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Disruption of valosin-containing protein activity causes
cardiomyopathy and reveals pleiotropic functions in cardiac
homeostasis
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Valosin-containing protein (VCP), also known as p97, is an
ATPase with diverse cellular functions, although the most
highly characterized is targeting of misfolded or aggregated pro-
teins to degradation pathways, including the endoplasmic
reticulum–associated degradation (ERAD) pathway. However,
how VCP functions in the heart has not been carefully examined
despite the fact that human mutations in VCP cause Paget dis-
ease of bone and frontotemporal dementia, an autosomal dom-
inant multisystem proteinopathy that includes disease in the
heart, skeletal muscle, brain, and bone. Here we generated
heart-specific transgenic mice overexpressing WT VCP or a
VCPK524A mutant with deficient ATPase activity. Transgenic
mice overexpressing WT VCP exhibit normal cardiac structure
and function, whereas mutant VCP-overexpressing mice
develop cardiomyopathy. Mechanistically, mutant VCP-overex-
pressing hearts up-regulate ERAD complex components and
have elevated levels of ubiquitinated proteins prior to manifes-
tation of cardiomyopathy, suggesting dysregulation of ERAD
and inefficient clearance of proteins targeted for proteasomal
degradation. The hearts of mutant VCP transgenic mice also
exhibit profound defects in cardiomyocyte nuclear morphology
with increased nuclear envelope proteins and nuclear lamins.
Proteomics revealed overwhelming interactions of endogenous
VCP with ribosomal, ribosome-associated, and RNA-binding
proteins in the heart, and impairment of cardiac VCP activity
resulted in aggregation of large ribosomal subunit proteins.
These data identify multifactorial functions and diverse mecha-
nisms whereby VCP regulates cardiomyocyte protein and RNA
quality control that are critical for cardiac homeostasis, suggest-
ing how human VCP mutations negatively affect the heart.

Mutations in valosin-containing protein (VCP, 2 also known
as p97, the mammalian homologue of yeast Cdc48) are the
cause of inclusion body myopathy associated with Paget disease
of bone and frontotemporal dementia (IBMPFD), a degenera-
tive multisystem proteinopathy that causes pathology of the
skeletal muscle, brain, bone, and heart. IBMPFD is character-
ized by progressive muscle weakness that presents in adulthood
and can ultimately include heart failure, dementia, and abnor-
mal bone growth (1–4). VCP forms a barrel-shaped homohex-
amer that functions as an ATPase through the action of its D1
and D2 domains, whereas its N-terminal domain recruits VCP
to different subcellular locations (5–10). VCP has been ascribed
an array of cellular functions, including protein quality control
(7, 11–16), membrane fusion (17), chromatin remodeling (18),
disassembly of the DNA helicase complex (19, 20), DNA repair
(21), formation of the endoplasmic reticulum (ER) (22) and
nuclear envelope (23), and regulation of RNA stability (24).
However, the best-characterized molecular function for VCP is
providing energy to extract terminally misfolded polypeptides
from the ER into the cytosol for degradation by the ubiquitin
proteasome system (UPS) in a process termed ER-associated
degradation (ERAD) (7, 11–14, 16). VCP additionally functions
in nuclear protein quality control in a pathway analogous to
ERAD at the inner nuclear membrane (INM) (25, 26).

VCP also directly associates with the large ribosomal subunit
(27–29) and functions in ribosome-associated degradation in
yeast to release aberrant translated polypeptides from ribo-
somes for proteasomal degradation (27, 28, 30). A large portion
of cellular energy is expended to assemble, maintain, turnover,
and degrade the upwards of 10 million ribosomes present in a
mammalian cell, which requires the action of diverse nonribo-
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somal proteins, including many ATPases, RNA helicases, and
RNA-binding proteins (RBPs) (31–33). However, specific func-
tions for VCP in these processes have not been established.

VCP is abundantly expressed in the heart (34), and IBMPFD
includes cardiomyopathy and heart failure (1–4). However, the
pathways and processes that are regulated by VCP in car-
diomyocytes are not known. To address this, we generated
heart-specific transgenic mice overexpressing WT VCP or a
VCP mutant with impaired ATPase activity (VCPK524A) (8).
Although overexpression of WT VCP is without noticeable
effect, transgenic VCPK524A mice develop cardiomyopathy, up-
regulate the ERAD machinery, and accumulate ubiquitinated
proteins in the heart. Moreover, cardiomyocyte nuclear mor-
phology is disrupted in VCPK524A-overexpressing hearts, sug-
gesting roles of VCP in maintaining the integrity of cardiomyo-
cyte nuclei. Surprisingly, proteomics identified predominant
interactions of VCP with ribosomal proteins, ribosome-associ-
ated proteins, and RBPs. Further investigation revealed accu-
mulation and aggregation of large ribosomal subunit proteins
in VCP-mutant hearts, suggesting underappreciated functions
of VCP in ribostasis that may also contribute to IBMPFD in
humans. Taken together, we have uncovered multiple protein
and RNA quality control pathways through which VCP func-
tions in cardiomyocytes to maintain cardiac homeostasis.

