Synthesis of β-C-glycosidic ketones from unprotected sugars and their use in aldol condensations

Jon Chiaramonte

Chemistry, Grand Valley State University, Allendale, Michigan, 49401

Rodrigues, F.; Canac, Y.; Lubineau, A. A Convenient, One-Step, Synthesis of β-C-Glycosidic Ketones in Aqueous Media. *Chem. Commun.* 2000, 2049-2050.
De Winter, T.M.; Petitjean, L.; Erythropel, H.C.; Moreau, M.: Hitce, J.; Coish, P.; Zimmerman, J.B.; Anastas, P.T. Greener Methodology: An Aldol Condensation of an Unprotected C-Glycoside with Solid Base Catalysts. *ACS Sustainable Chem.* 2018, 6, 7810-7817.

What are Glycosides?

Pharmaceutical Industry

Chemical Industry

Photos courtesy of Jon Chiaramonte

What are Glycosides?

- A glycoside is a molecule in which a sugar is bonded to another chemical functional group via a glycosidic linkage.
- Glycosidic linkages can be formed through either oxygen, nitrogen, sulfur or carbon atoms.

What are Glycosides?

Uses of Glycosides - Drugs

 $\langle 000 \rangle$

- Digoxin a cardiac glycoside medication
- Digoxin is an O-glycoside

Uses of Glycosides - Drugs

- Dapagliflozin a SGLT2 enzyme inhibitor used to treat diabetes
- Dapagliflozin is a C-glycoside

Surfactants

How Soap Is Made...

Saponification of Triglycerides Produces Fatty Acid Salts

Photo courtesy of Jon Chiaramonte

Surfactants

Image Courtesy of Dataphysics: Understanding Interfaces

Surfactants

• Glycosides can serve as surfactants

Lauryl Glucoside – an O-linked glycoside

Photo courtesy of Jon Chiaramonte

For every product you buy, we donate a bar of soap to a family in need.

Look for the Bamboo Tops & White Bottles

DIRECTIONS: Pour onto a sponge or washcloth and lather up. Gently scrub away all that ew. Rinse off. Pat dry. Feel oh so fresh

NGREDIENTS: Purified Water (Aqua), Cocamidopropyl Betaine, Cetearyl Alcohol, Sodium Cocoamphoacetate, Sodium Cocoyl Glutamate, Sodium Lauryl Glucose Carboxylate, Lauryl Glucoside, Glycerin, Butyrospermum Parkii (Shea) Butter, *Aloe Barbadensis (Aloe Vera) Leaf Juice, *Olea Europaea (Olive) Fruit Oil, *Limnanthes Alba (Meadowfoam) Seed Oil, *Simmondsia Chinensis (Jojoba) Seed Oil, Citrullus Lanatus (Watermelon) Fruit Extract, Mentha Piperita (Peppermint) Leaf Extract, *Symphytum Officinale (Comfrey) Leaf Extract, Decyl Glucoside, Sodium Lauroyl Sarcosinate, Sodium C14-16 Olefin Sulfonate, PEG-150 Distearate, Guar Hydroxypropyltrimonium Chloride, Polyquaternium-7, Hydroxypropyl Guar, Phenoxyethanol, Dehydroacetic Acid, Citric Acid, Benzyl Alcohol, Fragrance (Partum)

*Certified Organic/Cold Pressed Extracts

After use, store away from continuous water flow. No Sulfates . No Phthalates . No Dyes . No Parabens Crafted with LOVE in Southern California. For External Use Only. Co Please Recycle C2018 RAW SUGAR °A 91423

Sodium Lauryl Glucose Carboxylate

Photo coutesy of Jon Chiaramonte

Lig

Acid Hydrolysis of an O-glycoside.

- The main difference between Cglycosides and other glycosides is in chemical reactivity.
- O-,N- or S-glycosides are susceptible to acid hydrolysis.
- C-glycosides are resistant to hydrolysis.

Synthesis of C-Glycosides

- The anomeric carbon is naturally electrophilic.
- Acetal carbons are electrophilic due to the two electronegative oxygen atoms connected to it.
 - The oxygen atoms inductively withdraw electron density from the carbon atom.

Synthesis of C-Glycosides

Typical electrophiles include:

Synthesis of C-Glycosides

Typical nucleophiles include:

 $\left< \right>^{\circ}_{\circ}_{\circ}_{\circ}_{\circ}$

1. Protection

2. Alkylation

3. Deprotection

Protection

Vogel, A. I. A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, 3rd ed.; Longman, 1956.

Bromination

Tojino, M.; Hirose, Y.; Mizuno, M. Convenient Synthesis of Glycosyl Bromide from 1-O-Acetyl Sugars by Photo-Irradiative Phase-Vanishing Reaction of Molecular Bromine. *Tetrahedron Letters.* **2013**, 54, 52, 7124-7126.

Alkylation using a Grignard Reagent

Postema, M. *C-Glycoside Synthesis*, 1st ed.; CRC Press, 1995.

