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Abstract 
Populations of the freshwater amphipod Diporeia spp. have steadily declined in Lake Michigan since the late 
1980’s. Prior studies have provided inconclusive data on possible reasons for their decline. However, some authors 
suggest that food competition and/or diseases associated with aquatic invasive species (AIS), such as zebra 
mussels (Dreissena polymorpha), may have caused the collapse of Diporeia. In this project, the possibility of 
pathogens as the cause of the collapse of Diporeia has been examined. Linear regression modeling show a 
significant positive linear association between percent of Diporeia exhibiting a pathogenic infection and year 
(r=0.7202264, p≤0.0124). Chi-square testing for independence was also used to test if there was an association 
between year and percent infection (X2 = 50, df = 10, p≤0.0001), implying significant association between year 
and infection. Hence, the introduction of zebra mussels and the diseases they carry may have been the root cause 
for the decline of Diporeia. Future research is needed to examine other invasive species for similar pathogens, 
including live studies showing direct causality between zebra mussels and the decline in Diporeia. 
Keywords: Diporeia spp., Lake Michigan, aquatic invasive species, zebra mussels (Dreissena polymorpha), disease 
1. Introduction 
1.1 Background 
Diporeia spp. are freshwater amphipods that used to be the most dominant crustaceans in the benthic layer of the 
Laurentian Great Lakes. High in lipid content, Diporeia have previously been considered the primary food 
source for many bottom feeders in the Great Lakes including whitefish (Coregonus clupeaformis), bloater 
(Coregonus hoyi), and slimy sculpin (Cottus cognatus) (Nalepa et al., 1998). Since the mid-1980’s, however, 
populations of Diporeia began to disappear in Lake Michigan, declining over 95% in the last 15 years in some 
places (Figure 1). As a consequence, some fish populations also decreased, perhaps resulting from a shift to less 
nutritional food sources (Nalepa et al., 1998).  
 

 
Figure 1. Densities of Lake Michigan Diporeia spp. continually decline from 1994 to 2010. Small red dots show 

NOAA (National Oceanic and Atmospheric Administration) sampling locations (from Nalepa et al., 2014) 
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The disappearance of Diporeia has been postulated to be the result of the invasive Zebra (Dreissena polymorpha) 
and Quagga (Dreissena rostriformis) mussels introduced three years prior to the decline of Diporeia. Why 
Dresseina spp. had this effect on Diporeia is still not completely understood. One hypothesis is that the mussels 
led to decreased food availability due to food competition (Nalepa, 1989). However, there are some 
inconsistencies with this hypothesis. Diporeia and Dreissena coexist in Lake Superior, Lake Cayuga and isolated 
areas of Lake Michigan. Such observations suggest that the relationship between Diporeia and Dresseina is more 
complex than simply competition for food. 
The second possibility is that mussels served as a vector for pathogenic organisms infecting Diporeia; this 
hypothesis is still being explored (Fanslow, pers. comm., 2013). In addition, anecdotal evidence indicates that 
during the early years of decline in Diporeia, crustaceans (i.e. shrimp) in many other locations of the United 
States were experiencing severe population declines, purportedly a consequence of disease. Rickettsia-like 
infection, i.e. Haplosporidia and Microsporidia, have all been observed in Diporeia tissues (Messick et al., 
2004). The origin of these pathogens is not known. However, it is interesting to note that Rickettsia-like 
infections are found in Dreissena located in Greece (Molloy et al., 2001). Similarly, Haplosporidium pathogens 
were identified as the primary pathogen causing death in Crassostrea virginica (Eastern oyster) on the east coast 
of North America and in fresh water snails (Physella parkeri) in Douglas Lake (Michigan; Barrow, 1961). 
Microsporidia is also a common pathogen in freshwater shrimp (Gammarus fasciatus), an amphipod closely 
related to Diporeia. The associated pathologies suggest that any one of these diseases could infect and possibly 
be the cause of the decline in populations of Diporeia in the Great Lakes. 
Taxonomically, Diporeia spp. belongs to the Phylum Arthropod, Subphylum Crustacea, Class Malacostraca, 
Order Amphipoda, and Family Pontoporeiidea. In years past, all Diporeia were classified as Pontoporeia hoyi 
(anonomous with P. affinis), however, taxonomists today believe there may be as many as eight species in the 
Great Lakes (Cavaletto et al., 1996). 
1.2 Objectives of the Study 
In order to better understand why Diporeia spp. crashed and are still unable to repopulate to their original 
concentrations, we designed our project to first (1) update the population density of Diporeia in Lake Superior’s 
Batchawana Bay. This location has been identified in prior studies as a “safe haven” with high concentrations of 
healthy Diporeia that coexist with a high abundance of zebra mussels. Studies of abundance of Diporeia at this 
location have not been done since 2008. Secondly (2), we wanted to examine preserved (~14 years ago) samples 
of Diporeia tissue for pathogenic infection prior to the introduction of zebra mussels, and immediately there-after, 
from one general locality (i.e. Lake Michigan). In doing so we would be able to examine what pathogens existed 
in Diporeia’s tissues before the presence of zebra mussels in Lake Michigan, and what pathogens exist in their 
tissues now that the mussels have become established.  
2. Materials and Methods 
2.1 Field Work 
 

