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Abstract

The 2-sample mark-recapture method with Chapman’s estimator is often used by inland

fishery managers to estimate the reach-scale abundance of stream fish. An important

assumption of this method is that no dispersal into or out of the study reach occurs between

the two samples. Violations of this assumption are probably common in practice, but their

effect on bias (systematic error) of abundance estimates is poorly understood, especially in

small populations. Estimation methods permitting dispersal exist but, for logistical reasons,

often are infeasible for routine assessments in streams. The purpose of this paper is to

extend available results regarding effects of dispersal on the bias of Chapman’s estimator

as applied to reach-scale studies of stream fish abundance. We examine for the first time

the joint effects of dispersal and sampling variation on the bias of this estimator. To reduce

the bias effects of dispersal, we propose a modified sampling scheme in which the original

study reach is expanded, a central subreach is sampled during the mark session (sample

1), and the entire reach is sampled during the recapture session (sample 2). This modified

sampling scheme can substantially reduce bias effects of dispersal without requiring unique

marking of individual fish or additional site visits. Analytical and simulation results show that

sampling variation tends to create negative bias with respect to study-reach abundance,

while dispersal tends to create positive bias; the net effect can be positive, negative, or zero,

depending on the true abundance, capture probabilities, and amount and nature of dis-

persal. In most cases, simply expanding the study reach is an effective way to reduce dis-

persal-related bias of Chapman’s estimator, but expanding the study reach and employing

the modified sampling scheme we propose is a better alternative for accurately estimating

abundance with the same level of sampling effort.
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Introduction

Estimating abundance is an important component of conservation and natural resource man-

agement studies that deal with issues such as population viability or the status of harvested

populations. In most cases, it is not feasible to count every individual, so any attempt at a direct

census would underestimate abundance. Various sampling methods and statistical estimators

have therefore been devised that can produce accurate abundance estimates based on partial

counts of a population, provided certain method-specific assumptions are satisfied [1–4].

One of the simplest methods of abundance estimation is the 2-sample mark-recapture (cap-

ture-recapture) method, which has been used to estimate abundance in marine and freshwater

fisheries since 1904 or earlier [5]. An initial sample is taken from the study area and the cap-

tured individuals are counted, marked, and released. Later, a second sample is taken and the

numbers of marked and unmarked individuals are determined. From these data, abundance

in the study area can be estimated (see below). The main assumptions are that the same indi-

viduals are present for both samples (no recruitment, mortality, or dispersal across the study-

area boundary occurs between samples), all individuals have the same capture probability dur-

ing a given sampling session, all marks are retained between samples, and all recaptured indi-

viduals are recognized as marked [1, 3, 4].

Despite the availability of more-sophisticated alternatives, the 2-sample mark-recapture

method remains one of the most commonly used methods for estimating reach-scale abun-

dance of fish in streams around the world [6–17]. Stream fisheries are often managed at the

reach (subpopulation) scale, requiring governmental agencies responsible for managing inland

fisheries to estimate abundance at large numbers of sites across the many stream reaches

within their jurisdictional boundaries. These estimates are used for a variety of management

purposes, such as documenting temporal trends to assess the efficacy of fishing regulations

and comparing abundance among reaches of a stream to document the spatial distribution of

fish and assess the need for reach-specific habitat enhancement. Properties of the 2-sample

mark-recapture method that are especially advantageous in this context are that it requires

only temporary batch marking (usually with partial fin clips, which are quick and require no

tag purchases) and only two site visits (usually on consecutive days), yet it produces accurate

abundance estimates when its assumptions are appropriate and at least 7 recaptures are made

[11, 12, 18].

The history of the 2-sample mark-recapture method is detailed in a thorough review by

Goudie and Goudie [5], who correct several historical myths that are prevalent in the literature

on abundance estimation. They demonstrate that using recaptures of marked fish to estimate

population size was already an established practice among northern European fisheries scien-

tists by 1904 when Meek [19] reported such an estimate for English plaice and noted that the

method had been used before [5]. Such estimates appear in various European fisheries reports

and publications after 1904 (e.g., Garstang [20] in 1905), most notably the book and papers by

the Norwegian fisheries scientist Dahl published between 1917 and 1919 [5, 21–23]. This

methodology was eventually adopted by investigators studying other organisms, including

Pearse in 1923 (North American turtles) [24], H.D. and E. B. Ford in 1930 (British butterflies)

[25], and Lincoln in 1930 (North American waterfowl) [26].

All of these early abundance estimates employed the simple ratio estimator

N̂ ¼ c0m=r0; ð1Þ

where N̂ is estimated abundance, m is the number of individuals caught, marked, and released

in the first sample, c0 is the total number of individuals caught in the second sample, and r0 is

the number of marked individuals in the second sample (throughout this paper, a prime (0)

Mark-recapture estimator bias with dispersal
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denotes quantities specific to the second sample). Dahl published the first explicit derivation of

this estimator in 1917 (in Norwegian) [21] and 1919 (in English) [23], lucidly explaining the

underlying rationale. From his 1919 paper:

“If I have marked 100 trout and distributed them evenly, and if I then fish and capture 150

trout, of which 50 prove to have been marked, I have taken half of the marked fish. Consid-

ering the marked fish as representative of the stock I should consequently have taken half of

the stock of the tarn and the total number contained should be about 300 fish. In other

words, if I divide the number of marked fish liberated [m in Eq (1)] by the number of

marked fish recaptured [r0], I obtain a coefficient of capture, and by multiplying the total

number or weight of fish taken [c0] with this coefficient, I obtain an approximately correct

estimate of the total number and weight of fish present in the water.”

Dahl also appears to have been the first to apply this estimator to data (seine samples from

small tarns) for which the basic assumptions were plausible and the value of c0 was accurately

known [5].

The estimator in Eq (1) is referred to by a variety of eponyms in the literature—Petersen,

Petersen-Lincoln, Lincoln-Petersen, and Lincoln estimator or index—all of which are histori-

cally erroneous (egregiously so in the case of Lincoln, who merely popularized application of

the estimator to North American waterfowl) and therefore will be avoided here. Goudie and

Goudie [5] show that this estimator emerged communally among fisheries scientists in north-

ern Europe circa 1900, so it seems both pointless and unjust to attempt to associate a particular

individual’s name with it. We therefore will call it the MRR (mark-recapture ratio) estimator,

with m/r0 in Eq (1) being the mark-recapture ratio and c0 being the count by which the ratio is

multiplied to obtain an abundance estimate.

The intuitive rationale on which the MRR estimator was originally based implicitly assumes

population and sample sizes are large enough so ratios in samples are essentially deterministic

and the well-known effects of sampling variation on the bias (systematic error) of ratio estima-

tors are negligible. When statisticians began to examine it, taking into account the probabilistic

nature of sampling, the MRR estimator was found to have some highly undesirable properties

(see below). Bailey [27] and Chapman [28] independently noted these problems in 1951 and

proposed alternative estimators to resolve them. Chapman’s estimator is now the most com-

monly used and will be employed in subsequent sections of this paper.

A careful reading of Dahl’s derivation of the MRR estimator reveals that it is based on two

proportions, both of which apply to the second sampling event: the proportion r0/m0 of the m0

marked fish present when the second sample is taken that are recaptured, and the proportion

c0/n0 of the n0 fish present when the second sample is taken that are captured. One intuitively

expects these two proportions to be approximately equal in large samples. But to arrive at

the MRR estimator, we must make the additional assumption that the same individuals are

present for sample 2 that were present for sample 1. Setting r0/m0 = c0/n0 and m0 = m then yields

c0m/r0 = n0 = n, which is the basis for Eq (1). Thus, the MRR estimator (and Chapman’s modifi-

cation of it) is a closed-population estimator, meaning it assumes that no addition or removal

of individuals occurs between samples 1 and 2 via recruitment, death, or dispersal.

In applications to stream fisheries, the time between samples typically is one day or less

[14], making it straightforward to plan assessments so the assumption of no recruitment or

mortality is reasonable. The assumption of spatial closure, however, can be questionable or

clearly wrong, either because block nets cannot be used to prevent dispersal or because they

are not fully effective [29]. Therefore, given the widespread use of the 2-sample mark-recapture

method in these applications, it is important to know what effects dispersal has on the MRR

Mark-recapture estimator bias with dispersal
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and Chapman estimators, under what conditions they are serious, and whether there are prac-

tical methods for reducing or eliminating them that do not require unique marking of individ-

ual fish (and the attendant cost of tags) or additional site visits. Some of these issues have been

considered in the literature, but none adequately, as we now briefly discuss.

Ricker [30] systematically examines the effects of violating each of the other assumptions of

the 2-sample mark-recapture method but has little to say about violating spatial closure. He

mentions what he calls the “problem of wandering” when the study area (stream reach) does

not include the entire population, but he does not quantify the effects of such dispersal on

abundance estimates.

Seber [1] (p. 73) considers a situation where individuals may enter and exit the study area

between samples 1 and 2. The study area contains n individuals when sample 1 is taken. A frac-

tion p< 1 of these individuals exit between samples 1 and 2, and I individuals enter from out-

side, so that n0 individuals (possibly different from n) are in the study area when sample 2 is

taken. If population and sample sizes are sufficiently large (Seber gives no guidance on how

large is sufficient), the intuitive reasoning that leads to the MRR estimator, modified to

account for dispersal (by assuming m0 = m(1 − p) and n0 = n(1 − p) + I), yields the approxima-

tion

c0m=r0 � nþ I=ð1 � pÞ ¼ n0=ð1 � pÞ: ð2Þ

Thus, as long as p> 0 or I> 0 (or both), the MRR estimator overestimates one or both of the

abundances n and n0 [4]. The effect of dispersal, then, seems rather simple. But these results

address only a few, very simple dispersal scenarios, do not address accuracy with respect to the

size of the total population of which the study-area subpopulation is a subset, and assume that

population and sample sizes are large enough so bias effects of sampling variation on the MRR

estimator are negligible.

The most extensive and thoughtful assessment of dispersal effects to date is by Kendall [31].

His focus is mainly on wildlife applications where the study area is a strict subset of the total

population domain and one wishes to estimate total population size nT rather than study-area

abundance n or n0. Like Seber [1], he addresses situations where population and sample sizes

are large enough so the effect of sampling variation on bias of the MRR estimator is negligible.

But unlike Seber, he considers models where both study area and total population abundance

are explicit. His main result applies to situations where dispersal thoroughly mixes the entire

population between samples 1 and 2, so that all individuals in the population are equally likely

to be in the study area when sample 2 is taken, regardless of where they were for sample 1. In

this case, the MRR estimator applied to sampling data from the study area yields the approxi-

mation

c0m=r0 � nT: ð3Þ

The MRR estimator, then, accurately estimates total population size nT, which may greatly

exceed study area abundances n and n0.
As this brief review illustrates, previous assessments of dispersal effects on closed-popula-

tion 2-sample mark-recapture abundance estimators restrict attention to the MRR estimator

(whose moments do not exist under the usual model of Bernoulli sampling [32]) and assume

large population and sample sizes. Results obtained by simplifying the problem in this way are

useful in stimulating intuition and suggesting qualitative patterns, but they are of limited value

in applications. Indeed, that is why statistical expositions of 2-sample mark-recapture abun-

dance estimators without dispersal typically employ Chapman’s estimator (whose moments

exist) and permit populations and samples of any size [1, 4].