Deprotection

Can a simpler method of synthesis be devised?

 $\sum_{i=0}^{n}$

- A method without the use of protecting groups?
- A method that is efficient, in one step?
- A method that is environmentally sustainable?

C-glycoside synthesis without protecting groups

Rodrigues, F.; Canac, Y.; Lubineau, A. A Convenient, One-Step, Synthesis of β-C-Glycosidic Ketones in Aqueous Media. *Chem. Commun.* **2000**, 2049-2050.

C-glycoside synthesis without protecting groups

- Functional group transformation...
 Changes a hemiacetal into an ether
- Forms a carbon-carbon bond

Rodrigues, F.; Canac, Y.; Lubineau, A. A Convenient, One-Step, Synthesis of β-C-Glycosidic Ketones in Aqueous Media. *Chem. Commun.* **2000**, 2049-2050.

Results for the Synthesis of $\beta\text{-}C\text{-}Glycosidic$ Ketone

Substrates	Conditions	Stereoselectivity	Total Yield
D-Glucose	6 hrs, 90 °C	100% β	96%
D-Mannose	12 hrs, 90 °C	100% β	95%
D-Cellobiose	12 hrs, 90 °C	100% β	93%

- Stereochemistry at the anomeric carbon was determined using ¹H and ¹³C NMR Spectroscopy
- Products were purified with either crystallization [from MeOH : Diethyl ether, 1 : 1] or flash chromatography [Ethyl acetate : Isopropyl alcohol : Water, 8 : 1 : 1]
- Yields displayed are isolated product yields

Rodrigues, F.; Canac, Y.; Lubineau, A. A Convenient, One-Step, Synthesis of β-C-Glycosidic Ketones in Aqueous Media. *Chem. Commun.* **2000**, 2049-2050.

My Results

- Product was crystallized from a 50:50 mix of methanol and ether.
- Isolated Yield: 8.8%

My Results

Photo courtesy of Jon Chiaramonte

Green Chemistry Principles

- Many steps, inefficient
- Low atom economy
- Requires many different hazardous reagents
- A dangerous synthesis to perform
- Creates a lot of waste products

- One step, efficient.
- High atom economy
- Uses less hazardous reagents
- A safer synthesis to perform
- Limited waste products

What can we do with our product now?

Aldol condensation with unprotected β -C-glycosidic ketone

Base Catalysts

MgO – Magnesium CaO – Calcium Oxide Oxide

 $Mg_6Al_2CO_3(OH)_{16} \cdot 4H_2O - Hydrotalcite$

Hydrotalcite can be activated which produces a porous metal oxide (PMO) $Mg_6Al_2CO_3(OH)_{16} \cdot 4H_2O \longrightarrow MgO-Al_2O_3(PMO)$

"A sample of magnesium oxide." by Walkerma is licensed under public domain. "Calcium oxide powder." by Leiem is licensed under CC BY-SA 4.0. "Hydrotalcite-200667." by Robert M. Lavinsky is licensed under CC BY-SA 3.0

Reaction Times for Different Solid Base Catalysts

Conditions used:

- 10-18 wt % solid base catalyst (SBC)
- 0.15 eq. of L-proline
- Methanol solvent

Solid Base Catalyst	Time (at room temp)	Yield by NMR
MgO	9 days	>95%
CaO	9 days	54%
HT	9 days	76%
РМО	9 days	93%
Solid Base Catalyst	Time (at 50 °C)	Yield by NMR
Solid Base Catalyst MgO	Time (at 50 °C) 2 days	Yield by NMR >95%
Solid Base Catalyst MgO CaO	Time (at 50 °C) 2 days 3 days	Yield by NMR >95% 77%
Solid Base Catalyst MgO CaO HT	Time (at 50 °C) 2 days 3 days ≈ 1 day	Yield by NMR >95% 77% >95%

Reaction Times for Different Aromatic Aldehydes

Reaction Conditions:

- 10 wt % MgO and 1-1.5 eq. L-proline
- Methanol solvent.
- Reaction held at 50 °C

Reaction Times for Different Aromatic Aldehydes

Aldehyde	Time	NMR Yield
p-anisaldehyde	16 hrs	
P-hydroxybenzaldehyde	26 hrs	
benzaldehyde	6.5 hrs	>95%
furfural	15 hrs	
vanillin	21 hrs	
piperonal	15 hrs	

Green Chemistry Prinicples

- Efficient synthesis in one step
- Solid base catalysts are reuseable.
- Uses a green solvent methanol
- Protecting groups not required
- A safe synthesis to perform
- Low energy consumption

Future Work

- Testing the β -C-glycosidic ketone synthesis with other reducing sugars
- Performing the aldol condensation with other aldehydes
- We wanted to test the aldol condensation with hydroxymethylfurfural but the Coronavirus pandemic prevented us from doing so.

• Hydroxymethylfurfural is produced from acid catalyzed dehydration of six carbon sugars.

Conclusions

Acknowledgements

Special Thanks to Dr. Kovacs

and Grand Valley State University