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ROOK POLYNOMIALS IN HIGHER DIMENSIONS

NICHOLAS KRZYWONOS

Abstract. A rook polynomial counts the number of placements of non-attacking rooks on a board.

In this paper we describe generalizations of the definition and properties of rook polynomials to

“boards” in three and higher dimensions. We also define generalizations of special two dimensional

boards to three dimensions, including the triangle board and the board representing the probléme

des rencontres. The number of rook placements on these three dimensional families of rook boards

are shown to be related to famous number sequences, such as central factorial numbers, the number

of Latin rectangles and the Genocchi numbers.

1. Introduction

The theory of rook polynomials provides a way of counting permutations with restricted positions.

The theory was developed by Kaplansky and Riordan in [Kaplansky 1946]. The theory has been

researched and studied quite extensively since then. Two rather comprehensive resources on the theory

are [Riordan 1958] and [Stanley 1997]. The intent of research behind this paper was to generalize

these properties and theorems into higher dimensions; this was done using a three dimensional board

generalization first introduced by Benjamin Zindle. In the Appendix, we include a Maple program

which calculates the rook numbers of a given three dimensional board using this generalization. In

section 2 we describe rook polynomials in two dimensions, including the way in which rooks attack,

and the boards that the rooks attack on. We also discuss many properties and theorems relating to

rook polynomials in two dimensions. In sections 2.1, 2.2, and 2.3 we discuss specific two dimensional

families of boards. Namely, the probléme des rencontres, the triangle board, and the type of boards

known as the Ferrers board. Similarly, in section 3 we discuss rook polynomials in three dimensions.

We describe the three dimensional board, as well as the way in which rooks attack in three dimensions.

We also give the generalizations of the properties and theorems of two dimensional rook polynomials

into three dimensions. In sections 3.1, and 3.2 we discuss the three dimensional counterparts of the

probléme des rencontres and the triangle board. In section 3.3 we discuss an entirely new kind of board

known as the Genocchi board. In the last section, section 3.4, we discuss future plans for the three

dimensional version of the Ferrers board.

2. Rook Polynomials in Two Dimensions

A rook polynomial R(x) = r0 + r1x + ... + rkxk + ... is a specific kind of generating function that

represents all of the ways that one can place non-attacking rooks on a board. A board with m rows
1
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and n columns is a subset of {1, 2, ..., m} × {1, 2, ..., n}. We call such a board an m × n board. If the

board is the whole set {1, 2, ..., m} × {1, 2, ..., n}, then we call the board the full m × n board. The

coefficient of a rook polynomial, rk represents the number of ways of placing k non-attacking rooks on

the corresponding board. For a valid arrangement of non-attacking rooks on a board, no two rooks can

lie in the same column, row, or restricted position. For an example, let us consider the board below

with shaded regions representing restricted tiles on which rooks cannot be placed, and white regions

representing unrestricted tiles.

R(x) = 1 + 5x + 4x2

This picture is a visualization of the board which is a subset of {1, 2, 3}× {1, 2, 3}, and consists of the

tiles (1, 1), (1, 2), (1, 3), (2, 2), (3, 2). There is only one way to place no rooks on the board, and this

gives us our constant coefficient 1 in a rook polynomial for this or any other board. We can also see

that there are five unrestricted tiles which correspond with five ways to place one rook on the board,

as represented by the 5x in the rook polynomial. By exhaustion we can find that there are four ways

to place two rooks on the board, and zero ways to place three or more rooks on the board. The four

ways of placing two rooks gives us the 4x2 in the polynomial. Since there are zero ways to place three

or more rooks on the board, our rook polynomial is of degree two. In general, the maximum number of

non-attacking rooks that can be placed on a board cannot exceed either the number of rows or columns

that compose the board, and hence the rook polynomial, as indicated by its name, is a polynomial

with degree less than or equal to the minimum of the number of rows and columns.

In order to better understand the rook polynomials, we can observe the many properties. These

allow us to more easily deduce information about a given board or polynomial. Let us now look at

some properties of rook polynomials in two dimensions and their proofs.

The rook polynomial for a full m × n board can be found in a straightforward way as described in

the next theorem.

Theorem. The number of ways of placing k non-attacking rooks on the full m × n board is equal to
(

m
k

)(

n
k

)

k!.

Proof: Since we wish to place k rooks, on an m × n board, we first choose k of the m rows, and k

of the n columns on which the rooks will be placed. This can be done in
(

m
k

)(

n
k

)

ways. Once we have

selected which rows and columns that we wish to place the k rooks on, we can consider the number of

ways that we can arrange k rooks among the selected rows and columns. Let us start at the top of the

selected rows and work our way down. For the first row we have k columns we can place a rook in. If
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we then place a rook somewhere in the first row, when we move down to the second row we will have

eliminated one possibility for a column, so we now have k − 1 columns to place the second rook in.

