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ORGANIZATIONAL RESEARCH METHODSRogers / INTERACTIVE MODELS

Theoretical and Mathematical Constraints
of Interactive Regression Models

WILLIAM M. ROGERS
Grand Valley State University

Theoretical and mathematical issues related to the study of interaction effects are
discussed. Constraints imposed by the theoretical expectation of ordinal or mono-
tone interactions are defined by the general concept of inversion values. Themath-
ematical constraints implied by these values are demonstrated by the derivation of
a general formula. Further definitions related to this general formula are dis-
cussed for qualitative and quantitative variables. It is argued that interaction ef-
fects of substantial magnitude may not be routinely detected in behavioral science
becausemany interactive theoriesmay be implicitly ordinal. Levels of predictabil-
ity common to behavioral science make such effects mathematically nonexistent,
and thus impossible to detect. To have strong ordinal moderation, there must be a
strong effect to be moderated.

Numerous theories and applications in the behavioral sciences involve the concepts of
interaction ormoderation, the action of a third variable (Z) on the relationship between
two variables (X and Y) (Saunders, 1956). Alternatively, this can be conceived as the
explanation of variance in a dependent variable by the interaction of two independent
variables (X andZ) (Stone, 1988; Zedeck, 1971), or as a situation inwhich the effect of
one independent variable (X) on a dependent variable (Y) depends on the level of
another independent variable (Z) (McClelland & Judd, 1993). Although differing
slightly in language, all of these conceptualizations involve the expectation of a spe-
cific mathematical relationship between variables X, Y, and Z.

The assessment of interaction or moderator effects by means of ANOVA or regres-
sion procedures is based on a comparison of models formed from two composition
rules, an additive (A) (or main effects) rule in which Y is a linear, additive function of
X and Z; and an additive-multiplicative (AM) rule in which Y is a linear function of X,
Z, and their multiplicative composite XZ. Respectively, these statistical models are
formulated as1:

Y B B X B Zi A A A i A i Ai( ) = + + +0 1 2 ε , (1)
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Y B B X B Z B X Zi AM AM AM i AM i AM i i AMi( ) = + + + +0 1 2 3 ε . (2)

The relevant hypothesis for a moderating or interactive effect concerns either the
point estimate of population parameter BAM3 (bAM3) in Equation (2), or the incre-
mental predictability of the AM model over the A model. If no interaction effect
exists in the population (H0), BAM3 will equal zero, and A or AM models will offer
equivalent predictability (P PA AM

2 2= ). These hypotheses can be tested with F-ratios
in standard ANOVA methods, or equivalent tests offered by moderated multiple
regression (MMR) (Cohen & Cohen, 1983). A population interaction effect is
“detected” in MMR if the null hypothesis stated above can be rejected by a t test on
regression weight b3, or the mathematically equivalent F test of incremental predict-
ability (∆P P PAM A

2 2 2= − , estimated by ∆R2).
Despite support for predicting interaction effects in several domains of behavioral

science, their appearance in actual data has lagged far behind theoretical prevalence or
expectations based on substantive reasoning. Zedeck (1971) called moderator vari-
ables “as elusive as suppressor variables”. Cronbach (1987) notes the difficulties in
finding interaction effects to be statistically significant.Moderator variables have been
characterized as especially difficult to detect in field studies (McClelland & Judd,
1993), where, in the social sciences, they often account for only single-digit propor-
tions of total variance (Chaplin, 1991). Such magnitudes of ∆R2 rarely correspond to
the substantial moderator effects often expected by researchers, thereby creating a
dilemma: Researchers typically have considerable rationale for expecting such
effects, yet they continually appear to resist detection.

The logic of traditional hypothesis testing offers two possibilities to account for the
lack of observed interaction effects, based on the true state of the null hypothesis (H0)
in the population. If H0 is true (BAM3 = 0, ∆P2 = 0), the AM composition rule offers no
incremental explanation over the A rule, and the failure to reject the null hypothesis in
sample data results in a correct inference. This possibility likely holds little appeal
for most researchers seeking interaction effects, as they typically have substantial
rationale to expect an effect, and few successful researchers invest resources in pursuit
of effects they do not expect to find. If the null hypothesis is false in the population
(BAM3 ≠ 0, ∆P2 > 0), the rejection of an AM rule based on sample data is considered a
Type II error. Unlike the previous possibility, some degree of remedy exists, because
Type II errors are a direct consequence of insufficient statistical power. To reduce the
number of Type II errors in assessing moderator effects, efforts have naturally been
directed toward improving the statistical power of moderated regression and other
methods used to assess these effects (Cronbach, 1987). In the context ofMMR, numer-
ous studies have examined statistical and methodological artifacts that may contribute
to increased probabilities of committing Type II errors when searching for moderator
effects. Several factors, such as small sample size (Alexander & DeShon, 1994), mea-
surement error (Busemeyer & Jones, 1983), small population effect sizes
(Stone-Romero & Anderson, 1994), range restriction (Aguinis & Stone-Romero,
1997), heterogeneity of error variance (Aguinis & Pierce, 1998), and unequal sample
sizes across moderator-based subgroups (Stone-Romero, Alliger, & Aguinis, 1994)
have all been shown to increase Type II errors and reduce the statistical power of the
MMR method. These factors reduce the probability of concluding that an AM rule
holds in a sample when it is, in fact, the correct functional form in the population.
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The alternatives thus facing a researcher who has not detected an expected interac-
tion effect are either to reject the rationale for expecting the interaction or to increase
the statistical power of the test. In addition to studying the previously cited work on
power-related artifacts, the careful researcher will have addressed the second alterna-
tive by conducting a power analysis prior to the collection of data, determining the
sample size corresponding to a given Type I error rate, power level, and estimate of
effect size (Cohen, 1988). Believing they have established sufficient statistical power
and eliminated the possibility of committing a Type II error, even careful researchers
may opt for the first alternative, rejecting their theoretical rationale and concluding
that no interaction effect is present.