Mark-recapture estimator bias with dispersal
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Surprisingly, then, we find that despite widespread and continuing use of closed-population

2-sample mark-recapture abundance estimators in fisheries management since circa 1900, the

literature currently contains no adequate assessment of the bias of these estimators in the pres-

ence of dispersal, comparable to what is available for the case without dispersal. Results sum-

marized above suggest that dispersal is likely to create a positive estimator bias with respect to

study-area abundance with large samples from large populations, while standard results for

the case without dispersal, based on Chapman’s estimator, indicate that sampling variation is

likely to create a negative bias with small samples from small populations [1, 3, 4, 28, 32].

What, then, is the sign of estimator bias in small populations subject to dispersal? Under what

conditions will this bias be pronounced? And how can field studies be designed to reduce its

magnitude? For routine estimation of reach-scale abundance of stream fish—the main applica-

tion of the 2-sample mark-recapture method today, and one where open-population methods

often are not feasible—these are important questions that the literature currently does not

address.

The goal of the present paper is to partially fill this knowledge gap. We provide answers to

the following two questions: What are the joint effects of dispersal and sampling variability on

the bias of Chapman’s estimator when population and sample sizes are not necessarily large?

And are there modified sampling methods that reduce these effects without requiring unique

marking of individual fish or additional site visits?

Some background on closed populations

As background for our treatment of populations with dispersal, we briefly outline several

important and well-known results for closed populations.

In stream fishery assessments, sampling for 2-sample mark-recapture studies commonly is

conducted by making one or more electrofishing passes through the study reach for sample 1,

and the same for sample 2 the next day. If conditions permit, block nets may be used in an

attempt to isolate the reach and achieve spatial closure. The resulting number M of captures in

sample 1 (= number of marked fish), total number C0 of captures in sample 2, and number R0

of recaptures in sample 2 are random variables.

In developing a corresponding abundance estimator, it is customary to assume that the

same fish are present for both samples, the capture probability is the same for all fish during a

given sampling session, and captures occur independently within and between sampling ses-

sions. Let n and n0 denote the study-reach abundances when samples 1 and 2 are taken, let q
and q0 denote the capture probabilities for samples 1 and 2, and require n> 0, n0 = n, 0<

q< 1, and 0< q0 < 1. Then the number of fish captured when sampling the study reach is

binomially distributed with parameters n and q for sample 1, and n0 = n and q0 for sample 2.

Under these assumptions, every fish falls into exactly one of four categories: captured in

both samples, captured in sample 1 but not 2, captured in sample 2 but not 1, or captured in

neither sample. Therefore, the probability that the two sampling sessions will produce out-

come (M, C0, R0) = (m, c0, r0), subject to constitutive constraints 0�m� n, 0� r0 � c0 � n,

and 0� r0 �m, is given by the multinomial probability mass function

Pðm; c0; r0Þ ¼
n!

r0!ðm � r0Þ!ðc0 � r0Þ!ðn � k0Þ!
pr0

1;1
pm� r0

1;0
pc0 � r0

0;1
pn� k0

0;0
; ð4Þ

where π1,1 = qq0, π1,0 = q(1 − q0), π0,1 = (1 − q)q0, π0,0 = (1 − q)(1 − q0), and k0 = m + c0 − r0 [3].

Given the constitutive constraints just stated, this probability is positive if and only if k0 � n.

Mark-recapture estimator bias with dispersal
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If m, c0, and r0 are viewed as data, then Eq (4) is the likelihood function. Maximum-likeli-

hood estimators n̂, q̂, and q̂ 0 for the parameters are

n̂ ¼ c0m=r0; q̂ ¼ r0=c0 ¼ m=n̂; q̂0 ¼ r0=m ¼ c0=n̂

[3, 4, 28]. The MRR estimator is therefore the maximum-likelihood estimator of n.

Unfortunately, outcomes for which R0 = 0 have positive probability for any values of C0 and

M such that C0 � n − M (i.e., the number of captures in sample 2 does not exceed the number

of unmarked fish in the population). For such outcomes, the denominator of the MRR estima-

tor is 0 and the value of the estimator is undefined (infinite). It follows that the mean and

higher moments of the MRR estimator do not exist, and the bias of the estimator is therefore

undefined [32].

To resolve this problem, Chapman [28] proposed the alternative abundance estimator

N̂ � ¼
ðM þ 1ÞðC0 þ 1Þ

R0 þ 1
� 1:

The presence of R0 + 1 instead of R0 in the denominator ensures that Chapman’s estimator is

defined for all possible sampling outcomes, while the other modifications improve its bias

properties [28]. (The device of adding 1 to captures and recaptures can also be used to create

rigorous versions of the approximations in Eqs (2) and (3) under Bernoulli sampling, based on

the strong law of large numbers.)

Chapman defined the bias of his estimator in terms of conditional mean EðN̂ �jm; c0Þ given

by

EðN̂ � jm; c0Þ ¼

n; ifc0 ⩾ n � m

n �
ðn � mÞ!ðn � c0Þ!

n!ðn � m � c0 � 1Þ!
; ifc0 < n � m

8
><

>:
ð5Þ

where m and c0 are the observed values of M and C0 and the expectation is taken over all possi-

ble values of R0. The conditional bias of N̂ � with respect to n is then defined as the difference

EðN̂ �jm; c0Þ � n. It follows at once from Eq (5) that the conditional bias of Chapman’s estima-

tor for a closed population is 0 if c0 � n − m and is negative otherwise [3, 28, 32].

The conditional mean and bias are specific to the outcome of a particular field study and

are opaque to the roles played by the capture probabilities in determining or influencing the

outcome of sampling. These properties are fine if we are only interested in assessing the out-

come of a single estimate from a particular field study. But they are undesirable if we are inter-

ested in planning future field studies or assessing the expected overall performance of a given

sampling plan. In such cases, we wish to extend the expected value in Eq (5) to include all pos-

sible values of random variables M and C0. To this end, Skalski and Robson [3] introduce the

unconditional mean and bias of Chapman’s estimator.

The key idea is to think of sampling as happening in the future instead of the past, so that

only the probability distributions for the numbers of captures in samples 1 and 2 are known,

not the actual values. Thus, Skalski and Robson [3] find the expected value and bias of Chap-

man’s estimator without conditioning on knowing the values of M, C0, or R0. The (uncondi-

tional) expected value EðN̂ �Þ of Chapman’s estimator is given by

EðN̂ �Þ ¼ O0 � φ
0

l
n� 1

0
; ð6Þ

Mark-recapture estimator bias with dispersal
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where

O0 ¼ n; φ
0
¼ ð1 � qÞð1 � q0Þn; l0 ¼ 1 � qq0

with 0< φ0 < n and 0< λ0 < 1. It follows at once that EðN̂ �Þ < n for all n, but EðN̂ �Þ ! O0 ¼

n as n!1. O0 represents the large-population, large-sample expected value of Chapman’s

estimator, which equals true abundance n. For sufficiently high abundances in a closed study

reach, then, the expected value of Chapman’s estimator is approximately the same as the value

of the MRR estimator and accurately estimates study-reach abundance n.

The bias of estimator N̂ � with respect to parameter n is defined as BðN̂ �; nÞ ¼ EðN̂ �Þ � n,

and the relative bias with respect to n is defined as bðN̂ �; nÞ ¼ BðN̂ �; nÞ=n ¼ ½EðN̂ �Þ � n�=n.

Both measures of bias have the same sign, but relative bias is of greater interest in most applica-

tions; for example, a bias of 100 is of greater concern if true abundance is 100 (relative

bias = 1) than if true abundance is 10,000 (relative bias = 0.01). From Eq (6), the relative bias is

given by

bðN̂ �; nÞ ¼ � ð1 � qÞð1 � q0Þ l n� 1

0
; ð7Þ

which is always negative. Thus, Chapman’s estimator tends to underestimate abundance in

closed populations. But the relative bias approaches 0 geometrically as n!1 and will be

close to 0 for suitably large study-reach abundances n.

When abundance in the study reach is small enough so the relative bias is not negligible, its

value can easily exceed 20% with realistic capture probabilities. In practice, this problem can

be ameliorated by lengthening the study reach to increase n, increasing sampling effort to

increase capture probabilities q and q0 (which decreases φ0 and λ0), or both. For example, with

n = 100, the percent relative bias of N̂ � is about −30% if q = q0 = 0.1 and about −1% if q = q0 =
0.2. With n = 200, these biases are about −11% and −0.02%, respectively.

Populations with dispersal

We now present expressions for the mean and bias of Chapman’s estimator when stochastic

dispersal is permitted, with no restriction on population or sample sizes. By stochastic dis-

persal, we mean that the numbers of individuals entering and leaving the study reach between

samples 1 and 2 are random variables rather than being fixed or deterministic quantities.

Bias with respect to abundance in the study reach

Suppose there initially are n individuals in the study reach. M of these are caught in sample 1,

marked, and released, where M is binomial with parameters n and q; the remaining U = n − M
individuals remain unmarked. Between samples 1 and 2, Om marked and Ou unmarked indi-

viduals exit the study reach and Iu unmarked individuals enter. Given M = m> 0 and U =

u> 0, we assume Om is binomial with parameters m and p and Ou is binomial with parameters

u and p, where p 2 (0, 1) is the exit probability (= probability that any given individual in the

study reach when sample 1 is taken is not in the study reach when sample 2 is taken). To avoid

unnecessarily complicating the theory, we assume that the probability of exiting the study

reach between samples 1 and 2 is the same for all fish in the study reach, and we interpret

this shared exit probability as the weighted average of spatially-explicit exit probabilities within

the reach. Iu is a random variable as well, but for present purposes we need assume only that it

has finite mean ~I ⩾ 0. When sample 2 is taken, then, there are N0 = n − Om − Ou + Iu individu-

als in the study reach, of which M0 = M − Om are marked and U0 = U − Ou + Iu = N0 − M0 are

unmarked.

Mark-recapture estimator bias with dispersal
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Under these assumptions, the expected value of abundance N0 when sample 2 is taken is

EðN 0Þ ¼ nð1 � pÞ þ ~I , and the expected value of N̂ � is given by

EðN̂ �Þ ¼ O1 � φ
1

l
n� 1

1
; ð8Þ

where

O1 ¼ nþ ~I=ð1 � pÞ ¼ EðN 0Þ=ð1 � pÞ

φ
1
¼ ðO1½1 � qq0ð1 � pÞ� � nq½1 � q0ð1 � pÞ�Þ½1 � q0ð1 � pÞ�

l1 ¼ 1 � qq0ð1 � pÞ

with 0< λ1 < 1 and 0< φ1 < O1 (S1 File).