Results

Inhibition of VCP activity in cardiomyocytes causes
cardiomyopathy

To investigate the cardiac functions of VCP, we generated
transgenic mice with cardiomyocyte-specific overexpression of

VCP. We utilized a bigenic transgene system that requires
expression of both the tetracycline transactivator (tTA) trans-
gene and the VCP transgene that contains the tetracycline
operator within the �-myosin heavy chain (�-MHC) promoter
to produce tetracycline- or doxycycline-repressible expression
in cardiomyocytes (35) (Fig. 1A). The presence of both trans-
genes is referred to as double-transgenic (DTg). In addition to
transgenic mice overexpressing WT VCP, we generated trans-
genic mice overexpressing a VCPK524A mutant (Fig. 1A) to
interrogate the effects of impaired VCP activity in the heart.
Mutation of lysine 524 within the D2 ATPase domain of VCP to
alanine results in dramatically reduced ATPase activity and
produces a dominant-negative mutant that is deficient in seg-
regase and protein complex remodeling functions (8). As
expected, the hearts of WT or mutant VCP DTg mice main-
tained on normal lab chow in the absence of tetracycline or
doxycycline (the bigenic transgene system is fully induced) had
significantly increased VCP protein expression (Fig. 1B). WT
and K524A mutant VCP transgenic mice showed no cardiac
hypertrophy at 6 months of age (Fig. 1C). However, analysis of
gross morphology and histology at 9 months of age revealed
cardiac enlargement and atrial dilation in DTgVCPK524A mice
but not the WT (Fig. 1D). Cardiac structure and function of
transgenic mice were evaluated by echocardiography, demon-
strating normal cardiac morphology and function in mice over-
expressing WT or mutant VCP in the heart through 6 months
of age (Fig. 1, E–G), but by 8 –10 months of age, DTgVCPK524A

mice developed systolic dysfunction, whereas aged DTgVCP
mice remained normal (Fig. 1, F and G). Cardiomyopathy in
aged DTgVCPK524A mice occurs in the absence of significant

Figure 1. Impairment of cardiomyocyte VCP activity causes cardiomyopathy. A, schematic of the binary transgenic system used to induce heart-specific
expression of WT VCP or an ATPase-deficient VCP mutant (VCPK524A). B, Western blot of cardiac lysates for VCP in DTg mice overexpressing WT or K524A mutant
VCP and single transgenic controls at 2 months of age. GAPDH was used as a sample processing and loading control. C, heart weight-to-body weight ratios at
6 months of age in the indicated genotypes of mice. D, gross morphology (top) and histology (H&E, bottom) of DTgVCPK524A and tTA control hearts at 9 months
of age. Scale bars � 1 mm. E–G, cardiac structure and function were evaluated at various ages in the indicated groups of mice by echocardiography to measure
left ventricular inner chamber dimension in diastole (LVIDd, E), left ventricular inner chamber diameter in systole (LVIDs, F), and fractional shortening percent-
age (FS%, G) in mouse hearts at the indicated age in months. The number of mice analyzed is shown in the columns in C and E–G. *, p � 0.05 compared with tTA
controls using one-way ANOVA with Tukey’s post hoc test.
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left ventricular hypertrophy or remodeling (Fig. 1, C–G, and
Fig. S1, A and B). Thus, inhibition of VCP activity ultimately has
a negative effect on cardiac function, suggesting important
roles of VCP in cardiac homeostasis.

To further examine the pathologic effects of disrupting VCP
ATPase activity in the heart, we performed transverse aortic
constriction (TAC) to surgically induce pressure overload
hypertrophy in VCP and VCPK524A transgenic mice at 8 –10
weeks of age. After 4 weeks of pressure overload, mice overex-
pressing VCPK524A exhibited a substantial decline in cardiac
function compared with tTA controls and mice with heart-
specific overexpression of WT VCP (Fig. 2, A–C). By 8 weeks
following TAC surgery, DTgVCPK524A mice developed dilated
cardiomyopathy, characterized by diminished cardiac func-
tional performance, whereas tTA controls and DTgVCP mice
did not undergo significant ventricular remodeling and had a
relatively preserved cardiac functional response to pressure
overload (Fig. 2, A–C). Histological evaluation confirmed ven-
tricular dilation and revealed prominent dilation of the left
atrium in DTgVCPK524A mice (Fig. 2D), indicating increased
sensitivity to pressure overload–induced cardiac dysfunction
and remodeling when VCP ATPase activity is defective, com-
pared with tTA control mice. Taken together, these data dem-
onstrate that disruption of VCP ATPase activity causes age-de-
pendent cardiomyopathy and hastens cardiac disease in
response to pressure overload.

VCP activity is critical for cardiac proteostasis and ERAD

VCP underlies protein quality control, which commonly
involves degradation of proteins by the UPS, including an indis-

pensable role in the ERAD pathway, which removes misfolded
proteins from the ER for UPS-mediated degradation in the
cytoplasm (7, 11–14, 16). Hearts overexpressing VCPK524A but
not WT VCP had a significant elevation of ubiquitinated pro-
teins in the soluble fraction (Fig. 3, A and B), indicating that
inhibition of cardiac VCP activity results in defective clearance
of proteins targeted for degradation by the UPS. Importantly,
the accumulation of ubiquitinated proteins in DTgVCPK524A

hearts (Fig. 3, A and B) preceded cardiomyopathy, suggesting
that proteotoxicity contributes to disease caused by inhibition
of VCP ATPase activity.

Next we evaluated the ERAD pathway in transgenic hearts
with manipulated VCP activity given the build-up of ubiquiti-
nated proteins in DTg mutant hearts (Fig. 3, A and B) and given
the known importance of ERAD in cardiac physiology (36). We
performed Western blotting for various components of the
ERAD pathway and ER-resident chaperones involved in pro-
tein folding and quality control. Sel1L, an ER membrane–
embedded adaptor required for the dislocation of improperly
folded proteins in the ER for degradation by ERAD (37–40), was
up-regulated in hearts overexpressing either VCP or VCPK524A

