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Abstract 

The goal of this thesis is to design and test a real-time Stage 1 sleep detection and warning 

system using a low-cost single dry-sensor EEG headset. Such a system would allow aircraft 

pilots or truck drivers to receive an auditory warning when they are beginning to fall asleep. The 

device designed in this study records a single EEG signal and filters it into low Alpha (7.5 - 9.25 

Hz), high Alpha (10 - 11.75 Hz), low Beta (13 - 16.75 Hz), and high Beta (18 - 29.75 Hz) 

frequency bands. When the EEG transitions to match that of Stage 1 sleep for a short period of 

time, the device produces an audible alarm. 

 

The system proved 81% effective at detecting sleep in a small sample group. All failures were 

due to false alarms. Compared to tradition sleep scoring, this device predicted and responded to 

the onset of drowsiness preceding stage 1 sleep. 

 
Keywords: single-channel EEG, sleep, dry sensor, pilot, driver, low cost, monitor, drowsiness 
  



5 
 

Table of Contents 
Acknowledgements ......................................................................................................................... 3 

Abstract ........................................................................................................................................... 4 

Table of Figures .............................................................................................................................. 6 

I. Introduction ............................................................................................................................. 7 

II. Background/Review of Literature ...................................................................................... 10 

The Brain During Sleep ............................................................................................................ 10 

EEG Drowsiness and Sleep Detection ...................................................................................... 12 

Goals and Contributions ........................................................................................................... 17 

III. Methods.............................................................................................................................. 22 

The Neurosky Mindset .............................................................................................................. 22 

Software .................................................................................................................................... 23 

Hardware ................................................................................................................................... 27 

Integration ................................................................................................................................. 29 

Testing ...................................................................................................................................... 32 

IV. Results ................................................................................................................................ 34 

Sample Data .............................................................................................................................. 34 

Algorithm Effectiveness ........................................................................................................... 36 

V. Discussion and Conclusions .............................................................................................. 41 

Discussion ................................................................................................................................. 41 

Conclusion ................................................................................................................................ 43 

Bibliography ................................................................................................................................. 45 

Appendix A – Hardware ............................................................................................................... 48 

Appendix B – Software ................................................................................................................. 49 

 
  



6 
 

Table of Figures 

Figure 1: The Neurosky Mindset. ................................................................................................... 9 
Figure 2: Stages of Sleep in Humans. ........................................................................................... 11 
Figure 3:  Four Lobes of the Cerebral Cortex of the Brain. .......................................................... 12 
Figure 4: Placement for a 64-electrode System using the International 10-20 standard. ............. 18 
Figure 5: Placement of the Three Ground Electrodes on the Ear. ................................................ 18 
Figure 6: Process for Determining 𝐛𝐇𝐒𝟏 ..................................................................................... 24 
Figure 8: Definition of Formula Terms ........................................................................................ 26 
Figure 9: Functional Diagram of Software Behavior. .................................................................. 26 
Figure 10: Arduino with BlueSMiRF ........................................................................................... 28 
Figure 11: Functional Diagram of the Hardware .......................................................................... 29 
Figure 12: Photograph of the Sleep Detection System ................................................................. 29 
Figure 13: Values Used in the Sleep Algorithm ........................................................................... 31 
Figure 14: Example of algorithm operating on a Low Beta signal. .............................................. 32 
Figure 15: Example Sleep Data Gathered from the Neurosky Mindset ....................................... 35 
Figure 16: Data Correlated to the Sleep Counter Values .............................................................. 37 
Figure 17: Raw and Raw Mean Correlated to the Sleep Counter for a False Alarm .................... 38 
Figure 18: An Example of the Algorithm Results Compared to Clinical Results ........................ 40 
Figure 19: Algorithm Results Compared to Clinical Results ....................................................... 41 
 
  



7 
 

I. Introduction 

According to the National Highway Traffic Safety Administration, there are 100,000 police-

reported crashes due to driver drowsiness each year [National Sleep Foundation, 2012a]. These 

have resulted in 1,550 deaths, 71,000 injuries, and $12.5 billion in monetary losses. The actual 

numbers may be higher, because the NHTSA statistics rely on self-reporting.  Drowsiness and 

fatigue are of concern to airline pilots as well. In the 2009 crash of Colgan Air flight 3407, “the 

pilots' performance was likely impaired because of fatigue” [National Transportation Safety 

Board, 2010]. According to the National Sleep Foundation, “One in five pilots (20%) admit that 

they have made a serious error and one in six train operators (18%) and truck drivers (14%) say 

that they have had a “near miss” due to sleepiness” [National Sleep Foundation, 2012b]. Some of 

these accidents could have been avoided if drivers or pilots were alerted well in advance of the 

onset of fatigue and associated drowsiness.  

 

Currently, there are two major ways of driver drowsiness detection: driving pattern based 

detection, and eye closure detection. Driving pattern based detection is reliable, but focuses on 

the effects of falling asleep at the wheel. By the time these effects become noticeable, it may 

already be too late to prevent an accident. Eye closure detection depends on a vision system 

being able to track the eyes of a driver to determine if they are closed.  This detection system 

allows for earlier detection of driver drowsiness than driving pattern detection, but it is limited 

by the accuracy of the vision system used to determine eye closure. 

 

The drawbacks of poor accuracy and insufficient reaction time in current driver drowsiness 

detection systems have led to the exploration of new techniques based on changes in body 
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physiology as a function of fatigue.  One promising method is the use of signals recorded from 

scalp electrodes that measure patterns of changing electrical activity in the brain as someone 

goes from a state of complete alertness to fatigue and drowsiness. The process of recording these 

signals is known as Electroencephalography (EEG).  

 

EEG has been used to detect the stages of sleep since the 1930s [Loomis, Harvey, & Hobart, 

1937]. It has also been clinically used to monitor driver and pilot drowsiness [Lal & Craig, 2002; 

Caldwell, Mallis, Caldwell, Paul, Miller, & Neri, 2009].  However, these medical grade EEG 

devices are impractical for everyday driver drowsiness detection since they require the use of 

expensive equipment and complicated skin preparation with conductive gel for effective 

monitoring.  

 

Within the last few years, toys, such as the Star Wars Force Trainer and the Mind Flex, that 

detect simple EEG signals, have been designed for entertainment purposes. Both of these devices 

use a single dry-electrode to record EEG signal power in select frequency bands. This differs 

from medical grade EEG which uses multiple electrodes, attached with conductive gel and 

adhesive, to record EEG signal power at multiple locations along the subject’s scalp. Along with 

EEG toys like the Mind Flex, manufacturers also provide low cost EEG headsets that are 

comfortable and compact.  These toys offer very limited EEG recording capability but are simple 

and cheap, requiring minimal specialized training.  This makes them an attractive target for 

research efforts into effective driver drowsiness detection systems using EEGs. One such low 

cost EEG headset is the NeuroSky Mindset. 
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The NeuroSky Mindset (see Figure 1), used in this thesis, is a Bluetooth audio headset with a 

single dry-sensor electrode (electrode circled in figure 1) [Neurosky, 2009]. These devices do not 

have the accuracy of a clinical EEG, however they can detect general patterns in brain activity. 

These devices are small and inexpensive. Their size and general use of dry sensors makes them 

more practical than clinical EEG equipment for driver drowsiness detection. 

 

 

Figure 1: The Neurosky Mindset.  

Picture taken from Neurosky Brain Computer Interface Technologies (Neurosky Mindset). 
Electrode location circled in red. 
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II. Background/Review of Literature 

The Brain During Sleep 

Sleep is typically broken into four sleep stages proceeded by Rapid Eye Movement (REM) sleep. 

Stage 1 sleep is the transition from wakefulness to sleep. At this stage, a person can be woken 

easily, and may not be aware that they were sleeping. During stage 1 sleep, EEG signals are low 

amplitude and low frequency. An example of these signals can be seen in Figure 2. During stage 

2 sleep, body temperature decreases and the heart rate slows. In stage 2 sleep, alpha waves are 

periodically interrupted by alpha spindles or sleep spindles. Alpha spindles are 12-14 Hz bursts 

of brain activity that last at least half a second [Rechtschaffen & Kales, 1968]. These periods of 

alpha spindle activity are sometimes called alpha spindle epochs. Stages 3 and 4 are deeper 

sleep, with stage 4 being deeper than stage 3. REM sleep follows stage 4 sleep. REM sleep is 

most readily identified by rapid eye movement. During REM sleep, dreaming occurs and brain 

activity increases. Each of these stages continue to cycle from stage 1 through REM sleep 

throughout the sleeping period. 
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Figure 2: Stages of Sleep in Humans.  