 
Figure 2. Map is showing sampling sites located in Batchawana Bay, Lake Superior, Canada 

 
In collaboration with the National Oceanic and Atmospheric Association (NOAA) and Great Lakes Environmental 
Research lab (GLERL), Diporeia samples were collected from Lake Superior’s Batchawana Bay in Ontario, 
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Canada (Figure 2). GLERL provided a 7.3 meter research vessel that is equipped with a ponar grab which, when 
lowered, collects bottom sediment from the benthos. Using numerous site-specific locations known by GLERL 
after many years of collecting Diporeia, the anchored boat at each site allowed technical staff to lower the ponar to 
the bottom of the lake. Once bottom sediment was collected and retrieved, it was processed through a series of 
water flushes filtered through a ASTM round all-brass 500 µm sieve until only a mixture of large material plus 
Diporeia remained. Collecting sediment using the ponar was repeated ten times at each location (ten locations) to 
ensure an accurate abundance of Diporeia was collected. After filtering the sediment, Diporeia was manually 
removed with tweezers from the remaining material. The collected Diporeia samples were further subdivided into 
two aliquots. The first aliquot was placed in liquid nitrogen and later transferred to a -80°C freezer for future 
analyses. The second aliquot was placed into a -20°C freezer and retrieved as needed for this project. 
2.2 Labwork: Histology 
Diporiea collected from this study in addition to samples provided by NOAA, were prepared for histological studies. 
Samples of Diporeia provided by NOAA were originally collected from Lake Michigan since the late 1980’s.  
All tissues regardless of their date or site of collection were prepared and analyzed using similar methodologies. 
All samples were first stained in Rose Bengal dye (Sigma-Aldrich, USA) and then placed in 10% formalin 
(Sigma-Aldrich, USA) which maintains and preserves the tissue. Samples are then processed for microscopy. 
The purpose of processing tissue samples is to remove water from the tissue and replace it with a solid medium 
that will allow for thin sectioning. Individual Diporeia are removed from the formalin solution and placed into a 
histology cassette. Each cassette held ten Diporeia (n=10). The Diporeia in these cassettes are then processed 
using a series of increasing graded ethanol (Sigma-Aldrich, USA) solutions to dehydrate the tissue. Once 
complete, tissue was then placed in xylene (Sigma-Alrich, USA), which is a clearing agent that removes the 
alcohol from the previous step. Each cassette was placed, in order, in an 80%, 90%, 95%, and two changes of 
100% ethanol solutions, followed by two washes of 100% xylene. Each cassette was then incubated for 20 
minutes in each respective solution (Bergman, per comm., 2013). Following incubation in graded ethonal, the 
cassettes were placed in tissue trays sprayed with HistoPrep Mold Releasing Agent (Fisher Scientific, USA). 
Each sample of Diporeia was then placed into a metal embedding tray using tweezers and submerged in liquid 
paraffin (wax) baths ~30 minutes. Immersion in liquid paraffin for 30 minutes allowed the tissue to become 
completely infiltrated with wax. Prior spraying of the trays was important as it helped with the removal of the 
solid wax block after cooling. Blocks not prepared in this manner chipped and fell apart and were too difficult to 
remove. Once infiltration was complete, each wax block containing a single Diporeia sample were left to cool 
for at least 3 hours at room temperature. Due to the small size of Diporeia, the wax outside a 1 cm radius of the 
organism was heated to 55°C and removed using a vacuum infiltrator and paraffin dispenser (Lipshaw Inc.). 
Preparring the Diporeia sample in this manner assisted in the latter processes of sagitally sectioning the wax 
block with a sliding microtome (Bausch & Lomb, Rochester, USA).  
In order to collect thin-sections of Diporeia tissues, each wax block needed to be secured in the sliding microtome. 
Each collected thin-section (5-8 µm) was transferred to a warm water bath at 36°C to ensure the wax section was 
free of “wrinkles”. The sections were then placed on poly-prep-lysine coated glass slides (Sigma-Aldrich, USA) 
followed by placement of the slides on a slide warmer (Sigma-Aldrich, USA) at 46°C for 24 hours. This procedure 
ensured that the thin sections adhered to the slides. After heating the prepared sections for 24 hours, the slides were 
exposed to a graded series of ethanol and xylene solutions in reverse order as described earlier. The graded series of 
ethanol and xylene solutions helped to remove the wax from each slide, leaving only the Diporeia tissue. Each slide 
was then incubated in a solution consisting of 65% ethanol and 5% hydrochloric acid for 5 minutes. The purpose of 
the aforementioned step was to remove any Rose Bengal dye that the tissue may have. 
Mayer’s Hematoxylin and Eosin Y stains (Sigma-Aldrich, USA) were then used to stain tissues adhering to the 
glass slides, followed by light and fluorescent microscopy to identify and characterize infected Diporeia tissue. 
The protocol used was a modified version from Lillie (1965), and is as follows: 