compared with tTA controls (Fig. 3, C and D), indicating that
VCP overexpression stabilizes an ERAD complex at the car-
diomyocyte ER membrane. Homocysteine-induced ER protein
(Herp), another crucial ER membrane adaptor for ERAD (41),
and OS-9, an ER luminal lectin that binds misfolded glycopro-
teins in the ER for recognition by the ERAD complex (41, 42),
were up-regulated specifically in hearts overexpressing the
VCPK524A mutant (Fig. 3, C and D). Importantly, the mRNA
levels of the ERAD genes Sel1L, OS9, and Herpud1 (encodes
Herp) were not up-regulated, and some were even down-regu-
lated in VCP mutant– overexpressing hearts (Fig. S2), indicat-
ing that the increased protein levels of ERAD factors observed
in VCP-mutant hearts occurs through a posttranscriptional
mechanism. These data suggest formation of additional ERAD
protein complexes as a primary compensatory response to
defective VCP activity and malfunctioning ERAD in the heart.
These changes in expression of ERAD proteins occurred at 2
months of age (Fig. 3, C and D), before development of car-
diomyopathy in DTgVCPK524A mice. DTgVCPK524A hearts also
showed increased protein expression of the ER-resident prolyl
isomerase cyclophilin B (CypB) (43) and protein disulfide
isomerase (Fig. 3, C and D), both of which participate in target-
ing of substrates for ERAD (44 –46). In contrast, expression of
BiP and calnexin, ER chaperones that assist with folding of the
bulk of secretory proteins in the ER (47), were unaltered (Fig. 3,
C and D). Thus, impairment of VCP activity in the heart is
associated with dysregulation of ERAD proteins and a build-up
of ubiquitinated proteins.

To directly examine the effects of VCP inhibition on car-
diomyocytes, we treated cultured rat neonatal cardiomyocytes
with the VCP inhibitor DeBQ for 8 h, which resulted in a sub-
stantial accumulation of ubiquitinated proteins (Fig. 4, A and
B). These data indicate that VCP activity is necessary for pro-
tein quality control and ubiquitin proteasome-mediated degra-
dation and that acute inhibition of VCP disrupts cardiomyocyte
proteostasis.

Figure 2. Exacerbated pressure overload-induced cardiac disease in
mice with heart-specific overexpression of mutant VCP. A–C, cardiac left
ventricular inner chamber dimension in diastole (LVIDd, A), left ventricular
inner chamber diameter in systole (LVIDs, B), and fractional shortening per-
centage (FS%, C), evaluated by echocardiography in the indicated groups of
mice 8 –10 weeks of age without TAC (0 weeks) and 4 and 8 weeks after TAC
surgery. The number of mice analyzed is shown in the columns. *, p � 0.05
compared with tTA controls at the same time point using one-way ANOVA
with Tukey’s post hoc test. D, heart gross morphology and histological anal-
yses of cardiac sections stained with H&E from the indicated lines of mice 12
weeks after TAC surgery. Scale bars � 1 mm.
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The UPR is activated in response to ER stress and results in
inhibition of translation and induction of expression of ER
chaperones downstream of the three ER-membrane UPR sen-
sors, activating transcription factor 6� (ATF6�), inositol-re-
quiring enzyme 1� (IRE1�), and protein kinase R–like ER
kinase (PERK) (48). The UPR thus serves as a parallel pathway
to simultaneously enhance the protein folding capacity and
reduce the protein folding load within the ER, whereas ERAD
functions to remove terminally misfolded proteins from the ER
for degradation by the UPS. Here we observed that VCP mutant
hearts had increased levels of PERK and robust induction of the
activated nuclear form of ATF6� (Fig. 5, A and B). VCP
ATPase– deficient hearts did not exhibit activation of IRE1� or

its downstream target Xbp1 (Fig. 5, A and B), indicating that the
ATF6� and PERK branches of the UPR, but not the IRE1�
pathway, are engaged in VCP mutant hearts, likely as a protec-
tive mechanism to cope with defective ERAD.

Disruption of VCP activity causes cardiomyocyte nuclear
dysmorphology

To gain insight into cellular defects caused by disruption of
cardiomyocyte VCP activity, we evaluated the subcellular
architecture in transgenic hearts by transmission EM. The
results demonstrated normal cardiomyocyte ultrastructure in
single transgenic tTA control and DTgVCP hearts (Fig. 6A).
Although cardiac ultrastructure was normal in all genotypes
at 6 weeks of age (Fig. S3), by 5 months of age, which precedes
the cardiomyopathy phenotype, hearts overexpressing the
ATPase-deficient VCP mutant exhibit prominent defects in
cardiomyocyte nuclear morphology, including abnormal
nuclear shape, nuclear fragmentation, and increased invagina-
tions in the nuclear membrane (Fig. 6A), suggesting that VCP
activity is required to maintain nuclear structural integrity.
These marked defects in nuclear morphology in DTgVCPK524A

hearts at 5 months of age were not accompanied by defects in
myofilament or mitochondrial structure (Fig. 6A). We also per-
formed EM at 10 months of age, when DTgVCPK524A hearts are
overtly diseased (Fig. 1), which revealed even more severe
nuclear dysmorphology in DTgVCPK524A cardiomyocytes,
including the presence of intranuclear vesicles, intranuclear
membraneless regions of low electron density, and mitochon-
drial ultrastructural abnormalities, whereas aged tTA control

Figure 3. Dysregulation of ERAD and accumulation of ubiquitinated proteins in mutant VCP-overexpressing hearts. A and B, Western blot for total
ubiquitinated (Ub) proteins in cardiac protein lysates at 2 and 6 months of age (A) and quantification of these levels in the indicated genotypes of mice at 2 and
6 months of age (B). n � 4 or 3 samples. C and D, Western blot (C) and quantitation (D) of the indicated endoplasmic reticulum and ERAD proteins in cardiac
lysates at 2 and 6 months of age in the indicated genotypes of mice. n � 4 or 3 samples. **, p � 0.01; *, p � 0.05 compared with tTA controls using one-tailed
Student’s t test.

