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RESEARCH ARTICLE

Shape Ontogeny of the Distal Femur in the
Hominidae with Implications for the
Evolution of Bipedality
Melissa Tallman*

Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, United States of America

* tallmame@gvsu.edu

Abstract
Heterochrony has been invoked to explain differences in the morphology of modern humans

as compared to other great apes. The distal femur is one area where heterochrony has been

hypothesized to explain morphological differentiation among Plio-Pleistocene hominins. This

hypothesis is evaluated here using geometric morphometric data to describe the ontogenetic

shape trajectories of extant hominine distal femora and place Plio-Pleistocene hominins

within that context. Results of multivariate statistical analyses showed that in both Homo and

Gorilla, the shape of the distal femur changes significantly over the course of development,

whereas that of Pan changes very little. Development of the distal femur ofHomo is charac-

terized by an elongation of the condyles, and a greater degree of enlargement of the medial

condyle relative to the lateral condyle, whereasGorilla are characterized by a greater degree

of enlargement of the lateral condyle, relative to the medial. EarlyHomo and Australopithe-
cus africanus fossils fell on the modern human ontogenetic shape trajectory and were most

similar to either adult or adolescent modern humans while specimens of Australopithecus
afarensis were more similar toGorilla/Pan. These results indicate that shape differences

among the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for

by heterochrony alone; heterochrony could explain a transition from the distal femoral shape

of earlyHomo/A. africanus to modernHomo, but not a transition from A. afarensis toHomo.
That change could be the result of genetic or epigenetic factors.

Introduction
Heterochrony has often been invoked to explain differences in the morphology between early
hominins and modern humans. Heterochrony is change in the rate or timing of growth and
development from a parent species (or individual) to a descendent species (or individual) [1],
[2]. Heterochrony can be divided into two categories: paedomorphosis, where the descendent
species retains characteristics of the juveniles in the parent species; and peramorphosis, where
the descendent species appears to extend the development of the parent species. There are
three classes of changes to developmentally accomplish paedo- or peramorphosis: (1)
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progenesis or hypermorphosis, where maturation with respect to the trait is reached early in
the former and continues late in the latter; (2) neoteny or acceleration, where development
occurs more slowly in the former and more rapidly in the latter; and (3) pre-displacement or
postdisplacement, where development begins later in the former and earlier in the latter [2],
[3]. One of the first examples of heterochrony being invoked in human evolution is from the
discussion of human cranial shape. Modern humans were sometimes considered neotenous for
cranial shape in comparison to fossil hominins and other hominoids [1], [4], although that
explanation has since been found to be an oversimplification of the developmental processes
that shape the human cranium [5], [6]. Developmental changes in the dentition between
humans and great apes have also been explained by time hypermorphosis inHomo [7].

The distal femur is a biomechanically important joint in locomotion [8], and the shape of
the distal femur is a clear marker for the acquisition of bipedal posture [8], [9]. This–in addi-
tion to its representation in multiple fossil hominin taxa–makes the distal femur an important
region for study in Plio-Pleistocene hominins. The shape of the distal femur in fossil hominins
has been analyzed utilizing discrete characters, linear measurements [10], [11], [12], [13], two
dimensional geometric morphometrics [14], and three-dimensional geometric morphometrics
[15],[16], and conclusions from these analyses have largely been used to make inferences about
the taxonomy of fossil hominins and/or their biomechanical capability at the knee joint. Fewer
studies have investigated the potential underlying causes for shape variability among fossil
hominin distal femora.

Lovejoy et al. [8] argued that the distinctive shape of the human distal femur could be the
result of modifications to genes that regulate chondral growth fields. These authors suggested
that only a small genetic modification to these growth fields, in combination with the bio-
mechanical demands of upright walking, could produce the entire suite of traits that differenti-
ates the human knee from those of other extant apes. Conversely, Tardieu [12], [13]
hypothesized that the cause of distal femoral shape variation among Plio-Pleistocene hominins
was due to heterochrony–specifically peramorphosis–from Australopithecus to early Homo
and from early Homo to modern humans. She suggested that there was a lengthening of the
adolescent growth period in Homo. Using radiographs, she compared the shape of the distal
articular surface and the profile of the lateral condyle of fossil hominins to a human develop-
mental series. She found A.L. (Afar Locality) 129-1a to look like a human child aged 10 years,
whereas KNM-ER (Kenya National Museum–East Rudolf) 1472 was most similar to a late ado-
lescent aged 16 years and KNM-ER 1481 was most like a 17 year old. However, it should also
be noted that Tardieu [17] concluded that the bony morphology of children are not indicative
of their functional morphology; the true functional morphology of a child’s knee is reflected in
the cartilaginous structure, which is similar to the adult form. Finally, Tardieu [12], [13] also
showed that an adult chimpanzee was similar in shape to a human child. These data agree with
findings by Berge [18] who demonstrated that the shape of the human ilium could also be the
result of peramorphosis.