• Immerse tissue with Mayer’s Hematoxylin; 
• Incubate for 10 minutes; 
• Rinse and run room temperature tap water over sections for 10 minutes;  
• Immerse with working Eosin Y Stain;  
• Allow to incubate for 30 seconds;  
• Rinse with tap water until water runs clear off of a slide; 
• Clear, and mount tissue 
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Microscopy analyses of Lake Michigan Diporeia samples from 2005 and 2010 compared with prior tissue 
analyses show an overall increase in the prevalence of pathogens found in Diporeia since 1986. This is apparent 
in both the linear regression model (Figure 4) and the chi-square analysis (Figure 5). The overall increasing trend 
is consistent with the hypothesis that the invasion of zebra mussels in the Great Lakes has caused Diporeia’s 
population crash (Nalepa et al., 2006). Zebra and quagga mussels invaded the Great lakes in the late 1980’s 
(Nalepa et al., 1998); Diporeia populations have crashed in most areas since that time. Our data also shows an 
overall increase in pathogens found in Diporeia tissue since the introduction of the zebra mussel. Although it is 
possible that the increase in tissue pathogens observed in Diporeia might be caused by stress associated with 
increased feeding pressures, it seems more likely that the diseases (not present before the arrival of zebra 
mussels) are a direct consequence of a foreign invader(s), such as zebra mussels. Hence, an increase in infected 
Diporeia tissue might suggest that competition for food may have been a secondary effect caused by the primary 
effect, namely disease. The correlation between population decline in Diporeia, increased pathogenic infection 
and disease, and purported increased population of zebra mussels (Nalepa et al. 2006) supports this hypothesis. 
Although most areas in the Great Lakes have experienced a decline in Diporeia populations since the 
introduction of zebra mussels, there are some locations that have not been affected by declining populations. 
Isolated areas of Lake Michigan and Lake Huron still support minimal Diporeia populations (Nalepa et al., 
1998). Lake Superior’s population of Diporeia has remained largely unchanged as supported by our sampling of 
Batchawana Bay. Diporeia’s stability in Lake Superior may be attributed to multiple factors as discussed above. 
One more recent anecdote for their survival is that the greater depths of Lake Superior may have provided a 
‘safe-haven’ compared to other shallower areas that Diporeia typically inhabited.  
Lastly, it is also possible that the budding structure found in the tissue’s of Diporeia may not be pathogenic 
and/or may be present as a commensal (Messick et al., 2004). As a consequence, more studies are needed to 
confirm any speculation. Because the identity of these budding structures is unknown, it should not be assumed 
that they are necessarily harmful to Diporeia. Future research needs to identify what these budding structures are 
and whether they are “infecting” Diporeia tissue and having a negative consequence. 
5. Conclusions 
Analyses in this study have shown a significant increase in pathogenic infection and immune-type response since 
the invasion of the zebra mussels in 1986. The positive correlations suggest that zebra mussels may have acted as 
a vector for pathogen(s) that infected Diporeia. Some inconsistencies exist with this hypothesis, however. For 
instance, healthy Diporeia populations have remained steady since the invasion of zebra mussels in certain areas 
in Canada. Future research should involve identifying these pathogens (e.g. genomics) and how the infections 
are affecting Diporeia physiology. In addition, both zebra and quagga mussel tissues should be analyzed for 
similar pathogens that are identified in Diporeia tissue. 
Acknowledgments 
This work could not have been done without support from the R.B. Annis Water Resources Institute Foundation 
and the D.J Angus-Scientech Undergraduate Student Internships for summers 2013 and 2014 provided by The 
Annis Water Resources Institute, Grand Valley State University. Additional support was provided by NOAA 
through David Fanslow whose technical help, in-depth knowledge, and patience made this work possible. We also 
thank Patrick McEnaney who helped collect samples and Gavin Christie (Division Manager) at the Great Lakes 
Laboratory for Fisheries and Aquatic Sciences for organizing permits allowing us to collect samples in Canada. 
We appreciate help from Dr. Sango Otieno at Grand Valley State University, statistical consulting center, who 
reviewed and analyzed this data, without whom this work would not have seen completion. 
References 
Barrow, J. H. J. (1961). Observations of a haplosporidian, Haplosporidium pickfordi sp. nov. in fresh water snails. 

