

]
. The eigenvalues of ATA are

λ1 = 40 and λ2 = 15 with respective eigenvectors w1 =

[
1
2

]
and w2 =

[
−2

1

]
.

(a) Find an orthonormal basis {v1,v2,v3, . . . ,vn} of eigenvectors of ATA. What is n? Find
the matrix V in a SVD for A.

(b) Find the singular values of A. What is the rank r of A? Why?

(c) What are the dimensions of the matrix Σ in the SVD of A? Find Σ.

(d) Find the vectors u1, u2, . . ., ur. If necessary, extend this set to an orthonormal basis

{u1,u2, . . . ,ur,ur+1ur+2, . . . ,um}

of Rm.

(e) Find the matrix U so that A = UΣV T is a SVD for A.

There is another way we can write this SVD ofA. Let them×nmatrixA have a singular value
decomposition UΣV T, where

U = [u1 u2 · · · um],

Σ =



σ1 0
σ2 0

σ3

. . .
0 σr

0 0


, and

V = [v1 v2 v3 · · · vn].
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Since A = UΣV T we see that

A = [u1 u2 u3 · · · um]



σ1 0
σ2 0

σ3

. . .
0 σr

0 0





vT
1

vT
2

vT
3
...
vT
n



= [σ1u1 σ2u2 σ3u3 · · · σrur 0 · · · 0]



vT
1

vT
2

vT
3
...
vT
n


= σ1u1v

T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σrurv

T
r . (33.2)

This is called an outer product decomposition of A and tells us everything we learned above about
the action of the matrix A as a linear transformation. Each of the products uivT

i is a rank 1 matrix
(see Exercise 9.), and ||Av1|| = σ1 is the largest value A takes on the unit n-sphere, ||Av2|| = σ2

is the next largest dilation of the unit n-sphere, and so on. An outer product decomposition allows
us to approximate A with smaller rank matrices. For example, the matrix σ1u1v

T
1 is the best rank

1 approximation to A, σ1u1v
T
1 + σ2u2v

T
2 is the best rank 2 approximation, and so on. This will be

very useful in applications, as we will see in the next section.

SVD and the Null, Column, and Row Spaces of a Matrix

We conclude this section with a short discussion of how a singular value decomposition relates
fundamental subspaces of a matrix. We have seen that the vectors u1, u2, . . ., ur in an SVD for
an m × n matrix A form a basis for Col A. Recall also that Avj = 0 for r + 1 ≤ j ≤ n. Since
dim(Nul A) + dim(Col A) = n, it follows that the vectors vr+1, vr+2, . . ., vn form a basis for
Nul A. As you will show in the exercises, the set {v1,v2, . . . ,vr} is a basis for Row A. Thus, an
SVD for a matrix A tells us about three fundamental vector spaces related to A.

Examples

What follows are worked examples that use the concepts from this section.

Example 33.6. Let A =

 2 0 0 0
0 2 1 0
0 1 2 0

.

(a) Find a singular value decomposition for A. You may use technology to find eigenvalues
and eigenvectors of matrices.

(b) Use the singular value decomposition to find a basis for Col A, Row A, and Nul A.
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Example Solution.

(a) With A as given, we have ATA =


4 0 0 0
0 5 4 0
0 4 5 0
0 0 0 0

. Technology shows that the eigenval-

ues of ATA are λ1 = 9, λ2 = 4, λ3 = 1, and λ4 = 0 with corresponding orthonormal
eigenvectors v1 = 1√

2
[0 1 1 0]T, v2 = [1 0 0 0]T, v3 = 1√

2
[0−1 1 0]T, and v4 = [0 0 0 1]T.

This makes V = [v1 v2 v3 v4]. The singular values of A are σ1 =
√

9 = 3, σ2 =
√

4 = 2,
σ3 =

√
1 = 1, and σ4 = 0, so Σ is the 3 × 4 matrix with the nonzero singular val-

ues along the diagonal and zeros everywhere else. Finally, we define the vectors ui as
ui = 1

||Avi||Avi. Again, technology gives us u1 = 1√
2
[0 1 1]T, u2 = [1 0 0]T, and

u3 = 1√
2
[0 − 1 1]T. Thus, a singular value decomposition of A is UΣV T, where

U =


0 1 0
1√
2

0 − 1√
2

1√
2

0 1√
2

 ,
Σ =

 3 0 0 0
0 2 0 0
0 0 1 0

 , and

V =


0 1 0 0
1√
2

0 − 1√
2

0
1√
2

0 1√
2

0

0 0 0 1

 .

(b) Recall that the right singular vectors of an m× n matrix A of rank r form an orthonormal
basis {v1,v2,v3, . . . ,vn} of eigenvectors of ATA such that (ATA)vi = λivi for i from
1 to n with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. These vectors are the columns of the matrix
V = [v1 v2 · · · vn] in a singular value decomposition of A.

For i from 1 to r, we let ui = Avi
||Avi|| . Then the set {u1,u2, . . . ,ur} forms an or-

thonormal basis of Col A. We extend this set {u1,u2, . . . ,ur} to an orthonormal basis
{u1,u2, . . . ,ur,ur+1ur+2, . . . ,um} of Rm.

Recall also that Avj = 0 for r + 1 ≤ j ≤ n. Since dim(Nul A) + dim(Col A) = n,
it follows that the vectors vr+1, vr+2, . . ., vn form a basis for Nul A. Finally, the set
{v1,v2, . . . ,vr} is a basis for Row A.

So in our example, we have m = 3, n = 4, v1 = 1√
2
[0 1 1 0]T, v2 = [1 0 0 0]T,

v3 = 1√
2
[0 − 1 1 0]T, and v4 = [0 0 0 1]T. Since the singular values of A are 3, 2, 1, and

0, it follows that r = rank(A) = 3. We also have u1 = 1√
2
[0 1 1]T, u2 = [1 0 0]T, and

u3 = 1√
2
[0 − 1 1]T. So{

1√
2

[0 1 1 0]T, [1 0 0 0]T,
1√
2

[0 − 1 1 0]T
}



592 Section 33. The Singular Value Decomposition

is a basis for Row A and
{[0 0 0 1]T}

is a basis for Nul A. Finally, the set{
1√
2

[0 1 1]T, [1 0 0]T,
1√
2

[[0 − 1 1]T
}

is a basis for Col A.

Example 33.7. Let

A =


2 5 4
6 3 0
6 3 0
2 5 4

 .
The eigenvalues of ATA are λ1 = 144, λ2 = 36, and λ3 = 0 with corresponding eigenvectors

w1 =

 2
2
1

 , w1 =

 −2
1
2

 , and w1 =

 1
−2

2

 .
In addition,

Aw1 =


18
18
18
18

 and Aw2 =


9
−9
−9

9

 .

(a) Find orthogonal matrices U and V , and the matrix Σ, so that UΣV T is a singular value
decomposition of A.

(b) Determine the best rank 1 approximation to A.

Example Solution.

(a) Normalizing the eigenvectors w1, w2, and w3 to normal eigenvectors v1, v2, and v3,
respectively, gives us an orthogonal matrix

V =


2
3 −2

3
1
3

2
3

1
3 −2

3

1
3

2
3

2
3

 .
NowAvi = A wi

||wi|| = 1
||wi||Awi, so normalizing the vectorsAv1 andAv2 gives us vectors

u1 =
1

2


1
1
1
1

 and u2 =
1

2


1
−1
−1

1


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that are the first two columns of our matrix U . Given that U is a 4 × 4 matrix, we need to
find two other vectors orthogonal to u1 and u2 that will combine with u1 and u2 to form an
orthogonal basis for R4. Letting z1 = [1 1 1 1]T, z2 = [1 −1 −1 1]T, z3 = [1 0 0 0]T, and
z4 = [0 1 0 1]T, a computer algebra system shows that the reduced row echelon form of
the matrix [z1 z2 z3 z4] is I4, so that vectors z1, z2, z3, z4 are linearly independent. Letting
w1 = z1 and w2 = z2, the Gram-Schmidt process shows that the set {w1,w2,w3,w4} is
an orthogonal basis for R4, where

w3 = [1 0 0 0]T − [1 0 0 0]T · [1 1 1 1]T

[1 1 1 1]T · [1 1 1 1]T
[1 1 1 1]T

− [1 0 0 0]T · [1 − 1 − 1 1]T

[1 − 1 − 1 1]T · [1 − 1 − 1 1]T
[1 − 1 − 1 1]T

= [1 0 0 0]T − 1

4
[1 1 1 1]T − 1

4
[1 − 1 − 1 1]T

=
1

4
[2 0 0 − 2]T

and (using [1 0 0 − 1]T for w3)

w4 = [0 1 0 0]T − [0 1 0 0]T · [1 1 1 1]T

[1 1 1 1]T · [1 1 1 1]T
[1 1 1 1]T

− [0 1 0 0]T · [1 − 1 − 1 1]T

[1 − 1 − 1 1]T · [1 − 1 − 1 1]T
[1 − 1 − 1 1]T

− [0 1 0 0]T · [1 0 0 − 1]T

[1 0 0 − 1]T · [1 0 0 − 1]T
[1 0 0 − 1]T

= [0 1 0 0]T − 1

4
[1 1 1 1]T +

1

4
[1 − 1 − 1 1]T − 0

=
1

4
[0 2 − 2 0]T.

The set {u1,u2,u3,u4} where u1 = 1
2 [1 1 1 1]T, u2 = 1

2 [1 −1 −1 1]T, u3 = 1√
2
[1 0 0 −

1]T and u4 = 1√
2
[0 1 − 1 0]T is an orthonormal basis for R4 and we can let

U =


1
2

1
2

1√
2

0

1
2 −1

2 0 1√
2

1
2 −1

2 0 − 1√
2

1
2

1
2 − 1√

2
0

 .

The singular values of A are σ1 =
√
λ1 = 12 and σ2 =

√
λ2 = 6, and so

Σ =


12 0 0
0 6 0
0 0 0
0 0 0

 .



594 Section 33. The Singular Value Decomposition

Therefore, a singular value decomposition of A is UΣV T of
1
2

1
2

1√
2

0
1
2 −1

2 0 1√
2

1
2 −1

2 0 − 1√
2

1
2

1
2 − 1√

2
0




12 0 0
0 6 0
0 0 0
0 0 0




2
3

2
3

1
3

−2
3

1
3

2
3

1
3 −2

3
2
3

 .
(b) Determine the best rank 1 approximation to A. The outer product decomposition of A is

A = σ1u1v
T
1 + σ2u2v

T
2 .

So the rank one approximation to A is

σ1u1v
T
1 = 12

(
1

2

)
1
1
1
1

 [ 2
3

2
3

1
3

]
=


4 4 2

4 4 2

4 4 2

4 4 2

 .
Note that the rows in this rank one approximation are the averages of the two distinct rows
in the matrix A, which makes sense considering that this is the closest rank one matrix to
A.

Summary

We learned about the singular value decomposition of a matrix.

• The operator norm of an m× n matrix A is

||A|| = max
||x||6=0

||Ax||
||x|| = max

||x||=1
||Ax||.

The operator norm of a matrix tells us that how big the action of an m × n matrix is can be
determined by its action on the unit sphere in Rn.

• A singular value decomposition of an m× n matrix is of the form A = UΣV T, where

– V = [v1 v2 v3 · · · vn] where {v1,v2,v3, . . . ,vn} is an orthonormal basis of eigenvec-
tors ofATA such that (ATA)vi = λivi for i from 1 to nwith λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

– U = [u1 u2 · · · um] where ui = Avi
||Avi|| for i from 1 to r, and this orthonormal basis

of Col A is extended to an orthonormal basis {u1,u2, . . . ,ur,ur+1ur+2, . . . ,um} of
Rm,

– Σ =



σ1 0
σ2 0

σ3

. . .
0 σr

0 0


, where σi =

√
λi > 0 for i from 1 to r.
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A singular value decomposition is important in that every matrix has a singular value decom-
position, and a singular value decomposition has a variety of applications including scientific
computing and digital signal processing, image compression, principal component analysis,
web searching through latent semantic indexing, and seismology.

• The vectors u1, u2, . . ., ur in an SVD for an m × n matrix A form a basis for Col A while
the vectors vr+1, vr+2, . . ., vn form a basis for Nul A. Also, the set {v1,v2, . . . ,vr} is a
basis for Row A.

• Let A have an SVD as in the second bullet. Decomposing A as

A = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σrurv

T
r

is an outer product decomposition of A. An outer product decomposition allows us to ap-
proximate A with smaller rank matrices. For example, the matrix σ1u1v

T
1 is the best rank 1

approximation to A, σ1u1v
T
1 + σ2u2v

T
2 is the best rank 2 approximation, and so on.

Exercises

(1) Find a singular value decomposition of the following matrices.

(a)
[

1 1
0 0

]
(b)

 1
0
1



(c)
[

1 1 0
1 0 1

]
(d)


1 2
2 1
3 1
1 3


(e)

 2 0 0 0
0 2 1 0
0 1 2 0


(2) Let A be an m × n matrix of rank r with singular value decomposition UΣV T, where U =

[u1 u2 · · · um] and V = [v1 v2 · · · vn]. We have seen that the set {u1,u2, . . . ,ur} is a
basis for Col A, and the vectors vr+1, vr+2, . . ., vn form a basis for Nul A. In this exercise
we examine the set {v1,v2, . . . ,vr} and determine what this set tells us about Row A.

(a) Find a singular value decomposition for AT. (Hint: Use the singular value decom-
position UΣV T for A.)

(b) Explain why the result of (a) shows that the set {v1,v2, . . . ,vr} is a basis for Row A.

(3) Let A =

 1 1
2 2
3 3

.

(a) Find the singular values of A.

(b) Find a singular value decomposition of A.

(c) Use a singular value decomposition to find orthonormal bases for the following:
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i. Nul A
ii. Col A

iii. Row A

(4) Let A have the singular value decomposition as in (33.2).

(a) Show, using (33.2), that ||Avj || = σj .

(b) Explain why ||A|| = σ1. (Hint: The set {v1,v2, . . . ,vn} is an orthonormal basis of
Rn. Use this to show that ||Ax||2 ≤ σ2

1 for any unit vector x in Rn.)

(5) Show that A and AT have the same nonzero singular values. How are their singular value
decompositions related?

(6) The vectors vi that form the columns of the matrix V in a singular value decomposition of a
matrix A are eigenvectors of ATA. In this exercise we investigate the vectors ui that make
up the columns of the matrix U in a singular value decomposition of a matrix A for each i
between 1 and the rank of A, and their connection to the matrix AAT.

(a) Let A =

[
1 1 0
0 1 −1

]
. A singular value decomposition of A is UΣV T, where

U =
1√
2

[
−1 1
−1 −1

]
,

Σ =

[ √
3 0 0

0 1 0

]
,

V =

 −
1√
6
− 1

3
√

6
1√
6

1√
2

0 1√
2

− 1√
3

1√
3

1√
3

 .
i. Determine the rank r of ATA and identify the vectors u1, u2, . . ., ur.

ii. Calculate AATui for each i between 1 and r. How is AATui related to ui?

(b) Now we examine the result of part (a) in general. Let A be an arbitrary matrix.
Calculate AATui for 1 ≤ i ≤ rank(A) and determine specifically how AATui is
related to ui. What does this tell us about the vectors ui and the matrix AAT?

(c) Now show in general that the columns of U are orthonormal eigenvectors for AAT.
(That is, what can we say about the vectors ui if i > rank(A)?)

(7) If A is a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, what is ||A||? Justify
your answer.

(8) Let A be a n× n symmetric matrix.

(a) Show that if v is an eigenvector of A with eigenvalue λ, then v is an eigenvector for
ATA. What is the corresponding eigenvalue?

(b) Show that if v is an eigenvector of ATA with non-negative eigenvalue λ, then Av is
an eigenvector of ATA. What is the corresponding eigenvalue?
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(c) Suppose UΣV T is a singular value decomposition of A. Explain why V ΣV T is also
a singular value decomposition of A.

(9) Let u1, u2, . . ., ur and v1, v2, . . ., vr be the vectors found in a singular value decomposition
of a matrix A, where r is the rank of A. Show that uivT

i is a rank 1 matrix for each i. (Hint:
Compare to Exercise 5. in Section 31.)

(10) Is it possible for a matrix A to have a singular value decomposition UΣV T in which U = V ?
If no, explain why. If yes, determine for which matrices we can have U = V .

(11) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If σ is a singular value of a matrix A, then σ is an eigenvalue of ATA.

(b) True/False A set of right singular vectors of a matrix A is also a set of left singular
vectors of AT.

(c) True/False The transpose of a singular value decomposition of a matrix A is a sin-
gular value decomposition for AT.

(d) True/False Similar matrices have the same singular values.

(e) True/False If A is an n× n matrix, then the singular values of A2 are the squares of
the singular values of A.

(f) True/False The Σ matrix in an SVD of A is unique.

(g) True/False The matrices U, V in an SVD of A are unique.

(h) True/False If A is a positive definite matrix, then an orthogonal diagonalization of
A is an SVD of A.

Project: Latent Semantic Indexing

As an elementary example to illustrate the idea behind Latent Semantic Indexing (LSI), consider the
problem of creating a program to search a collection of documents for words, or words related to a
given word. Document collections are usually very large, but we use a small example for illustrative
purposes. A standard example that is given in several publications2 is the following. Suppose we
have nine documents c1 through c5 (titles of documents about human-computer interaction) andm1

through m4 (titles of graph theory papers) that make up our library:

• c1: Human machine interface for ABC computer applications

• c2: A survey of user opinion of computer system response time

• c3: The EPS user interface management system

• c4: System and human system engineering testing of EPS
2 e.g., Deerwester, S., Dumais, S. T., Fumas, G. W., Landauer, T. K. and Harshman, R. Indexing by latent semantic

analysis. Journal of the American Society for Information Science, 1990, 41: 391?407, and Landauer, T. and Dutnais, S.
A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of
Knowledge. Psychological Review, 1997. Vol. 1M. No. 2, 211-240.
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• c5: Relation of user perceived response time to error measurement

• m1: The generation of random, binary, ordered trees

• m2: The intersection graph of paths in trees

• m3: Graph minors IV: Widths of trees and well-quasi-ordering

• m4: Graph minors: A survey

To make a searchable database, one might start by creating a list of key terms that appear in the
documents (generally removing common words such as “a”, “the”, “of”, etc., called stop words
– these words contribute little, if any, context). In our documents we identify the key words that
are shown in italics. (Note that we are just selecting key words to make our example manageable,
not necessarily identifying the most important words.) Using the key words we create a term-
document matrix. The term-document matrix is the matrix in which the terms form the rows and
the documents the columns. If A = [aij ] is the term-document matrix, then aij counts the number
of times word i appears in document j. The term-document matrix A for our library is

c1 c2 c3 c4 c5 m1 m2 m3 m4

human
interface
computer
user
system
response
time
EPS
survey
trees
graph
minors



1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 1 1 2 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1



.
(33.3)

One of our goals is to rate the pages in our library for relevance if we search for a query. For
example, suppose we want to rate the pages for the query survey, computer. This query can be
represented by the vector q = [0 0 1 0 0 0 0 0 1 0 0 0]T.

Project Activity 33.1. In a standard term-matching search with m× n term-document matrix A, a
query vector q would be matched with the terms to determine the number of matches. The matching
counts the number of times each document agrees with the query.

(a) Explain why this matching is accomplished by the matrix-vector product ATq.

(b) Let y = [y1 y2 . . . yn]T = ATq. Explain why yi = cos(θi)||ai||||q||, where ai is the ith
column of A and θi is the angle between ai and q.

(c) We can use the cosine calculation from part (b) to compare matches to our query – the
closer the cosine is to 1, the better the match (dividing by the product of the norms is
essentially converting all vectors to unit vectors for comparison purposes). This is often
referred to as the cosine distance. Calculate the cosines of the θi for our example of the
query q = [0 0 1 0 0 0 0 0 1 0 0 0]T. Order the documents from best to worst match for
this query.
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Though we were able to rate the documents in Project Activity 33.1 using the cosine distance,
the result is less than satisfying. Documents c3, c4, and c5 are all related to computers but do not
appear at all in or results. This is a problem with language searches – we don’t want to compare
just words, but we also need to compare the concepts the words represent. The fact that words can
represent different things implies that a random choice of word by different authors can introduce
noise into the word-concept relationship. To filter out this noise, we can apply the singular value
decomposition to find a smaller set of concepts to better represent the relationships. Before we do
so, we examine some useful properties of the term-document matrix.

Project Activity 33.2. Let A = [a1 a2 · · · a9], where a1, a2, . . ., a9 are the columns of A.

(a) In Project Activity 33.1 you should have seen that bij = aTi aj = ai · aj . Assume for the
moment that all of the entries inA are either 0 or 1. Explain why in this case the dot product
ai · aj tells us how many terms documents i and j have in common. Also, the matrix ATA
takes dot products of the columns of A, which refer to what’s happening in each document
and so is looking at document-document interactions. For these reasons, we call ATA the
document-document matrix.

(b) Use appropriate technology to calculate the entries of the matrix C = [cij ] = AAT. This
matrix is the term-term matrix. Assume for the moment that all of the entries inA are either
0 or 1. Explain why if terms i and j occur together in k documents, then cij = k.

The nature of the term-term and document-document matrices makes it realistic to think about
a SVD.

Project Activity 33.3. To see why a singular value decomposition might be useful, suppose our
term-document matrix A has singular value decomposition A = UΣV T. (Don’t actually calculate
the SVD yet).

(a) Show that the document-document matrix ATA satisfies ATA =
(
V ΣT

) (
V ΣT

)T. This
means that we can compare document i and document j using the dot product of row i and
column j of the matrix product V ΣT.

(b) Show that the term-term matrixAAT satisfiesAAT = (UΣ) (UΣ)T. Thus we can compare
term i and term j using the dot product of row i and column j of the matrix product UΣ.
(Exercise 6 shows that the columns of U are orthogonal eigenvectors of AAT.)

As we will see, the connection of the matrices U and V to documents and terms that we saw
in Project Activity 33.3 will be very useful when we use the SVD of the term-document matrix to
reduce dimensions to a “concept” space. We will be able to interpret the rows of the matrices U and
V as providing coordinates for terms and documents in this space.

Project Activity 33.4. The singular value decomposition (SVD) allows us to produce new, im-
proved term-document matrices. For this activity, use the term-document matrix A in (33.3).

(a) Use appropriate technology to find a singular value decomposition of A so that A =
UΣV T. Print your entries to two decimal places (but keep as many as possible for compu-
tational purposes).
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(b) Each singular value tells us how important its semantic dimension is. If we remove the
smaller singular values (the less important dimensions), we retain the important informa-
tion but eliminate minor details and noise. We produce a new term-document matrix Ak
by keeping the largest k of the singular values and discarding the rest. This gives us an
approximation

Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

using the outer product decomposition, where σ1, σ2, . . ., σk are the k largest singular
values of A. Note that if A is an m × n matrix, letting Uk = [u1 u2 · · · uk] (an m × k
matrix), Σk the k × k matrix with the first k singular values along the diagonal, and V T =
[v1 v2 · · · vk]T (a k×nmatrix), then we can also writeAk = UkΣkV

T
k . This is sometimes

referred to as a reduced SVD. FindU2, Σ2, and V T
2 , and find the new term-document matrix

A2.

Once we have our term-document matrix, there are three basic comparisons to make: comparing
terms, comparing documents, and comparing terms and documents. Term-document matrices are
usually very large, with dimension being the number of terms. By using a reduced SVD we can
create a much smaller approximation. In our example, the matrix Ak in Project Activity 33.4
reduces our problem to a k-dimensional space. Intuitively, we can think of LSI as representing
terms as averages of all of the documents in which they appear and documents as averages of all
of the terms they contain. Through this process, LSI attempts to combine the surface information
in our library into a deeper abstraction (the “concept” space) that captures the mutual relationships
between terms and documents.

We now need to understand how we can represent documents and terms in this smaller space
where Ak = UkΣkV

T
k . Informally, we can consider the rows of Uk as representing the coordinates

of each term in the lower dimensional concept space and the columns of V T
k as the coordinates of

the documents, while the entries of Σk tell us how important each semantic dimension is. The dot
product of two row vectors of Ak indicates how terms compare across documents. This product is
AkA

T
k . Just as in Project Activity 33.3, we have AkAT

k = (UkΣk) (UkΣk)
T. In other words, if we

consider the rows of UkΣk as coordinates for terms, then the dot products of these rows give us term
to term comparisons. (Note that multiplying U by Σ just stretches the rows of U by the singular
values according to the importance of the concept represented by that singular value.) Similarly, the
dot product between columns of A provide a comparison of documents. This comparison is given
by AT

kA
=
k

(
VkΣ

T
k

) (
VkΣ

T
k

)T (again by Project Activity 33.3). So we can consider the rows of V ΣT

as providing coordinates for documents.

Project Activity 33.5. We have seen how to compare terms to terms and documents to documents.

The matrixAk itself compares terms to documents. Show thatAk =
(
UkΣ

1/2
k

)(
VkΣ

1/2
k

)T
, where

Σ
1/2
k is the diagonal matrix of the same size as Σk whose diagonal entries are the square roots of

the corresponding diagonal entries in Σk. Thus, all useful comparisons of terms and documents can
be made using the rows of the matrices U and V , scaled in some way by the singular values in Σ.

To work in this smaller concept space, it is important to be able to find appropriate comparisons
to objects that appeared in the original search. For example, to complete the latent structure view
of the system, we must also convert the original query to a representation within the new term-
document system represented by Ak. This new representation is called a pseudo-document.
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human
interface
computer
user
system
response
time
EPS
survey
trees
graph
minors



−0.22 −0.11
−0.20 −0.07
−0.24 0.04
−0.40 0.06
−0.64 −0.17
−0.27 0.11
−0.27 0.11
−0.30 −0.14
−0.21 0.27
−0.01 0.49
−0.04 0.62
−0.03 0.45



(33.4)

Terms in the reduced concept space.

c1 c2 c3 c4 c5 m1 m2 m3 m4[
−0.20 −0.61 −0.46 −0.54 −0.28 −0.00 −0.01 −0.02 −0.08
−0.06 0.17 −0.13 −0.23 0.11 0.19 0.44 0.62 0.53

]
(33.5)

Documents in the reduced concept space.

Project Activity 33.6. For an original query q, we start with its term vector aq (a vector in the
coordinate system determined by the columns of A) and find a representation vq that we can use as
a column of V T in the document-document comparison matrix. If this representation was perfect,
then it would take a real document in the original system given byA and produce the corresponding
column of U if we used the full SVD. In other words, we would have aq = UΣvT

q .

(a) Use the fact that Ak = UkΣkV
T
k , to show that Vk = AT

kUkΣ
−1
k . It follows that q is

transformed into the query qk = qTUkΣ
−1
k .

(b) In our example, using k = 2, the terms can now be represented as 2-dimensional vectors
(the rows of U2, see (33.4)), or as points in the plane. More specifically, human is repre-
sented by the vector (to two decimal places) [−0.22 −0.11]T, interface by [−0.20 −0.07]T,
etc. Similarly, the documents are represented by columns of V2 (see (33.5)), so that the
document c1 is represented by [−0.20 − 0.06]T, c2 by [−0.61 0.17]T, etc. From this per-
spective we can visualize these documents in the plane. Plot the documents and the query
in the 2-dimensional concept space. Then calculate the cosine distances from the query
to the documents in this space. Which documents now give the best three matches to the
query? Compare the matches to your plot.

As we can see from Project Activity 33.6, the original query had no match at all with any
documents except c1, c2, and m4. In the new concept space, the query now has some connection
to every document,. So LSI has made semantic connections between the terms and documents that
were not present in the original term-document matrix, which gives us better results for our search.





Section 34

Approximations Using the Singular
Value Decomposition

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the condition number of a matrix and what does it tell us about the
matrix?

• What is the pseudoinverse of a matrix?