The purpose of the present article is to provide a third alternative based on the
implicit constraints in many theoretical models involving interactions and the mathe-
matical constraints of the relevant statistical tests. It will be shown that two of the
factors noted by McClelland and Judd (1993) as accounting for differential power in
moderated regression analysis, overall model error and the expectation of ordinal
moderation have rather serious effects when considered in combination. It will be sug-
gested that interaction effects of substantial magnitude may not be found in organiza-
tional or behavioral research because the aforementioned theoretical and mathemati-
cal constraints render them nonexistent in the population in most situations. This is a
consideration independent of statistical power, and researchers will obviously be
unable to detect such effects.

First, the theoretical constraints operating on interactive models will be discussed,
introducing the concept of inversion and its meaning across levels of measurement
common to interactive models. Second, a general mathematical formula relating sev-
eral important factors in statistical tests of interaction effects will be derived. Special
cases of this formula across levels of measurement will also be discussed. Finally, the
potential implications of these constraints will be discussed, both in general and using
two examples from recent literature.

Theoretical Constraints of Interactive Models

Although statements such as “the effect of X varies as a function of Z,” or “the X-Y
relationship changes across levels of Z,” adequately describe themathematical aspects
of moderation or interaction, they do little to clarify the theoretical or empirical mean-
ing of the effect. First, statements of this type encompass a general class of functional
forms, all of which are not necessarily viable representations for a given theory. Sec-
ond, empiricalmeaning is dependent on the particular attributesmeasured byY,X, and
Z, how they are theorized to combine, and the level of measurement used to assess
them.

The first issue noted above involves the identification of functions that adequately
represent the interactive theory from the universe of additive-multiplicative functions.
As an example, consider a hypothetical theory that predicts an interactive relationship
between Ability (A) and Motivation (M) in determining Performance (P). The general
additive-multiplicative function will have the form:

( )P A M B B A B M B A Mi j i j i j, = + + +0 1 2 3 , (3)
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where Ai and Mj denote values or levels of Ability and Motivation, respectively,
P(Ai,Mj) denotes the level of Performance at Ai and Mj expected by the theory, and B0

through B3 denote real numbers, with B3 ≠ 0 defining the additive-multiplicative form
of the function. The first constraints applied to this function by theory are the relative
magnitudes of constantsB1,B2, andB3, indicating the degree of change in Performance
associated with Ability, Motivation, and their interaction, respectively. For instance, a
particular theory may claim that Ability accounts for more change in Performance
than Motivation (i.e., B1 > B2 if Ability and Motivation have equal variances). In many
cases, these constraints will be apparent to the researcher and easily identified and
tested when analyzing the data.

A more important and less obvious constraint involves the nature of the individual
Ability-Performance and Motivation-Performance relationships. Specifically, an
interactive theory should specify whether each of these relationships is thought to be
monotone across values of the other component in the interaction (i.e., higher levels of
Ability or Motivation are always expected to result in higher levels of Performance,
independent of each other). While this may at first seem a trivial theoretical assump-
tion, the further constraint it places on theAMmodelmay not be as apparent. Consider
a formal statement of monotonicity for both Ability and Motivation in determining
Performance:

For any two values of Ability (A1 and A2) and any two values of Motivation (M1 and
M2):

( ) ( ) ( ) ( )P A M P A M P A M P A M1 1 1 2 2 1 2 2, , , ,≥ → ≥ , (4)

( ) ( ) ( ) ( )P A M P A M P A M P A M1 1 2 1 1 2 2 2, , , ,≥ → ≥ . (5)

The researcher is simply expecting rank orderings of Performance (P) at a given
level of Ability (A) to be the same across all levels of Motivation (M), and the rank
orderings at a given level of Motivation to be the same across all levels of Ability. Sub-
stitution of expression (3) into (4) yields:

B B A B M B A M B B A B M B A M

B B A B
0 1 1 2 1 3 1 1 0 1 1 2 2 3 1 2

0 1 2 2

+ + + ≥ + + + →
+ + M B A M B B A B M B A M1 3 2 1 0 1 2 2 2 3 2 2+ ≥ + + + ,

(6)

B M B A M B M B A M B M B A M B M B A M2 1 3 1 1 2 2 3 1 2 2 1 3 2 1 2 2 3 2 2+ ≥ + → + ≥ + , (7)

B M M B A M M B M M B A M M2 1 2 3 1 2 1 2 1 2 3 2 2 1( ) ( ) ( ) ( )− ≥ − → − ≥ − , (8)

