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Abstract
Questions: Restoring	native-	dominated	plant	communities	often	requires	controlling	
invasive	species,	 reintroducing	native	species,	and	 implementing	continued	manage-
ment	practices.	Can	single	herbicide	applications	to	control	Centaurea stoebe	L.	encour-
age	establishment	of	seeded	native	species	more	effectively	than	a	single	mowing?	Can	
annual	hand	pulling	to	control	C. stoebe	favor	the	persistence	of	seeded	native	species?	
Can	mid-	spring	burning	reduce	C. stoebe	and	increase	native	forbs	and	grasses?	After	
eight	years,	will	the	restored	plant	communities	differ	from	those	in	untreated	areas?
Location: Bass	River	Recreation	Area,	Ottawa	County,	MI,	USA.
Methods: We	studied	 the	 effects	of	 site	preparation	 (mowing,	 clopyralid,	 glypho-
sate),	hand	pulling	of	C. stoebe,	and	burning	on	restoring	native	plant	communities	on	
a C. stoebe-	infested	 site.	Over	 eight	years,	we	 quantified	 the	 development	 of	 the	
plant	communities	on	plots	seeded	with	native	grasses	and	forbs,	and	report	on	the	
second	four	years	here.
Results: Native-	dominated	plant	communities	developed	using	both	herbicides,	but	
while	 clopyralid	 provided	 longer	 control	 of	C. stoebe,	 clopyralid-	treated	 plots	 had	
fewer	native	species	than	glyphosate-	treated	plots.	Native-	dominated	plant	commu-
nities	also	developed	on	plots	that	were	only	mowed	once	before	seeding,	achieving	
similar	native	species	richness	as	the	glyphosate	treatment.	Hand	pulling	controlled	
C. stoebe,	burning	increased	relative	cover	of	native	graminoids	and	decreased	that	of	
non-	native	grasses,	and	hand	pulling	and	burning	in	combination	increased	relative	
cover	of	native	forbs.	After	eight	years,	the	restored	plant	communities	had	greater	
native	 species	 cover	 and	 richness	 and	 higher	 mean	 Coefficient	 of	 Conservatism,	
Floristic	Quality	Index,	and	Shannon's	Diversity	Index	values	than	untreated	areas.
Conclusions: Site	preparation,	seeding,	hand	pulling	of	C. stoebe,	and	annual	burning	
facilitated	restoration	of	native-	dominated	plant	communities	on	a	C. stoebe-	infested	
site.	Effects	accumulated	over	a	period	of	eight	years,	illustrating	the	importance	of	
continued	management	and	monitoring	as	part	of	similar	restoration	efforts.

K E Y W O R D S

Centaurea stoebe	L.,	clopyralid,	glyphosate,	hand	pulling,	invasive	species,	mowing,	native	
species,	prescribed	burning,	restoration,	seeding,	spotted	knapweed,	systemic	herbicides
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1  | INTRODUC TION

Restoring	native	plant	communities	on	degraded	sites	often	requires	
controlling	 invasive-	species	 infestations,	 reintroducing	 native	 spe-
cies,	and	implementing	management	practices	to	ensure	persistence	
of	 native-	dominated	 plant	 communities.	 Herbicides	 may	 initially	
control	invasive	species,	but	restoration	may	fail	if	the	target	species	
reinfests	 the	 site,	 other	 non-	native	 species	 become	 secondary	 in-
vaders,	or	native	species	do	not	reestablish	from	local	seed	sources	
(Rinella,	Maxwell,	Fay,	Weaver,	&	Sheley,	2009;	Skurski,	Maxwell,	&	
Rew,	2013;	Pearson,	Ortega,	Runyon,	&	Butler,	2016).	Native	species	
often	need	to	be	reintroduced	to	restore	a	native-	dominated	plant	
community	 (Foster	 et	al.,	 2007;	 Zylka,	 Whelan,	 &	 Molano-Flores,	
2016;	Mahmood	et	al.,	2018)	that	will	resist	reinvasion	by	exotic	spe-
cies	(Sheley	&	Half,	2006;	Maron	&	Marler,	2007;	Rinella,	Pokorny,	
&	Rekaya,	2007).	Finally,	seeded	native	species	may	not	persist	or	
may	take	years	to	become	dominant,	requiring	long-	term	evaluation	
of	restoration	progress,	an	effort	not	included	in	many	studies	(Reid,	
Morin,	Downey,	French,	&	Virtue,	2009;	Kettenring	&	Adams,	2011;	
Rinella,	Mangold,	Espeland,	Sheley,	&	Jacobs,	2012).

Many	disturbed	sites	and	remnant	natural	areas	 in	midwestern	
North	America	have	been	invaded	by	non-	native	grasses	and	forbs	
(e.g.,	 Emery	 &	 Rudgers,	 2012;	 Zylka	 et	al.,	 2016).	 While	 many	 of	
these	species	are	weak	invaders,	others	are	considered	strong	invad-
ers,	which	may	become	community	dominants	 (Ortega	&	Pearson,	
2005).	Centaurea stoebe	L.	 (Spotted	knapweed;	USDA	NRCS	2018)	
is	 a	 strong	 invader	 that	 infests	 many	 regions	 throughout	 North	
America	 (Sheley,	Jacobs,	&	Carpinelli,	1998).	Centaurea stoebe	 first	
entered	the	eastern	United	States	in	the	early	1880s,	and	by	1920	
had	 spread	 into	 those	 areas	with	 climatic	 conditions	 similar	 to	 its	
native	 range	 (Broennimann,	 Mráz,	 Petitpierre,	 Guisan,	 &	 Müller-	
Schärer,	2014).	Centaurea stoebe	was	 first	collected	 in	Michigan	 in	
1911,	 and	now	occurs	 throughout	 the	 state	 on	disturbed	 and	de-
graded	sites	(Michigan	Flora	Online	2017).	Restoration	of	these	sites	
requires	effective	control	of	C. stoebe	 to	prevent	reinvasion	of	the	
developing	plant	community.