• Why are pseudoinverses useful?

• How can we find a least squares solution to an equation Ax = b?

Application: Global Positioning System

You are probably familiar with the Global Positioning System (GPS). The system allows anyone
with the appropriate software to accurately determine their location at any time. The applications
are almost endless, including getting real-time driving directions while in your car, guiding missiles,
and providing distances on golf courses.

The GPS is a worldwide radio-navigation system owned by the US government and operated
by the US Air Force. GPS is one of four global navigation satellite systems. At least twenty four
GPS satellites orbit the Earth at an altitude of approximately 11,000 nautical miles. The satellites
are placed so that at any time at least four of them can be accessed by a GPS receiver. Each satellite
carries an atomic clock to relay a time stamp along with its position in space. There are five ground
stations to coordinate and ensure that the system is working properly.

The system works by triangulation, but there is also error involved in the measurements that go
into determining position. Later in this section we will see how the method of least squares can be
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used to determine the receiver’s position.

Introduction

A singular value decomposition has many applications, and in this section we discuss how a singular
value decomposition can be used in image compression, to determine how sensitive a matrix can be
to rounding errors in the process of row reduction, and to solve least squares problems.

Image Compression

The digital age has brought many new opportunities for the collection, analysis, and dissemination
of information. Along with these opportunities come new difficulties as well. All of this digital
information must be stored in some way and be retrievable in an efficient manner. A singular value
decomposition of digitally stored information can be used to compress the information or clean
up corrupted information. In this section we will see how a singular value decomposition can be
used in image compression. While a singular value decomposition is normally used with very large
matrices, we will restrict ourselves to small examples so that we can more clearly see how a singular
value decomposition is applied.

Preview Activity 34.1. Let A = 1
4


67 29 −31 −73
29 67 −73 −31
31 73 −67 −29
73 31 −29 −67

. A singular value decomposition for

A is UΣV T, where

U = [u1 u2 u3 u4] =
1

2


1 −1 1 −1
1 1 1 −1
1 1 −1 1
1 −1 −1 1

 ,

Σ =


50 0 0 0
0 20 0 0
0 0 2 0
0 0 0 1

 ,

V = [v1 v2 v3 v4] =
1

2


1 1 −1 1
1 −1 −1 −1
−1 1 −1 −1
−1 −1 −1 1

 .
(1) Write the summands in the corresponding outer product decomposition of A.

(2) The outer product decomposition of A writes A as a sum of rank 1 matrices (the summands
σiuiv

T
i ).Each summand contains some information about the matrix A. Since σ1 is the

largest of the singular values, it is reasonable to expect that the summand A1 = σ1u1v
T
1

contains the most information about A among all of the summands. To get a measure of
how much information A1 contains of A, we can think of A as simply a long vector in Rmn
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where we have folded the data into a rectangular array (we will see later why taking the norm
as the norm of the vector in Rnm makes sense, but for now, just use this definition). If we
are interested in determining the error in approximating an image by a compressed image,
it makes sense to use the standard norm in Rmn to determine length and distance, which is
really just the Frobenius norm that comes from the Frobenius inner product defined by

〈U, V 〉 =
∑

uijvij ,

where U = [uij ] and V = [vij ] are m × n matrices. So in this section all the norms for
matrices will refer to the Frobenius norm. Rather than computing the distance between A1

and A to measure the error, we are more interested in the relative error

||A−A1||
||A|| .

(a) Calculate the relative error in approximating A by A1. What does this tell us about
how much information A1 contains about A?

(b) Let A2 =
∑2

k=1 σkukv
T
k . Calculate the relative error in approximating A by A2.

What does this tell us about how much information A2 contains about A?

(c) Let A3 =
∑3

k=1 σkukv
T
k . Calculate the relative error in approximating A by A3.

What does this tell us about how much information A3 contains about A?

(d) Let A4 =
∑4

k=1 σkukv
T
k . Calculate the relative error in approximating A by A4.

What does this tell us about how much information A4 contains about A? Why?

The first step in compressing an image is to digitize the image. (If you completed the image
compression application project in Section 23, then this will seem familiar to you.) There are many
ways to do this and we will consider one of the simplest ways and only work with gray-scale images,
with the scale from 0 (black) to 255 (white). A digital image can be created by taking a small grid
of squares (called pixels) and coloring each pixel with some shade of gray. The resolution of this
grid is a measure of how many pixels are used per square inch. As an example, consider the 16 by
16 pixel picture of a flower shown in Figure 34.1.

To store this image pixel by pixel would require 16 × 16 = 256 units of storage space (1 for
each pixel). If we let M be the matrix whose i, jth entry is the scale of the i, jth pixel, then M is
the matrix



240 240 240 240 130 130 240 130 130 240 240 240 240 240 240 240
240 240 240 130 175 175 130 175 175 130 240 240 240 240 240 240
240 240 130 130 175 175 130 175 175 130 130 240 240 240 240 240
240 130 175 175 130 175 175 175 130 175 175 130 240 240 240 240
240 240 130 175 175 130 175 130 175 175 130 240 240 240 240 240
255 240 240 130 130 175 175 175 130 130 240 240 225 240 240 240
240 240 130 175 175 130 130 130 175 175 130 240 225 255 240 240
240 240 130 175 130 240 130 240 130 175 130 240 255 255 255 240
240 240 240 130 240 240 75 240 240 130 240 255 255 255 255 255
240 240 240 240 240 240 75 240 240 240 240 240 240 240 240 240
240 240 240 75 75 240 75 240 75 75 240 240 240 240 240 240
50 240 240 240 75 240 75 240 75 240 240 240 240 50 240 240
240 75 240 240 240 75 75 75 240 240 50 240 50 240 240 50
240 240 75 240 240 240 75 240 240 50 240 50 240 240 50 240
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75


.
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Figure 34.1: A 16 by 16 pixel image

Recall that if UΣV T is a singular value decomposition for M , then we can also write M in the
form

M = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σ16u16v

T
16.

given in (33.2). For this M , the singular values are approximately

3006.770088367795
439.13109000200205
382.1756550649652
312.1181752764884
254.45105800344953
203.36470770057494
152.8696215072527
101.29084240890717
63.80803769229468
39.6189181773536

17.091891798245463
12.304589419140656
4.729898943556077
2.828719409809012

6.94442317024232× 10−15

2.19689952047833× 10−15



. (34.1)

Notice that some of these singular values are very small compared to others. As in Preview
Activity 34.1, the terms with the largest singular values contain most of the information about the
matrix. Thus, we shouldn’t lose much information if we eliminate the small singular values. In this
particular example, the last 4 singular values are significantly smaller than the rest. If we let

M12 = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σ12u12v

T
12,

then we should expect the image determined by M12 to be close to the image made by M . The two
images are presented side by side in Figure 34.2.
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Figure 34.2: A 16 by 16 pixel image and a compressed image using a singular value decomposition.

This small example illustrates the general idea. Suppose we had a satellite image that was
1000× 1000 pixels and we let M represent this image. If we have a singular value decomposition
of this image M , say

M = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σrurv

T
r ,

if the rank of M is large, it is likely that many of the singular values will be very small. If we only
keep s of the singular values, we can approximate M by

Ms = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σsusv

T
s

and store the image with only the vectors σ1u1, σ2u2, . . ., σsus, v1, v1, . . ., vs. For example,
if we only need 10 of the singular values of a satellite image (s = 10), then we can store the
satellite image with only 20 vectors in R1000 or with 20 × 1000 = 20, 000 numbers instead of
1000× 1000 = 1, 000, 000 numbers.

A similar process can be used to denoise data.1

Calculating the Error in Approximating an Image

In the context where a matrix represents an image, the operator aspect of the matrix is irrelevant
– we are only interested in the matrix as a holder of information. In this situation, we think of an
m × n matrix as simply a long vector in Rmn where we have folded the data into a rectangular
array. If we are interested in determining the error in approximating an image by a compressed
image, it makes sense to use the standard norm in Rmn to determine length and distance. This leads
to what is called the Frobenius norm of a matrix. The Frobenius norm ||M ||F of an m × n matrix
M = [mij ] is

||M ||F =
√∑

m2
ij .

1For example, as stated in http://www2.imm.dtu.dk/˜pch/Projekter/tsvd.html, “The SVD [singu-
lar value decomposition] has also applications in digital signal processing, e.g., as a method for noise reduction. The
central idea is to let a matrix A represent the noisy signal, compute the SVD, and then discard small singular values of
A. It can be shown that the small singular values mainly represent the noise, and thus the rank-k matrix Ak represents a
filtered signal with less noise.”

http://www2.imm.dtu.dk/~pch/Projekter/tsvd.html
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There is a natural corresponding inner product on the set of m × n matrices (called the Frobenius
product) defined by

〈A,B〉 =
∑

aijbij ,

where A = [aij ] and B = [bij ] are m× n matrices.2 Note that

||A||F =
√
〈A,A〉.

If an m×n matrix M of rank r has a singular value decomposition M = UΣV T, we have seen
that we can write M as an outer product

M = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σrurv

T
r , (34.2)

where the ui are the columns of U and the vj the columns of V . Each of the products uivT
i is an

m×n matrix. Since the columns of uivT
i are all scalar multiples of ui, the matrix uiv

T
i is a rank 1

matrix. So (34.2) expresses M as a sum of rank 1 matrices. Moreover, if we let x and w be m× 1
vectors and let y and z be n× 1 vectors with y = [y1 y2 . . . yn]T and z = [z1 z2 . . . zn]T, then

〈xyT,wzT〉 = 〈[y1x y2x · · · ynx], [z1w z2w · · · znw]〉
=
∑

(yix) · (ziw)

=
∑

(yizi)(x ·w)

= (x ·w)
∑

(yizi)

= (x ·w)(y · z).

Using the vectors from the singular value decomposition of M as in (34.2) we see that

〈uivT
i ,ujv

T
j 〉 = (ui · uj)(vi · vj) =

{
0, if i 6= j,

1, if i = j.

It follows that
||M ||2F =

∑
σ2
i (ui · ui)(vi · vi) =

∑
σ2
i . (34.3)

Activity 34.1. Verify (34.3) that ||M ||2F =
∑
σ2
i .

When we used the singular value decomposition to approximate the image defined by M , we
replaced M with a matrix of the form

Mk = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + · · ·+ σkukv

T
k . (34.4)

We call Mk the rank k approximation to M . Notice that the outer product expansion in (34.4) is in
fact a singular value decomposition for Mk. The error Ek in approximating M with Mk is

Ek = M −Mk = σk+1uk+1v
T
k+1 + σk+2uk+2v

T
k+2 + · · ·+ σrurv

T
r . (34.5)

2This is the same inner product that we defined as the Frobenius inner product in Section 29, where 〈A,B〉 =
trace

(
ABT

)
.
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Once again, notice that (34.5) is a singular value decomposition for Ek. We define the relative error
in approximating M with Mk as

||Ek||
||M || .

Now (34.3) shows that

||Ek||
||M || =

√∑r
i=k+1 σ

2
i∑r

i=1 σ
2
i

.

In applications, we often want to retain a certain degree of accuracy in our approximations and this
error term can help us accomplish that.

In our flower example, the singular values of M are given in (34.1). The relative error in
approximating M with M12 is √∑16

i=13 σ
2
i∑16

i=1 σ
2
i

≈ 0.03890987666.

Errors (rounded to 4 decimal places) for approximating M with some of the Mk are shown in Table
34.1

k 10 9 8 7 6
||Ek||
||M || 0.0860 0.1238 0.1677 0.2200 0.2811

k 5 4 3 2 1
||Ek||
||M || 0.3461 0.4132 0.4830 0.5566 0.6307

Table 34.1: Errors in approximating M by Mk

Activity 34.2. Let M represent the flower image.

(a) Find the relative errors in approximating M by M13 and M14. You can use the fact that∑16
i=1 σ

2
i ≈ 4992.553293.

(b) About how much of the information in the image is contained in the rank 1 approximation?
Explain.

The Condition Number of a Matrix

A singular value decomposition for a matrix A can tell us a lot about how difficult it is to accurately
solve a system Ax = b. Solutions to systems of linear equations can be very sensitive to rounding
as the next exercise demonstrates.

Activity 34.3. Find the solution to each of the systems.

(a)
[

1.0000 1.0000
1.0000 1.0005

] [
x
y

]
=

[
2.0000
2.0050

]
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(b)
[

1.000 1.000
1.000 1.001

] [
x
y

]
=

[
2.000
2.005

]
Notice that a simple rounding in the (2, 2) entry of the coefficient matrix led to a significantly

different solution. If there are rounding errors at any stage of the Gaussian elimination process,
they can be compounded by further row operations. This is an important problem since computers
can only approximate irrational numbers with rational numbers and so rounding can be critical.
Finding ways of dealing with these kinds of errors is an area of on-going research in numerical
linear algebra. This problem is given a name.

Definition 34.1. A matrix A is ill-conditioned if relatively small changes in any entries of A can
produce significant changes in solutions to the system Ax = b.

A matrix that is not ill-conditioned is said to be well-conditioned. Since small changes in entries
of ill-conditioned matrices can lead to large errors in computations, it is an important problem in
linear algebra to have a way to measure how ill-conditioned a matrix is. This idea will ultimately
lead us to the condition number of a matrix.

Suppose we want to solve the system Ax = b, where A is an invertible matrix. Activity 34.3
illustrates that if A is really close to being singular, then small changes in the entries of A can have
significant effects on the solution to the system. So the system can be very hard to solve accurately
if A is close to singular. It is important to have a sense of how “good” we can expect any calculated
solution to be. Suppose we think we solve the system Ax = b but, through rounding error in our
calculation of A, get a solution x′ so that Ax′ = b′, where b′ is not exactly b. Let ∆x be the error
in our calculated solution and ∆b the difference between b′ and b. We would like to know how
large the error ||∆x|| can be. But this isn’t exactly the right question. We could scale everything
to make ||∆x|| as large as we want. What we really need is a measure of the relative error ||∆x||

|||x|| ,
or how big the error is compared to ‖|x|| itself. More specifically, we want to know how large the
relative error in ∆x is compared to the relative error in ∆b. In other words, we want to know how
good the relative error in ∆b is as a predictor of the relative error in ∆x (we may have some control
over the relative error in ∆b, perhaps by keeping more significant digits). So we want know if there
is a best constant C such that

||∆x||
||x|| ≤ C

||∆b||
||b|| .

This best constant C is the condition number – a measure of how well the relative error in ∆b
predicts the relative error in ∆x. How can we find C?

Since Ax′ = b′ we have
A(x + ∆x) = b + ∆b.

Distributing on the left and using the fact that Ax = b gives us

A∆x = ∆b.

We return for a moment to the operator norm of a matrix. This is an appropriate norm to use
here since we are considering A to be a transformation. Recall that if A is an m × n matrix, we
defined the operator norm of A to be

||A|| = max
||x||6=0

{ ||Ax||
||x||

}
= max
||x||=1

{||Ax||}.
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One important property that the norm has is that if the product AB is defined, then

||AB|| ≤ ||A|| ||B||.

To see why, notice that
||ABx||
||x|| =

||A(Bx)||
||Bx||

||Bx||
||x|| .

Now ||A(Bx)||
||Bx|| ≤ ||A|| and ||Bx||

||x|| ≤ ||B|| by the definition of the norm, so we conclude that

||ABx||
||x|| ≤ ||A|| ||B||

for every x. Thus,
||AB|| ≤ ||A|| ||B||.

Now we can find the condition number. From A∆x = ∆b we have

∆x = A−1∆b,

so
||∆x|| ≤ ||A−1|| ||∆b||. (34.6)

Similarly, b = Ax implies that ||b|| ≤ ||A|| ||x|| or

1

||x|| ≤
||A||
||b|| . (34.7)

Combining (34.6) and (34.7) gives

||∆x||
||x|| ≤

||A−1|| ||∆b||
||x||

= ||A−1|| ||∆b||
(

1

||x||

)
≤ ||A−1|| ||∆b|| ||A||||b||

= ||A−1|| ||A|| ||∆b||
||b|| .

This constant ||A−1|| ||A|| is the best bound and so is called the condition number of A.

Definition 34.2. The condition number of an invertible matrix A is the number ||A−1|| ||A||.

How does a singular value decomposition tell us about the condition number of a matrix? Recall
that the maximum value of ||Ax|| for x on the unit n-sphere is σ1. So ||A|| = σ1. If A is an
invertible matrix and A = UΣV T is a singular value decomposition for A, then

A−1 = (UΣV T)−1 = (V T)−1Σ−1U−1 = V Σ−1UT,
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where

Σ−1 =


1
σ1

0
1
σ2

1
σ3

. . .
0 1

σn

 .

Now V Σ−1UT is a singular value decomposition forA−1 with the diagonal entries in reverse order,
so

||A−1|| = 1

σn
.

Therefore, the condition number of A is

||A−1|| ||A|| = σ1

σn
.

Activity 34.4. LetA =

[
1.0000 1.0000
1.0000 1.0005

]
. A computer algebra system gives the singular values

of A as 2.00025003124999934 and 0.000249968750000509660. What is the condition number of
A. What does that tell us about A? Does this seem reasonable given the result of Activity 34.3?

Activity 34.5.

(a) What is the smallest the condition number of a matrix can be? Find an entire class of
matrices with this smallest condition number.

(b) What is the condition number of an orthogonal matrix? Why does this make sense? (Hint:
If P is an orthogonal matrix, what is ||Px|| for any vector x? What does this make ||P ||?)

(c) What is the condition number of an invertible symmetric matrix in terms of its eigenvalues?

(d) Why do we not define the condition number of a non-invertible matrix? If we did, what
would the condition number have to be? Why?

Pseudoinverses

Not every matrix is invertible, so we cannot always solve a matrix equation Ax = b. However,
every matrix has a pseudoinverseA+ that acts something like an inverse. Even when we can’t solve
a matrix equation Ax = b because b isn’t in Col A, we can use the pseudoinverse of A to “solve”
the equation Ax = b with the “solution” A+b. While not an exact solution, A+b turns out to
be the best approximation to a solution in the least squares sense. In this use the singular value
decomposition to find the pseudoinverse of a matrix.

Preview Activity 34.2. Let A =

[
1 1 0
0 1 1

]
. The singular value decomposition of A is UΣV T
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where

U =

√
2

2

[
1 −1
1 1

]
,

Σ =

[ √
3 0 0

0 1 0

]
,

V =
1

6


√

6 −3
√

2 2
√

3

2
√

6 0 −2
√

3√
6 3

√
2 2

√
3

 .
(1) Explain why A is not an invertible matrix.

(2) Explain why the matrices U and V are invertible. How are U−1 and V −1 related to UT and
V T?

(3) Recall that one property of invertible matrices is that the inverse of a product of invertible
matrices is the product of the inverses in the reverse order. If A were invertible, then A−1

would be
(
UΣV T

)−1
= V Σ−1UT. Even though U and V are invertible, the matrix Σ is

not. But Σ does contain non-zero eigenvalues that have reciprocals, so consider the matrix

Σ+ =

 1√
3

0

0 1
0 0

. Calculate the products ΣΣ+ and Σ+Σ. How are the results similar to

that obtained with a matrix inverse?

(4) The only matrix in the singular value decomposition of A that is not invertible is Σ. But the
matrix Σ+ acts somewhat like an inverse of Σ, so let us define A+ as V Σ+UT. Now we
explore a few properties of the matrix A+.

(a) Calculate AA+ and A+A for A =

[
1 1 0
0 1 1

]
. What do you notice?

(b) Calculate A+AA+ and AA+A for A =

[
1 1 0
0 1 1

]
. What do you notice?

Only some square matrices have inverses. However, every matrix has a pseudoinverse. A
pseudoinverse A+ of a matrix A provides something like an inverse when a matrix doesn’t have an
inverse. Pseudoinverses are useful to approximate solutions to linear systems. If A is invertible,
then the equation Ax = b has the solution x = A−1b, but when A is not invertible and b is not
in Col A, then the equation Ax = b has no solution. In the invertible case of an n × n matrix A,
there is a matrix B so that AB = BA = In. This also implies that BAB = B and ABA = A. To
mimic this situation when A is not invertible, we search for a matrix A+ (a pseudoinverse of A) so
that AA+A = A and A+AA+ = A+, as we saw in Preview Activity 34.2. Then it turns out that
A+ acts something like an inverse for A. In this case, we approximate the solution to Ax = b by
x∗ = A+b, and we will see that the vector Ax∗ = AA+b turns out to be the vector in Col A that
is closest to b in the least squares sense.

A reasonable question to ask is how we can find a pseudoinverse of a matrix A. A singular
value decomposition provides an answer to this question. If A is an invertible n× n matrix, then 0
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is not an eigenvalue of A. As a result, in the singular value decomposition UΣV T of A, the matrix
Σ is an invertible matrix (note that U , Σ, and V are all n× n matrices in this case). So

A−1 =
(
UΣV T

)−1
= V Σ−1UT,

where

Σ−1 =


1
σ1

1
σ2

0
1
σ3

0
. . .

1
σn

 .

In this case, V Σ−1UT is a singular value decomposition for A−1.

To understand in general how a pseudoinverse is found, let A be an m× n matrix with m 6= n,
or an n × n with rank less than n. In these cases A does not have an inverse. But as in Preview
Activity 34.2, a singular value decomposition provides a pseudoinverse A+ for A. Let UΣV T be a
singular value decomposition of an m× n matrix A of rank r, with

Σ =



σ1

σ2 0 0
σ3

0
. . .

σr
0 0


The matrices U and V are invertible, but the matrix Σ is not if A is not invertible. If we let Σ+ be
the n×m matrix defined by

Σ+ =



1
σ1

1
σ2

0 0
1
σ3

0
. . .

1
σr

0 0


,

then Σ+ will act much like an inverse of Σ might. In fact, it is not difficult to see that

ΣΣ+ =

[
Ir 0

0 0

]
and Σ+Σ =

[
Ir 0

0 0

]
,

where ΣΣ+ is an m×m matrix and Σ+Σ is an n× n matrix.

The matrix
A+ = V Σ+UT (34.8)

is a pseudoinverse of A.

Activity 34.6.
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(a) Find the pseudoinverse A+ of A =

 0 5
4 3
−2 1

. Use the singular value decomposition

UΣV T of A, where

U =


√

2
2

√
3

3 1
√

2
2 −

√
3

3 0

0
√

3
3 0

 ,Σ =


√

40 0

0
√

15

0 0

 , V =
1√
5

[
1 −2
2 1

]
.

(b) The vector b =

 0
0
1

 is not in Col A. The vector x∗ = A+b is an approximation to a

solution of Ax = b, and AA+b is in Col A. Find Ax∗ and determine how far Ax∗ is from
b.

Pseudoinverses satisfy several properties that are similar to those of inverses. For example, we
had an example in Preview Activity 34.2 where AA+A = A and A+AA+ = A+. That A+ always
satisfies these properties is the subject of the next activity.

Activity 34.7. Let A be an m × n matrix with singular value decomposition UΣV T. Let A+ be
defined as in (34.8).

(a) Show that AA+A = A.

(b) Show that A+AA+ = A+.

Activity 34.7 shows that A+ satisfies properties that are similar to those of an inverse of A. In
fact, A+ satisfies several other properties (that together can be used as defining properties) as stated
in the next theorem. The conditions of Theorem 34.3 are called the Penrose or Moore-Penrose
conditions.3 Verification of the remaining parts of this theorem are left for the exercises.

Theorem 34.3 (The Moore-Penrose Conditions.). A pseudoinverse of a matrix A is a matrix A+

that satisfies the following properties.

(1) AA+A = A

(2) A+AA+ = A+

(3) (AA+)T = AA+

(4) (A+A)T = A+A

Also, there is a unique matrixA+ that satisfies these properties. The verification of this property
is left to the exercises.

3Theorem 34.3 is often given as the definition of a pseudoinverse.
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Least Squares Approximations

In many situations we want to be able to make predictions from data. However, data is rarely
well-behaved and so we need to use approximation techniques to estimate from the data.

Preview Activity 34.3. NBC was awarded the U.S. television broadcast rights to the 2016 and 2020
summer Olympic games. Table 34.2 lists the amounts paid (in millions of dollars) by NBC sports
for the 2008 through 2012 summer Olympics plus the recently concluded bidding for the 2016 and
2020 Olympics, where year 0 is the year 2008. Figure 34.3 shows a plot of the data. Our goal
in this activity is to find a linear function f defined by f(x) = a0 + a1x that fits the data well.

Year Amount

0 894

4 1180

8 1226

12 1418

Table 34.2: Olympics data.
2 4 6 8 10 12

300

600

900

1200

1500

Figure 34.3: A plot of the data.

If the data were actually linear, then the data would satisfy the system

a0 + 0a1 = 894

a0 + 4a1 =1180

a0 + 8a1 =1226

a0 + 12a1 =1418.

In matrix form this system is Ax = b, where A =


1 0
1 4
1 8
1 12

, x =

[
a0

a1

]
, and b =


894
1180
1226
1418

.

Assume that a singular value decomposition of A (with entries rounded to 4 decimal places) is
UΣV T, where

U ≈


0.0071 −0.8366 0.2236 0.5000
0.2713 −0.4758 −0.6708 −0.5000
0.5355 −0.1150 0.6708 −0.5000
0.7997 0.2459 −0.2236 0.5000

 ,

Σ ≈


15.0528 0

0 1.1884
0 0
0 0

 ,
V ≈

[
0.1072 −0.9942
0.9942 0.1072

]
.

(1) Explain whyA is not an invertible matrix. Find a pseudoinverseA+ ofA and calculateA+b.
Round calculations to four decimal places.
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(2) Use A+b to find the linear approximation f(x) = a0 + a1x. Plot your linear approximation
against the data in Figure 34.3.

Preview Activity 34.3 illustrates how A+b can be used as an approximation to a solution to the
equation Ax = b when b is not in Col A. Now we will examine what kind of approximation A+b
actually is.

Let UΣV T be a singular value decomposition for an m × n matrix A of rank r. Then the
columns of

U = [u1 u2 · · · um]

form an orthonormal basis for Rm and {u1,u2, . . . ,ur} is a basis for Col A. Remember from
Section 30 that if b is any vector in Rm, then

projCol Ab = (b · u1)u1 + (b · u2)u2 + · · ·+ (b · ur)ur
is the least squares approximation of the vector b by a vector in Col A. We can extend this sum to
all of columns of U as

projCol Ab = (b · u1)u1 + (b · u2)u2 + · · ·+ (b · ur)ur + 0ur+1 + 0ur+2 + · · ·+ 0um.

It follows that

projCol Ab =

r∑
i=1

ui(ui · b)

=

r∑
i=1

ui(u
T
i b)

=

r∑
i=1

(uiu
T
i )b

=

(
r∑
i=1

(1)(uiu
T
i )

)
b +

(
m∑

i=r+1

0(uiu
T
i )

)
b

= (UDUT)b,

where

D =

[
Ir 0

0 0

]
.

Now, if z = A+b, then

Az = (UΣV T)(V Σ+UTb) = (UΣΣ+UT)b = (UDUT)b = projCol Ab,

and hence the vector Az = AA+b is the vector Ax in Col A that minimizes ||Ax− b||. Thus, Az
is in actuality the least squares approximation to b. So a singular value decomposition allows us to
construct the pseudoinverse of a matrix A and then directly solve the least squares problem.

Activity 34.8. Having to calculate eigenvalues and eigenvectors for a matrix to produce a singular
value decomposition to find pseudoinverse can be computationally intense. As we demonstrate in
this activity, the process is easier if the columns of A are linearly independent. More specifically,
we will prove the following theorem.
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Theorem 34.4. If the columns of a matrix A are linearly independent, then A+ =
(
ATA

)−1
AT.

To see how, suppose that A is an m× n matrix with linearly independent columns.

(a) Given that the columns of A are linearly independent, what must be the relationship be-
tween n and m?