Figure 4. Acute inhibition of VCP disrupts cardiomyocyte proteostasis. A
and B, Western blot (A) and quantification (B) of ubiquitinated (Ub) proteins in
lysates of cultured neonatal rat cardiomyocytes treated with the VCP inhibitor
DeBQ (5 �M for 8 h). �-tubulin is shown as a processing and loading control.
**, p � 0.01 using one-tailed Student’s t test.
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and DTgVCP hearts retained normal cardiomyocyte nuclear
and subcellular ultrastructure (Fig. 6A).

To investigate molecular alterations that may underlie or
coincide with the observed cardiomyocyte nuclear dysmor-
phology in DTgVCPK524A hearts (Fig. 6A), we performed
immunoblotting for nuclear lamins and components of the
nuclear envelope and linker of nucleoskeleton and cytoskeleton
complex in cardiac lysates from transgenic mice at 2 and 6
months of age. The results indicate an increased abundance of
nuclear lamins and specific components of the nuclear enve-

lope in hearts overexpressing the ATPase-deficient VCP
mutant at 6 months of age (Fig. 6, B and C) prior to development
of cardiomyopathy but following up-regulation of ERAD com-
plex proteins (Fig. 3, C and D). Indeed, VCPK524A hearts showed
substantial up-regulation of lamin A/C as well as lamin B1,
whereas the expression of nuclear lamins was unaltered by
overexpression of WT VCP (Fig. 6, B and C). VCPK524A-over-
expressing hearts also had increased protein levels of the INM
protein SUN2 and the linker of nucleoskeleton and cytoskele-
ton complex protein nesprin-1 at 6 months of age (Fig. 6, B and

Figure 5. Activation of the UPR in VCP transgenic hearts. A and B, Western blot of components of the three branches of the UPR in cardiac protein lysates
at 6 months of age (A) and quantification of protein levels (B) in the indicated genotypes of mice. Gapdh is shown as a processing and loading control. n � 3
samples for each genotype. **, p � 0.01; *, p � 0.05 compared with tTA controls using one-tailed Student’s t test.

Figure 6. Cardiomyocyte nuclear dysmorphology in hearts with deficient VCP ATPase activity. A, transmission EM images of transgenic hearts of the
indicated genotypes at 5 and 10 months of age. Nuc, nucleus. # indicates nuclear fragmentation. Arrows indicate intranuclear membrane-bound structures, and
arrowheads point to intranuclear membraneless regions of low electron density. The asterisk denotes abnormal mitochondria. Scale bars � 2 �m. B and C,
Western blot (B) and quantification (C) of nuclear membrane and nuclear lamina proteins using cardiac protein lysates from transgenic mice of the indicated
genotypes at 2 and 6 months of age. Gapdh was used as a processing and loading control. n � 4 or 3 samples. **, p � 0.01; *, p � 0.05 compared with tTA
controls using one-tailed Student’s t test.
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C). Lamin-associated polypeptide 2� (LAP2�), an INM protein
(49, 50), was up-regulated in hearts overexpressing WT VCP or
VCPK524A at 2 and 6 months of age (Fig. 6, B and C), suggesting
that VCP forms a complex with LAP2� at the cardiomyocyte
inner nuclear membrane. However, the expression of the struc-
turally related INM protein MAN1 was unaltered by VCP over-
expression (Fig. 6B). Indeed, VCP has been reported to function
in a protein quality control pathway at the INM (25, 26), which
may also be the case in cardiomyocytes. In conclusion, impair-
ment VCP ATPase activity in the heart is sufficient to cause
severe defects in the structure and molecular composition of
cardiomyocyte nuclei.

The VCP interactome implies a role in cardiac ribostasis

In an effort to gain further mechanistic insight into the
molecular functions of VCP in the heart, we performed pro-
teomics to identify VCP-interacting proteins by immunopre-
cipitating endogenous VCP from mouse hearts and performing

unbiased mass spectroscopy (MS)-based peptide analysis.
Notably, we identified a profound enrichment of RBPs, ribo-
somal proteins and translation factors, nucleolar proteins, and
ribonucleoproteins (RNPs) in the cardiac VCP interactome
(Fig. 7A and Table S1). These include the known VCP interac-
tor and RBP Ataxin-2 (51) and several “L” ribosomal proteins
(Rpl proteins) that compose the large ribosomal subunit, ribo-
somal “S” proteins (Rps proteins) that compose the small
ribosomal subunit, ribosome-binding protein 1 (Rrbp1), and
Uba52, a fusion protein of ubiquitin with Rpl40 (52). Also
identified were eukaryotic elongation factors and translation
initiation factors, heterogeneous nuclear ribonucleoproteins
(hnRNPs), DEAD-box RNA helicases (Ddx and Dhx proteins),
and the nucleolar proteins nucleophosmin (NPM) and nucleo-
lin (Fig. 7A). Importantly, many of these VCP-interacting pro-
teins have been identified as components of RNP granules,
higher-order cytoplasmic complexes of RNA and RBPs that
accumulate in response to translation inhibition. These include