− ≥ → − ≥B A B B A B3 1 2 3 2 2, (9)

if :B A
B

B
A

B

B3 1
2

3
2

2

3

0> ≤ − → ≤ −
, (10)
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if :B A
B

B
A

B

B3 1
2

3
2

2

3

0< ≥ − → ≥ −
. (11)

Applying the same procedure to Equation (5) gives:

if :B M
B

B
M

B

B3 1
1

3
2

1

3

0> ≤ − → ≤ −
, (12)

if :B M
B

B
M

B

B3 1
1

3
2

1

3

0< ≥ − → ≥ −
. (13)

Equations (10) through (13) simply state that for the Ability-Performance and Mo-
tivation-Performance relationships to maintain rank orders, any two levels of Ability
or Motivation must both be ≥ or both be ≤ constants defined by –B2/B3 and –B1/B3, re-
spectively. These constants will subsequently be referred to as the inversion values for
X and Z, denoted by xi and zi. Readers familiar with Aiken & West’s (1991) discussion
of “crossing points” of regression lines with continuous predictors (pp. 23-24) will
recognize these constants as their Xcross and Zcross. Note, however, that Ai and Mj may
represent a variety of operationalizations of Ability and Motivation, and the con-
straints are equally applicable to all cases. For example, A1 and A2 may represent two
values of Ability obtained from a quasi-continuous measure (e.g., test score),
whereasM2 andM1 may denote conditions of experimentalmanipulation and control,
respectively.

In ANOVA contexts, the constraints defined by Equations (10) through (13) distin-
guish the general classes of “ordinal” and “disordinal” interactions (Lubin, 1961). In
the simplest case of a 2 × 2 design, if the numerical codes assigned toAHI,ALO,MHI, and
MLO are theorized to meet the requirements of Equations (10) through (13), one is
expecting rank orders across rows to be equivalent across columns, and vice versa.
When one variable is measured on a continuous scale, the ordinal and disordinal
classes are often termed “noncrossing” and “crossing”, respectively, although this
labeling can be misleading at times. A graph in which regression lines on the continu-
ous variable do not cross across levels of the categorical variable does not necessarily
provide evidence of a noncrossing interaction, as it only shows one of two required
conditions (i.e., either Equation (4) or (5)). This may occur in “fan-shaped” interac-
tions, when regression lines near the top of the fan have a positive slope and those near
the bottom of the fan have a negative slope. Slope inversion across levels of the cate-
gorical variable violates the rank ordering requirement, and is evidence of a crossing
interaction.

Although the interaction of two continuous variables is more difficult to visualize
than those involving categorical variables, the requirements described earlier are eas-
ily applied. If a researcher is predicting an ordinal interaction between two continuous
measures of Ability and Motivation in determining Performance, the researcher is
simply expecting Equations (10) through (13) to hold for any theoretical quantity of
Ability or Motivation. Special cases for continuous ordinal and ratio scales are worthy
of note. When the variables involved are measured on ordinal scales, an ordinal inter-
active model is indistinguishable from an additive model, as transformations exist that
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freely convert between the two representations (Busemeyer & Jones, 1983). Thus,
ordinal interactions are undetectable when constructs are measured on ordinal scales.
In the physical sciences, interactions between continuous quantities are likely to
involve ratio scales, which have lower bounds of zero and undefined upper bounds.
Here, the expectation of an ordinal interaction entails xi and zi both ≤ 0, and because X
and Z are ≥ 0 by scale definition, purely multiplicative combinations of physical quan-
tities are necessarily ordinal in form.

Once a researcher has developed both theory and measurement for an interaction
study, inversion values xi and zi defined by parameters B1, B2, and B3 become relevant
to the testing of the interaction effect. The next section will discuss the general con-
straints operating on the population incremental predictability (∆P2) of the addi-
tive-multiplicative model over the additive model.

Mathematical Constraints of Interactive Models

Given predictor intercorrelations ρx,z, ρx,xz, and ρz,xz, their standard deviationsσx,σz,
and σxz, and most importantly, inversion values xi and zi, the relationship betweenPA

2

and ∆P2 is completely determined:

P

P
x z x z

A

x z i i x z x z i z i x xz

2

2
3 2 2 2 2 22 1 2

=

+ − + −
∆

ρ σ σ ρ σ σ σ, ,( )( ( ))

(

, ,

, , ,

ρ σ ρ σ

ρ σ ρ ρ σ
x xz i x z xz i z

x z xz x xz z xz i i x

z x

x z

+

+ −2 2 σ σ ρ ρ
σ ρ ρ

z xz x xz z xz

xz x xz z xz

) ( )

(
, ,

, ,

− +













+ +

2 2 2

2 2 2 ρ ρ ρ ρx z x z x xz z xz, , , , )2 2 1− −
.

