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Acetylcholine Protection of Adult Pig Retinal Ganglion
Cells from Glutamate-Induced Excitotoxicity

Erica Wehrwein, Sean A. Thompson, Sylvie F. Coulibaly, David M. Linn, and Cindy L. Linn

PURPOSE. To determine which glutamate receptor (GluR) sub-
types are responsible for glutamate-induced excitotoxicity in
cultured adult pig retinal ganglion cells (RGCs) and to charac-
terize the neuroprotective effect of acetylcholine (ACh) on pig
RGCs.

METHODS. Adult pig RGCs were isolated from other retinal
tissue by a modified panning technique using Thy 1.1 antibody.
Isolated RGCs were cultured in control media and media con-
taining: glutamate, NMDA, or KA; glutamate and CNQX, MK-
801, or AP-7; ACh, nicotine or muscarine; ACh and �-bungaro-
toxin (Bgt) or methyllycaconitine (MLA); and glutamate and
choline or glutamate, choline, and MLA. To determine cell
viability, cells were loaded with calcein and counted.

RESULTS. Ninety-eight percent of isolated cells were immunola-
beled with Thy 1.1 antibody. Chronic exposure to 500 �M
glutamate decreased the number of surviving large and small
RGCs, compared to control conditions. This glutamate-induced
excitotoxicity was mediated through both NMDA and non-
NMDA GluRs. In neuroprotective studies, ACh, nicotine, and
choline significantly reduced glutamate-induced excitotoxicity
in adult pig RGCs through �-Bgt-sensitive nicotinic ACh recep-
tors (nAChRs).

DISCUSSION. This was the first report of a modified panning
technique to isolate adult pig RGCs. Cell viability was relatively
high using this method, and both large and small RGCs grew
extensive neurites in culture. The finding that both NMDA and
non-NMDA GluRs were involved in glutamate-induced excito-
toxicity suggests that isolated pig RGCs provide a good model
for glaucoma. In addition, activation of AChRs may be useful in
protecting RGC from excitotoxic insults occurring in neurode-
generative diseases such as glaucoma. (Invest Ophthalmol Vis
Sci. 2004;45:1531–1543) DOI:10.1167/iovs.03-0406

Excitotoxicity, neuronal cell death caused by excessive ac-
tivity, is linked to various diseases of the central nervous

system1,2 including the retina. In the retina, diseases associated
with excitotoxicity include retinal ischemia, diabetic retinop-
athy, and glaucoma.3,4 Glaucoma is one of the leading causes of
blindness in the world, affecting an estimated 66 million peo-
ple. Although the fundamental cause of glaucoma is yet to be
found, the primary risk factor associated with glaucoma is an
increase in intraocular pressure. Several studies have identified

an excess of the excitatory neurotransmitter, glutamate, in the
vitreous humor.5–7 Previous studies have demonstrated that
excess glutamate release in the eye leads to prolonged influx of
nonspecific cations in retinal ganglion cells (RGCs) of the
retina and triggers intracellular signaling cascades leading to
apoptosis.8,9 RGCs are one of five main types of neurons in the
vertebrate retina. The axons of the RGCs form the optic nerve,
which acts to convey visual information to the brain. When
RGCs die through excitotoxicity-induced apoptosis, loss of the
visual field occurs.

Previous immunocytochemical, pharmacological, and in
situ hybridization studies have demonstrated that RGCs con-
tain both NMDA and non-NMDA ionotropic glutamate recep-
tors (GluRs).10–13 In this study, we used cultured RGCs isolated
from adult pig retina as a model for human disease,8,14 includ-
ing glaucoma.5,7 Pig RGCs were used in this study, instead of
the more common rodent model, because of the conflicting
results reported using rodent preparations concerning the
types of glutamate receptors involved in glutamate-induced
excitotoxicity. For instance, in mixed rat retinal cultures, a
number of studies have demonstrated that RGCs are suscepti-
ble to NMDA-induced cell death.15–17 However, other studies
using the rat model have demonstrated that both NMDA and
non-NMDA receptors are required for excitotoxicity;18 still
other rat model studies have demonstrated that glutamate-
induced excitotoxicity is due solely to non-NMDA receptors.19

The purpose of this study was to characterize the specific
GluR subtypes responsible for glutamate-induced excitotoxic-
ity in adult pig cultured RGCs and to characterize a potential
neuroprotective agent that promotes RGC survival. A growing
body of evidence indicates that neuronal nicotinic acetylcho-
line receptors (nAChRs), in addition to mediating fast cholin-
ergic transmission, may modulate other actions within the
CNS. In particular, �7 nAChR has been linked to neuroprotec-
tion against glutamate-induced excitotoxicity in the brain.20–23

However, a potential neuroprotective role of acetylcholine
(ACh) in the retina remains unexplored. In the retina, cholin-
ergic neurons are a well-described population of amacrine cells
known as starbursts, due to their unique morphology.24,25 This
population of cholinergic neurons is equally divided in the
retina, with one group in the inner nuclear layer of the retina
and the other group lying in the ganglion cell layer.25,26 The
cholinergic starburst amacrine cells receive strong excitatory
input from bipolar cells and synapse onto RGCs.27–31

In this study, we demonstrated that activation of �-bunga-
rotoxin (Bgt)-sensitive nicotinic ACh receptors in adult pig
RGCs was linked to neuroprotection against glutamate-induced
excitotoxicity. The type of ACh receptors involved in this
process was characterized.