Figure 7. VCP interacts with RBPs, nucleolar proteins, and ribosomal proteins in the heart. A, VCP was immunoprecipitated (IP) from cardiac lysates from
2-month-old WT mice, and immunoprecipitated proteins were sequenced by MS. RBPs, ribonucleoproteins, and ribosomal proteins were overwhelmingly
enriched in the VCP cardiac interactome. The full dataset is available in the supporting information. B, schematic of the domain structure of VCP used for yeast
two-hybrid screening with the N-terminal cofactor-binding domain of VCP as bait, which also identified ribosomal and translational proteins as direct
interactors of VCP. The table lists all prey plasmids sequenced three or more times of 41 unique interacting proteins identified and 66 sequenced prey clones
in total. C, immunoprecipitation of VCP from mouse heart protein lysates, followed by immunoblotting for NPM and nucleolin. IgG immunoprecipitation was
used as a control. D, Western blot for NPM and nucleolin in transgenic hearts at 6 months of age from the indicated genotypes of mice. Gapdh was used as a
processing and loading control. E, Western blot to detect aggregation of the indicated proteins using Triton-soluble and -insoluble protein pellets (later made
soluble with urea) of cardiac extracts from the indicated genotypes at 6 months of age. F, representative immunohistochemistry for the indicated large
ribosomal subunit proteins (green) in cardiac cryosections from transgenic mice of the indicated genotypes at 6 months of age. Scale bar � 10 �m. Arrowheads
indicate areas with aggregated Rpl3 or Rpl19 exclusively in DTgVCPK524A hearts.
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hnRNPs, staufens (Stau1 and Stau2), G3BP1/2, Ddx helicases,
and euakaryotic initiation and elongation factors (53–57).
Taken together, these data suggest that VCP has important
functions in the regulation of ribosome remodeling and assem-
bly and/or dissociation of complexes of ribosomal proteins,
RNA, and RBPs, which could affect RNP granule dynamics and
ribosome homeostasis.

As a complementary experimental approach to discover pro-
teins that directly associate with VCP, we performed yeast two-
hybrid (Y2H) screening using the N-terminal cofactor binding
domain of VCP as bait (Fig. 7B). The known VCP cofactors
Nsfl1c (also known as p47) (17) and Ubxn2a (58) were
sequenced several times (Fig. 5B), validating the Y2H approach.
Importantly, the large ribosomal subunit protein Rpl12 and the
translation initiation factor Eif3a were also sequenced several
times (Fig. 7B), substantiating the association of VCP with ribo-
somal and ribosome-associated proteins in the heart (Fig. 7A).
The small ribosomal subunit protein Rps20 and the known
VCP cofactor Ufd1 (30) were also among the 41 unique clones
identified by Y2H screening (data not shown). Thus, unbiased
proteomics approaches collectively indicate predominant
interactions of VCP with RBPs, ribosomal proteins, and ribo-
some-associated proteins.

It is also noteworthy that VCP was found to interact with the
nucleolar proteins NPM and nucleolin in the heart (Fig. 7A),
which was confirmed by immunoprecipitation of VCP and
Western blotting (Fig. 7C). Moreover, NPM and nucleolin pro-
tein levels are up-regulated in VCPK524A hearts (Fig. 7D). VCP
has been reported previously to function in the nucleolus (59),
which serves as the preliminary site of ribosome biogenesis
(33). Thus, VCP could potentially participate in processing or
maturation of rRNA and preribosomes in cardiomyocyte
nucleoli.

To investigate the functional consequence of the association
of VCP with ribosomes and ribosome-associated proteins in
cardiomyocytes, we processed hearts from transgenic mice into
Triton-soluble and insoluble fractions and performed immu-
noblotting for ribosomal proteins. There was a substantial
increase in the large ribosomal subunit proteins Rpl5 and Rpl7
in the insoluble fraction in hearts overexpressing ATPase-defi-
cient VCP (Fig. 7E), suggesting that ribosomal proteins aggre-
gate when cardiomyocyte VCP activity is inhibited. Immuno-
histochemistry further revealed accumulation and aggregation
of the large ribosomal subunit proteins Rpl3 and Rpl19 in
DTgVCPK524A cardiomyocytes (Fig. 7F), suggesting important
cardiac functions for VCP in ribosome assembly, turnover,
and/or remodeling. However, acute pharmacological inhibition
of VCP activity in rat neonatal cardiomyocytes did not disrupt
large ribosomal subunit protein localization (Fig. S4), suggest-
ing that aggregation of ribosomal proteins caused by genetic
inhibition of VCP activity in the heart may be secondary to
abnormal ERAD activity and dysregulation of proteostasis.
Indeed, genetic deletion of the ERAD component Sel1L in
mouse pancreas also results in aggregation of ribosomal pro-
teins (37), indicating that ERAD may functionally couple pro-
tein degradation and ER protein quality control with transla-
tion machinery to orchestrate synchronized regulation of
proteostasis in vivo.

Discussion

Cardiomyocyte VCP activity is required for cardiac
homeostasis and ERAD

Mutations in VCP cause multisystem proteinopathy 1 or
IBMPFD, which affect skeletal muscle, brain, bone, and heart
and account for roughly 50% of all familial multisystem pro-
teinopathy disorders (60). Mutations in VCP are also thought to
be responsible for 1–2% of familial ALS (61). The vast majority
of the disease-causing mutations are missense mutations in the
N-terminal cofactor and ubiquitin binding domain of VCP dis-
tal from its ATPase domains (62, 63); however, the underlying
molecular etiology of these mutations and the mechanisms by
which they cause disease are unclear. Therefore, to directly
interrogate the functions of VCP in the heart, we mutated the
Lys-524 residue within the D2 ATPase domain of VCP, which is
known to be required for its activity (8).