Continuing this method we have k − 2 ways to place a rook in the third row, and so on. Hence there

are k! ways to place k rooks on the selected rows and columns. Since we have
(

m
k

)(

n
k

)

ways to choose

the columns, we have
(

m
k

)(

n
k

)

k! ways to place k non-attacking rooks on a full m × n board. 2

One of the elementary properties of the rook polynomials provides an important tool in calculating

the rook polynomial recursively. The rook polynomial of a board consisting of two disjoint boards,

meaning that the boards share no rows or columns, can be calculated in terms of the rook polynomials

of the disjoint boards as follows:

Theorem. Let A and B be boards that share no rows or columns. The rook polynomial for the board

A ∪ B consisting of the union of the tiles in A and B is RA∪B(x) = RA(x) × RB(x).

Proof: Let RA(x) =
∑

∞

i=0 rkxk and RB(x) =
∑

∞

i=0 r′kxk be the rook polynomials for A and B,

respectively. Let us consider the number of ways to place k rooks on A ∪ B. We can place k rooks

on A ∪ B in the same number of ways as placing k rooks on A and 0 rooks on B, which is equal to

rkr0
′, plus the number of ways of placing k − 1 rooks on A and 1 rook on B, which is rk−1r

′

1, and so

on. Hence, we find that the number of ways to place k rooks on A ∪ B is
∑k

i=0 rk−ir
′

i which is the

coefficient of xk in A(x) × B(x). Therefore RA∪B(x) = RA(x) × RB(x). 2

Sometimes, a given board may not be immediately decomposed into disjoint boards. We can then

swap rows and columns to obtain disjoint boards. Doing this will not change the rook polynomial of

the board. We are also able to rotate a board or take its reflection without changing the polynomial.

Much like decomposing into disjoint boards, cell decomposition is another method of expressing the

rook polynomial of a board in terms of smaller boards. Consider the board B shown below.

B

This board cannot be decomposed into two disjoint boards, and swapping rows and columns does not

fix this problem. The cell decomposition method allows us to find the rook polynomial for this board

by breaking rook placements down into cases. We will consider two cases: when there is a rook in the

(2, 3) position, and when there is no rook in the (2, 3) position. If there is a rook in the (2, 3) position

we cannot have another rook in row two or column three. By deleting row two and column three we

create a new board B′ on which the rest of the rooks can be placed. In the case that no rook is placed
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on (2, 3) we will create a board B′′ by adding a restriction to (2, 3).

B′ B′′

In order to find the number of ways to place k rooks on B, we must simply exhaust all cases of k rooks

being placed. If we let k = 3 then we must consider putting 2 more rooks on B ′ and add this number

to the remaining case of placing 3 rooks on B′′ where no rooks are to be placed on (3, 3). We can

see that there are disjoint boards within both B′ and B′′, so we can compute the rook polynomials of

B′ and B′′ by multiplying the rook polynomials for the disjoint sub-boards that lie within the larger

boards. There are 6 ways to arrange 2 additional rooks on B ′. By multiplying the rook polynomials

for the two disjoint boards found in B′′ we can see that the coefficient of x3 is 16, so we have 16 ways

to place 3 rooks on B′′. Adding these two up gives us a total of 24 ways to place 3 rooks on B. This

idea, generalized to an arbitrary number of rooks, proves the following theorem.

Theorem. Let B be a board, B′ be the board obtained by removing the row and column corresponding

to a cell from B, and B′′ be the board obtained by restricting the same cell on B. Then RB(x) =

xRB′(x) + RB′′(x).

Another property of the rook polynomials, that will prove useful when dealing with the probléme

des rencontres, is the property which relates the rook polynomials of two complementary boards. We

say that given a board A, the complement of A, denoted Ā is defined as the collection of all tiles/cells

so that the union of A and Ā is a full board and A and Ā share no tiles/cells.

Theorem. Let A be an m × n board with restrictions, Ā be the complement of A, and RĀ(x) =

r0 + r1x + r2x
2 + ... + rkxk ... be the rook polynomial for Ā. Then the number of ways to place k

non-attacking rooks on A is
k

∑

i=0

(−1)i

(

m − i

k − i

)(

n − i

k − i

)

(k − i)!ri

.

Proof: We know from from earlier that we can place k rooks on the full m × n board in
(

m
k

)(

n
k

)

k!

ways. We wish to find the number of ways to place k non-attacking rooks on a board A which has

restrictions. In order to do this we will consider the total number of placements of k non-attacking

rooks on an unrestricted m×n board and subtract the cases where one or more rooks are placed on the

restricted positions using the Inclusion-Exclusion Principle. We will first consider the total number of
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ways to place k rooks on an unrestricted m×n board, that is
(

m
k

)(

n
k

)

k!. Let us now consider placing one

rook on a restricted tile, and placing the k − 1 rooks on the remaining(m− 1)× (n− 1) tiles. This can

be done in
(

m
k−1

)(

n
k−1

)

(k − 1)!r1 ways. We will subtract
(

m−1
k−1

)(

n−1
k−1

)