METHODS

Dissociation and Panning Procedure

Pure RGCs were isolated from adult porcine eyes using a modified
version of the two-step panning technique19,32 first described by Barres
et al.33 Adult pig eyes were obtained immediately after slaughter from
a local slaughterhouse and kept on ice for transport. Within 1 hour of
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eye removal, retinas were removed from the eyes and subsequently
dissociated and isolated using the modified panning technique. To
separate retina from the eye chamber, the cornea and lens were
surgically excised from each eye, and the underlying lens and vitreous
humor were manually removed. The remaining eyecup containing
retina was placed in modified CO2-independent medium (Gibco, Carls-
bad, CA; cat # 18,045–088), maintained at 37°C, containing 4 mM
glutamine, 10% fetal bovine serum (FBS), 5% antibiotic/antimycotic,
and 4 mM HEPES, and the retina was manually peeled out of the
eyecup. Isolated retinas were subsequently chopped into smaller frag-
ments and enzymatically treated with papain (27 u/mg) for 20 minutes
at 37°C. After 20 minutes, enzymatic treatment was inactivated by
rinsing tissue in fresh 37°C CO2 -independent medium containing 1
mg/mL DNase. Once enzymatically treated, retinal tissue was fully
dissociated by gentle trituration using an unpolished Pasteur pipette.
Dissociated cells were then incubated in a 150 � 15 mm Petri dish
precoated with goat anti-rabbit IgG antibody (Jackson ImmunoRe-
search, West Grove, PA; cat #111–005-003; 0.5 mg in 10 mL of 20 mM
Tris buffer) for 1 hour at 37°C to eliminate nonspecific binding. This
was the first panning step. Goat anti-rabbit IgG antibody had been
applied and evenly disbursed over the Petri dish the evening before
retina dissociation and kept at 4°C overnight. In the morning of the
dissociation, IgG-treated Petri dishes were washed three times with
PBS and washed once again with PBS containing 0.2% BSA for 20
minutes before removal and application of dissociated pig retina.

After 1 hour on the IgG plate, cells were transferred to another 150
mm x 15 mm Petri dish coated with mouse anti-rat Thy 1.1 antibody
(BD Biosciences, San Diego, CA; cat # 554898; 12.5 �g in 10 mL PBS
containing no magnesium chloride and no calcium chloride) bound to
goat anti-mouse IgM (Jackson ImmunoResearch; cat # 115–005-075;
0.36 mg in 10 mL of 20 mM Tris buffer). This was the second panning
step. To prepare this second panning plate, an IgM 150 mm x 15 mm
Petri plate was prepared 1 day before retinal dissociation using the
same procedure described for the IgG plates. On the dissociation
morning, unbound IgM was sucked off the Petri dish and Thy 1.1 was
applied and maintained at 37°C before transferring cells from the IgG
plate.

Cells remained on the IgM/Thy 1.1 plate for 1 hour at 37°C and the
supernatant was subsequently discarded. RGCs bound to Thy 1.1 were
released using 0.25% trypsin for 10 minutes at 37°C. After 10 minutes,
trypsin activity was stopped with 1 mg/mL soybean trypsin inhibitor
and cells were strained. At this point, the cell density of the dissociated
RGCs was calculated with a hemocytometer, cells were diluted and
plated at a density of 1 � 105 cells/mL into 24-welled culture dishes
coated with poly-D-lysine/laminin and incubated at 37°C. The CO2-
independent medium was modified to contain: 10% FBS, 5% antibiotic/
antimycotic, 4 mM HEPES, 4 mM glutamate, 15 �g/mL nerve growth
factor (NGF), 500 �g/mL transferrin, and 10 mg/mL insulin. Survival of
cultured cells in this medium was significantly enhanced compared to
cells cultured in Dulbecco’s modified Eagle’s medium (DMEM)-F12
medium in 5% CO2. In the modified CO2-independent medium, an
average of 61% (SE � 5) cells survived the dissociation process and
remained healthy for a minimum of 3 days. This was compared to an
average of only 42% (SE � 3) cells that survived the dissociation
process and remained healthy for a minimum of 3 days when cells
were incubated in DMEM-F12 medium. Cell survival was determined
by calcein fluorescence as described below.

After cells were allowed to settle for 2 hours, medium was replaced
with fresh modified CO2-independent medium in each well. The first
column of each 24-welled culture dish contained untreated control
cells. The remaining five columns in each 24-well culture dish con-
tained cells that were treated with appropriate agonists �/or antago-
nists. The RGCs in these five columns contained their appropriate
pharmacological agents for period of 1, 3, 5, or 7 days. After these time
periods, cells were loaded with 2 �M of membrane-permeable calcein
for 1 hour to label living viable cells.34 In some experiments, 10 �M
calcein was used instead of 2 �M to label neurites as well as cell bodies.

After the 1-hour incubation, living cells intensely fluoresce as a result
of 495 nm excitation. Background fluorescence levels were inherently
low with this assay technique because the calcein dye is virtually
nonfluorescent before interacting with cells.

Microscopy was performed on a Nikon Diaphot epifluorescent
research microscope illuminated by a 100-W mercury arc lamp with an
excitation filter EX 510 to 590, dichroic mirror DM 580, and barrier
filter BA590. Fluorescent cells were recorded by a Hamamatsu XC-77
CCD camera, captured using a Metamorph Imaging system (Universal
Imaging, Downingtown, PA) and counted using Imagepro software
(Media Cybernetics, Inc., Silver Spring, MD). The number of living
RGCs in pharmacologically-treated wells was compared to the number
of living cells counted in the wells containing untreated control RGCs
to obtain a percent change from control. A minimum of five animals
was used to generate all pharmacological results. From each animal,
cells were plated onto a minimum of four individual wells for each
agent tested. Statistical analysis was performed on data using an anal-
ysis of variance (ANOVA) followed by linear contrast. P � 0.05 was
considered statistically significant. Statistical treatments were per-
formed on data normalized to control values for each experimental
series to minimize variation.

Immunocytochemistry

To ensure that all the panned cells were RGCs, some panned cells were
processed immunocytochemically with an antibody specific for RGCs;
Thy 1.1.35,36 Panned RGCs were plated onto coverslips and fixed in
ice-cold 100% methanol for 10 minutes, washed three times with
phosphate buffered saline (PBS), and blocked with 5% bovine serum
albumin (BSA) in PBS. Primary mouse anti-rat Thy 1.1 antibody (1:100;
BD Biosciences; CD90) was applied to fixed cells in 1% BSA in PBS
overnight at 4°C. After 24 hours, coverslips were washed three times
with 0.1% BSA in PBS and a secondary antibody linked to Alexa Fluor
488 (emission 494; Molecular Probes, Eugene, OR) was applied to cells
for visualization at 1:100 in 1% BSA in PBS for 30 minutes at room
temperature. After a secondary antibody treatment, coverslips were
washed four times with 0.1% BSA in PBS. Coverslips were attached to
slides using Slowfade antifade medium (Molecular Probes). Cells were
photographed with a Hamamatsu XC-7CCD camera. To confirm that
antibody staining was specific for the antigen, control slides were
included in which the primary antibody was omitted.