We note that while there is no logically necessary relationship between ~I , p, and n, these

quantities are connected in real streams by the physical and behavioral mechanisms by which

dispersal occurs. For example, lengthening the study reach will increase n but also will decrease

p, because the average distance that must be traveled to exit the study-reach increases. And

increasing overall abundance in the stream segment in which the study reach is embedded will

increase n but also will increase ~I , because the density of fish (number per unit area) in the

source areas for immigrants increases. We return to this point in the numerical examples

below.

Notice that all terms in Eq (8) reduce to those in Eq (6) if we set p ¼ 0 ¼ ~I . It is also appar-

ent in Eq (8) that EðN̂ �Þ ! O1 ¼ nþ ~I=ð1 � pÞ as n!1. This result shows that as study-

reach abundance n becomes large, the expected value of Chapman’s estimator converges to

Seber’s large-population, large-sample expression for the MRR estimator with dispersal stated

in Eq (2). Similar to the case of a closed study reach, then, the expected value of Chapman’s

estimator will be approximately the same as the value of the MRR estimator if the initial study-

reach abundance (when sample 1 is taken) is sufficiently high.

The relative bias of Chapman’s estimator with respect to initial study-reach abundance n is

given by

bðN̂ �; nÞ ¼ ~I=½ð1 � pÞn� � ðφ
1
=nÞln� 1

1
;

which has two terms. The first term reflects only the bias effect of dispersal; it coincides with

the relative bias with respect to n of the MRR estimator with dispersal (= I/[(1 − p)n], from Eq

(2)) and has no analog in the relative bias of Chapman’s estimator for a closed population

given by Eq (7). The second term mainly reflects the bias effect of sampling variation in a finite

population; it has no analog in the relative bias of the MRR estimator with dispersal but does

have an analog in the relative bias of Chapman’s estimator for a closed population. Depending

on the relative sizes of these two terms, bðN̂ �; nÞ can be positive, negative, or zero (see numeri-

cal examples below).

With stochastic dispersal, study-reach abundance N0 when sample 2 is taken is a random

variable with expected value E(N0). Though E(N0) is not a parameter, it is still necessary to con-

sider whether Chapman’s estimator tends to systematically over- or underestimate the abun-

dance when sample 2 is taken. Using the expected value of this abundance as the benchmark

for assessing accuracy, it is convenient to refer to the difference between EðN̂ �Þ and E(N0) as

the bias of Chapman’s estimator with respect to E(N0). With this terminology, the relative bias

of N̂ � with respect the E(N0) is given by

bðN̂ �;EðN 0ÞÞ ¼ p=ð1 � pÞ � ½φ
1
=EðN 0Þ�ln� 1

1
:
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Like bðN̂ �; nÞ, bðN̂ �; EðN 0ÞÞ has two terms, the first representing the bias effect of dispersal and

coinciding with the relative bias with respect to n0 of the MRR estimator (= p/(1 − p), from Eq

(2)) and the second mainly reflecting the bias effect of sampling variation and having an analog

in the relative bias of Chapman’s estimator for a closed population. As in the case of relative

bias with respect to study-reach abundance n when sample 1 is taken, the relative bias with

respect to the expected value E(N0) of study-reach abundance when sample 2 is taken can be

postive, negative, or zero, depending on the relative sizes of these two terms (see numerical

examples below).

Bias with respect to total population size

In applications to stream fisheries, the study reach typically includes only a subset of the total

population. Suppose, then, that the total population also includes fish in a reach extending

upstream of the study reach and in another reach extending downstream of the study reach,

and that the total population is closed between samples 1 and 2. Denote the three reaches that

constitute the total population domain by S (study reach), US (upstream of S), and DS (down-

stream of S), and let the corresponding numbers of fish when sample 1 is taken be n, nUS, and

nDS. Then the total population size nT when sample 1 is taken is given by nT = n + nUS + nDS.

To address bias of Chapman’s estimator with respect to total population size nT using the

above theory, suppose zones US and DS are small enough so it is reasonable to assume that

every fish in zone US when sample 1 is taken has probability pUS,S < 1 of being in the study

reach for sample 2, and every fish in zone DS when sample 1 is taken has probability pDS,S < 1

of being in the study reach for sample 2. Let pS,S = 1 − p denote the probability that any given

fish in the study reach when sample 1 is taken will be there again when sample 2 is taken. In

Eq (8), then, ~I ¼ nUSpUS;S þ nDSpDS;S and terms O1, φ1, and λ1 have forms

O1 ¼ nþ ðnUSpUS;S þ nDSpDS;SÞ=pS;S ¼ EðN 0Þ=pS;S

φ
1
¼ ½O1ð1 � qq0pS;SÞ � nqð1 � q0pS;SÞ�ð1 � q0pS;SÞ

l1 ¼ 1 � qq0pS;S:

Using these expressions in Eq (8) and defining the bias of N̂ � with respect to parameters n
and nT in the usual way, the following results are evident:

1. If pS,S > max {pUS,S, pDS,S}, so that fish that were in the study reach when sample 1 was

taken are more likely to be there when sample 2 is taken than are fish that were outside the

study reach when sample 1 is taken, then N̂ � is negatively biased with respect to nT.

2. If pS,S < min {pUS,S, pDS,S}, so that fish that were in the study reach when sample 1 was

taken are less likely to be there when sample 2 is taken than are fish that were outside the

study reach when sample 1 is taken, then N̂ � can be positively or negatively biased (or unbi-

ased) with respect to nT but will be positively biased for sufficiently large n.

3. If pj,S = pS for all j 2 {US, S, DS}, so that all fish are equally likely to be in the study area

when sample 2 is taken, regardless of their location when sample 1 was taken, then N̂ � is

negatively biased with respect to nT, but the bias becomes negligible for sufficiently large n.

Property 1 is the most relevant for field applications, with the other properties mainly illustrat-

ing the range of theoretical possibilities. Property 3 addresses the extreme case where every

individual in the population has the same chance of being in the study reach when sample 2 is

taken. Dispersal is then so extensive that it thoroughly mixes the entire population between

samples (Kendall [31] calls this completely random dispersal). In this case, Chapman’s
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estimator is negatively biased with respect to total population size nT. The bias is negligible,

however, if study-reach abundance n (hence nT) is sufficiently large, consistent with Kendall’s

large-population result stated in Eq (3).

All the above properties rely on the assumption that the total population domain is not

much larger than the study reach. When the population domain greatly exceeds the study

reach, it is unreasonable to assume that all individuals upstream (or downstream) of the study

reach have the same probability of entering the study reach between samples. In this case, how-

ever, we may interpret zones US and DS as containing all the fish likely to enter the study

reach between samples 1 and 2, and to restrict the equal-probability assumption to these fish.

The above properties still apply to cumulative abundance n + nUS + nDS in zones US, S, and

DS, but this will be less than the total population size.

A modified sampling scheme that reduces dispersal-related bias

A common method for dealing with dispersal in streams when block nets cannot be used or

are not fully effective is simply to lengthen the study reach, with sampling being conducted

throughout the expanded reach in the usual way [33]. The intent is to decrease the proportion

of marked fish that exit the study reach between samples 1 and 2 and to decrease the propor-

tion of fish present when sample 2 is taken that entered from outside the reach following

sample 1. This approach increases the area that must be sampled on both sampling occasions,

but it avoids the need to uniquely mark individual fish and still requires only two days to

complete.

As an alternative, we propose the following modified sampling scheme. The original study

reach is lengthened by moving its upstream boundary further upstream and its downstream

boundary further downstream (Fig 1). The expanded study reach now comprises three zones:

a central zone (the original study reach), a new upstream zone, and a new downstream zone.

Call these zones U (upstream), C (central), and D (downstream). Sample 1 is taken only from

zone C, and all captured fish are returned there after marking; sample 2 is taken from the

entire study reach. If zones U and D are long enough and the time between samples 1 and 2 is

short enough relative to typical movement rates of the fish species being studied, then none or

very few of the marked fish (all initially located in zone C) will leave the expanded study reach

before sample 2 is taken. Therefore M0 �M and the effect of dispersal on bias of Chapman’s

estimator should be substantially reduced.

It is simple to confirm this idea for the large-population, large-sample case by modifying

Dahl’s argument presented in the Introduction. Recall that his argument is based on the intui-

tive notion that, with a large sample from a large population, we should have r0/m0 � c0/n0,
where r0 is the number of marked fish captured in sample 2, m0 is the number of marked fish

still present in the study reach when sample 2 is taken, c0 is the total number of captures in

sample 2, and n0 is abundance in the study reach when sample 2 is taken. With dispersal, n0 �
n(1 − p) + I, as in Seber’s argument that leads to Eq (2). But with the modified sampling

scheme, we have m0 �m instead of m0 = m(1 − p). It follows that, instead of Eq (2), the large-

population, large-sample approximation for the MRR is

c0m=r0 � n0 ¼ nð1 � pÞ þ I: ð9Þ

With the modified sampling scheme, then, the MRR accurately estimates abundance n0 in the

study reach when sample 2 is taken, even if substantial dispersal occurs.

We now consider this intuitive idea in the context of populations and samples that are not

necessarily large, where the bias effect of sampling variation must be accounted for.
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Bias with respect to abundance in the study reach

With the modified sampling scheme, sample 1 is taken only from central zone C, while sample

2 is taken from the entire study reach comprising zones U, C, and D (upstream to downstream

order). Let nU, nC, and nD be the numbers of fish in the three zones of the study reach when

sample 1 is taken, and let n = nU + nC + nD be the total number of fish in the study reach.

Assume that each fish in zone j 2 {U, C, D} when sample 1 is taken has probability pj of exiting

the entire study reach before sample 2 is taken, and let ~I denote the expected value of the num-

ber of (unmarked) fish entering the study reach from outside between samples 1 and 2. Then

the expected value of the number N0 of fish in the study reach when sample 2 is taken is given

by

EðN 0Þ ¼ n � nðpUpU þ pCpC þ pDpDÞ þ
~I ¼ nð1 � ~pÞ þ ~I ;

where πj = nj/n and ~p ¼ pUpU þ pCpC þ pDpD. It is straightforward to show that the expected

Fig 1. Comparison of standard and modified sampling schemes applied to a stream reach subject to dispersal. The study reach is shown in tints of blue, parts of the

population domain outside the study reach in yellow. Black dots: fish marked and released in sample 1 (unmarked fish not shown). Top row: Standard scheme applied

to a short study reach. Middle row: Standard scheme applied to an expanded study reach. Bottom row: Modified scheme applied to an expanded study reach, with zones

U, C, and D indicated (darker blue: samples 1 and 2 are taken; lighter blue: only sample 2 is taken). Left panels show locations of marked fish upon completion of

sample 1. Center panels show dispersal of marked fish in progress. Right panels show locations of marked fish when sample 2 is taken.

https://doi.org/10.1371/journal.pone.0200733.g001
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value of Chapman’s estimator is given by

EðN̂ �Þ ¼ O2 � φ
2

l
nC� 1

2
; ð10Þ

where

O2 ¼ ½nð1 � ~pÞ þ ~I �=ð1 � pCÞ ¼ EðN 0Þ=ð1 � pCÞ

φ
2
¼ ðO2½1 � qq0ð1 � pCÞ� � nCq½1 � q0ð1 � pCÞ�Þ½1 � q0ð1 � pCÞ�

l2 ¼ 1 � qq0ð1 � pCÞ

with 0< φ2 < O2 and 0< λ2 < 1 (S1 File). Note that all terms in Eq (10) reduce to those in Eq

(8) if we remove zones U and D by setting nU = 0 = nD, nC = n, and pC = p. We also note that,

as with the standard sampling scheme, ~I and ~p are not necessarily independent of n (see the

numerical examples below).