(b) Since the columns of A are linearly independent, it follows that ATA is invertible (see
Exercise 13.). So the eigenvalues of A are all non-zero. Let σ1, σ2, . . ., σr be the singular
values of A. How is r related to n, and what do Σ and Σ+ look like?

(c) Let us now investigate the form of the invertible matrix ATA (note that neither A nor AT

is necessarily invertible). If a singular value decomposition of A is UΣV T, show that

ATA = V ΣTΣV T.

(d) Let λi = σ2
i for i from 1 to n. It is straightforward to see that ΣTΣ is an n × n diagonal

matrix D, where

D = ΣTΣ =


λ1

λ2 0
λ3

. . .
0 λn

 .
Then (ATA)−1 = V D−1V T. Recall that A+ = V Σ+UT, so to relate ATA to A+ we need
a product that is equal to Σ+. Explain why

D−1ΣT = Σ+.

(e) Complete the activity by showing that(
ATA

)−1
AT = A+.

Therefore, to calculate A+ and solve a least squares problem, Theorem 34.4 shows that as long
as the columns of A are linearly independent, we can avoid using a singular value decomposition

of A in finding A+. As an example, if A =


1 0
1 4
1 8
1 12

 and b =


894
1180
1226
1418

 as in Preview Activity

34.3, then (
ATA

)−1
AT ≈

[
0.7000 0.4000 0.1000 −0.2000
−0.0750 −0.0250 0.0250 0.0750

]
and (

ATA
)−1

ATb ≈
[

936.8000
40.4500

]
.

So f(x) = 936.8 + 40.45x is (to 4 decimal places) the least squares linear approximation to the
data. A graph of f versus the data is shown in Figure 34.4. By least squares we mean that f(x)
approximates the data so that the sum of the squares of the vertical distances between the data and
corresponding values of f (as illustrated in Figure 34.4) is as small as possible.
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|yi − f (xi)|

Figure 34.4: Linear approximation plotted against the data set.

Activity 34.9. Suppose we wanted to fit a quadratic or a cubic polynomial to a set of data. Preview
Activity 34.3 showed us how to fit a line to data and we can extend that idea to any degree polyno-
mial. To fit a polynomial p(x) = anx

n + an−1x
n−1 + · · ·+ a1 + a0 of degree n to m data points

(x1, y1), (x2, y2), . . ., (xm, ym), no two of which have the same x coordinate in the least squares
sense, we want to find the least squares approximate solution to the system .

y1 = a0 + x1a1 + x2
1a2 + · · ·+ xn−1

1 an−1 + xn1an

y2 = a0 + x2a1 + x2
2a2 + · · ·+ xn−1

2 an−1 + xn2an

y3 = a0 + x3a1 + x2
3a2 + · · ·+ xn−1

3 an−1 + xn3an
...

ym = a0 + xma1 + x2
ma2 + · · ·+ xn−1

m an−1 + xnman.

of m equations in the n + 1 unknowns a0, a1, . . ., an−1, and an. In matrix form we can write this
system as Ma = y, where

M =


1 x1 x2

1 · · · xn−1
1 xn1

1 x2 x2
2 · · · xn−1

2 xn2
1 x3 x2

3 · · · xn−1
3 xn3

...
...

... · · · ...
...

1 xm x2
m · · · xn−1

m xnm


while the vectors a and y are

a =



a0

a1

a2
...

an−1

an


and y =



y1

y2

y3
...

ym−1

ym


.

(a) Set up the matrix equation to fit a quadratic to the Olympics data in Table Table 34.2.

(b) Use Theorem 34.4 and appropriate technology to find the least squares quadratic polyno-
mial for the Olympics data. Draw your approximation against the data as shown in Figure
34.3. Round approximations to 4 decimal places.
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Examples

What follows are worked examples that use the concepts from this section.

Example 34.5. Let

A =


2 5 4
6 3 0
6 3 0
2 5 4

 .
The eigenvalues of ATA are λ1 = 144, λ2 = 36, and λ3 = 0 with corresponding eigenvectors

w1 =

 2
2
1

 , w1 =

 −2
1
2

 , and w1 =

 1
−2

2

 .
In addition,

Aw1 =


18
18
18
18

 and Aw2 =


9
−9
−9

9

 .

(a) Find orthogonal matrices U and V , and the matrix Σ, so that UΣV T is a singular value
decomposition of A.

(b) Determine the best rank 1 approximation to A. Give an appropriate numerical estimate as
to how good this approximation is to A.

(c) Find the pseudoinverse A+ of A.

(d) Let b =


1
0
1
0


T

. Does the matrix equation

Ax = b

have a solution? If so, find the solution. If not, find the best approximation you can to a
solution to this matrix equation.

(e) Use the orthogonal basis {1
2 [1 1 1 1]T, 1

2 [1 − 1 − 1 1]T} of Col A to find the projection of
b onto Col A. Compare to your solution in part (c).

Example Solution.

(a) Normalizing the eigenvectors w1, w2, and w3 to normal eigenvectors v1, v2, and v3,
respectively, gives us an orthogonal matrix

V =


2
3 −2

3
1
3

2
3

1
3 −2

3

1
3

2
3

2
3

 .
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NowAvi = A wi
||wi|| = 1

||wiAwi, so normalizing the vectorsAw1 andAw2 gives us vectors

u1 =
1

2


1
1
1
1

 and u2 =
1

2


1
−1
−1

1


that are the first two columns of our matrix U . Given that U is a 4 × 4 matrix, we need to
find two other vectors orthogonal to u1 and u2 that will combine with u1 and u2 to form an
orthogonal basis for R4. Letting z1 = [1 1 1 1]T, z2 = [1 −1 −1 1]T, z3 = [1 0 0 0]T, and
z4 = [0 1 0 1]T, a computer algebra system shows that the reduced row echelon form of
the matrix [z1 z2 z3 z4] is I4, so that vectors z1, z2, z3, z4 are linearly independent. Letting
w1 = z1 and w2 = z2, the Gram-Schmidt process shows that the set {w1,w2,w3,w4} is
an orthogonal basis for R4, where w3 = 1

4 [2 0 0 − 2]T and (using [1 0 0 − 1]T for w3)
w4 = 1

4 [0 2 − 2 0]T.

The set {u1,u2,u3,u4} where u1 = 1
2 [1 1 1 1]T, u2 = 1

2 [1 −1 −1 1]T, u3 = 1√
2
[1 0 0 −

1]T and u4 = 1√
2
[0 1 − 1 0]T is an orthonormal basis for R4 and we can let

U =


1
2

1
2

1√
2

0

1
2 −1

2 0 1√
2

1
2 −1

2 0 − 1√
2

1
2

1
2 − 1√

2
0

 .

The singular values of A are σ1 =
√
λ1 = 12 and σ2 =

√
λ2 = 6, and so

Σ =


12 0 0
0 6 0
0 0 0
0 0 0

 .
Therefore, a singular value decomposition of A is UΣV T of

1
2

1
2

1√
2

0
1
2 −1

2 0 1√
2

1
2 −1

2 0 − 1√
2

1
2

1
2 − 1√

2
0




12 0 0
0 6 0
0 0 0
0 0 0




2
3

2
3

1
3

−2
3

1
3

2
3

1
3 −2

3
2
3

 .
(b) The outer product decomposition of A is

A = σ1u1v
T
1 + σ2u2v

T
2 .

So the rank one approximation to A is

σ1u1v
T
1 = 12

(
1

2

)
1
1
1
1

 [ 2
3

2
3

1
3

]
=


4 4 2

4 4 2

4 4 2

4 4 2

 .
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The error in approximating A with this rank one approximation is√
σ2

2

σ2
1 + σ2

2

=

√
36

180
=

√
1

5
≈ 0.447.

(c) Given that A = UΣV T, we use the pseudoinverse Σ+ of Σ to find the pseudoinverse A+

of A by
A+ = V Σ+UT.

Now

Σ+ =


1
12 0 0

0 1
6 0

0 0 0

0 0 0

 ,
so

A+ =


2
3 −2

3
1
3

2
3

1
3 −2

3

1
3

2
3

2
3




1
12 0 0

0 1
6 0

0 0 0

0 0 0




1
2

1
2

1√
2

0

1
2 −1

2 0 1√
2

1
2 −1

2 0 − 1√
2

1
2

1
2 − 1√

2
0



T

=
1

72

 −2 6 6 −2
4 0 0 4
5 −3 −3 5

 .
(d) Augmenting A with b and row reducing shows that

[A b] ∼


2 5 4 1
0 −12 −12 −3
0 0 0 1
0 0 0 0

 ,
so b is not in Col A and the equation Ax = b has no solution. However, the best approx-
imation to a solution to Ax = b is found using the pseudoinverse A+ of A. That best
solution is

x∗ = AA+b

=


2 5 4
6 3 0
6 3 0
2 5 4

 1

72

 −2 6 6 −2
4 0 0 4
5 −3 −3 5




1
0
1
0



=
1

2


2
1
1
2

 .
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(e) The rank of A is 2 and an orthonormal basis for Col A is {u1,u2}, where u1 = 1
2 [1 1 1 1]T

and u2 = 1
2 [1 − 1 − 1 1]T. So

projCol Ab = (b · u1)u1 + (b · u2)u2

=

(
3

2

)(
1

2

)
[1 1 1 1]T +

(
1

2

)(
1

2

)
[1 − 1 − 1 1]T

=
1

2
[2 1 1 2]T

as expected from part (c).

Example 34.6. According to the Centers for Disease Control and Prevention4, the average length
of a male infant (in centimeters) in the US as it ages (with time in months from 1.5 to 8.5) is given
in Table 34.3. In this problem we will find the line and the quadratic of best fit in the least squares

Age (months) 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
Average Length (cm) 56.6 59.6 62.1 64.2 66.1 67.9 69.5 70.9

Table 34.3: Average lengths of male infants.

sense to this data. We treat time in months as the independent variable and length in centimeters as
the dependent variable.

(a) Find a line that is the best fit to the data in the least squares sense. Draw a picture of your
least squares solution against a scatterplot of the data.

(b) Now find the least squares quadratic of the form q(x) = a2x
2 +a1x+a0 to the data. Draw

a picture of your least squares solution against a scatterplot of the data.

Example Solution.

(a) We assume that a line of the form f(x) = a1x + a0 contains all of the data points. The
first date point would satisfy 1.5a1 + a0 = 56.6, the second 2.5a1 + a0 = 59.6, and so on,
giving us the linear system

1.5a1 + a0 = 56.6

2.5a1 + a0 = 59.6

3.5a1 + a0 = 62.1

4.5a1 + a0 = 64.2

5.5a1 + a0 = 66.1

6.5a1 + a0 = 67.9

7.5a1 + a0 = 69.5

8.5a1 + a0 = 70.9.

4 https://www.cdc.gov/growthcharts/html_charts/lenageinf.htm

https://www.cdc.gov/growthcharts/html_charts/lenageinf.htm


624 Section 34. Approximations Using the Singular Value Decomposition

Letting

A =



1.5 1
2.5 1
3.5 1
4.5 1
5.5 1
6.5 1
7.5 1
8.5 1


, x =

[
a1

a0

]
, and b =



56.6
59.6
62.1
64.2
66.1
67.9
69.5
70.9


,

we can write this system in the matrix form Ax = b. Neither column of A is a multiple of
the other, so the columns of A are linearly independent. The least squares solution to the
system is then found by

A+b = (ATA)−1ATb.

Technology shows that (with entries rounded to 3 decimal places), A+ is

[
−0.083 −0.060 −0.036 −0.012 0.012 0.036 0.060 0.083

0.542 0.423 0.304 0.185 0.065 −0.054 −0.173 −0.292

]
,

and

A+b ≈
[

2.011
54.559

]
.

So the least squares linear solution to Ax = b is f defined by f(x) ≈ 2.011x+ 54.559. A
graph of f against the data points is shown at left in Figure 34.5.
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Figure 34.5: Left: Least squares line. Right: Least squares quadratic.

(b) The first date point would satisfy (1.52)a2 + 1.5a1 + a0 = 56.6, the second (2.5)2a2 +
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2.5a1 + a0 = 59.6, and so on, giving us the linear system

1.52a2 + 1.5a1 + a0 = 56.6

2.52a2 + 2.5a1 + a0 = 59.6

3.52a2 + 3.5a1 + a0 = 62.1

4.52a2 + 4.5a1 + a0 = 64.2

5.52a2 + 5.5a1 + a0 = 66.1

6.52a2 + 6.5a1 + a0 = 67.9

7.52a2 + 7.5a1 + a0 = 69.5

8.52a2 + 8.5a1 + a0 = 70.9.

Letting

A =



1.52 1.5 1
2.52 2.5 1
3.52 3.5 1
4.52 4.5 1
5.52 5.5 1
6.52 6.5 1
7.52 7.5 1
8.52 8.5 1


, x =

 a2

a1

a0

 , and b =



56.6
59.6
62.1
64.2
66.1
67.9
69.5
70.9


,

we can write this system in the matrix form Ax = b.

Technology shows that every column of the reduced row echelon form ofA contains a pivot,
so the columns of A are linearly independent. The least squares solution to the system is
then found by

A+b = (ATA)−1ATb.

Technology shows that (with entries rounded to 3 decimal places) A+ is 0.042 0.006 −0.018 −0.030 −0.030 −0.018 0.006 0.042
−0.500 −0.119 0.143 0.286 0.310 0.214 0.000 −0.333

1.365 0.540 −0.049 −0.403 −0.522 −0.406 −0.055 0.531

 ,
and

A+b ≈

 −0.118
3.195

52.219

 .
So the least squares quadratic solution to Ax = b is q defined by q(x) ≈ −0.118x2 +
3.195x+ 52.219. A graph of q against the data points is shown at right in Figure 34.5.

Summary

• The condition number of an m × n matrix A is the number ||A−1|| ||A||. The condition
number provides a measure of how well the relative error in a calculated value ∆b predicts
the relative error in ∆x when we are trying to solve a system Ax = b.



626 Section 34. Approximations Using the Singular Value Decomposition

• A pseudoinverse A+ of a matrix A can be found through a singular value decomposition. Let
UΣV T be a singular value decomposition of an m× n matrix A of rank r, with

Σ =



σ1

σ2 0
σ3 0

0
. . .

σr
0 0


If Σ+ is the n×m matrix defined by

Σ+ =



1
σ1

1
σ2

0
1
σ3

0

0
. . .

1
σr

0 0


,

then A+ = V Σ+UT.

• A pseudoinverse A+ of a matrix A acts like an inverse for A. So if we can’t solve a matrix
equation Ax = b because b isn’t in Col A, we can use the pseudoinverse of A to “solve” the
equation Ax = b with the “solution” A+b. While not an exact solution, A+b turns out to be
the best approximation to a solution in the least squares sense.

• If the columns of A are linearly independent, then we can alternatively find the least squares
solution as

(
ATA

)−1
ATb.

Exercises

(1) Let A =

 20 4 32
−4 4 2
35 22 26

. Then A has singular value decomposition UΣV T , where

U =
1

5

 3 4 0
0 0 5
4 −3 0


Σ =

 60 0 0
0 15 0
0 0 6


V =

1

3

 2 −1 −2
1 −2 2
2 2 1

 .
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(a) What are the singular values of A?

(b) Write the outer product decomposition of A.

(c) Find the best rank 1 approximation to A. What is the relative error in approximating
A by this rank 1 matrix?

(d) Find the best rank 2 approximation to A. What is the relative error in approximating
A by this rank 2 matrix?

(2) Let A =


861 3969 70 140
3969 861 70 140
3969 861 −70 −140
861 3969 −70 −140

.

(a) Find a singular value decomposition for A.

(b) What are the singular values of A?

(c) Write the outer product decomposition of A.

(d) Find the best rank 1, 2, and 3 approximations to A. How much information about A
does each of these approximations contain?

(3) The University of Denver Infant Study Center investigated whether babies take longer to learn
to crawl in cold months, when they are often bundled in clothes that restrict their movement,
than in warmer months. The study sought a relationship between babies’ first crawling age
and the average temperature during the month they first try to crawl (about 6 months after
birth). Some of the data from the study is in Table 34.4. Let x represent the temperature in
degrees Fahrenheit and C(x) the average crawling age in months.

x 33 37 48 57
C(x) 33.83 33.35 33.38 32.32

Table 34.4: Crawling age.

(a) Use Theorem 34.4 to find the least squares line to fit this data. Plot the data and your
line on the same set of axes.

(b) Use your least squares line to predict the average crawling age when the temperature
is 65.

(4) The cost, in cents, of a first class postage stamp in years from 1981 to 1995 is shown in Table
34.5.

Year 1981 1985 1988 1991 1995
Cost 20 22 25 29 32

Table 34.5: Cost of postage.
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(a) Use Theorem 34.4 to find the least squares line to fit this data. Plot the data and your
line on the same set of axes.

(b) Now find the least squares quadratic approximation to this data. Plot the quadratic
function on same axes as your linear function.

(c) Use your least squares line and quadratic to predict the cost of a postage stamp in
this year. Look up the cost of a stamp today and determine how accurate your pre-
diction is. Which function gives a better approximation? Provide reasons for any
discrepancies.

(5) Assume that the number of feet traveled by a batted baseball at various angles in degrees (all
hit at the same bat speed) is given in Table 34.6.

Angle 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

Distance 116 190 254 285 270 230

Table 34.6: Distance traveled by batted ball.

(a) Plot the data and explain why a quadratic function is likely a better fit to the data than
a linear function.

(b) Find the least squares quadratic approximation to this data. Plot the quadratic func-
tion on same axes as your data.

(c) At what angle (or angles), to the nearest degree, must a player bat the ball in order
for the ball to travel a distance of 220 feet?

(6) Not all data is well modeled with polynomials – populations tend to grow at rates propor-
tional to the population, which implies exponential growth. For example, Table 34.7 shows
the approximate population of the United States in years between 1920 and 2000, with the
population measured in millions. If we assume the population grows exponentially, we would

Year 1920 1930 1940 1950 1960 1970 1980 1990 2000
Population 106 123 142 161 189 213 237 259 291

Table 34.7: U.S. population.

want to find the best fit function f of the form f(t) = aekt, where a and k are constants. To
apply the methods we have developed, we could instead apply the natural logarithm to both
sides of y = aekt to obtain the equation ln(y) = ln(a) + kt. We can then find the best fit line
to the data in the form (t, ln(y)) to determine the values of ln(a) and k. Use this approach to
find the best fit exponential function in the least squares sense to the U.S. population data.

(7) How close can a matrix be to being non-invertible? We explore that idea in this exercise. Let
A = [aij ] be the n × n upper triangular matrix with 1s along the diagonal and with every
other entry being −1.

(a) What is det(A)? What are the eigenvalues of A? Is A invertible?
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(b) Let B = [bij ] be the n × n matrix so that bn1 = − 1
2n−2 and bij = aij for all other i

and j.

i. For the matrix B with n = 3, show that the equation Bx = 0 has a non-trivial
solution. Find one non-trivial solution.

ii. For the matrix B with n = 4, show that the equation Bx = 0 has a non-trivial
solution. Find one non-trivial solution.

iii. Use the pattern established in parts (i.) and (ii.) to find a non-trivial solution to
the equation Bx = 0 for an arbitrary value of n. Be sure to verify that you have
a solution. has a non-trivial solution. Is B invertible? (Hint: For any positive
integer m, the sum 1 +

∑m−1
k=0 2k is the partial sum of a geometric series with

ratio 2 and so 1 +
∑m−1

k=0 2k = 1 + 1−2m

1−2 = 2m.)
iv. Explain whyB is not an invertible matrix. Notice thatA andB differ by a single

entry, and that A is invertible and B is not. Let us examine how close A is to B.
Calculate ||A−B||F ? What happens to ||A−B||F as n goes to infinity? How
close can an invertible matrix be to becoming non-invertible?

(8) Let A =

 1 0 0
0 1 −1
0 −1 1

. In this exercise we find a matrix B so that B2 = A, that is, find

a square root of the matrix A.

(a) Find the eigenvalues and corresponding eigenvectors for A and ATA. Explain what
you see.

(b) Find a matrix V that orthogonally diagonalizes ATA.

(c) Exercise 8 in Section 33 shows if UΣV T is a singular value decomposition for a
symmetric matrix A, then so is V ΣV T. Recall that An =

(
V ΣV T

)n
= V ΣnV T for

any positive integer n. We can exploit this idea to define
√
A to be the matrix

V Σ1/2V T,

where Σ1/2 is the matrix whose diagonal entries are the square roots of the corre-
sponding entries of Σ. Let B =

√
A. Calculate B and show that B2 = A.

(d) Why was it important that A b ea symmetric matrix for this process to work, and
what had to be true about the eigenvalues of A for this to work?

(e) Can you extend the process in this exercise to find a cube root of A?

(9) Let A be an m× n matrix with singular value decomposition UΣV T. Let A+ be defined as
in (34.8). In this exercise we prove the remaining parts of Theorem 34.3.

(a) Show that (AA+)T = AA+. (Hint: ΣΣ+ is a symmetric matrix.)

(b) Show that (A+A)T = A+A.

(10) In this exercise we show that the pseudoinverse of a matrix is the unique matrix that satisfies
the Moore-Penrose conditions. Let A be an m× n matrix with singular value decomposition
UΣV T and pseudoinverse X = V Σ+UT. To show that A+ is the unique matrix that satisfies
the Moore-Penrose conditions, suppose that there is another matrix Y that also satisfies the
Moore-Penrose conditions.
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(a) Show that X = Y AX .

(b) Show that Y = Y AX .

(c) How do the results of parts (a) and (b) show that A+ is the unique matrix satisfying
the Moore-Penrose conditions?

(11) Find the pseudo-inverse of the m× n zero matrix A = 0. Explain the conclusion.

(12) In all of the examples that we have done finding a singular value decomposition of a matrix,
it has been the case (though we haven’t mentioned it), that if A is an m × n matrix, then
rank(A) = rank

(
ATA

)
. Prove this result.

(13) Show that if the columns of a matrix A are linearly independent, then ATA is invertible.
(Hint: If ATAx = 0, what is xTATAx?)

(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A matrix has a pseudo-inverse if and only if the matrix is singular.

(b) True/False The pseudoinverse of an invertible matrix A is the matrix A−1.

(c) True/False If the columns of A are linearly dependent, then there is no least squares
solution to Ax = b.

(d) True/False If the columns of A are linearly independent, then there is a unique least
squares solution to Ax = b.

(e) True/False If T is the matrix transformation defined by a matrix A and S is the
matrix transformation defined by A+, then T and S are inverse transformations.

Project: GPS and Least Squares

In this project we discuss some of the details about how the GPS works. The idea is based on inter-
sections of spheres. To build a basic understanding of the system, we begin with a 2-dimensional
example.

Project Activity 34.1. Suppose that there are three base stations A, B, and C in R2 that can send
and receive signals from your mobile phone. Assume thatA is located at point (−1,−2),B at point
(36, 5), and C at point (16, 35). Also assume that your mobile phone location is point (x, y). Based
on the time that it takes to receive the signals from the three base stations, it can be determined that
your distance to base stationA is 28 km, your distance to base stationB is 26 km, and your distance
to base station C is 14 km using a coordinate system with measurements in kilometers based on
a reference point chosen to be (0, 0). Due to limitations on the measurement equipment, these
measurements all contain some unknown error which we will denote as z. The goal is to determine
your location in R2 based on this information.

If the distance readings were accurate, then the point (x, y) would lie on the circle centered at
A of radius 29. The distance from (x, y) to base station A can be represented in two different ways:
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28 km and
√

(x+ 1)2 + (y + 2)2. However, there is some error in the measurements (due to the
receiver clock and satellite clocks not being snychronized), so we really have√

(x+ 1)2 + (y + 2)2 + z = 28,

where z is the error. Similarly, (x, y) must also satisfy√
(x− 36)2 + (y − 5)2 + z = 26

and √
(x− 16)2 + (y − 35)2 + z = 14.

(a) Explain how these three equations can be written in the equivalent form

(x+ 1)2 + (y + 2)2 = (28− z)2 (34.9)

(x− 36)2 + (y − 5)2 = (26− z)2 (34.10)

(x− 16)2 + (y − 35)2 = (14− z)2. (34.11)
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Figure 34.6: Intersections of circles.

(b) If all measurements were accurate, your position would be at the intersection of the circles
centered at A with radius 28 km, centered at B with radius 26 km, and centered at C with
radius 14 km as shown in Figure 34.6. Even though the figure might seem to imply it,
because of the error in the measurements the three circles do not intersect in one point. So
instead, we want to find the best estimate of a point of intersection that we can. The system
of equations 34.9, 34.10, and 34.11 is non-linear and can be difficult to solve, if it even has
a solution. To approximate a solution, we can linearize the system. To do this, show that if
we subtract corresponding sides of equation (34.9) from (34.10) and expand both sides, we
can obtain the linear equation

37x+ 7y + 2z = 712

in the unknowns x, y, and z.

(c) Repeat the process in part (b), subtracting (34.9) from (34.11) and show that we can obtain
the linear equation

17x+ 37y + 14z = 1032

in x, y, and z.
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(d) We have reduced our system of three non-linear equations to the system

37x+ 7y + 2z =712

17x+ 37y + 14z =1032

of two linear equations in the unknowns x, y, and z. Use technology to find a pseudoinverse
of the coefficient matrix of this system. Use the pseudoinverse to find the least squares so-
lution to this system. Does your solution correspond to an approximate point of intersection
of the three circles?

Project Activity 34.1 provides the basic idea behind GPS. Suppose you receive a signal from
a GPS satellite. The transmission from satellite i provides four pieces of information – a location
(xi, yi, zi) and a time stamp ti according to the satellite’s atomic clock. The time stamp allows
the calculation of the distance between you and the ith satellite. The transmission travel time is
calculated by subtracting the current time on the GPS receiver from the satellite’s time stamp.
Distance is then found by multiplying the transmission travel time by the rate, which is the speed of
light c = 299792.458 km/s.5 So distance is found as c(ti − d), where d is the time at the receiver.
This signal places your location within in a sphere of that radius from the center of the satellite. If
you receive a signal at the same time from two satellites, then your position is at the intersection
of two spheres. As can be seen at left in Figure 34.7, that intersection is a circle. So your position
has been narrowed quite a bit. Now if you receive simultaneous signals from three spheres, your
position is narrowed to the intersection of three spheres, or two points as shown at right in Figure
34.7. So if we could receive perfect information from three satellites, then your location would be
exactly determined.

Figure 34.7: Intersections of spheres.

There is a problem with the above analysis – calculating the distances. These distances are de-
termined by the time it takes for the signal to travel from the satellite to the GPS receiver. The times
are measured by the clocks in the satellites and the clocks in the receivers. Since the GPS receiver
clock is unlikely to be perfectly synchronized with the satellite clock, the distance calculations are
not perfect. In addition, the rate at which the signal travels can change as the signal moves through

5The signals travel in radio waves, which are electromagnetic waves, and travel at the speed of light. Also, c is the
speed of light in a vacuum, but atmosphere is not too dense so we assume this value of c
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the ionosphere and the troposphere. As a result, the calculated distance measurements are not exact,
and are referred to as pseudoranges. In our calculations we need to factor in the error related to the
time discrepancy and other factors. We will incorporate these errors into our measure of d and treat
d as an unknown. (Of course, this is all more complicated that is presented here, but this provides
the general idea.)

To ensure accuracy, the GPS uses signals from four satellites. Assume a satellite is positioned
at point (x1, y1, z1) at a distance d1 from the GPS receiver located at point (x, y, z). The distance
can also be measured in two ways: as√

(x− x1)2 + (y − y1)2 + (z − z1)2.

and as c(t1 − d). So

c(t1 − d) =
√

(x− x1)2 + (y − y1)2 + (z − z1)2.