This study investigates the idea that the shape of the modern human distal femur is the
result of heterochrony by using three-dimensional geometric morphometric techniques to
quantify the shape changes in the distal femur through ontogeny. Thus, this study has two
major goals:

1. Describe and quantify the ontogenetic shape changes that occur in the distal femora of Pan,
Gorilla andHomo.

2. Place Plio-Pleistocene hominins within the context of this variation to evaluate whether
their distal femoral shapes can be accommodated within the ontogenetic shape trajectories
of any of these taxa.

Shape Ontogeny of the Hominid Distal Femur
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If fossil hominins can be accommodated within the modern human ontogenetic shape trajec-
tory, then this would fail to reject the hypothesis that the modern human distal femoral shape
is due to heterochrony. If fossil hominins are best accommodated by the Pan or Gorilla shape
trajectory, and the Pan or Gorilla shape trajectories are statistically similar to the modern
human trajectories, then this would also fail to reject this hypothesis. If the ontogenetic shape
trajectories of the great apes and humans are statistically different, and hominins do not fit the
human trajectory, then the hypothesis is rejected.

Materials and Methods
Three-dimensional geometric (3D-GM) data were collected to characterize the morphology of
the distal femur. This morphometric approach allows for the retention of shape information
for statistical analyses by using data in the form of x,y,z coordinates (landmarks). This allows
for the visualization of changes among the original specimens in analyses [19]. Fifteen land-
marks (Fig 1 and Table 1) were collected using a Microscribe 3DX digitizer on the distal femora
of original fossils and an ontogenetic series ofHomo sapiens (housed at the Musée de
L’Homme, Paris, France), Pan troglodytes troglodytes and Gorilla gorilla gorilla (both housed at
the Powell-Cotton Museum, Birchington, UK). The distal femur is an ideal region to use for
these kinds of analyses as it is one of the few areas in the postcranial skeleton that develops a
secondary center of ossification prior to birth [12], [20] and thus is present in skeletal collec-
tions of young individuals. If the distal epiphysis was completely unfused, it was attached to the
diaphysis based on the fit of the congruent surfaces by a thin piece of clay such that it would
not move during data collection. The age and sex of theHomo individuals were recorded from
the museum catalogue. Where data on sex were not available, sex was phenetically assessed by
pelvic morphology; specifically, the width of the sciatic notch, the width of the subpubic angle,
and the shape of the anteriormost aspect of the pubis were used. In all cases where sex could
not be confidently ascertained, or if the pelvis was missing, it was scored as unknown. For Pan
and Gorilla, epiphyseal closure and dental eruption were used as a proxy for age and scored on
a 1 to 4 scale (Table 2) (Pan tooth eruption data from [21]; Gorilla tooth eruption data from
[22]) while sex was recorded from the museum catalogue. All Pan and Gorilla were wild shot
and displayed no obvious pathologies. Sampling of individuals was restricted to a single sub-
species for Pan and Gorilla to eliminate any possible variability in ontogenetic shape develop-
ment at the subspecific or specific level. Sampling of adults was restricted so as not to
statistically bias any results towards the adult morphology. Sampling of fossil individuals was
restricted to those that had complete distal femora (Table 3).

Two precision tests were completed before data collection for this study. In the first test, ten
replicate landmark sets were collected on adult, white human males housed in the Department
of Anthropology at the American Museum of Natural History. Data on these replicates were
collected over the course of a week, and the bone was unmounted and remounted between
each replicate. Data on these specimens were then subjected to a generalized Procrustes analy-
sis (GPA) which rotates, translates, and scales landmark configurations by minimizing the sum
of squares distance between them [19]. The Procrustes distance between each replicate and the
mean landmark configuration was calculated. Procrustes distance is the square root of the sum
of squared differences between all landmarks in a pair of individuals [23]. Subsequently, data
were collected on ten different adult white males from the same collection. These data were
then subjected to a GPA, and Procrustes distances from each individual to the consensus land-
mark configuration were calculated. Results from t-tests indicated that the mean Procrustes
distance among replicates of the same specimen were significantly smaller than the distances
between ten different specimens of the same sex from the same population (Table 4).