Picture taken from Bryant et al. [2004]. 

 

The majority of brain activity during the transition from wakefulness to sleep occurs in the 

frontal and occipital lobes (see Figure 3). During the transition from wakefulness to sleep, alpha 

activity transitions from the occipital lobe to the frontal lobe. High occipital lobe activity is 

associated with relaxed wakefulness. During stages 2-4, delta activity in the frontal lobe 

increases and theta activity in the occipital lobe increases [Finelli, Borbély, & Achermann, 

2001]. Methods for sleep detection can be created by observing these features in the brain during 

the transition from wakefulness to sleep. 
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Figure 3:  Four Lobes of the Cerebral Cortex of the Brain.  

Picture from Wikipedia (Cerebral Cortex). 

 

EEG Drowsiness and Sleep Detection 

Morrow & Casey [1986] outlined a method for the real-time detection of sleep by focusing on 

three critical parameters in EEG recordings: waveform amplitude, waveform frequency, and 

duration of synchronization of the waveform. This last parameter is critical in that the waveform 

amplitude may meet a predefined voltage threshold for a frequency band for short periods of 

time, but this does not necessarily indicate sleep unless it meets the threshold for a given 

duration. Morrow et al. used a 50 µV predefined voltage threshold. The frequencies of focus 

were 8-12 Hz (Alpha) and 11.5-15 Hz (low Beta). Two counters were used to detect EEG 

threshold crossing with one counter for the number of sequential pattern matches indicative of 

sleep, and the other counter for the number of sequential non-matches.  When a frequency and 

amplitude matched the focus frequencies and thresholds the matching counter was incremented. 

When it did not match, a non-matching counter was incremented. When the match counter 
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reached 3, sleep was indicated. When the non-matching counter reached 8, wakefulness was 

indicated. Morrow et al. was able to reach a reliability of 97.9% for 48 of 49 alpha-spindle 

epochs. In addition, the detector was able to detect about 12.2% more epochs than visual scoring. 

This methodology may be applicable to Stage 1 sleep detection, but the presence of alpha-

spindle epochs indicates a deep stage of sleep. 

 

Merica & Fortune [2004] found that the transition between sleep and wakefulness was a gradual 

transition. When comparing both delta waves and beta waves to the overall power of the EEG 

signal, a gradual increase in delta waves was seen along with a gradual increase of beta waves. 

Merica commented that sleep was, “more one of withdrawal from the waking state rather than of 

invasion of the sleeping state.” In this way, it may be easier to detect the progression toward 

sleep rather than its onset. In general, frequencies from 1 Hz to 16 Hz increase while 

approaching sleep, while frequencies 17 Hz and higher decrease. This pattern continues after the 

onset of sleep, except that power in the 8-11 Hz range begins to increase as well. The change in 

the 8-11 Hz signal is especially noticeable in the occipital region where the signal diminishes and 

transitions to the frontal lobe. 

 

With this gradual transition toward sleep in mind, Lal, Craig, Boord, Kirkup, & Nguyen [2007] 

documented the creation of an algorithm for detection of drowsiness in drivers. The algorithm 

classified drowsiness/fatigue EEG signals into transitional (early fatigue phase), transitional–

posttransitional (medium fatigue phase), posttransitional (extreme fatigue phase and early Stage 

1 of sleep), and arousal phases (emergence from drowsiness). The signal was separated into 

delta, theta, alpha, and beta waves. An EEG baseline was recorded before the subject was 
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drowsy. From this baseline, the mean and standard deviation for each of the frequency bands was 

computed. The algorithm included coefficients to allow for fine-tuning a threshold for each 

frequency band. A maximum threshold was also hard coded to remove outliers. Data were 

analyzed in blocks of thirty seconds and this algorithm demonstrated a 10% error rate in sleep 

detection.  

 

Driver Fatigue Detection 

There are many commercial systems that can detect changing driving patterns of fatigued 

drivers, such as the Ford Driver Alert, the Mercedes Attention Assist, the Volkswagen Driver 

Alert System, or Volvo Driver Alert Control and Lane Departure Warning [Ford Motor 

Company, 2011; Taylor, 2008; Volkswagen, 2012; ZerCustoms, 2007]. Each of these systems 

monitor changes in driving displayed by drowsy drivers like  jerky steering movements or 

drifting out of lanes. When this occurs, an audible and visual warning is produced. Ford’s Driver 

Alert system even includes scenarios in which if the warning is ignored for too long, it can only 

be discontinued by stopping and exiting the car. The Danish “Anti Sleep Pilot” not only monitors 

driving patterns, but it requires that the driver push a button on the device as quickly as possible 

when indicated to verify that the driver’s response time is adequate [Coxworth, 2011]. 

 

Other systems like the Fraunhofer's Eyetracker or the Toyota Driver Monitoring System monitor 

the driver’s eyes to confirm that they are watching the road [Coxworth, 2010; Williams, 2008]. 

The driver can be warned if they are not watching the road when an obstacle is ahead. The driver 

is also warned if their eyes close for a period of time. 
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Each of these systems has its pros and cons. The erratic driving detection systems can monitor all 

forms of erratic driving, which includes distracted driving. Their disadvantage is a slow response 

time so that by the time driving has become erratic; it may be too late to stop an accident from 

occurring. The driver monitoring systems have the potential to detect driver drowsiness before an 

accident occurs, but they rely on being able to monitor a driver’s eyes to determine if they are 

open. According to Barr, Howarth, Popkin, & Carroll [2006], “For real-world, in-vehicle 

applications, sunlight can interfere with IR illumination, reflections from eyeglasses can create 

confounding bright spots near the eyes, and sunglasses tend to disturb the IR light and make the 

pupils appear very weak.” An EEG based device may be able to detect the onset of sleep before 

erratic driving has begun, and it has the added benefit of not requiring an unhindered view of the 

driver’s eyes. 

 

Low-Cost EEG devices 

Low cost EEG devices have not been on the market for long and relatively little research has 

been done on them. Most of the limited literature involves detecting the attentiveness of the user. 

In most cases, these low cost EEG devices proved to be adequate substitutes for medical grade 

EEG devices for certain low-level signal analysis. Since they usually have fewer sensors than 

medical grade equipment, they do not do a good job of locating specific signals within the brain. 

 

In one test with a low cost EEG device, Crowley, Sliney, & Murphy [2010] conducted two 

psychological tests (Stroop‘s color-word inference test [1935] and the Tower of Hanoi test [Hinz, 

1989]), to induce stress and correlate the results to the measured attention and meditation signals 

recorded from the Neurosky Mindset. By relying on signal trends, they were able to detect when 
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a subject's emotions changed.  In another test, Haapalainen, Kim, Forlizzi, & Dey [2010], 

collected data from multiple bio-sensors, including a Neurosky Mindset, and compared their 

ability to assess cognitive load. The attention signal from the device was then given a ranking of 

third best predictor of high cognitive load after heat flux and electrocardiogram (ECG) across the 

cognitive experiments conducted.  

 

Tan [2012] used a Neurosky Mindset to record EEG signals for adults and children reading easy 

or difficult sections of text to determine whether a user was having difficulty reading the text. 

They were able to distinguish easy/hard text pairings with an accuracy of 70% for adults and 

64% for children. The thesis commented that the Neurosky Mindset was shown to be “capable of 

collecting quality information.”  

 

Choi, College and Schwartz [2012] wrote a short article about several low cost EEG devices, 

including a few Neurosky dry-sensor EEG devices, and their ability to detect drowsiness. They 

found that these devices made “suitable candidates for further research in the detection of 

vigilance states.” They did not perform real-time analysis of the data or produce a warning when 

drowsiness was detected.  