(14)

The complete derivation ofEquation (14) can be found inAppendixA.Although its
form is complex, it clearly illustrates the system of variables determining the relation-
ship between additive model predictability (PA

2 ) and incremental predictability of the
additive-multiplicative model (∆P2). To the extent that the researcher expects con-
straints on xi and zi based on theory, he or she can expect constraints placed on the rela-
tionship betweenPA

2 and ∆P2 in actual data drawn from a population in which the the-
ory is correct.Due to the complex nature of Equation (14), it is impossible to isolate the
direct effects of any variables on the relationship betweenPA

2 and ∆P2. We can, at this
stage, simplify the influence ofσx,σz, andσxz by assuming that variables X and Z have
zero expectation (E(X) =E(Z) = 0), and unit variance (V(X) =V(Z) = 1). Cohen (1978)
aptly demonstrated that the linear transformations needed to create these rescalings
have no effect on tests of interaction effects. Per a special case of Bohrnstedt &
Goldberger’s (1969) Equation (5), under these rescalings, σxz becomes:

σ ρxz x zE x z= −( ) ,
2 2 2 . (15)

Per a special case of Bohrnstedt and Goldberger’s (1969) Equation (12) defining σx,xz

and σz,xz:

ρ
σ
σ σ ρ

x xz
x xz

x xz x z

E x z

E x z
,

,

,

( )

( )
= =

−

2

2 2 2
,

(16)

Rogers / INTERACTIVE MODELS 217

 at GRAND VALLEY STATE UNIV LIB on July 17, 2013orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


ρ
σ
σ σ ρ

z xz
z xz

z xz x z

E xz

E x z
,

,

,

( )

( )
= =

−

2

2 2 2
.

(17)

Thus, it is clear that three expectations of products of powers, E(x2z), E(xz2), and
E(x2z2) play a critical role in determining the constraints implied by Equation (14).
These elements of expressions (16) and (17) are handled differently for various combi-
nations of continuous and dichotomous predictors, and specific formulas for dealing
with cases involving dichotomies can be found in Appendix B. The examples used in
the following section make several assumptions to simplify Equation (14), as well as
the expressions from Appendix B.

The Case of Two Dichotomous Variables

Dichotomous X and Z variables may represent experimental manipulations in a
simple 2 × 2 ANOVA design, observed continuous variables that have been collapsed
into two categories, or observed dichotomies such as gender or subsets of ethnic cate-
gorizations. These three classes of dichotomies differ in the extent towhich the investi-
gator has control over the distributions of X and Z. In the case of an experiment, the
ideal is a balanced design achieved through the control of conditions. Collapsed con-
tinuous distributions can be split in a balanced manner as well, though these variables
throw away information, and the resulting split may not be representative of the distri-
bution’s original form. Control is relinquished entirely with observed dichotomies, as
one gains representativeness for a particular setting only by accepting the true distribu-
tion in the setting.

To simplify the use of an example, let us assume a researcher is using a balanced 2 ×
2ANOVAdesign (ρx,z = 0, px = pz = .5), Xlow = Zlow = –1,Xhigh = Zhigh = 1, thereby simpli-
fyingE(x2z) =E(xz2) = 0 andE(x2z2) = 1. Equation (14) now simplifies considerably to:

P P x zA i i
2 2 2 2= +∆ ( ). (18)

Suppose this researcher is studying the interactive relationship between Stress (High/v
Low) and Task Complexity (High/Low) in determining Accuracy on Task. Our theory
suggests that both high levels of Stress and high levels of Complexity will decrease
Accuracy, and that the combination (High, High) will decrease it over and above the
additive effects of either component. Recalling the previous discussion regarding in-
version, we have no reason to expect rank orders of Accuracy to change across levels
of either experimental factor. Thus, we expect that Xhigh and Xlow will both either be ≥
or ≤ xi, and that Zhigh andZlow will both either be≥ or≤ zi. BecauseX andZ variables are
coded –1/1 in this case, xi and zimust either be≥ 1 or≤ –1, and because they are squared
in expression (18), it will not matter whether both are in the ≥ or ≤ direction. The fol-
lowing constraint now applies to (18):

∆P PA2
2

2
≤ .

(19)

Note that the combined P2 for main and interaction effects ( )PAM
2 cannot be greater

than unity, thus applying an additional constraint to Equation (19) (PA
2 + ∆P2 ≤ 1.0).

Substitution of this constraint into (19) shows that∆P2cannot be greater than 0.33, and
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this maximum will occur at PA
2 = 0.67. The implications of these constraints may be

better understood by presenting Cohen’s (1988) formula for effect size,

f
P

P PA

2
2

2 21
=

− +
∆

∆( )
,

(20)

and by substitution obtaining:

f
P

P
A

A

2
2

22 3
≤

−( )
.

(21)

This constraint is shown graphically in Figure 1. The area underneath the curve repre-
sents combinations of f 2 andPA

2 that can possibly exist for ordinal interactions in a 2× 2
ANOVA. The curve asymptotes at PA

2 = .67, the limiting value in Equation (19).
Hashed lines designate Cohen’s (1988) rule of thumb effect sizes of “small,” “me-
dium,” and “large.” Values ofPA

2 of at least .038, .207, and .341 are required for effect
sizes of .02, .15, and .35 to even exist. This is not necessarily a problem for the re-
searcher, as the experimental design has the advantage of lower overall model error
(McClelland & Judd, 1993), and values ofPA

2 between .04 and .35 may not be unrea-
sonable to expect. Thus, the experimental researcher whose theory predicts an ordinal
interaction of substantial effect size may indeed find it, as it can exist in the population
at reasonable levels of main effect predictability (PA