When the modified sampling scheme is implemented properly, pC� 0. Setting pC = 0, the

above formulas for O2, φ2, and λ2 simplify to

O2 ¼ nð1 � ~pÞ þ ~I ¼ EðN 0Þ

φ
2
¼ ½O2ð1 � qq0Þ � nCqð1 � q0Þ�ð1 � q0Þ

l2 ¼ 1 � qq0:

As nC!1, EðN̂ �Þ � O2 ¼ EðN 0Þ ¼ nð1 � ~pÞ þ ~I . The expected value of Chapman’s estima-

tor therefore converges to the value of the large-population, large-sample expression for the

MRR estimator with dispersal and the modified sampling scheme stated in Eq (9).

Defining the relative bias of N̂ � with respect to n and E(N0) as above, we find at once from

Eq (10) with pC = 0 that the relative bias with respect to n is given by

bðN̂ �; nÞ ¼ � pþ ~I=n � ðφ
2
=nÞl nC� 1

2
;

and the relative bias with respect to E(N0) is given by

bðN̂ �;EðN 0ÞÞ ¼ � ½φ
2
=EðN 0Þ�l nC � 1

2
:

As in the case of the standard sampling scheme, the relative bias bðN̂ �; nÞ with respect to initial

study-area abundance has two terms. The first represents the bias effect of unbalanced dis-

persal; it is positive, negative, or zero according as the expected value ~I of the number of immi-

grants between samples 1 and 2 is greater than, less than, or equal to the expected value np of

the number of emigrants. The second term reflects sampling variation and approaches 0 as

zone-C abundance nC becomes large. If dispersal is unbalanced, then, the asympotic relative

bias with respect to initial study-reach abundance n will be either positive or negative, not

zero. By contrast, the relative bias bðN̂ �;EðN 0ÞÞ with respect to the expected value of study-

reach abundance when sample 2 is taken has only a term reflecting the bias effect of sampling

variation, which again approaches 0 as nC becomes large. The asymptotic relative bias with

respect to E(N0) is therefore zero. Broadly speaking, then, N̂ � provides a more-accurate esti-

mate of the expected value of study-reach abundance N0 when sample 2 is taken than of study

reach abundance n when sample 1 was taken unless dispersal is balanced, especially when nC

and n are large. If nC and n are large and the modified sampling scheme is properly imple-

mented, then EðN̂ �Þ � EðN 0Þ, regardless of whether dispersal is balanced.
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Bias with respect to total population size

We address bias with respect to total population size in the same way as for the standard sam-

pling scheme, retaining the assumption that the total population is closed between samples 1

and 2. The study reach S now comprises zones U, C, and D, while the total population domain

comprises the study reach, a reach US upstream of S, and a reach DS downstream of S. When

sample 1 is taken, the total population size is nT = n + nUS + nDS, where n = nU + nC + nD. We

assume that every fish in reach or zone j 2 {US, U, C, D, DS} when sample 1 is taken has proba-

bility pj,S of being in the study reach when sample 2 is taken, with pUS,S, pDS,S < 1. Then in Eq

(10), ~I ¼ nUSpUS;S þ nDSpDS;S and terms O2, φ2, and λ2 have forms

O2 ¼ ðn~pS;S þ nUSpUS;S þ nDSpDS;SÞ=pC;S ¼ EðN 0Þ=pC;S

φ
2
¼ ½O2ð1 � qq0pC;SÞ � nCqð1 � q0pC;SÞ�ð1 � q0pC;SÞ

l2 ¼ 1 � qq0pC;S

with ~pS;S ¼ pUpU;S þ pCpC;S þ pDpD;S. The following properties of the bias of N̂ � with respect to

nT are evident from Eq (10):

1. If pC,S > max{pj,S, j 6¼ C}, so that fish that were in zone C when sample 1 was taken are

more likely than other fish to be in the study reach when sample 2 is taken, then 0< O2 <

nT. In this case, N̂ � is negatively biased with respect to nT for all nC and remains so even in

the limit as nC, n!1.

2. In the special case where the modified sampling scheme is improperly implemented and

pj,S = pS for all j, so that all fish are equally likely to be in the study reach when sample 2 is

taken, we have O2 = nT. In this case, N̂ � is negatively biased with respect to nT for all nC, but

the bias becomes negligible for sufficiently large nC (and hence n, nT).

Property 1 implies that if the modified sampling scheme is properly implemented, Chapman’s

estimator will be negatively biased with respect to total population size nT, regardless of the

number of fish in the central zone when sample 1 is taken. Property 2 is of little relevance to

field applications but provides a link to Kendall’s result in Eq (3).

Comparison of the standard and modified sampling schemes

In this section, we present numerical results that permit quantitative comparison of the relative

biases of Chapman’s estimator for three sampling implementations: the standard sampling

scheme applied to the original study reach, the standard scheme applied to the expanded study

reach, and the modified scheme applied to the expanded study reach. All comparisons are

based on a range of different abundances, capture probabilities, and dispersal rates using

Eqs (8) and (10). To make the comparisons fair and informative, it is necessary to standardize

sampling effort so we are assessing different choices of study-reach length and sampling

scheme instead of different levels of sampling effort, and to represent dispersal in such a way

that both the probability of exiting the study reach and the expected value of the number of

fish entering the study reach from outside between samples 1 and 2 differ between study-reach

lengths and sampling schemes in an appropriate way that does not favor one sampling imple-

mentation over another. Before presenting the numerical results, we briefly explain how these

requirements were satisfied.

Each sampling implementation can be viewed as occurring in one of three identical stream

segments, each of which comprises five zones. We focus on the case where all zones have the

same length and the same initial abundance n0 when sample 1 is taken (Fig 2). To ensure that
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the exit probabilities and mean numbers of immigrants in Eqs (8) and (10) vary appropriately

among study-reach lengths and zones, we employ a simple dispersal model in which fish abun-

dance and density are spatially uniform and dispersal is isotropic and local. More specifically,

the probability that any given fish in any particular zone exits that zone between samples 1 and

2 is p0, with probability p0/2 of exiting in the upstream direction and probability p0/2 of exiting

in the downstream direction. Fish can disperse only to an adjacent zone. The expected value of

the number of fish dispersing from any particular zone to the adjacent upstream (or down-

stream) zone between samples 1 and 2 is therefore n0 p0/2, and the expected value of the

change in number of fish within any particular study-reach zone is therefore 0.

Of the five zones in each stream segment, the central one is the study reach when the origi-

nal study reach is employed, but it is zone C when the expanded study reach is employed.

With the original study reach, then, study-reach abundance when sample 1 is taken is n = n0,

and the zones labeled U and D in Fig 2 are the sources of immigrants between samples 1 and 2.

The expanded study reach comprises zones U, C, and D; the study-reach abundance when

sample 1 is taken is n = 3n0, and zones US and DS are the sources of immigrants between

samples.

The probability p of a randomly chosen fish exiting the original study reach is the probabil-

ity of exiting a single zone, so p = p0 in Eq (8). The probability of a randomly chosen fish exit-

ing the expanded study reach with either the standard or modified sampling scheme is the

weighted average ~p of the probabilities of exiting the study reach from zones U, C, and D.

Since the probability of exiting the study reach from zone C is 0, ~p ¼ pUp0=2þ pDp0=2 ¼ p0=3

in Eq (10). The expected value of the total number of fish exiting the study reach between sam-

ples 1 and 2 is np = n0 p0 for the original study reach and n~p ¼ n0p0 for the expanded reach.

The expected value of the number of fish entering the study reach is ~I ¼ n0p0 (n0 p0/2 from

each end) for both sampling schemes. Therefore, E(N0) = n (balanced dispersal), regardless of

the sampling implementation.

We assume that samples are taken actively (e.g., by electrofishing). To ensure that sampling

effort (as measured by duration of sampling) is the same when sampling is restricted to the

original study reach or zone C as when all three zones are sampled, it is necessary to adjust the

capture probability for zone C as follows. First, note that with constant search rate and capture

efficiency, capture probability q (or q0) can be expressed as a function of sampling duration T
as

qðTÞ ¼ 1 � e� arT=V

Fig 2. Definition sketch for comparing bias of standard and modified sampling schemes. Five equal-size zones of a

stream reach are shown. Zone C is the original study reach; zones U, C, and D constitute the expanded study reach.

Each zone contains n0 fish when sample 1 is taken. Isotropic dispersal occurs between samples 1 and 2, with

probability p0 of exiting any given zone. See text for additional details.

https://doi.org/10.1371/journal.pone.0200733.g002
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(e.g., [34]), where α is the capture efficiency (proportion of encountered fish caught), r is the

search rate (volume or area searched per unit time), and V is the size (volume or area) of the

zone or study reach being sampled. If the size VX of the expanded study reach is k times the

size VC of zone C, then VC = VX/k and the corresponding capture probabilities qC and qX with

fixed sampling duration T are related as follows:

qC ¼ 1 � e� arT=VC ¼ 1 � e� karT=VX ¼ 1 � ð1 � qXÞ
k
: ð11Þ

Thus, with constant sampling effort (e.g., 3 hours of electrofishing), one sampling pass through

the expanded study reach is equivalent to k passes through zone C (e.g., 1 hour per pass). This

relationship holds for both samples 1 and 2 when comparing the standard sampling scheme in

the original and expanded study reaches, and for sample 1 when comparing the modified and

standard schemes in the expanded study reach.