Pharmacological Treatment

In some experiments, panned RGCs plated in columns 2 to 6 in
24-welled culture dishes were pharmacologically treated with gluta-
mate, glutamate agonists, glutamate antagonists, ACh, ACh agonists, or
ACh antagonists. In other experiments, a combination of these agents
was applied. All agents were directly applied to individual culture wells
to obtain a variety of agent concentrations. All agonists and antagonists
were obtained from Sigma (St. Louis, MO): (agonists) glutamate,
N-methyl-D-aspartate (NMDA), kainic acid (KA), ACh, choline, and
nicotine; (antagonists) 6-cyano-7-nitroquino-xaline-2,3-dione (CNQX),
2-amino 7 phosphonoheptanoic acid (AP-7), 5 methyl-10,11-dihydro-
5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801),
�-bungarotoxin (�-Bgt), and methyllycaconitine, (MLA). Agonist and
antagonist concentrations were determined from dose–response ex-
periments. The minimal dosage that provided a maximum effect was
used throughout the study.

RESULTS

Immunoreactivity to Thy 1.1 Antibody by All
Panned Retinal Cells

The panning technique used in this study was specifically
designed for isolation of adult pig RGCs. To verify that pig
RGCs were isolated from all other retinal cell types, panned
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retinal cells were immunostained with primary antibody spe-
cific for retinal ganglion cells, Thy 1.1. In Figure 1, adult pig
RGCs were isolated by the two-step panning technique de-
scribed in the Methods section, plated, and immunostained
with primary antibody Thy 1.1 (1:100) and secondarily labeled
with Alexa Fluor 488. Figure 1A demonstrates a typical image
obtained from a culture dish containing immunostained
panned retinal cells using transmitted illumination. In Figure
1B, the same field of cells labeled with Thy 1.1 antibody are
visualized using Alexa Fluor 488 fluorescence. As seen in this
example, every cell in the field was immunostained with Thy
1.1 antibody. This was typical of results obtained from all
panned retinal cells and supported the hypothesis that the
panning technique used in this study exclusively isolated pig
retinal ganglion cells. In 48 culture wells containing panned
cells, an average of 98.2% (� 3) of cells stained with Thy 1.1
antibody. The percentage of cultured cells that stained with
Thy 1.1 antibody did not change whether cells were analyzed
for Thy 1.1 immunostaining 1, 3, or 5 days after culture. At no
time was there any evidence of other retinal neurons or glial
growth in culture wells containing panned cells. In 48 cultured
wells containing immunostained pig RGCs, the ratio of large to
small RGCs was 1:3. As evident from the Thy 1.1 immuno-
stained RGCs, large and small RGCs were isolated and labeled.
Large RGCs had displaced nuclei similar to large pig RGCs
immunostained with alternate antibodies.37 Figure 1C illus-
trates a field of panned cells immunocytochemically processed
when the primary antibody was omitted.

When cells were not panned, labeling with Thy 1.1 anti-
body (1:100) was restricted to a subset of cells. To generate
Figure 1D, an entire retina was enzymatically treated, dissoci-
ated, plated, and cultured for 3 days without using the modi-
fied two-step panning technique to isolate retinal ganglion cells
from other retinal cells. Under these conditions, a monolayer of
cells covered each plated culture well within 3 days. After 3
days, cells were processed with Thy 1.1 antibody according to
the immunocytochemical procedures outlined in the Methods
section. Figure 1D illustrates the field of view under transmit-
ted illumination. Figure 1E illustrates the same field of cells
labeled with Thy 1.1 antibody and visualized using Alexa Fluor
488 fluorescence. Omission of the panning step resulted in a
mixed culture where only a fraction of cells were immuno-
stained with Thy 1.1 antibody. An overlay of Figure 1D and
Figure 1E is illustrated in Figure 1F.

In Figure 2, RGCs were cultured for 3 days and loaded with
10 �M calcein instead of 2 �M calcein for 1 hour, which
extensively labeled cell bodies as well as all processes. Large
retinal ganglion cells exhibited large circular somata (30–45
�m in diameter) and typically had several fine smooth pro-
cesses emerging from the cell body (arrows). The small RGCs
had diameters �20 �m and were typically monopolar or bipo-
lar with circular bodies (arrowheads), similar to results ob-
tained from Luo et al.37

Excitotoxic Effects of L-Glutamate and GluR
Agonists on Adult Pig RGCs

Chronically elevated glutamate in the vitreous humor of several
species is associated with glutamate excitotoxicity and glau-
coma.5–7 In Figure 3, the effect of chronically elevated gluta-
mate on adult pig RGCs is illustrated. Figure 3A demonstrates
the percentage of total panned pig RGCs that survive after

FIGURE 1. Thy 1.1 antibody labeled
all panned pig retinal cells. (A) Dem-
onstrates a view of the immuno-
stained panned cells after 3 day in
culture under transmitted illumina-
tion. (B) Demonstrates the same field
of immunostained panned cells un-
der Alexa Fluor 488 fluorescence.
(C) Represents another field of
panned cells immunocytochemically
processed with the primary antibody
omitted. (D) Taken under transmit-
ted illumination, demonstrates a
view of immunostained retinal cells
that were cultured but not panned to
isolate the retinal ganglion cells from
other retinal cells. (E) Taken under
Alexa Fluor fluorescence. (F) The
overlay of (D) and (E). Bar represents
scale.

FIGURE 2. Two morphologic types of adult pig RGCs. Adult pig retina
was dissociated and isolated using the modified two-step panning
technique. Bar represents scale.
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exposure to a relatively high concentration of L-glutamate for
1, 3, 5 days, and 1 week. To obtain the data shown in Figure
3A, panned cells were exposed for various times to 500 �M
L-glutamate. Each bar graph represents the mean percent of
cells that labeled with calcein compared to control calcein-
treated cells obtained from the same animal. Therefore, these
graphs represent the mean percent of cells that survived ex-
perimental treatment. Data for all pharmacological studies
were collected from 5 to 20 different animals.