2 ). The discussion will now turn to
continuous variables, where we will see that the bar is raised considerably higher.
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The Case of Two Continuous Variables

Unlike the previous case of dichotomous variables, no simple formulas exist for
E(x2z),E(xz2), andE(x2z2), as these terms define properties of the joint distribution ofX
and Z. Typically, the standard assumption of bivariate normality in regression is made,
resulting in:

E x z E xz( ) ( )2 2 0= = , (22)

E x z x z( ) ,
2 2 21 2= + ρ . (23)

Equation (14) now simplifies to:

P
P x z x z

A
i i i i x z

x z

2
2 2 2

2

2

1
=

+ +
+

∆ ( ),

,

ρ
ρ

.
(24)

Note that (24) is similar to (18), except that we have not assumed ρx,z = 0, an unlikely
value unlessX andZ are orthogonal component or factor scores. The influence ofρx,z is
subtler than it may first appear, as it adds a term to the numerator with xi and zi, in addi-
tion to the existing squared terms thatwere present in the dichotomous case. In the case
of nonzero correlation between X and Z, the signs of xi and zi now have influence. In-
version values xi and zi will have different signswhen X andZ have different directions
of rank ordering on Y. For example, we might have a theory that predicts Motivation
and Task Complexity will interact to determine Performance, with higher levels of
Motivation resulting in higher Performance, but higher levels of Task Complexity re-
sulting in lower Performance.

For continuous variables, an additional benefit of rescalingXandZ to zero expecta-
tion and unit variance is that we can more easily set values of xi and zi based on mea-
surement and theory. If our measurement places no restrictions on the range of X or Z,
and assumptions of normality hold, permissible values of X or Z can be thought to lie
between+Cand –C,Cbeing a constant defining the “edge” of the distribution. IfX and
Z are measured on Likert-type response scales, the Z-value of the most extreme cate-
gories may be used to represent this edge. Unfortunately, the normal distribution has
infinite tails, so further examples in this article will assume that standardized continu-
ous variables have “real” ranges from –2 SD to +2 SD units, capturing approximately
95% of the area under the theoretical normal curve.

Returning to a model used in an earlier discussion, consider a researcher studying
the interactive relationship between Ability and Motivation in determining Perfor-
mance. Our theory predicts the pattern shown in expressions (4) and (5), (i.e., the rank
orders of Performance onAbility andMotivationwill each remain the same across lev-
els of the other variable). Because X and Z have ranges of –2 to +2, and we expect both
to have positive relationships with Performance, xi and zi must both be ≤ –2. Applica-
tion of (20) yields:

f
P

P
A x z

A x z x z x z

2
2 2

2 2

1

8 9 8 1
≤

− +
+ + − +

( )

( ) ( )
,

, , ,

ρ
ρ ρ ρ

.
(25)
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An f 2 by ρx,z plot of Equation (25) across four levels ofPA
2 (.1 to .7, stepping by .2) is

shown in Figure 2. Curves in Figure 2 represent the boundaries of possible combina-
tions of f 2 and ρx,z which can exist for ordinal interactions at levels ofPA

2 defining each
curve.2 As was the case with dichotomous X and Z in the previously discussed
ANOVA design, higher levels ofPA

2 are associated with greater effect sizes of ordinal
interaction, but the strength of this association now varies as a function of ρx,z. The re-
searcher predicting an ordinal interaction with both components having positive or
negative relationshipswill be able to detect awider range of interaction effect sizes (f 2)
for a givenPA

2 as ρx,z decreases from roughly 0.4, and the range dramatically increases
as ρx,z becomes negative.3 Moving xi and zi values farther from zero (e.g., (–3)) would
push the curves in Figure 2 farther downward in the plot.

Figure 2 also illustrates a more troublesome issue for theories involving ordinal
interactions of continuous variables. For the levels of ρx,z near zero, often considered
ideal in additive models, the existence of “medium” (f 2 =.15) interaction effect sizes
will only occur at levels ofPA

2 of .50 or greater. APA
2 of .30will only allow ordinal inter-

actions of effect sizes up to approximately f 2 =.06 when ρx,z is near zero. Thus, the
much-lamented difficulties in detecting substantial interaction effects may simply be
due to the fact that many theories implicitly predict ordinal interactions, and these
effect sizes are mathematically impossible at levels ofPA

2 common to behavioral sci-
ence. Further discussion on this issue will be presented later in this article.

The Case of Dichotomous and Continuous Variables

When X is a dichotomy and Z is a continuous variable, several assumptions can be
applied to the expressions in Appendix B, depending on the nature of dichotomy X. If
X is randomly assigned,we can assume variance differences between groups (∆V) and
ρx,z are zero. If X is a factor in a balanced ANOVA design, we can also assume px = .5.
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Although they are useful when presenting examples, these assumptions leave out a
large proportion of the situations in which interactions between dichotomous and con-
tinuous variables are examined. Notable among these is the assessment of test bias in
human resource settings, in which the interaction between a variable denoting Minor-
ity/Majority group classification and a predictor in determining a criterion is evidence
of bias (Cleary, 1968). In these situations, px is typically far from 0.5, and ∆V and ρx,z

cannot be assumed zero.
For the sake of example, if we assume X is a balanced factor, and subjects are ran-