Disruption of cardiomyocyte VCP ATPase activity in vivo by
overexpression of an ATPase-deficient VCPK524A mutant
resulted in age-dependent cardiomyopathy and an exacerbated
cardiac disease response to pressure overload, underscoring the
crucial functions of VCP in cardiac physiology and adaptive
responsiveness. VCP is known to function in a myriad of
ubiquitin-dependent cellular protein quality control pathways,
including its well-described translocase functions in the ERAD
pathway, where VCP extracts misfolded proteins from the ER
for degradation by the UPS (7, 11–14, 16). Hearts overexpress-
ing the VCPK524A mutant accumulated ubiquitinated proteins
and up-regulated several ER membrane and ER luminal pro-
teins that participate in the ERAD pathway, which is likely a
compensatory response because of defective clearance of
ERAD substrates in these cardiomyocytes. Interestingly, trans-
genic hearts overexpressing either WT or mutant VCP up-reg-
ulated protein expression of the ER membrane adaptor Sel1L,
suggesting a stoichiometric complex between these two pro-
teins. Expression of Sel1L is a critical determinant of the stabil-
ity of the ERAD complex, including regulation of the requisite
ERAD E3 ligase Hrd1 in the ER membrane (38). Thus, hearts
overexpressing WT VCP likely enhance the stability and
expression of a functional ERAD complex, whereas VCPK524A

overexpressing hearts up-regulate the ERAD pathway, likely in
a nonfunctional manner whereby misfolded substrates in the
ER are fed into the ERAD complex and ubiquitinated but
unable to be dislocated for degradation by the UPS. Indeed,
similar to what we observed with inhibition of cardiac VCP
activity, genetic knockdown of Hrd1 results in cardiac hyper-
trophy at baseline and augmented cardiomyopathy in response
to pressure overload (36), providing further evidence of the crit-
ical role of ERAD in cardiac homeostasis and the response of
the heart to pathological stress.

A previous study found a reduction in cardiac hypertrophy 2
weeks after TAC-induced pressure overload in cardiomyocyte-
specific transgenic mice overexpressing WT VCP (64).
Although we did not evaluate cardiac structure in our trans-
genic VCP mouse models until 4 and 8 weeks after TAC sur-
gery, no reduction in cardiac hypertrophy was observed. Our
WT VCP transgenic mice were generated on the same genetic
background (FVB/N), and expression was also driven by the
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�-MHC promoter, achieving similar robust overexpression as
the previously reported transgenic model (64). Based on our
results, it is likely that VCP overexpression in the heart only has
minimal functional effects, given its already high abundance,
accounting for upward of 1% of total cellular protein (65–67).

VCP activity is necessary to maintain cardiomyocyte nuclear
integrity

Expression of the VCPK524A mutant in the mouse heart
caused a dramatic alteration in nuclear morphology along with
the appearance of intranuclear vesicles for the first time, as well
as alterations in the molecular composition of the nuclear enve-
lope and nuclear lamina. Although VCP has been reported to be
involved in assembly of the nuclear envelope (23), we did not
observe defects in cardiomyocyte nuclear morphology in
DTgVCPK524A hearts until 5 months of age, suggesting that
VCP does not directly mediate envelope assembly.

Interestingly, there was a stoichiometric up-regulation of the
lamin-binding INM protein LAP2� with overexpression of
either WT or mutant VCP at 2 months of age, suggesting that
VCP forms a complex with LAP2� at the cardiomyocyte INM.
Indeed, we observed VCP both in the cytoplasm and the
nucleus in cardiomyocytes, as reported in other cell types (25,
26, 59, 68). The VCP homolog Cdc48 also functions in an INM
quality control pathway of yeast (25, 26), and because the
nuclear envelope is contiguous with the ER, it is possible that
VCP functions in a pathway at the cardiomyocyte INM analo-
gous to ERAD in the ER to regulate proteostasis of this entire
linked compartment. Intranuclear aggregates are observed in
cardiac and skeletal muscle myocytes from patients with
IBMPFD (3, 69), suggesting that the nuclear protein quality
control functions of VCP may contribute to the molecular eti-
ology of human disease. Indeed, the heart is particularly suscep-
tible to disease caused by mutations in genes encoding proteins
of the nuclear lamina or nuclear envelope (49, 70). Thus, car-
diomyocyte nuclear defects likely contribute to cardiomyopa-
thy in VCPK524A mice.

VCP activity and cardiac ribostasis

VCP can also function in ribosome-associated quality con-
trol to facilitate the release of polypeptides stalled in translation
on ribosomes for degradation by the proteasome (27, 28, 30).
We found that VCP directly interacts with ribosomal proteins,
and impairment of cardiac VCP ATPase activity causes ribo-
somal protein aggregation, suggesting that VCP functions in
ribosome biogenesis and/or remodeling in cardiomyocytes.
VCP could participate in ribosome biogenesis within the car-
diomyocyte nucleolus, particularly given its interaction with
NPM and nucleolin, which could directly affect ribosome
assembly and formation. Indeed, EM imaging of VCPK524A

hearts at 10 months of age showed electron-opaque regions
emanating from what appeared to be the nucleolus, as if these
were regions with accumulating condensed ribonuclear pro-
teins (Fig. 6A). Indeed, we also observed aggregation of large
ribosomal subunit proteins in the cardiomyocyte cytoplasm
when VCP activity was inhibited, suggesting that VCP can
function in ribosome processing, shuttling, turnover, or
remodeling in the nucleus and cytoplasm. Unbiased pro-

teomics identified associations of VCP with ribosomal pro-
teins and translation factors, supporting a role of VCP in
cardiomyocyte ribostasis.

It is possible that VCPK524A hearts exhibit aberrant ribosome
quality control as a secondary response to stalled translation
downstream of activation of the UPR. However, we observed
specific and prominent effects on the ERAD pathway in
VCPK524A hearts and believe that induction of PERK and acti-
vation ATF6� occur as a secondary response to enhance the
protein folding capacity of the ER to compensate for defective
ER protein quality control. ER stress alone could not account
for the direct interaction of VCP with ribosomes nor its previ-
ously established functions in translation stress (27), suggesting
that VCP could have direct effects on ribostasis in the heart.
Our data indicate that VCP inhibition causes primary defects in
ribosome quality control that take time to manifest in the adult
heart to ultimately contribute to or even induce cardiomyopa-
thy, as reminiscent of multisystem proteinopathy in the heart
and other tissues caused by VCP mutations in human patients.