Shape Ontogeny of the Hominid Distal Femur
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In order to assess the variability at each individual landmark, the Procrustes distances from
each individual landmark to the consensus landmark were calculated for both the ten replicates
and the ten different individuals from the dataset above. The mean and variance for the distri-
bution of Procrustes distances in both samples were calculated; these data are recorded in

Fig 1. Diagram illustrating the landmarks used on the distal femur in anterior (left) posterior (middle) and distal (right) views. Thick black lines are
wireframes for visualization purposes only. A human femur is used for illustrative purposes.

doi:10.1371/journal.pone.0148371.g001

Table 1. Description of the landmarks taken on the distal femur.

Number Type Description

1 III most medial point on medial epicondyle

2 III most lateral point on lateral epicondyle

3 III most proximomedial point on the proximal border of the patellar articular surface on the
anterior aspect of the distal femur.

4 III midpoint between the most proximomedial and proximolateral point on the proximal
border of the patellar articular surface on the anterior aspect of the distal femur.

5 III most proximolateral point on the proximal border of the patellar articular surface on the
anterior aspect of the distal femur.

6 III most distomedial point on the distal border of the patellar articular surface on the
anterior aspect of the distal femur.

7 III midpoint between the most distomedial and distolateral point on the distal border of the
patellar articular surface on the anterior aspect of the distal femur.

8 III most distolateral point on the proximal border of the patellar articular surface on the
anterior aspect of the distal femur.

9 III most posteriomedial point on medial condyle

10 III Most posteriolateral point on medial condyle

11 III most posteriomedial point on the lateral condyle

12 III most posteriolateral point on the lateral condyle

13 III most medial point in the middle of the intracondylar notch

14 III middle point in the middle of the intracondylar notch

15 III most lateral point in the middle of the intracondyle notch

16 III most medial corner on the anterior edge of the intracondylar notch

17 III middle point on the anterior edge of the intracondylar notch

18 III lateral corner on the anterior edge of the intracondylar notch.

doi:10.1371/journal.pone.0148371.t001

Shape Ontogeny of the Hominid Distal Femur
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Table 5. T-tests indicated that the average Procrustes distances at each landmark were all sig-
nificantly smaller for the replicates than for ten different individuals.

The landmark coordinates were subjected to a GPA. The GPA included all specimens at all
ages in order to get a common fit among the different species and age classes [24]. A principal
components analysis (PCA) was conducted on the full sample in Procrustes shape space. A
PCA of the full sample allows for the exploration of variation in both total shape and ontoge-
netic shape in a common space. In a mixed-species ontogenetic sample, the first principal com-
ponent will be variation that comprises both the common aspects of the different allometric
trajectories and some species specific differences [25].

In order to determine how much shape variation is correlated with differences in size in the
extant taxa, a multivariate regression of shape coordinates on ln-centroid size was computed
for each taxon in MorphoJ [26]. The percent of the shape variability explained by centroid size
for each taxon was recorded and shape changes correlated with centroid size were visualized.
Differences in the degree of ontogenetic change for each taxon were examined by looking at
the correlation between shape change and size change from the average juvenile individual.
Shape change was calculated as the ln-Procrustes distance between the average juvenile and
each individual, and size change was calculated as the difference in ln-centroid size from each
individual to the average juvenile. The slope of the line from a univariate regression of change
in ln-Procrustes distance and change in ln-centroid size is a representation of the degree of
developmental shape change that occurs in each taxon. If a taxon does not change in shape as
it grows, the slope of the line will approach zero [27]. A similar procedure was used by Kim
et al. [28] to examine patterns of development in two species of trilobites and by Zelditch et al.
[29] in a study of piranhas. This analysis tests whether the degree of shape change that is corre-
lated with growth is the same across all three taxa. A separate analysis was performed to assess
whether there were differences in rates of shape change in males and females of each taxon, but
as the slopes and intercepts of the lines were similar in all cases, these results are not presented
here.

If two ontogenetic trajectories for the entire shape of the distal femur differ only due to het-
erochrony, they should overlap in size-shape space, and only differ in terms of length and size
differences associated with the length of the developmental trajectory. As such, a PCA of the
Procrustes-aligned coordinates alone is not sufficient to make inferences about heterochrony
as it does not sufficiently describe the totality of size/shape space [25], [30]. In order to deter-
mine if the ontogenetic trajectories of Pan, Homo, and Gorilla overlap, a series of ten

Table 2. Description of the extant ontogenetic sample.