domly assigned to each condition, Equation (14) reduces to (18), identical to the stan-
dard ANOVA case. As a substantive context, consider a researcher who is studying the
interactive effect of the presence of an Incentive (Present/Not Present) and Ability
(continuous) on Performance.We expect the presence of an Incentive to result in better
Performance, andwe expect this increase to be greater at higher levels ofAbility. Simi-
larly, we expect higher levels of Ability to result in better Performance in both Incen-
tive conditions. These expectations define an ordinal, or noncrossing interaction. A
difference exists, however, in the treatment of xi and zi, as they now represent different
types of measurement. Applying the bounds used in the earlier two examples, a
noncrossing interaction between X and Z requires xi to be ≤ –1 or ≥ 1, and zi to be ≤ –2
or ≥ 2. Applying these limits, and converting to f 2 through (20) yields the following
constraint:

f
P

P
A

A

2
2

25 6
≤

−
.

(26)

This constraint is shown graphically in Figure 3. Comparing the constraint curve to
that in Figure 1 for the 2× 2ANOVAdesign, it can be seen that for a given level of addi-
tivemodel predictability (PA

2 ), the 2× 2ANOVAdesign is less constraining on interac-
tion effect sizes that are possible in the population. The dichotomous/continuous case
thus lies between the pure dichotomous and pure continuous cases in this regard.

Summary and Discussion

The goal of this article was to derive and illustrate the mathematical constraints
applied to interactive regressionmodels by conceptual constraints implied in theory or
application. It has been demonstrated that the key variables operating in these con-
straints are the predictability of an additive model in the population (PA

2 ), theoretical
inversion values (xi and zi), component intercorrelation (ρx,z), and three expectations,
E(x2z),E(xz2), andE(x2z2). Definitions of these expectationswere derived for combina-
tions of standardized dichotomous and continuous variables. The issues raised in this
article apply equally to higher order interaction effects. Considering that even a 3-way
interaction involving X, Z, and W will create inversion values xi, zi, andwi, and several
new correlations and expectations of higher powers, the mathematical foundations
quickly become less tractable.

It is important to note that the limitations described in this article are distinct from
“detection” or statistical power issues, as they involve the existence of interaction
effects in the population. If a researcher predicts an ordinal interaction effect, and
bases a power analysis on a medium effect size, he or she may not realize that the addi-
tive effects of the variables in question mathematically prevent them from finding an
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effect size of medium magnitude in the population. Thus, their original power analysis
was based on an effect size that could not exist. Prior to conducting a power analysis, a
researcher can examine the existing literature to estimate the additive effects of the
variables in question (as well as their intercorrelation, if a field study is being con-
ducted). Using Equation (14) in combination with specific formulas for the different
types of variables, the researcher can estimate the effect size ceiling in the population,
and use the information to determine a minimum sample size needed to detect the
interaction.

In their recent article comparing experimental and observational designs,
McClelland and Judd (1993) note that higher overall model error and a tendency to
expect only ordinal interactions work against the field researcher, making interaction
effectsmore difficult to detect. The examples and derivations in this article supplement
these observations, demonstrating that these factors, in combination, place even fur-
ther constraints on the detection of such effects. These additional constraints are espe-
cially severe when the interaction involves continuous measures. One approach to the
problem, noted above, is for researchers to identify these limits and work within the
constraints of the population. An equally effective, and perhaps ultimately more fruit-
ful approach is to work on increasingPA

2 so that a wider range of ordinal interaction
effect size is mathematically possible. This may involve theoretical refinements, more
specific measurement instruments, or accounting for/reducing measurement error in
X and Z. To put themselves in a good position to find ordinal effects in an interactive
model, researchers must first find ways of achieving high levels of predictability in an
additive model. Simply stated, to have strong ordinal moderation, there must be a
strong effect to be moderated.

Although this article has shown that models with dichotomous measures generally
allow larger ordinal interaction effects to exist in the population than the pure continu-
ous case, it is important to consider the benefits and limitations of each model. Cortina
and DeShon (1998) note that the weaknesses of observational designs with regard to
statistical power might be offset by the greater parametric information they provide.
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This is especially relevant if the attributes involved in the interaction are presumed to
be underlying quantities instead of constructed dichotomies. For example, experimen-
tal manipulations of stress may be used to demonstrate an interaction effect, but if
stress is theoretically conceived as a continuous quantity, the researcher may eventu-
ally wish to associate a parameter with the quantitative relationship.

The reader should also be cautioned that the relative advantages afforded by ordinal
interactions involving dichotomies should not motivate the creation of such situations
by median splits or other forms of artificial dichotomization. As noted by McClelland
and Judd (1993) and McClelland (1997), the benefits of dichotomization are largely
due to increases in variance. The interpretation of interactions that emerge only after
artificial dichotomization is questionable, and the further generalization of such
results back to the original continuous measures is usually impossible.

Of course, the fundamental question underlying the constraints described here is:
Do we expect an ordinal or disordinal interaction? It is difficult to provide a general
answer to this question, as empirical rationale for the combination of variables can
only be given on a theory-by-theory basis. The literature is often of little help, as one
will find the words “ordinal” and “disordinal” used primarily to report a resulting pat-
tern of interaction rather than to provide the theoretical basis for its expectation. Such
expectations are typically stated only in terms of the general additive-multiplicative
model, (e.g., “X and Z are expected to interact in predicting Y”), saying nothing of the
form of the interaction. We can, however, consider a few examples from the literature
where the expectation of ordinal interaction effects may have contributed to con-
straints in effect size.