 

In the study by Choi et al. [2012], the main area of focus was the frequency domain analysis of 

EEG collected from the Neurosky dry-sensor EEG device.  The frequency content of the signals 

were divided into clinically relevant frequency bands Alpha (8-13 Hz), Beta (14-30 Hz), and 

Theta (4-7 Hz) waves. It was expected that, as in clinical studies, alpha and beta waves would 

decrease when drowsy and theta waves would increase in Stage 1 sleep. In the study using EEG 
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signals obtained from the Neurosky device, alpha and beta waves did decrease when drowsy, but 

theta waves remained constant.  These results suggest that EEG signals obtained from low-cost 

EEG devices like the Neurosky may prove a useful target for drowsiness detection schemes. 

 

Goals and Contributions 

This thesis proposes the use of the Neurosky Mindset[Neurosky Brain Computer Interface 

Technologies, 2009], a low-cost EEG device using a single dry-sensor electrode on the forehead 

at position Fp1 (see figure 4) and grounded with three electrodes on the ear (see figure 5), along 

with supporting portable hardware and software, to design and validate a standalone system to 

detect the onset of stage 1 sleep in real-time. Such a system could be used by truck drivers or 

aircraft pilots to detect and warn for driver drowsiness and inattention with a very quick response 

time. This system would not need to monitor driving patterns, nor would it require an 

unhampered view of the driver’s eyes. This system will record a single EEG signal via a 

commercially available dry sensor and apply filters to split the signal into delta (0.5 - 2.75Hz), 

theta (3.5 - 6.75Hz), low alpha (7.5 - 9.25Hz), high alpha (10 - 11.75Hz), low beta (13 - 

16.75Hz), high beta (18 - 29.75Hz), low gamma (31 - 39.75Hz), and mid gamma (41 - 49.75Hz) 

frequencies. Time-frequency analysis will be implemented to monitor changes in these 

frequencies over time. Stage 1 sleep is indicated when the amplitude of the raw signal is low, and 

signal power in higher frequencies has been attenuated. When the EEG transitions resemble that 

of Stage 1 sleep, the device will produce an auditory alarm. 
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Figure 4: Placement for a 64-electrode System using the International 10-20 standard. 

Original Picture taken from Sharbrough, Chatrian, Lesser, Luders, Nuwer, & Picton [1991]. 

 

 

Figure 5: Placement of the Three Ground Electrodes on the Ear. 

Picture taken from Neurosky Brain Computer Interface Technologies [Neurosky, 2009]. 
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Of the background literature reviewed, the algorithm by Lal et al [2007] offered the ability to 

detect each stage of sleep including stage 1 sleep. The algorithm provided by Morrow & Casey 

[1986] was able to detect alpha epochs with a high degree of accuracy, but alpha epochs occur 

during stage 2 sleep. To reduce the number of false positives, counters, like those used by 

Morrow & Casey [1986] should be employed. Combining these methods allows for an algorithm 

capable of detecting stage 1 sleep while reducing the likelihood of false positives. 

 

Specific Aims 

In order to design and test the above described device, the following specific aims will be 

implemented: 

1. Data will be sampled from the Neurosky Mindset at 512 Hz along with estimates of 

power in the low alpha, high alpha, low beta, and high beta frequency bands. 

2. The data will be input to a Bluetooth-enabled microprocessor board. 

3. Data will be collected at the following time points: at least 30 seconds of baseline, awake 

data, and then continuously while a subject is falling asleep. 

4. Data in the frequency bands will be analyzed for changes to note differences in measures 

of mean power and variance. 

5. These measures will be used to set thresholds for differentiating between awake and stage 

1 sleep. 

6. A counter for awake or stage 1 sleep will increment when a power threshold for a specific 

frequency band has been reached.  

7. An auditory alarm will be produced when the maximum counter value is reached. 

8. Design criterion for the device are as follows: 
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a. Audio alarm within 30 seconds of sleep onset 

b. Volume of audio alarm to be set at least 70 dB 

c. Device size to be less than 125 cubic inches 

 

 

Challenges in design 

There are many problems which can affect the success of a stage 1 sleep detection system. One 

problem, discussed by Balkin, Horrey, Graeber, Czeisler, & Dinges [2011], is false alarms. In 

one study to detect fatigue in drivers using EEG, a system had a 14% false alarm rate. This high 

false alarm rate is unsustainable for a standalone device to detect driver drowsiness as it would 

prevent consumer acceptance of said device.  It will likely affect a user’s trust of the device and 

be a distraction. Care should be taken to balance rapid response with accurate readings, free of 

false alarms. The device will maximize both sensitivity and specificity, and will additionally 

provide an auditory and visual warning in the case of unexpected failure such as weak signal or 

loss of power. 

 

The biggest challenge foreseen with this device is finding the right balance between high 

sensitivity with high specificity to reduce the potential for false alarms. If the system cannot 

reliably determine that a person is falling asleep, it will not be a practical solution. Arguably, the 

more samples that can be gathered and analyzed, the better the results. A baseline signal should 

be gathered while the subject is awake so that each subject can serve as his or her control against 

which to compare the subsequent real-time data. The number of samples required must be 

balanced with the speed of response. The device will not be useful if it can only identify that a 



21 
 

person has fallen asleep several minutes after they the onset of stage 1 sleep. By that point, it 

would presumably be too late for a driver or pilot.  
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III. Methods 

The Neurosky Mindset 

The Neurosky Mindset uses Bluetooth technology to send data to the hardware host for analysis. 

Since the device uses a dry-sensor, it requires no saline or gel in order to ensure proper 

connectivity with the surface of the forehead and noise-free EEG signals. Contact with the dry-

sensor electrode is achieved by the pressure of the electrode against the subject’s forehead and 

held in place by the headset. It has proprietary filters to eliminate noise from muscle movement 

and electrical interference. It also includes a notch filter to eliminate 60 Hz noise from a power 

source. Since there are no wires attaching the electrode to an analysis device, interference due to 

electrode wire length is greatly reduced. 

 

The Neurosky Mindset can sample data at up to 512 samples per second.  In addition to the raw 

EEG data, the Mindset can output calculated delta (0.5 - 2.75Hz), theta (3.5 - 6.75Hz), low alpha 

(7.5 - 9.25Hz), high alpha (10 - 11.75Hz), low beta (13 - 16.75Hz), high beta (18 - 29.75Hz), low 

gamma (31 - 39.75Hz), and mid gamma (41 - 49.75Hz) waves as well as blink strength. It also 

outputs Neurosky proprietary attention and meditation signals that are meant to identify when a 

subject is paying attention or is relaxed. The attention and meditation signals will not be used for 

this research. These attention and meditation signals are created using data from the other 

frequency bands (e.g. alpha, beta, gamma, etc). These signals are not standard EEG signals, and 

they do not represent specific frequency bands. 
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Software 

The approach for creating the detection algorithm is based on the work by Lal et al [2007]. The 

foundation of this analysis is a 30 second baseline signal while the subject is awake. From this 30 

second recording (15360 samples), a mean and standard deviation of each frequency band is 

calculated. With this baseline data, a threshold is established for each frequency band in the 

form: 

𝐴𝐿𝑆𝑇 = 𝑎𝐿𝑆1𝐴𝐿𝑀 + 𝑎𝐿𝑆2𝐴𝐿𝑆𝐷 

Where 𝐴𝐿𝑆𝑇 is the threshold of low alpha at which a trend suggesting sleep is indicated, 𝐴𝐿𝑀 and 

𝐴𝐿𝑆𝐷 are the baseline low alpha mean and low alpha standard deviation, and 𝑎𝐿𝑆1 and 𝑎𝐿𝑆2 are 

proportionality constants that define the weighting associated with the baseline mean and 

standard deviation. These proportionality constants are derived experimentally by comparing the 

baseline signal to the signal amplitude when sleep is indicated by visual scoring. To visually 

score an EEG, the data was reviewed for the point in which trend line of the amplitude is near its 

lowest value, and the slope of the trend line is nearly zero for a sustained period of more than ten 

seconds. The proportionality constants are determined by relating the mean and standard 

deviation of a baseline signal to the signal amplitude when sleep is indicated by visual scoring. 