Group/Taxon Age Class Definition n

Juvenile Pan 1 No epiphyses fused; M1 erupting 15

Early Adolescent Pan 2 Some epiphyses partially fused; M1 erupted, M2 erupting 7

Late Adolescent Pan 3 Some epiphyses fully fused; M2 erupted through M3 erupting 19

Adult Pan 4 All epiphyses fused, M3 erupted 4

Juvenile Gorilla 1 No epiphyses fused; M1 erupting 9

Early Adolescent Gorilla 2 Some epiphyses partially fused; M1 erupted, M2 erupting 15

Late Adolescent Gorilla 3 Some epiphyses fully fused; M2 erupted through M3 erupting 5

Adult Gorilla 4 All epiphyses fused, M3 erupted 5

Juvenile Homo 1 Ages 2–7 12

Early Adolescent Homo 2 Ages 8–14 6

Late Adolescent Homo 3 Ages 14–20 5

Adult Homo 4 Over 25 4

doi:10.1371/journal.pone.0148371.t002

Shape Ontogeny of the Hominid Distal Femur
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configurations for each taxon were generated from the multivariate regressions of the Procrus-
tes-aligned shape coordinates on ln-centroid size. These ten configurations were generated at
even intervals over the entire range of size variation in each taxon. An “ontogenetic PCA” was
subsequently performed on these data, and scores for all of the individuals in the analysis–
including fossils–were computed posthoc based on the covariance matrix, eigenvalues, and
eigenvectors of the PCA of the hypothetical ontogenetic series. This post hoc computation of
scores allows for the “projection” of the extant and fossil taxa into this space. This creates a
morphospace where the variation present in the sample is distributed based on the direction of
maximum variability in developmental trajectory among the sampled taxa. This method was
developed and used by Mitteroecker et al. [30] in order to examine heterochrony in the

Table 3. Description of the fossil sample.

Accession Number Taxon Repository

A.L. (Afar Locality)129-1a 1 Australopithecus afarensis National Museum of Ethiopia

A.L. 333–4 1 Australopithecus afarensis National Museum of Ethiopia

KNM-ER (Kenya National Museum–East Rudolf)1472 2,3,4 Homo sp. Kenya National Museum

KNM-ER 1481 2,3,4 Homo sp. Kenya National Museum

KNM-ER 1592 5 Hominidae sp. indet. Kenya National Museum

KNM-ER 39515 Hominidae sp. indet. Kenya National Museum

KNM-WT (Kenya National Museum–West Turkana)15000 6 Homo erectus Kenya National Museum

Omo 17 Homo sapiens National Museum of Ethiopia

Sts (Sterkfontein South) 34 5,8 Australopithecus africanus University of Witswaterstrand

1[69]
2[11]
3[70]
4[71]
5[72]
6[73]
7[74]
8[75]

doi:10.1371/journal.pone.0148371.t003

Table 4. Average pairwise Procrustes distances (d) for the entire landmark configuration between 10
repeated trials on the same specimen (rep), and between 10 different individuals from the same popu-
lation (x).

Rep. d x d

1 0.0105839 1 0.027592

2 0.0097056 2 0.020099

3 0.0080857 3 0.02265

4 0.0111851 4 0.022731

5 0.0087269 5 0.019499

6 0.0078037 6 0.026027

7 0.0127367 7 0.029197

8 0.0102955 8 0.021333

9 0.0100383 9 0.027688

10 0.0093378 10 0.022137

AVERAGE 0.00985 0.0239

p = < 0.0001

doi:10.1371/journal.pone.0148371.t004

Shape Ontogeny of the Hominid Distal Femur
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cranium of Pan troglodytes and Pan paniscus using 3D geometric morphometric data. If the
ontogenetic trajectories at least partially overlap in this analysis, the hypothesis of species dif-
ferences due to heterochrony cannot be rejected. If differences in the shape of fossil hominins
relative to each other and modern humans are caused by heterochrony, the distribution of
hominins will overlap the ontogenetic trajectory of modern humans [30]. Three principal com-
ponent (PC) axes were visualized in the resulting graph in order to better represent the com-
plexity of the shape space and were rotated to a position where differences among the taxa
were most obvious [25], [30].

As a final measure of shape similarity, Procrustes distances between each fossil hominin
and the average individual in each taxon age class were also calculated. Individuals were classi-
fied into four different age classes–juvenile, early adolescent, late adolescent, and adult–based
on tooth eruption and epiphyseal closure (Table 2). The smaller the Procrustes distance, the
more similar the fossil to that group average.