Donovan and Radosevich (1998), in a meta-analysis of the moderating effect of
Goal Commitment on the relationship between Goal Difficulty and Performance,
noted that the moderation accounted for less than 3% of total variability. Although
Donovan and Radosevich discuss several potential reasons for this surprising finding,
ordinality of the proposed interaction could be the primary culprit. Consider that early
in their article, Donovan and Radosevich state that “goal commitment is proposed to
be a moderator of the relationship between performance goals and task performance
such that higher levels of goal commitment lead to a stronger relationship between per-
formance goals and subsequent performance” (p. 308). Provided that this statement is
intended to apply to all levels of Goal Commitment and Goal Difficulty, and the main
effect of each on Performance is not expected to reverse across these levels, themoder-
ation is expected to be ordinal. The miniscule effect sizes reported in Donovan and
Radosevich may merely reflect a mathematical constraint imposed by lower levels of
Performance predictability in the population.

O’Neill and Mone (1998) examined the moderating effects of Equity Sensitivity on
relationships between Self-Efficacy and three workplace attitudes, finding such
effects for Job Satisfaction and Intent to Leave (∆R2 = .03 in both cases), but not for
Organizational Commitment (∆R2 = .00). In all three cases, O’Neill andMone hypoth-
esize moderation by predicting a relationship between Equity Sensitivity and the
positivity/negativity of the relationship between Self-Efficacy and the respective
workplace attitude. For this moderation to be ordinal, the relationship between Equity
Sensitivity and the workplace attitudes should not change direction across levels of
Self-Efficacy, and vice versa.O’Neill andMone’s graphical presentation of the signifi-
cant moderator effects suggest that they are nearly ordinal in form, with inversion val-
ues very close to maximal scores on the Self-Efficacy scale. If the form of moderation
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was expected to be ordinal across all three workplace attitude measures, then the lack
of moderation detected for Organizational Commitment may simply have been due to
the lower model predictability prior to entry of the interaction term. Prior to entry of
this term, the model R2 values for Job Satisfaction, Organizational Commitment, and
Intent to Leave were 0.28, 0.20, and 0.37, respectively. As in the previous example, the
lack of moderating effect may have had more to do with the predictability of the crite-
rion, in this case Organizational Commitment, than any true lack of such an effect.

Although it is not absolutely certain that ordinality of moderation was a theoretical
expectation of the researchers in the two examples discussed above, the constraints
described in this article offer a potential explanation for both findings. The extent to
which the lack of moderating effect is due to mathematical constraints varies directly
with the expectation of ordinal form, which itself likely varies across domain and the-
ory. The expected formof interactionwill also depend upon the representation used for
a particular construct. Consider two scales of Attitude, one simply assessing strength
of opinion in a 1 to 10 range, the other also assessing favorability toward the attitude by
using a –10 to +10 scale. A disordinal interaction may make theoretical sense with the
second scale, with inversion occurring at the zero point due to the change in direction
of favorability. Providing similar justification for the first scale is more difficult, as
there is no corresponding change.

Researchers should grapple with both theoretical and measurement issues when
deciding whether they expect an ordinal or disordinal interaction. More importantly,
ordinality of moderation should be treated as a theoretical expectation, and considered
well before the collection of data.

APPENDIX A
Derivation of General Constraints

Interactive effects are generally assessed by determining the incremental predictability
(∆R2) of an additive-multiplicative regression model (RAM

2 ) over an additive regression model

( )RA
2 .McNemar (1962) offers the following general formula forR2, based on determinants of the

predictor-criterion correlation matrix:

R m1 2
2

11

1⋅ = −. .
| |

| |

C
C

, (27)

whereC is a correlation matrix with Y in row/column 1 and a predictor set occupying rows/col-
umns 2 . . .m, |C| is the determinant of this matrix, and |C11| is the minor ofCwith row/column 1
removed. For the purpose of deriving population R2 (P2) formulas for A and AM models using
Equation (27), correlation matrixCwill be defined for a the basic AM model composed of crite-
rion Y, components X and Z, and multiplicative composite XZ:

C =

1

1

1

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ

y x y z y xz

y x x z x xz

y z x z z xz

y xz

, , ,

, , ,

, , ,

, x xz z xz, ,ρ 1





















.