(k − 1)!r1 from
(

m
k

)(

n
k

)

k!. We now

wish to consider placing two rooks on restrictions and k − 2 rooks the the remaining (m− 2)× (n− 2)

tiles. When subtracting the number of placements where one rook was placed on a restriction, we also

double counted number of ways to place two rooks on restrictions. So we add
(

m
k−2

)(

n
k−2

)

(k − 2)!r2 to
(

m
k

)(

n
k

)

k! −
(

m
k−1

)(

n
k−1

)

(k − 1)!r1. Continuing this way we get the number of ways to place k rooks on

A is

k
∑

i=0

(−1)i

(

m − i

k − i

)(

n − i

k − i

)

(k − i)!ri

2

2.1. Probléme des rencontres. We now consider a special family of boards which correspond to the

famous Probléme des rencontres, or equivalently to derangements. An example of such a problem is

as follows. Suppose that five people enter a restaurant, each person with their own unique hat. We

are interested in finding the number of ways that everyone can leave the restaurant without their own

hat, ignoring the order in which they leave. We will use this problem to demonstrate how to find the

rook polynomial of a board with restricted positions. In the case of the probléme des rencontres we

are given an m × m board with restrictions placed along the main diagonal. For this case we will let

m = 5 and place restrictions on (i, i) for i = 1, .., 5. We will find the number of ways to place 5 rooks

on the board B. This corresponds with the number of permutations of five elements where no element

is in its original position.

All of the restrictions are disjoint single tiles, and the rook polynomial for a single tile is 1 + x.

Using the theorem on rook polynomials of disjoint boards, the rook polynomial for the restrictions is

(1 + x)5, which equals 1 + 5x + 10x2 + 10x3 + 5x4 + x5. Now, using the theorem on rook polynomials

of completementary boards, we find that the number of ways to place 5 rooks on B is equal to

(

5

5

)(

5

5

)

5! · 1 −

(

4

4

)(

4

4

)

4! · 5 +

(

3

3

)(

3

3

)

3! · 10 −

(

2

2

)(

2

2

)

2! · 10

+

(

1

1

)(

1

1

)

1! · 5 −

(

0

0

)(

0

0

)

0! · 1 = 44
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In general, rk of the rook polynomial of a m × m probléme des rencontres board is

k
∑

i=0

(−1)i

(

m − i

k − i

)2

(k − i)!

(

m

k

)

2.2. Triangle Board. Another famous family of 2-dimensional boards is the triangle boards. We say

that a triangle board of size m consists of all of the tiles of the form (i, j) where j ≤ i and 1 ≤ i, j ≤ m.

The rook numbers of this family of boards correspond with the Stirling numbers of the second kind.

Recall that the Stirling numbers of the second kind, S(n, k), count the number of ways to partition a set

of size n into k non-empty sets, and can be defined recursively by S(n, k) = S(n−1, k−1)+kS(n−1, k)

with S(n, n) = 1 and S(n, 1) = 1.

Theorem. The number of ways to place k non-attacking rooks on a triangle board of size m is equal

to S(m + 1, m + 1 − k), where 1 ≤ k ≤ m and S(n, k) are the Stirling numbers of the second kind.

Proof: We will prove this theorem by induction on m.

The rook polynomial for the board B with a single cell, the triangle board for m = 1, is RB(x) = 1+x.

Since S(2, 1) = S(2, 2) = 1 the theorem checks in this case.

Assume now the theorem is true for some m, i.e. that the number of ways of placing k rooks on a size

m triangle board is equal to S(m+1, m+1−k) for 0 ≤ k ≤ m. We will show that the number of ways of

placing k rooks on an (m+1)×(m+1) board is equal to S((m+1)+1, (m+1)+1−k) = S(m+2, m+2−k)

for 0 ≤ k ≤ m + 1.

For k = m + 1, there is only 1 way to place k non-attacking rooks on a size m + 1 triangle board,

this is when all rooks lie on the diagonal. This corresponds to S(m+2, m+2− k) = S(m+2, 1) which

by definition is equal to one. For k = 0, placing k rooks on the board can be done in only one way

which corresponds with S(m + 2, m + 2 − k) = S(m + 2, m + 2). Therefore the rook numbers and the

Stirling numbers agree for k = 0 and k = m + 1.

Let us now show that these numbers agree for 0 < k < m+1. In order to get from a size m triangle

board to a size m + 1 triangle board, let us add an additional row on the bottom. When finding the

number of ways to place k rooks on the size m + 1 triangle board, we can consider two cases. First

consider the case where we place all k rooks on the top m rows, which form a size m triangle board.

This gives us S(m + 1, m + 1 − k) possibilities by our inductive hypothesis. Second consider the case
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where a rook lies in the bottom row. If this is the case then we must place k − 1 rooks on the size m

board board and we then have m + 1 − (k − 1) tiles in the last row to place our last rook, giving us

(m + 2− k)S(m + 1, m +2− k) ways to place k rooks on the board with one rook lying in the last row.

