
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Funded Articles Open Access Publishing Support Fund

6-2018

The Difference between Optimal and Germane Communities The Difference between Optimal and Germane Communities

Jerry Scripps
Grand Valley State University, leidigp@gvsu.edu

Christian Trefftz
Grand Valley State University, trefftzc@gvsu.edu

Dr. Zachary Kurmas
Grand Valley State University, kurmasz@gvsu.edu

Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles

 Part of the Social Statistics Commons

ScholarWorks Citation ScholarWorks Citation
Scripps, Jerry; Trefftz, Christian; and Kurmas, Dr. Zachary, "The Difference between Optimal and Germane
Communities" (2018). Funded Articles. 109.
https://scholarworks.gvsu.edu/oapsf_articles/109

This Article is brought to you for free and open access by the Open Access Publishing Support Fund at
ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/oapsf_articles
https://scholarworks.gvsu.edu/oapsf
https://scholarworks.gvsu.edu/oapsf_articles?utm_source=scholarworks.gvsu.edu%2Foapsf_articles%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1275?utm_source=scholarworks.gvsu.edu%2Foapsf_articles%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/oapsf_articles/109?utm_source=scholarworks.gvsu.edu%2Foapsf_articles%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Vol.:(0123456789)1 3

Social Network Analysis and Mining (2018) 8:44
https://doi.org/10.1007/s13278-018-0522-1

ORIGINAL ARTICLE

The difference between optimal and germane communities

Jerry Scripps1 · Christian Trefftz1 · Zachary Kurmas1

Received: 3 May 2017 / Revised: 4 June 2018 / Accepted: 7 June 2018
© The Author(s) 2018

Abstract
Networks often exhibit community structure and there are many algorithms that have been proposed to detect the communi-
ties. Different sets of communities have different characteristics. Community finding algorithms that are designed to optimize
a single statistic tend to detect communities with a narrow set of characteristics. In this paper, we present evidence for the
differences in community characteristics. In addition, we present two new community finding algorithms that allow analysts
to find community sets that are not only high quality but also germane to the characteristics that are desired.

Keywords Community finding · Networks · Link analysis

1 Introduction

Networks are used in programs to represent the complex
relationships that occur in social, biological, computer and
other networks. These networks often exhibit community
structure. A community set (commSet) refers to a particular
set of communities for a network. There is general agree-
ment that high quality communities are ones that have many
links (or edges) within the communities and fewer of them
between the communities. While there are many community
finding algorithms (Porter et al. 2009; Lancichinetti and For-
tunato 2009; Xie et al. 2011), an exact definition of a high
quality set of communities for a network is elusive.

Existing community finding algorithms typically are
designed to optimize a specific function. While these algo-
rithms find high quality commSets, this paper presents an
argument for searching for commSets that are not only of a
high quality but also have characteristics that are germane
(i.e. appropriate) to the network and the purposes of the user.
Considering all of the possible commSets for a given net-
work, some different characteristics will emerge. For a small
social network, one could place nodes into sets to approxi-
mate bipartite sets, maximimal cliques, min-cut partitions
or something altogether different.

In this paper, three simple statistics—collectively named
NEO—are used to map commSets onto a triangular canvas

that distinguish their characteristics. In addition, objective
functions using NEO will be used to formulate two algo-
rithms for detecting commSets.

The three statistics of NEO are missing neighbors (Mmn),
extraneous nodes (Men) and overlap (Mol). A missing neigh-
bor is counted when a node in one community is linked to
a node in a different community—in Fig. 1, k is a missing
neighbor of c. An extraneous node is counted for any node
in a community that is not linked to another node in the same
community. n is an extraneous node with respect to m. Over-
lap is counted for each additional community that a node is
assigned to (beyond its first or home community). d is has
an overlap of 1 since it is in both comm1 and comm2. This
description is simplified; the actual definitions are presented
in Sect. 3. For the remainder of this paper, a NEO score will
be an ordered triplet (e.g. {2, 10, 0}—2 missing neighbors,
10 extraneous nodes and 0 overlap).

NEO is the foundation that will be used to find germane
communities:

1. It is simple to understand. Given a data set with two
commSets with NEO scores of {75, 254, 0} and {57,
241, 20} and the same number of communities, one can
tell that the first is a set of disjoint and the second is
overlapping. Further, the first has more missing neigh-
bors than the second—thus the second has communities
that are more tightly connected. There is often a tradeoff
with the metrics; allowing a higher value in one can
result in lower values of the others. * Jerry Scripps

 scrippsj@gvsu.edu

1 Grand Valley State University, Allendale, USA

http://orcid.org/0000-0002-0155-254X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-018-0522-1&domain=pdf

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 2 of 19

2. NEO will be used to define the commSet space canvas
(described in Sect. 3.3). In the previous example, plot-
ting the two commSets on the canvas provides a con-
venient visual map for comparing the two commSets.

3. Using the two algorithms described later, which use
objective functions incorporating NEO, analysts can
tune the algorithms so that they will find good commSets
with the desired characteristics.

To illustrate, one statistic for purchasing a new computer
would be the ratio of RAM to price. It does not make sense
to simply maximize this statistic if one is looking for a
specific kind of computer (laptop, server, etc.). commSets
can also have different characteristics. Community find-
ing algorithms tend to find sets of a specific type, i.e. with
different characteristics. While it is important to find good
quality communities, priority should also be placed on
finding the kind of communities that are desired. The moti-
vation for finding communities with specific characteris-
tics is discussed in Sect. 3.3.

The algorithms proposed used two different methods
to find high quality communities with the desired charac-
teristics. The first, CHI, will be shown to have similarities
to and many of the advantages of the kmeans clustering
algorithm. First of all it is efficient. Second, within the
framework of the commSet space, it has fewer violations
than any of the other methods tested. Third, like kmeans,
CHI starts with an input commSet. Unlike kmeans, it is
flexible in that it has parameters that can be tuned to pro-
duce commSets with many different characteristics.

As stated above, CHI uses a seed or random input
commSet and then finds a local optimum according to
the parameters given. While it is effective at finding high
quality commSets they may not have exactly the desired
characteristics. The second algorithm, Gamit, is designed
to find high quality commSets with characteristics very
close to those desired. Gamit has similarities to the

agglomerative clustering method. One can use Gamit to
find a seed commSet for CHI, which will then find the
local optimum.

Portions of this paper were published in Scripps (2011),
Scripps and Trefftz (2013). For this journal paper, the initial
experiments in Sect. 5.2 were added as were many of the
experiments. Gamit with its derivation and experiments is
also new. The authors have also posted a Java version of CHI
and a stand-alone tool for analyzing networks that incorpo-
rates both Gamit and CHI at http://www.cis.gvsu.edu/~scrip
psj/pubs/softw are.htm.

After this introduction, related work is presented in
Sect. 2. Necessary terms, metrics and the commSetSpace
canvas will be defined in Sect. 3. The algorithms are defined
in Sect. 4 and experiments are in Sect. 5. The paper ends
with a section for conclusions.

2 Related work

Networks are often given characterizations based on statis-
tics (such as clustering coefficient) which describe a growth
model. In particular, there are models for random, small
world, and scale-free, among others. We know that networks
having one of these designations will have certain charac-
teristics that can be helpful in analysis. While there have
been studies to examine the characteristics of individual
communities (see Traud et al. 2011), we are not aware of
any attempt to characterize an entire set of communities.

There have been many community finding algorithms
proposed; it is not our intention to review each one here. The
reader is directed to one of the recent reviews (Porter et al.
2009; Lancichinetti and Fortunato 2009; Xie et al. 2011).
There are many ways in which the algorithms can be organ-
ized: overlapping vs. disjoint, local vs. global, approach
(agglomerative, iterative, divisive, etc). They are organized
here in how they fit into the commSet space, that is, the
amount of Mmn , Men and Mol their communities produce. It
should be noted that a simple way to control Mmn and Men
is to vary k.