Results
Fig 2 illustrates the results a PCA on the entire sample in Procrustes shape space. PC 1 is driven
by the size of the medial condyle relative to the lateral condyle; youngHomo occupy the most
positive values on PC 1 and have small medial condyles in comparison to the lateral condyle
whereas young Gorilla, adultHomo, adult Pan, and adult Gorilla occupy more negative values
as they have larger medial condyles. PC 1 also accounts for the anteroposterior length of the
distal articular surface, particularly between the deepest point in the intercondylar notch and
the patellar articular surface. Young Homo and Pan have shortened distal articular surfaces,
whereas adult members of all three taxa and young Gorilla have longer distal articular surfaces.
PC 2 is driven by the keeling of the patellar articular surface and the relative size of the lateral
condyle. Young Gorilla occupy the most positive values and have the least keeled patellar artic-
ular surfaces and the smallest lateral condyles whereas adultHomo occupies the most negative

Table 5. Average pairwise Procrustes distances, and average variance, for each landmark between 10 repeated trials on the same specimen (rep),
and between 10 different individals from the same population (x).

average variance

rep x rep x

1 0.0020 0.0039 0.0000010 0.0000034

2 0.0028 0.0046 0.0000010 0.0000024

3 0.0007 0.0028 0.0000001 0.0000026

4 0.0012 0.0024 0.0000003 0.0000004

5 0.0017 0.0041 0.0000006 0.0000034

6 0.0017 0.0030 0.0000004 0.0000023

7 0.0011 0.0023 0.0000004 0.0000018

8 0.0025 0.0044 0.0000026 0.0000036

9 0.0007 0.0049 0.0000001 0.0000061

10 0.0008 0.0027 0.0000002 0.0000015

11 0.0007 0.0025 0.0000000 0.0000018

12 0.0010 0.0033 0.0000004 0.0000032

13 0.0008 0.0028 0.0000002 0.0000026

14 0.0009 0.0021 0.0000002 0.0000003

15 0.0008 0.0025 0.0000002 0.0000020

p = 0.0001 p = 0.0001

doi:10.1371/journal.pone.0148371.t005

Shape Ontogeny of the Hominid Distal Femur
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values on PC 2 and has the most keeled articular surface and the largest lateral condyles.
Young Homo, Pan, and Gorilla overlap only slightly on PC 1 and 2, whereas adults of all three
are more similar, although Homo is most distinct.

Based on a multivariate regression of shape on ln-centroid size,Homo has the greatest
degree of shape variation that is correlated with size at 49.0%, followed by Gorilla with 21.3%,
and Pan at 8.2%. InHomo, an increase in size is correlated with an increase in the anteroposter-
ior length of both the medial and lateral condyles as well as an increase in the keeling of the
patellar articular surface (Fig 3). In Gorilla, an increase in size is associated with an increase in
the anteroposterior length and proximodistal height of the medial and lateral condyles and
decrease in the mediolateral width of the intercondylar notch (Fig 3). Finally, in Pan, an
increase in size is associated with an increase in the mediolateral width of the medial and lateral
condyles, an increase in height in the patellar articular surface, and a decrease in the mediolat-
eral width of the intercondylar notch (Fig 3). Similarly, the degree of shape change in the distal
femora of both Gorilla and Homo is significantly correlated with changes in size (Fig 4). Gorilla

Fig 2. PCA in Procrustes shape space of the Procurstes-aligned data for the entire sample.Wireframes are of a left femur, illustrate the shape changes
in the graphs from juvenile individuals to adult individuals and are shown in distal view. Wireframe of adult Pan is omitted as the adult individuals fell quite
near to adultGorilla in this plot. Arrows are drawn for illustrative purposes from the youngest age classes to the oldest age classes.Gorilla is represented by
red crosses, Pan by purple squares, andHomo by blue open squares.

doi:10.1371/journal.pone.0148371.g002

Shape Ontogeny of the Hominid Distal Femur
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andHomo change in shape as they change in size at similar rates as evidenced by the similar
slope of their regression lines. In Pan, there is no significant relationship between shape change
and size change indicating that the adult shape of the Pan distal femur does not differ as much
from the juvenile shape as in the other two taxa.

Fig 5 illustrates a PCA of the extant and fossil specimens projected into a morphospace
defined by the resampled developmental trajectories of the extant groups. The shape changes
associated with the three developmental trajectories are similar to those changes seen in the
PCA of the Procrustes aligned coordinates (Fig 2). The shape changes along PC 1 are driven
largely by the developmental trajectory ofHomo; younger individuals at the most positive val-
ues have anteroposteriorly short femoral condyles and shorter, less keeled patellar articular sur-
faces. Older individuals at the most positive values have longer femoral condyles and taller,
more keeled patellar articular surfaces. The shape changes along PC 3 are largely driven by the
developmental trajectory of Gorilla. Younger individuals at more negative values have more
symmetrical condyles whereas older individuals at more positive values have an enlarged
medial condyle. PC 4 separates the entire distribution ofHomo from Pan and Gorilla and is
driven by the depth of the intercondylar notch and the size of the medial condyle; Pan and
Gorilla have deep notches with enlarged medial condyles whereas Homo has an anteroposter-
iorly shallower intercondylar notch and smaller medial condyle. No axis of variation

Fig 3. Shape changes correlated with an increase in ln-centroid size in multivariate regression analyses.

doi:10.1371/journal.pone.0148371.g003
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characterized specifically the developmental trajectory of Pan. Most of the fossil hominins
attributed to the genus Homo are found along the Homo developmental trajectory, including
KNM-ER 1592, KNM-ER 1481, KNM-ER 1472, KNM-WT 15000, and Omo 1. Sts 34 is also
found along theHomo developmental trajectory. A.L. 333–4, A.L. 129-1a, and KNM-ER 3951
are found within the distribution of Pan and older Gorilla (Fig 5).