Trans Am Microsc Soc, 80, 319-32. http://dx.doi.org/10.2307/3223643  
Bergman, D. (2013). Personal communication.  
Cavaletto, J., Nalepa, T., Dermott, R., Quiggley, W., & Lang, G. (1996). Seasonal variation of lipid composition, 

weight, and length in juvenile Diporeia spp. (Amphipoda) from lakes Michigan and Ontario. Can J Fish 
Aquat Sci, 53, 2044-2051. http://dx.doi.org/10.1139/cjfas-53-9-2044 

Fanslow, D. (2013). Personal communication.  
Lillie, R.D. (1965). Histopathologic technique and practical histochemistry. New York: McGraw-Hill.  



www.ccsenet.org/ijb International Journal of Biology Vol. 7, No. 1; 2015 

99 

Martinez, F. (2007). The Immune System of Shrimp. Boletines Nicovita, July-September, 2007. Retrieved from 
http://www.nicovita.com.pe/cdn/Content/CMS/Archivos/Documentos/DOC_257_2.pdf  

Messick, G. A., Overstreet, R. M., Nalepa, T. F., & Tyler, S. (2004). Prevalence of parasites in amphipods 
 Diporeia spp. from Lakes Michigan and Huron, USA. Dis Aquat Org, 59, 159-170. http://dx.doi.org/10. 
3354/dao059159 

Molloy, D. P, Giamberini, L., Morado, J. F., Fokin, S. I., & Laruelle, F. (2001). Characterization of 
intracytoplasmic prokaryote infections in Dreissena sp. (Bivalvia: Dreissenidae). Dis Aquat Org, 44, 203-216. 
http://dx.doi.org/10.3354/dao044203 

Nalepa, T. F., Fanslow, D. L., Foley, A. J. III., Lang, G. A., Eadie, B. J., & Quigley, M. A. (2006). Continued 
disappearance of the benthic amphipod Diporeia spp. in Lake Michigan: is there evidence for food limitation? 
Can J Fish Aqua Sci, 63, 872-890. http://dx.doi.org/10.1139/F05-262 

Nalepa, T. F., Hartson, D. J., Fanslow, D. L., Lang, G. A., & Lozano, S. J. (1998). Declines in benthic 
macroinvertebrate populations in southern Lake Michigan, 1980-1993. Can J Fish Aqua Sci, 55, 2402-2413. 
http://dx.doi.org/10.1139/f98-112 

Nalepa, T.F. (1989). Estimates of macroinvertebrate biomass in Lake Michigan. Can J Fish Aquat Sci, 44, 515-524. 
http://dx.doi.org/10.1016/S0380-1330(89)71499-4 

Nalepa, T.F., Fanslow, D. L., Lang, G.A., Mabrey, K., & Rowe, M. (2014). Lake-wide benthic surveys in Lake 
Michigan in 1994-1995, 2000, 2005, and 2010: Abundances of the amphipod Diporeia spp. and abundances 
and biomass of the mussels Dreissena polymorpha and Dreissena rostriformis bugensis. NOAA Technical 
Memorandum GLERL-164. NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, 21 pp. 
Retrieved from http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-164/tm-164.pdf 

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. Retrieved from http://www.R-project.org 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 


	Decline Of Diporeia in Lake Michigan: Was Disease Associated with Invasive Species the Primary Factor?
	ScholarWorks Citation

	Microsoft Word - AB-41660_csc_kbs-Final