So there are S(m + 1, m + 1 − k) + (m + 2 − k)S(m + 1, m + 2 − k) ways to place k rooks on a size

m + 1 triangle board. Using the recursive definition of the Stirling numbers, this sum corresponds to

S(m + 2, m + 2 − k).

Therefore, by induction, the rook number rk for size n triangle board is given by S(n +1, n +1− k)

for any n. 2

2.3. Ferrers Boards. Both triangle boards and rectangular boards are special cases of a more general

group of boards known as Ferrers Boards. A Ferrers board is a board whose tiles can be arranged in

such a way that all of the columns have a common base, are contiguous and have non-decreasing heights

from left to right. Algebraically, such a board corresponds to a sequence of integers 0 ≤ b1 ≤ ... ≤ bn

where the cellsof the board are (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ bi. We then refer to this board as

the Ferrers board of shape (b1, ..., bn). If we consider any full rectangular board we know that as the

column number increases the number of tiles per column remain equal. In addition, the number of tiles

per column is equal to the column height. Since the number of tiles per column is non-decreasing as we

move in an increasing fashion among the columns, we know that rectangular boards are Ferrers boars.

With triangle boards the number of tiles per column increases by exactly one as we move from left to

right. It is also the case that for any column with k unrestricted tiles, the tiles occupy the bottom k

rows.

The next theorem gives an explicit formula for the rook coefficients of a Ferrers board in terms of

the heights of the columns in the board.

Theorem. Let
∑

rkxk be the rook polynomial for a Ferrers board B with shape (b1, b2, ..., bm) If we

then let si = bi − i + 1 then we have

∑

rkP (x, (m − k)) =

m
∏

1

(x + si)

A proof of this theorem can be found in [Stanley 1997].

3. Rook Polynomials in Three and Higher Dimensions

The theory of rook polynomials in two dimensions as described above can be generalized to three

and higher dimensions. The theory for the three dimensions is introduced in [Zindle] and the theory

we describe in this paper is a more generalized version of this theory.

In three dimensions, our boards will be subsets of {1, 2, . . . , m} × {1, 2, . . . , n} × {1, 2, . . . , p}. We

refer to such a board as an m × n × p board. More generally, a board in d dimensions is a subset of

{1, 2, . . . , m1}×{1, 2, . . . , m2}× . . .×{1, 2, . . . , md}. A full board is again a board with no restrictions.
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In three and higher dimensions, we use the word cell to refer to positions where rooks can be placed.

In particular, in three dimensions, a cell is a 3-tuple (i, j, k) with 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p.

In two dimensions rows correspond to tiles with the same second coordinate, and the columns

correspond with the same first coordinate. In three dimensions, we can still consider the cells with the

same fixed coordinate, but we modify the terminology. All cells with the same third coordinate are

said to lie in the same layer, all cells with the same first coordinate are in the same slab, and all cells

with the same second coordinate are in the same wall. We will still have rows and columns within a

layer. We also have towers which correspond with the cells with the same first and second coordinate.

We generalize the rook theory to three dimensions so that a rook in three dimensions will attack

along walls, slabs and layers. In higher dimensions, rooks attack along hyperplanes, which correspond

to layers of cells with one fixed coordinate. In two dimensions, when we place a rook on a tile, we are

no longer able to place a rook on any tile in the same row or column. In three dimensions, when we

place a rook in a cell, we can no longer place another rook in the same wall, slab, or layer. In higher

dimensions, when we place a rook in a cell, we cannot place another rook in the hyperplanes that this

cell belongs to.

Another potential generalization of rook polynomials to three and higher dimensions involves a

different method to generalize how rooks attack. Instead of a rook attacking over hyperplanes, we can

assume that the rooks attack along lines, just as the two-dimensional case. This approach seems to

have possible applications as well, however, we will not pursue this generalization in this report.

Our first theorem on the generalized rook theory deals with sweeping a two dimensional board in

the z-direction. Sweeping a two dimensional board will give us a three dimensional version of the board

which will be identical with respect to x and y. Since our new three dimensional board is based off of

the two dimensional board, it makes sense that there is a relationship between the rook polynomials

for each board.

Theorem. Let A be an m × n board and B be a three dimensional sweep of A of magnitude p. The

number of ways of placing k rooks on B is equal to P (p, k) times the the number of ways of placing k

rooks on A.