After 1 day, there was a significant difference in survival
between the groups of cells exposed to L-glutamate and con-
trol. As shown in Figure 3A, after only 1 day in culture, a mean
of 85% of panned RGCs survived, compared to control condi-
tions, and suggested that exposure of 500 �M glutamate for 1
day had an excitotoxic effect on 15% of panned RGCs. How-
ever, the largest difference between treated and untreated cells
occurred by day 3 where a mean of 58% (�5) of cells survived
in the presence of chronic 500 �M L-glutamate compared to
untreated cells, suggesting that glutamate had an excitotoxic
effect on a mean of 42% of panned RGCs. These results support
the hypothesis that chronic exposure to high concentrations of
glutamate has an excitotoxic effect on adult pig RGCs. Figures
3B and 3C demonstrate that there was a differential excitotoxic
effect of chronic glutamate exposure on large and small RGCs.
This was apparent by day 1 in culture, where there was a
significant excitotoxic effect of L-glutamate on large RGCs
compared to control conditions, but no significant difference
observed in the percent of small RGCs compared to control

conditions. However, after 3 days in chronic glutamate, there
was a significant decrease in both large and small RGCs com-
pared to control conditions, although the glutamate effect was
greater on large RGCs compared to small RGCs (P � 0.05). The
greater effect of glutamate on the larger RGCs compared to
smaller RGCs remained through days 3, 5, and 7. Because
glutamate exerted its maximal excitotoxic effect on large and
small RGCs by the third day in culture, all cultured cells in
subsequent experiments were exposed for 3 days.

In the described experiments, isolated RGCs were exposed
to glutamate and agonists within a few hours of dissociation.
Because the dissociation process can cause severe enzymatic
and mechanical insults on the cells and can potentially affect
expression of surface receptors involved in excitotoxicity or
neuroprotection, experiments were repeated on RGCs that
were cultured for longer periods of time in control medium
before addition of any pharmacological agent. We found that
the timing of agonist application to panned RGCs had no effect
on cell survival. For instance, glutamate caused the same de-
gree of excitotoxicity to panned RGCs whether it was applied
to recently cultured cells (within 6 hours) or whether it was
applied to cells allowed to settle for 24, 48, or 36 hours before
glutamate application (data not shown). Due to this result, all
pharmacological agents were applied to recently cultured cells
for convenience.

The time-course of glutamate-induced excitotoxicity is dem-
onstrated in Figure 4. As shown in this figure, a percentage of
RGCs are destroyed during the dissociation and modified pan-

FIGURE 3. Chronic exposure of 500 �M glutamate had excitotoxic effects on large and small pig RGCs. (A) Effect of 500 �M glutamate on total
survival of RGCs after 1, 3, 5, and 7 days in culture. (B) The effect of chronic glutamate on large RGCs. (C) The effect of chronic glutamate on small
RGCs. (*) Significance from control (P � 0.05). Each bar graph represents the mean � SE (n � seven experiments).

1534 Wehrwein et al. IOVS, May 2004, Vol. 45, No. 5

Downloaded from iovs.arvojournals.org on 06/29/2021



ning process described in this study, and cell survival gradually
decreased over a 7-day period, typical of cells in culture.
Without glutamate treatment (solid squares), cell survival grad-
ually decreased from 100% to 60% survival over the first 7 days
in culture. However, with glutamate treatment (solid circles),
cell survival decreased significantly compared to control con-
ditions for each day 1 to 7 (P � 0.05).

Glutamate dose–response curves were obtained from
panned pig RGCs at 3 days exposure for large RGCs (Fig. 5A),
small RGCs (Fig. 5B), and total RGCs (Fig. 5C). Glutamate had
measurable excitotoxic effects on large RGCs at concentrations
as low as 50 �M and had a maximal effect in the presence of
500 �M glutamate. The ED50 for the excitotoxic effect of
glutamate on large RGCs was 325 �M (Fig. 5A). In Figure 5B,
the dose–response curve for small RGCs was demonstrated.
Glutamate had a threshold excitotoxic effect in the presence of
100 �M. Similar to the results obtained with large RGCs, a
maximal excitotoxic plateau effect was measured on small
RGCs in the presence of 500 �M glutamate. The ED50 value for
small RGCs was 285 �M. In Figure 5C, the dose–response
curve for total RGCs was demonstrated. A measurable thresh-
old change in cell survival was measured in the presence of 50
�M, the maximal plateau effect was elicited in the presence of

500 �M glutamate, and the ED50 for the excitotoxic effect of
glutamate on total pig RGCs was 302 �M. 500 �M glutamate
was used for all subsequent experiments, as it represented the
minimum effective dose that elicited maximal excitotoxic ef-
fects on both large and small RGCs.

RGCs contain both NMDA and non-NMDA type GluR sub-
types. Since L-glutamate is the endogenous agonist for all reti-
nal GluRs, experiments were performed to determine what
type of GluR subtypes were responsible for the excitotoxic
effect of glutamate on panned RGCs. Cells were cultured in the
presence of the glutamate agonists, NMDA or KA (Fig. 6). A
concentration range of KA or NMDA was applied for 3 days and
results were compared between treated and untreated control
cells. Ten �M KA had no significant effect on panned RGCs.
However, concentrations as low as 50 �M KA significantly
reduced the number of RGCs compared to controls and max-
imal excitotoxic effects occurred in the chronic presence of
100 �M KA, suggesting that KA receptors are at least partially
responsible for glutamate excitotoxicity recorded from panned
pig RGCs. Because maximal activation of KA receptors did not
mimic the degree of excitotoxicity caused by 500 �M gluta-
mate, it is possible that other GluR subtypes may be involved
in glutamate excitotoxicity. Concentrations of NMDA as low as
100 �M significantly reduced the percent of panned RGCs by
a mean of 17% compared to control conditions when cultured
in media containing normal magnesium (Fig. 6A). However,
unless cells are depolarized from their resting membrane po-
tential, the voltage-dependent magnesium block characteristic
of NMDA receptors would reduce the contribution of NMDA
receptors to the excitotoxic effect of glutamate on pig RGCs.
This was addressed by experiments where KA and NMDA were
co-applied to panned pig RGCs (Fig. 6B). Under these condi-
tions, KA can bind to KA/AMPA GluRs to open nonspecific
cation channels and depolarize the RGCs. After depolarization
and removal of the magnesium-induced voltage-dependent
block of NMDA receptors, NMDA receptors should be acti-
vated. From the results summarized in Figure 6C, the combi-
nation of 100 �M KA and NMDA mimicked the total excito-
toxic effect of 500 �M glutamate. Taken together, these results
suggested that both KA and NMDA receptors are involved in
the excitotoxic effect of glutamate observed on pig RGCs.

