

NON-ATTACKING QUEEN AND ROOK PLACEMENTS

NICHOLAS LAYMAN laymann@mail.gvsu.edu

DEFINITIONS AND NOTATION	1
$P_n(q, r)$: The number of non-attacking place- ments, on an $n \times n$ board, of q queens and r rooks.	
Valid Placement: A collection of pieces on a board in specific positions such that none of the pieces can attack each other.	
Shadow: The cells used in a placement without regard to the specific pieces used.	r I I I
1 2 3 4 5 6	E
Blue Cells: Main Diagonal Red Cells: Skew Diagonal	

2 ROOK PROOF

 $P_5(3,2)$ was predicted exactly with our lower bound calculation. This was unexpected.

We have shown that that will never happen again for n - 2 queens with 2 rooks.

Placement algorithms for n > 5 to force 2 diagonal rooks is shown below.

These placements' shadows cannot match a shadow of an *n* queens placement so we know that there exists at least 1 placement which will not be counted by our lower bound.

REFERENCES

- [1] Jordan Bell and Brett Stevens. A survey of known results and research areas for n-queens. *Discrete Mathematics*, 309(1):1-31, 2009.
- [2] John G. Michaels and Kenneth H. Rosen. Arrangements with Forbidden Positions. In Applications of Discrete Mathematics, chapter 9, pages 158–173. McGraw-Hill College, 1991.

GRAND VALLEY STATE UNIVERSITY

ROOK

$$P_n(n-1,1) = n \cdot P_n(n,0)$$

A shadow of n - 1 queens and 1 rook = a shadow of n queens because if none of the queens can attack the rook, then a queen in that place could not attack the other queens.

We can get all the placements of n-1 queens and 1 rook by using n queens placements and replacing each of the queens with a rook one at a time.

Table

Let $L_n(q,r)$ be defined as the number of valid placements of q queens and r rooks which have the same shadow as a placement with more than qqueens.

Theorem.

```
L_n(q,
```


FU	Т
ſ	
(
(

LOWER BOUNDS

	Number of Rooks Placed												
0	1	2	3	4	5	6	7	8	9	10			
1													
1	1												
0	0	2											
0	0	4	6										
2	8	20	24	24									
10	50	100	132	168	120								
4	24	120	432	996	1184	720							
40	280	992	2504	5288	8780	9668	5040						
92	736	3464	11416	28860	59472	92632	88488	40320					
352	3168	16048	58792	172992	416088	780488	1049940	894964	362880				
724	7240	46984	232264	900864	2710048	6206236	10611384	12951636	9944400	3628800			

$$r) = \sum_{j=q+1}^{n} {j \choose j-q} \cdot (P_n(j,n-j) - L_n(j,n-j))$$

and $L_n(n, 0) = 0$.

1 QUEEN

Row and column swapping \implies

All placements of a single queen will form the patterns of attacked squares highlighted above. These correspond to the rook polynomials $(1 + 4x + 2x^2), (1 + 2x)$, and (1 + x). The rook polynomial after a queen is placed will take the form: $(1 + 4x + 2x^2)^a(1 + 2x)^b(1 + x)^c$. Rook polynomial coefficient on x^k : $r(k, a, b, c) = \sum_{p=0}^{a} \sum_{q=0}^{a-p} \sum_{s=0}^{b} 4^p {a \choose p} 2^q {a-p \choose q} 2^s {b \choose s} {c \choose k-p-2q-s}$ Total number of non-attacking placements: $P_n(1, n-1) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=0}^{n-1} (-1)^k \cdot (n-1-k)! \cdot r(k, a, b, c)$

FURE RESEARCH

The other perfect prediction 2 queens

Connection to permutations

ACKNOWLEDGMENTS

I would like to thank my mentor, Dr. Feryal Alayont for helping and supporting me throughout this project. I'd also like to thank GVSU's McNair program for providing funding and travel support.

		Number of Rooks Placed											
		0 1 2 3 4 5 6 7 8 9											
	0	0											
	1	0	1										
	2	0	0	0									
	3	0	0	0	4								
ize	4	0	8	12	24	10							
d S	5	0	50	100	100	114	96						
oar	6	0	24	60	320	756	1080	520					
Ď	7	0	280	840	2160	4296	7400	8152	4424				
	8	0	736	2576	10480	24440	49952	80336	81576	35064			
	9	0	3168	12672	53200	148800	367352	696432	953952	820400	336856		
	10	0	7240	32580	202112	766416	2428952	5637840	9722328	11974308	9441112	3398892	

		Number of Rooks Placed											
		0	1	2	3	4	5	6	7	8	9	10	Averages
	0	0											0
	1	0	1										0.500
ize	2	0	1	0									0.333
	3	0	1	0	0.667								0.417
	4	0	1	0.600	1	0.417							0.603
d S	5	0	1	1	0.758	0.679	0.800						0.706
oar	6	0	1	0.500	0.741	0.759	0.912	0.722					0.662
B	7	0	1	0.847	0.863	0.812	0.843	0.843	0.878				0.761
	8	0	1	0.744	0.918	0.847	0.840	0.867	0.922	0.870			0.779
	9	0	1	0.790	0.905	0.860	0.883	0.892	0.909	0.917	0.928		0.808
	10	0	1	0.693	0.870	0.851	0.896	0.908	0.916	0.925	0.949	0.937	0.813

Table 2: Lower Bounds on the Number of Valid Place ments $L_n(n-r,r)$

Table 3: Quotients between Lower Bounds and Actual Values $L_n(n-r,r)/P_n(n-r,r)$