PC 2 in this analysis comprised 9.9% of the shape variation in this sample and was mainly
associated with the width of the intercondylar notch and orientation of the patellar surface
with respect to the tibial articular surface. Individuals with narrower intercondylar notches
and more acute angles between the two articular surfaces (older Homo and some Pan) had
more negative values and those with wider intercondylar notches and less acute angles
between the two articular surfaces (younger Homo and some Pan) had more positive values.
The overall patterning of individuals along PC 2 was similar to that of PC 1 and is thus not
shown.

Table 6 lists the Procrustes distance of each fossil to the mean of each age class of each
extant taxon. Most of the fossil hominins that have been classified in the genus Homo–
KNM-WT 15000, KNM-ER 1472, KNM-ER 1481, KNM-ER 1592, and Omo 1—are most simi-
lar in shape to adult or adolescent modern humans. Sts 34 is also most similar to modern
humans. A.L. 333–4 and KNM ER-3951 are most similar to adult Gorilla. A.L. 129-1a was
equally similar to adult Gorilla and adult Pan.

Fig 4. Regression of ln-Centroid size against Procrustes distance from the average youngest
individual. Regressions were performed on each taxon separately and then graphed together.Homo is
represented by blue open squares, Pan by pink squares, andGorilla by red crosses. The thick red line
represents the regression line for Homo, black for Pan, and grey forGorilla. Regression equations are given
in the figure.

doi:10.1371/journal.pone.0148371.g004
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Discussion

Variability in distal femoral shape ontogeny in the great ape-human
clade
Differences in the ontogenetic trajectories of the full distal femur of Gorilla, Pan, and Homo
cannot be explained by heterochrony alone, as evidenced by the results presented in Fig 5.
Although the shape of the distal femur changes significantly in both Gorilla and Homo as they
age (Fig 3 and Table 3), their ontogenetic trajectories differ. In the youngest Gorilla andHomo,
the medial and lateral condyles are of extremely unequal sizes; in youngest Gorilla, the medial
condyle is much larger than the lateral condyle whereas in the youngest Homo, the lateral con-
dyle is much larger than the medial. However, while condyle size inequality persists into the
adult forms, they appear less unequal than in the juvenile forms (Figs 2 and 5); thus Gorilla
development requires greater enlargement of the lateral condyle relative to the medial condyle
andHomo development requires greater enlargement of the medial condyle relative to the lat-
eral condyle as they age.

Fig 5. Ontogenetic PCA illustrating the position of the modern taxa and fossil individuals. Scatterplot is of components 1, 3, and 4. Pan is represented
by pink solid squares, Gorilla by red crosses, andHomo by blue open squares. Fossils are represented by black circles and labeled in the graph. Femora are
shown in distal view.

doi:10.1371/journal.pone.0148371.g005
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In Gorilla, adult shape could be related to the support of large body weights during locomo-
tion [31]. Ruff [32] found that, among extant great apes, Gorilla had the most enlarged medial
condyle as compared to lateral condyle and the most varus position of the knee. The enlarge-
ment of the medial condyle may allow for the transmission of higher loads and may assist in
distributing the high compressive forces generated as a result of having a varus knee [31]. Ruff
[32] suggested that the large size of Gorilla could have driven selection towards a knee built for
weight support at the expense of speed. While chimpanzees and gorillas are often both consid-
ered under the umbrella of “knuckle-walking”, their positional behaviors are significantly dif-
ferent [33]. Gorillas engage in a variety of positional behaviors, but spend more time engaged
in terrestrial quadrupedalism and are less acrobatic than chimpanzees both in the wild [33],
[34], [35] and in captivity [36]. Besides behavioral differences between the two taxa, there are
several other lines of evidence that their postcranial ontogenetic trajectories are different. For
instance, their hand proportions are significantly different throughout ontogeny [37] as is the
way that knuckle-walking develops behaviorally [38] and morphologically [39]. Additionally,
the pattern and timing of the female growth spurt is absolutely different in the two taxa [5].