Algorithms that find disjoint communities implicitly hold
Mol to zero. Some then attempt to minimize Mmn . One of the
first is the algorithm by Girvan and Newman (2002) which
uses the betweenness metric to remove edges to reveal com-
munities. Starting with a single large community (top cor-
ner of the canvas), it separates the graph into communities,
moving down the left edge until it has reduce the network
to singletons (bottom right corner). Any divisive algorithm
that creates disjoint commSets will follow the same path.

The improved algorithm by Clauset et al. (2006), starts
with singletons and merges them based on the modular-
ity metric until they are all merged into one community.
This creates commSets that follow the same disjoint edge

Fig. 1 Example network

http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm

Social Network Analysis and Mining (2018) 8:44

1 3

Page 3 of 19 44

in the opposite direction from the divisive algorithms. This
will be true for any agglomerative approach that starts with
singletons.

Other disjoint algorithms are not necessarily designed
to minimize Mmn but appear to detect communities with
a balance of Mmn and Men . Spectral (Shi and Malik 2000)
methods cluster the eigenvector components of nodes. As a
result, it is more likely to group connected node pairs while
separating unlinked pairs. There are many other disjoint
algorithms (Lancichinetti and Fortunato 2009) that appear
to have a similar, balanced approach. It should be noted that
while we did not come across any disjoint algorithms that
minimized Men , it is easy to imagine an agglomerative algo-
rithm that starts with singletons and merges them based on
minimizing Men.

The divisive and agglomerative approaches can also
be applied to ego-centric communities. In particular, the
approach by Tang et al. (2010), starts with the neighbor-
hood communities (in the lower left corner of the canvas)
and merges the communities based on the Jaccard index
(using overlap) until it reaches a single community. This is
essentially holding Mmn = 0 while minimizing Mol . It can be
shown (Scripps 2011) that a commSet that is ego-centric (no
missing neighbors) can have two communities merged and
the resulting commSet will also be ego-centric. So similarly
to the disjoint agglomerative methods, this one creates sets
that move along an edge of the canvas but the ego-centric
edge instead of the disjoint one.

There are some algorithms that detect algorithms on the
bottom edge of the canvas. Simply finding cliques would
result in commSets placed there. However, the CFinder
(Palla et al. 2005), algorithm starts with cliques of a cer-
tain size and then merges them. The resulting communities
often have very low Mol so they are close to the right edge
of the triangle. We are not aware of any algorithms that start
with singletons and copy nodes into communities until they
become neighborhood communities (or the other direction)
but such an algorithm is not inconceivable. The algorithm by
Ahn et al. (2010) partitions the links instead of the nodes—
the nodes are then added to the communities to which their
associated links belong. This algorithm tends to generate
many communities with a high level of overlap.

3 Notation and metrics

Nodes in networks can be grouped together into sets and
are often referred to as communities. Intuitively, they are
typically grouped in a way that agrees with the link struc-
ture—that is, there should be many links between nodes
within the same community and fewer between nodes in
different communities. The commSetSpace is a framework
that is useful for measuring the quality and characteristics

of a specific set of communities. It will be defined below,
after defining the structures and statistics necessary for the
commSetSpace definition.

3.1 Notation and structures

Nodes in networks can be placed into disjoint or overlap-
ping communities. Disjoint communities are ones where
each node is placed in one, and only one, community.
Overlapping communities allow nodes to be placed in
one or more communities. The commSetSpace represents
all possible commSets, which is the same as all possible
overlapping commSets. This set of all possible commSets,
has as a subset, the set of all possible disjoint commSets.

As will be seen later, the commSetSpace maintains both
disjoint (referred to as home communities) and overlap-
ping communities (communities). This is necessary for the
algorithms that will be described later. We begin with a
formal description of networks and community structures.

A network G = (V ,E) is a closed systems of nodes V
which are linked to each other by edges E ⊂ V × V . Nodes
can also be grouped into communities, ci = {vj,… vm} ,
through a process called community finding. A node
vi can be placed in more than one community, but only
one community is designated as its home community. A
commSet S = {G,C, h} is a triplet where C = {c1,… , ck}
is a collection of k communities and h is a home com-
munity function. For describing the algorithm it will be
convenient to represent the network G by an adjacency
matrix A = [aij]n×n where aij = 1 if there is a link between
nodes vi and vj. Furthermore, we shall also represent both
the communities and home communities by 0/1 matrices.
For communities, C = [cij]n×k where cij = 1 if vi is in com-
munity j. Likewise, for home communities, H = [hij]n×k.

Figure 2 will be used to illustrate the structures and
NEO. The two community structures are shown in Table 1.
Note that the home (disjoint) communities place nodes
–d in community 1 and nodes e–j in communitya 2. To
the right of that is the (overlapping) community structure
which looks the same except that node d is in both com-
munities 1 and 2.

Fig. 2 Network to describe the metrics of the commSetSpace

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 4 of 19

3.2 NEO

The statistics chosen for the commSetSpace are considered
violations, so that a smaller number is better than a larger
number. The choice of the statistics was driven by a desire
for high quality communities and for a system that can visu-
ally represent the spectrum of commSet types. Generally,
we consider high quality communities as those with few
between-community links, few within-community non-links
and low overlap.

While the commSetSpace, the algorithms and this whole
paper, considers only undirected networks, it is important to
understand that the metrics are calculated for both directions
of the link. Even though there is an undirected link between
two arbitrary nodes, vi and vj, there might be a violation in
the direction of vi to, vj but not from vj to vi.

The commSetSpace is defined by the following statistics
for the nodes vi, vj,

Definition 1 Missing neighbors are those neighbors of a
node that do not appear in the node’s home community.

In the example network, the link from a to b is not a miss-
ing neighbor because b is in a’s home community. From b
to a is also not a missing neighbor as a is in b’s home com-
munity. Consider node d, though. It’s home community is 1
but it is in both communities 1 and 2. Like the link from a
to b, the link from b to d is not a missing neighbor because
both b and d are in the same home community. It is differ-
ent for the link from d to e. Since d’s home community is
1 and e is not in community 1 that is considered a missing
neighbor. In the other direction, node d is in community 2
which is e’s home community so that is not considered a
missing neighbor.

Mmn(vi, vj) =

(
1 −

K∑
k=1

(hikcjk)

)
⋅ aij

Definition 2 Extraneous nodes are nodes not directly linked
to a node within its home community.

There are no extraneous nodes in community 1 of the
example network, because all nodes are linked to all other
nodes in that community. In community 2, though, there are
many extraneous nodes. Since there is no link between node
f and node h, and they are both in the home community of 2,
node h is an extraneous node with respect to f and f is extrane-
ous with respect to h. Again, consider node d. There is no link
between f and d, node f’s home community is 2 and d is in 2,
so d is extraneous with respect to f. However, since d’s home
community is 1, node f is not extraneous with respect to d.

Definition 3 Overlap is the number of communities that a
node is placed in besides its home community.

The only overlap in the example network is node d, so
there is a total overlap of 1.

Using these metrics we can quantitatively judge a
commSet. Generally, an analyst would probably choose lower
values for all three of these metrics however, there is a trade-
off. A lower value of one of the metrics will normally result in
a larger value for one or both of the others. What constitutes
an ideal commSet cannot be objectively defined but is spe-
cific to a user’s needs. Later, in describing the CHI algorithm,
weights will be incorporated to prioritize the violations.

While there are other statistics for measuring the quality
of communities it is not the intention here to show that NEO
is a better statistic. It is valuable because it allows the com-
munities to be charted according to their characteristics and
because algorithms that optimize it can be tuned to find sets
with specific characteristics.

3.3 commSetSpace canvas

The commSetSpace canvas, as shown in Fig. 3, is a two
dimensional chart for plotting commSets. It is an equilat-
eral triangle in which each side corresponds to a low or
zero measurement of one of the metrics. The lower edge
corresponds to low extraneous values, the left edge corre-
sponds to low missing neighbors and the right edge corre-
sponds to low overlap. Moving away from an edge towards
the other side of the triangle, the value of the metric gets
increasingly larger.