To confirm that both non-NMDA and NMDA GluR subtypes
were involved in glutamate excitotoxicity in pig RGCs, exper-
iments using specific antagonists were conducted. In Figure 7,
various concentrations of the KA specific antagonist, CNQX,

FIGURE 4. Time course of cell survival. Solid squares: the mean per-
centage of cells that survived in cultures in the absence of glutamate
from days 1 through 7. Solid circles: the mean percentage of cells that
survived in cultured in the presence of 500 �M glutamate. Data points
were curve fit. Each point represents the mean of between five and
twenty experiments. Error bars represent SE.

FIGURE 5. Glutamate dose–response curves. Various concentrations of L-glutamate were applied to panned RGCs for 3 days. Cells were counted
after 3 days and the percent of cells that survived after 3 days were compared to control untreated cells and plotted. Each solid data point represents
the mean of between 20 to 50 cultured wells obtained from between five and twenty different adult pigs. (A) The dose–response curve obtained
when counting only large RGCs. (B) The dose–response curve obtained when counting only small RGCs. (C) The glutamate dose–response curve
obtained when total panned RGCs are counted. Each data point represents the mean percent of cells that survived compared to control conditions.
Data points were curve fit using the Hill equation. Error bars represent SE.
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were applied to panned adult pig RGCs before chronic expo-
sure to 100 �M KA. Although 100 nM CNQX had no significant
effect on KA-induced excitotoxicity, when cells were pre-
treated in concentrations of CNQX equal or greater than a
threshold dose of 10 �M, KA effects were eliminated (Fig. 7A).
Figures 7B and 7C demonstrate that the competitive NMDA
antagonist, AP-7, and the noncompetitive NMDA antagonist,
MK-801, block the small but significant excitotoxic effect of
NMDA on pig RGCs. Pretreatment of RGCs with 10 �M CNQX
and 100 �M AP-7 or 100 nM MK-801 virtually eliminated the
combined excitotoxic effect of KA and NMDA (Fig. 7D).

If glutamate-induced excitotoxicity is due to activation of a
combination of NMDA and non-NMDA GluRs, it follows that a
combination of the GluR antagonists specific for NMDA and
non-NMDA GluRs should eliminate the effect of glutamate on
panned RGCs. When cells were pretreated with CNQX, MK-
801, or AP-7, glutamate-induced cell excitotoxicity was signif-
icantly reduced, but not blocked (Fig. 7E). However, when a
combination of 10 �M CNQX and 100 nM MK-801 or 10 �M
CNQX and 100 �M AP-7 were used, glutamate-induced excito-
toxicity of panned RGC was completely eliminated. Taken
together, these inhibition studies further support the hypoth-
esis that glutamate-induced excitotoxicity of pig RGCs is me-
diated through a combination of NMDA and non-NMDA GluRs.

Neuroprotective Effect of Acetylcholine on
Panned RGCs

Neuronal nAChRs play a role in neuroprotection of hippocam-
pal and cortical neurons in the central nervous system.20–23

However, although nAChRs exist on vertebrate RGCs,28,38,39 it

is not presently known if activation of these AChRs is linked to
activation of a neuroprotection mechanism. In this study, the
effect of ACh and nicotine on glutamate-induced excitotoxicity
using panned adult pig RGCs were examined.

Figure 8 illustrates the summarized results obtained when
panned pig RGCs were chronically exposed to 500 �M gluta-
mate for 3 days in the presence of various concentrations of
ACh (Fig. 8A) and the ACh agonists, nicotine (Fig. 8B) or
muscarine (Fig. 8C). As evident from the data summarized in
Figure 8A, when cells were pretreated for 2 hours in 5 �M ACh
before addition of 500 �M glutamate, glutamate excitotoxicity
in pig RGCs was completely eliminated. Similar results were
obtained if cells were pretreated in 1 to 10 �M nicotine (Fig.
8B) and supported the hypothesis that ACh has a neuroprotec-
tive effect on glutamate-induced excitotoxicity of panned pig
RGCs and that the effect is mediated through a nicotinic ACh
receptor subtype. However, when relatively high concentra-
tions of ACh or nicotine (50 �M) were applied before gluta-
mate, the significant neuroprotective effect was lost (right
bars, Figs. 8A and 8B). This is likely due to nonspecific activity
or toxic effects of these agents at high concentrations. When
applied alone, 5 �M ACh or 1 �M nicotine had no significant
effect on the survival of RGCs (data not shown).

Neuronal nAChRs are linked to the opening of nonspecific
cation channels, whereas muscarinic ACh receptors are linked
to activation of G-proteins and second messenger systems. To
determine if muscarinic ACh receptors on pig RGCs are in-
volved in neuroprotection of glutamate-induced excitotoxicity,
panned RGCs were pretreated with various concentrations of
muscarine for 2 hours before application of 500 �M glutamate.

FIGURE 6. Glutamate and glutamate
agonists have excitotoxic effects on
panned RGCs. (A) Effect of 500 �M
glutamate on RGC survival and vari-
ous concentrations of two glutamate
agonists on RGC survival; KA and
NMDA. (B) The effect of co-applying
various concentrations of KA and
NMDA. Asterisks: significance from
control; solid circles: significance
from 500 �M glutamate (P � 0.05).
Each bar graph represents the
mean � SE (n � six experiments).

1536 Wehrwein et al. IOVS, May 2004, Vol. 45, No. 5

Downloaded from iovs.arvojournals.org on 06/29/2021



Muscarine had no significant neuroprotective effect on panned
RGCs, even at relatively high concentrations (Fig. 8C).