Again, we are treating d as an unknown, so this equation has the four unknowns x, y, z, and d.
Using signals from four satellites produces the system of equations√

(x− x1)2 + (y − y1)2 + (z − z1)2 = c(t1 − d) (34.12)√
(x− x2)2 + (y − y2)2 + (z − z2)2 = c(t2 − d) (34.13)√
(x− x3)2 + (y − y3)2 + (z − z3)2 = c(t3 − d) (34.14)√
(x− x4)2 + (y − y4)2 + (z − z4)2 = c(t4 − d). (34.15)

Project Activity 34.2. The system of equations (34.12), (34.13), (34.14), and (34.15) is a non-
linear system and is difficult to solve, if it even has a solution. We want a method that will provide
at least an approximate solution as well as apply if we use more than four satellites. We choose a
reference node (say (x1, y1, z1)) and make calculations relative to that node as we did in Project
Activity 34.1.

(a) First square both sides of the equations (34.12), (34.13), (34.14), and (34.15) to remove the
roots. Then subtract corresponding sides of the new first equation (involving (x1, y1, z1))
from the new second equation (involving (x2, y2, z2)) to show that we can obtain the linear
equation

2(x2 − x1)x+ 2(y2 − y1)y + 2(z2 − z1)z + 2c2(t1 − t2)d = c2(t21 − t22)− h1 + h2,

where hi = x2
i + y2

i + z2
i . (Note that the unknowns are x, y, z, and d – all other quantities

are known.)

(b) Use the result of part (a) to write a linear system that can be obtained by subtracting the
first equation from the third and fourth equations as well.

(c) The linearizations from part (b) determine a system Ax = b of linear equations. Identify
A, x, and b. Then explain how we can approximate a best solution to this system in the
least squares sense.

We conclude this project with a final note. At times a GPS receiver may only be able to receive
signals from three satellites. In these situations, the receiver can substitute the surface of the Earth
as a fourth sphere and continue the computation.
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Section 35

Linear Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a linear transformation?

• What is the kernel of a linear transformation? What algebraic structure
does a kernel of a linear transformation have?

• What is a one-to-one linear transformation? How does its kernel tell us if a
linear transformation is one-to-one?

• What is the range of a linear transformation? What algebraic property does
the range of a linear transformation possess?

• What is an onto linear transformation? What relationship is there between
the codomain and range if a linear transformation is onto?

• What is an isomorphism of vector spaces?

Application: Fractals

Sierpinski triangles and Koch’s curves have become common phrases in many mathematics de-
partments across the country. These objects are examples of what are called fractals, beautiful
geometric constructions that exhibit self-similarity. Fractals are applied in a variety of ways: they
help make smaller antennas (e.g., for cell phones) and are used in fiberoptic cables, among other
things. In addition, fractals can be used to model realistic objects, such as the Black Spleenwort
fern depicted as a fractal image in Figure 35.1. As we will see later in this section, one way to
construct a fractal is with an Iterated Function System (IFS).

637
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Figure 35.1: An approximation of the Black Spleenwort fern.

Introduction

We have encountered functions throughout our study of mathematics – we explore graphs of func-
tions in algebra and differentiate and integrate functions in calculus. In linear algebra we have in-
vestigated special types of functions, e.g., matrix and coordinate transformations, that preserve the
vector space structure. Any function that has the same properties as matrix and coordinate trans-
formations is a linear transformation. Linear transformations are important in linear algebra in that
we can study similarities and connections between vector spaces by examining transformations be-
tween them. Linear transformations model or approximately model certain real-life processes (like
discrete dynamical systems, geometrical transformations, Google PageRank, etc.). Also, we can
determine the behavior of an entire linear transformation by knowing how it acts on just a basis.

Definition 35.1. A linear transformation from a vector space V to a vector space W is a function
T : V →W such that

(1) T (u + v) = T (u) + T (v) and

(2) T (cv) = cT (v)

for all u,v in V and all scalars c.

These transformations are called linear because they respect linear combinations. We can com-
bine both parts of this definition into one statement and say that a mapping T from a vector space
V to a vector space W is a linear transformation if

T (au + bv) = aT (u) + bT (v)

for all vectors u,v in V and all scalars a and b. We can extend this property of a linear transfor-
mation (by mathematical induction) to any finite linear combination of vectors. That is, if v1, v2,
. . ., vk are any vectors in the domain of a linear transformation T and c1, c2, . . ., ck are any scalars,
then

T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk).

This is the property that T respects linear combinations.

Preview Activity 35.1.
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(1) Consider the transformation T : R3 → R2 defined by

T

 x
y
z

 =

[
x+ y
z + 3

]
Check that T is not linear by finding two vectors u,v which violate the additive property of
linear transformations.

(2) Consider the transformation T : P2 → P3 defined by

T (a0 + a1t+ a2t
2) = (a0 + a1) + a2t+ a1t

3

Check that T is a linear transformation.

(3) Let D be the set of all differentiable functions from R to R. Since d
dx(0) = 0, (f + g)′(x) =

f ′(x) + g′(x) and (cf)′(x) = cf ′(x) for any differentiable functions f and g and any scalar
c, it follows that D is a subspace of F , the vector space of all functions from R to R. Let
T : D→ F be defined by T (f) = f ′. Check that T is a linear transformation.

(4) Every matrix transformation is a linear transformation, so we might expect that general linear
transformations share some of the properties of matrix transformations. Let T be a linear
transformation from a vector space V to a vector space W . Use the linearity properties to
show that T (0V ) = 0W , where 0V is the additive identity in V and 0W is the additive
identity in W . (Hint: 0V + 0V = 0V .)

Onto and One-to-One Transformations

Recall that in Section 7 we expressed existence and uniqueness questions for matrix equations in
terms of one-to-one and onto properties of matrix transformations. The question about the existence
of a solution to the matrix equation Ax = b for any vector b, where A is an m× n matrix, is also
a question about the existence of a vector x so that T (x) = b, where T (x) = Ax. If, for each b in
Rm there is at least one x with T (x) = b, then T is an onto transformation. We can make a similar
definition for any linear transformation.

Definition 35.2. A linear transformation T from a vector space V to a vector space W is onto if
each b in W is the image of at least one x in V .

Similarly, the uniqueness of a solution to Ax = b for any b in Col A is the same as saying that
for any b in Rm, there is at most one x in Rn such that T (x) = b. A matrix transformation with
this property is one-to-one, and we can make a similar definition for any linear transformation.

Definition 35.3. A linear transformation T from a vector space V to a vector spaceW is one-to-one
if each b in W is the image of at most one x in V .

With matrix transformations we saw that there are easy pivot criteria for determining whether
a matrix transformation is one-to-one (a pivot in each column) or onto (a pivot in each row). If a
linear transformation can be represented as a matrix transformation, then we can use these ideas.
However, not every general linear transformation can be easily viewed as a matrix transformation,
and in those cases we might have to resort to applying the definitions directly.
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Activity 35.1. For each of the following transformations, determine if T is one-to-one and/or onto.

(a) T : P2 → P1 defined by T (a0 + a1t+ a2t
2) = a0 + (a1 + a2)t.

(b) T : D→ F defined by T (f) = f ′.

The Kernel and Range of Linear Transformation

As we saw in Preview Activity 35.1, any linear transformation sends the additive identity to the
additive identity. If T is a matrix transformation defined by T (x) = Ax for some m× n matrix A,
then we have seen that the set of vectors that T maps to the zero vector is Nul A = {x : Ax = 0},
which is also Ker(T ) = {x : T (x) = 0. We can extend this idea of the kernel of a matrix
transformation to any linear transformation T .

Definition 35.4. Let T : V → W be a linear transformation from the vector space V to the vector
space W . The kernel of T is the set

Ker(T ) = {x ∈ V : T (x) = 0W },

where 0W is the additive identity in W .

Just as the null space of an m × n matrix A is a subspace of Rn, the kernel of a linear trans-
formation from a vector space V to a vector space W is a subspace of V . The proof is left to the
exercises.

Theorem 35.5. Let T : V → W be a linear transformation from a vector space V to vector space
W . Then Ker(T ) is a subspace of V .

The kernel of a linear transformation provides a convenient way to determine if the linear trans-
formation is one-to-one. If T is one-to-one, then the only solution to T (x) = 0W is 0V and Ker(T )
contains only the zero vector. If T is not one-to-one (and the domain of T is not just {0}), then the
number of solutions to T (x) = 0W is infinite and Ker(T ) contains more than just the zero vector.
We formalize this idea in the next theorem. (Compare to Theorem 13.3.) The formal proof is left
for the exercises.

Theorem 35.6. A linear transformation T from a vector space V to a vector spaceW is one-to-one
if and only if Ker(T ) = {0V }, where 0V is the additive identity in V .

Activity 35.2.

(a) Let T : P1 → P2 be defined by T (a0 + a1t) = a1t
2. Find Ker(T ). Is T one-to-one?

Explain.

(b) Let T : D→ F be defined by T (f) = f ′. Find Ker(T ).

Recall that the matrix-vector product Ax is a linear combination of the columns of A and the
set of all vectors of the form Ax is the column space of A. For the matrix transformation T defined
by T (x) = Ax, the set of all vectors of the form Ax is also the range of the transformation T . We
can extend this idea to arbitrary linear transformations to define the range of a transformation.
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Definition 35.7. Let T : V → W be a linear transformation from the vector space V to the vector
space W . The range of T is the set

Range(T ) = {T (x) : x is in V }.

If T (x) = Ax for some m× n matrix A, we know that Col A, the span of the columns of A, is
a subspace of Rm. Consequently, the range of T , which is also the column space ofA, is a subspace
of Rm. In general, the range of a linear transformation T from V to W is a subspace of W .

Theorem 35.8. Let T : V → W be a linear transformation from a vector space V to vector space
W . Then Range(T ) is a subspace of W .

Proof. Let T : V → W be a linear transformation from a vector space V to vector space W . We
have already shown that T (0V ) = 0W , so 0W is in Range(T ). To show that Range(T ) is a subspace
of W we must also demonstrate that w + z is in Range(T ) whenever w and z are in Range(T ) and
that aw is in Range(T ) whenever a is a scalar and w is in Range(T ). Let w and z be in Range(T ).
Then T (u) = w and T (v) = z for some vectors u and v in V . Since T is a linear transformation,
it follows that

T (u + v) = T (u) + T (v) = w + z.

So w + z is in Range(T ).

Finally, let a be a scalar. The linearity of T gives us

T (au) = aT (u) = aw,

so aw is in Range(T ). We conclude that Range(T ) is a subspace of W . �

The subspace Range(T ) provides us with a convenient criterion for the transformation T being
onto. The transformation T is onto if for each b in W , there is at least one x for which T (x) = b.
This means that every b in W belongs to Range(T ) for T to be onto.

Theorem 35.9. A linear transformation T from a vector space V to a vector space W is onto if
and only if Range(T ) = W .

Activity 35.3. Let T : P1 → P2 be defined by T (a0 + a1t) = a1t
2 as in Activity 35.2 . Describe

the vectors in Range(T ). Is T onto? Explain.

Isomorphisms

If V is a vector space with a basis B = {v1,v2, . . . ,vn}, we have seen that the coordinate trans-
formation T : V → Rn defined by T (x) = [x]B is a linear transformation that is both one-to-one
and onto. This allows us to uniquely identify any vector in V with a vector in Rn so that the vector
space structure is preserved. In other words, the vector space V is for all intents and purposes the
same as the vector space Rn, except for the way we represent the vectors. This is a very powerful
idea in that it shows that any vector space of dimension n is essentially Rn and, consequently, any
two vectors spaces of dimension n are essentially the same space. When this happens we say that
the vectors spaces are isomorphic and call the coordinate transformation an isomorphism.
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Definition 35.10. An isomorphism from a vector space V to a vector space W is a linear transfor-
mation T : V →W that is one-to-one and onto.

Activity 35.4. Assume that each of the following maps is a linear transformation. Which, if any, is
an isomorphism? Justify your reasoning.

(a) T : P1 → R2 defined by T (a0 + a1t) =

[
a1

a1 + a0

]

(b) T :M2×2 → P3 defined by T
([

a b
c d

])
= a+ bt+ ct2 + dt3.

(c) T : R2 → P2 defined by T
([

a
b

])
= a+ bt+ at2.

It is left for the exercises to show that if T : V → W is an isomorphism, then T−1 : W → V
is also an isomorphism. So if there is an isomorphism from a vector space V to a vector space
W , we say that V and W are isomorphic vector spaces. It is also true that any vector space is
isomorphic to itself, and that if V is isomorphic to W and W is isomorphic to U , then V and U are
also isomorphic. The proof of this result is left to the exercises.

Examples

What follows are worked examples that use the concepts from this section.

Example 35.11. Let T : P2 → P3 be defined by T (p(t)) = tp(t) + p(0).

(a) Show that T is a linear transformation.

(b) Is T one-to-one? Justify your answer.

(c) i. Find three different polynomials in Range(T ).

ii. Find, if possible, a polynomial that is not in Range(T ).

iii. Describe Range(T ). What is dim(Range(T ))? Is T an onto transformation? Explain.

Example Solution.

(a) To show that T is a linear transformation we must show that T (p(t) + q(t)) = T (p(t)) +
T (q(t)) and T (cp(t)) = cT (p(t)) for every p(t), q(t) in P2 and any scalar c. Let p(t) and
q(t) be in P2. Then

T (p(t) + q(t)) = t(p(t) + q(t)) + (p(0) + q(0))

= (tp(t) + p(0)) + (tq(t) + q(0))

= T (p(t)) + T (q(t))

and
T (cp(t)) = tcp(t) + cp(0) = c (tp(t) + p(0)) = cT (p(t)).

Therefore, T is a linear transformation.
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(b) To determine if T is one-to-one, we find Ker(T ). Suppose p(t) = a0+a1t+a2t
2 ∈ Ker(T ).

Then
0 = T (p(t)) = tp(t) + p(0) = a0t+ a1t

2 + a2t
3 + a0.

Equating coefficients on like powers of t shows that a0 = a1 = a2 = 0. Thus, p(t) = 0
and Ker(T ) = {0}. Thus, T is one-to-one.

(c) i. We can find three polynomials in Range(T ) by applying T to three different polyno-
mials in P2. So three polynomials in Range(T ) are

T (1) = t+ 1

T (t) = t2

T
(
t2
)

= t3.

ii. A polynomial q(t) = b0 + b1t + b2t
2 + b3t

3 is in Range(T ) if q(t) = T (p(t)) for
some polynomial p(t) = a0 + a1t+ a2t

2 in P2. This would require that

b0 + b1t+ b2t
2 + b3t

3 = a0t+ a1t
2 + a2t

3 + a0.

But this would mean that b0 = a0 = b1. So the polynomial 1 + 2t+ t2 + t3 is not in
Range(T ).

iii. Let q(t) be in Range(T ). Then q(t) = T (p(t)) for some polynomial p(t) = a0 +
a1t+ a2t

2 ∈ P2. Thus,

q(t) = T (p(t))

= tp(t) + p(0)

= a0t+ a1t
2 + a2t

3 + a0

= a0(t+ 1) + a1t
2 + a2t

3.

Therefore, Range(T ) = Span{t + 1, t2, t3}. Since the reduced row echelon form

of


1 0 0
1 0 0
0 1 0
0 0 1

 is


1 0 0
0 1 0
0 0 1
0 0 0

, we conclude that the set {t + 1, t2, t3} is linearly

independent. Thus, dim(Range(T )) = 3. Since Range(T ) is a three-dimensional
subspace of the four-dimensional space P3, it follows that T is not onto.

Example 35.12. Let T :M2×2 → P3 be defined by

T

([
a b
c d

])
= a+ bt+ ct2 + dt3.

Show that T is an isomorphism fromM2×2 to P3.

Example Solution.

We need to show that T is a linear transformation, and that T is both one-to-one and onto. We
start by demonstrating that T is a linear transformation. Let A = [aij ] and B = [bij ] be inM2×2.
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Then

T (A+B) = T ([aij + bij ])

= (a11 + b11) + (a12 + b12) t+ (a21 + b21) t2 + (a22 + b22) t3

=
(
a11 + a12t+ a21t

2 + a22t
3
)

+
(
b11 + b12t+ b21t

2 + b22t
3
)

= T (A) + T (B).

Now let c be a scalar. Then

T (cA) = T ([caij ])

= (ca11) + (ca12) t+ (ca21) t2 + (ca22) t3

= c
(
a11 + a12t+ a21t

2 + a22t
3
)

= cT (A).

Therefore, T is a linear transformation.

Next we determine Ker(T ). Suppose A ∈ Ker(T ). Then

0 = T (A) = a11 + a12t+ a21t
2 + a22t

3.

Equating coefficients of like powers of T shows that aij = 0 for each i and j. Thus, A = 0 and
Ker(T ) = {0}. It follows that T is one-to-one.

Finally, we show that Range(T ) = P3. If q(t) = a+bt+ct2+dt3 ∈ P3, then T
([

a b
c d

])
=

q(t). So every polynomial in P3 is the image of some matrix inM2×2. It follows that T is onto and
also that T is an isomorphism.

Summary

Let T be a linear transformation from a vector space V to a vector space W .

• A function T from a vector space V to a vector space W is a linear transformation if

(1) T (u + v) = T (u) + T (v) for all u and v in V and

(2) T (cu) = cT (u) for all u in V and all scalars c.

• Let T be a linear transformation from a vector space V to a vector space W . The kernel of T
is the set

Ker(T ) = {x ∈ V : T (x) = 0}.

The kernel of T is a subspace of V .

• Let T be a linear transformation from a vector space V to a vector space W . The transforma-
tion T is one-to-one if every vector in W is the image under T of at most one vector in V . A
linear transformation T is one-to-one if and only if Ker(T ) = {0}.
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• Let T be a linear transformation from a vector space V to a vector space W . The range of T
is the set

Range(T ) = {T (v) : v ∈ V }.
The range of T is a subspace of W .

• Let T be a linear transformation from a vector space V to a vector space W . The linear
transformation T is onto if every vector in W is the image under T of at least one vector in
V . The transformation T is onto if and only if Range(T ) = W .

• An isomorphism from a vector space V to a vector space W is a linear transformation T :
V →W that is one-to-one and onto.

Exercises

(1) We have seen that C[a, b], the set of all continuous functions on the interval [a, b] is a vector
space. Let T : C[a, b] → R be defined by T (f) =

∫ b
a f(x) dx. Show that T is a linear

transformation.

(2) If V is a vector space, prove that the identity map I : V → V defined by I(x) = x for all
x ∈ V is an isomorphism.

(3) Let V andW be vector spaces and let T : V →W be an isomorphism. Since T is one-to-one,
it has an inverse function T−1 that has the property that T−1(w) = v whenever T (v) = w.
Show that T−1 is also an isomorphism.

(4) Let U , V , and W be vector spaces, and let S : U → V and T : V → W be linear trans-
formations. Determine which of the following is true. If a statement is true, verify it. If a
statement is false, give a counterexample. (The result of this exercise, along with Exercises
2 and 3., shows that the isomorphism relation is reflexive, symmetric, and transitive. Thus,
isomorphism is an equivalence relation.)

(a) T ◦ S is a linear transformation

(b) S ◦ T is a linear transformation

(c) If S and T are one-to-one, then T ◦ S is one-to-one.

(d) If S and T are onto, then T ◦ S is onto.

(e) If S and T are isomorphisms, then T ◦ S is an isomorphism.

(5) For each of the following maps, determine which is a linear transformation. If a mapping
is not a linear transformation, provide a specific example to show that a property of a linear
transformation is not satisfied. If a mapping is a linear transformation, verify that fact and
then determine if the mapping is one-to-one and/or onto. Throughout, let V and W be vector
spaces.

(a) T : V → V defined by T (x) = −x
(b) T : V → V defined by T (x) = 2x



646 Section 35. Linear Transformations

(6) Let V be a vector space. In this exercise, we will investigate mappings T : V → V of the
form T (x) = kx, where k is a scalar.

(a) For which values, if any, of k is T a linear transformation?

(b) For which values of k, if any, is T an isomorphism?

(7) Let V be a finite-dimensional vector space and W a vector space. Show that if T : V → W
is an isomorphism, and B = {v1,v2, . . . ,vn} is a basis for V , then C = {T (v1), T (v2), . . .,
T (vn)} is a basis for W . Hence, if V is a vector space of dimension n and W is isomorphic
to V , then dim(W ) = n as well.

(8) Let W =

{[
x −x
−x x

]
: is a scalar

}
.

(a) Show that W is a subspace ofM2×2.

(b) The space W is isomorphic to Rk for some k. Determine the value of k and explain
why W is isomorphic to Rk.

(9) Is it possible for a vector space to be isomorphic to one of its proper subspaces? Justify your
answer.

(10) Prove Theorem 35.5 (Hint: See Preview Activity 13.1.)

(11) Prove Theorem 35.6.

(12) Let V and W be finite dimensional vector spaces, and let T : V → W be a linear trans-
formation. Show that T is uniquely determined by its action on a basis for V . That is, if
B = {v1,v2, . . . ,vn} is a basis for V , and we know T (v1), T (v2), . . ., T (vn), then we
know exactly which vector T (u) is for any u in V .

(13) Let V and W be vectors spaces and let T : V → W be a linear transformation. If V ′ is a
subspace of V , let

T (V ′) = {T (v) : v is in V ′}.

(a) Show that T (V ′) is a subspace of W .

(b) Suppose dim(V ′) = n. Show that dim(T (V ′)) ≤ n. Can dim(T (V ′)) = n even if
T is not an isomorphism? Justify your answer.

(14) Let V and W be vector spaces and define L(V,W ) to be the set of all linear transformations
from V to W . If S and T are in L(V,W ) and c is a scalar, then define S + T and cT as
follows:

(S + T )(v) = S(v) + T (v) and (cT )(v) = cT (v)

for all v in V . Prove that L(V,W ) is a vector space.

(15) The Rank-Nullity Theorem (Theorem 15.5) states that the rank plus the nullity of a matrix
equals the number of columns of the matrix. There is a similar result for linear transforma-
tions that we prove in this exercise. Let T : V → W be a linear transformation from an n
dimensional vector space V to an m dimensional vector space W .
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Show that dim(Ker(T )) + dim(Range(T )) = n. (Hint: Let {v1,v2, . . . ,vk} be a basis for
Ker(T ). Extend this basis to a basis {v1, v2, . . ., vk, vk+1, . . ., vn} of V . Use this basis to
find a basis for Range(T ).)

(16) Let V andW be vector spaces with dim(V ) = n = dim(W ), and let T : V →W be a linear
transformation

(a) Prove or disprove: If T is one-to-one, then T is also onto. (Hint: Use Exercise 3.)

(b) Prove or disprove: If T is onto, then T is also one-to-one. (Hint: Use Exercise 3.)

(17) Suppose B1 is a basis of an n-dimensional vector space V , and B2 is a basis of an n-
dimensional vector space W . Show that the map TVW which sends every x in V to the
vector y in W such that [x]B1 = [y]B2 is a linear transformation. (Combined with Exercise
16 in Section 25, we can conclude that TVW is an isomorphism. Thus, any two vectors space
of dimension n are isomorphic.)

(18) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The mapping T : M2×2 → R defined by T (A) = det(A) is a linear
transformation.

(b) True/False The mapping T : M2×2 → M2×2 defined by T (A) = A−1 if A is
invertible and T (A) = 0 (the zero matrix) otherwise is a linear transformation.

(c) True/False Let V and W be vector spaces. The mapping T : V → W defined by
T (x) = 0 is a linear transformation.

(d) True/False If T : V → W is a linear transformation, and if {v1,v2} is a linearly
independent set in V , then the set {T (v1), T (v2)} is a linearly independent set in
W .

(e) True/False A one-to-one transformation is a transformation where each input has a
unique output.

(f) True/False A one-to-one linear transformation is a transformation where each output
can only come from a unique input.

(g) True/False Let V and W be vector spaces with dim(V ) = 2 and dim(W ) = 3. A
linear transformation from V to W cannot be onto.

(h) True/False Let V and W be vector spaces with dim(V ) = 3 and dim(W ) = 2. A
linear transformation from V to W cannot be onto.

(i) True/False Let V and W be vector spaces with dim(V ) = 3 and dim(W ) = 2. A
linear transformation from V to W cannot be one-to-one.

(j) True/False If w is in the range of a linear transformation T , then there is an x in the
domain of T such that T (x) = w.

(k) True/False If T is a one-to-one linear transformation, then T (x) = 0 has a non-
trivial solution.
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Project: Fractals via Iterated Function Systems

In this project we will see how to use linear transformations to create iterated functions systems
to generate fractals. We illustrate the idea with the Sierpinski triangle, an approximate picture of
which is shown at left in Figure 35.2. To make this figure, we need to identify linear transformations

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure 35.2: Left: An approximation of the Sierpinski triangle. Right: A triangle.

that can be put together to produce the Sierpinski triangle.

Project Activity 35.1. Let v1 = [0 0]T, v2 = [1 0]T, and v3 =
[

1
2

√
3

4

]T
be three vectors in

the plane whose endpoints form the vertices of a triangle P0 as shown at right in Figure 35.2. Let

T : R2 → R2 be the linear transformation defined by T (x) = Ax, where A = 1
2I2 = 1

2

[
1 0
0 1

]
.

(a) What are T (v1), T (v2), and T (v3)? Draw a picture of the figure T (P0) whose vertices are
the endpoint of these three vectors. How is T (P0) related to P0?

(b) Since the transformation T shrinks objects, we call T (orA) a contraction mapping). Notice
that when we apply T to P0 it creates a smaller version of P0. The next step is to use T
to make three smaller copies of P0, and then translate these copies to the vertices of P0.
A translation can be performed by adding a vector to T (P0). Find C1 so that C1(P0) is a
copy of P0 half the size and translated so that C1(v1) = v1. Then find C2 so that C2(P0)
is a copy of P0 half the size and translated so that C2(v2) = v2. Finally, find C3 so that
C3(P0) is a copy of P0 half the size and translated so that C3(v3) = v3. Draw pictures of
each to illustrate.

Project Activity 35.1 contains the information we need to create an iterated function system to
produce the Sierpinski triangle. One more step should help us understand the general process.

Project Activity 35.2. Using the results of Project Activity 35.1, define P1,i to be Ci(P0) for each
i. That is, P1,1 = C1(P0), P1,2 = C2(P0), and P1,3 = C3(P0). So P1,i is a triangle half the size of
the original translated to the ith vertex of the original. Let P1 =

⋃3
i=1 P1,i. That is, P1 is the union

of the shaded triangles in Figure 35.3.

(a) Apply C1 from Project Activity 35.1 to P1. What is the resulting figure? Draw a picture to
illustrate.
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C1(P0) C2(P0)

C3(P0)

Figure 35.3: C1(P0), C2(P0), and C3(P0).

(b) Apply C2 from Project Activity 35.1 to P1. What is the resulting figure? Draw a picture to
illustrate.

(c) Apply C3 from Project Activity 35.1 to P1. What is the resulting figure? Draw a picture to
illustrate.

The procedures from Activities 35.1 and 35.2 can be continued, replacing P0 with P1, then P2,
and so on. In other words, for i = 1, 2, and 3, let P2,i = Ci(P1). Then let P2 =

⋃3
i=1 P2,i. A

picture of P2 is shown at left in Figure 35.4. We can continue this procedure, each time replacing
Pj−1 with Pj . A picture of P9 is shown at right in Figure 35.4.

Figure 35.4: Left: P2. Right: P9.

If we continue this process, taking the limit as i approaches infinity, the resulting sequence of
sets converges to a fixed set, in this case the famous Sierpinski triangle. So the picture of P9 in
Figure 35.4 is a close approximation of the Sierpinski triangle. This algorithm for building the
Sierpinski triangle is called the deterministic algorithm. A Sage cell to illustrate this algorithm for
producing approximations to the Sierpinski triangle can be found at http://faculty.gvsu.
edu/schlicks/STriangle_Sage.html.