Overall, our results identify that VCP activity is critical for
cardiac homeostasis and function. We found that VCP activity
is necessary for proper cardiac ERAD and ribostasis as well as
maintenance of cardiomyocyte nuclear structure. These pleio-
tropic phenotypes resulting from impaired VCP activity under-
score the multifaceted molecular mechanisms whereby VCP
mutations may cause disease in multiple organ systems in
humans, especially in the heart.

Experimental procedures

Animals

Transgenic mice with cardiomyocyte-specific overexpres-
sion of WT VCP or VCP containing a point mutation of lysine
524 to alanine (K524A) were generated using the bigenic
�-MHC promoter-driven transgene system (35), as described
previously (71, 72). All mice were generated on the FVB/N
genetic background. Briefly, a mouse VCP cDNA (Dharmacon,
MMM1013-202859349) was subcloned into the SalI and Hin-
dIII restriction sites of the �-MHC promoter expression vector
(35), and the resulting construct was digested with NotI to gel-
purify the promoter–cDNA fragment for oocyte injection by
the Transgenic Animal and Genome Editing Research Core at
Cincinnati Children’s Hospital. To generate the VCPK524A

mutant construct, mutagenesis was performed using the
QuikChange II XL site-directed mutagenesis kit (Agilent Tech-
nologies) and the following primers: forward, 5�-GACCTCCT-
GGCTGTGGGGCAACCTTACTGGCTAAAG-3�; reverse,
5�-CTTTAGCCAGTAGGTTGCCCCACAGCCAGGAGGTC-3�.

Transgenic mice in the FVB/N genetic background were
bred and maintained on normal lab chow in the absence of
tetracycline or doxycycline so that the bigenic �-MHC promot-
er-driven system remains fully induced at all times, which
begins around birth in ventricular cardiomyocytes (35).
Because no disease was observed in VCP transgenic mice, and
disease in VCPK524A mice was not observed until after 6
months, we did not need to use the inducibility of this bigenic
system. Echocardiography to evaluate cardiac function (72) and
TAC to surgically induce pressure overload hypertrophy in 8-
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to 10-week-old mice (73) were performed as described previ-
ously. All animal procedures were approved by the Cincinnati
Children’s Institutional Animal Care and Use Committee (pro-
tocol 2016-0069) and conformed to the NIH Guide for the Care
and Use of Laboratory Animals. The number of mice used in
this study reflects the minimum number of mice needed to
achieve statistical significance (see “Statistical analysis”). The
animals were not randomized and handled in a blinded manner,
and both sexes were used. Analgesics were given to mice after
the TAC surgical procedure to reduce pain (buprenorphine
given subcutaneously at 0.1 mg/kg).

Cultured neonatal rat cardiomyocytes

Primary rat neonatal cardiomyocytes were cultured from dis-
associated hearts of 1- to 2-day-old neonatal rats exactly as
described previously (72). Cardiomyocytes were cultured in
M199 medium (Corning) with 1% BGS (Hyclone) for 48 h and
then treated with DeBQ (Sigma-Aldrich) in M199 medium
with 1% bovine growth serum for 8 h prior to harvesting for
Western blotting.

Western blotting

Western blotting was performed as described previously
(71). Proteins were extracted from mouse hearts or cultured
cardiomyocytes in radioimmune precipitation assay buffer (50
mM Tris�HCl (pH 7.4), 1% Triton X-100, 1% sodium deoxy-
cholate, 1 mM EDTA, and 0.1% SDS) with Halt protease inhib-
itors (Thermo Fisher Scientific) and sonicated with a Bioruptor
UCD-200 (Diagenode), and lysates were cleared by centrifuga-
tion at 14,000 rpm for 10 min at 4 °C. Fractionation of mouse
hearts into soluble and insoluble fractions was performed as
described previously (74) with modifications. Hearts were
homogenized in NET buffer (20 mM Tris�HCl (pH 8.0), 100 mM

NaCl, and 1 mM EDTA) with 1% Triton X-100 and protease
inhibitors, sonicated, and clarified by centrifugation at
20,000 � g for 20 min at 4 °C, and then the supernatant was
saved as the Triton-soluble fraction. The pellet was washed
twice with PBS and protease inhibitors and then resuspended in
urea buffer (7 M urea, 2 M thiourea, 4% CHAPS, and 30 mM Tris
(pH 8.5)) with protease inhibitors, passed through an 21-gauge
needle 10 times, sonicated, and clarified by centrifugation at
20,000 � g for 10 min at 4 °C to generate the insoluble fraction.
Protein concentrations were determined using the DC Protein
Assay (Bio-Rad) or the Pierce 660 nm Protein Assay (Thermo
Fisher Scientific). Lysates were boiled in Laemmli buffer,
resolved by SDS-PAGE, and transferred to PVDF membranes
(Immobilon-FL, Millipore) for immunoblotting. Primary anti-
bodies used were VCP (Abcam, ab36047, 1:500 or Novus Bio-
logicals, NBP120-11433, 1:1,000), Gapdh (Fitzgerald, 10R-
G109A, 1:50,000), ubiquitin (Enzo, BML-PW0930-0100,
1:500), Sel1L (Abcam, ab78298, 1:1,000), OS-9 (Abcam,
ab109510, 1:500), Herp (Abcam, ab73669, 1:500), cyclophilin B
(Abcam, ab16045, 1:2,000), calnexin (Cell Signaling Technol-
ogy, 2433, 1:500), protein disulfide isomerase (Cell Signaling
Technology, 2446S, 1:500), BiP (Sigma, G8918, 1:2000), �-tu-
bulin (Sigma, T5168, 1:1,000), ATF6�-N (Signalway,
SAB24383, 1:1,000), PERK (Cell Signaling Technology, 3192S,
1:1,000), IRE1� (Cell Signaling Technology, 3294S, 1:1,000),