Men(vi, vj) =

K∑
k=1

(hikcjk) ⋅ (1 − aij)

Mol(vi) =

K∑
k=1

cik − 1

Table 1 Community structures Node Home Comm

1 2 1 2

a 1 0 1 0
b 1 0 1 0
c 1 0 1 0
d 1 0 1 1
e 0 1 0 1
f 0 1 0 1
g 0 1 0 1
h 0 1 0 1
i 0 1 0 1
j 0 1 0 1

Social Network Analysis and Mining (2018) 8:44

1 3

Page 5 of 19 44

The top point, where there is zero overlap and zero miss-
ing neighbors would be the commSet defined by one large
community. The point in the lower left is the set of all neigh-
borhood communities—that is, each node has a home com-
munity consisting of it and its neighbors. The point in the
lower right is the set of singleton communities.

The commSets that are mapped near to the edges also
have distinctive characteristics. Disjoint communities—
those with no overlap—are appropriate for partitioning
nodes. Clique-like communities are those where nearly all
nodes in a community are connected to nearly all others.
Ego-centric communities are ones every node has at least
one community, to which it and all of its neighbors belong.

Here we provide some examples of situations where
commSets with specific characteristics are desired. Disjoint
commSets are applicable in cases where nodes cannot be
physically separated into more than a single community. For
example, when considering a network of computer equipment
one might wish to have the devices assigned to a particular
community for purposes of oversight and maintenance. The
clique-like communities at the bottom of the canvas occur
naturally when people form small groups within social net-
works. Finding these communities in a network such as Face-
book would reveal the many groups that form around special
interests. Terrorism experts may be interested in forming
ego-centric communities of suspected terrorists with known
connections. Each suspect would have at least one commu-
nity with all of his known connections with the other nodes
in the community being possible accomplices.

4 Method

As stated in the previous section, high quality communities
should have low values for all three NEO metrics. Towards
this goal, the following objective function is proposed:

In Sect. 4.3 it will be generalized to allow the user to weight
the metrics according to the kind of communities desired.

(1) = Mmn +Men +Mol

Using the concept of home and overlapping communties,
two algorithms will be proposed to optimize the objective
function. The first, CHI, is an EM-like algorithm that alter-
nates between improving the home and overlapping com-
munities. The second, Gamit, is an agglomerative approach.
Each has its merits and they work well together as discussed
in Sect. 4.3.

4.1 CHI algorithm

The input to the CHI algorithm is an initial commSet
S = (G,C,H) and the output is the (locally) optimal commSet
Ŝ = (G, Ĉ, Ĥ) . CHI was designed to optimize the objective
function = Mmn +Men +Mol which can be rewritten as:

The approach to optimization is to alternate between improv-
ing H and C. In step 1, the C values are held fixed and the H
values are changed. Step 2, changes the C values while the
H values are fixed.

4.1.1 Step 1

Each node, vi is placed in one and only one home community,
that is hik = 1 for some k and hix = 0 for x ≠ k . For each node
vi and each community k, we isolate the terms in with hik
in them:

For vi we need to set hik = 1 for exact one k and the rest must
be zero. With C fixed, to minimize 2 we set:

This process moves each node to the community that mini-
mizes the objective function given the current values of C.
It should be noted that changing the values of H for vi will
not effect the decision of home community for any other
node because we are not changing the value of any terms
that contain H values other than for vi.

(2)

 =

n∑
i=1

n∑
j=1

(
1 −

K∑
k=1

hikcjk

)
aij

+

n∑
i=1

n∑
j=1

K∑
k=1

hikcjk
(
1 − aij

)

+

n∑
i=1

K∑
k=1

cik − 1

(3)
n∑
j=1

(
1 − hikcjk

)
aij + (1 − aij)hikcjk

hik =

⎧⎪⎨⎪⎩

1 for argmin
k

n∑
j=1

−aijcjk + (1 − aij)cjk

0 otherwise

Fig. 3 commSetSpace canvas

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 6 of 19

4.1.2 Step 2

In the next step we change C while holding H fixed. Recall
that C allows for overlapping communities so that there is
not just one cik that can to be set to 1 (but at least one needs
to be 1). Like before, we isolate the terms with cik:

(4)
n∑
j=1

(
1 − hikcjk

)
aij + (1 − aij)hikcjk + cik

CHI starts with a random or given initial commSet
S = (G,C,H) and then to loop through step 1 and step 2 until
no more changes are possible. As stated above, after each
step either the objective function is reduced or no changes
are made so that we are guaranteed to find a local minimum.
The details of CHI can be seen in Algorithm 1.

We consider each ck in C for vi . Setting cik = 1 can cause
Formula 4 can be positive or negative. Since negative val-
ues reduce the objective function we set all values of cik = 1
where it is negative. For the case when none of the values
of Formula 4 are negative, we set cik = 1 for the minimum
value:

This process puts node vi into any community that makes
the objective function smaller given the current values of
H. Again, changes can be made in C to any node vi without
affecting the other nodes.

Since the decision to change one node will not affect the
decisions for the others, the changes can be made to nodes
in any arbitrary order. It follows that in each step, the total of
the objective function will either decrease or stay the same
(if no changes are made).

cik =

⎧
⎪⎪⎨⎪⎪⎩

1 for
n∑
j=1

aijhjk − (1 − aij)hjk − 1 > 0

1 for argmax
k

n∑
j=1

aijhjk − (1 − aij)hjk − 1

0 otherwise

input : Initial commSet S = (G,C,H)
output: Optimum commSet Ŝ = (G, Ĉ, Ĥ)

Ĉ = C;
Ĥ = H;
while no more changes do

foreach vi ∈ G do
ĥix = 0,∀x;
ĥik = 1 for argmink

∑n
j=1 −aij ĉjk + (1− aij)ĉjk;

end
foreach vi ∈ G do

for k ← 1 to |C| do
ĉik = 0;
if

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1 > 0 then
ĉik = 1;

end
ĉik = 1 for argmink

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1;

end
end

end

Notice that in the two inner loops in which the values of H
and C are reassigned, the order in which the program exams
the nodes is not important. In the first loop, the values of H
are reassigned using only the network A and the communities
C. In the second loop, the C are reassigned using only A again
and H. This means that changing one node’s home commu-
nity will not influence another’s. The same applies to C.

4.1.3 Similarity to Kmeans

The Kmeans algorithm (Tan et al. 2005) separates n samples
into k clusters. Each sample xi is a vector of d data values.
Typically, the Euclidean distance is used to compute the dis-
tance between the samples and the cluster centers cj. The algo-
rithm is designed to minimize the objective or error function:

The algorithm proceeds by alternating between assigning
samples to the nearest center and recalculating the centers
until convergence.

E =

n∑
i=1

k∑
j=1

(cj − xi)
2

Social Network Analysis and Mining (2018) 8:44

1 3

Page 7 of 19 44

The CHI algorithm introduced in this paper has many
similarities to the Kmeans algorithm. They both are
designed to minimize an objective function by a converg-
ing, alternating process. In the CHI algorithm, the H values
are the assignments of the nodes to communities, similar to
the assignment table used by Kmeans. Each column of the
H matrix represents the assignments for one of the k com-
munities. The adjacency matrix A corresponds to the data
samples X = {x1 … xn} , where the neighbors of a node pro-
vide evidence of which nodes should be grouped together.

The C matrix corresponds to the data centers. Each col-
umn vector of n elements lists the nodes that belong to that
community. While this is not really an average of the nodes
that are home to that community, it provides evidence to
which nodes should be considered to be home to that commu-
nity. A node that is home to community k1 but is also assigned
in C to k3 may later be assigned a home community of k3.