These proportionality constants are fine-tuned during debugging to improve response time while 

limiting false positives. After these proportionality constant values were determined, they were 

use for each subject without modification. In other words, these values needed to be fine-tuned 

for the specific hardware and software setup, but they did not require additional fine-tuning 

afterward even if a different subject was tested. Figure 6 describes the process flow for 

determining the proportionality constants using 𝑏𝐻𝑆1 as an example. 
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Figure 6: Process for Determining 𝐛𝐇𝐒𝟏 

 

Experimental data was used was used to establish initial proportionality constants, identify 

trends, and determine the correlation to stage 1 sleep for each signal. All of the formulas and the 

variable definition for the algorithm can be seen in Figure 7 and Figure 8. Using the defined 

increment and decrement values, sleep was indicated when the sleep counter reached 35. This 

value was chosen because it was high enough to limit false alarms due to transient signal drops, 

but it was not so high that it negatively affected responsiveness of the detection. A functional 

diagram of the software behavior can be seen in Figure 9. 
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Figure 7: Formulas Used in the Sleep Algorithm.  
Each threshold has a different effect on the sleep counter. For example, if the Alpha Low Sleep 
Threshold is crossed, the sleep counter increments by 1. Each term affects the sleep counter 
simultaneously. If Beta Low Wake Threshold was also crossed, the counter would be 
decremented by 2 resulting in a net counter change of -1. 

 

Awake/Asleep Thresholds Baseline Values 
𝐴𝐿𝑆𝑇 ≡ Low Alpha Sleep Threshold 𝐴𝐿𝑀 ≡ Low Alpha Mean 
𝐴𝐿𝑊𝑇 ≡ Low Alpha Wake Threshold 𝐴𝐿𝑆𝐷 ≡ Low Standard Deviation 
𝐴𝐻𝑆𝑇 ≡ High Alpha Sleep Threshold 𝐴𝐻𝑀 ≡ High Alpha Mean 
𝐴𝐻𝑊𝑇 ≡ High Alpha Wake Threshold 𝐴𝐻𝑆𝐷 ≡ High Standard Deviation 
𝐵𝐿𝑆𝑇 ≡ Low Beta Sleep Threshold 𝐵𝐿𝑀 ≡ Low Beta Mean 
𝐵𝐿𝑊𝑇 ≡ Low Beta Wake Threshold 𝐵𝐿𝑆𝐷 ≡ Low Beta Standard Deviation 
𝐵𝐻𝑆𝑇 ≡ High Beta Sleep Threshold 𝐵𝐻𝑀 ≡ High Beta Mean 
𝐵𝐻𝑊𝑇 ≡ High Beta Wake Threshold 𝐵𝐻𝑆𝐷 ≡ High Beta Standard Deviation 
𝑅𝑊𝑇 ≡ Raw Wake Threshold 𝑅𝑀 ≡ Raw Mean 
𝑅𝑆𝑇𝑀 ≡ Raw Sleep Threshold Mean 𝑅𝑆𝐷 ≡ Raw Standard Deviation 

Proportionality Constants 
𝑎𝐿𝑆1 ≡ Low Alpha Sleep 
Proportionality Constant 1 

𝑏𝐿𝑊1 ≡ Low Beta Wake 
Proportionality Constant 1 

𝑎𝐿𝑆2 ≡ Low Alpha Sleep 
Proportionality Constant 2 

𝑏𝐿𝑊2 ≡ Low Beta Wake 
Proportionality Constant 2 

𝑎𝐿𝑊1 ≡ Low Alpha Wake 
Proportionality Constant 1 

𝑏𝐻𝑆1 ≡ High Beta Sleep 
Proportionality Constant 1 

𝑎𝐿𝑊2 ≡ Low Alpha Wake 
Proportionality Constant 2 

𝑏𝐻𝑆2 ≡ High Beta Sleep 
Proportionality Constant 2 

𝑎𝐻𝑆1 ≡ High Alpha Sleep 
Proportionality Constant 1 

𝑏𝐻𝑊1 ≡ High Beta Wake 
Proportionality Constant 1 

𝑎𝐻𝑆2 ≡ High Alpha Sleep 
Proportionality Constant 2 

𝑏𝐻𝑊2 ≡ High Beta Wake 
Proportionality Constant 2 

𝑎𝐻𝑊1 ≡ High Alpha Wake 
Proportionality Constant 1 

𝑟𝑊1 ≡ Raw Wake Proportionality 
Constant 1 
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𝑎𝐻𝑊2 ≡ High Alpha Wake 
Proportionality Constant 2 

𝑟𝑊2 ≡ Raw Wake Proportionality 
Constant 2 

𝑏𝐿𝑆1 ≡ Low Beta Sleep 
Proportionality Constant 1 

𝑟𝑆1 ≡ Raw Sleep Proportionality 
Constant 1 

𝑏𝐿𝑆2 ≡ Low Beta Sleep 
Proportionality Constant 2 

 

Signal Values 
𝐴𝐻 ≡ High Alpha Signal 𝐵𝐿 ≡ High Alpha Signal 
𝐴𝐿 ≡ High Alpha Signal 𝑅 ≡ Raw Signal 
𝐵𝐻 ≡ High Alpha Signal  

Figure 8: Definition of Formula Terms 

 

 

Figure 9: Functional Diagram of Software Behavior. 

 Elements in green are based on the work of Lal et al [2007] and J.D. Cook [Cook, 2008] 

 

Since much of this algorithm is based on the baseline calculation, great care needs to be taken to 

ensure that the baseline is a good representative of standard awake brain activity. If the signal 

strength is too low due to poor skin contact, or too high due to abnormal activity, the baseline 

could be skewed. The Neurosky Mindset has a built-in detection system to flag noisy signals that 

can be used to ensure that only noise-free signals are used to create a baseline. Lal et al [2007] 
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used a maximum limit to throw out signals that were of an unusually high magnitude. Both a 

poor signal monitor and maximum threshold were employed to reduce the amount of bad data 

used to create the baseline. 

 

Initial testing of the algorithm was done using a PC based model with a Bluetooth serial interface 

reading data from the Neurosky Mindset. All data were recorded to a .CSV file for later analysis. 

After about 30 seconds worth of samples (about 15360 samples), the baseline values were 

recorded. After the baseline had been recorded, the low alpha, high alpha, low beta, and high 

beta magnitude calculated by the Neurosky Mindset were sampled once per second. Raw EEG 

was sampled every second, and the mean raw EEG for the last second was calculated. All of this 

data was used as an input to the sleep algorithm which ran once each second.  

 

Hardware 

The Arduino Uno was chosen as the main processing board for the data retrieval and sleep 

algorithm analysis. The Arduino has been used with the Neurosky Mindset before, and the 

interface is well documented [Neurosky 2010a, 2010b]. The BlueSMiRF module was used to 

retrieve the Bluetooth signals from the Neurosky Mindset and send them to the Arduino. The 

onboard USB port on the Arduino was used for debugging purposes. The Arduino was powered 

by a 5V USB power adaptor, which could be used in a car. A wiring diagram showing each 

component can be seen in figure 10. 
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Figure 10: Arduino with BlueSMiRF 

 

Once the device is powered, the piezoelectric buzzer provides the audio indication when sleep 

has been detected. The piezoelectric buzzer produces high pitched 4000 Hz sound at 70 dBA 

measured at 12 inches from the device enclosure. The LEDs provide indication when connection 

to the Neurosky Mindset has been established. A functional diagram of the hardware can be seen 

in figure 11. After the connection has been established, the LEDs indicate the progression toward 

sleep as determined by the sleep counter. If a poor connection to the Neurosky Mindset 

Bluetooth headset or poor contact with the scalp is sensed after the baseline has been recorded, 

the alarm is activated to alert the user that the device is no longer monitoring drowsiness. The 

fully assembled unit is 17.77 cubic inches in its enclosure. Additional details about the hardware 

used can be found in appendix A. A picture of the finished hardware can be seen in Figure 12. 
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Figure 11: Functional Diagram of the Hardware 

 

 
Figure 12: Photograph of the Sleep Detection System 

 

Integration 

Once the hardware was assembled, hardware and software integration took place. The USB port 

on the Arduino was used for debugging and fine-tuning the algorithm. The main difference 

between the PC model and the Arduino model was memory management. Since the Arduino has 

far less RAM than a PC, values for mean and standard deviation could not be calculated in a 

typical manner. Typically, each value is stored in an array and then the mean and standard 

deviation is computed from that array. Because of memory limitations, a running mean and 
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standard deviation were used based on the calculations by J.D. Cook [Cook, 2008]. This allowed 

for the mean and standard deviation calculation to be made without requiring storage of long 

durations of EEG signals.  