Table 1 compares the percent relative biases 100� bðN̂ �; nÞ ¼ 100� bðN̂ �;EðN 0ÞÞ of Chap-

man’s estimator for the standard sampling scheme applied to an original study reach of length

30 (arbitrary units), the standard scheme applied to an expanded study reach of length 90 (so

k = 3), and the modified scheme applied to an expanded study reach of length 90. Capture prob-

abilities were deliberately chosen to span a wide range and vary as follows: five “baseline”

Table 1. Comparison of standard and modified sampling schemes.

n0 q0 Standard scheme, original reach Standard scheme, expanded reach Modified scheme, expanded reach

q q0 PRB for various p0 q q0 PRB for various p0 q q0 PRB for various p0

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

50 0.100 0.271 0.271 8.9 35.9 76.6 0.100 0.100 -16.4 -12.8 -8.9 0.271 0.100 -20.9 -20.9 -20.9

0.300 0.657 0.657 11.1 42.9 100.0 0.300 0.300 3.5 11.1 20.0 0.657 0.300 -0.0 -0.0 -0.0

0.500 0.875 0.875 11.1 42.9 100.0 0.500 0.500 3.5 11.1 20.0 0.875 0.500 -0.0 -0.0 -0.0

0.700 0.973 0.973 11.1 42.9 100.0 0.700 0.700 3.5 11.1 20.0 0.973 0.700 0.0 0.0 0.0

0.900 0.999 0.999 11.1 42.9 100.0 0.900 0.900 3.5 11.1 20.0 0.999 0.900 0.0 0.0 0.0

100 0.100 0.271 0.271 11.0 42.4 96.4 0.100 0.100 -1.2 5.0 11.8 0.271 0.100 -5.3 -5.3 -5.3

0.300 0.657 0.657 11.1 42.9 100.0 0.300 0.300 3.5 11.1 20.0 0.657 0.300 -0.0 -0.0 -0.0

0.500 0.875 0.875 11.1 42.9 100.0 0.500 0.500 3.5 11.1 20.0 0.875 0.500 0.0 0.0 0.0

0.700 0.973 0.973 11.1 42.9 100.0 0.700 0.700 3.5 11.1 20.0 0.973 0.700 0.0 0.0 0.0

0.900 0.999 0.999 11.1 42.9 100.0 0.900 0.900 3.5 11.1 20.0 0.999 0.900 0.0 0.0 0.0

200 0.100 0.271 0.271 11.1 42.9 99.9 0.100 0.100 3.2 10.7 19.3 0.271 0.100 -0.3 -0.3 -0.3

0.300 0.657 0.657 11.1 42.9 100.0 0.300 0.300 3.5 11.1 20.0 0.657 0.300 0.0 0.0 0.0

0.500 0.875 0.875 11.1 42.9 100.0 0.500 0.500 3.5 11.1 20.0 0.875 0.500 0.0 0.0 0.0

0.700 0.973 0.973 11.1 42.9 100.0 0.700 0.700 3.5 11.1 20.0 0.973 0.700 0.0 0.0 0.0

0.900 0.999 0.999 11.1 42.9 100.0 0.900 0.900 3.5 11.1 20.0 0.999 0.900 0.0 0.0 0.0

300 0.100 0.271 0.271 11.1 42.9 100.0 0.100 0.100 3.4 11.1 19.9 0.271 0.100 -0.0 -0.0 -0.0

0.300 0.657 0.657 11.1 42.9 100.0 0.300 0.300 3.5 11.1 20.0 0.657 0.300 0.0 0.0 0.0

0.500 0.875 0.875 11.1 42.9 100.0 0.500 0.500 3.5 11.1 20.0 0.875 0.500 0.0 0.0 0.0

0.700 0.973 0.973 11.1 42.9 100.0 0.700 0.700 3.5 11.1 20.0 0.973 0.700 0.0 0.0 0.0

0.900 0.999 0.999 11.1 42.9 100.0 0.900 0.900 3.5 11.1 20.0 0.999 0.900 0.0 0.0 0.0

Comparison of percent relative bias (PRB) for the standard sampling scheme applied to an original study reach of length 30 (arbitrary units) containing 50, 100, 200, or

300 fish, and the standard and modified sampling schemes applied to an expanded study reach of length 90 containing 150, 300, 600, or 900 fish. n0 is abundance in the

original study reach and each zone of the expanded reach when sample 1 is taken. q0 is the capture probability for samples 1 and 2 for the standard sampling scheme

with the expanded study reach; for other cases, capture probabilities q for sample 1 and q0 for sample 2 were adjusted as necessary to make sampling effort equal for all

cases. PRB values are shown for three values of the probability p0 of exiting zone US, U, C, D, or DS between samples. See text for further explanation.

https://doi.org/10.1371/journal.pone.0200733.t001
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capture probabilities q0 are examined for all cases: q0 = 0.1, 0.3, 0.5, 0.7, 0.9. For the expanded

study reach, the capture probabilities for samples 1 and 2 with the standard sampling scheme

are the same as the baseline capture probabilities, so q = q0 = q0. The same area is sampled for

sample 2 with the modified sampling scheme, so q0 = q0 for this sample, too. For both samples

with the standard sampling scheme in the original study reach, and for sample 1 with the modi-

fied scheme, the area sampled is only one-third as large. Therefore, holding sampling effort con-

stant, the capture probabilities for samples 1 and 2 in the original study reach are q = q0 = 1 − (1

− q0)3, and the capture probability for sample 1 with the modified scheme is q = 1 − (1 − q0)3.

The probability of exiting a single zone between samples is p0 = 0.1, 0.3, 0.5. Abundance in each

of zones US, U, C, D, DS is n0 = 50, 100, 200, 300, so study-reach abundance is n = n0 and

n = 3n0 with the original and expanded study reaches, respectively.

Note that with the highest single-zone exit probability (p0 = 0.5, implying ~p � 0:17), the rel-

ative bias of Chapman’s estimator is roughly 100% in most cases where the standard scheme is

applied to the original study reach. Tripling the size of the study reach while maintaining the

same level of sampling effort reduces the relative bias to roughly 20% in most cases when the

standard scheme is retained but essentially eliminates it in most cases when the modified

scheme is used. The case with the lowest capture probability (q0 = 0.1) and zone-C abundance

(n0 = 50) is the only one where the standard sampling scheme performs better than the modi-

fied scheme. The reason for the poor performance of the modified scheme in this case is that

the combination of low capture probability and low zone-C abundance when sample 1 is taken

magnifies sampling variability, which, as noted in the Introduction, is known to produce nega-

tive bias in 2-sample mark-recapture estimators.

Bias differences between the three sampling implementations are less pronounced at lower

values of zone-exit probability p0. In most cases, however, the standard sampling scheme

applied to the expanded study reach performs better than the standard scheme applied to the

original study reach, and the modified scheme applied to the expanded study reach performs

even better. Broadly speaking, the numerical results in Table 1 show that the higher the dis-

persal probability is, the greater is the advantage of expanding the study reach and using the

modified sampling scheme. The few exceptions occur in cases where the single-zone abun-

dance is 100 or less and, simultaneously, the sample-2 capture probability is 0.1 in the

expanded reach. These results indicate that the advantage of expanding the study reach with

fixed sampling effort disappears if the capture probability is roughly 0.1 (or lower, presumably)

and the single-zone abundance is roughly 100 or lower.

How large is large?

Eqs (8) and (10) can be rearranged to yield expressions for the bias of Chapman’s estimator

that are valid for any population or sample size. Because λi 2 (0, 1), the geometric term in each

of these equations approaches 0 as n!1 or nC!1, and the biases consequently converge

to asymptotic forms that are valid only for large populations and samples. The question we

now ask is: How large must abundance n be to ensure that these asymptotic forms provide

good approximations to the exact values based on Eqs (8) and (10)?

A thorough investigation of this problem is beyond the scope of the present paper, but we

can obtain reasonable numerical estimates using the model of abundance and dispersal pre-

sented in the previous section. With this model, the expected value of the number of fish exit-

ing any zone of the stream between samples 1 and 2 is the same as the expected value of the

number entering, implying that E(N0) = n. Therefore, the bias of Chapman’s estimator with

respect study-reach abundance n when sample 1 is taken is the same as the bias with respect to

Mark-recapture estimator bias with dispersal
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the expected value of study-reach abundance E(N0) when sample 2 is taken, and we need not

distinguish between these two ways of expressing bias.

In the context of this model, Eqs (8) and (10) imply that relative bias bðN̂ �; nÞ ¼ bðN̂ �;EðN 0ÞÞ
for both the standard and modified sampling schemes has the form

bðN̂ �; nÞ ¼ b1 � bl
nx � 1

where nx = n for the standard sampling scheme and nx = nC for the modified scheme, b1 is the

asymptotic relative bias as nx!1, and λ is λ1 for the standard scheme and λ2 for the modified

scheme. For the standard scheme, we find from Eq (8) that b1 = p/(1 − p) and

b ¼
1 � qq0ð1 � pÞ

1 � p
� q½1 � q0ð1 � pÞ�

� �

½1 � q0ð1 � pÞ�:

For the modified scheme, we find that b1 = 0 and

b ¼ ½1 � qq0 � qð1 � q0Þ=3�ð1 � q0Þ:

As noted in the previous section, the exit probability for the original study reach is p = p0 and

the exit probability for the expanded study reach is p ¼ ~p ¼ p0=3. Also as in the previous sec-

tion, baseline capture probability q0 is the capture probability for both samples with the standard

scheme in the expanded study reach and for sample 2 with the modified scheme. Holding sam-

pling effort constant, the capture probability for both samples with the standard scheme in the

original study reach and for sample 1 with the modified scheme is 1 − (1 − q0)3.

Let us agree to say that asymptotic relative bias b1 adequately approximates exact value b if

|b − b1|� 10−2. We ask: How large must study-reach abundance n be to ensure that this

inequality is satisfied? For the standard sampling scheme, we find that we must require

n � ncrit ¼ 1þ
2þ log

10
ðbÞ

jlog
10
ðl1Þj

;

while for the modified scheme, with n = 3nC, we must require

n � ncrit ¼ 3 1þ
2þ log

10
ðbÞ

jlog
10
ðl2Þj

� �

:

Table 2 shows values of ncrit and asymptotic percent relative bias PRB1 = 100 × b1 for the

standard sampling scheme applied to the original study reach and for the standard and modi-

fied sampling schemes applied to the expanded study reach. Parameter values are p0 = 0.1, 0.3,

0.5 and q0 = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9. Note that ncrit is less than 150 for the standard sampling

scheme applied to the original study reach but that the asymptotic relative bias is substantial:

roughly 11% for p0 = 0.1, 43% for p0 = 0.3, and 100% for p0 = 0.5. ncrit is also less than 150 for

both sampling schemes applied to the expanded study reach when the capture probability for

sample 2 is at least 0.2, but the asymptotic relative biases are substantially reduced compared

to those for the original study reach and are lower for the modified scheme (in fact, zero) than

for the standard scheme. These results suggest that the asymptotic relative bias is a reasonably

good estimate of the actual relative bias if the number of fish per zone is roughly 150 or more

and the capture probability for sample 2 is at least 0.2. In such cases, the relative bias of Chap-

man’s estimator is substantially lower with the expanded study reach and the same level of

sampling effort, regardless of whether the standard or modified sampling scheme is used.