4.1.4 Complexity

The complexity of the CHI algorithm as described above,
is bound first by the number of iterations I, necessary for
convergence. Within that loop we alternate between step 1
and step 2 for each of the n nodes. Both of the steps involve
summing data for each of the k communities for each of the
n possible neighbors. The complexity is thus O(Ikn2).

For the actual implementation, we chose to use the neigh-
bor list format rather than the adjacency matrix. This require
less memory and speeds up the algorithm. Notice in Algo-
rithm 1, the summaries inside the loop must examine all n
nodes. With the neighbor list it need only iterate over the
nodes neighbors. For the home communities we chose a

vector of n numbers 0… n − 1 representing the community
to which it belongs. Using these choices, allows the algo-
rithm to be written more efficiently, specifically in O(Ikna),
where a is the average number of neighbors for a node.

4.2 Gamit

Gamit is an agglomerative algorithm (see Tan et al. 2005; Jain
and Dubes 1988), which starts with every node in a commu-
nity by itself. It then merges communities base on minimizing
the objective function in Eq. 2. Unlike a typical agglomera-
tive algorithm, it merges two sets of communities, the home
and overlapping communities. Since membership in the home
communities is unique (a node is placed in one and only one
community), merging them is straightforward. Rather than
merge the overlapping communities, it is convenient to simply
perform a single iteration of step 2 of the CHI algorithm.

4.2.1 Algorithm

Details for Gamit are in Algorithm 2. The input to Gamit is
the graph, G = (V ,E) and optionally k, the desired number of
communities. H is initialized to an n × n matrix with 1s in the
diagonal (each node in its own community). The main while
loop merges communities until it is left with k communities.
The algorithm then finds the two best communities, i and j to
merge. Then it calls the merge function that combines column
i and j of Ĥ (or’s the values).

In the second part of the loop, it creates a new, empty
matrix for C. The remainder of the loop, is the second half of
the CHI algorithm, adding nodes to the overlapping communi-
ties where appropriate.

input : Graph G = (V,E), number of communities k

output: Optimum commSet Ŝ = (G, Ĉ, Ĥ)

n = |V |;
Ĥ = empty(n, n);
for i = 1; i < n; i++ do

hii = 1
end
k̂ = n;
while k̂ > k do

i, j = argmini,j
∑n

u=1
∑n

v=1 −auvĥuiĉvj + (1− auv)ĥuiĉvj ;
Ĥ = merge(Ĥ, i, j);
Ĉ = empty(n, k̂);
foreach vi ∈ G do

for k ← 1 to |C| do
ĉik = 0;
if

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1 > 0 then
ĉik = 1;

end
ĉik = 1 for argmink

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1;

end
end
k̂ = k̂ − 1;

end

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 8 of 19

Note that the algorithm can be modified so that instead of
stopping at the input k, it can evaluate each step, to find the
best value of k. In our tests we used the lowest value of NEO
as an optimum. In Sect. 4.3, another suggestion will be made
for an optimal number of communities.

4.2.2 Complexity

Implemented like the agglomerative clustering algorithm,
Gamit has a complexity of O(n2 log n).

4.3 Generalization

The algorithm weight Mmn , Men and Mol equally. To make
the algorithms more general the following objective function

can be used where the lambda values are parameters that
the user can enter to shape the communities to their specific
needs. As an example, to find communities with little or
no overlap and an emphasis on low missing neighbors, one
could use �1 = 0.9, �2 = 0.1, �3 = 1.0.

Looking at the two algorithms, the � values can be
inserted where there are expressions involving a and h or c.
For example, in the CHI algorithm, replace

with

CHI and Gamit behave differently and can be used for differ-
ent purposes. CHI always finds a local minimum for a given
starting set of communities. Gamit finds a good commSet but
not usually the local minimum. However, when it is general-
ized according to the suggestions above, it find a good solu-
tion with NEO metrics close to the ones desired (according

(5) = �1Mmn + �2Men + �3Mol

−aijĉjk + (1 − aij)ĉjk

−aijĉjk𝜆1 + (1 − aij)ĉjk𝜆2

to the input �s)—in other words, it is in the right part of the
triangle. CHI is not as good at finding the communities with
the desired properties because it depends on the input com-
munities which could be random. If a user is interested in
finding the best (lowest NEO) commSet with the properties
near to the input � s, good results can be obtained by using
Gamit to find the initial commSet as input to CHI.

5 Experiments

The central theme of this paper is summarized by two claims:

1. Different commSets have different characteristics and in
comparing commSets, analysts should be concerned not
only with the quality of the sets but also the characteristics.

2. The algorithms Gamit and CHI are effective at finding
commSets that are both germane (having the desired
characteristics) and of a sufficiently high quality.

The intention of the experiments section is to demonstrate
evidence for the two claims.

The rest of this section is separated into a subsection to
describe the algorithms and data sets, and two other subsec-
tions to show the need for Gamit and CHI and to show the
effectiveness of the algorithms. The section concludes with
some tests on larger networks and a discussion of the scal-
ability of the algorithms.

5.1 Data sets and algorithms

Many data sets were used in the experiments to provide a
variety of small and medium-large sets as well as link struc-
tures. The sets with their attributes are listed in Table 2. All

Table 2 Datasets with relevant metrics

Dataset n Edges Degree Clust. coef. Path length Power law References

Avg Max

1 Tina 11 32 5.82 8 0.652 1.322 1.00 Pajek datasets (2018)
2 Ragusa 24 58 4.83 14 0.433 2.007 2.742 Pajek datasets (2018)
3 Karate 34 78 4.59 17 0.588 2.337 2.524 Zachary (1977)
4 Risk 42 81 3.86 6 0.542 4.381 1.203
5 Teen 50 77 3.08 7 0.523 2.44 1.76 West and Sweeting (1995)
6 Lesmis 77 254 6.6 36 0.736 2.607 2.123 Knuth (1993)
7 Copper 112 425 7.59 49 0.19 2.513 1.815 Newman (2006)
8 Football 115 613 10.66 12 0.403 2.486 1.185 Girvan and Newman (2002)
9 Jazz 198 2.7k 27.7 100 0.633 2.224 2.142 Gleiser and Danon (2003)
10 Dating 288 284 1.98 9 0 16.075 1.508 Bearman et al. (2004)
11 SlashDot 82k 504k 12.27 2552 0.0603 3.147 snap (2018)
12 Stanford 281k 1M 8.2 255 0.5976 4.489 snap (2018)

Social Network Analysis and Mining (2018) 8:44

1 3

Page 9 of 19 44

of the sets are non-directional, unweighted networks. The
sets tina, ragusa, karate teen, jazz, lesMis, dating and slash-
Dot are social networks extracted from books, music albums,
studies or historical documents. The Parker Brothers game,
Risk was transposed using the countries linked by borders.
football is the network of college teams linked by matches
and stanford is the web graph from Stanford University.

The table has columns for average clustering coeffi-
cient, average path length and power law coefficient. These
allow the reader to identify networks as small world (high
clustering coefficient and low average path length), scale
free (power law coefficient between 2 and 3) or other. For
example, football network is small world but not scale free,
wikiElec is scale free but not small world and lesmis is both
small world and scale free. In addition to the list of the data
sets, there are diagrams of the smaller ones in Fig. 2.

In some of the experiments it is necessary to evaluate
the quality of the commSets. There are some established
statistics designed to measure the quality but it is not the
intention of this paper to compare the results using every
available statistic. While NEO’s merits can be debated, it
will be used here as a measure of quality. When comparing
algorithms, modularity (Newman and Girvan 2004), a well
known statistic, will also be used to provide an additional
level of confidence for readers.

In the experiments, besides Gamit and CHI, five other
community finding algorithms are used to support the claims
above. They were chosen to represent a range of different
approaches to community finding. The first algorithm is the
agglomerative (agglom) by (Clauset et al. 2004). The algo-
rithm begins with singleton communities and joins them to
maximize modularity. The algorithm can be stopped at any
threshold in the joining process to produce the commSet.
The threshold chosen was the one that maximized modu-
larity. While there have been improvements made to this
algorithm they have been mainly to improve the complexity
leaving the basic approach intact. This is the only algorithm
that specifically creates disjoint communities.