Proof: Let rA,k represent the number of ways of placing k non-attacking rooks on A, and let p be the

magnitude of our sweep. Let us consider the number of ways of placing k rooks on B, or rB,k. Since

each rook must be non-attacking with all other rooks we know that no two rooks can lie on the same

layer, wall, or slab. We know that there are rA,k ways to place k non-attacking rooks with respect

to walls and slabs, or placing k non-attacking rooks ignoring the layer. Given such a placement, we

must disperse the k rooks among p layers. This is equivalent to k permutations of p numbers, which

corresponds with P (p, k). We should note that we are not using
(

p
k

)

since each rook is in a unique



ROOK POLYNOMIALS IN HIGHER DIMENSIONS 9

tower, so each permutation is unique. So we have rA,kP (p, k) ways to place k rooks on B. It follows

that for values of k that are greater than p or values of k greater than m yield zero ways of placing k

rooks. 2

In two dimensions we are able to re-order the rows and columns so that we may obtain disjoint

boards. Similarly, in three dimensions we are able to re-order the layers, walls, and slabs so that we

can create disjoint boards, once again this will not change to rook polynomial of the board. We are

also able to rotate or reflect a board in three dimensions without changing the polynomial. This allows

us to look at a board from numerous perspectives so that we can better understand a board. Much

like in two dimensions, we are able to use the method of cell decomposition when dealing with three

dimensional boards.

Theorem. Let B be a board, B′ be the board obtained by removing the wall, slab, and column cor-

responding to a cell from B, and B′′ be the board obtained by restricting the same cell on B. Then

RB(x) = xRB′(x) + RB′′(x).

More generally:

Theorem. Let B be a board, B′ be the board obtained by removing the hyperplanes that correspond

to a cell from B, and B′′ be the board obtained by restricting the same cell on B. Then RB(x) =

xRB′(x) + RB′′(x).

Similar to two dimensions, when dealing with two disjoint boards, the number of ways to place k

rooks on the union of two three dimensional boards is the coefficient of xk when we multiply the rook

polynomials of both boards together.

Theorem. Let A and B be boards that share no walls, slabs, or layers. The rook polynomial for the

board A ∪ B consisting of the union of the tiles in A and B is RA∪B(x) = RA(x) × RB(x).

More generally:

Theorem. Let A and B be boards that share no hyperplanes. The rook polynomial for the board A∪B

consisting of the union of the tiles in A and B is RA∪B(x) = RA(x) × RB(x).

As in the two-dimensional case, the rook polynomial of the full boards can be calculated in a

straightforward way in three and higher dimensions.

Theorem. There are
(

m1

k

)(

m2

k

)

. . .
(

md

k

)

(k!)d−1 ways to place k non attacking rooks in a full m1×m2×

. . . × md board in d dimensions.

Proof: For simplicity, let us consider placing k rooks in a full m × n × p board in three dimensions.

Since we are placing k rooks on m slabs, n walls, and p layers, we have
(

m
k

)

ways to choose k slabs
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to place the rooks on,
(

n
k

)

ways to choose k walls to place the rooks on, and
(

p
k

)

ways to choose k

layers to place the rooks on. This would give us
(

m
k

)(

n
k

)(

p
k

)

total selections of walls, slabs, and layers.

For any given selection of layers, slabs, and walls, we will first assign the rooks to an individual layer.

Since we have k rooks and k layers, there will be exactly one rook on each layer. When assigning them

to slabs and walls, the rook on the first layer has k walls and k slabs to be placed on. After placing

the first rook, the second layer rook will have k − 1 slabs and k − 1 walls as options. Continuing this

way, we find that we have k · k · (k − 1) · (k − 1) · (k − 2) · (k − 2) · ... · 2 · 2 · 1 · 1 which is the same

as ((k)(k − 1)(k − 2)...(2)(1))2 which equals (k!)2. So there are
(

m
k

)(

n
k

)(

r
k

)

(k!)2 ways to place k non

attacking rooks on an unrestricted m × n × r board so long as k is less than or equal to the smallest

of m,n, and r.

This method generalizes to d dimensions so that for an m1 ×m2×m3 × ...×md board, we can place

k rooks on the board in
(

m1

k

)(

m2

k

)(

m3

k

)

...
(

md

k

)

(k!)d−1 ways. 2

Applying the same idea in higher dimensions produces the following more general result:

Theorem. There are
(

m1

k

)(

m2

k

)

. . .
(

md

k

)

(k!)d−1 ways to place k non attacking rooks in a full m1×m2×

. . . × md board in d dimensions.

The theorem on complementary boards can be generalized to three dimensions as follows:

Theorem. Let B be a restricted board with m slabs, n walls, and p layers. Let RB′(x) = r0 + r1x +

r2x
2 + ... be the rook polynomial of the restricted positions of B. Then the number of ways that we can

place k non-attacking rooks on B with respect to the restrictions is equal to

min(m,n,p)
∑

i=0

(

m

k − i

)(

n

k − i

)(

p

k − i

)

ri

Proof: In order to find the number of ways to place k rooks with respect to the restrictions, we can

take the total number of ways of placing k non-attacking rooks in an m × n × p board and subtract

the number of arrangements when some of these rooks are on restrictions. As in the two dimensional

case, using the inclusion exclusion principle we find that the number of ways to place k non-attacking

rooks on B with respect to the restrictions is

rk

min(m,n,p)
∑

i=0

(

m

k − i

)(

n

k − i

)(

p

k − i

)

ri

2

3.1. Probléme des Rencontres in Three Dimensions. Recall the probléme des rencontres from

earlier. The probléme des rencontres dealt with a board with restrictions along the main diagonal.