In general, an iterated function system (IFS) is a finite set {f1, f2, . . . , fm} of contraction map-
pings from R2 to R2. If we start with a set S0, and let S1 =

⋃
fi(S0), S2 =

⋃
fi(S1), and so on,

then in “nice” cases (we won’t concern ourselves with what “nice” means here), the sequence S0,
S1, S2, . . . converges in some sense to a fixed set. That fixed set is called the attractor of the iterated
function system. It is that attractor that is the fractal. It is fascinating to note that our starting set
does not matter, the same attractor is obtained no matter which set we use as S0.

http://faculty.gvsu.edu/schlicks/STriangle_Sage.html
http://faculty.gvsu.edu/schlicks/STriangle_Sage.html
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One aspect of a fractal is that fractals are self-similar, that is they are made up of constituent
pieces that look just like the whole. More specifically, a subset S of R2 is self-similar if it can be
expressed in the form

S = S1 ∪ S2 ∪ · · · ∪ Sk
for non-overlapping sets S1, S2, . . ., Sk, each of which is congruent to S by the same scaling factor.
So, for example, the Sierpinski triangle is self-similar, made up of three copies of the whole, each
contracted by a factor of 2.

If we have an IFS, then we can determine the attractor by drawing the sequence of sets that the
IFS generates. A more interesting problem is, given a self-similar figure, whether we can construct
an IFS that has that figure as its attractor.

Project Activity 35.3. A picture of an emerging Sierpinski carpet is shown at left in Figure 35.5.
A Sage cell to illustrate this algorithm for producing approximations to the Sierpinski carpet can be
found at http://faculty.gvsu.edu/schlicks/SCarpet_Sage.html. In this activ-
ity we will see how to find an iterated function system that will generate this fractal.

Figure 35.5: A Sierpinski carpet.

(a) To create an IFS to generate this fractal, we need to understand how many self-similar
pieces make up this figure. Use the image at right in Figure 35.5 to determine how many
pieces we need.

(b) For each of the self-similar pieces identified in part (a), find a linear transformation and a
translation that maps the entire figure to the self-similar piece. (Hint: You could assume
that the carpet is embedded in the unit square.)

(c) Test your IFS to make sure that it actually generates the Sierpinski carpet. There are
many websites that allow you to do this, one of which is http://cs.lmu.edu/˜ray/
notes/ifs/. In this program, the mapping f defined by

f(x) =

[
a b
c d

]
x +

[
e
f

]
is represented as the string

a b c d e f.

http://faculty.gvsu.edu/schlicks/SCarpet_Sage.html
http://cs.lmu.edu/~ray/notes/ifs/
http://cs.lmu.edu/~ray/notes/ifs/
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Most programs generally use a different algorithm to create the attractor, plotting points
instead of sets. In this algorithm, each contraction mapping is assigned a probability as
well (the larger parts of the figure are usually given higher probabilities), so you will enter
each contraction mapping in the form

a b c d e f p

where p is the probability attached to that contraction mapping. As an example, the IFS
code for the Sierpinski triangle is

0.5 0 0 0.5 0 0 0.33
0.5 0 0 0.5 1 0 0.33
0.5 0 0 0.5 0.5 0.43 0.33

The contraction mappings we have used so far only involve contractions and translations. But
we do not have to restrict ourselves to just these types of contraction mappings.

Project Activity 35.4. Consider the fractal represented in Figure 35.6. Find an IFS that generates
this fractal. Explain your reasoning. (Hint: Two reflections are involved.) Check with a fractal
generator to ensure that you have an appropriate IFS.

Figure 35.6: A fractal.

We conclude our construction of fractals with one more example. The contraction mappings in
iterated function can also involve rotations.

Project Activity 35.5. Consider the Lévy Dragon fractal shown at left in Figure 35.7. Find an IFS
that generates this fractal. Explain your reasoning. (Hint: Two rotations are involved – think of
the fractal as contained in a blue triangle as shown at right in Figure 35.7.) Check with a fractal
generator to ensure that you have an appropriate IFS.

We end this project with a short discussion of fractal dimension. The fractals we have seen
are very strange in many ways, one of which is dimension. We have studied the dimensions of
subspaces of Rn – each subspace has an integer dimension that is determined by the number of
elements in a basis. Fractals also have a dimension, but the dimension of a fractal is generally not
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0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Figure 35.7: The Lévy Dragon.

an integer. To try to understand fractal dimension, notice that a line segment is self-similar. We
can break up a line segment into 2 non-overlapping line segments of the same length, or 3, or 4,
or any number of non-overlapping segments of the same length. A square is slightly different. We
can partition a square into 4 non-overlapping squares, or 9 non-overlapping squares, or n2 non-
overlapping squares for any positive integer n as shown in Figure 35.8. Similarly, we can break

Figure 35.8: Self-similar squares.

up a cube into n3 non-overlapping congruent cubes. A line segment lies in a one-dimensional
space, a square in a two-dimensional space, and a cube in the three-dimensional space. Notice that
these dimensions correspond to the exponent of the number of self-similar pieces with scaling n
into which we can partition the object. We can use this idea of dimension in a way that we can
apply to fractals. Let d(object) be the dimension of the object. We can partition a square into n2

non-overlapping squares, so

d(square) = 2 = 2
ln(n)

ln(n)
=

ln(n2)

ln(n)
=

ln(number of self-similar pieces)
ln(scaling factor)

.

Similarly, for the cube we have

d(cube) = 3 = 3
ln(n)

ln(n)
=

ln(n3)

ln(n)
=

ln(number of self-similar pieces)
ln(scaling factor)

.

We can then take this as our definition of the dimension of a self-similar object, when the scaling
factors are all the same (the fern fractal in Figure 35.1 is an example of a fractal generated by an
iterated function system in which the scaling factors are not all the same).

Definition 35.13. The fractal or Hausdorff dimension h of a self-similar set S is

h(S) =
ln(number of self-similar pieces)

ln(scaling factor)
.
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Project Activity 35.6. Find the fractal dimensions of the Sierpinski triangle and the Sierpinski
carpet. These are well-known and you can look them up to check your result. Then find the fractal
dimension of the fractal with IFS

0.38 0 0 0.38 −0.59 0.81 0.2
0.38 0 0 0.38 −0.95 −0.31 0.2
0.38 0 0 0.38 0 −1 0.2
0.38 0 0 0.38 0.95 −0.31 0.2
0.38 0 0 0.38 0.59 0.81 0.2

.

You might want to draw this fractal using an online generator.





Section 36

The Matrix of a Linear Transformation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How do we represent a linear transformation from Rn to Rm as a matrix
transformation?

• How can we represent any linear transformation from a finite dimensional
vector space V to a finite dimensional vector space W as a matrix transfor-
mation?

• In what ways is representing a linear transformation as a matrix transfor-
mation useful?

Application: Secret Sharing Algorithms

Suppose we have a secret that we want or need to share with several individuals. For example, a
bank manager might want to share pieces of the code for the bank vault with several employees
so that if the manager is not available, some subset of these employees could open the vault if
they work together. This allows for a significant amount of security while still making the code
available if needed. As another example, in order to keep passwords secure (as they can be hard to
remember), a person could implement a secret sharing scheme. The person would generate a set
of shares for a given password and store them in several different places. If the person forgets the
password, it can be reconstructed by collecting some set of these shares. Since the shares can be
stored in many different places, the password is relatively secure.

The idea behind secret sharing algorithms is to break a secret into a number (n) of pieces and
give each person one piece. A code is then created in such a way that any k individuals could
combine their information and learn the secret, but no group of fewer than k individuals could.
This is called a (k, n) threshold scheme. One secret sharing algorithm is Shamir’s Secret Sharing,

655
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which, as we will see later in this section, involves Lagrange polynomials. In order to implement
this algorithm, we will use matrices of linear transformations from polynomials spaces to Rn.

Introduction

A matrix transformation T from Rn to Rm is a linear transformation defined by T (x) = Ax for
some m × n matrix A. We can use the matrix to quickly determine if T is one-to-one or onto – if
every column of A contains a pivot, then T is one-to-one, and if every row of A contains a pivot,
then T is onto. As we will see, we can represent any linear transformation between finite dimen-
sional vector spaces as a matrix transformation, which will allow us to use all of the tools we have
developed for matrices to study linear transformations. We will begin with linear transformations
from Rn to Rm.

Preview Activity 36.1. Let T be a linear transformation from R2 into R3. Let’s also say that we
know the following information about T :

T

([
1
0

])
=

 0
2
−1

 and T
([

0
1

])
=

 1
3
2

 .

(1) Find T
([

2
0

])
. Hint: Use the fact that T is a linear transformation.

(2) Find T
([

1
1

])
.

(3) Find T
([

2
3

])
.

(4) Find T
([

a
b

])
for any real numbers a and b.

(5) Is it possible to find a matrix A so that T
([

a
b

])
= A

[
a
b

]
for any real numbers a and

b? If so, what is this matrix? If not, why not?

Linear Transformations from Rn to Rm

Preview Activity 36.1 illustrates the method for representing a linear transformation from Rn to Rm
as a matrix transformation. We now consider the general context.

Activity 36.1. Let T be a linear transformation from Rn to Rm. Let ei be the ith column of the
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n× n identity matrix. In other words,

e1 =



1
0
0
0
...
0


, e2 =



0
1
0
0
...
0


, e3 =



0
0
1
0
...
0


, . . . , en =


0
0
0
...
1



in Rn. The set {e1, e2, . . . , en} is the standard basis for Rn. Let x =


x1

x2
...
xn

 in Rn. Explain why

T (x) = Ax for every x in Rn, where

A = [ T (e1) T (e2) · · · T (en) ]

is the matrix with columns T (e1), T (e2), . . ., T (en).

As we discovered in Activity 36.1, a linear transformation from Rn to Rm can be expressed as
a matrix transformation where the columns of the matrix are given by the images of ei, the columns
of the n× n identity matrix. This matrix is called the standard matrix of the linear transformation.

Definition 36.1. If T is a linear transformation from Rn to Rm, the standard matrix for T is the
matrix

A = [ T (e1) T (e2) · · · T (en) ]

with columns T (e1), T (e2), . . ., T (en), where {e1, e2, . . . , en} is the standard basis for Rn. More
specifically, T (x) = Ax for every x in Rn.

The Matrix of a Linear Transformation

We saw in the previous section that any linear transformation T from Rn to Rm is in fact a matrix
transformation. In this section, we turn to the general question – can any linear transformation
T : V → W between an n-dimensional vector space V and an m-dimensional vector space W be
represented in some way as a matrix transformation? This will allow us to extend ideas like eigen-
values and eigenvectors to arbitrary linear transformations. We begin by investigating an example.

The general process for representing a linear transformation as a matrix transformation is as
described in Activity 36.2.

Activity 36.2. Let V be an n dimensional vector space and W an m dimensional vector space and
suppose T : V → W is a linear transformation. Let B = {v1,v2, . . . ,vn} be a basis for V and
C = {w1,w2, . . . ,wm} a basis for W . Let v be in V so that

v = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, c2, . . ., cn.
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(a) What is [v]B?

(b) Note that for v in V , T (v) is an element in W , so we can consider the coordinate vector
for T (v) with respect to C. Explain why

[T (v)]C = c1[T (v1)]C + c2[T (v2)]C + · · ·+ cn[T (vn)]C . (36.1)

(c) Now find a matrix A so that Equation (36.1) has the form [T (v)]C = A[v]B. We call the
matrix A to be the matrix for T relative to the bases B and C and denote this matrix as [T ]CB
so that

[T (v)]C = [T ]CB[v]B.

Activity 36.2 shows us how to represent a linear transformation as a matrix transformation.

Definition 36.2. Let T be a linear transformation from a vector space V with basis B = {v1, v2,
. . ., vn} to a vector space W with basis C = {w1,w2, . . . ,wm}. The matrix for T with respect
to the bases B and C is the matrix

[T ]CB = [[T (v1)]C [T (v2)]C [T (v3)]C · · · [T (vn)]C ] .

If V = W and C = B, then we use the notation [T ]B as a shorthand for [T ]CB. The matrix [T ]CB
has the property that

[T (v)]C = A[v]B

for any v in V . Recall that we can find the unique vector in W whose coordinate vector is [T (v)]C ,
so we have completely realized the transformation T as a matrix transformation. In essence, we are
viewing T as a composite of linear transformations, first from V to Rn, then from Rn to Rm, then
from Rm to W as illustrated in Figure 36.1.

V W

Rn Rm

-

6

-

6

T

[T ]CB

[ ]B [ ]C

Figure 36.1: Visualizing the matrix of a linear transformation.

Activity 36.3. Let T : P2 → P1 be defined by T (p(t)) = p′(t). Let B = {1 + t, 1− t, t+ t2} be a
basis for P2 and C = {1, t} be a basis for P1.

(a) Find the matrix [T ]CB.

(b) Find [1 + t+ t2]B. Then use the matrix [T ]CB to calculate [T (1 + t+ t2)]C . Use the fact that
1 + t+ t2 = (1) + (t+ t2).
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(c) Calculate T (1 + t + t2) directly from the definition of T and compare to your result from
part (b).

(d) Find the matrix [T ]C
′
B where C′ = {1 + t, 1− t}. Use the facts that

−1 = −1

2
(1 + t)− 1

2
(1− t) and 1 + 2t =

3

2
(1 + t)− 1

2
(1− t).

A Connection between Ker(T ) and a Matrix Representation of T

Recall that we defined the kernel of a matrix transformation T : Rn → Rm to be the set of vectors
that T maps to the zero vector. If T is the matrix transformation defined by T (x) = Ax, we also
saw that the kernel of T is the same as the null space of A. We can make a similar connection
between a linear transformation and a matrix that defines the transformation.

Activity 36.4. Let T : V →W be a linear transformation from an n-dimensional vector space V to
an m-dimensional vector space W with additive identity 0W . Let B be a basis for V and C a basis
for W . Let A = [T ]CB. Let T ′ be the matrix transformation from Rn to Rm defined by T ′(x) = Ax.

(a) Show that if v is in Ker(T ), then [v]B is in Nul A. (Hint: Apply an appropriate coordinate
transformation.)

(b) Let B = {v1,v2, . . . ,vn} and C = {w1,w2, . . . ,wm}. Show that if the vector x =
[x1 x2 · · · xn] is in Nul A, then the vector v = x1v1 + x2v2 + · · ·xnvn is in Ker(T ).
(Hint: Note that [v]B = x.)

Activity 36.4 shows that if T : V →W is a linear transformation from an n-dimensional vector
space V with basis B to an m-dimensional vector space W with basis C, then there is a one-to-one
correspondence between vectors in Ker(T ) and vectors in Nul [T ]CB. Recall that T is one-to-one if
and only if Ker(T ) = {0V }, where 0V is the additive identity of V . So T will be one-to-one if and
only if Nul [T ]CB = {0}. In other words, T is one-to-one if and only if every column of Nul [T ]CB is
a pivot column. Note that this does not depend on the basis B and C.

A similar argument shows that T is onto if and only if every row of Nul [T ]CB contains a pivot.
This is left to the exercises (see Exercise 7.).

Examples

What follows are worked examples that use the concepts from this section.

Example 36.3. Let T : P1 → P2 be defined by T (a+ bt) = b+ at+ 2at2.

(a) Show that T is a linear transformation.

(b) Let S1 = {1, t} and S2 = {1, t, t2} be the standard bases for P1 and P2, respectively. Find
the matrix [T ]S1S2 for T with respect to S2 and S1. Use the matrix [T ]S1S2 to determine if T is
one-to-one and/or onto. Explain your reasoning. Use technology as appropriate.
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(c) Use the matrix [T ]S1S2 to find Ker(T ) and Range(T ). If possible, find a basis for each.

(d) Let B = {1 + t, 1− t} be a basis for P1 and C = {t, 1− t2, t+ t2} a basis for P2. Find the
matrix [T ]CB for T with respect to C and B.

(e) Find T (1− 2t) using the matrix [T ]CB.

Example Solution.

(a) Let p(t) = a+ bt and q(t) = c+ dt be in P1. Then

T (p(t) + q(t)) = T ((a+ c) + (b+ d)t)

= (b+ d) + (a+ c)t+ 2(a+ c)t2

= (b+ at+ 2at2) + (d+ ct+ 2ct2)

= T (p(t)) + T (q(t)).

Now let k be a scalar. Then

T (kp(t)) = T ((ka) + (kb)t)

= (kb) + (ka)t+ (2ka)t2

= k(b+ at+ 2at2)

= kT (p(t)).

We conclude that T is a linear transformation.

(b) Recall that

[T ]S2S1 = [[T (1)]S2 [T (t)]S2 ] =
[
[t+ 2t2]S2 [1]S2

]
=

 0 1
1 0
2 0

 .
The linear transformation T is one-to-one and/or onto if and only if the matrix transforma-
tion defined by [T ]S2S1 is one-to-one and/or onto. The reduced row echelon form of [T ]S2S1 is 1 0

0 1
0 0

. Since [T ]S2S1 has a pivot in every column, T is one-to-one. However, [T ]S2S1 does

not have a pivot in every row, so T is not onto.

(c) From part (b) we know that T is one-to-one, so Ker(T ) = {0}. Let q(t) be a polynomial in
Range(T ). Then there is a polynomial p(t) in P1 such that T (p(t)) = q(t). It follows that

[q(t)]S2 = [T (p(t))]S2 = [T ]S2S1 [p(t)]S1 .
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If p(t) = a0 + a1t, then

[q(t)]S2 =

 0 1
1 0
2 0

[ a0

a1

]

=

 a1

a0

2a0


= a0

 0
1
2

+ a1

 1
0
0

 .
Thus, q(t) is in the span of t+2t2 and 1. So Range(T ) = Span{1, t+2t2}. Since neither 1
nor t+2t2 is a scalar multiple of the other, the vectors 1 and t+2t2 are linearly independent.
Thus, {1, t+ 2t2} is a basis for Range(T ).

(d) Recall that

[T ]CB = [[T (1 + t)]C [T (1− t)]C ] =
[
[1 + 2t+ t2]C [1− t2]C

]
=

 0 0
1 1
2 0

 .
(e) To find T (1 − 2t) using the matrix [T ]CB, recall that [T (p(t))]C = [T ]CB[p(t)]B. First note

that [1− 2t]B =

 −1
2

3
2

. So

[T (p(t))]C = [T ]CB[p(t)]B =

 1 0
0 1
0 0

 −1
2

3
2

 =

 0
1
−1

 .
This makes

T (1− 2t) = 0(t) + (1)
(
1− t2

)
+ (−1)

(
t+ t2

)
= 1− t− 2t2.

To check, using the definition of T we have

T (1− 2t) = t(1− 2t) + (1− 2t) = 1− t− 2t2.

Example 36.4. Let T : V → W be a linear transformation. Let B = {v1,v2, . . . ,vn} be a basis
for V and C = {w1,w2, . . . ,wm} a basis for W . Let S : Rn → Rm be the matrix transformation
defined by S(x) = [T ]CBx.

(a) Let w be a vector in Range(T ). Show that [w]C is in Col [T ]CB.

(b) If w ∈ Range(T ), part (a) shows that [w]C is in Col [T ]CB. So the coordinate transformation
[ ]C maps Range(T ) into Col [T ]CB. DefineR : Range(T )→ Col [T ]CB to be this coordinate
transformation. That is, R(w) = [w]C . (As a coordinate transformation, R is a linear
transformation.) We know that coordinate transformations are one-to-one. Show that R is
also an onto transformation.
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(c) What can we conclude about the relationship between the vector spaces Range(T ) and
Col [T ]CB? What must then be true about dim(Range(T )) and dim(Col [T ]CB)?

When we connect the results of this example with the result of Exercise 5. in this section,
we obtain a linear transformation analog of the Rank-Nullity Theorem. That is, if T is a linear
transformation from a vector space V of dimension nwith basis B to a vector spaceW of dimension
m with basis C, then

dim(Ker(T )) + dim(Range(T )) = dim(Nul [T ]CB) + dim(Col [T ]CB) = n.

Example Solution.

(a) Let w be a vector in Range(T ). Then there exists a vector v in V such that T (v) = w. It
follows that

[w]C = [T (v)]C = [T ]CB[v]C .

Recall that the vectors of the form Az all linear combinations of the columns of A with
weights from z, so [T ]CB[v]C (or [w]C) is in Col [T ]CB.

(b) Let R : Range(T ) → Col [T ]CB be the coordinate transformation R(w) = [w]C for each
w ∈ Range(T ). To show that R is an onto transformation, let y be in Col [T ]CB. Then there
exists x = [x1 x2 . . . xn]T in Rn such that [T ]CBx = y. Let v = x1v1 +x2v2 +· · ·+xnvn.
Then v is in V and [v]B = x. Also,

[T (v)]C = [T ]CB[v]B = [T ]CBx = y.

So if we let w = T (v) in Range(T ), then [w]C = y and y and R is onto.

(c) Since R is a one-to-one and onto linear transformation from Range(T ) to Col [T ]CB, it
follows that Range(T ) and Col [T ]CB are isomorphic vector spaces, and therefore we also
have dim(Range(T )) = dim(Col [T ]CB).

Summary

• The standard matrix for a linear transformation T from Rn to Rm is the matrix

A = [T (e1) T (e2) · · · T (en)],

where {e1, e2, . . . , en} is the standard basis for Rn. Then T is the matrix transformation
defined by T (x) = Ax for all x in Rn.

• Let V be an n dimensional vector space and W an m dimensional vector space and suppose
T : V → W is a linear transformation. Let B = {v1,v2, . . . ,vn} be a basis for V and
C = {w1,w2, . . . ,wm} a basis for W . The matrix for T with respect to the bases B and C is
the matrix

[T ]CB = [[T (v1)]C [T (v2)]C [T (v3)]C · · · [T (vn)]C ] .

If V = W and C = B, then we use the notation [T ]B as a shorthand for [T ]CB. The matrix
[T ]CB has the property that

[T (v)]C = [T ]CB[v]B

for any v in V .
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• The matrix for a linear transformation allows us to represent any linear transformation be-
tween finite dimensional vectors spaces as a matrix transformation. When we view a linear
transformation T as a matrix transformation, we are able to use the matrix tools we have
developed to understand T .

Exercises

(1) Let T : P2 → P3 be defined by T (a0+a1t+a2t
2) = (a0+a1)+(a1+a2)t+a0t

2+a2t
3. You

may assume that T is a linear transformation. LetB = {p0(t), p1(t), p2(t)}, where p0(t) = 1,
p1(t) = t, and p2(t) = t2, be the standard basis for P2 and C = {q0(t), q1(t), q2(t), q3(t)},
where q0(t) = 1, q1(t) = t, q2(t) = t2, and q3(t) = t3, the standard basis for P3.

(a) Write the polynomial r(t) = r0 + r1t + r2t
2 as a linear combination c0p0(t) +

c1p1(t) + c2p2(t) of the basis vectors in B. Identify the weights c0, c1, and c2. What
is [r(t)]B?

(b) Without doing any calculations, explain why

T (r(t)) = c0T (p0(t)) + c1T (p1(t)) + c2T (p2(t)).

(c) Without doing any calculations, explain why

[T (r(t))]C = c0[T (p0(t))]C + c1[T (p1(t))]C + c2[T (p2(t))]C .

(d) Explicitly determine [T (p0(t))]C , [T (p1(t))]C , [T (p2(t))]C .

(e) Combine the results of parts (c) and (d) to find a matrix A so that

[T (r(t))]C = A[r(t)]B.

(f) Use the matrixA to find [T (1+t−t2)]C . Then use this vector to calculate T (1+t−t2).

(g) Calculate T (1 + t − t2) directly from the rule for T and compare to the previous
result.

(2) Let V and W be finite dimensional vector spaces, and let S and T be linear transformations
from V to W .

(a) The sum S + T is defined as

(S + T )(x) = S(x) + T (x)

for all x in V . Let B be a basis for V and C a basis for W . Is the statement

[S + T ]CB = [S]CB + [T ]CB

true or false? If true, prove the statement. If false, provide a counterexample.

(b) The scalar multiple cT , for a scalar c, is defined as

(cT )(x) = cT (x)

for all x in V . Let B be a basis for V and C a basis for W . Is the statement

[cT ]CB = c[T ]CB

true or false? If true, prove the statement. If false, provide a counterexample.
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(3) If V , W , and U are finite dimensional vector spaces and S : V → W and T : W → U are
linear transformations, the composite T ◦ S is defined as

(T ◦ S)(x) = T (S(x))

for all x in V .

(a) Prove that T ◦ S : V → U is a linear transformation.

(b) Let B be a basis for V , C a basis for W , and D a basis for U . Is the statement

[T ◦ S]DB = [T ]DC [S]CB

true or false? If true, prove the statement. If false, provide a counterexample.

(4) Let V be a finite dimensional vector space with basis B, and let T be a one-to-one linear
transformation from V to V .

(a) Use the matrix [T ]B to explain why T is also onto. (Recall that we use the shorthand
notation [T ]B for [T ]BB.)

(b) Since T is one-to-one and onto, as a function T has an inverse defined by

T−1(y) = x

whenever T (x) = y. Show that T−1 is a linear transformation from V to V .

(c) Is the statement
[T−1]B = ([T ]B)−1

true or false? If true, prove the statement. If false, provide a counterexample.

(5) Let V and W be vector spaces with dim(V ) = n and dim(W ) = m, and let T : V → W .
Let B be a basis for V and C a basis for W . There is a connection between Ker(T ) and
Nul [T ]CB. Find the connection and verify it.

(6) Let V and W be vector spaces and define L(V,W ) to be the set of all linear transformations
from V to W as in Exercise 14 of Section 35. The set L(V,W ) is a vector space with the
operations as as follows for S and T are in L(V,W ) and c a scalar:

(S + T )(v) = S(v) + T (v) and (cT )(v) = cT (v)

for all v in V . If dim(V ) = n and dim(W ) = m, find the dimension of L(V,W ). (Hint: Let
B be a basis for V and C a basis for W . What can be said about the mapping that sends T in
L(V,W ) to [T ]CB? Then use Exercise 7. in Section 35.)

(7) Let T : V → W be a linear transformation from an n-dimensional vector space V to an
m-dimensional vector space W . Let B be a basis for V and C a basis for W . Let A = [T ]CB.
Let T ′ be the matrix transformation from Rn to Rm defined by T ′(x) = Ax.

(a) Show that if w is in Range(T ), then [w]C is in the range of T ′.

(b) Let B = {v1,v2, . . . ,vn} and C = {w1,w2, . . . ,wm}. Show that if the vector y =
[y1 y2 · · · ym] is in the range of T ′, then the vector w = y1w1 + y2w2 + · · · ymwm

is in the range of T .
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(c) Explain why the results of (a) and (b) show that T is onto if and only if every row of
A = [T ]CB contains a pivot.

(8) Our entire world is always in a state of motion. Much of this motion is vibration. When the
vibrations of one object some into contact with the vibrations of another, the vibrations can be
amplified. This is called resonance. Resonance appears in our lives every day, e.g., resonance
is how food cooks in a microwave oven. A great example of resonance is the collapse of
the Tacoma Narrows Bridge (just Google Tacoma Narrows Bridge to find some fascinating
videos of this event). Resonance can be seen in mathematical models of vibrations. One such
model is the second order differential equation

y′′ + y = cos(t),

where y is some unknown function of t and y′′ is its second derivative. You can think
of this system as modeling the oscillatory motion of a spring with mass attached to it.
The cosine function in this example exerts an external force on the mass-spring system.
(You don’t need to know how this model is derived for this project.) Our goal is to find
the solutions to this differential equation within the subspace Y = Span B, where B =
{cos(t), sin(t), t cos(t), t sin(t)} of D2, the subspace of F of functions with second deriva-
tives (you may assume that D2 is a subspace of F).

Let T : D2 → D2 be defined by T (f) = f ′′ + f .

(a) Show that T is a linear transformation.

(b) Show that B is a basis for Y . (Hint: You might consider using the Wronskian.)