Partial Mediation of ACh Neuroprotection
through �7 Nicotinic ACh Receptors

Eleven neuronal nAChRs can be pharmacologically grouped
into �-Bgt-sensitive and �-Bgt-insensitive agents. Neuronal
nAChRs of the �-Bgt-sensitive class contain �7 subunits and
account for most of the �-Bgt binding in the vertebrate brain.40

Numerous investigators have examined the role of �7 nAChRs
in neuroprotection against glutamate-induced excitotoxicity in
several regions of the CNS,67,74,80 excluding the retina. In this
study, experiments were performed on panned pig RGCs to
determine whether the neuroprotective effect of ACh and
nicotine is mediated through �7 �-Bgt-sensitive nAChRs.
Panned RGCs were pretreated for 2 hours in various concen-
trations of �-Bgt before addition of 5 �M ACh and 4 hours
before addition of 500 �M glutamate. Previous agents were not

washed out as new additions were made, producing a final
media cocktail containing all of the above-mentioned agents.
Although 1 nM �-Bgt blocked the neuroprotective effect of
ACh by 10%, 10 nM �-Bgt reduced its neuroprotective effect on
panned RGCs by a mean of over 90% (Fig. 9A). When ACh was
replaced with nicotine, �-Bgt had similar effects on blocking
neuroprotection. As shown in Figure 9B, the neuroprotective
effect of 1 �M nicotine was significantly reduced when panned
cells were pretreated with 1 nM �-Bgt. However, when cells
were incubated in 10 nM �-Bgt, the neuroprotective effect of
nicotine on panned RGCs was blocked by a mean of 95% (Fig.
9B).

These initial pharmacological studies supported the hypoth-
esis that �-Bgt-sensitive �7 nAChR subunits were responsible
for the neuroprotective effect of ACh. However, much of the
commercially available �-Bgt contains small amounts of con-
taminants that can affect other nAChR subunits. To address this
issue, further pharmacological experiments were performed

FIGURE 7. Glutamate antagonists
prevent excitotoxicity. Bar graphs
demonstrating the effects of: (A)
CNQX on KA-induced excitotoxicity;
(B) AP-7 on NMDA-induced excito-
toxicity; (C) MK-801 on NMDA-in-
duced excitotoxicity; (D) a combina-
tion of CNQX and MK-801 or AP-7 on
the excitotoxic effect induced by a
combination of KA and NMDA; (E)
CNQX, MK-801, AP-7, a combination
of CNQX and AP-7, or a combination
of CNQX and MK-801 on chronic glu-
tamate exposure. Each bar graph rep-
resents the mean � SE (n � five
experiments).
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using the �7 antagonist, methyllycaconitine (MLA), and the �7
agonist, choline.

MLA is an �-Bgt-sensitive nAChR antagonist, highly selective
for �7 nACh receptors when used at concentrations between
1 to 10 nM in most preparations,41,42 although it binds to
non-�7 nAChRs at low concentrations in dopaminergic neu-
rons of the substantia nigra and ventral tegmental area.43 At
higher concentrations, MLA also affects other nAChRs sub-
units,44,45 that are likely to be expressed in pig retina.46 In
inhibition studies, when panned RGCs were pretreated with
various concentrations of MLA before ACh and L-glutamate, 10
nM MLA significantly reduced the neuroprotective effect of
ACh and nicotine (Figs. 9C and 9D). However, inhibition of the
neuroprotective effect was maximized when cells were pre-
treated with 100 nM MLA, which blocked the neuroprotective
effect of ACh by a mean of 98% and that of nicotine by 100%
(Figs. 9C and 9D).

The finding that a relatively high concentration of MLA was
required to block ACh neuroprotection supported the hypoth-
esis that multiple nAChR subunits are involved in the neuro-
protective effect of ACh. This idea was further supported in
experiments using choline (Fig. 10). To determine the contri-
bution of the �7 nAChRs to ACh-induced neuroprotection,
cells were panned in the presence of 1 mM choline (EC50 �

400 to 500 �M) and L-glutamate for 3 days. At this concentra-
tion, choline is a full agonist at �7 nAChRs.47,48 At higher
concentrations, choline can act as a partial agonist for �3�4 or
�4�4 nAChRs.49,50As demonstrated by the bar graphs in Figure
10, after 3 days in culture, 75.8% (�3.2) of panned RGCs
survived compared to 58% of RGCs that typically survive in the
presence of 500 �M L-glutamate alone. In inhibition studies,
pretreatment of cells in 10 nM MLA completely eliminated the
neuroprotective effect of choline on glutamate-induced exci-
totoxicity in pig panned RGCs (Fig. 10). Taken together, these
results strongly supported the hypothesis that ACh neuropro-
tection is partially mediated through �7 nAChRs, but additional
nAChR subunits are also likely to be involved.

DISCUSSION

The present study is the first to isolate pure adult pig RGCs
using a two-step panning technique with Thy 1.1 antibody.
Ninety-eight percent of cultured RGCs were immunolabeled
with Thy1.1 antibody, verifying the purity of the culture. This
was in agreement with findings in other animal models32 and
confirmed the specificity of the Thy 1.1 antibody for RGCs.
Based on morphologic features, adult pig RGCs immunostained

FIGURE 8. ACh and ACh agonists on total RGC survival. Bar graphs demonstrate the effects of ACh (A), nicotine (B), and muscarine (C) on
glutamate-induced excitotoxicity. Each bar graph represents the mean � SE (n � five experiments).
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with Thy 1.1 were subdivided into two groups: small and large
cells, similar to those characterized by Luo and associates37 in
a mixed retinal culture. Immunostaining with Thy 1.1 was
localized on somas of both large and small pig RGCs with little
staining on neurites. This predominance of staining on pig RGC
bodies differs from the staining pattern previously described in
intact retinas of chick, rodent, and cats,35,51,52 where Thy 1
primarily labeled the interplexiform layer and stained the gan-
glion cell layer to a lesser degree. The difference in Thy 1
staining patterns between these species could be due to a
variety of factors. For instance, in the cat retina, Thy 1 was
found in the inner nuclear layer as well as in the inner plexi-
form and ganglion cell layer and represents a retinal distribu-
tion pattern different from that seen in other species.52 There-
fore, species difference could account for differences
observed. In addition, pig RGCs were fixed in 100% methanol
instead of the 4% paraformaldehyde used in all other studies of
Thy 1 antibody. Different fixations have dramatic effects on
immunostaining patterns in other systems53 and could explain
the difference in staining pattern. Also, pig RGCs were incu-
bated in primary antibody overnight compared to the 30-
minute incubation time associated with other studies using
antibodies against Thy 1, which could explain the different

FIGURE 10. ACh neuroprotection is partially mediated through activa-
tion of �7 nAChR subunits. Bar graphs demonstrate the effect of
various concentration of choline on glutamate-induced excitotoxicity
and the effect of 10 nM MLA on choline’s neuroprotection. Each bar
graph represents the mean � SE (n � five to ten experiments).