 

The algorithm for calculating the running mean and standard deviation were as 

follows, where M is the mean and s2 is the variance: 

M1 = x1 and S1 = 0 

For subsequent x's, use the recurrence formulas 

Mk = Mk-1+ (xk - Mk-1)/k  
Sk = Sk-1 + (xk - Mk-1)*(xk - Mk). 

For 2 ≤ k ≤ n, the kth estimate of the variance is s2 = Sk/(k - 1). 

 

To aid in fine tuning the software, raw, raw mean, low alpha, high alpha, low beta, and high beta 

measurements were sent over the USB port at about once per second – the same rate as sleep 

detection was being conducted. The raw signal is was the raw eeg signal magnitude at the 

moment the signal was read. The raw mean measurement was the mean raw signal magnitude for 

the last 512 samples (one second). The low alpha, high alpha, low beta, and high beta 

measurements were the magnitude of each frequency band as calculated by the Neurosky 

Mindset. The baseline values for raw mean, raw standard deviation, low alpha mean, low alpha 

standard deviation, high alpha mean, high alpha standard deviation, low beta mean, low beta 

standard deviation, high beta mean, and high beta standard deviation were also sent over the 

USB port after the 30 second baseline. Once the sleep algorithm was running, the sleep counter 

value was sent over USB as well as information about which factors added or subtracted to the 
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sleep counter within the last second, as seen in Figure 7. Using this information, the sleep 

counter values could be correlated to the signals to determine when the alarm must go off. These 

values were fed back into the algorithm to fine tune the performance. These values needed to be 

fine-tuned for the specific hardware and software setup, but they did not require additional fine-

tuning afterward even if a different subject was tested. Similar to Lal et al [2007], a maximum 

limit was used to throw out signals that were of an unusually high magnitude. The final values 

were as shown in figure 13. 

Proportionality Constant Values  and Maximum Signal Limit Value 
𝑎𝐿𝑆1 = 0.7 𝑏𝐿𝑊1 = 0.9 
𝑎𝐿𝑆2 = 0 𝑏𝐿𝑊2 = 0 
𝑎𝐿𝑊1 = 0.8 𝑏𝐻𝑆1 = 1 
𝑎𝐿𝑊2 = 0 𝑏𝐻𝑆2 = -0.53 
𝑎𝐻𝑆1 = 0.6 𝑏𝐻𝑊1 = 0.9 
𝑎𝐻𝑆2 = 0 𝑏𝐻𝑊2 = 0 
𝑎𝐻𝑊1 = 0.7 𝑟𝑊1 = 3 
𝑎𝐻𝑊2 = 0 𝑟𝑊2 = 0 
𝑏𝐿𝑆1 = 1 𝑟𝑆1 =  0.6 
𝑏𝐿𝑆2 =  -0.57 Maximum Limit = 300 

Figure 13: Values Used in the Sleep Algorithm 

 
From initial testing with the PC model, it was noted that low alpha and high alpha were only 

weakly correlated to sleep.  Because of this, sleep was indicated if the alpha signals were 

sufficiently lower than the mean value. Values for low beta and high beta more strongly 

correlated with sleep at about half a standard deviation below the mean value. A sudden change 

of three times the mean raw EEG signal value was given as an indication of wakefulness. To 

avoid transient signal drop from setting off the raw signal sleep detection, the mean of 512 

samples (sampled at 512 Hz) was used. If this mean value was less than 60% of the baseline 

mean, sleep was indicated. It can be noted that since all of the signals decrease in magnitude as 

approaching sleep, the thresholds were all set to indicate sleep when the value is below the sleep 
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threshold and awake when the value is above the awake threshold. All values were fine-tuned 

during integration testing to avoid false positives while still ensuring a fast response time. Figure 

14 shows how the algorithm operated for an example low beta signal. For more information 

about the software, see appendix B. 

 

Figure 14: Example of algorithm operating on a Low Beta signal.  
When the signal rises above the 𝐁𝐋𝐖𝐓 value, the counter decrements. When the signal dips below 
the 𝐁𝐋𝐒𝐓 value, the counter increments. 
 

Testing 

Tests were performed on three test subjects in two different sleep positions, lying down and 

seated. Only tests which concluded in a false positive or actual sleep were considered. If the 

subject failed to sleep and the alarm failed to activate, the test was discarded. The subject was 

encouraged to get comfortable in a position where they thought sleep was possible. They were 

informed that they needed to stay awake for a few minutes to record baseline values. Once the 

baseline was recorded, they could attempt to sleep if they wished. During some tests, the subject 

immediately tried to sleep. During other tests, the subject continued to read or intentionally stay 
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awake for a period of time, after which they went to sleep. In three out of sixteen of the tests, the 

drowsiness alarm went off before the subject was attempting to sleep.  
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IV. Results 

Sample Data 

Initial sleep data was gathered from the Neurosky Mindset in order to assess the viability of the 

sleep data and to start to determine coefficients of the sleep detection algorithm. This data was 

captured and analyzed for trends preceding and during the early stages of sleep. An example of 

this data can be seen in Figure 15. This data shows the changes in activity in the each frequency 

band and the raw EEG signal during the onset of stage 1 sleep. Asleep and awake are marked in 

each graph. 
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Figure 15: Example Sleep Data Gathered from the Neurosky Mindset  

 

This data showed that the majority of the changes occurred in the low alpha, high alpha, low 

beta, high beta, and overall raw signal. This is consistent with stage 1 sleep. Stage 1 sleep is 

indicated when the amplitude of the raw signal is low, and the higher frequencies have dropped 

off. In figure 15, the transition from awake to asleep is estimated to be at about 60 seconds due to 

the drop in power in the raw and high and low beta signals. This graph shows that the signal 
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power in each band drops off during the transition to sleep. This fits with a trend of decreased 

power compared to the baseline for the high alpha, low beta, high beta, and the raw signal. This 

drop is most noticeable in the raw and beta signals. The low alpha signal can spike high while 

awake, but it also periodically spikes after sleep has been reached. This is likely caused by alpha 

spindle epochs. Since the purpose is to detect the onset of sleep, and not deeper sleep, these alpha 

spindle epochs do not help detect stage 1 sleep. The data in figure 15 was used to establish initial 

proportionality constants. The raw signal was most highly correlated to sleep, so it was given the 

highest weighting with respect to the sleep counter increment or decrement value. Low beta and 

high beta had the second highest correlation. Low alpha and high alpha were weakly correlated 

to stage 1 sleep. 

 

Algorithm Effectiveness 

In 16 tests, drowsiness was detected in 13 or appropriately 81% of the cases. In 10 cases, the 

sleep algorithm indicated sleep an average of about 8.4 seconds after stage 1 sleep was identified 

with estimated visual scoring. In two cases, the sleep algorithm indicated sleep an average of 

about 38 seconds before stage 1 sleep was identified with estimated visual scoring. In another 

case, the sleep algorithm indicated sleep about 13 minutes into a 33 minute session in which 

stage 1 sleep was never clearly identified with estimated visual scoring. This may have been an 

indication of extreme drowsiness (as the subject was attempting to sleep at this point), or it may 

have been a false positive.  In 3 cases, the sleep algorithm indicated sleep before the subject had 

begun to attempt to sleep. These cases were considered false positives.  
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Figure 16 shows the sleep counter and its correlation to each signal. Using estimated visual 

scoring, stage 1 sleep occurred around second 641.The sleep algorithm indicated sleep at second 

647, six seconds later. Asleep and awake are marked in each graph. 

 

Figure 16: Data Correlated to the Sleep Counter Values 

 

When false alarms occurred using the algorithm, they occurred almost immediately after the 

baseline was recorded. Figure 17 shows the raw and raw mean correlated to the sleep counter 

value for a false alarm result. This figure shows the raw signal dropping to less than one sixth of 

peak power in a few seconds. This tripped a false indication that the subject was asleep. In every 

case when a false alarm was indicated, the signal started out relatively high immediately after the 

baseline, and it dropped suddenly afterward while the subject was still awake. Also, in each of 
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these cases, the baseline mean values and standard deviation values were greater than the cases 

where there was not a false alarm. 