When creating a three dimensional version of the probléme des rencontres board, we will again place

restrictions along the diagonal. In two dimensions we explained the probléme des rencontres by con-

sidering five people leaving a restaurant without their own hat. For this type of problem to make sense
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in three dimensions we will have to alter the scenario. We will once again consider five people entering

a restaurant. We will also introduce another dimensions to the story. Let each person now have their

own unique hat and coat. We are now interested in the number of ways that the five people can leave

the restaurant without both of their original items. Let B be an 5×5×5 board with restricted positions

(i, i, i) for i = 1, ..., 5; we will consider placing 5 rooks on B. The board representing the restrictions

of B is shown below.

For this board we let each layer represent a person and we let the walls and slabs represent the

corresponding coats and hats. These restrictions correspond with no person leaving with both their

hat and coat. We can see that our 5 restrictions are disjoint, and since the rook polynomial for each

restriction is 1+x, like in the two dimensions case we get (1+x)5 = 1+5x+10x2 +10x3 +5x4 +x5 as

the rook polynomial for the restricted positions. Using the previous theorem we find that the number

of ways to place 5 rooks on B is
(

5

5

)(

5

5

)(

5

5

)

(5!)2 −

(

4

4

)(

4

4

)(

4

4

)

((4!)2(5) +

(

3

3

)(

3

3

)(

3

3

)

(3!)2(10)−

(

2

2

)(

2

2

)(

2

2

)

(2!)2(10) +

(

1

1

)(

1

1

)(

1

1

)

(1!)2(5) −

(

0

0

)(

0

0

)(

0

0

)

(0!)2(1) = 11844

More generally, the number of ways that we can place k rooks on an m × m × m probléme des

rencontres board of this kind is
∑k

j=0

(

m−j
k−j

)3
(k − j)!2

(

k
j

)

Another generalization of the probléme des rencontres is to restrict the rows, columns, and towers

that pass through a position of the form (i, i, j), (i, j, i) and (j, i, i). This second generalization to

three dimensions corresponds with the number of ways that the five people can leave the restaurant

without their coat, hat, or any proper pairing of a coat and hat. This means that each person must

leave the restaurant with a hat that isn’t theirs, and a coat that is neither theirs nor the owner of the

hat.. The rook board for this problem is a bit more difficult to visualize so we will first discuss how

to construct it. For this problem we will let the layers represent a person, and the slabs and walls

represent the coats and hats. For the nth layer of an m × m × m probléme des rencontres board, we

will have restrictions on cells of the form (i, i, j), (i, j, i) and (j, i, i). Since our story problem deals

with five people we will demonstrate the construction of a 5 × 5 × 5 probléme des rencontres board.

For bottom layer we will restrict (1, 1, k) and (k, 1, 1) for k from one to 5. This restricts the row and
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column corresponding with person one not leaving with their coat or hat. We will also restrict all cells

along the main diagonal, meaning (k, k, 1) for k from one to m, this corresponds with person one not

leaving with a proper pairing of a coat and hat. The first layer of the board will then appear as follows.

For the second layer from the bottom we will restrict (2, 2, k) and (k, 2, 2) for k from one to m. This

will restrict the row and column associated person two leaving with their own coat and hat. We will

also restrict (k, k, 2) for k from one to m. This corresponds with person two not leaving with their own

coat, and person two not leaving with their own hat. This layer will appear as follows:

Continuing this method for the final three layers we get:

The computation of the rook polynomial for this board is a bit cumbersome so we will use a computer

program for this task. Using Maple we find that the rook polynomial for this board is 552. The rook

numbers of the three dimensional probléme des rencontres boards for sizes up to 7 are given in the

following table:

m\k 0 1 2 3 4 5 6 7

0

1

2

3 1 6 6 2

4 1 24 132 176 24

5 1 60 960 4580 5040 552

6 1 120 4260 52960 213000 206592 21280

7 1 210 14070 368830 3762360 13109712 11404960 1073160
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From the table we see that the numbers for k = m correspond to the number of 3 × m Latin

rectangles.

Theorem. The number of ways to place m rooks on an m × m × m probléme des rencontres board is

equal to the number of 3 × m Latin rectangles.

Proof: A 3 × m Latin rectangle is an array where on each of the three rows is a permutation of

the elements 1, 2, 3, ..., m and where each of the m columns contains each element at most one time.

We can create an ordered triple to represent each column by taking the the entry in rows one, two

and three as (r1, r2, r3). We can then take the m ordered triples and place rooks in the corresponding

positions of an m×m×m board. Because each element appears in each row from the Latin rectangle

exactly one time, we will have only one rook per slab, one rook per wall, and one rook per tower. So

the ordered triple associated with any 3× m Latin rectangle corresponds with a valid placement of m

rooks.