(c) Find the matrix of T with respect to the basis B. That is, find [T ]B. (Recall that we
use the shorthand notation [T ]B for [T ]BB.)

(d) Use the matrix to find all solutions to the equation T (f) = cos(t) in Y . (Hint: If
T (f) = cos(t), what does that say about the relationship between [T ]BB, [cos(t)]B,
and [f ]B?)

(e) Sketch a few graphs of solutions to T (f) = cos(t) and explain what they look like
and how they are related to resonance.

(9) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If T is a linear transformation from a vector space V to a vector space
W , and [T ]CB is a 3× 2 matrix for some bases B of V and C of W , then T cannot be
one-to-one.

(b) True/False If T is a linear transformation from a vector space V to a vector space
W , and [T ]CB is a 2× 3 matrix for some bases B of V and C of W , then T cannot be
onto.

(c) True/False If T is a linear transformation from a vector space V to a vector space
W , and [T ]CB is a 2× 3 matrix for some bases B of V and C of W , then T cannot be
one-to-one.
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(d) True/False If T is a linear transformation from a vector space V to a vector space
W , and [T ]CB is a 3× 2 matrix for some bases B of V and C of W , then T cannot be
onto.

(e) True/False Let S be a linear transformation from a vector space Y to a vector space
V and let T be a linear transformation from a vector space V to a vector space W .
Suppose that [S]BS is a 3 × 4 matrix and [T ]CB is a 4 × 2 matrix for some bases S of
Y , B of V and C of W . Then [T ◦ S]CS is a 3× 2 matrix.

(f) True/False Let V be a finite dimensional vector space of dimension n with basis B
and W a finite dimensional vector space of dimension m with basis C. Let T be a
linear transformation from V to W . If the columns of the matrix [T ]CB are linearly
independent, then the transformation T is onto.

(g) True/False Let V be a finite dimensional vector space of dimension n with basis B
and W a finite dimensional vector space of dimension m with basis C. Let T be a
linear transformation from V to W . If the columns of the matrix [T ]CB are linearly
independent, then the transformation T is one-to-one.

(h) True/False Let V be a finite dimensional vector space of dimension n with basis
B and W a finite dimensional vector space of dimension m with basis C. Let T
be a linear transformation from V to W . If the matrix [T ]CB has n pivots, then the
transformation T is onto.

(i) True/False Let V be a finite dimensional vector space of dimension n with basis
B and W a finite dimensional vector space of dimension m with basis C. Let T
be a linear transformation from V to W . If the matrix [T ]CB has n pivots, then the
transformation T is one-to-one.

Project: Shamir’s Secret Sharing and Lagrange Polynomials

Shamir’s Secret Sharing is a secret sharing algorithm developed by the Israeli cryptographer Adi
Shamir, who also contributed to the invention of RSA algorithm. The idea is to develop shares
related to a secret code that can be distributed in such a way that the secret code can only be
discovered if a fixed number of shareholders combine their information.

The general algorithm for Shamir’s Secret Sharing works by creating a polynomial with the
secret code as one coefficient and random remaining coefficients. More specifically, to create a
(k, n) threshold scheme, let a0 be the secret code. Then choose at random k − 1 positive integers
a1, a2, . . ., ak−1 and create the polynomial

p(t) = a0 + a1t+ a2t
2 + · · ·+ ak−1t

k−1,

where a0 is the secret. Evaluate p(t) at n different inputs t1, t2, . . ., tn to create n points P1 =
(t1, p(t1)), P2 = (t2, p(t2)), . . ., Pn = (tn, p(tn)). Each participant is given one of these points.
Since any collection of k distinct points on the graph of p(t) uniquely determines p(t), any combina-
tion of k of the participants could reconstruct p(t). The secret is then p(0). (Note that, except under
very restrictive circumstances, there is no polynomial of degree less than k that passes through the
given k points, so it would be impossible for fewer than k participants to reconstruct the message.)
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As an example, let our secret code be a0 = 1234. Let n = 6 and k = 3. Choose two positive
integers at random, say a1 = 100 and a2 = 38. Then

p(t) = 1234 + 100t+ 38t2. (36.2)

Now we construct 6 points by selecting 6 positive integers, say t1 = 1, t2 = 2, t3 = 3, t4 = 4,
t5 = 5, and t6 = 6. Evaluating p(t) at t = 1 through t = 6 gives us the points P1 = (1, 1372),
P2 = (2, 1586), P3 = (3, 1876), P4 = (4, 2242), P5 = (5, 2684), and P6 = (6, 3202). Our goal is
to find the polynomial that passes through any three of these points. The next activity will show us
how to find this polynomial.

Project Activity 36.1. It will be instructive to work in the most general setting. We restrict our-
selves to the degree 2 case for now. Given three scalars t1, t2, and t3, define L : P2 → R3 by

L(q(t)) =

 q(t1)
q(t2)
q(t3)

 .
(a) Show that L is a linear transformation.

(b) Find the matrix for L with respect to the standard bases B = {e1, e2, e3} for R3 and
S = {1, t, t2} for P2.

(c) Recall that the matrix [L]BS has the property that [L(q(t))]B = [L]BS [q(t)]S for any q(t) in
P2. So L is one-to-one if and only if the matrix transformation defined by [L]BS is one-to-
one. Use this idea to show that L is one-to-one if and only if t1, t2, and t3 are all different.
Use appropriate technology where needed.

(d) Given three points (t1, y1), (t2, y2), and (t3, y3) with distinct t1, t2, and t3, our objective
is to find a polynomial p(t) such that p(ti) = yi for i from 1 to 3. We proceed by finding
quadratic polynomials `1(t), `2(t), and `3(t) so that L(`1(t)) = e1, L(`2(t)) = e2, and
L(`3(t)) = e3. Explain why, if `1(t), `2(t), and `3(t) are quadratic polynomials so that
L(`1(1)) = e1, L(`2(t)) = e2, and L(`3(t)) = e3, and t1, t2, and t3 are all different, then
the polynomial p(t) will satisfy

p(t) = y1`1(t) + y2`2(t) + y3`3(t). (36.3)

The polynomials `1(t), `2(t), and `3(t) in Project Activity 36.1 are examples of Lagrange poly-
nomials. Project Activity 36.1 shows that fitting polynomials to given points can be accomplished
easily using linear combinations of Lagrange polynomials. Now we want to better understand the
general formulas for the Lagrange polynomials `i(t).

Project Activity 36.2. In this activity we see how to find the quadratic polynomials `1(t), `2(t),
and `3(t) so that L(`1(t)) = e1, L(`2(t)) = e2, and L(`3(t)) = e3. Let B = {e1, e2, e3} and
S = {1, t, t2} be the standard bases for R3 and P2, respectively.

(a) Explain why the problem of solving the equations L(`1(t)) = e1, L(`2(t)) = e2, and
L(`3(t)) = e3 is equivalent to solving the equations

[L]BS [`1(t)]S = e1, [L]BS [`2(t)]S = e2, and [L]BS [`3(t)]S = e3.
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(b) Explain why we can solve the equations

[L]BS [`1(t)]S = e1, [L]BS [`2(t)]S = e2, and [L]BS [`3(t)]S = e3

all at once by solving the matrix equation

[L]BS [[`1(t)]S [`2(t)]S [`3(t)]S ] = I3.

What does this tell us about the relationship between the matrix [[`1(t)]S [`2(t)]S [`3(t)]S ]
and [L]BS?

(c) Technology shows that

(
[L]BS

)−1
=


t2t3

(t1−t2)(t1−t3)
t1t3

(t2−t1)(t2−t3)
t1t2

(t3−t1)(t3−t2)

− t2+t3
(t1−t2)(t1−t3) − t1+t3

(t2−t1)(t2−t3) − t1+t2
(t3−t1)(t3−t2)

1
(t1−t2)(t1−t3)

1
(t2−t1)(t2−t3)

1
(t3−t1)(t3−t2)

 .
Use

(
[L]BS

)−1 to determine the coefficients of `1(t). Then apply some algebra to show that

`1(t) =
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
.

(d) Find similar expressions for `2(t) and `3(t). Explain why these three polynomials satisfy
the required conditions that L(`1(t)) = e1, L(`2(t)) = e2, and L(`3(t)) = e3.

Now we return to our secret code with a0 = 1234.

Project Activity 36.3. Pick any three of the points P1 = (1, 1372), P2 = (2, 1586), P3 =
(3, 1876), P4 = (4, 2242), P5 = (5, 2684), and P6 = (6, 3202). Use the Lagrange polynomi-
als `1(t), `2(t), and `3(t) and (36.3) to find the polynomial whose graph contains the three chosen
points. How does your polynomial compare to the polynomial p(t) in (36.2)?

The Shamir Secret Sharing algorithm depends on being able to find a unique polynomial p(t)
that passes through the created points. We can understand this result with Lagrange polynomials.

Project Activity 36.4. The process described in Project Activity 36.2 for finding the Lagrange
polynomials can be applied to any number of points. Let (t1, y1), (t2, y2), (t3, y3), . . ., (tn, yn),
and (tn+1, yn+1) be n+ 1 points with distinct ti. Generalizing the results of Project Activity 36.2,
define `i(t) for i from 1 to n+ 1 as follows:

`i(t) =
(t− t1)(t− t2) · · · (t− ti−1)(t− ti+1) · · · (t− tn)(t− tn+1)

(ti − t1)(ti − t2) · · · (ti − ti−1)(ti − ti+1) · · · (ti − tn)(ti − tn+1)

=
∏
j 6=i

t− tj
ti − tj

.

(a) Explain why `i(t) is in Pn for each i.
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(b) Explain why the polynomial `i(t) satisfies `i(ti) = 1 and `i(tj) = 0 if i 6= j.

(c) Let p(t) =
∑n+1

i=1 yi`i(t). That is, p(t) is the polynomial

n+1∑
i=1

yi
(t− t1)(t− t2) . . . (t− ti−1)(t− ti+1) . . . (t− tn)(t− tn+1)

(ti − t1)(ti − t2) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn)(ti − tn+1)
.

Explain why p(t) is a polynomial in Pn whose graph contains the points (ti, yi) for i from
1 to n+ 1.

(d) The previous part demonstrates that there is always a polynomial in Pn whose graph con-
tains the points (t1, y1), (t2, y2), (t3, y3), . . ., (tn, yn), and (tn+1, yn+1) with distinct ti.
The last piece we need is to know that this polynomial is unique. Use the fact that a polyno-
mial of degree n can have at most n roots to show that if f(t) and g(t) are two polynomials
in Pn whose graphs contain the points (t1, y1), (t2, y2), . . ., (tn, yn), (tn+1, yn+1) with
distinct values of ti, then f(t) = g(t). This completes Shamir’s Secret Sharing algorithm.





Section 37

Eigenvalues of Linear Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How, and under what conditions, do we define the eigenvalues and eigen-
vectors of a linear transformation?

• How do we find eigenvalues and eigenvectors of a linear transformation?
What important result provides that our method for doing so works?

• What does it mean to diagonalize a linear transformation?

• Under what conditions is a linear transformation diagonalizable?

Application: Linear Differential Equations

A body in motion obeys Newton’s second law that force equals mass times acceleration, or F =
ma. Here F is the force acting on the object, m the mass of the object, and a the acceleration of
the object. For example, if a mass is hanging from a spring, gravity acts to pull the mass downward
and the spring acts to pull the mass up. Hooke?s law says that the force of the spring acting on mass
is proportional to the displacement y of the spring from equilibrium. There is also a damping force
that weakens the action of the spring that might be due to air resistance or the medium in which the
system is enclosed. If this mass is not too large, then the resistance can be taken to be proportional
to the velocity v of the mass. This produces forces F = ma acting to pull the mass down and
forces −ky and −bv acting in the opposite direction, where k and b are constant. A similar type
of analysis would apply to an object falling through the air, where the resistant to falling could be
proportional to the velocity of the object. Since v = y′ and a = y′′, equating the forces produces
the equation’

my′′ = −ky − by′. (37.1)

671



672 Section 37. Eigenvalues of Linear Transformations

Any equation that involves one or more derivatives of a function is called a differential equation.
Differential equations are used to model many different types of behavior in disciplines including
engineering, physics, economics, and biology. Later in this section we will see how differential
equations can be represented by linear transformations, and see how we can exploit this idea to
solve certain types of differential equations (including (37.1)).

Introduction

Recall that a scalar λ is an eigenvalue of an n× n matrix A if Ax = λx for some nonzero vector x
in Rn. Now that we have seen how to represent a linear transformation T from a finite dimensional
vector space V to itself with a matrix transformation, we can exploit this idea to define and find
eigenvalues and eigenvectors for T just as we did for matrices.

Definition 37.1. Let V be an n dimensional vector space and T : V → V a linear transformation.
A scalar λ is an eigenvalue for T if there is a nonzero vector v in V such that T (v) = λv. The
vector v is an eigenvector for T corresponding to the eigenvalue λ.

We can exploit the fact that we can represent linear transformations as matrix transformations
to find eigenvalues and eigenvectors of a linear transformation.

Preview Activity 37.1. Let T : P1 → P1 be defined by T (a0 + a1t) = (a0 + 2a1) + (3a0 + 2a1)t.
Assume T is a linear transformation.

(1) Let S = {1, t} be the standard basis for P1. Find the matrix [T ]S . (Recall that we use the
shorthand notation [T ]S for [T ]SS .)

(2) Check that λ1 = 4 and λ2 = −1 are the eigenvalues of [T ]S . Find an eigenvector v1 for
[T ]S corresponding to the eigenvalue 4 and an eigenvector v2 of [T ]S corresponding to the
eigenvalue −1.

(3) Find the vector in P1 corresponding to the eigenvector of [T ]S for the eigenvalue λ = 4.
Check that this is an eigenvector of T .

(4) Explain why in general, if V is a vector space with basis B and S : V → V is a linear
transformation, and if v in V satisfies [v]B = w, where w is an eigenvector of [S]B with
eigenvalue λ, then v is an eigenvector of T with eigenvalue λ.

Finding Eigenvalues and Eigenvectors of Linear Transformations

Preview Activity 37.1 presents a method for finding eigenvalues and eigenvectors of linear trans-
formations. That is, if T : V → V is a linear transformation and B is a basis for V , and if x is an
eigenvector of [T ]B with eigenvalue λ, then the vector v in V satisfying [v]B = x has the property
that

[T (v)]B = [T ]B[v]B = [T ]Bx = λx = [λv]B.

Since the coordinate transformation is one-to-one, it follows that T (v) = λv and v is an eigenvector
of T with eigenvalue λ. So every eigenvector of [T ]B corresponds to an eigenvector of T . The fact
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that every eigenvector and eigenvalue of T can be obtained from the eigenvectors and eigenvalues
of [T ]B is left as Exercise 2. Now we address the question of how eigenvalues of matrices of T with
respect to different bases are related.

Activity 37.1. Let T : P1 → P1 still be defined by T (a0 + a1t) = (a0 + 2a1) + (2a1 + 3a0)t.

(a) Let B = {1 + t, 1− t} be a basis for P1. Find the matrix [T ]B.

(b) Check that λ1 = 4 and λ2 = −1 are the eigenvalues of [T ]B. Find an eigenvector w1 for
[T ]B corresponding to the eigenvalue 4.

(c) Use the matrix [T ]B to find an eigenvector for T corresponding to the eigenvalue λ1 = 4.

You should notice that the matrices [T ]S and [T ]B in Preview Activity 37.1 and Activity 37.1 are
similar matrices. In fact, if P = P

B←S
is the change of basis matrix from S to B, then P−1[T ]BP =

[T ]S . So it must be the case that [T ]S and [T ]B have the same eigenvalues. What Preview Activity
37.1, Exercise 2, and Activity 37.1 demonstrate is that the eigenvalues of a linear transformation
T : V → V for any n dimensional vector space V are the eigenvalues of the matrix for T relative to
any basis for V . We can then find corresponding eigenvectors for T using the methods demonstrated
in Preview Activity 37.1 and Activity 37.1. That is, if v is an eigenvector of T with eigenvalue λ,
and B is any basis for V , then

[T ]B[v]B = [T (v)]B = [λv]B = λ[v]B.

Thus, once we find an eigenvector [v]B for [T ]B, the vector v is an eigenvector for T . This is
summarized in the following theorem.

Theorem 37.2. Let V be a finite dimensional vector space with basis B and let T : V → V be a
linear transformation. A vector v in V is an eigenvector of T with eigenvalue λ if and only if the
vector [v]B is an eigenvector of [T ]B with eigenvalue λ.

Diagonalization

If T : V → V is a linear transformation, one important question is that of finding a basis for V in
which the matrix of T has as simple a form as possible. In other words, can we find a basis B for V
for which the matrix [T ]B is a diagonal matrix? Since any matrices for T with respect to different
bases are similar, this will happen if we can diagonalize any matrix for T .

Definition 37.3. Let V be a vector space of dimension n. A linear transformation T from V to V
is diagonalizable if there is a basis B for V for which [T ]B is a diagonalizable matrix.

Now the question is, if T is diagonalizable, how do we find a basis B to that [T ]B is a diagonal
matrix? Recall that to diagonalize a matrixAmeans to find a matrix P so that P−1AP is a diagonal
matrix.

Activity 37.2. Let V = P1, T : V → V defined by T (a0 + a1t) = (a0 + 2a1) + (2a0 + a1)t. Let
S = {1, t} be the standard basis for V .

(a) Find the matrix [T ]S for T relative to the basis S .
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(b) Use the fact that the eigenvalues of [T ]S are −1 and 3 with corresponding eigenvectors[
−1

1

]
and

[
1
1

]
, respectively, to find a matrix P so that P−1[T ]SP is a diagonal matrix

D.

(c) To find a basis B for which [T ]B is diagonal, note that if P = P
B←S

of the previous part

is the change of basis matrix from S to B, then the matrices of T with respect to S and B
are related by P−1[T ]SP = [T ]B, which makes [T ]B a diagonal matrix. Use the fact that
P [x]B = [x]S to find the vectors in the basis B.

(d) Now show directly that [T ]B = D, where B = {v1,v2}, and verify that we have found a
basis for V for which the matrix for T is diagonal.

The general idea for diagonalizing a linear transformation is contained in Activity 37.2. Let V
be an n dimensional vector space and assume the linear transformation T : V → V is diagonal-
izable. So there exists a basis B = {v1,v2, . . . ,vn} for which [T ]B is a diagonal matrix. To find
this basis, note that for any other basis C we know that [T ]C and [T ]B are similar. That means that
there is an invertible matrix P so that P−1[T ]CP = [T ]B, where P = P

C←B
is the change of basis

matrix from B to C. So to find B, we choose B so that P is the matrix that diagonalizes [T ]C . Using
the definition of the change of basis matrix, we then know that each basis vector vi in B satisfies
[vi]C = P [vi]B = Pei. From this we can find vi. Note that a standard basis S is often a convenient
choice to make for the basis C. This is the process we used in Activity 37.2.

Recall that an n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. We apply this idea to a linear transformation as well, summarized by the following
theorem.

Theorem 37.4. Let V be a vector space of dimension n and let T be a linear transformation from
V to V . Then the following are equivalent.

(1) T is diagonalizable.

(2) There exists a basis B for V and an invertible matrix P so that P−1[T ]BP is a diagonal
matrix.

(3) There exists a basis C of V for which the matrix [T ]C has n linearly independent eigenvectors.

(4) There exists a basis of V consisting of eigenvectors of T .

Examples

What follows are worked examples that use the concepts from this section.

Example 37.5. Let T :M2×2 →M2×2 be defined by T (A) = AT. Let M1 =

[
1 1
0 0

]
, M2 =[

0 1
1 0

]
,M3 =

[
1 0
1 0

]
, andM4 =

[
0 0
1 1

]
, and letB be the ordered basis {M1,M2,M3,M4}.
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(a) Show that T is a linear transformation.

(b) Find [T ]B.

(c) Is the matrix [T ]B diagonalizable? If so, find a matrix P such that P−1[T ]BP is a diagonal
matrix. Use technology as appropriate.

(d) Use part (c) to find a basis C forM2×2 for which [T ]C is a diagonal matrix.

Example Solution.

(a) Let A and B be 2 × 2 matrices and let c be a scalar. The properties of the transpose show
that

T (A+B) = (A+B)T = AT +BT = T (A) + T (B)

and
T (cA) = (cA)T = cAT = cT (A).

Thus, T is a linear transformation.

(b) Notice that T (M1) = M3, T (M2) = M2, T (M3) = M1, and T (M4) = M1 −M3 +M4.
So

[T ]B = [[T (M1)B [T (M2)B [T (M3)B [T (M4)B] =


0 0 1 1
0 1 0 0
1 0 0 −1
0 0 0 1

 .
(c) Technology shows that the characteristic polynomial of [T ]B is p(λ) = (λ + 1)(λ − 1)3.

It follows that the eigenvalues of [T ]B are −1 and 1 (with multiplicity 3). Technology also
shows that {[−1 0 1 0]T} is a basis for the eigenspace corresponding to the eigenvalue
−1 and the vectors [1 0 0 1]T, [1 0 1 0]T, [0 1 0 0]T form a basis for the eigenspace

corresponding to the eigenvalue 1. If we let P =


1 1 0 −1
0 0 1 0
0 1 0 1
1 0 0 0

, then P−1AP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

(d) Suppose C = {Q1, Q2, Q3, Q4} is a basis forM2×2 satisfying P−1[T ]BP = [T ]C . This
makes [T ]C a diagonal matrix with the eigenvalues of [T ]B along the diagonal. In this case
we have

[T ]C [A]C = P−1[T ]BP [A]C

for any matrix A ∈ M2×2. So P is the change of basis matrix from C to B. That is,
P [A]C = [A]B. It follows that P [Qi]C = [Qi]B for i from 1 to 4. Since [Qi]C = ei, we can
see that [Qi]B is the ith column of P . So the columns of P provide the weights for basis
vectors in C in terms of the basis B. Letting Q1 = M1 +M4, Q2 = M1 +M3, Q3 = M2,
and Q4 = M3 −M1, we conclude that [T ]C is a diagonal matrix.
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Example 37.6. We have shown that every linear transformation from a finite dimensional vector
space V to V can be represented as a matrix transformation. As a consequence, all such linear
transformations have eigenvalues. In this example we consider the problem of determining eigen-
values and eigenvectors of the linear transformation T : V → V defined by T (f)(x) =

∫ x
0 f(t) dt,

where V is the vector space of all infinitely differentiable functions from R to R. Suppose that f is
an eigenvector of T with a nonzero eigenvalue.

(a) Use the Fundamental Theorem of Calculus to show that f must satisfy the equation f ′(x) =
1
λf(x) for some scalar nonzero scalar λ.

(b) From calculus, we know that the functions f that satisfy the equation f(x) = 1
λf
′(x) all

have the form f(x) = Aex/λ for some scalar A. So if f is an eigenvector of T , then
f(x) = Aex/λ for some scalar A. Show, however, that Aex/λ cannot be an eigenvector of
T . Thus, T has no eigenvectors with nonzero eigenvalues.

(c) Now show that 0 is not an eigenvalue of T . Conclude that T has no eigenvalues or eigen-
vectors.

(d) Explain why this example does not contradict the statement that every linear transformation
from a finite dimensional vector space V to V has eigenvalues.

Example Solution.

(a) Assuming that f is an eigenvector of T with nonzero eigenvalue λ, then

λf(x) = T (f)(x) =

∫ x

0
f(t) dt. (37.2)

Recall that d
dx

∫ x
0 f(t) dt = f(x) by the Fundamental Theorem of Calculus. Differentiating

both sides of (37.2) with respect to x leaves us with λf ′(x) = f(x), or f ′(x) = 1
λf(x).

(b) We can directly check from the definition that T (f) is not a multiple of f(x) = Aex/λ un-
lessA = 0, which is not allowed. Another method is to note that T (f)(0) =

∫ 0
0 f(t) dt = 0

by definition. But if f(x) = Aex/λ, then

0 = T (f)(0) = λf(0) = Ae0/λ = A.

This means that f(x) = 0ex/λ = 0. But 0 can never be an eigenvector by definition. So T
has no eigenvectors with nonzero eigenvalues.

(c) Suppose that 0 is an eigenvalue of T . Then there is a nonzero function g such that T (g) = 0.
In other words, 0 =

∫ x
0 g(t) dt. Again, differentiating with respect to x yields the equation

g(x) = 0. So T has no eigenvectors with eigenvalue 0. Since T does not have a nonzero
eigenvalue or zero as an eigenvalue, T has no eigenvalues (and eigenvectors).

(d) The reason this example does not contradict the statement is that V is an infinite dimen-
sional vector space. In fact, the linearly independent monomials tm are all in V for any
positive integer m.
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Summary

• We can define eigenvalues and eigenvectors of a linear transformation T : V → V , where
V is a finite dimensional vector space. In this case, a scalar λ is an eigenvalue for T if there
exists a non-zero vector v in V so that T (v) = λv.

• To find eigenvalues and eigenvectors of a linear transformation T : V → V , where V is a
finite dimensional vector space, we find the eigenvalues and eigenvectors for [T ]B, where B is
an basis for V . If C is any other basis for V , then [T ]B and [T ]C are similar matrices and have
the same eigenvalues. Once we find an eigenvector [v]B for [T ]B, then v is an eigenvector
for T .

• A linear transformation T : V → V , where V is a finite dimensional vector space, is diago-
nalizable if there is a basis C for V for which [T ]C is a diagonalizable matrix.

• To determine if a linear transformation T : V → V is diagonalizable, we pick a basis C for
V . If the matrix [T ]C has n linearly independent eigenvectors, then T is diagonalizable.

Exercises

(1) Let V = P2 and define T : V → V by T (p(t)) = d
dt ((1− t)p(t)).

(a) Show that T is a linear transformation.

(b) Let S be the standard basis for P2. Find [T ]S .

(c) Find the eigenvalues and a basis for each eigenspace of T .

(d) Is T diagonalizable? If so, find a basis B for P2 so that [T ]B is a diagonal matrix. If
not, explain why not.

(2) Let T : V → V be a linear transformation, and let B be a basis for V . Show that every
eigenvector v of T with eigenvalue λ corresponds to an eigenvector of [T ]B with eigenvalue
λ.

(3) Let C∞ be the set of all functions from R to R that have derivatives of all orders.

(a) Explain why C∞ is a subspace of F .

(b) Let D : C∞ → C∞ be defined by D(f) = f ′. Explain why D is a linear transfor-
mation.

(c) Let λ be any real number and let fλ be the exponential function defined by fλ(x) =
eλx. Show that fλ is an eigenvector of D. What is the corresponding eigenvalue?
How many eigenvalues does D have?

(4) Consider D : P2 → P2, where D is the derivative operator defined as in Exercise 3.. Find all
of the eigenvalues of D and a basis for each eigenspace of D.

(5) Let n be a positive integer and define T :Mn×n →Mn×n by T (A) = AT.

(a) Show that T is a linear transformation.
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(b) Is λ = 1 an eigenvalue of T ? Explain. If so, describe in detail the vectors in the
corresponding eigenspace.

(c) Does T have any other eigenvalues? If so, what are they and what are the vectors in
the corresponding eigenspaces? If not, why not?

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The number 0 cannot be an eigenvalue of a linear transformation.

(b) True/False The zero vector cannot be an eigenvector of a linear transformation.

(c) True/False If v is an eigenvector of a linear transformation T , then so is 2v.

(d) True/False If v is an eigenvector of a linear transformation T , then v is also an
eigenvector of the transformation T 2 = T ◦ T .

(e) True/False If v and u are eigenvectors of a linear transformation T with the same
eigenvalue, then v + u is also an eigenvector of T with the same eigenvalue.

(f) True/False If λ is an eigenvalue of a linear transformation T , then λ2 is an eigenvalue
of T 2.

(g) True/False Let S and T be two linear transformations with the same domain and
codomain. If v is an eigenvector of both S and T , then v is an eigenvector of S +T .