 

 

Figure 17: Raw and Raw Mean Correlated to the Sleep Counter for a False Alarm 

 

In some cases the subject reported to have not been quite asleep. Since a major indicator of stage 

1 sleep is that a subject does not know they had been asleep, it is difficult to separate micro-sleep 

sessions from brain activity indicating drowsiness. Although there may have been some 
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premature alarms, they went off only when the subject was attempting to sleep and indicated that 

they were drowsy.  

 

To validate the algorithm, three datasets of sleep data from an electrode at position Fp0 from 

physionet.org was used [Goldberger et al, 2010]. This sleep study data had been reviewed and 

each sleep stage had been marked. This data was filtered into low alpha, high alpha, low beta, 

and high beta frequency bands and run through the sleep algorithm. These results mirrored the 

results from integration testing. The algorithm is tuned to detect the onset of drowsiness and may 

occasionally produce false alarms. Figure 18 shows a comparison of one of the clinical results 

versus the algorithm results. The algorithm does not miss the beginning of stage 1 sleep. Instead 

it warns of the drowsiness at 516 seconds for five seconds at and at 968 seconds for most the rest 

of the sample duration. According to clinical visual scoring, stage 1 sleep occurred at about 1226 

seconds. The sleep algorithm indicated sleep or extreme drowsiness 11.8 and 4.3 minutes before 

clinical visual scoring identified stage 1 sleep.   
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Figure 18: An Example of the Algorithm Results Compared to Clinical Results 

 
For each of the three validated datasets used, sleep was detected. In each case, the algorithm 

indicated sleep once several minutes before the clinical results indicated sleep, and again one to 

three minutes before clinical results indicated sleep. On average, the algorithm indicated sleep 

approximately 120 seconds before clinical results indicated sleep. Figure 19 shows the response 

time for each of the three datasets that were used for validation. 
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Start of Stage 1 Sleep (in 

seconds) 
  Algorithm Clinical Difference 
DataSet 1 968 1226 258 
DataSet 2 1046 1106 60 
DataSet 3 724 766 42 

Figure 19: Algorithm Results Compared to Clinical Results 

 
In reviewing the baseline values for each recorded dataset, the baseline values for datasets which 

resulted in a false alarm were higher than for a successful sleep detection case. It was also 

interesting to note that the baselines which resulted in accurate sleep detection varied very little 

from each other. An average of all of the baseline values was calculated, and the majority of the 

signals were within 8% of these aggregated mean values. 

V. Discussion and Conclusions 

Discussion 

The greatest challenge in the design of this device was the obtaining an accurate baseline for 

when the subject was awake. This baseline varied more than expected depending on the task 

being performed during the baseline, the posture of the subject (sitting versus lying down), and 

the initial drowsiness of the subject. A maximum signal limit was added to remove some of the 

larger spikes from things like sneezing during the baseline. If the signal was skewed higher 

because of excess movement or some other transient activity during the baseline recording 

period, but still below the maximum limit, the sleep algorithm would indicate sleep prematurely. 

Conversely, if the subject was already greatly fatigued when the baseline was recorded, it would 

affect the responsiveness of the algorithm, and potentially prevent the algorithm from ever 

detecting sleep. 
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On reviewing the cases where sleep was accurately detected and comparing them to the false 

alarms, it was noted that the baselines which resulted in accurate sleep detection varied very little 

compared to each other. When the baseline mean values across all tests were averaged per 

person, it was found that the best response was when the baseline values were closer to this 

aggregated baseline. In other words, the longer the duration of recorded baseline activity, the 

better the estimates of mean and standard deviation. These improved estimates directly improved 

the detection of sleep onset.  

 

If baseline data does not vary much over time, and longer baselines appear to be more accurate, 

it may be beneficial in future work to eliminate the 30 second baseline that occurs before using 

the device. Instead, a learning mode should be added which takes a baseline over several 

minutes. This baseline should be conducted under the normal use case. In other words, if the 

device is to be used during driving, the baseline should record several minutes of standard 

driving activity. This baseline would be stored to flash rather than RAM so that it could be saved 

after the device has been powered down. When the user later uses the device for drowsiness 

detection, the prerecorded baseline from the learning mode would be used rather than recording a 

new baseline.  

 

Saving the baseline values would have additional benefits. This would make the device a bit 

easier to use, and it would reduce some of the false positives. It would have the added benefit of 

being able to detect drowsiness as soon as the device is turned on and collecting data. If the 

driver is already drowsy when they activate the device, the device could indicate that they are 
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impaired immediately. Right now, it is assumed that the driver is not drowsy when the baseline is 

recorded.  

 

Since the baseline is recorded over several minutes rather than thirty seconds, the maximum limit 

filter may not be necessary. Over a long enough time, outlier signals (like sneezing) will not 

influence the detection of sleep. This would place a great emphasis on the learning mode 

calibration. If unusually high or low brain activity were occurring during the baseline, every use 

of the device afterward would be suspect. For example, if the baseline was taken while the 

subject was nearly asleep, it would be very difficult to detect drowsiness. 

 

Future work needs to focus on testing. More tests on the system should be performed, especially 

using simulated driving. In all of the tests performed for this thesis, the subject attempted to 

sleep. There was not adequate time to perform testing on sleep deprived subjects who were 

trying to stay awake, but if this device or one like it is to be used in an automotive or aerospace 

setting, testing must be conducted on its ability to detect this type of uncontrolled sleep and 

drowsiness. 

Conclusion 

Low cost EEG devices such as the Neurosky Mindset can be used to detect driver drowsiness. 

Even with the limited hardware capability and a single electrode, the device used in this study 

proved 81% effective at detecting drowsiness in a small sample group. In 62% of the cases, the 

sleep algorithm indicated stage 1 sleep an average of 8.4 seconds after stage 1 sleep was 

indicated with estimated visual scoring. In 19% of the cases, the sleep algorithm indicated sleep 

30 seconds to 20 minutes before stage 1 sleep was indicated with estimated visual scoring. The 
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remaining 19% of the cases were false positives in which the sleep algorithm indicated sleep, but 

the subject was not yet attempting to sleep. With a few modifications, such a system would be 

suitable for aircraft pilots or truck drivers to receive an auditory warning when they are 

beginning to become drowsy. Difficulties arise in comparing the current values to a baseline 

values. Great care should be taken in recording baseline values from which to compare current 

brain activity. Future research should focus on getting better, more permanent baseline values 

over a longer time. This should improve accuracy and response, and reduce the number of false 

alarms.  
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Appendix A – Hardware 

Below is a bill of materials used in this design: 

1 Radio Shack 273-0059 75 dB Piezo Buzzer 

5 Radio Shack 276-1622 5mm LEDs (2 yellow, 2 red, 1 green) 

5 Radio Shack 276-0079 Panel-Mount 5mm LED Holders. 

5 150 Ohm resistors 

1 SparkFun WRL-10269 BlueSMiRF Silver Bluetooth Modem 

1 SparkFun DEV-11021 Arduino Uno R3 

1 SparkFun PRT-10088 - Arduino Project Enclosure 
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Appendix B – Software 

#define LED9 9 
#define LED10 10 
#define LED11 11 
#define LED12 12 
#define LED13 13 
#define BAUDRATE 57600 
#define DEBUGOUTPUT 0 
#define BLUESMIRFON 2 
 
// neuro data variables 
byte errorRate = 200; 
byte attention = 0; 
byte meditation = 0; 
byte blinkstrength = 0; 
bool NewData = false; 
short raw; 
unsigned int rawpwr; 
unsigned int delta; 
unsigned int theta; 
unsigned int alpha1; 
unsigned int alpha2; 
unsigned int beta1; 
unsigned int beta2; 
unsigned int gamma1; 
unsigned int gamma2; 
 