Since each of the entries in a Latin rectangle column must be unique, we know that for any ordered

triple the entries are different, and thus we will not have any ordered triples of the form (i, i, j), (i, j, i)

or (j, i, i). This matches exactly with the restrictions for an m×m×m probléme des rencontres board.

So we know that any ordered triple from a 3×m Latin rectangle will correspond with a valid placement

of m rooks on an m × m × m probléme des rencontres board.

Let us consider an arbitrary placement of m rooks on an m×m×m probléme des rencontres board.

The position of each of the m rooks can be represented as an ordered triple (i, j, k) in the same way

that we can represent the entries of the m columns of a 3 × m Latin rectangle as ordered triples. We

know that for any ordered triple from an m × m × m probléme des rencontres board we will not have

any ordered triples of the form (k, k, n), (k, n, n) and (n, k, n) for some n and k from 1 to m. So every

placement of m rooks on an m × m × m probléme des rencontres board creates a valid 3 × m Latin

rectangle.

Since we know every placement of m rooks on an m × m × m probléme des rencontres board

corresponds to a valid 3 × m Latin rectangle, and every 3 × m Latin rectangle corresponds to a valid

placement of m rooks on an m×m×m probléme des rencontres board, we know that the total number

of placements of m rooks on an m×m×m probléme des rencontres board is equal to the total number

of 3 × m latin rectanglesL

This second generalization of the probléme des rencontres board can be generalized to dimensions

higher than 3 as follows: a size m probléme des rencontres board in d dimensions is a subset of the set

{1, 2, . . .m}d and the cells with two equal coordinates are restricted. With this generalization, using a

method similar to the proof of the above theorem, we obtain the following theorem:

Theorem. The number of ways to place m rooks on a size m probléme des rencontres board in d

dimensions is equal to the number of d × m Latin rectangles.
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Another generalization of the probléme des rencontres board to three dimensions involves sweeping

an m×m probléme des rencontres board by m units. We would then have an m×m×m board with

restrictions on all cells of the form (i, i, k). In relation to the white elephant gift exchange, this would

correspond to the case where nobody is allowed to draw any name two times. 2

3.2. Triangle Board in Three Dimensions. In two dimensions a triangle board was constructed

by restricting all tiles above the (i, i) position for i = 1, .., n on an n × n board. We noticed that the

only way to place n rooks on an n × n triangle board was to place the rooks on the main diagonal.

Another property of the triangle board was removing both the row and column corresponding with a

rook placed on the diagonal of a size n triangle board resulted in a size n− 1 triangle board. We want

to replicate these aspects of a triangle board in three dimensions, and this is how our three dimensional

triangle board evolved. In three dimensions a size 1 triangle board is simply a cell. The size 2 trian-

gle board is obtained by placing a 2×2×1 unrestricted board below the size 1 triangle board as follows.

For any size n triangle board, we obtain a size n + 1 triangle board by placing an additional

(n + 1)× (n + 1)× 1 board on the bottom so that the cells line up along (1, 1, k) for k = 1, .., n. Using

this method a size 5 board would appear as such.

The rook numbers for the triangle boards up to size 8 are as follows:
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n\k 0 1 2 3 4 5 6 7 8

0 1

1 1 1

2 1 5 1

3 1 21 14 1

4 1 85 147 30 1

5 1 341 1408 627 55 1

6 1 1365 13013 11440 2002 91 1

7 1 5461 118482 196053 61490 5278 140 1

8 1 21845 1071799 3255330 1733303 251498 12138 204 1

Sequence A008957 in [Sloane 2009], Triangle of central factorial numbers

Theorem. The number of ways to place k rooks on a size n triangle board is T (n+1, n+1− k) where

T (n, k) = T (n− 1, k − 1) + k2 ∗ T (n− 1, k), T (n, n) = 1, and T (n, 1) = 1.

Proof: We will prove this theorem by induction on n.

For the base case, n = 1, the rook polynomial is 1 + x and the corresponding central factorial

numbers are T (2, 2) = T (2, 1) = 1. Hence the result is true for n = 1.

For our base step, we know that T (n, n) = 1 and T (n, 1) = 1, so T (2, 1) = 1 and T (2, 2) = 1. This

corresponds with placing zero rooks on a 1 × 1 board and placing one rook on a 1 × 1 board.

For a three dimensional (n − 1) × (n − 1) × (n − 1) triangle board there is only one way to place

n − 1 non-attacking rooks on the board, that is by placing the rooks in the diagonal, meaning in the

cells (i, i, i) for i = 1..(n − 1). This corresponds with T (n, 1) = 1.

We also know that there is only one way to place no rooks on an (n − 1) × (n − 1) × (n − 1) board

and this corresponds with T (n, n) = 1.