(h) True/False Let V be a vector space and let T : V → V be a linear transformation.
Then T has 0 as an eigenvalue if and only if [T ]B has linearly dependent columns for
any basis B of V .

Project: Linear Transformations and Differential Equations

There are many different types of differential equations, but we will focus on differential equations
of the formmy′′ = −ky−by′ presented in the introduction, a second order (the highest derivative in
the equation is a second order derivative) linear (the coefficients are constants) differential equation
(also called damped harmonic oscillators).

To solve a differential equation means to find all solutions to the differential equation. That is,
find all functions y that satisfy the differential equation. For example, since d

dt t
2 = 2t, we see that

y = t2 satisfies the differential equation y′ = 2t. But t2 is not the only solution to this differential
equation. In fact, y = t2 +C is a solution to y′ = 2t for any scalar C. We will see how to represent
solutions to the differential equation my′′ = −ky − by′ in this project.

The next activity shows that the set of solutions to the linear differential equation my′′ =
−ky − by′ is a subspace of the vector space F of all functions from R to R. So we should expect
close connections between differential equations and linear algebra, and we will make some of these
connections as we proceed.

Project Activity 37.1. We can represent differential equations using linear transformations. To see
how, let D be the function from the space C1 of all differentiable real-valued functions to F given
by D(f) = df

dt .
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(a) Show that D is a linear transformation.

(b) In order for a function f to be a solution to a differential equation of the form (37.1), it
is necessary for f to be twice differentiable. We will assume that D acts only on such
functions from this point on. Use the fact that D is a linear transformation to show that the
differential equation my′′ = −ky − by′ can be written in the form(

mD2 + bD
)

(y) = −ky.

Project Activity 37.1 shows that any solution to the differential equation my′′ = −ky − by′ is
an eigenvector for the linear transformation mD2 + bD. That is, the solutions to the differential
equation my′′ = −ky − by′ form the eigenspace E−k of mD2 + bD with eigenvalue −k. The
eigenvectors for a linear transformation acting on a function space are also called eigenfunctions.
To build up to solutions to the second order differential equation we have been considering, we start
with solutions to the first order equation.

Project Activity 37.2. Let k be a scalar. Show that the solutions of the differential equationD(y) =
−ky form a one-dimensional subspace of F . Find a basis for this subspace. Note that this is the
eigenspace of the transformationD corresponding to the eigenvalue−k. (Hint: To find the solutions
to y′ = −ky, write y′ as dy

dt and express the equation y′ = −ky in the form dy
dt = −ky. Divide by

y and integrate with respect to t.)

Before considering the general second order differential equation, we start with a simpler ex-
ample.

Project Activity 37.3. As a specific example of a second order linear equation, as discussed at
the beginning of this section, Hooke’s law states that if a mass is hanging from a spring, the force
acting on the spring is proportional to the displacement of the spring from equilibrium. If we let y
be the displacement of the object from its equilibrium, and ignore any resistance, the position of the
mass-spring system can be represented by the differential equation

mD2(y) = −ky,

where m is the mass of the object and k is a positive constant that depends on the spring. Assuming
that the mass is positive, we can divide both sides by m and rewrite this differential equation in the
form

D2(y) = −cy (37.3)

where c = k
m . So the solutions to the differential equation (37.3) make up the eigenspace E−c for

D2 with eigenvalue −c.

(a) Since the derivatives of sin(t) and cos(t) are scalar multiples of sin(t) and cos(t), it may
be reasonable that these make up solutions to (37.3). Show that y1 = c cos(t) and y2 =
c sin(t) are both in E−c.

(b) As functions, the cosine and sine are related in many ways (e.g., the Pythagorean Identity).
An important property for this application is the linear independence of the cosine and sine.
Show, using the definition of linear independence, that the cosine and sine functions are
linearly independent in F .
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(c) Part (a) shows that there are at least two different functions in E−c. To solve a differential
equation is to find all of the solutions to the differential equation. In other words, we want
to completely determine the eigenspace E−c. We have already seen that any function y of
the form y(t) = c1 cos(t) + c2 sin(t) is a solution to the differential equation mD2(y) =
−ky. The theory of linear differential equations tells us that there is a unique solution to
mD2(y) = −ky if we specify two initial conditions. What this means is that to show that
any solution z to the differential equation mD2(y) = −ky with two initial values z(t0)
and z′(t0) for some scalar t0 is of the form y = c1 cos(t) + c2 sin(t), we need to verify
that there are values of c1 and c2 such that y(t0) = z(t0) and y′(t0) = z′(t0). Here we will
use this idea to show that any function in E−c is a linear combination of cos(t) and sin(t).
That is, that the set {cos, sin} spans E−c. Let y = c1 cos(t) + c2 sin(t). Show that there
are values for c1 and c2 such that

y(0) = z′(0) and y′(0) = z′(0).

This result, along with part(b), shows that {cos, sin} is a basis for E−c. (Note: That the
solutions to differential equation (37.3) involve sines and cosines models the situation that
a mass hanging from a spring will oscillate up and down.)

As we saw in Project Activity 37.2, the eigenspace Ek of the linear transformation D is one-
dimensional. The key idea in Project Activity 37.3 that allowed us to find a basis for the eigenspace
ofD2 with eigenvalue−c is that cos and sin are linearly independent eigenfunctions that span E−c.
We won’t prove this result, but the general theory of linear differential equations states that if y1,
y2, . . ., yn are linearly independent solutions to the nth order linear differential equation(

anD
n + an−1D

n−1 + · · ·+ a1D
)

(y) = −a0y,

then {y1, y2, . . . , yn} is a basis for the eigenspace of the linear transformation anDn+an−1D
n−1+

· · ·+ a1D with eigenvalue −a0. Any basis for the solution set to a differential equation is called a
fundamental set of solutions for the differential equation. Consequently, it is important to be able to
determine when a set of functions is linearly independent. One tool for doing so is the Wronskian,
which we study in the next activity.

Project Activity 37.4. Suppose we have n functions f1, f2, . . ., fn, each with n − 1 derivatives.
To determine the independence of the functions we must understand the solutions to the equation

c1f1(t) + c2f2(t) + · · ·+ cnfn(t) = 0. (37.4)

We can differentiate both sides of Equation (37.4) to obtain the new equation

c1f
′
1(t(t)) + c2f

′
2(t) + · · ·+ cnf

′
n(t) = 0.

We can continue to differentiate as long as the functions are differentiable to obtain the system

f1(t)c1 + f2(t)c2 + · · ·+ fn(t)cn = 0

f ′1(t)c1 + f ′2(t)c2 + · · ·+ f ′n(t)cn = 0

f ′′1 (t)c1 + f ′′2 (t)c2 + · · ·+ f ′′n(t)cn = 0

...

f
(n−1)
1 (t)c1 + f

(n−1)
2 (t)c2 + · · ·+ f (n−1)

n (t)cn = 0.
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(a) Write this system in matrix form, with coefficient matrix

A =


f1(t) f2(t) · · · fn(t)
f ′1(t) f ′2(t) · · · f ′n(t)

...
f

(n−1)
1 (t) f

(n−1)
2 (t) · · · f

(n−1)
n (t)

 .

(b) The matrix in part (a) is called the Wronskian matrix of the system. The scalar

W (f1, f2, . . . , fn) = det(A)

is called the Wronskian of f1, f2, . . ., fn. What must be true about the Wronskian for our
system to have a unique solution? If the system has a unique solution, what is the solution?
What does this result tell us about the functions f1, f2, . . ., fn?

(c) Use the Wronskian to show that the cosine and sine functions are linearly independent.

We can apply the Wronskian to help find bases for the eigenspace of the linear transformation
mD2 + bD with eigenvalue k.

Project Activity 37.5. The solution to the Hooke’s Law differential equation in Project Activity
37.3 indicates that the spring will continue to oscillate forever. In reality, we know that this does
not happen. In the non-ideal case, there is always some force (e.g., friction, air resistance, a physical
damper as in a piston) that acts to dampen the motion of the spring causing the oscillations to die off.
Damping acts to oppose the motion, and we generally assume that the faster an object moves, the
higher the damping. For this reason we assume the damping force is proportional to the velocity.
That is, the damping force has the form −by′ for some positive constant b. This produces the
differential equation

my′′ + by′ + ky = 0 (37.5)

or
(
mD2 + bD

)
= −ky. We will find bases for the eigenspace of the linear transformationmD2 +

bD with eigenvalue −k in this activity.

(a) Since derivatives of exponential functions are still exponential functions, it seems reason-
able to try an exponential function as a solution to (37.5). Show that if y = ert for some
constant r is a solution to (37.5), then mr2 + br+ k = 0. The equation mr2 + br+ k = 0
is the characteristic or auxiliary equation for the differential equation.

(b) Part (a) shows that our solutions to the differential equation (37.5) are exponential of the
form ert, where r is a solution to the auxiliary equation. Recall that if we can find two
linearly independent solutions to (37.5), then we have found a basis for the eigenspace
E−k of mD2 + bD with eigenvalue −k. The quadratic equation shows that the roots of the
auxiliary equation are

−b±
√
b2 − 4mk

2m
.

As we will see, our basis depends on the types of roots the auxiliary equation has.
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i. Assume that the roots r1 and r2 of the auxiliary equation are real and distinct. That
means that y1 = er1t and y2 = er2t are eigenfunctions in E−k. Use the Wronskian
to show that {y1, y2} is a basis for E−k in this case. Then describe the behavior of
an arbitrary eigenfunction in E−2 if mD2 + bD = D2 + 3D and how it relates to
damping. Draw a representative solution to illustrate. (In this case we say that the
system is overdamped. These systems can oscillate at most once, then they quickly
damp to 0.)

ii. Now suppose that we have a repeated real root r to the auxiliary equation. Then there
is only one exponential function y1 = ert in E−k. In this case, show that y2 = tert

is also in E−k and that {y1, y2} is a basis for E−k. Then describe the behavior of
an arbitrary eigenfunction in E−1 if mD2 + bD = D2 + 2D and how it relates
to damping. Draw a representative solution to illustrate. (In this case we say that the
system is critically damped. These systems behave similar to the overdamped systems
in that they do not oscillations. However, if the damping is reduced just a little, the
system can oscillate.)

iii. The last case is when the auxiliary equation has complex roots z1 = u + vi and
z2 = u − vi. We want to work with real valued functions, so we need to determine
real valued solutions from these complex roots. To resolve this problem, we note that
if x is a real number, then eix = cos(x) + i sin(x). So

e(u+vi)t = euteivt = eut cos(vt) + eut sin(vt)i.

Show that {eut cos(vt), eut sin(vt)} is a basis for E−k in this case. Then describe the
behavior of an arbitrary eigenfunction in E−5 if mD2 + bD = D2 + 2D and how it
relates to damping. Draw a representative solution to illustrate. (In this case we say
that the system is underdamped. These systems typically exhibit some oscillation.)

Project Activity 37.4 tells us that ifW (f1, f2, . . . , fn) is not zero, then f1, f2, . . ., fn are linearly
independent. You might wonder what conclusion we can draw if W (f1, f2, . . . , fn) is zero.

Project Activity 37.6. In this activity we consider the Wronskian of two different pairs of functions.

(a) Calculate W (t, 2t). Are t and 2t linearly independent or dependent? Explain.

(b) Now let f(t) = t|t| and g(t) = t2.

i. Calculate f ′(t) and g′(t). (Hint: Recall that |x| =
{
x if x ≥ 0

−x if x < 0.
)

ii. Calculate W (f, g). Are f and g linearly independent or dependent in F? Explain.
(Hint: Consider the cases when t ≥ 0 and t < 0.)

iii. What conclusion can we draw about the functions f1, f2, . . ., fn if W (f1, f2, . . . , fn)
is zero? Explain.



Appendix A

Complex Numbers

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a complex number?

• How is the sum and product of two complex numbers defined?

• How do we find the multiplicative inverse of a nonzero complex number?

• What general structure does the set of complex numbers have?

Complex Numbers

Complex numbers are usually introduced as a tool to solve the quadratic equation x2 +1 = 0. How-
ever, that is not how complex numbers first came to light. The story actually involves solutions to
the general cubic equation. The interested reader could consult Chapter 6 of William Dunham’s ex-
cellent book Journey Through Genius. In this appendix we touch on the basics of complex numbers
to provide enough context for the section on complex eigenvalues.

A complex number is defined by a pair of real numbers - the real part of the complex number
and the imaginary part of the complex number.

Definition A.1. A complex number is a number of the form

a+ bi

where a and b are real numbers and i2 = −1.

The number a is the real part of the complex number and the number b is the imaginary part.
We often write

z = a+ bi

683
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for a complex number z. We say that two complex numbers a + bi and c + di are equal if a = c
and b = d.

There is an arithmetic of complex numbers that is determined by an addition and multiplication
of complex numbers. Adding complex numbers is natural:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

That is, to add two complex numbers we add their real parts together and their imaginary parts
together.

Activity A.1. Multiplication of complex numbers is is also done in a natural way.

(a) By expanding the product as usual, treating i as we would any real number, and exploiting
the fact that i2 = −1, explain why we define the product of complex numbers a + bi and
c+ di as

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i.

(b) Use the definitions of addition and multiplication to write each of the sums or products as
a complex number in the form a+ bi.

i. (2 + 3i) + (7− 4i)

ii. (4− 2i)(3 + i)

iii. (2 + i)i− (3 + 4i)

It isn’t difficult to show that the set of complex numbers, which we denote by C, satisfies many
useful and familiar properties.

Activity A.2. Show that C has the same structure as R. That is, show that for all u, w, and z in C,
the following properties are satisfied.

(a) w + z ∈ C and wz ∈ C

(b) w + z = z + w and wz = zw

(c) (w + z) + u = w + (z + u) and (wz)u = w(zu)

(d) There is an element 0 in C such that z + 0 = z

(e) There is an element 1 in C such that (1)z = z

(f) There is an element −z in C such that z + (−z) = 0

(g) If z 6= 0, there is an element 1
z in C such that z

(
1
z

)
= 1

(h) u(w + z) = (uw) + (uz)

The result of Activity A.2 is that, just like R, the set C is a field. If we wanted to, we could
define vector spaces over C just like we did over R. The same results hold.
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-4 4

-4

4
3+4i−8+3i

Figure A.1: Two complex numbers.

Conjugates and Modulus

We can draw pictures of complex numbers in the plane. We let the x-axis be the real axis for a
complex number and the y-axis the imaginary axis. That is, if z = a + bi we can think of z as a
directed line segment from the origin to the point (a, b), where the terminal point of the segment is
a units from the imaginary axis and b units from the real axis. For example, the complex numbers
3 + 4i and −8 + 3i are shown in Figure A.1.

We can also think of the complex number z = a+ bi as the vector [a b]T. In this way, the set C
is a two-dimensional vector space over R with basis {1, i}. Each of these complex numbers has a
length that we call the norm or modulus of the complex number. We denote the norm of a complex
number a+ bi as |a+ bi|. The distance formula or the Pythagorean theorem show that

|a+ bi| =
√
a2 + b2.

Note that
a2 + b2 = a2 − b2i2 = (a+ bi)(a− bi)

so the norm of the complex number a + bi can also be viewed as a square root of the product of
a+bi with a−bi. The number a−bi is called the complex conjugate of a+bi. If we let z = a+bi,
we denote the complex conjugate of z as z. So a+ bi = a− bi.

Activity A.3. Let w = 2 + 3i and z = −1 + 5i.

(a) Find w and z.

(b) Compute |w| and |z|.

(c) Compute ww and zz.

(d) Let z be an arbitrary complex number. There is a relationship between |z|, z, and z. Find
and verify this relationship.

(e) What is z if z ∈ R?





Appendix B

Answers and Hints to Selected Exercises

Section 1

1. (a) Consider the equations

b1x1 + b2x2 + b3x3 = s,

and

k(b1x1 + b2x2 + b3x3) = ks.

(b) Similar to part (a)

3. A cup of coffee costs $1.95, a muffin costs
$2.05, and a scone costs $2.15.

5. (a)

x1 =
x2 + 200 + 0 + 0

4

x2 =
x1 + x3 + 200 + 0

4

x3 =
x2 + 0 + 400 + 0

4

(b) x1 = 75, x2 = 100 and x3 =
125.

7. (a)

x1 + x2 + x3 = 0

x1 + x2 + x3 = 1.

(b) Impossible.

(c) Impossible.

(d)

x1 + x2 + x3 = 0

2x1 + 2x2 + 2x3 = 0.

9. (a) This system has the solution x1 =
h−10
3h−5 and x2 = 5

3h−5 as long as
h 6= 5

3 .

(b) When h = 5
3 , x1 = 2 − 5

3x2 and
x2 is free.

11. (a) F
(c) F
(e) F

Section 2

1. (a) h = 6

(b) h = 6 and k 6= −2.

(c) h = 6 and k = −2.

3.

x1 + x2 = 1

−x1 + x2 = −3

x1 + x2 + x3 = 1.

5. Student 2’s hunch is correct.

6. (a) F
(c) T
(e) T

687
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(g) F

(i) F

(k) F

Section 3

1. Augmented matrix: 1 1 −1 4
1 2 2 3
2 3 −3 11

,

solution x1 = 1, x2 = 2, and x3 = −1

3. Row operations show this.

5. x1 = −4 − 6x3, x2 = −3 − 4x3, x3 is
free, x4 = 3

7. (a) Yes

(b)
[
� ∗ ∗
0 � ∗

]
,
[

0 � ∗
0 0 ∗

]
9. This is not possible.

11.
[
� ∗
0 ∗

]
and

[
0 ∗
0 0

]
.

12 (a) T

(c) T

(e) F

(g) T

(i) F

(k) F

Section 4

1. w =
(
−9

4

)
u +

(
7
4

)
v

3. Only whenw1 = 2w2−3w3. 0u+0v = 0

5. (a) We cannot make the desired solu-
tion.

(b) We can make the desired chemi-
cal solution with 3

4 of solution v1

for every 1
4 of solution v2.

(c) If w =

 w1

w2

w3

 can be made

from our original two chemical
solutions, then w3 + 3

23w1 −
7
23w2 = 0.

7. (a) Span{v1} is the line in R2

through the origin and the point
(1, 1).

(b) Span{v1,v3} is the plane in R3

through the origin and the points
(1, 1, 1) and (2, 0, 1).

9. Yes.

11. (a) F
(c) T
(e) T
(g) F
(i) T
(k) T

(m) F

Section 5

1. The matrix-vector form of the system is

Ax = b, where x =


x1

x2

x3

x4

.

3. The system corresponding to this matrix-
vector equation is

2x1 + 3x2 + 4x3 = 4

x1 − 2x2 + 3x3 = −6.

The solution to the system is

x1 = −17

7
x3 −

10

7

x2 =
2

7
x3 +

16

7
x3 is free.

5. Both methods give[
a b
c d

] [
x1

x2

]
=

[
x1a+ x2b
x1c+ x2d

]
.
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7. (a) b3

(b) If b3 = 9, then a = 2.

9. A

 −1
6
−5

 =

[
3
−5

]
.

11. The general solution to the system is x
y
z

 = y

 2
1
0

+z

 −1
0
1

+

 3
0
0

 .
The solution is the plane in R3 through the
points (3, 0, 0), (5, 1, 0), and (2, 0, 1).

13. x =

 2
−1
−1


14. (a) F

(c) T

(e) T

(g) T

(i) T

(k) T

Section 6

1. Linearly dependent. Change the last entry
in v3 to a 0.

3. Only two of the solutions are necessary.

5. (a) {v1,v2,v3}
(b) u = v1 − 2v2 + 3v3

7. This is not possible.

9. (a) F

(c) T

(e) T

(g) T

(i) T

(k) T

Section 7

1. Ff x =

 x1

x2

x3

, then T (x) =[
x1 + 2x2 + x3

x1 − 3x3

]
.

3.
[

12
−11

]
.

5. A =

[
2 −1
1 3

]

7. T defined by T (x) =


1 0 0
0 1 0
0 0 1
0 0 0

x

9. Not possible.

11. L = v + cw, T (L) = T (v + cw) =
T (v) + cT (w)

12. (a) F

(c) F

(e) T

(g) F

(i) F

(k) F

(m) T

(o) T

Section 8

1. (a) AB =

 a b
c d
0 0


(b) AB = [−2 − 2].

3. (a) X =

[
0 1
0 0

]
(b) There is no matrix X with this

property.



690 Section 39. Answers and Hints to Selected Exercises

(c) X =

[
2x21 1 + 2x22

x21 x22

]
,

where x21 and x22 can be any
scalars

5. Amv = 2mv

7. A2 = 0 and B3 = 0

9. (a) [aij + bij ] = [bij + aij ]

(c) [aij + 0] = [aij ]

(e) [(a+ b)aij ] = [aaij ] + [baij ]

(g) [(ab)aij ] = a[baij ]

11. (a) Let AT = [a′ij ]. Then a′ij = aji
by definition of the transpose. Let(
AT
)T

= [a′′ij ]. Then a′′ij = a′ji = aij .

So the ijth entry of
(
AT
)T is the same

as the ijth entry of A, and we con-
clude that

(
AT
)T

= A.

(c) The ijth entry of aA is aaij , so the
ijth entry of (aA)T is aaji. But aaji
is also the ijth entry of aAT. We con-
clude that (aA)T = aAT.

13. If A =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, B =[

cos(β) − sin(β)
sin(β) cos(β)

]
, then AB equals[

cos(α+ β)− sin(α+ β)
sin(α+ β) cos(α+ β)

]

14. (a) F

(c) F

(e) F

(g) T

Section 9

1. (a) Eigenvector with eigenvalue −1.

(b) Eigenvector with eigenvalue 3.

(c) Eigenvector with eigenvalue 2.

3. (a) Eigenvalue

(b) Eigenvalue

(c) Not an eigenvalue

(d) Not an eigenvalue

5. (a) a3 = 804, 000 s3 = 196, 000,
a4 = 782, 400, s4 = 217, 600

(b) ak+1 = 0.9ak + 0.3sk, sk+1 =
0.1ak + 0.7sk

(c)
[
ak+1

sk+1

]
equals[

0.9 0.3
0.1 0.7

] [
ak
sk

]

6. (a) F

(c) T

(e) T

(g) T

(i) F

(k) T

Section 10

1. C = (I)C = C = (BA)C = BAC =
B(AC) = B(I) = B

3. (a)
[

1 k
0 1

]−1

=

[
1 −k
0 1

]
(b) Row reduce [A | I2]

(c) Row reduce [A | I3] to see that

A−1 =

 1 −k mk − `
0 1 −m
0 0 1

.

5. c 6= −4

8. (a) T

(c) T

(e) T

(g) T

(i) F

Section 11
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1. A is invertible as long as

 a
b
c

 is not in

the plane in R3 through the origin and the
points (1,−1, 1) and (2, 1, 1)

3. (a) T

(c) T

(e) T

(g) T

Section 12

1. (a) Closed under addition, not closed
under multiplication by scalars,
contains the zero vector.

(b) Not closed under addition, closed
under multiplication by scalars,
contains the zero vector.

(c) Not closed under addition, not
closed under multiplication by
scalars, does not contain the zero
vector.

(d) Not closed under addition, closed
under multiplication by scalars,
contains the zero vector.

3. The only such set is the empty set.

5. R2.

7. (a) As an example, let v = [2 1]T in
R2.

i. I2

ii. 2I2

iii. [3e1 − e2]

iv.
[
a
2e1 be2

]
[2 1]T = ae1 +

be2 = [a b]T

(b) w1 +w2 = A1v+A2v = (A1 +
A2)v, cw1 = c(A1v) = A1(cv),
0v = 0.

(c) {0}, Rm

9. W1∩W2 is a subspace of Rn, W1∪W2 is
not in general a subspace of Rn

11. Not in general a subspace of Rn.

13. (a) F

(c) T

(e) T

(g) F

(i) T

(k) F

Section13

1. A basis for Col A is


 1

0
1

 ,
 3

2
5

, a

basis for Nul A is



−2

1
0
0

 ,

−7

0
1
1


.

3. a = −3 and b = 0

5.
[

1 0 1
0 1 1

]
7. Not possible

8. (a) T

(c) T

(e) T

(g) F

(i) F

Section 14

1. (a)
{[
−1

1

]}
(b)

{[
−2

1

]}
(c)

{[
−1

1

]}

(d)


 0

1
1


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(e)


 −1

2
1


(f)


 −1

1
0

 ,
 −2

0
1


3. a = 0, b = 4

5.

(a) Eigenvalue 0, eigenspace R2

(b) Eigenvalue 0, eigenspace Rn

6. (a) F

(c) F

(e) T

(g) T

Section 15

1. (a)





1
0
2
1
3
3

 ,


1
0
0
2
1
3

 ,


0
1
1
1
−1

1




,

dim(Col A) = 3, dim(Nul A) =
2

(b)




−3

1
0
0
0

 ,


0
0
−2

1
0




3. (a)


 1
−2

1

, rank(A) = 1

(b)



−2

1
0
0

 ,


1
0
1
0

 ,


1
0
0
1


,

nullity(A) = 3

(c) rank(A)+nullity(A) = 1+3 = 4

(d)




1
2
−1
−1


, dimension 1

5. (a) What are the solutions to Ax =
0?

(b) Use part (a) and the Rank-Nullity
Theorem.

7. dim(W ) can be 0, 1, 2, 3, or 4 correspond-
ing to {0}, a line through the origin in R4,
a plane containing the origin in R4, a copy
of R3 through the origin in R4, R4

9. dim(Col A) = 3, dim(Nul A) = 2

11.

(a) Not possible.

(b)
[

0 1
0 0

]
13. (a) F

(c) F
(e) T
(g) T
(i) F
(k) T

Section 16

1. det(2A) =
(8a11) [(a22)(a33)− (a23)(a32)] −
(8a12) [(a21)(a33)− (a23)(a31)] +
(8a13) [(a21)(a32)− (a22)(a31)] =
8 det(A).

3. (a) det(A2) = det(AA) =
det(A) det(A) = [det(A)]2.

(b) det(Ak) = det(AAk−1) =
det(A)[det(A)]k−1 = [det(A)]k.

(c) Yes.

5. (det(A))2

7. (a) F
(c) F
(e) T
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(g) F

(i) T

(k) F

Section 17

1. (a) i. det(B − λI2) = (1 −
λ)(−2−λ)−2 = λ2 +λ−4

ii. B2 +B − 4I2 = 0.

(b) det(A−AIn) = det(0) = 0.

3. (a) Eigenvalues 0, 3; algebraic multi-
plicities 2, 1; geometric multiplic-
ities 2,1

(b) Eigenvalues 1, 2; algebraic multi-
plicities 1, 2; geometric multiplic-
ities 1,1

5.

 2 0 0
0 2 0
0 0 3

,

 3 0 0
0 3 0
0 0 2

,

 2 1 0
0 2 0
0 0 3


7. (a) F

(c) T

(e) F

(g) T

(i) T

Section 18

1. (a) Not diagonalizable.

(b) Diagonalizable by P = 1 2 1
1 3 3
1 3 4


3. A =

[
1 2
0 2

]
, P1 =

[
1 2
0 1

]
, D1 =[

1 0
0 2

]
, P2 =

[
2 1
1 0

]
, D2 =[

2 0
0 1

]
5. Yes

7.

(a) Eigenvalues, 1; eigenvectors :
Span{[1 0]T

(b) Diagonalizable

9. (a) The ii entry of RS is ri1s1i +
ri2s2i+ · · ·+rinsni. The jj entry
of SR is sj1r1j + sj2r2j + · · · +
sjnrnj . Sum as i and j go from 1
to n.

(b) i. trace(D)
= trace

(
P−1(AP )

)
= trace

(
(AP )P−1

)
= trace(A)

ii. trace (A) = trace(D) =∑n
i=1 λi

11. (a) eA =

[
e e− 1
0 1

]
(b) eB = I2 +B =

[
1 −1
0 1

]
.