// system variables 
unsigned long lastReceivedPacket = micros(); 
unsigned long totalTime = 0; 
boolean newRawData = false; 
boolean bigPacket = false; 
 
const int MaxValue = 40; 
const int MinValue = 0; 
const int Threshold = 35; 
const int RawLimit = 300; 
bool IsBaseline = true; 
bool FirstRun = true; 
bool IsAsleep = false; 
const int BaselineSize = 15360; 
const int BufferSize = 512; 
const int FlushLimit = 1024; 
int bufffill = 0; 
int SleepCounter = 0; 
int HeartBeatCounter = 0; 
const int HeartBeatPeriod = 512; 
 
int BaselineRawMean; 
int BaselineRawStdDev; 
int BaselineAlpha1Mean; 
int BaselineAlpha1StdDev; 
int BaselineAlpha2Mean; 
int BaselineAlpha2StdDev; 
int BaselineBeta1Mean; 
int BaselineBeta1StdDev; 
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int BaselineBeta2Mean; 
int BaselineBeta2StdDev; 
 
class RunningStat 
    { 
    public: 
        RunningStat() : m_n(0) {} 
 
        void Clear() 
        { 
            m_n = 0; 
        } 
 
        void Push(unsigned int x) 
        { 
            m_n++; 
            // See Knuth TAOCP vol 2, 3rd edition, page 232 
            if (m_n == 1) 
            { 
                m_oldM = m_newM = double(x); 
                m_oldS = 0.0; 
            } 
            else 
            { 
                m_newM = m_oldM + (x - m_oldM)/m_n; 
                m_newS = m_oldS + (x - m_oldM)*(x - m_newM); 
     
                // set up for next iteration 
                m_oldM = m_newM;  
                m_oldS = m_newS; 
            } 
        } 
 
        int NumDataValues() const 
        { 
            return m_n; 
        } 
 
        double Mean() const 
        { 
            return (m_n > 0) ? m_newM : 0.0; 
        } 
 
        double Variance() const 
        { 
            return ( (m_n > 1) ? m_newS/(m_n - 1) : 0.0 ); 
        } 
 
        double StandardDeviation() const 
        { 
            return sqrt( Variance() ); 
        } 
 
    private: 
        int m_n; 
        double m_oldM, m_newM, m_oldS, m_newS; 
    }; 
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RunningStat RawStats; 
RunningStat Alpha1Stats; 
RunningStat Alpha2Stats; 
RunningStat Beta1Stats; 
RunningStat Beta2Stats; 
 
////////////////////////// 
// Microprocessor Setup // 
////////////////////////// 
void setup() { 
  
  pinMode(LED9, OUTPUT); 
  pinMode(LED10, OUTPUT); 
  pinMode(LED11, OUTPUT); 
  pinMode(LED12, OUTPUT); 
  pinMode(LED13, OUTPUT); 
  pinMode(BLUESMIRFON, OUTPUT); 
  digitalWrite(BLUESMIRFON, HIGH); 
  Serial.begin(BAUDRATE);           // USB 
  Serial.println("Boot Complete."); 
} 
 
 
///////////// 
//MAIN LOOP// 
///////////// 
void loop() { 
 ReadData(); 
 
#if !DEBUGOUTPUT 
 
  // *** Add your code here *** 
   
  if(bigPacket) { 
    bigPacket = false;         
  } 
   
#endif 
  if (NewData) 
  { 
    AnalyzeBrainWaves(); 
 
    if (HeartBeatCounter == HeartBeatPeriod) 
    { 
     HeartBeat(); 
     HeartBeatCounter = 0; 
    } 
 HeartBeatCounter++; 
  } 
} 
 
void SerialSleepNumber() 
{ 
 Serial.println(SleepCounter, DEC); 
} 
void SerialPrintBaseline() 
{ 
    Serial.println("Baseline:"); 
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Serial.println("RawMean,RawStdDev,Alpha1Mean,Alpha1StdDev,Alpha2Mean,Alpha2StdDev,Beta1Me
an,Beta1StdDev,Beta2Mean,Beta2StdDev"); 
   Serial.print(BaselineRawMean, DEC); 
      Serial.print(","); 
      Serial.print(BaselineRawStdDev, DEC); 
      Serial.print(","); 
      Serial.print(BaselineAlpha1Mean, DEC); 
      Serial.print(","); 
      Serial.print(BaselineAlpha1StdDev, DEC); 
      Serial.print(","); 
   Serial.print(BaselineAlpha2Mean, DEC); 
      Serial.print(","); 
   Serial.print(BaselineAlpha2StdDev, DEC); 
      Serial.print(","); 
   Serial.print(BaselineBeta1Mean, DEC); 
      Serial.print(","); 
   Serial.print(BaselineBeta1StdDev, DEC); 
      Serial.print(",");    
   Serial.print(BaselineBeta2Mean, DEC); 
      Serial.print(","); 
   Serial.println(BaselineBeta2StdDev, DEC); 
} 
 
bool IsHeaderPrinted = false; 
String debugtext = ""; 
void SerialPrintData() 
{ 
    if (!IsHeaderPrinted) 
   { 
  Serial.println("Raw,RawMean,Alpha1,Alpha2,Beta1,Beta2,SleepCounter"); 
  IsHeaderPrinted = true; 
   } 
   Serial.print(","); 
   Serial.print(rawpwr, DEC); 
      Serial.print(","); 
   Serial.print(int(RawStats.Mean()), DEC); 
      Serial.print(","); 
      Serial.print(alpha1, DEC); 
      Serial.print(","); 
   Serial.print(alpha2, DEC); 
      Serial.print(","); 
   Serial.print(beta1, DEC); 
      Serial.print(","); 
   Serial.print(beta2, DEC); 
      Serial.print(","); 
   Serial.println(SleepCounter, DEC); 
} 
 
 
//////////////////////////////// 
// Read data from Serial UART // 
//////////////////////////////// 
byte ReadOneByte() { 
  int ByteRead; 
 
  while(!Serial.available()); 
  ByteRead = Serial.read(); 
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#if DEBUGOUTPUT   
  Serial.print((char)ByteRead);   // echo the same byte out the USB serial (for debug 
purposes) 
#endif 
 
  return ByteRead; 
} 
 
///////////////////////////////////////// 
// Reading data from MindSet bluetooth // 
//////////////////////////////////////// 
byte lastchecksum = 0; 
void ReadData() { 
  static unsigned char payloadData[256];  
  byte generatedChecksum; 
  byte checksum;  
  byte vLength; 
  int payloadLength; 
  int powerLength = 3; // defined in MindSet Communications Protocol 
  int k; 
 
   
  // Look for sync bytes 
  if(ReadOneByte() == 170) { 
    if(ReadOneByte() == 170) { 
 
      do { payloadLength = ReadOneByte(); } 
      while (payloadLength == 170); 
       
      if(payloadLength > 170) {    //Payload length can not be greater than 170 
         return; 
      } 
       
      generatedChecksum = 0;         
      for(int i = 0; i < payloadLength; i++) {   
        payloadData[i] = ReadOneByte();            //Read payload into memory 
        generatedChecksum += payloadData[i]; 
      }    
 
      checksum = ReadOneByte();                      //Read checksum byte from stream       
   generatedChecksum = 255 - generatedChecksum;   //Take one's compliment of 
generated checksum 
       
      if(checksum != generatedChecksum) {   
        // checksum error   
      } else {   
 
        for(int i = 0; i < payloadLength; i++) {    // Parse the payload 
          switch (payloadData[i]) { 
          case 2: 
            bigPacket = true;             
            i++;             
            errorRate = payloadData[i];          
            break; 
          case 4: 
            i++; 
            attention = payloadData[i];                         
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            break; 
          case 5: 
            i++; 
            meditation = payloadData[i]; 
            break; 
    case 0x16: 
            i++; 
            blinkstrength = payloadData[i]; 
            break; 
          case 0x80: // raw data 
            newRawData = true; 
            i++; 
            vLength = payloadData[i];  
            raw = 0; 
            for (int j=0; j<vLength; j++) { 
              raw = raw | ( payloadData[i+vLength-j]<<(8*j) ); // bit-shift little-endian 
            } 
            i += vLength; 
            rawpwr=abs(raw); 
   break; 
          case 0x83:  // power data 
            i++; 
            vLength = payloadData[i];  
            k = 0; 
             