(28)

Thus, for the AM model, P2 is:
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PAM
2

11

1= − | |

| |

C
C

. (29)

The relevant correlationmatrix for anAmodel can be denoted byC44, as one is simply removing
the XZ composite row/column from C in Equation (28). For the A model, P2 is:

PA
2 44

44 11

1= − | |

| |( )

C
C

, (30)

where C44(11)denotes the 2 × 2 intercorrelation matrix of variables X and Z. Subtraction of (30)
from (29) yields the population incremental predictability of theAMmodel over theAmodel:

∆P P PAM A
2 2 2 44 11 44 11

11 44 11

= − =
−| | | | | | | |

| | | |
( )

( )

C C C C

C C
. (31)

Expansion of determinants in Equations (30) and (31) yield the following formulas for PA
2 and

∆P2:

PA
y x x z y z y x y z

x z x z

2
2 22

1 1
=

− −
− +

ρ ρ ρ ρ ρ
ρ ρ

, , , , ,

, ,( )( )
,

(32)

∆P
py x x xz x z z xz y z z xz x z x xz2 =

− + − +( ( ) ( ), , , , , , , ,ρ ρ ρ ρ ρ ρ ρ ρy xz x z

x z x z x z x xz z xz

, ,

, , , , ,

( ))

( )( )(

ρ
ρ ρ ρ ρ ρ

2 2

2 2

1

1 1

−
− + + + 2 2 1− −ρ ρ ρx z x xz z xz, , , )

.
(33)

A linkage between the A and AM models exists in the functional relationship of individual
component-criterion correlations and standardized regression coefficients (β) for the AM re-
gression model. Another formula of McNemar’s (1962) gives β coefficients from matrix deter-
minants:

β = −( )
| |

| |
1 1

11

p pC

C
,

(34)

where p is the row/column of the relevant predictor variable. For relevant β weights in the AM
model, these expand to:

β
ρ ρ ρ ρ ρ ρ

1
12

11

21
= =

− + −| |

| |

( ) ( ), , , , , ,C
C

y x z xz y z x xz z xz x z + −
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ρ ρ ρ ρ
ρ ρ ρ ρ

y xz z xz x z x xz

x xz z xz x z x z
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1 22 2 2 ρ ρx xz z xz, ,

,
(35)
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21
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.
(37)

Isolation and simultaneous solution of ρy,x and ρy,z in (35) and (36) yields:
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ρ β ρ β ρ ρ ρ ρ ρy x x xz x z x xz z xz y xz x xz, , , , , , ,( ) ( )= − + − +1
2

21 , (38)

ρ β ρ β ρ ρ ρ ρ ρy z z xz x z x xz z xz y xz z xz, , , , , , ,( ) ( )= − + − +2
2

11 . (39)

Recall that the expressions for inversion values noted earlier in this article were functions of
parametersB1, B2, andB3 in theAMfunction. These can be extended to parametersβ1,β2, andβ3
above by standardization:
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(40)
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.

(41)

β1 and β2 can then be expressed as functions of β3, xi, and zi:

β β σ
σ1
3= − zi x

xz

, (42)

β
β σ
σ2
3=

− xi z

xz

. (43)

Substitution of expressions (38) through (43) into (37) yields a simplified expression for β3:

β
ρ σ

σ ρ σ ρ σ3 =
−
+ −

y xz xz

i z z xz i x x xz xzx z
,

, ,

.
(44)

A linkage can now be made between β3 and ∆P2 by way of the only remaining criterion-
predictor correlation, ρy,xz. Isolating ρy,xz in (44) and substitution into (33) yields:

∆P x xz z xz x z x z x xz z xz

x z

2 3
2 2 2 2 2 1

=
+ + − −β ρ ρ ρ ρ ρ ρ

ρ
( ), , , , , ,

,
2 1−

.
(45)

Substitution of (45) into (32) produces the expression denoted as Equation (14) in the text:

P
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.

(46)
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APPENDIX B
Definitions of E(x 2z), E(xz 2), and E(x 2z 2)

Case 1: Dichotomous X and Z

Under the assumptions of zero expectation and unit variance, the numerical codes assigned
to values of X and Z are defined as:

X
p p

p
X

p p

phigh
x x

x
low

x x

x

=
−

=
−
−

( )
,

( )1 1

1
,

(47)

Z
p p

p
Z

p p

phigh
z z

z
low

z z

z

=
−

=
−
−

( )
,

( )1 1

1
,

(48)

where px and pz are the proportions in the “high” category for X and Z, respectively. E(x2z),
E(xz2), and E(x2z2) are defined by proportions px and pz, and the intercorrelation between X and
Z(ρx,z):

E x z
p

p p
x z x

x x

( )
( )

( )
,2 1 2

1
=

−
−

ρ
, (49)

E xz
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p p
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, (50)
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p p p p
x z x z
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,2 2 1

2 1 2 1

1 1
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− −
− −

ρ
. (51)

Case 3: Dichotomous X and Continuous Z

IfX andZ are dichotomous and continuous variables, respectively, both scaled to zero expec-
tation and unit variance, E(x2z), Xhigh, and Xlow equate to the expressions used with two dichoto-
mies (Equations 47, 49). E(xz2) and E(x2z2) now become functions of px, ρx,z, and the difference
in variances between groups defined by Xhigh and Xlow (∆V = σz

2 | X = Xhigh – σz
2 | X = Xlow):

E xz
p p Vp p Vp

p p
x x x x z x x x z
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2 2 21 2

1
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(52)
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.
(53)
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Notes

1. B and βwill be used throughout to denote unstandardized and standardized population pa-
rameters, respectively.

2.Note that the constraint ofPA
2 +∆P2≤ 1 also applies in the continuous case, and asymptotes

will exist when the denominator of Equation (25) equals zero.
3. Although the case of xi and zi having different signs is not discussed in the text, its plot

would simply be Figure 2 flipped over the Y axis, such that the dramatic increase in possible f 2

would occur with ρx,z > 0.
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