Given that the number of ways to place k rooks on an (n − 2) × (n − 2) × (n − 2) triangle board is

T (n−1, n−1−k), we will show that the number of ways to place k rooks on an (n−1)×(n−1)×(n−1)

is T (n, n− k). Let us consider placing k rooks on an (n− 1)× (n− 1)× (n− 1) triangle board. We can

place k rooks on the top n−2 layers, which compose an (n−2)× (n−2)× (n−2) triangle board within

the (n−1)× (n−1)× (n−1) triangle board, in T (n−1, n−1−k) ways. The other case is placing k−1

rooks in the (n− 2)× (n− 2)× (n− 2) triangle board and one rook in the (n− 1)× (n− 1) layer. We

can place k− 1 rooks in the (n− 2)× (n− 2)× (n− 2) triangle board in T (n− 1, n− k) ways. Since we

have placed k−1 rooks in the (n−2)× (n−2)× (n−2) board, we have n−1− (k−1) = n−k rows and

n−k columns to place our last rook in the (n−1)× (n−1) layer. This gives us (n−k)2T (n−1, n−k)

ways to place k rooks in an (n− 1)× (n− 1)× (n− 1) board with one rook lying in the bottom layer.

Adding up the case where one rook lies in the last layer, and the case where a rook does not lie in the
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last layer, we have T (n − 1, n − 1 − k) + (n − k)2T (n − 1, n − k) total ways to place k rooks on an

(n− 1)× (n− 1)× (n− 1) board. We can see that this follows the same recursion as T (n, k), and since

we have shown that all special cases T (n, 1) and T (n, n) corresponds with placing n − 1 rooks on an

(n − 1) × (n − 1) × (n − 1) board and placing no rooks on an (n − 1) × (n − 1) × (n − 1) board, we

know that the number of ways to place k rooks on an n × n × n triangle board is T (n + 1, n + 1− k),

by induction. 2

3.3. Genocchi Board. During our search for the best generalization of a two dimensional triangle

board into three dimensions, we developed a board related to the Genocchi numbers, we call this board

the Genocchi board. A size m Genocchi board is constructed by letting the height of each tower equal

the maximum of the corresponding wall and slab that the tower lies in. For example, the height of

tower in the second wall and third slab would be three since the highest value of the two is three. An

example of a size 5 Genocchi board is given below.

Using our computer program we generated rook polynomials for various sizes of this board. Com-

paring our numbers with different sequences from The On-Line Encyclopedia of Integer Sequences we

found that the number of ways to place m rooks on a board of size m corresponds with the unsigned

(m + 1)th Genocchi number.

m 0 1 2 3 4 5 6 7

rm 1 1 3 17 155 2073 38227 929569

a(m + 1) -1 1 -3 17 -155 2073 -38227 929569

Using these numbers we were able to come up with the following theorem.

Theorem. The number of ways to place m non-attacking rooks on a size m Genocchi board is the

unsigned mth Genocchi number.

Proof: The complement of a size m Genocchi board in an m×m×m cube is a size m−1 triangle board.

Hence, using the theorem of complementary boards, we can calculate the number of ways to place m

rooks on a size m Genocchi board in terms of central factorial numbers which are the rook numbers for

the triangle board. Recall that rk for a size m triangle board is T (n + 1, n + 1− k) and recall that the

number of ways to place k rooks on a board A given the polynomial RĀ(x) = r0+r1x+r2x
2+...+rkxk...

to its complement is
∑k

i=0

(

m−i
k−i

)(

n−i
k−i

)(

r−i
k−i

)

(k − i)!2ri(−1)i. Using these we find that in general the
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number of ways to place m rooks on an m × m × m Genocchi board is
∑n

i=0 (−1)i(i!)
2
T (n, i). This

summation has been shown to equal the mth Genocchi number [Dumont 1973], thus the number of

ways to place m rooks on an m × m × m Genocchi board is the mth Genocchi number.

2

3.4. Ferrers Boards in Three and Higher Dimensions. In two dimensions the Ferrers board

encompassed both the triangle and the rectangular boards. It is expected that a theory of Ferrers

boards in three and higher dimensions can be developed to include the triangle and full boards as we

defined above, as well as sweeps of two-dimensional Ferrers boards. Such a generalization is expected

to yield boards whose rook polynomials can be expressed in terms of the values which generalize the

heights of the columns in two dimensions.

4. Appendix

Rook:=proc(A,m,n,p,B,k,rem)

local C,i,j,h,g,l,count,v;

count:=0;

if k=1 then

for i from 1 to m do

for j from 1 to n do

for g from 1 to p do

if ’not’(’in’([i,j,g],B)) then

if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then

if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then

if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then

count:=count+1

end if

end if

end if

end if

end do

end do

end do

else

C:=Array(1..m,1..n,1..p);

for i from 1 to m do

for j from 1 to n do

for g from 1 to p do

if ’not’(’in’([i,j,g],B)) then

if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then

if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then

if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then
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for h from 1 to m do

for l from 1 to n do

for v from 1 to p do

C[h,l,v]:=A[h,l,v]

end do

end do

end do

C[i,j,g]:=1;

count:=count+Rook(C,m,n,p,B,k-1);

C[i,j,g]:=0

end if

end if

end if

end if

end do

end do

end do

end if

count:=count/k

end proc:
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