However, the estimator remains biased with the standard scheme but is unbiased for the modi-

fied scheme. For sample-2 capture probabilities of 0.1 or less, the asymptotic relative biases are
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unlikely to give acceptable approximations to the exact finite-n values unless the abundance of

fish in each zone of the stream reach is much greater than 150 (� 500, say).

Simulation study

Simulation studies of abundance estimators are useful for assessing the robustness of analytical

results to simplifying assumptions invoked in their derivation and for documenting properties

for which analytical results are not available [35]. Our analytical results are based on models

where a fish’s dispersal probability is determined solely by the stream zone in which it is

located when sample 1 is taken, without regard to its distance from the zone boundary. To

assess the robustness of our main results to this simplifying assumption, we developed a spa-

tially explicit simulation model in which each fish’s initial (sample 1) location in the stream is

specified, and its position for sample 2 is determined by sampling from a probability distribu-

tion for net longitudinal movement distance. Whether a fish enters or exits the study reach

between samples is implied by its locations for samples 1 and 2 relative to boundaries of the

study reach. The simulation results also document the joint effects of dispersal and sampling

variation on the precision of Chapman’s estimator, for which we do not have analytical results.

Methods

Simulations were performed using the R programming language and computing environment,

version 3.1.0 [36], with packages doParallel [37] and doRNG [38]. The main steps of the simu-

lation for each combination of parameter values are as follows:

Table 2. Minimum sufficient abundances and asymptotic relative biases.

p0 q0 Standard, original Standard, expanded Modified, expanded

q q0 ncrit PRB1 q q0 ncrit PRB1 q q0 ncrit PRB1

0.1 0.100 0.271 0.271 62 11.1 0.100 0.100 458 3.4 0.271 0.100 482 0.0

0.200 0.488 0.488 16 11.1 0.200 0.200 108 3.4 0.488 0.200 124 0.0

0.300 0.657 0.657 7 11.1 0.300 0.300 45 3.4 0.657 0.300 56 0.0

0.500 0.875 0.875 3 11.1 0.500 0.500 13 3.4 0.875 0.500 19 0.0

0.700 0.973 0.973 1 11.1 0.700 0.700 5 3.4 0.973 0.700 8 0.0

0.900 0.999 0.999 1 11.1 0.900 0.900 2 3.4 0.999 0.900 3 0.0

0.3 0.100 0.271 0.271 87 42.9 0.100 0.100 502 11.1 0.271 0.100 482 0.0

0.200 0.488 0.488 24 42.9 0.200 0.200 119 11.1 0.488 0.200 124 0.0

0.300 0.657 0.657 11 42.9 0.300 0.300 50 11.1 0.657 0.300 56 0.0

0.500 0.875 0.875 5 42.9 0.500 0.500 15 11.1 0.875 0.500 19 0.0

0.700 0.973 0.973 3 42.9 0.700 0.700 6 11.1 0.973 0.700 8 0.0

0.900 0.999 0.999 3 42.9 0.900 0.900 2 11.1 0.999 0.900 3 0.0

0.5 0.100 0.271 0.271 135 100.0 0.100 0.100 553 20.0 0.271 0.100 482 0.0

0.200 0.488 0.488 38 100.0 0.200 0.200 132 20.0 0.488 0.200 124 0.0

0.300 0.657 0.657 19 100.0 0.300 0.300 55 20.0 0.657 0.300 56 0.0

0.500 0.875 0.875 9 100.0 0.500 0.500 17 20.0 0.875 0.500 19 0.0

0.700 0.973 0.973 7 100.0 0.700 0.700 7 20.0 0.973 0.700 8 0.0

0.900 0.999 0.999 6 100.0 0.900 0.900 3 20.0 0.999 0.900 3 0.0

Minimum study-reach abundance (ncrit) for which the percent relative bias of Chapman’s estimator is within 1% of the asymptotic percent relative bias (PRB1). For

each of three values of the probability p0 of exiting a single zone between samples 1 and 2, results are shown for the standard sampling scheme applied to the original

study reach and for the standard and modified schemes applied to an expanded study reach three times as long, based on the same model of abundance and dispersal

employed in Table 1. Other symbols are defined as in Table 1.

https://doi.org/10.1371/journal.pone.0200733.t002
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Specify habitat and fish parameters
Specify the number n.iter of iterations
Iterate n.iter times {
Assign spatial locations to all fish
Take first random sample and identify fish
Allow all fish to move
Take second random sample and identify fish
Determine number of recaptures
Calculate Chapman abundance estimate

}
Calculate empirical mean and bias of Chapman estimates
Calculate theoretical mean and bias of Chapman’s estimator.

These simulations build and expand upon those reported by Ruetz et al. [12].

Simulations were designed to shed light on two basic questions: (1) how effective is expand-

ing the study reach as a means of decreasing the effect of dispersal on bias of Chapman’s esti-

mator, and (2) does employing the modified sampling scheme instead of the standard scheme

significantly increase the effectiveness of expanding the study reach? Most of the simulations

addressed the second question. We describe methods for these simulations first, then indicate

the minor changes made to address the first question.

In simulations comparing the standard and modified sampling schemes on an expanded

study reach, the habitat comprised a study reach bordered by two buffer reaches: one upstream

(zone US) and the other downstream (zone DS). Consistent with typical applications in stream

fisheries management, the goal was to estimate fish abundance in the study reach, not total

population size. The two buffer reaches allowed fish to move in and out of the study reach

between samples 1 and 2. To assess the modified sampling scheme, the study reach was subdi-

vided longitudinally into three subreaches of equal length (zones U, C, and D). The only

important habitat parameters were the lengths of the study and buffer reaches and, for the

modified sampling scheme, the lengths of the three zones within the study reach. The length of

the study reach was set to 90 (arbitrary units), and the lengths of zones U, C, and D were set to

30 each. Lengths of both buffer reaches were set to 90. Fish parameters were the initial number

of fish in each reach and subreach, capture probabilities for samples 1 and 2, and parameters

specifying the maximum movement distance and the shape of the probability distribution for

fish movement distances. The number of iterations was set to 10,000.

Initial longitudinal locations of fish in each stream zone were assigned by generating uni-

formly distributed pseudorandom variates. We used 75, 300, and 600 fish in the study reach

(25, 100, and 200 fish in each zone). In model runs where balanced dispersal was desired

(equal inward and outward dispersal, on average), we set the initial densities of fish in the two

buffer reaches to be the same as in the study reach. Stochastic isotropic movement of all fish

then resulted in approximately equal numbers of fish entering and exiting the study reach

when averaged over the 10,000 iterations. When unbalanced dispersal was desired, we set the

densities of fish in the two buffer reaches higher or lower than in the study reach so that inward

dispersal was correspondingly higher or lower than outward dispersal, on average.

Determining which fish were captured in a given sample was accomplished by generating a

Bernoulli pseudorandom variable for each fish, with probability of success (capture) equal to

the specified capture probability. For the standard sampling scheme applied to zones U, C, and

D, we assessed capture probabilities of q = q0 = 0.1, 0.3, 0.5, and 0.7. For the modified sampling

scheme, sample 2 was taken from the entire study reach and had the same capture probabilities

as for the standard scheme. Sample 1, however, was taken only from zone C, which is 1/3 the

size of the total study reach. To make comparisons fair, we set the capture probability for sam-

ple 1 of the modified scheme so the duration of sampling was the same (instead of 1/3 as long)
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as for sample 2, based on Eq (11) (examples for the modified sampling scheme with equal cap-

ture probabilities for samples 1 and 2 are included in the supporting information (S2 File)).

As in Ruetz et al. [12], the longitudinal distance moved by each fish between samples 1 and

2 was determined by generating a pseudorandom variable from a symmetric beta distribution

with both shape parameters set to 4, the mode shifted to 0, and the support stretched to [−δ, δ],

where δ is the maximum longitudinal movement distance (values: 0, 30, 60, or 90). With δ =

90, an average of about 30% of fish in the study reach for sample 1 exited the reach before sam-

ple 2 was taken. Since the length of each zone of the study reach was 30, outward dispersal

from the study reach was possible for at least some of the fish in the central zone when the

maximum movement distance was greater than 30 but not otherwise.

Abundance in the study reach was estimated for each iteration using Chapman’s estimator.

For both the standard and modified sampling schemes, simulations generated 10,000 abun-

dance estimates for each of 48 combinations of true initial abundance (3 values), capture prob-

ability (4 values), and movement range (4 values). The empirical mean
�̂N � of Chapman’s

estimator was calculated and compared with the theoretical value given by Eqs (8) or (10), the

empirical relative biases �b ¼ ð �̂N � � nÞ=n and �b0 ¼ ð �̂N � � �N 0Þ= �N 0 with respect to true abun-

dance n and empirical mean abundance �N 0 when sample 2 was taken were calculated and com-

pared, and the empirical interquartile range was determined. Since there were no simulation

parameters corresponding to exit probabilities p, pU, pC, and pD in the analytical results, values

for these parameters were obtained by determining the average proportions of individuals that

exited the corresponding parts of the study reach in the simulations.

In simulations comparing bias of abundance estimates based on sampling the original ver-

sus expanded study reaches, the length of the original study reach (zone C) was set to 30 and

initial abundance was set to 120 fish. The length of the expanded study reach (zones U, C, and

D) was set to 90 and initial abundance was set to 360, with 120 fish each in zone. Only the stan-

dard sampling scheme was applied to the original study reach. To make the duration of sam-

pling the same as in other cases, we set the capture probabilities for samples 1 and 2 to the

same values used for sample 1 (zone C) with the modified scheme applied to the expanded

study reach.