p-IRE1� (Abcam, ab48187, 1:1,000), Xbp1-s (Cell Signaling
Technology, 83418S, 1:1,000), lamin A/C (Cell Signaling Tech-
nology, 2032, 1:500), lamin B1 (Cell Signaling Technology,
12586, 1:1,000), LAP2� (Bethyl Laboratories, A304-840A,
1:500), nesprin-1 (Abcam, ab192234, 1:500), nesprin-2 (Novus
Biologicals, NBP1-84190, 1:500), SUN2 (Abcam, ab124916,
1:500), MAN1 (Santa Cruz Biotechnology, sc-50458, 1:500),
Ran (Abcam, ab157213, 1:500), Gata4 (Santa Cruz Biotechnol-
ogy, sc-1237, 1:250), Rpl7 (Abcam, ab72550, 1:500), Rpl5
(Abcam, ab86863, 1:500), hnRNPA1 (Abcam, ab50492, 1:500),
�-sarcomeric actin (Sigma, A2172, 1:15,000), nucleophosmin
(Abcam, ab10530, 1:500), and nucleolin (Abcam, ab22758,
1:1,000). Primary antibodies were followed by the appropriate
fluorescent secondary antibodies (LI-COR Biosciences) and
detection on an Odyssey CLx scanner (LI-COR Biosciences).

Transmission EM and immunohistochemistry

EM was performed on mouse cardiac tissue exactly as
described previously (72). Hearts were perfusion-fixed in
glutaraldehyde/cacodylate buffer, embedded in epoxy resin for
sectioning, and then counterstained and imaged on a transmis-
sion electron microscope. Immunohistochemistry (IHC) was
performed as described elsewhere (73, 75). Hearts were fixed in
4% paraformaldehyde for 4 h, incubated in 30% sucrose over-
night, embedded in O.C.T (Tissue-Tek), frozen, and cryosec-
tioned. Cryosections were fixed in methanol at �20 °C for 10
min, washed in PBS, blocked in IHC buffer (PBS, 5% goat
serum, 1% BSA, 1% glycine, and 0.2% Triton X-100) for 1 h at
room temperature, and then incubated with anti-Rpl3 (Pro-
teintech, 66130-1-Ig) or anti-Rpl19 (Abnova, H00006143-M01)
antibodies diluted 1:50 in IHC buffer overnight at 4 °C. Sections
were then incubated with Alexa Fluor secondary antibodies
(Thermo Fisher Scientific) diluted 1:1000 in IHC buffer for 1 h
at room temperature and mounted with ProLong Gold Anti-
fade Mountant (Thermo Fisher Scientific). Cultured neonatal
rat cardiomyocytes were fixed in 4% paraformaldehyde and
stained similarly using anti-Rpl6 (GeneTex, GTX114913, 1:50)
or anti-Rpl7 (Abcam, ab72550, 1:100) antibodies. Staining with
wheat germ agglutinin (Invitrogen) and quantification of cell
surface area was performed in paraffin-embedded cardiac sec-
tions as described previously (72, 76). Image acquisition was
performed on a Nikon A1 confocal microscope.

Immunoprecipitation, Y2H, and proteomics

Immunoprecipitation of mouse cardiac lysates was per-
formed as described elsewhere (71). Mouse hearts were homog-
enized in lysis buffer (25 mM Tris�HCl (pH 7.4) and 5 mM

EDTA) with protease inhibitors using a Dounce homogenizer.
The lysate was spun down at 3,000 � g for 5 min at 4 °C, and the
pellet was resuspended in NET buffer with 1% Triton X-100
and protease inhibitors, sonicated, and then immunoprecipi-
tated with 5 �g of anti-VCP antibody (Novus Biologicals,
NBP120-11433) or IgG control (Santa Cruz Biotechnology)
coupled to protein G Dynabeads (Thermo Fisher Scientific).
Immunoprecipitates were washed three times in NET buffer
with 1% Triton X-100 and boiled in Laemmli buffer for SDS-
PAGE. Protein gels were transferred to PVDF membranes for
Western blotting as described above or stained with the Prote-
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oSilver Silver Stain Kit (Sigma) and submitted to the University
of Cincinnati Proteomics Core Laboratory for MS sequencing
by nano-LC-MS/MS and MALDI-TOF.

Yeast two-hybrid screening was performed as described pre-
viously (76) using the N-terminal domain (amino acids 1 to 208)
of mouse VCP as bait and a mouse embryo cDNA prey library
(Clontech). Plasmids purified from growing colonies were
sequenced at the Cincinnati Children’s Hospital DNA
Sequencing Core, and the identities of prey plasmids were
determined using the Basic Local Alignment Search Tool
(NCBI).

Quantitative real-time PCR (qPCR)

qPCR was performed exactly as described previously (76).
Briefly, RNA was isolated from mouse cardiac tissue using the
RNEasy fibrous tissue mini kit (Qiagen). cDNA was synthesized
using the Verso cDNA synthesis Kit (Thermo Scientific), and
qPCR was performed with gene-specific primers and SsoAd-
vanced Universal SYBR Green Supermix (Bio-Rad) on a CFX96
Real-Time PCR Detection System (Bio-Rad). The primer
sequences for Sel1L (77), OS9 (37), and Herpud1 (78) are pub-
lished elsewhere. The primer sequences for Gapdh were as fol-
lows: forward, 5�-TGCCCCCATGTTTGTGATG-3�; reverse,
5�-TGTGGTCATGAGCCCTTCC-3�. Expression was quanti-
fied using the standard curve method and normalized to Gapdh
expression.

Statistical analysis

Data are represented as the mean � S.D., and testing for
statistical significance was performed using one-tailed
Student’s t test or one-way analysis of variance (ANOVA)
with post hoc Tukey’s test.
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