The second algorithm, CFinder by (Palla et al. 2005), uses
the clique percolation method. In this approach, k-cliques
are found and joined if they share k − 1 nodes. Overlap is
possible when a node is in more than one k-clique. In most
experiments the best results were used, with k = 3 , 4 or 5.
There were some networks where CFinder did not find any
communities.

Another approach (Ahn), by Ahn et al. (2010), partitions
links hierarchically using edge similarity. Since a node can
have many links, that node belongs to every community that
each of its links are assigned to. Link similarity is based on
the Jaccard index using the neighborhoods on the adjacent
nodes. Links that are part of a tight community would have
a high Jaccard index.

The agent-based algorithm SLPA by (Xie et al. 2011)
is an extension of the label propagation method. It spreads
labels between nodes according to pairwise rules. The nodes
can retain a memory of past transactions which allows it to
place a node in more than one community.

The last algorithm, OSLOM by Lancichinetti et al. (2011)
uses a local expansion and optimization approach. It grows
communities by adding neighboring nodes whose probabil-
ity of having internal connections greater than a random
model. If a node has significant connections to two growing
communities it can be placed in both.

5.2 Variability of commSet characteristics

For a given network there are many possible commSets. It
is not enough to show that their characteristics vary over the
entire range of commSets. The quality of the commSets can
also vary and as a general rule, higher quality commSets
are desired. Recall that high quality commSets are those
that have many links within the communities and fewer ones
between. It is defined here as low values of the function
in Eq. 1 (NEO). NEO was chosen because it satisfies the
general concept of quality and it does not limit high quality
commSets to a limited region of the canvas. The experiments
will show that:

• there is a large number of possible commSets for even
small networks, but only a very small number of high
quality ones

• the high quality commSets are not limited to a concen-
trated area of the commSetSpace

• existing algorithms tend to localize their solutions
• different data sets tend to have good commSets with var-

ied characteristics

The first step is to show the distribution of quality over the
range of commSets. Finding communities in a network is
a difficult task because the search space is so large. For
example, it can be calculated that the number of differ-
ent commSets for karate (Zachary 1977) using k = 2 , is
2.9 × 1020 . Attempting to do an exhaustive search is prohibi-
tive for even small networks like karate. However, to show
the distribution of commSet quality it will be necessary to
do exhaustive search. A Monte Carlo approach would be
inappropriate because, as it will be shown, there are very
few high quality commSets and even if a large number of
samples were chosen it is likely that it would select only
mediocre commSets.

5.2.1 The small number of quality commSets

The experiments here are designed to show the need for
Gamit and CHI so those algorithms are not used. The

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 10 of 19

experiments also operate on tiny (7–9 nodes) and small
networks. These networks are used for three reasons. First,
because some of the experiments are exhaustive and can
only be done on tiny graphs. Second, because some of the
algorithms used for comparison had restrictive memory or
time constraints and which limited the size of the networks.
Third, the small networks can be visually displayed which
will be helpful in understanding the results of some of the
experiments.

To begin, two small networks will be used to visually
show the distribution of commSet solutions. The set tina
Hlebec (1993), Pajek datasets (2018) is an 11 node graph
based on a study of 11 members of student government. The
total number of possible combination of nodes grouped into
2 communities is 88,572. The ragusa Pajek datasets (2018)
set is a 24 node graph based on the ruling families of ragusa
(now Dubrovnik). There are 8,388,607 possible combina-
tions of 2 communities for the ragusa set Fig. 4.

Using the technique described in Kurmas et al. (2014),
an exhaustive search of all possible 2-commSets were
evaluated on the two graphs. For each commSet the num-
ber of NEO violations were computed. The results have

Fig. 4 Images of the small net-
works used in the experiments

Fig. 5 Histogram of commSets for tina

Fig. 6 Histogram of commSets for ragusa

Social Network Analysis and Mining (2018) 8:44

1 3

Page 11 of 19 44

been plotted as histograms in Figs. 5 and 6. The total NEO
violations are measured on the horizontal axis with the
counts on the vertical axis. In both plots, NEO appears to
follow a well behaved distribution.

It should be noted that NEO is the sum of 3 statistics
and each of the statistics may have its own distribution.
While the sum might appear to be normal it is probably
more complex than that. Figure 7 shows histograms of the
NEO statistics for five different networks. The networks
include tina and ragusa plus three synthetic networks that
represent extremes. The first row is a 16 node clique, the
second row is for a 16 node ring network (each node is

connected to the 2 nearest ones) and row three is a 16
node star. The fourth and fifth rows show the charts for
tina and ragusa.

For each network, there is a chart for the total NEO,
another for Mmn , another for Men and finally one for modu-
larity. The chart for Mol is not shown as it does not depend
on the network and always looks like a binomial distri-
bution. Even though the analysis uses NEO, modularity
charts were added to show that it too, appears to behave
somewhat like a distribution. Notice that the distributions
look jagged for the clique and star. Men for clique is a sin-
gle bar—it will always be zero since every node is attached

NEO

20 40 60 80 100 120

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

NEO

co
un

ts

Mmn

0 20 40 60 80 100 120

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

mn

co
un

ts

Men

−1.0 −0.5 0.0 0.5 1.0

1.
5e

+0
7

2.
0e

+0
7

2.
5e

+0
7

3.
0e

+0
7

en

co
un

ts

mod

96.0 96.5 97.0 97.5 98.0 98.5 99.0

0.
0e

+0
0

4.
0e

+0
6

8.
0e

+0
6

1.
2e

+0
7

mod

co
un

ts

100 120 140 160 180 200

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5
1e

+0
6

NEO

co
un

ts

0 5 10 15 20 25 30

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

mn

co
un

ts

80 100 120 140 160 180

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

en

co
un

ts

60 80 100 120 140

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

mod

co
un

ts

120 140 160 180 200 220 240

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

NEO

co
un

ts

0 5 10 15 20 25 30

0
50

00
00

15
00

00
0

25
00

00
0

35
00

00
0

mn

co
un

ts

100 120 140 160 180 200

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

en

co
un

ts

50 60 70 80 90 100

0e
+0

0
1e

+0
6

2e
+0

6
3e

+0
6

4e
+0

6
5e

+0
6

mod

co
un

ts

80 100 120 140 160

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00

NEO

co
un

t

0 10 20 30 40

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5
5e

+0
5

mn

co
un

t

60 80 100 120 140 160

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00

en

co
un

t

60 70 80 90 100 110 120

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5
5e

+0
5

6e
+0

5
7e

+0
5

mod
co

un
t

100 120 140 160 180 200

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5
1e

+0
6

NEO

co
un

t

0 5 10 15 20 25 30 35

0
50

00
00

10
00

00
0

15
00

00
0

mn

co
un

t

80 100 120 140 160 180

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

en

co
un

t

70 80 90 100 110 120 130

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

mod

co
un

t

Fig. 7 Distribution of violations for the clique (row 1), cycle (row 2), star (row 3), kapfer (row 4) and padgett (row 5) networks

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 12 of 19

to every other. The total NEO in these extreme networks is
not a normal distribution but there clearly are many more
mediocre commSets and very few high quality ones.

As Fig. 7 demonstrates, the commSet distribution for
graphs will not always follow a well defined distributions.
The next experiment will provide evidence that many graphs
will have very few commSets on the low NEO end of the dis-
tribution. The experiment was run to calculate the commSet
distribution for every possible graph of n nodes. This sort
of analysis is not possible for even small values of n such as
34 (size of karate set). The number of graphs grows expo-
nentially with n as does the number of possible commSets.
Using n = 7, 8 and 9 was feasible for the equipment available
while still yielding some interesting results.