FIGURE 9. The neuroprotective effect of ACh on glutamate-induced excitotoxicity is inhibited by �-Bgt (A) and MLA (C). In (B) and (D), the effect
of various concentrations of �-Bgt and MLA on the neuroprotective effect of nicotine on glutamate-induced excitotoxicity is demonstrated. Each
bar graph represents the mean � SE (n � five experiments).
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immunostaining pattern present on pig RGC bodies compared
to other species. Lastly, the difference in staining pattern may
be due to the dissociation process. As seen in Figures 1 and 2,
dissociated RGCs have fewer neurites than those identified in
the intact retina. Fewer neurites and other changes that occur
in the cells due to the dissociation process are likely to account
for the labeling disparity.

The modified two-step panning technique allowed the de-
termination of the concentration at which glutamate was toxic
to adult pig RGC in vitro. A concentration of at least 500 �M
glutamate induced maximal cell death of large and small RGCs
after chronic exposure for 3 days. Large RGCs were affected
first in a fashion similar to the pattern of loss seen in glau-
coma.14 Significant loss of large RGCs to 500 �M glutamate
occurred within 1 day, whereas significant loss of small RGCs
to glutamate took 3 days. Also in agreement with in vivo
studies,14,15,54 the loss of large RGCs was significantly larger
than the loss of small RGCs at 1, 3, 5, or 7 days in culture. These
results are in contrast to the study by Luo et al.,37 who exam-
ined the effects of glutamate on an unpanned mixed retinal
culture. Under mixed culture conditions, there was a selective,
dose-dependent loss of large RGCs due to excess glutamate
exposure but small RGCs were resistant to glutamate. It is
possible that the different culture environments used in the
two studies explains this discrepancy. In the mixed retinal
culture, the myriad of different cell types, including glia, may
act to bind or transport glutamate away from the RGCs and
effectively reduce the concentration of glutamate present in
the culture. This suggestion is consistent with the finding that
larger concentrations of glutamate were needed in the mixed
retina culture system to induce large RGC death compared to
the concentrations of glutamate used on panned RGCs.

The present study supported the hypothesis that both
NMDA and non-NMDA receptors are involved in adult pig RGC
excitotoxicity, based on the finding that a combination of KA
and NMDA was required to mimic glutamate excitotoxicity.
Neither KA nor NMDA alone was sufficient to account for the
total excitotoxic effect of glutamate. KA had the largest effect
on RGC survival compared to NMDA. However, because mag-
nesium was present in the culture media, the result of NMDA
alone on pig RGCs was diminished due to the voltage-depen-
dent magnesium block characteristic of NMDA receptors.55 To
better evaluate the contribution of the NMDA receptor on RGC
excitotoxicity, KA and NMDA were co-applied. Under these
conditions, KA would activate non-NMDA GluR channels, al-
lowing permeation of nonspecific cations, depolarization of
RGCs to remove the NMDA receptor voltage-dependent mag-
nesium block and permeation of ions through NMDA receptor
channels. Co-application of KA and NMDA accounted for 100%
of the glutamate-induced excitotoxic effect. The combined
excitotoxic effect of KA and NMDA was totally eliminated only
when cells were pretreated with a combination of NMDA and
non-NMDA specific antagonists.

In vivo, glutamate receptors on RGCs are largely found on
the dendrites and not on the somata.56,57 Due to the dissoci-
ated in vitro system used in this study, it is likely that the
expression patterns of glutamate and ACh receptors on panned
RGCs differ considerably from that of RGCs in vivo. Therefore,
agents in this study were applied to activate agonist-specific
soma receptors as well as dendritic receptors. This raises a
concern common to any in vitro system. If the dissociation
process has changed the expression pattern of receptors and
likely other cell properties, how can results from an in vitro
system accurately represent what is happening in an in vivo
system? From the results of this study, the data strongly sup-
port the hypothesis that both NMDA and non-NMDA receptors
were involved in glutamate-induced excitotoxicity in pig

RGCs. However, if the intact pig retina only contained non-
NMDA receptors at dendritic synapses, it may be that only
non-NMDA receptors played a role in excitotoxicity under
physiological conditions. Experiments are currently underway
to identify the receptor expression of pig RGC glutamate and
ACh receptors in culture as well as in vivo.

Excitotoxicity

Both KA/AMPA and NMDA channels on vertebrate RGCs are
permeable to calcium ions,58–60 which is a likely intracellular
signal that acts to trigger downstream signaling pathways lead-
ing to apoptosis. Although the exact apoptosis signals in RGCs
are unclear at present, a variety of such signaling pathways in
other systems have been identified. These include, but are not
limited to, signaling pathways linked to mitochondrial calcium
overload with subsequent cytochrome C release,61 free radical
production (nitric oxide, peroxide anion),62,63 p38 mitogen
activated protein kinase (MAPK)-induced activation of MEF2
transcription factor,64,65 cytokine-induced activation of extra-
cellular signal-regulated kinase (ERK),66 tyrosine phosphoryla-
tion of Janus kinase 2 and subsequent activation of AKT,67 and
caspase activation with DNA fragmentation.68 Although it is
not known which, if any, of these mechanisms are involved in
RGC excitotoxic death, activation of both NMDA and non-
NMDA receptors could create increases of intracellular calcium
that are pathologic to the cells. Overall, large increases in
intracellular calcium act as a second messenger to change the
baseline activity of numerous enzymes that lead to apoptotic
cascades and eventual cell death.