Results

We begin with results illustrating the efficacy of expanding the study reach to reduce dispersal-

related bias. Fig 3 shows the empirical distribution of Chapman’s estimator for three cases, all

with the same sampling effort and maximum dispersal distance δ = 60: (1) a study reach of

length 30 with n = 120, sampled with the standard sampling scheme (top row), (2) an

expanded study reach of length 90 with n = 360, sampled with the standard scheme (middle

row), and (3) an expanded study reach of length 90 with n = 360, sampled with the modified

scheme (bottom row). Consistent with the purpose of the modified scheme, the central zone is

long enough so few fish located there when sample 1 is taken leave the study reach before sam-

ple 2 is taken (�pC � 0:03). Note that the relative bias of Chapman’s estimator for the original

(short) study reach and standard sampling scheme consistently exceeds 100%. When the study

reach is expanded, the relative bias drops to roughly 20% if the standard sampling scheme is

used and to roughly 3% if the modified sampling scheme is used. This numerical example, and

others with different choices of parameter values we have examined, confirm the pattern evi-

dent in Table 1: expanding the study reach is an effective way to reduce the effect of dispersal

on the bias of Chapman’s estimator, even if the standard sampling scheme is retained, but bias

typically is lower with the modified sampling scheme.
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The remaining results compare efficacies of the standard and modified sampling schemes

on the expanded study reach. Recall that the results in Table 1 show that the modified scheme

typically is more effective than the standard scheme in reducing the bias of Chapman’s estima-

tor when nonnegligible dispersal occurs. Simulation results for the standard scheme with dis-

persal (Tables 3 and 4) confirm the conclusion based on our analytical results that when

sampling variation is taken into account, the relative bias of Chapman’s estimator can be posi-

tive or negative, with negative bias being particularly pronounced when capture probabilities

are so low that few recaptures are made. Moderate to pronounced positive bias becomes com-

mon when the maximum movement distance is sufficiently long (i.e., dispersal across the

study-reach boundary is sufficiently common), especially when capture probabilities are mod-

erate to high and dispersal is either balanced (Table 3, Fig 4) or unbalanced in favor of inward

dispersal (Table 4). When dispersal is unbalanced in favor of inward dispersal, bias tends to be

Fig 3. Effects of expanding the study reach on the empirical distribution of Chapman’s estimator with constant sampling effort. Top row: standard sampling

scheme applied to a study reach of length 30 (arbitrary units) and abundance n = 120. Middle row: standard sampling scheme applied to an expanded study reach of

length 90 and abundance n = 360. Bottom row: modified sampling scheme applied to an expanded study reach of length 90 and abundance n = 360, with 120 fish in each

of zones U, C, and D. Sampling effort (duration of sampling) is the same in all cases, resulting in higher capture probabilities when sampling is restricted to a single zone.

Maximum movement distance δ = 60 in all cases. q: sample-1 capture probability; q0: sample-2 capture probability; �p: average proportion of individuals in the study

reach that exited between samples (standard sampling scheme only); �pU, �pC, �pD: average proportion of individuals in zones U, C, and D of the study reach that exited the

study reach between samples (modified sampling scheme only); �I : average number of immigrants in simulations; �b: average relative bias with respect to n (percent) of

Chapman’s estimator in simulations; IQR: empirical interquartile range. Solid red lines: n; dashed blue lines: empirical mean of N̂ �. See text for additional explanation.

https://doi.org/10.1371/journal.pone.0200733.g003
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more pronounced with respect to n than with respect to the expected value of N0, whereas the

opposite pattern holds but when the imbalance favors outward dispersal (Table 4); Seber’s

large-population, large-sample approximation in Eq (2) exhibits similar properties.

The effectiveness of the modified sampling scheme in reducing the effect of dispersal on

bias can be seen in Tables 3 and 4 and in Figs 3 and 5. In all cases with dispersal where the cap-

ture probabilities are high enough so at least 4 recaptures were made on average, the relative

bias of Chapman’s estimator is smaller with the modified sampling scheme than with the stan-

dard scheme, even with unbalanced dispersal.

The key role played by capture probabilities in determining precision is evident in all the

tables and figures: increasing the capture probabilities (moving to the right in any row of

Figs 3, 4, or 5) consistently increases precision. This is true even when there is a pronounced

positive bias due to dispersal, in which case the entire empirical distribution of Chapman’s

estimator may exceed the true population size (e.g., bottom right panel of Fig 4), virtually

guaranteeing that a single estimate drawn from this distribution in a field study will be posi-

tively biased. Dispersal also affects precision, with increasing dispersal tending to decrease

Table 4. Simulation results with unbalanced migration.

B:S δ q0 Standard sampling scheme Modified sampling scheme

q q0 �p �I �N 0 �R 0 �̂N � EðN̂ �Þ �b �b 0 IQR q q0 �pU �pC �pD
�I �N 0 �R 0 �̂N � EðN̂ �Þ �b �b 0 IQR

1.5 0 0.1 0.1 0.1 0.0 0.0 300.0 3.0 289.0 288.0 -3.7 -3.7 143.6 0.27 0.1 0.0 0.0 0.0 0.0 300.0 2.7 282.2 284.1 -5.9 -5.9 142.7

0.3 0.3 0.3 0.0 0.0 300.0 27.0 299.7 300.0 -0.1 -0.1 52.5 0.66 0.3 0.0 0.0 0.0 0.0 300.0 19.7 299.1 300.0 -0.3 -0.3 63.8

0.5 0.5 0.5 0.0 0.0 300.0 74.9 300.0 300.0 0.0 0.0 23.3 0.88 0.5 0.0 0.0 0.0 0.0 300.0 43.8 299.7 300.0 -0.1 -0.1 35.6

0.7 0.7 0.7 0.0 0.0 300.0 146.9 300.0 300.0 0.0 0.0 10.1 0.97 0.7 0.0 0.0 0.0 0.0 300.0 68.1 299.9 300.0 0.0 0.0 21.5

30 0.1 0.1 0.1 0.1 40.9 313.6 2.7 326.8 326.4 8.9 4.2 168.7 0.27 0.1 0.1 0.0 0.1 40.9 313.6 2.7 295.3 297.0 -1.6 -5.8 150.0

0.3 0.3 0.3 0.1 40.9 313.6 24.5 344.7 345.0 14.9 9.9 66.6 0.66 0.3 0.1 0.0 0.1 40.9 313.6 19.7 312.9 313.6 4.3 -0.2 67.9

0.5 0.5 0.5 0.1 40.9 313.6 68.1 345.0 345.0 15.0 10.0 32.6 0.88 0.5 0.1 0.0 0.1 40.9 313.6 43.8 313.3 313.6 4.4 -0.1 38.7

0.7 0.7 0.7 0.1 40.9 313.6 133.5 345.0 345.0 15.0 10.0 17.4 0.97 0.7 0.1 0.0 0.1 40.9 313.6 68.1 313.5 313.6 4.5 0.0 25.3

60 0.1 0.1 0.1 0.2 81.9 327.2 2.4 372.3 371.1 24.1 13.8 198.4 0.27 0.1 0.3 0.0 0.3 81.9 327.2 2.6 316.2 318.3 5.4 -3.4 160.5

0.3 0.3 0.3 0.2 81.9 327.2 22.1 400.0 400.2 33.3 22.2 84.3 0.66 0.3 0.3 0.0 0.3 81.9 327.2 19.1 337.7 338.1 12.6 3.2 76.3

0.5 0.5 0.5 0.2 81.9 327.2 61.3 400.4 400.2 33.5 22.3 42.4 0.88 0.5 0.3 0.0 0.3 81.9 327.2 42.4 338.1 338.1 12.7 3.3 45.0

0.7 0.7 0.7 0.2 81.9 327.2 120.1 400.2 400.2 33.4 22.3 24.8 0.97 0.7 0.3 0.0 0.3 81.9 327.2 65.9 338.1 338.1 12.7 3.3 30.5

0.5 0 0.1 0.1 0.1 0.0 0.0 300.0 3.0 288.5 288.0 -3.8 -3.8 139.5 0.27 0.1 0.0 0.0 0.0 0.0 300.0 2.7 281.2 284.1 -6.3 -6.3 140.0

0.3 0.3 0.3 0.0 0.0 300.0 27.0 300.4 300.0 0.1 0.1 52.0 0.66 0.3 0.0 0.0 0.0 0.0 300.0 19.8 299.6 300.0 -0.1 -0.1 64.8

0.5 0.5 0.5 0.0 0.0 300.0 75.0 300.0 300.0 0.0 0.0 23.2 0.88 0.5 0.0 0.0 0.0 0.0 300.0 43.8 299.8 300.0 -0.1 -0.1 35.4

0.7 0.7 0.7 0.0 0.0 300.0 147.0 300.0 300.0 0.0 0.0 10.0 0.97 0.7 0.0 0.0 0.0 0.0 300.0 68.2 299.9 300.0 0.0 0.0 21.8

30 0.1 0.1 0.1 0.1 13.6 286.3 2.7 298.0 298.1 -0.7 4.1 149.6 0.27 0.1 0.1 0.0 0.1 13.6 286.3 2.7 268.2 271.3 -10.6 -6.3 133.3

0.3 0.3 0.3 0.1 13.6 286.3 24.5 315.4 315.0 5.1 10.2 59.2 0.66 0.3 0.1 0.0 0.1 13.6 286.3 19.8 286.0 286.3 -4.7 -0.1 61.7

0.5 0.5 0.5 0.1 13.6 286.3 68.2 315.1 315.0 5.0 10.0 27.4 0.88 0.5 0.1 0.0 0.1 13.6 286.3 43.8 286.1 286.3 -4.6 -0.1 34.3

0.7 0.7 0.7 0.1 13.6 286.3 133.7 315.0 315.0 5.0 10.0 13.7 0.97 0.7 0.1 0.0 0.1 13.6 286.3 68.2 286.3 286.3 -4.6 0.0 22.5

60 0.1 0.1 0.1 0.2 27.2 272.5 2.5 309.3 309.4 3.1 13.5 164.5 0.27 0.1 0.3 0.0 0.3 27.2 272.5 2.6 262.4 265.3 -12.5 -3.7 133.5

0.3 0.3 0.3 0.2 27.2 272.5 22.1 333.5 333.3 11.2 22.4 66.9 0.66 0.3 0.3 0.0 0.3 27.2 272.5 19.1 281.1 281.5 -6.3 3.1 62.9

0.5 0.5 0.5 0.2 27.2 272.5 61.4 333.2 333.3 11.1 22.2 33.4 0.88 0.5 0.3 0.0 0.3 27.2 272.5 42.4 281.3 281.5 -6.2 3.2 35.5

0.7 0.7 0.7 0.2 27.2 272.5 120.3 333.1 333.3 11.0 22.2 18.1 0.97 0.7 0.3 0.0 0.3 27.2 272.5 66.0 281.5 281.5 -6.2 3.3 23.7

Simulation results corresponding to those in Table 3 with n = 300 but with the initial number of individuals in the buffer zones increased or decreased so that average

inward dispersal was greater or less than average outward dispersal. B:S is the ratio of initial density (number per unit area) of individuals in the buffer zones to the

initial density in the study reach. Average dispersal is balanced when B:S = 1, as in Table 3. Inward dispersal exceeds outward on average when B:S > 1; the opposite

occurs when B:S < 1. Other symbols are defined as in Table 3.

https://doi.org/10.1371/journal.pone.0200733.t004
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precision. This effect, however, is subtler than that of the capture probabilities over the range

of values considered.

In all cases addressed in the simulations, the theoretical unconditional mean calculated

using Eqs (8) or (10) is very close to the corresponding average value of the abundance estima-

tor in the simulation, despite the difference in dispersal assumptions. The examples shown in

Tables 3 and 4 illustrate this fact (compare the columns labeled
�̂N � and EðN̂ �Þ). We interpret

this result to indicate that the theoretical unconditional means are reasonably robust to the

simplifying assumptions regarding dispersal on which they are based, regardless of which sam-

pling scheme is used or whether dispersal is balanced or unbalanced.