In humans, adult shape of the distal femur is likely related to the mechanical requirements
of bipedality. Unlike great apes, the lateral and medial condyles of humans are of similar size
because they are equally important in transmitting downward forces and resisting reaction
forces during bipedal locomotion. These condyles are more elliptical (particularly the lateral
condyle) and more symmetrical in order to provide a larger surface for articulation with the
tibia and to reduce stress on the joint during heel-strike and toe-off during walking [9], [40].
The deep, asymmetrical patellar groove in Homo could function to prevent the patella from
being laterally dislocated during flexion of a valgus knee [8], [10], [40], [41]. These are speciali-
zations not seen in any other mammal [40].

In Pan, there is little change in shape during ontogeny, and changes in shape are not well
correlated with changes in size (Fig 3 and Table 3). This could be because chimpanzees are
under different biomechanical constraints than Gorilla and Homo due their relatively more
varied locomotor repertoire. Chimpanzees retain a variable locomotor repertoire throughout
ontogeny, engaging in a variety of arboreal activities including vertical climbing and suspen-
sion. In a comparison with mountain gorillas, chimpanzees continued these activities at higher

Table 6. Procrustes distances between each fossil individual and eachmean age class for each taxon.

Gorilla
age
class 1

Gorilla
age
class 2

Gorilla
age
class 3

Adult
Gorilla

Homo
age
class 1

Homo
age
class 2

Homo
age
class 3

Adult
Homo

Pan age
class 1

Pan age
class 2

Pan age
class 3

Adult
Pan

A.L. 129-
1a

0.247 0.187 0.151 0.149 0.330 0.175 0.165 0.158 0.240 0.214 0.182 0.177

A.L. 333–4 0.260 0.199 0.145 0.136 0.295 0.181 0.173 0.191 0.228 0.193 0.171 0.130

KNM-ER
1472

0.284 0.232 0.188 0.164 0.294 0.169 0.141 0.146 0.235 0.208 0.196 0.159

KNM-ER
1481

0.296 0.254 0.224 0.207 0.285 0.148 0.116 0.119 0.231 0.223 0.206 0.198

KNM-ER
1592

0.277 0.249 0.223 0.187 0.304 0.181 0.184 0.179 0.269 0.249 0.224 0.222

KNM-ER
3951

0.315 0.282 0.244 0.207 0.363 0.269 0.245 0.236 0.318 0.297 0.256 0.224

Omo 1 0.436 0.391 0.357 0.340 0.436 0.338 0.286 0.278 0.395 0.378 0.360 0.333

Sts 34 0.312 0.273 0.226 0.213 0.376 0.231 0.203 0.187 0.309 0.278 0.258 0.221

KNM-WT
15000

0.328 0.288 0.274 0.253 0.289 0.187 0.181 0.193 0.253 0.256 0.239 0.250

doi:10.1371/journal.pone.0148371.t006
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rates and over a longer period of development [42]. In a varied locomotor repertoire, the direc-
tion and magnitude of the biomechanical forces acting on the knee will vary in accordance
with the position and rotation of the knee joint [31]. Lovejoy [40] suggested that the shape of at
least the lateral condyle in chimpanzees reflects the fact that there are equivalent joint stresses
throughout the full range of flexion and extension of the knee joint; this is in opposition to
humans, where joint stress is predictably highest during the last 20 degrees of extension [43].
The maintenance of a varied locomotor profile throughout ontogeny might then reasonably
result in the retention of a particular distal femoral shape throughout ontogeny that is adapted
for resisting biomechanical forces of variable direction and magnitude.

While there are differences among the adult taxa, the adult forms of all three taxa are more
similar in shape to one another than their juvenile forms. One possibility is that these taxa
become more similar over ontogeny as the result of epigenetic factors relating to terrestrial sub-
strate use. In a study of the ontogeny of the tibiotalar joint in a variety of catarrhines, Turley and
Frost [44] found shape convergence in the adult age classes of some phylogenetically distinct
primate lineages that had similar substrate use. Similarly, these authors found divergence in
phylogenetically close lineages (e.g., Pan paniscus and Pan troglodytes) in the adult age classes
that use different substrates. They concluded that these similarities and differences represent
evidence of epigenetic factors related to substrate use that influence joint shape congruence.

Finally, it should be noted that if the distal femur has multiple developmental modules (e.g.,
the medial and lateral condyles or the patellar articular surface and the condyles), then each
module could be affected differentially and changes in a portion of the distal femur could be
due to heterochrony. The analyses presented here address the complete shape of the distal
femur and would be insufficient to uncover heterochrony in a single module, if modules do
exist. Similarly, if there were a change in developmental timing that occurred before the youn-
gest individuals in this analysis it would be difficult to detect with these analyses. These may be
fruitful avenues for future research.