            // parse power data starting at the last byte 
            gamma2 = 0; // mid-gamma (41 - 49.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              gamma2 = gamma2 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            gamma1 = 0; // low-gamma (31 - 39.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              gamma1 = gamma1 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            beta2 = 0; // high-beta (18 - 29.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              beta2 = beta2 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            beta1 = 0; // low-beta (13 - 16.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              beta1 = beta1 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            alpha2 = 0; // high-alpha (10 - 11.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              alpha2 = alpha2 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            alpha1 = 0; // low-alpha (7.5 - 9.25Hz) 
            for (int j=0; j<powerLength; j++) { 
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              alpha1 = alpha1 | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            theta = 0; // theta (3.5 - 6.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              theta = theta | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
            delta = 0; // delta (0.5 - 2.75Hz) 
            for (int j=0; j<powerLength; j++) { 
              delta = delta | ( payloadData[i+vLength-k]<<(8*j) ); // bit-shift little-
endian 
              k++; 
            } 
             
            i += vLength; 
            break;           
          default: 
            break; 
          } // switch 
        } // for loop 
      } // checksum success 
    } // sync 2 
  } // sync 1 
   
  //Check if data read is actually new. 
  if (checksum !=lastchecksum) 
  { 
   NewData=true; 
   lastchecksum=checksum; 
  } 
  else 
  { 
   NewData=false; 
  } 
} // ReadData 
 
void HeartBeat() 
{ 
 if (attention == 0) 
 { 
 
  LEDWrite(errorRate, 200, true); 
   if (!FirstRun & !IsBaseline) 
   { 
    SoundTheAlarm(); 
   } 
  Serial.print("P/S:"); 
  Serial.println(errorRate,DEC); 
 } 
 else 
 { 
  LEDWrite(SleepCounter, Threshold, false); 
  SerialPrintData(); 
  debugtext = ""; 
 } 
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} 
 
void LEDWrite(int value, int max, bool countdown) 
{ 
   if (countdown) 
     { 
          switch(value / (max / 5) ) { 
          case 0: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, HIGH); 
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, HIGH); 
            break; 
          case 1: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, HIGH); 
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, LOW); 
            break; 
          case 2: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, HIGH); 
            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, LOW); 
            break; 
          case 3:               
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, LOW);               
            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, LOW); 
            break; 
          case 4: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, LOW);               
            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, LOW); 
            break; 
          case 5: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, LOW);               
            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, LOW); 
            break; 
          }                      
     } 
   else 
     { 
          switch(value / ((max / 5) - 1) ) { 
          case 0: 
            digitalWrite(LED13, LOW); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, LOW); 
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            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, LOW); 
            break; 
          case 1: 
            digitalWrite(LED13, LOW); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, LOW); 
            digitalWrite(LED10, LOW); 
            digitalWrite(LED9, HIGH); 
            break; 
          case 2: 
            digitalWrite(LED13, LOW); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, LOW); 
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, HIGH); 
            break; 
          case 3:               
            digitalWrite(LED13, LOW); 
            digitalWrite(LED12, LOW); 
            digitalWrite(LED11, HIGH);               
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, HIGH); 
            break; 
          case 4: 
            digitalWrite(LED13, LOW); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, HIGH);               
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, HIGH); 
            break; 
          case 5: 
            digitalWrite(LED13, HIGH); 
            digitalWrite(LED12, HIGH); 
            digitalWrite(LED11, HIGH);               
            digitalWrite(LED10, HIGH); 
            digitalWrite(LED9, HIGH); 
            break; 
          }                      
     } 
} 
 
void AsleepAlgorithm() 
{ 
 if ((beta1 < (BaselineBeta1Mean - (0.57 * BaselineBeta1StdDev)))) { 
  SleepCounter = (SleepCounter < (MaxValue - 1)) ? SleepCounter + 2 : 
MaxValue; 
  Serial.print("b1+"); 
 } else if (beta1 > (0.9 * BaselineBeta1Mean)) { 
  SleepCounter = (SleepCounter > (MinValue + 1)) ? SleepCounter - 2 : 
MinValue; 
  Serial.print("b1-"); 
 } 
 if ((beta2 < (BaselineBeta2Mean - (0.53 * BaselineBeta2StdDev)))) { 
  SleepCounter = (SleepCounter < (MaxValue - 1)) ? SleepCounter + 2 : 
MaxValue; 
  Serial.print("b2+"); 
 } else if (beta2 > (0.9 * BaselineBeta2Mean)) { 
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  SleepCounter = (SleepCounter > (MinValue + 1)) ? SleepCounter - 2 : 
MinValue; 
  Serial.print("b2-"); 
 } 
 if ((alpha1 < (0.7 * BaselineAlpha1Mean))) { 
  SleepCounter = (SleepCounter < (MaxValue)) ? SleepCounter + 1 : MaxValue; 
  Serial.print("a1+"); 
 } else if (alpha1 > (0.8 * BaselineAlpha1Mean)) { 
  SleepCounter = (SleepCounter > (MinValue)) ? SleepCounter - 1 : MinValue; 
  Serial.print("a1-"); 
 } 
 if ((alpha2 < (0.6 * BaselineAlpha2Mean))) { 
  SleepCounter = (SleepCounter < (MaxValue)) ? SleepCounter + 1 : MaxValue; 
  Serial.print("a2+"); 
 } else if (alpha2 > (0.7 * BaselineAlpha2Mean)) { 
  SleepCounter = (SleepCounter > (MinValue)) ? SleepCounter - 1 : MinValue; 
  Serial.print("a2-"); 
 } 
 if ((rawpwr > (3 * BaselineRawMean))) { 
  SleepCounter = (SleepCounter > (MinValue + 6)) ? SleepCounter - 7 : 
MinValue; 
  Serial.print("r-"); 
 }else if ((RawStats.Mean() < (0.6 * BaselineRawMean))) { 
  SleepCounter = (SleepCounter < (MaxValue - 6)) ? SleepCounter + 7 : 
MaxValue; 
  Serial.print("r+"); 
 } 
 
 if ((SleepCounter > Threshold)) { 
  IsAsleep = true; 
 } else { 
  IsAsleep = false; 
 } 
} 
 
void AnalyzeBrainWaves() 
{ 
   
 if (attention == 0 & meditation == 0) { 
  if (bufffill != 0) 
   bufffill = bufffill - 1; 
 } 
 
 if (!FirstRun & (attention > 0 | meditation > 0) & (rawpwr < RawLimit) ) { 
  RawStats.Push(rawpwr); 
  Alpha1Stats.Push(alpha1); 
  Alpha2Stats.Push(alpha2); 
  Beta1Stats.Push(beta1); 
  Beta2Stats.Push(beta2); 
 } 
 
 if (bufffill == BufferSize - 1 & !FirstRun & !IsBaseline) { 
  bufffill = 0; 
  if (attention > 0 | meditation > 0) { 
   AsleepAlgorithm(); 
  } 
  ClearAll(); 
  if ((IsAsleep)) { 
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   //Sound the alarm 
   SoundTheAlarm(); 
  } 
  else 
  { 
   QuietTheAlarm(); 
  } 
 } 
 if (bufffill == BaselineSize - 1 & !FirstRun & IsBaseline) { 
  IsBaseline = false; 
  bufffill = 0; 
  CreateBaseline(); 
  SerialPrintBaseline(); 
  ClearAll(); 
 } 
 if (bufffill == FlushLimit - 1 & FirstRun) { 
  FirstRun = false; 
  bufffill = 0; 
  ClearAll(); 
 } 
 
 bufffill = bufffill + 1; 
} 
 
void ClearAll() 
{ 
        Alpha1Stats.Clear(); 
        Alpha2Stats.Clear(); 
        Beta1Stats.Clear(); 
        Beta2Stats.Clear(); 
        RawStats.Clear(); 
} 
 
 
void CreateBaseline() 
{ 
  BaselineRawMean = RawStats.Mean(); 
  BaselineRawStdDev = RawStats.StandardDeviation(); 
 
  BaselineAlpha1Mean = Alpha1Stats.Mean(); 
  BaselineAlpha1StdDev = Alpha1Stats.StandardDeviation(); 
 
  BaselineAlpha2Mean = Alpha2Stats.Mean(); 
  BaselineAlpha2StdDev = Alpha2Stats.StandardDeviation(); 
 
  BaselineBeta1Mean = Beta1Stats.Mean(); 
  BaselineBeta1StdDev = Beta1Stats.StandardDeviation(); 
 
  BaselineBeta2Mean = Beta2Stats.Mean(); 
  BaselineBeta2StdDev = Beta2Stats.StandardDeviation(); 
} 
 
 
void SoundTheAlarm() 
{ 
    tone(8, 4000); 
} 
 



60 
 

void QuietTheAlarm() 
{ 
    noTone(8); 
} 
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