Finally, we note that Tables 3 and 4, and Figs 3–5, include only a subset of the combinations

of parameter values employed in the simulation study. Histograms for additional combina-

tions of parameter values are provided in the supporting information (S2 File).

Fig 4. Empirical distribution of Chapman’s estimator in simulations with the standard sampling scheme. Study-reach length is 90 (arbitrary units), study-reach

abundance n = 300, sample-1 capture probability q = 0.1, 0.3, 0.5, 0.7, sample-2 capture probability q0 = q, and maximum movement distance δ = 0, 30, 60, 90. Dispersal is

balanced, so the average change in abundance between samples is approximately zero. Symbols and lines are defined as in Fig 3.

https://doi.org/10.1371/journal.pone.0200733.g004
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Discussion

We presented and assessed expressions for the expected value and bias of Chapman’s estimator

with dispersal that are valid for arbitrary study-reach abundances and properly account for the

effect of sampling variation on bias. To the best of our knowledge, these are the first such

expressions to appear in the literature on two-sample mark-recapture abundance estimation,

which is one of the most commonly used methods of abundance estimation in stream fisheries

management today. We also presented and assessed expressions for the expected value and

bias of Chapman’s estimator for a new modification of the standard sampling scheme in which

the study reach is expanded and fish for sample 1 are caught and released only in a central

zone of the study reach so that few or no marked fish exit the study reach between samples 1

and 2. Our analytical and numerical results indicate that, compared to the standard sampling

scheme with the same level of sampling effort, this new sampling scheme can substantially

Fig 5. Empirical distribution of Chapman’s estimator in simulations with the modified sampling scheme. Study-reach length is 90 (arbitrary units), study-reach

abundance n = 300, sample-2 capture probability q0 = 0.1, 0.3, 0.5, 0.7, sample-1 capture probability q = 1 − (1 − q0)3, and maximum movement distance δ = 0, 30, 60, 90.

Sample-1 capture probabilities ensure sampling effort (duration of sampling) is the same as in sample 2. Dispersal is balanced. Other symbols and lines are defined as in

Fig 3.

https://doi.org/10.1371/journal.pone.0200733.g005
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reduce or eliminate dispersal-related bias in Chapman’s estimator while still requiring only

temporary batch marking of fish and two days in the field.

As abundance in the study reach becomes large, expressions for the mean and bias of Chap-

man’s estimator converge to asymptotic forms that agree with the corresponding expressions

for the MRR, which assume large samples from a large population and therefore ignore the

effects of sampling variation on bias. These asymptotic forms indicate that expanding the

study reach and retaining the standard sampling scheme is an effective way to reduce dis-

persal-related bias in Chapman’s estimator, but that expanding the study reach and switching

to the modified sampling scheme with the same level of sampling effort is typically even more

effective if there is significant dispersal (exit probabilities of roughly 0.1 or greater). The modi-

fied sampling scheme is not intended for situations where there is no dispersal, and it is not

more effective than the standard scheme in such cases.

Our numerical results suggest that when there is significant dispersal, the asymptotic

expressions for the bias of Chapman’s estimator adequately approximate the exact finite-n
expressions if abundance in the study reach is roughly 150 or more and capture probabilities

for both samples are at least 0.2. Abundances of roughly 500 or more may be required if either

capture probability is 0.1 or lower. Comparison of sampling schemes becomes more difficult

when both study-reach abundance and capture probability are low (less than roughly 100 and

0.1, respectively), because bias then becomes rather sensitive to abundance, capture probabil-

ity, and exit probability.

The bias expressions for finite n contain two terms: one mainly reflecting the effect of dis-

persal and the other the effect of sampling variation. The term reflecting the effect of sampling

variation approaches zero as abundance becomes large, leading to the asymptotic expressions

just mentioned. The minimum abundance required for these asymptotic expressions to closely

approximate the exact relative bias is strongly dependent on the mark-recapture probability,

which is the probability of any given fish being caught in both the first sample (and therefore

marked) and the second sample (and therefore recaptured). This fact can be seen by noting

that the term reflecting the effect of sampling variation in each bias expression includes a factor

of form λnx−1, where nx is abundance in either the study reach or its central zone and λ = 1 −
(mark-recapture probability). This term decays geometrically toward zero at a rate that

decreases with decreasing mark-recapture probability: the smaller the mark-recapture proba-

bility, the closer λ will be to 1 and hence the more pronounced the effect of sampling variability

on relative bias will be for any given abundance nx. In this connection, it is interesting to note

that Robson and Regier [18], in their classic paper on 2-sample mark-recapture abundance

estimation, noted that low numbers of recaptures (fewer than 7) tend to create pronounced

negative bias in Chapman’s estimator when there is no dispersal.

A common method of reducing the influence of dispersal on bias of Chapman’s estimator

in streams is to lengthen the study reach. Because it increases study-reach abundance and sam-

ple sizes, this approach also reduces the effect of sampling variation on bias. We proposed the

modified sampling scheme as a way to further reduce the effect of dispersal on Chapman’s esti-

mator with the same level of sampling effort. The study reach is lengthened by moving the

upstream boundary further upstream and the downstream boundary further downstream.

Fish for sample 1 are captured and released only in the central zone, which coincides with the

original study reach, while sample 2 is taken from the entire expanded study reach. If the time

between samples 1 and 2 is sufficiently short and the distance between boundaries of the

expanded study reach and central zone is sufficiently large relative to fish movement rates,

few if any marked fish will exit the study reach between samples. Dispersal will then have no

meaningful effect on the relative bias of Chapman’s estimator with respect to the expected

value E(N0) of abundance when sample 2 is taken. Sampling variation will sometimes remain a
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significant factor if abundance in the central zone is low (especially if capture probabilities are

also low), reducing the mark-recapture probability and resulting in a negative bias with respect

to E(N0). Based on numerical examples, this bias appears to become negligible when abun-

dance in the central zone and the capture probabilities are jointly large enough so the expected

value of the number of recaptures in sample 2 is roughly 4 or more (e.g., Tables 3 and 4).

A practical issue with the modified sampling scheme is how much to expand the study

reach beyond its original boundaries. This problem is not unique to abundance estimation

and has been considered in the design of mark-recapture studies of stream fish movement

[39]. One would like the minimum distance between the boundaries of the original and

expanded study reaches to exceed, say, the 95th percentile of the distribution of movement

distances during a period of time equal to the inter-sample interval, but sufficient informa-

tion about this distribution will rarely be available and would be costly to obtain. A more-

pragmatic approach is to conduct a pilot mark-recapture experiment in which individuals

are captured, marked, and released in the original study reach, and a second sample is taken

from a reach extending upstream and downstream as far as feasible, with the distance of each

recapture from the nearest boundary of the original study reach being recorded. The size of

the expanded study reach is then chosen so the minimum distance between boundaries of

the original and expanded study reaches is somewhat greater than the maximum observed

recapture distance.

In closing, we wish to mention a few alternatives to the 2-sample mark-recapture method

and why the newer, more-sophisticated methods are rarely used by stream fishery managers in

routine abundance assessments. The MRR estimator came into widespread use by marine and

freshwater fisheries scientists in northern Europe around 1900. While appropriate for many

inland fisheries (especially streams), the closed-population assumptions on which this method

is based are dubious for marine fisheries and many wildlife populations. Not surprisingly,

then, a variety of more-sophisticated open-population methods have been developed—most of

which were originally designed for application to wildlife populations—that can be applied

even if significant recruitment, mortality, and dispersal occur (e.g., Jolly-Seber method, Pol-

lock’s robust design, spatial mark-recapture [1, 4, 40, 41]). Since the biological assumptions of

these methods are less restrictive, and free high-quality software is available that removes any

technical barriers to their use, one might expect them to have been widely adopted by stream

fishery managers. Why has this not occurred?

The advantages of open-population methods are purchased at a cost: they require perma-

nent, unique marking of captured fish (instead of only temporary batch marking) and multiple

site visits (instead of only one or two) so that individual capture histories can be constructed

that are long enough to permit accurate and precise estimates of model parameters character-

izing recruitment, mortality, and dispersal. In wildlife management applications, this added

cost usually is minor because of the small number of populations that any given management

agency must assess, and the use of open-population estimation methods is therefore becoming

the norm. In stream fisheries, however, where abundance typically is assessed at the reach

scale, the additional cost of labor and supplies to agencies responsible for managing inland

fisheries is prohibitive because of the large number of reaches that must be assessed. Thus,

although inland fisheries managers typically are aware of the more-sophisticated alternatives,

the 2-sample mark-recapture method continues to be used far more commonly than any of

the open-population methods for monitoring abundance in stream fisheries around the world,

with use of open-population methods being largely restricted to special studies (e.g., [42]).

Indeed, the main alternatives are single-pass electrofishing (catch per unit effort) and the

3-pass removal (depletion) method, which require no marking of fish and only a single site

visit [13, 43–48].
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Single-pass electrofishing is perhaps the simplest and quickest method of assessing fish

abundance in streams. It yields estimates that are approximately proportional to abundance

for fixed sampling effort and catchability [43–48]. These estimates of relative abundance are

often expressed as catch per unit effort (CPUE, the number of captures divided by a measure

of sampling effort) to reduce their dependence on effort and thus partially standardize them.

CPUE estimates can be useful in documenting qualitative temporal trends in abundance, pro-

vided the factors affecting catchability (gear and settings, crew skill, habitat characteristics,

etc.) are approximately constant across surveys, which in practice is difficult to ensure. The

3-pass removal method is capable of producing accurate estimates of absolute abundance but

requires significantly more time and effort than single-pass electrofishing. Three-pass removal

is not appropriate for large populations (because successive samples must exhibit depletion

due to sampling), but this constraint often is not problematic in reach-scale assessments of

streams. A more serious problem is that this method is prone to substantial negative bias

unless the true capture probabilities in successive samples are consistently high (� 0.5) [11, 12,

29, 47, 49].

Because sampling for single-pass electrofishing and 3-pass removal is completed in a single

day, these methods are thought to be less subject to dispersal-related bias than is the 2-sample

mark-recapture method with the standard sampling scheme [13]. However, as just mentioned,

both of these methods have significant weaknesses, especially if estimates of absolute abun-

dance are required. If the 2-sample mark-recapture method with the standard sampling

scheme is used instead, the effect of dispersal on the relative bias of Chapman’s estimator can

be reduced by expanding the study reach. Another practical approach found to be effective for

rainbow trout (Oncorhynchus mykiss) is to limit opportunities for dispersal by reducing the

recovery period between samples to several hours [14]. The modified sampling scheme pro-

posed in the present paper is another practical alternative for estimating absolute abundance

that can reduce or eliminate dispersal-related bias while retaining the standard 1-day recovery

period, though our assessment of it must remain tentative until a significant body of evidence

is available from field applications. All of these pragmatic approaches to reducing dispersal

effects on abundance estimates share the desirable properties of requiring only temporary

batch marking of fish (or no marking at all) and no more than two days in the field.
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