The experiment used the graphing program (McKay
and Piperno 2013) to generate the graphs. For each graph,
the NEO score for all possible commSets were calculated.
The experiment determines whether a graph has less than

x% of the commSets within the lowest 10% of the range of
NEO scores. For example (using x = 0.01 , supposing that
the range of NEO scores for a commSet went from 101 to
200, this experiment determines whether less than 1% of
the commSets have NEO scores in the range of 101–110.
Results are tallied for all of the graphs (n = 7, 8 and 9, to
display what percent of them have less x% of the commSets
within the lowest 10% of scores. The experiment was done
for only k = 2 but it is assumed that other values of k would
lead to similar results.

Table 3 summarizes the results. For n = 7 , only about
45% of the graphs have less than 1% of the commSets in
the first 10% and only about 19% have less than 0.5%. As n
increases so do the percentages. With larger n there should
be many more commSets and the distributions should be
better defined. When searching for near optimum solutions
then, we can expect there to be many, many good and fair
solutions, but only a tiny few near-optimum solutions.

5.2.2 Variety in quality commSets

The intention now is to show that these few near-optimum
solutions can have different characteristics. The commSet-
Space canvas provides a convenient way to describe the
characteristics of commSets. After finding a community,

Table 3 Percent of graphs that
have less than x% of commSets
in the top 10% of commSet
distribution

Nodes x = 1% x = 0.5%

7 45.4 18.6
8 81.6 54.3
9 91.3 73.8

Fig. 8 Top commSets for a selection of graphs

Social Network Analysis and Mining (2018) 8:44

1 3

Page 13 of 19 44

one can calculate the NEO metrics and place a dot on the
canvas to convey the characteristics of the set. Then at a
glance, one can tell if it is disjoint, ego-centric, clique-like
or somewhere in between.

In the first experiment, all of the best (lowest NEO score)
commSets for a given 7 node graph are plotted on the canvas
to show the diversity of the sets. The NEO scores ranged
from 9 ± 3 to 38 ± 2 . The sets with a NEO score of less
than the minimum plus 3 were chosen. Of the 135,072 pos-
sible commSets, this represented less than 0.3% in all cases.
Rather than show the results for all 1044 graphs, a pseudo
random selection of graphs were chosen.

In Fig. 8, the commSets have been plotted according to
their NEO metrics for the graphs 100, 200, etc. The graphs
are ordered by the sequence that they are extracted from
Nauty. While for some graphs the best solutions are located
in a somewhat narrow region of the chart, in all cases they
are spread out within that region.

It is not claimed here that these results conclusively prove
that for all networks good commSets can be found with dif-
fering characteristics. However, doing the experiment on a
large graph is not feasible due to the exponentially large
number of possible sets. Even with small networks like Tina
and Ragusa it is prohibitive.

5.2.3 Algorithms are localized and data sets are not

There are many different community finding algorithms that
optimize different criteria. It can be claimed that they would
tend to find the same kind of community. To test this claim,
five different algorithms were tested on a number of differ-
ent network data sets and the results plotted on the canvas.
Results of this experiment are shown in Fig. 9. The agglom

and SLPA algorithms appear to consistently find commSets
at the top right of the triangle where there is zero or little
overlap and low values of Mmn . Ahn is also fairly consistent
with results in the lower left portion of the triangle where
the communities are like cliques or neighborhoods. CFinder
and Oslom are less consistent, finding communities along
the right edge. These commSets have low overlap and range
from a very small number of communities with low Mmn
down to singletons.

These results show that a particular algorithm will find
commSets with specific characteristics or a range of char-
acteristics but that the decision is part of the algorithm and
not adjustable by the analyst.

The results of the previous experiments are organized by
data set in Fig. 10. A canvas is shown for each data set with
dots being plotted for the commSets that each of the differ-
ent algorithms found. Notice that the plots for karate, risk
and teen have many commSets near the top of the canvas.
In Fig. 4, one can see that these networks appear to have a
small number of non-overlapping communities. Thus it is
not surprising that the commSets would be found near the
top where Mmn and Mol are low. lesMis, copper, football and
jazz are more dense and thus one would expect that the high
quality commSets would have more communities of smaller
number of nodes and possibly more overlap. Accordingly the
solutions for these networks are more spread out towards the
corner with singletons. The dating network is very sparse
and very localized clustering (only between pairs of nodes).
For this network, the algorithms either found a few (15–25)
large communities or many (more than 280) communities of
singletons or two-node cliques.

Fig. 9 NEO placement for dif-
ferent algorithms

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 14 of 19

5.3 Effectiveness of Gamit and CHI

The second group of experiments will show the effective-
ness of Gamit and CHI. In particular, it will be shown that:

• the � parameter allows the user to find germane
commSets—those with specific characteristics

• Gamit and CHI can be tuned to find solutions that are
similar to solutions found by the other algorithms in both
characteristics and quality

• CHI is efficient

5.3.1 Finding germane communities

By setting the � parameters the analyst can encourage both
Gamit and CHI to focus on commSets with particular char-
acteristics. The experiments will show that while the algo-
rithms often do find commSets with the desired character-
istics there are some characteristics that are ellusive. With
most sets, the algorithms have trouble with the area of the
triangle in the middle, stretching to the edge with missing
neighbors.

Recall that Gamit is an agglomerative method which
merges communities based on optimizing Function 5. CHI,
is an iterative method like KMeans, which starts with a

Fig. 10 NEO placement for dif-
ferent data sets

Fig. 11 � Values for experiment to find specific commSets

Social Network Analysis and Mining (2018) 8:44

1 3

Page 15 of 19 44

randomly chosen commSet. CHI typically finds commSets
with very low NEO values but can drift from the characteris-
tics specified by the � values. Gamit finds commSets that are
very close to the characteristics desired but often has higher
NEO values. Analysts could effectively use a combination of
the two algorithms; use Gamit to find a set with the desired
characteristics and then apply CHI to improve the results,
lowering the NEO values.

For the experiments in Fig. 12 we used Gamit only so
that the results would more accurately reflect the desired
characteristics as specified the the � values. For this experi-
ment we ran Gamit on eight different data sets using 7 dif-
ferent � values. The � values chosen—shown in the table of
Fig. 11—represent the extreme positions of the triangle. It
should suffice to show that if the algorithm can consistently
find commSets with the characteristics of these extreme
points, it can find the sets with any desired characteristics.

The results of the experiments can be seen in Fig. 12.
As can be seen in all 8 data sets Gamit nearly always finds
commSets with the desired characteristics. The major dif-
ficulty happens with � = (1, 1, 1)—the set in the center
of the triangle. The result from Gamit had characteristics
quite different from the � parameters for the sets risk, teen,
jazz and dating. During the process of the algorithm, when

communities are merged, early decisions could effect the
results later. We suspect that the data sets that stray from the
center position have some structural qualities that lead to these
situations. Of course, if one is unhappy with the results of the
algorithm, the � values can be modified and new communi-
ties generated. With a few exceptions, our experiments show
that Gamit is effective in finding communities with specific
characteristics.

5.3.2 Comparison to other algorithms on real datasets

We ran a number of experiments on the data sets to com-
pare Gamit and CHI1 to the other algorithms selected for
this paper. To compare the algorithms we used two metrics,
NEO and modularity. One would expect CHI to do well at
reducing NEO since it is specifically designed to do just that.
We include modularity—a popular metric—as an additional
comparison.

To do a fair comparison between gCHI and the other
algorithms, it is important to insure that gCHI is finding

Fig. 12 Gamit placements for
different networks using differ-
ent � values

1 For the remainder of this section, we will refer to the combination
of Gamit and CHI just as gCHI.

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 16 of 19

the commSets with similar characteristics of the set found
by the other algorithm being compared. This was done by
running the other algorithms first and then, using the NEO
values to assign � ’s that would guide CHI to find a set with
similar NEO values.