Neuroprotective Mechanisms

In previous studies, many laboratories have examined a variety
of ways to prevent glutamate-induced excitotoxicity. Using
pharmacological approaches, some studies have confirmed the
importance of both NMDA and non-NMDA receptors in the
mechanism underlying RGC death with the neuroprotective
action of specific GluR antagonists.9,17,37,69 Other pharmaco-
logical agents that do not directly affect GluRs have neuropro-
tective effects, including adrenergic �2 agonists,4,70 beta 1
antagonists,71 and neurotrophic factors.72 In addition, other
studies demonstrate that a low pH medium will protect retinal
neurons from glutamate-induced delayed death through a pro-
ton modulation site on NMDA-operated channels73 and that
NO-related species will react with critical cysteines on the
NMDA receptor to prevent neuronal apoptosis.68,74

Nonpharmacological approaches to neuroprotection in-
clude preconditioning and activation of immunity. Precondi-
tioning refers to strategies where subthreshold injuries induce
an endogenous neuroprotective signal.69,75 Attempts are cur-
rently underway to isolate this endogenous signal. Other labo-
ratories have demonstrated that certain types of immune acti-
vation positively correlate with retinal ganglion cell survival in
retinal ganglion cell injury.76,77 It is hoped that this research
may lead to a vaccine-like therapy for glaucoma.78

Although a variety of agents have a neuroprotective effect
on RGCs in other systems, this study is the first to determine
that relatively low concentrations of ACh and nicotine have a
neuroprotective effect on panned adult pig RGCs against glu-
tamate-induced excitotoxicity. The action of ACh and nicotine
on RGCs was mediated exclusively through nAChRs, as mus-
carine failed to mediate any protection. The inefficiency of
muscarinic receptors to mediate neuroprotection was also ob-
served by Donnelly–Roberts et al.79 who found that the mus-
carinic receptor antagonist, atropine, did not block the neuro-
protective effects of a cholinergic channel activator in rat
primary cortical cell cultures.
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Accumulating evidence from other studies suggest that the
neuroprotective action of ACh in the brain is mediated through
�-Bgt-sensitive �7 neuronal nAChRs,74 that transduce signals to
phosphatidylinositol 3-kinase to block �-amyloid-induced neu-
rotoxicity.80 Activation of �7 nAChRs in the brain triggers
JAK2 and activation of phosphatidylinositol 3 (PI3)– kinase and
Bcl-2, enzymes involved in cell survival which contribute to a
neuroprotective effect.67 The neuroprotective role of �7
nAChRs in the retina was therefore explored.

Neuronal nAChRs represent a very heterogeneous family of
ion channels. In the nervous system, nine different alpha sub-
units (�2–�10) and three different beta subunits (�2–�4) have
been described.28,81,82 These subunits assemble in vivo to form
various combinations, although �7 subunits form homo-pen-
tamers in heterologous expression systems. In the brain, �7,
�4, and �2 are the most abundant nAChRs, and there is grow-
ing evidence for �7 in the retina.83,84 Initial pharmacological
studies supported the hypothesis that �-Bgt-sensitive �7
nAChR subunits were responsible for the neuroprotective ef-
fect of ACh; relatively low concentrations of �-Bgt inhibited the
effect of ACh. However, because much of the commercially
available �-Bgt contains small amounts of contaminants that
can affect other nAChR subunits, further pharmacological ex-
periments were performed using the �7 agonist, choline, and
the �7 antagonist, MLA, to address this issue. Results demon-
strated that although choline had a significant neuroprotective
effect on RGCs, it only represented approximately one-half of
the protective effect observed when cells were pretreated with
5 �M ACh. In inhibition studies, low concentrations of MLA
that are specific for �7 nAChR subunits completely blocked the
neuroprotective effect of choline. These results strongly sug-
gested that �7 nAChR subunits were involved in ACh neuro-
protection, but additional nAChR subunits were also involved.
Further experiments are needed to identify and characterize
the contribution of these other putative nAChR subunits.

How can activation of nAChR subunits lead to neuroprotec-
tion? Although the answer to this question is outside the scope
of this article, it is likely that activation of nAChRs triggers a
cascade of events ultimately inhibiting apoptotic pathways or
enhancing cell survival pathways. The catalyst for triggering
these cascades could be due to changes of membrane potential
that occur when nAChR channels open, but more likely is due
to ion permeation through activated nAChR channels. Nico-
tinic AChRs are nonspecific cation channels highly permeable
to calcium ions.60,85,86 Calcium ions have been shown to affect
a wide variety of intracellular second messenger cascades,
including the MAP kinase pathways and PI3 kinase path-
ways,67,87 which are involved in ACh neuroprotection in other
regions of the CNS. It is therefore likely that calcium perme-
ation through calcium-permeable nAChRs triggers inhibition or
activation of second messenger systems to inhibit apoptosis or
enhance cell survival. In this scenario, high calcium influx
through glutamate channels are excitotoxic, whereas calcium
influx through nACh channels results in neuroprotection. How
can calcium influx trigger two separate actions in the same
cell? Perhaps the answer is due to cell compartmentalization
that separates calcium-sensitive neuroprotective enzymes from
calcium sensitive enzymes involved in excitotoxicity, or per-
haps the amount of calcium influx through channels is the key.
For instance, it is conceivable that a narrow range of calcium
results in protection rather than excitotoxicity. Certainly, fur-
ther experiments are needed to test these ideas.

In summary, this study was the first to demonstrate the
isolation of adult pig retinal ganglion cells using a modified
two-step panning technique using Thy1.1 antibody. That
chronic exposure of 500 �M L-glutamate induced excitotoxic-
ity in cultured adult pig RGCs through a combination of both

NMDA and non-NMDA GluRs was also determined. In addition,
this study was first to demonstrate that an endogenous neuro-
transmitter found in the retina, ACh, has a neuroprotective
effect against glutamate-induced neurotoxicity of RGCs and
that ACh acts through �-Bgt-sensitive nAChRs, with involve-
ment of �7 nAChRs. These findings suggest that ACh may be
useful in protecting RGC from excitotoxic and traumatic in-
sults similar to those occurring in glaucoma. A better under-
standing of this neuroprotective pathway may lead to thera-
peutic intervention for glaucoma and a variety of other
neuronal diseases in the retina and other regions of the CNS.
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