(c) eA+B =

[
e 0
0 1

]
(d) No

13. (a)

eA = ePDP
−1

=
∑
k≥0

1

k!

(
PDP−1

)k
=
∑
k≥0

1

k!
PDkP−1

= P

∑
k≥0

1

k!
Dk

P−1

= PeDP−1.

(b)

det
(
eA
)

= det
(
PeDP−1

)
= det

(
eD
)

= eλ1eλ
2 · · · eλn

= eλ1+λ2+···+λn

= etrace(A).
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14. (a) T

(c) F

(e) T

(g) F

(i) T

Section 19

1. (a) Eigenvalues: 3 and −1; T[1 −
1]T is an eigenvector for A with
eigenvalue −1 and [1 1]T is an
eigenvector for A with eigenvalue
3

(b) As k increases, the vectors Akx0

are approaching the vector [1 1]T,
which is a dominant eigenvector
of A.

(c) The Rayleigh quotients rk =
xk+1·xk
xk·xk approach the dominant

eigenvalue 3.

(d) Apply the power method to B =
(A − 0I2)−1 = A−1. As k in-
creases, the vectors Bkx0 are ap-
proaching the vector 1

2 [1 − 1]T,
which is an eigenvector of A.
The Rayleigh quotients approach
the other eigenvalue −1 of A.

3. [1 1]T is an eigenvector for A with eigen-
value 1, so the vectors Akx0 are all equal
to x0. We can adjust the seed to a non-
eigenvector.

5. 8 is the dominant eigenvalue of A

7. (a) Since Rn has dimension n, it fol-
lows that any set of n+ 1 vectors
is linearly dependent.

(b) Proceed down the list cn−1, cn−2,
etc., until you reach a weight that
is non-zero.

(c) 0 = q(A)v = (A− λIn)Q(A)v

(d) i. q(t) = 24t− 10t2 + t3

ii. 0, 4, and 6

iii. For t = 0, we have Q(t) =
(4 − t)t − 4)(t − 6), and
[6 − 6 0]T an eigenvector for
A with eigenvalue 0.
For t = 4 we have Q(t) =
t(t− 6), and [24 24 0]T is an
eigenvector forAwith eigen-
value 4.
For t = 6 we have Q(t) =
t(t− 4), and [0 − 6 − 12]T

is an eigenvector for A with
eigenvalue 6.

9. If β is an eigenvalue of B with eigenvec-
tor x, then 1

β + α is an eigenvalue of A
with eigenvector x.

10. (a) F

(c) T

Section 20

1. (a) Eigenvalues:λ1 = 2 + 2
√

2i and
λ2 = 2 − 2

√
2i; Eigenvectors:

[−
√

2i 1]T and [
√

2i 1]T

(b) Eigenvalues: λ1 = 2+i and λ2 =
2−i; Eigenvectors: [−(1+i) 1]T,
[−(1− i) 1]T

(c) Eigenvalues: λ1 = −1 + 2i and
λ2 = −1 − 2i; Eigenvectors:
[(1 + i) 2]T and [(1− i) 2]T

3. Just the rotation matrices

5.
[

1 −2
2 1

]
7. (a) Characteristic polynomial λ2 +

a1λ+ a0;
[

0 −2
1 2

]
(b) det(C − λI3) = −λ3 − a2λ

2 −
a1λ− a0

8. (a) T

(c) F

(e) T
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Section 21

1. det(rA) = rn det(A)

3. (a) A1 =


1 1 1 1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4



(b) B =


1 1 1 1
0 5 0 0
0 0 5 0
0 0 0 5


(c) 125 = det(B) = det(A1) =

det(A)

(d) det(A) = (n+ 1)n−1

5. A−1 = 1
det(A)adj(A)

=

 −1 0 1
0 1 0
2 0 −1


7. (a) 6

(b) −16

9. |c − 7|, volume is 0 when the paral-
lelelepiped is two-dimensional.

10. (a) T

(c) T

(e) F

(g) T

Section 22

1. (a) Use the fact that 01 + v = v for
any vector v in our vector space.

(b) Same reasoning as in part (a).

(c) Use the transitive property of
equality.

3. Use the fact that −1 + 1 = 0.

5. The intersectionW1∩W2 is a subspace of
V , but the unionW1∪W2 is not in general
a subspace of V .

7. The space W is the span of
[

1 1
0 1

]
,[

1 0
3 1

]
, and

[
0 −2
1 1

]
.

9. Mimic the proof of Theorem 12.5.

11. (a) Closure is by definition, the se-
quence {0} is the additive iden-
tity, the sequence {−xn} is the
additive inverse of the sequence
{xn}. The other properties fol-
low from the definitions of addi-
tion and multiplication by scalars.

(b) The answer is no.

(c) The answer is yes.

(d) The answer is no.

(e) The answer is yes.

(f) To show that `2 is closed under
addition, expand the square.

13. (a) T

(c) T

(e) T

(g) T

(i) F

Section 23

1. (a) This set is a basis for R3.

(b) The set is linearly independent in
P3 but does not span P3.

(c) The set is a basis for P3.

(d) The set is linearly independent in
M3×2 but does not span M3×2.

3. The set {Mij} where Mij is the matrix
with a 1 in the ijth position and zeros ev-
erywhere else is a basis for M2×2, as is
the set {M ′ij}, where M ′ij is the matrix
with a −1 in the ijth position and zeros
everywhere else.

5. The set is a basis for V .



696 Section 39. Answers and Hints to Selected Exercises

7. It is not possible.

9. Mimic the proof of Theorem 6.2.

11. Mimic the proof of Theorem 6.4.

13. (a) F

(c) T

(e) T

(g) F

(i) F

(k) T

Section 24

1. The set {1+t2, 2+t+2t2 +t3, 1+t+t3}
is a basis for W and dim(W ) = 3.

3. (a) No.

(b) The set S is linearly dependent.

(c) The set {A,B,E} forms a basis
for Span S and C = 2A − 3B,
D = 3A− 2B.

(d) Let F =

[
0 0 0
1 0 0

]
,

G =

[
0 0 0
0 1 0

]
, and

H =

[
0 0 0
0 0 1

]
. The set

{A,B,E, F,G,H} is a basis for
M2×3.

5. The set B =

{[
1 0
0 −1

]
,
[

0 1
0 1

]
,[

0 0
1 0

]}
is a basis for W . It follows

that dim(W ) = 3.

7. The set B = {−1 + t,−1 + t2} is a basis
for W and dim(W ) = 2.

9. Consider dimensions.

11. (a) What happens if If vi is in W1 for
each i?

(b) Assume that v1 /∈W1.

i. Consider the set S =
{u1,u2,u3,v1}.

ii. Write v2 and v3 in terms of
the vectors in S.

11.

(1) (a) T

(c) T

(e) F

(g) T

(i) F

(k) T

Section 25

1. [b]B =

[
−2

3

]
.

3. Two such bases are {[1 0]T, [3 3]T} and
{[1 1]T, [3 1]T}.

5. B = {[1 0 2]T, [2 1 1]T}.
7. (a) Show that B is linearly indepen-

dent.

(b) i. [p1(t)]B = [1 0 1]T,
[p2(t)]B = [1 1 1]T, and
[p3(t)]B = [2 − 1 − 1]T.

ii. Row reduce the matrix 1 1 2
0 1 −1
2 2 1

.

9. (a) Show that B is linearly indepen-
dent.

(b) [A]B = [0 0 0 1]T, [B]B =
[0 1 1 0]T, [C]B = [1 1 1 0]T, and
[D]B = [1 − 1 − 1 1]T.

(c) Row reduce [[A]B [B]B [C]B [D]B].

11. Use the fact that cu = c(u1v1 + u2v2 +
· · ·+unvn) = (cu1)v1 +(cu2)v2 + · · ·+
(cun)vn.

13. (a) Write x as a linear combination of
basis vectors.
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(b) Apply T to an appropriate vector
and use the fact that T is one-to-
one.

15. Find a vector y in V such that x = [y]B.

17. (a) F

(c) F

(e) T

(g) T

(i) T

Section 26

1. (a)

 5 −1 −1
1 −1 0
−2 1 1

.

(b)


1 1 0 0
−1 1 1 −1

0 −1 0 0
1 0 0 1

.

(c)


1 −1 1 −1
−1 1 0 −1

0 0 −1 1
2 0 2 1

.

3.

(a) P
C←B

=

[
5
2 −2
1
2 1

]
and P

B←C
=[

2
7

4
7

−1
7

5
7

]
.

(b) i. The columns are linearly in-
dependent.

ii. Show that P
C←B

−1[x]C =

[x]B. Then show that P
C←B

−1

and P
B←C

have the same cor-

responding columns.

5. (a) Use the trigonometric identities
cos(θ + π/2) = − sin(θ) and
sin(θ + π/2) = cos(θ).

(b) [x]C ≈
[

3.2
1.6

]
.

(c) [y]B ≈
[

0.2
3.6

]
.

7. (a) What is [v]S if S is a standard ba-
sis?

(b) Use properties of change of basis
matrices.

(c) See the discussion after Activity
26.1.

8. (a) T

(c) T

Section 27

1. (a) The angle between u and v is π
2 .

The distance between u and v is√
10. The orthogonal projection

of u onto v is 0.

(b) The angle between u and v is 0.
The distance between u and v is√

2. projvu = u.

(c) The angle between u and v is
approximately 104.96◦. The dis-
tance between u and v is

√
17.

projvu = u·v
||v||2v = − 1

10 [1 3]T.

(d) The angle between u and v is
π
2 . The orthogonal projection of u
onto v is 0. The distance between
u and v is

√
11.

(e) The angle between u and v is ap-
proximately 54.74◦. The distance
between u and v is

√
2. projvu =

u·v
||v||2v = 1

3 [1 1 1]T.

3. h = 6± 4
√

3

5. Write the dot product as a matrix-vector
product.

7. (a) Write the norm as a dot product.

(b) From part (a), what can we say
about 2(u · v)?

9. Consider cases of u · v ≤ 0 separately.
Then write the norm as a dot product.
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11. Use the definition of W⊥.

13. If w ∈ W⊥2 and v ∈ W1, in what other
set is v?

14. (a) F

(c) F

(e) F

(g) F

(i) T

(k) T

(m) F

(o) T

(q) T

Section 28

1.
{

[0 1 0]T,
[

3
4 0 1

]T}
3. (a) Where are w1, w2, . . ., wk?

(b) Take the dot product of z with wi.

(c) Use parts (a) and (b).

(d) Collect terms in W and in W⊥.

5. Consider (Pei) · (Pej) where et is the tth
standard basis vector for Rn.

7. (a) Simplify (AB)T(AB).

(b) Take the transpose of AT.

(c) What is
(
A−1

)T
A−1?

8. (a) F

(c) T

(e) F

(g) T

(i) T

Section 29

1. Use properties of continuous functions.

3. (a) 2x2 + 3y2 = 1

(b) An ellipse centered at the origin
with major axis the segment from(

0,− 1√
3

)
to
(

0, 1√
3

)
and minor

axis the segment from
(
− 1√

2
, 0
)

to
(

1√
2
, 0
)

.

5. (a) Verify the inner product proper-
ties. Why is the assumption that
the ai are positive necessary?

(b)


a1 0 0 · · · 0
0 a2 0 · · · 0

. . .
0 0 0 · · · an

.

7. (a) No.

(b) IfA is a diagonal matrix with pos-
itive diagonal entries.

9. (a) Evaluate each side of the inequal-
ity.

(b) Write ||w||2 as an inner product
and expand.

11. (a) Expand the inner product.

(b) Expand the inner product.

(c) Convert A and B to vectors in
Rn2

whose entries are the entries
in the first row followed by the en-
tries in the second row and so on.

13. (a) Compute the inner product of the
vectors.

(b) Try to write v in terms of the basis
vectors for W .

(c) [1 2 1]T. Approximately 1.41.

15. (a) Use the fact that 0 = 0 + 0.

(b) Use the fact that 〈u,v〉 = 〈v,u〉.
(c) Same hint as part (b).

(d) Use the fact that u − v = u +
(−v).

17. Mimic Theorem 28.3.

19. (a) F
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(c) T

(e) F

(g) F

(i) T

Section 30

1. (a) projWv = 1
2 [1 0 1]T

(b) 1
2 [1 0 1]T,

√
1
2 .

3. (a) projWh(t) ≈ −0.386t2 −
0.721t+ 2.06

(b) 2− 2t2

(c) projWh(t)

5. (a) { 1√
3
[1 1 1]T, 1√

2
[1− 1 0]T}

(b)
{√

6
4 (1 + t) ,

√
2

4 (1 − 3t),
√

10
4

(
1
3 − t2

)}
(c)

{
1√
14

[1 0 2]T ,
√

35
70 [−9 1 3]T,

1√
10

[1 2 − 2]T
}

(d)


1√
5



1
0
1
0
1
0
1


,

√
3

6



−2
2
2
0
0
0
0


,

1√
5



0
−1

1
−1

0
0
−1


,
√

105
210



5
1
4
6
0

15
−9




7. (a) Evaluate an appropriate equation

at well-chosen points.

(b)
{

1, cos(t), sin(t)− 2
π

}
9. We cannot find a QR factorization for this

matrix.

19. (a) F

(c) T

(e) T

(g) T

Section 31

1. (a) 1√
5

[
−2 2

1 1

]

(b)


1√
3
− 2√

6
0

1√
3

1√
6
− 1√

2
1√
3

1√
6

1√
2


(c) A is not orthogonally diagonaliz-

able.

3. 1
2


9 3 0 0
3 9 0 0
0 0 4 0
0 0 0 4


5. (a) Determine PT

i

(b) Show that every column of Pi is a
scalar multiple of ui.

(c) Use the orthonormal basis to sim-
plify P 2

i .

(d) Use the orthonormal basis to sim-
plify PiPj .

(e) Use the orthonormal basis to sim-
plify Piui.

(f) Use the orthonormal basis to sim-
plify Piuj .

(g) Recall that projWi
v = v·ui

ui·uiui.

7. (a) A basis for the eigenspace of A
corresponding to the eigenvalue
−1 is {[0 0 − 2 1]T, [−2 1 0 0]T}
and a basis for the eigenspace
of A corresponding to the eigen-
value 4 is {[0 0 1 2]T, [1 2 0 0]T}.

P1 is 1
5


0 0 0 0
0 0 0 0
0 0 4 −2
0 0 −2 1

,



700 Section 39. Answers and Hints to Selected Exercises

P2 is 1
5


4 −2 0 0
−2 1 0 0

0 0 0 0
0 0 0 0

,

P3 is 1
5


0 0 0 0
0 0 0 0
0 0 1 2
0 0 2 41

,

P4 is 1
5


1 2 0 0
2 4 0 0
0 0 0 0
0 0 0 0

,

µ1 = −1, µ2 = 4, Q1 is

1
5


4 −2 0 0
−2 1 0 0

0 0 4 −2
0 0 −2 1

, and

Q2 is 1
5


1 2 0 0
2 4 0 0
0 0 1 2
0 0 2 4

.

(b) i. Collect matrices with the
same eigenvalues.

ii. Use the fact that each Pi is a
symmetric matrix.

iii. Use Theorem 31.8.
iv. Use Theorem 31.8.
v. Explain why {u1j ,u2j , . . . ,umj}

is a orthonormal basis for
Eµj .

(c) The rank of Qj is mj .

8. (a) T

(c) F

(e) T

(g) T

(i) T

(k) F

Section 32

1. (a)
[

1 −1
−1 4

]

(b)

 10 0 2
0 0 1
2 1 1



(c)


0 1 1 −1

2

1 5 0 0

1 0 0 2

−1
2 0 2 8


3. (a) i. Let P be a matrix that or-

thogonally diagonalizes A,
with PTAP = D. Use this
to calculate Q(x).

ii. Substitute in part i.
iii. Make an argument similar to

part ii.

(b) The maximum value of Q(x) on
the unit circle is 1 and it occurs at
the input 1√

2
[1 − 1].

5. (a) 1 = λ1y
2
1 + λ2y

2
2 .

(b) An ellipse.

(c) A hyperbola.

(d) Two lines.

7. Use Exercise 6 (a) to compareQA(ei) and
QB(ei), then compare QA(ei + ej) to
QB(ei + ej) for i 6= j.

9. (a) F

(c) T

(e) T

(g) F

(i) T

(k) T

(m) T

(o) T

Section 33

1. (a) U =

[
1 0
0 1

]
, Σ =

[ √
2 0

0 0

]
,

V = 1√
2

[
1 −1
1 1

]
.
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(b) U = 1√
2

 1
0
1

, Σ = [
√

2], V =

[1].

(c) U = 1√
2

[
1 −1
1 1

]
,

Σ =

[ √
3 0 0

0 1 0

]
, V =

2√
6

0 − 1√
3

1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3

.

(d) U =


1√
10

1√
10

2√
5

0

1√
10
− 1√

10
0 − 2√

5

2√
10
− 2√

10
0 1√

5

2√
10

2√
10
− 2√

5
0

,

Σ =


5 0

0
√

5
0 0
0 0

, V =

1√
2

[
1 −1
1 1

]
.

(e) U =


0 1 0

1√
2

0 − 1√
2

1√
2

0 1√
2

,

Σ =

 3 0 0 0
0 2 0 0
0 0 1 0

, V =
0 1 0 0

1√
2

0 − 1√
2

0

1√
2

0 1√
2

0

0 0 0 1

.

3. (a)
√

28

(b) U =


1√
14

2√
5

3√
70

2√
14
− 1√

5
6√
70

3√
14

0 − 5√
70

,

Σ =

 √28 0
0 0
0 0

, V =

1√
2

[
1 −1
1 1

]
.

(c) i.
{

1√
2
[−1 1]T

}
.

ii.
{

1√
14

[1 2 3]T
}

.

iii.
{

1√
2
[1 1]T

}
.

5. Find the transpose of an SVD for A.

7. ||A|| = λ1

9. Mimic Exercise 5 in Section 31.

9. (a) F
(c) T
(e) F
(g) F

Section 34

1. (a) 60, 15, and 6

(b) A = 60
(

1
5 [3 0 4]T

) (
1
3 [2 1 1]

)
+

15
(

1
5 [4 0 − 3]T

) (
1
3 [−1 − 2 2]

)
+ 6

(
1
5 [0 5 0]T

) (
1
3 [−2 2 1]

)
.

(c)

 24 12 24
0 0 0
32 16 32

, 261
3861 ≈ 0.068.

(d)

 20 4 32
0 0 0
35 22 26

, 36
3861 ≈ 0.009.

3. (a) f(x) ≈ 35.5273− 0.0527x.

(b) Approximately 32.10.

5. (a) The plot demonstrates that the
data is not linear.

(b) g(x) = 266
97 + 12213

970 x− 1423
9700x

2.

(c) Approximately 23.9 and 61.9 de-
grees.

7. (a) det(A) = 1, eigenvalue 1

(b) i. (2, 1, 1)

ii. (4, 2, 1, 1)
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iii. x = [x1 x2 . . . xn]T with
x1 = 2n−2, x2 = 2n−3, . . .,
xn−2 = 2, xn−1 = 1, and
xn = 1

iv. ||A−B||F = 1
2n−2

9. (a) Use the fact that ΣΣ+ is a sym-
metric matrix.

(b) Take the transpose of A+A.

11. A+ = 0

13. If ATAx = 0, what is xTATAx?

14. (a) F

(c) F

(e) F

Section 35

1. Use properties of the definite integral from
calculus.

3. The property that T−1(w) = v whenever
T (v) = w is the key to this problem.

5. (a) linear transformation, one-to-one,
onto

(b) linear transformation, one-to-one,
onto

7. Use the fact that T is one-to-one to show
that is linearly independent, and that T is
onto to show that C spans W .

9. Yes, but the vector space needs to be infi-
nite dimensional.

11. Show that T (v) = w has at most one so-
lution for each w in W .

13. (a) Think of T (V ′) as the range of a
suitable restriction of T .

(b) Use Exercise 12. It is possible.

(c) Let {v1,v2, . . . ,vk} be a basis
for Ker(T ). Extend this basis to a
basis {v1, v2, . . ., vk, vk+1, . . .,
vn} of V . Use this basis to find a
basis for Range(T ).

(d) This follows from fact that coor-
dinate transformations are linear.

18. (a) F

(c) T

(e) F

(g) T

(i) T

Section 36

1. (a) r(t) = r0(1) + r1(t) + r2(t2) and

[r(t)]B =

 r0

r1

r2

.

(b) T is a linear transformation

(c) The coordinate mapping is a lin-
ear transformation.

(d) [T (p0(t))]C =


1
0
1
0

,

[T (p1(t))]C =


1
1
0
0

,

[T (p2(t))]C =


0
1
0
1



(e)


1 1 0
0 1 1
1 0 0
0 0 1

.

(f) [T (1 + t − t2)]C =


2
0
1
−1

,

T (1 + t − t2) = 2(1) + 0(t) +
1(t2) + (−1)t3 = 2 + t2 − t3.

(g) T (1 + t− t2) = 2 + t2 − t3.

3. (a) Use the linearity of both S and T .
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(b) True

5. x ∈ Ker(T ) if and only if [x]B ∈ Nul [T ]CB
T

7. (a) Since w is in the range of T , there
is a vector v so that T (v) = w.

(b) Since y is in the range of T ′, there
exists a vector x in Rn so that
T ′(x) = y. What is [w]C?

(c) How do we tell if T ′ is onto?

9. (a) F
(c) T
(e) T
(g) T
(i) T

Section 37

1. (a) Use properties of the derivative.

(b) [T ]S =

 −1 1 0
0 −2 2
0 0 −3

.

(c) −1, −2, and −3 with bases {1},
{−1 + t}, {1− 2t+ t2}

(d) B = {−1,−1 + t, 1− 2t+ t2}

3. (a) Use properties of differentiable
functions.

(b) Use properties of the derivative.

(c) What is D
(
eλx
)
?

5. (a) Use properties of the matrix trans-
pose.

(b) For which matrices is T (A) = A?

(c) When is it possible to have AT =
λA?

6. (a) F

(c) T

(e) T

(g) T
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LU factorization, 377

angle between vectors, 482, 513
attractor, 649
augmented matrix, 22

back substitution, 26
back-face culling, 491
basic variable, 28
basis, 115
basis for a vector space, 412
Binet’s formula, 329

Cauchy-Schwarz inequality
in Rn, 490

change of basis matrix, 461
characteristic equation, 299
characteristic polynomial, 299
characteristic value, 170
characteristic vector, 170
circuits

junctions, 4
resistor, 3
source, 3

codomain of a matrix transformation, 128
coefficient matrix, 22
cofactor, 283
column space, 235
companion matrix, 356
complex conjugate, 685
complex number, 683

imaginary part, 683
real part, 683

condition number of a matrix, 611
contraction, 140
coordinate transformation, 447

coordinate vector with respect to a basis, 446
coordinates with respect to a basis, 446
covariance matrix, 438
Cramer’s Rule, 371
cross product, 492

determinant, 283
diagonal matrix, 153
diagonal of a matrix, 153
differential equation, 672
dimension

subspace of Rn, 265
distance between vectors, 481
distance between vectors in an inner product

space, 512
domain of a matrix transformation, 128
dominant eigenvalue, 333
dominant eigenvector, 333
dot product, 150, 479
dynamical system, 173

eigenspace, 251
eigenvalue, 170
eigenvector, 170
elementary operations, 7
equivalent statements, 203

Fibonacci sequence, 314
field, 59
forward elimination, 26
Fourier coefficients, 529
free variable, 28

Gaussian quadrature, 542
Gershgorin Disk Theorem, 360
Gram-Schmidt Process

in an inner product space, 533
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Hamming code, 405
Hausdorff dimension, 652
homogeneous system, 82

identity matrix, 152
image of an element under a transformation,

128
inner product, 510
inner product space, 510
input-output models, 97
Invertible Matrix Theorem, 204
isometry, 500
isomorphism, 642
iterated function system, 649

kernel, 233
Kirchoff’s Current Law, 17
Kirchoff’s Voltage Law, 17

Lagrange polynomials, 667
Latent Semantic Indexing, 581
leading entry of a row, 42
length of a vector in an inner product space,

512
Leslie matrix, 344
linear combination, 65

weights, 65
linear combination of vectors in a vector

space, 396
linear dependence, 107
linear dependent vectors in a vector space,

409
linear equation, 6

coefficients, 6
linear independence, 107
linear transformation, 638

diagonalizable, 673
eigenvalue, 672
eigenvector, 672
kernel, 640
matrix of, 658
onto, 639
range, 641
standard matrix, 657

linearly independent vectors in a vector
space, 409

lower triangular matrix, 154

Markov chain, 180, 181
Markov process, 179, 180
matrix, 22

adjugate, 370
column, 23
columns, 83
diagonalizable, 319
elementary, 365
entry, 23
exponential, 162
indefinite, 570
inverse, 192
invertible, 192
minor, 282
negative definite, 570
negative semidefinite, 570
nilpotent, 256
non-singular, 192
orthogonal, 500
positive definite, 570
positive semidefinite, 570
product, 147
row, 23
rows, 83
scalar multiple, 144
singular, 192
size, 23, 83
sparse, 335
square, 171
sum, 146
transpose, 153

matrix transformation, 126
matrix-vector product, 84
minimal spanning set, 107
moment of inertia, 577
multiplicity

algebraic, 300
geometric, 302

nonhomogeneous system, 82
normal vector, 484
null space, 233
nullity of a matrix, 266

Ohm’s Law, 17
one-to-one, 131
onto, 130
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operator norm of a matrix, 582
orthogonal, 482
orthogonal basis in Rn, 496
orthogonal basis in an inner product space,

514
orthogonal complement, 484
orthogonal complement in inner product

spaces, 519
orthogonal diagonalization, 550
orthogonal projection

in the direction of a vector, 484
orthogonal projection onto a subspace, 516
orthogonal set in Rn, 496
orthogonal set in an inner product space, 513
orthogonal vectors in inner product spaces,

513
orthonormal basis in Rn, 499
orthonormal basis in an inner product space,

515
outer product decomposition, 590

parametric vector form, 82
partitioned matrices, 164
pivot, 28, 42
pivot column, 42
pivot positions, 42
polynomial curve fitting, 35
power method, 333
projection

orthogonal to a vector, 484
projection orthogonal to a subspace, 516
pseudoinverse, 614
Pythagorean Theorem in Rn, 489

quadratic form, 567

range of a matrix transformation, 128
rank of a matrix, 266
Rayleigh quotients, 335
rotation matrix, 138
rotation-scaling matrices, 352
row echelon form, 41

reduced, 43
row equivalent matrices, 46
row operations, 24
row space, 235

scalar product, 479

scalars, 59, 391
self-similar set, 650
shear, 139
similar matrices, 316
singular values, 587
singular vectors

left, 589
right, 588

span, 67
span of a set of vectors in a vector space, 396
spanning set, 396
spectral decomposition, 556
spectrum of a matrix, 554
standard basis

for Pn, 412
for Rn, 115

state vector, 174
stochastic matrix, 184

regular, 186
Strassen’s algorithm, 163
strictly diagonally dominant matrix, 360
subspace

of Rn, 217
sum, 222, 402

subspace of a vector space, 395
subspace of a vector space spanned by a set

of vectors, 396
symmetric matrix, 154
system of linear equations, 6

consistent, 8
elimination, 7
equivalent systems, 7
inconsistent, 8
operations, 7
solution, 7
solution set, 7

trace, 325
transformation

matrix, 126
transition matrix, 177, 180
triangle inequality in Rn, 490
trigonometric polynomial, 527

unit vector, 480
unit vector in an inner product space, 512
upper triangular matrix, 154
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vector, 58
column, 59
component, 58
entry, 58
length in Rn, 63, 479
magnitude in Rn, 479
norm in Rn, 479

vector space, 216, 391

basis, 412
dimension, 428
finite dimensional, 428
subspace, 395

vector spaces
isomorphic, 642

Wronskian, 681
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