The results are summarized in Table 4. The rows are
grouped by the algorithms agglom, CFinder, Ahn, SLPA
and Oslom. Within each algorithm all of the data sets are
listed. Since CFinder does not always find a set of communi-
ties, only the data sets that had found communities are listed.
The second two columns show the NEO values for both the

Table 4 Comparison of Gamit
and CHI (gCHI) to other
algorithms

Data set NEO Mod

Alg gCHI Alg gCHI

Agglom
 Karate 320 295 ∙ 0.381 0.200
 Risk 258 200 ∙ 0.633 0.620
 Teen 302 150 ∙ 0.736 0.714
 LesMis 1578 576 ∙ 0.135 0.371 ∙

 Copper 2466 1648 ∙ 0.292 0.146
 Football 2064 1303 ∙ 0.566 0.567 ∙

 Jazz 9780 9713 ∙ 0.439 0.229
 Dating 4748 660 ∙ 0.878 0.736

CFinder
 Karate 232 216 ∙ 0.063 0.334 ∙

 LesMis 908 490 ∙ 0.068 0.389 ∙

 Copper 1212 1040 ∙ 0.009 0.164 ∙

 Football 616 1004 0.489 0.576 ∙

 Jazz 24594 7117 ∙ 0.016 0.230 ∙

Ahn
 Karate 278 151 ∙ 0.010 0.036 ∙

 Risk 271 88 ∙ 0.057 0.499 ∙

 Teen 244 65 ∙ 0.070 0.582 ∙

 LesMis 735 255 ∙ 0.039 0.452 ∙

 Copper 1718 851 ∙ 0.009 0.017 ∙

 Football 2135 1216 ∙ 0.008 0.035 ∙

 Jazz 9484 5171 ∙ 0.002 0.011 ∙

 Dating 1128 581 ∙ 0.114 0.184 ∙

SLPA
 Karate 468 295 ∙ 0.244 0.200
 Risk 226 202 ∙ 0.627 0.609
 Teen 278 146 ∙ 0.741 0.702
 LesMis 2000 576 ∙ 0.163 0.371 ∙

 Copper 11582 1637 ∙ 0.000 0.147 ∙

 Football 966 1303 0.592 0.567
 Jazz 9398 9713 0.441 0.229
 Dating 3188 660 ∙ 0.856 0.736

Oslom
 Karate 447 117 ∙ 0.176 0.302 ∙

 Risk 542 94 ∙ 0.395 0.600 ∙

 Teen 263 62 ∙ 0.612 0.635 ∙

 LesMis 1796 302 ∙ 0.083 0.467 ∙

 Copper 850 1088 − 0.016 0.227 ∙

 Football 598 738 0.580 0.603 ∙

 Jazz 4257 4113 ∙ 0.364 0.331
 Dating 584 452 ∙ 0.015 0.648 ∙

Social Network Analysis and Mining (2018) 8:44

1 3

Page 17 of 19 44

algorithm listed to left and gCHI. Columns 5 and 6 show
the modularity for the two algorithms. Column 4 contains a
bullet if gCHI has lower NEO score than the other algorithm
and column 7 contains a bullet if CHI has a higher modu-
larity. Recall that NEO is a measure of violations so lower
values are better but for modularity higher values signify a
better commSet.

Considering NEO, it is not surprising that gCHI does
better than all of the other algorithms on all data sets
except for 5 exceptions. In many cases the differences
are dramatic. Looking at modularity the results are more
mixed. gCHI has better results on all data sets for both
CFinder and Ahn and all but one set for Oslom. SLPA
and agglom have higher modularity scores than gCHI in 6
out of the 8 data sets. Respecting agglom, this is not sur-
prising since it specifically optimizes modularity. While
SLPA does not specifically optimize modularity it’s mes-
sage passing algorithm puts the emphasis on keeping
linked nodes together which would result in higher scores
for modularity. Even though these algorithms had higher
modularity than gCHI in many circumstances the differ-
ences are not very large.

5.3.3 Comparison to other algorithms on benchmark,
(ground truth) networks

Real networks often have a natural community structure
that is compatible with the link structure. Consider faculty
at a university; academic department communities form
naturally because individuals are more likely to be linked
to others in their department than outside of it. Since there
are not many real data sets available with these ground truth

communities we used the LFR benchmark (Lancichinetti
et al. 2008). This allows networks to be generated with dif-
ferent characteristics. For our experiments we generated net-
works of 1000 nodes, with average and maximum degrees of
10 and 50 respectively, minimum and maximum community
sizes of 20 and 50. We set the number of nodes to have over-
lap at On = 100 with the overlap (Om) set to 0, 2, 4, and 6.

For the experiments, the networks were generated and
then for each algorithm, communities were detected and
then compared to the ground truth communities using the
extended normalized mutual information (NMI) proposed in
Lancichinetti and Fortunato (2009). This metric compares
the similarity of two sets and ranges between 0 and 1 with
1 being a perfect match. For Gamit and CHI lambda val-
ues were set to � = (1, 1, 1) and � = (1, 0.1, 1) with the best
results reported.

The result of the experiments can be seen in both
Table 5 and Fig. 13. SLPA and Oslom were the best at
recovering the ground truth communities with CFinder,
Gamit and CHI having slightly lower values of NMI. It
should be noted that as the amount overlap increases all
algorithms do worse at detecting the communities. This
is probably because the additional overlap obscures the
ground truth community structure. In the face of this, algo-
rithms that use the link structure to find communties will
have a greater variance in the communities that are found.
That being the case, Gamit and CHI will find communities
with the characteristics desired by the analyst according to
the lambda values submitted.

5.3.4 Scalability

In Sect. 4 it was shown that the complexity for CHI is
O(Ikna) and for Gamit is O(n2 log n) . In practice the algo-
rithm typically converges in 3–10 loops so we can con-
sider I to be a constant. Also, a—the average number of
neighbors—is often fairly small in most sparse networks.
This means that CHI is really bounded by kn. Obviously
CHI scales much better than Gamit. There may be a more

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

om

N
M

I
ahn
cfinder
oslom
slpa
gamit
chi

Fig. 13 Comparison of algorithms using NMI to ground truth com-
munities of benchmark networks

Table 5 Comparison of CHI to other algorithms on benchmark net-
works (NMI and seconds)

Alg. om = 0 om = 2 om = 4 om = 6 Time

Ahn 0.9793 0.8674 0.6802 0.5979 0.4
cFinder 0.4931 0.4129 0.2481 0.0953 0.7
Oslom 1 0.8779 0.7052 0.5944 1.8
Spla 1 0.8507 0.6929 0.6555 2.7
Gamit 0.9853 0.8463 0.6762 0.5643 12.8
Chi 0.9393 0.8273 0.6486 0.5565 0.02

 Social Network Analysis and Mining (2018) 8:44

1 3

 44 Page 18 of 19

efficient way to implement Gamit but at this point it is left
as future work.

To demonstrate the scalability the running times (in
seconds) were recorded on the benchmark tests described
above. The numbers can be seen in Table 5 in the last col-
umn. While Gamit is typically more accurate than CHI in
finding communities that reflect the given lambda values,
it is also much less efficient. It is several times slower than
the other algorithms. On the other hand CHI by itself is
much more efficient than the other algorithms.

For another demonstration of the scalibility of CHI,
tests were run on two larger networks: slashDot and stan-
ford. Due to their size, we chose to run just CHI without
Gamit, which still produced good results. It suffices to
compare to the results to agglom since problems were
encountered using the other algorithms. The results are
listed in Table 6. For both sets, we set � to values that
would find commSets like agglom. Not surprisingly, CHI
had better NEO results than agglom. For modularity it was
lower than agglom but not terribly far below, especially for
stanford. CHI ran faster than agglom for both sets.

6 Conclusions

This paper used the commSetSpace canvas to reason
through the characteristics that different commSets might
take on. For example, communities belonging to a set
with a small number of communities and zero overlap will
have different characteristics than, say, a set with many
overlapping communities. Each may have advantages for
different analyses.