Evidence for peramorphosis in the hominin distal femur
While more data need to be collected on a larger ontogenetic sample of modern humans (par-
ticularly individuals between 7 and 12 years of age), the overall results of these analyses indicate
that the morphological pattern of some of the fossil individuals cannot be easily explained by
changes in developmental rates in modern humans. The evidence presented here does not pre-
clude the possibility that the morphological transition from early Homo to modern Homo sapi-
ens is a result of heterochrony (Table 5 and Fig 4); however, these data do indicate that the
morphological differences between Homo and particularly A. afarensis are not easily accounted
for by heterochrony.

If the morphology of Australopithecus simply represented an early cessation of development
as compared to Homo sapiens, then A.L. 333–4, A.L. 129-1a, and Sts 34 should have been most
similar to the younger Homo sapiens specimens; instead, both A.L. 333–4 and A.L. 129-1a were
more similar to Pan and Gorilla than to modern humans (Fig 4 and Table 5). In addition,
KNM-ER 3951, a hominin of indeterminate genus and species, was also more similar to the
Pan/Gorilla developmental trajectories thanHomo (Fig 5). If the morphological variation in
Plio-Pleistocene hominin distal femora is not due to differences in developmental patterning,
then perhaps there was some change in the underlying regulatory genes that pattern the shape
of the distal femur in bipedal hominins versus quadrupedal apes. While the forelimb and hin-
dlimb are serially homologous structures governed by commonHox genes [45], [46], [47],
[48], [49], there are genes that specifically affect hindlimb morphogenesis, specifically Tbx4,
Pitx1, and Pitx2 [50], [51], [52], [53], [54], [55]. It has been hypothesized that Pitx1 and Pitx2
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function in hindlimb outgrowth, whereas Tbx4 functions more for hindlimb shape [55], [56].
Mutations in the Tbx4 genes have led to developmental abnormalities in the musculoskeletal
system of the hindlimb [57], [58], [59], [60], [61], [62]. Additionally, GDF5 is a bone morpho-
genic protein that functions in the development of joints throughout the skeleton [63], [64],
[65], [66]. Recently, separate GDF5 enhancers have been shown to affect very specific growth
plates and individual diarthroses in the postcranial skeleton [67]. Changes in any of these
genes could affect the patterning of the morphology of the distal femur and could be further
modified epigenetically, as suggested by Lovejoy et al. [8].

The shape of all other fossil distal femora could be accommodated by the modern human
ontogenetic trajectory. WT 15000—the only adolescent fossil individual—is most similar to ado-
lescent modern humans whereas KNM-ER 1592, KNM-ER 1472, KNM-ER 1481, Sts 34, and
Omo 1 –all adult specimens–are most similar to adultHomo sapiens (Fig 4 and Table 5). Thus,
with regard to most of the fossils attributed to the genusHomo (as well as A. africanus, as exem-
plified by Sts 34) adult fossils appear most like adultHomo sapiens and the adolescent fossil
appears most like adolescentHomo sapiens. This indicates that at least some fossil hominins have
a similar pattern of development as modernHomo sapiens for this component of the knee joint.
But, if rates of dental development are used as a proxy for maturation rates, it would indicate that
these fossil hominins reach this same adult shape over a much shorter period of time than
anatomically modern humans, as A. africanus is expected to reach adulthood at approximately 12
years,Homo habilis at approximately 15.5 years, and earlyHomo erectus/ergaster at 17 years [68].

Conclusions
Homo, Gorilla, and Pan do not follow a similar developmental trajectory (Figs 2 and 5). Both
Homo and Gorilla significantly change in shape as they grow, but in different manners, whereas
Pan individuals do not greatly change shape in the distal femur as they age (Figs 3 and 4;
Table 4). The earliest hominins in the sample, Australopithecus afarensis (represented by A.L.
129-1a and A.L. 333–4) cannot be accommodated by the human developmental trajectory.
Their shape is better matched to Gorilla (Table 5) or the Gorilla/Pan ontogenetic trajectory
(Fig 5). Thus, the hypothesis that the transition from an early hominin, A. afarensis-like, distal
femoral shape to a modern human distal femoral can be explained by a heterochronic shift is
rejected. Most other fossil hominins can be accommodated by theHomo ontogenetic trajectory
and are most similar to specimens of the appropriate age group (in other words, adults look
like adults and adolescents look like adolescents [Table 5 and Fig 5]), contra Tardieu [12], [13].
However, this does lend support for the importance of heterochronic shifts in human evolution
as development would need to be either be slowed (neotony) or start much earlier (pre-dis-
placement) in order for humans to achieve the same shape as earlier fossil hominins over a
much longer period of time. However, the hypothesis that the modern human distal femur is
the result of peramorphosis is also rejected.
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