It was shown that while there are a very large number
of possible commSets for any given network, there are
relatively few that have low values of the NEO statis-
tic. In the cases we studied, the few sets with low NEO
could have different characteristics. It is important then,
that analysts are able to find good sets (those with good
statistics) as well as sets with the desired characteristics.

Through experiments, it was shown that specific
algorithms tend to find sets with specific characteristics
(or a specific range of characteristics). It is important,
when using an algorithm to know the type of commu-
nities it produces. Running the algorithms on data sets
singly showed that a specific data set might have good

commSets with a specific range of characteristics. So
while an analyst may wish to find a commSet with spe-
cific characteristic requirements, the data set may not
have good sets with those requirements.

Two algorithms are presented to find communties with
different characteristics. CHI is a fast, EM-like algorithm
that finds a local minimum for a seed set of communi-
ties. It step-wise improves the solution to optimize the
objection function in Eq. (2). If a seed is not provided it
will start with a random commSet. The other algorithm,
Gamit, is an agglomerative algorithm that merges com-
munities based again on the Eq. (2). With both algorithms
the analyst can tune the solution using the � parameters.

The central theme of this paper is the importance of
finding commSets of high quality and the right character-
istics. The algorithms can be used in series, using Gamit
to find a commSet that is close to the desired character-
istics and then using CHI to improve the quality of the
results. Since CHI scales much better than Gamit, with
large networks, using CHI by itself will be much faster.
The experiments showed that the algorithms are effective
when compared to other proposed algorithms.

6.1 Final thoughts

Although the efficiency of CHI was demonstrated in the
experiments it is also possible to speed up the algorithm
through parallelization. From one iteration to the next,
changing the community or home community assignments
for one node do not impact those of another, so the process
can be done in parallel.

For those wishing to test or make use of the algorithms,
the Java version of CHI has been posted to http://www.
cis.gvsu.edu/~scrip psj/pubs/softw are.htm. Also, a tool
for analyzing small networks, Netzer, is also posted on
the same page. Netzer is a GUI tool, written specifically
for small networks only because of the visualization. The
community finding portion of Netzer uses both CHI and
Gamit.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate

Table 6 Comparison of CHI
to agglomerative for large sets
(metrics and time)

NEO Mod Seconds

Data set Alg CHI Alg CHI Alg CHI
SlashDot 1441M 4M 0.324 0.165 900 157
Stanford 3911M 1457M 0.894 0.823 1947 1434

http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Social Network Analysis and Mining (2018) 8:44

1 3

Page 19 of 19 44

credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Ahn Y-Y, Bagrow JP, Lehmann S (2010) Link communities reveal
multiscale complexity in networks. Nature 466:761–764

Bearman P, Moody J, Stovel K (2004) Chains of affection: the struc-
ture of adolescent romantic and sexual networks. Am J Sociol
110:44–91

Clauset A, Moore C, Newman MEJ (2006) Structural inference of
hierarchies in networks. In: Airoldi E, Blei DM, Fienberg SE,
Goldenberg A, Xing EP, Zheng AX (eds) Statistical network
analysis: models, issues, and new directions, vol 4503. Springer,
Berlin, Heidelberg

Clauset A, Newman MEJ, Moore C (2004) Finding community struc-
ture in very large networks. Phys Rev E 70:066111

Girvan M, Newman M (2002) Community structure in social and
biological networks. Proc Natl Acad Sci 99:7821–7826

Gleiser P, Danon L (2003) Community structure in jazz. Adv. Com-
plex Syst 6:565. http://deim.urv.cat/~aaren as/data/welco me.htm

Hlebec V (1993) Recall versus recognition: comparison of the two
alternative procedures for collecting social network data. Dev
Stat Methodol 9:121–129

Jain A, Dubes R (1988) Algorithms for clustering data. Prentice-Hall
Inc, Upper Saddle River

Knuth DE (1993) The Stanford GraphBase: a platform for combina-
torial computing. Addison-Wesley, Reading

Kurmas Z, McGuire H, Scripps J, Trefftz C (2014) Enumerating
communities for a deeper understanding of community find-
ing. In: Proceedings of the 2014 IEEE/WIC/ACM international
conference on web intelligence

Lancichinetti A, Fortunato S (2009) Community detection algo-
rithms: a comparative analysis. Phys Rev E 80:056117

Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs
for testing community detection algorithms. Phys Rev E
78:046110

Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Find-
ing statistically significant communities in networks. PLoS One
6(4):e18961

McKay BD, Piperno A (2013) Practical graph isomorphism. Symb
Comput 60:94–112

Newman MEJ (2006) Finding community structure in networks using
the eigenvectors of matrices. Phys Rev E 74(3):036104

Newman M, Girvan M (2004) Finding and evaluating community
structure in networks. Phys Rev E 69:026113

Pajek datasets (2006) http://vlado .fmf.uni-lj.si/pub/netwo rks/pajek /
defau lt.htm

Palla G, Deryi I, Farkas I, Vicsek T (2005) Uncovering the overlapping
community structure of complex networks in nature and society.
Nature 435:814–818

Porter M, Onnela J, Mucha P (2009) Communities in networks. Not
Am Math Soc 56:1082–1097

Scripps J (2011) Exploring the community set space. In: IEEE/WIC/
ACM international conference on web intelligence, pp 316–319

Scripps J, Trefftz C (2013) Community finding within the commu-
nity set space. In: ACM workshop on social network mining and
analysis (SNAKDD13)

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE
Trans Pattern Anal Mach Intell 22(8):888–905

SNAP (2014) Stanford large network dataset collection. http://snap.
stanf ord.edu/data/

Tan P, Steinbach M, Kumar V (2005) Introduction to data mining.
Addison Wesley Inc., Boston

Tang L, Wang X, Liu H, Wang L (2010) A multi-resolution approach
to learning with overlapping communities. In: KDD workshop on
social media analytics, pp 14–22

West P, Sweeting H (1995) Background rationale and design of the
west of Scotland 11–16 study. Working paper No. 52. MRC Medi-
cal Sociology Unit Glasgow

Traud A, Kelsic E, Mucha P, Porter M (2011) Comparing community
structure to characteristics in online collegiate social networks.
SIAM Rev 53:526–543

Xie J, Kelly S, Szymanski B (2011) Overlapping community detection
in networks: the state of the art and comparative study. CoRR.
http://arxiv .org/abs/abs/1110.5813

Xie J, Szymanski BK, Liu X (2011) Slpa: uncovering overlapping
communities in social networks via a speaker–listener interaction
dynamic process. In: Data mining technologies for computational
collective intelligence workshop at ICDM, pp 344–349

Zachary WW (1977) An information flow model for conflict and fission
in small groups. J Anthropol Res 33:452–473

http://deim.urv.cat/%7eaarenas/data/welcome.htm
http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm
http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://arxiv.org/abs/abs/1110.5813

	The Difference between Optimal and Germane Communities
	ScholarWorks Citation

	The difference between optimal and germane communities
	Abstract
	1 Introduction
	2 Related work
	3 Notation and metrics
	3.1 Notation and structures
	3.2 NEO
	3.3 commSetSpace canvas

	4 Method
	4.1 CHI algorithm
	4.1.1 Step 1
	4.1.2 Step 2
	4.1.3 Similarity to Kmeans
	4.1.4 Complexity

	4.2 Gamit
	4.2.1 Algorithm
	4.2.2 Complexity

	4.3 Generalization

	5 Experiments
	5.1 Data sets and algorithms
	5.2 Variability of commSet characteristics
	5.2.1 The small number of quality commSets
	5.2.2 Variety in quality commSets
	5.2.3 Algorithms are localized and data sets are not

	5.3 Effectiveness of Gamit and CHI
	5.3.1 Finding germane communities
	5.3.2 Comparison to other algorithms on real datasets
	5.3.3 Comparison to other algorithms on benchmark, (ground truth) networks
	5.3.4 Scalability

	6 Conclusions
	6.1 Final thoughts

	References