We	 have	 experimented	 with	 native	 plant	 community	 resto-
ration	 on	 a	 degraded,	C. stoebe-	infested	 site	 in	western	Michigan	
since	 1997	 (MacDonald,	 Koetje,	&	Perry,	 2003).	 Sites	with	 similar	
glaciofluvial	landforms	and	coarse-	textured	soils	in	this	region	orig-
inally	 supported	 oak-	pine	 forests	 and	 mixed-	oak	 savannas,	 fire-	
adapted	communities	that	included	forbs	and	warm-	season	grasses	
(MacDonald,	Scull,	&	Abella,	2007).	The	native	plant	communities	at	
our	study	site	were	lost	in	the	late	1800s	to	mid-	1900s	as	a	result	of	
agricultural	conversion	and	disturbance	by	gravel	mining	(MacDonald	
et	al.,	2007;	MacDonald,	Martin,	Kapolka,	Botting,	&	Brown,	2013).	
We	 selected	 the	 specific	 study	 location	 within	 the	 Bass	 River	
Recreation	Area	 in	 consultation	with	 the	Michigan	Department	of	
Natural	Resources,	which	was	interested	in	determining	if	a	native	
plant	community	could	be	re-	established	there.	Prior	 to	 the	 initia-
tion	of	our	experiments,	C. stoebe	was	the	dominant	invasive	plant	
at	the	study	site,	with	60%	to	70%	relative	cover,	while	the	remain-
ing	 plant	 community	 also	 comprised	 non-	native	 species	 including	

Poa pratensis	(Kentucky	bluegrass),	Elymus repens	(Quackgrass),	Poa 
compressa	(Canada	bluegrass),	Melilotus officinalis	(Sweetclover),	and	
Trifolium arvense (Rabbitfoot clover;	 Martin,	 MacDonald,	 &	 Brown,	
2014).	For	additional	details	on	study-	site	characteristics,	please	see	
MacDonald	et	al.	(2003,	2007,	2013)	and	Martin	et	al.	(2014).

Our	 studies	 have	 focused	 on	 reducing	 C. stoebe,	 reestablish-
ing	 native	 species,	 and	 using	 fire	 to	 align	 the	 site	 on	 a	 trajectory	
toward	 recovery	of	native	species	and	processes.	An	earlier	 study	
demonstrated	 that	 native	 grasses	 could	 be	 reestablished	 on	 this	
site	 (MacDonald	 et	al.,	 2003),	 and	 that	 annual	mid-	spring	 burning	
reduced C. stoebe	 density	 and	biomass	and	 increased	native	grass	
dominance	(MacDonald	et	al.,	2007).	In	2008,	we	established	a	sep-
arate	experiment	at	this	study	site	to	test	the	feasibility	of	restoring	a	
more	diverse	native	plant	community	by	seeding	experimental	plots	
with	native	grasses	and	forbs	while	using	factorial	combinations	of	
site	preparation	treatments,	hand	pulling	of	C. stoebe,	and	burning	
(MacDonald	 et	al.,	 2013;	Martin	 et	al.,	 2014).	 Seeding	 allowed	na-
tive	species	to	establish	on	all	plots,	including	those	not	treated	with	
herbicides,	burning,	or	hand	pulling	(Martin	et	al.,	2014).	While	these	
results	were	encouraging,	the	experimental	plant	communities	were	
still	dominated	by	non-	native	species	after	four	years.	We	therefore	
continued	the	study	for	another	four	years	to	determine	 if	native-	
dominated	plant	communities	would	develop	through	time.	Results	
presented	in	this	paper	focus	on	the	second	four	years	(2013–2016)	
of	this	eight-	year	study,	since	results	from	the	first	four	years	(2009–
2012)	 have	 been	 published	 previously	 (MacDonald	 et	al.,	 2013;	
Martin	et	al.,	2014).	To	provide	context	for	the	most	recent	results,	
we	 also	 include	 discussion	 of	 previously	 published	 results	 where	
relevant.

The	objective	of	our	experiment	was	to	test	methods	of	restor-
ing	native-	dominated	plant	communities	on	a	degraded,	C. stoebe-	
infested	 site.	 Experimental	 site	 preparation	 methods	 included	 a	
single	 mowing,	 alone	 or	 in	 combination	 with	 systemic	 herbicides,	
either	 clopyralid,	 a	 broadleaf-	specific	 residual	 herbicide,	 or	 gly-
phosate,	 a	 broad-	spectrum	 non-	residual	 herbicide,	 to	 provide	
three	levels	of	 initial	C. stoebe	control	 (e.g.,	Rinella,	Jacobs,	Sheley,	
&	Borkowski,	2001;	Sheley,	Jacobs,	&	Lucas,	2001).	We	seeded	all	
experimental	plots	with	a	mixture	of	native	grasses	and	forbs	to	en-
sure	the	presence	of	the	desired	propagules	(e.g.,	Gross,	Mittelbach,	
&	Reynolds,	 2005;	 Suding	&	Gross,	 2006).	We	 incorporated	 hand	
pulling	 of	C. stoebe	 as	 an	 experimental	 factor	 to	 control	C. stoebe 
while	 the	 seeded	 native	 species	 established	 (e.g.,	 Lutgen	 &	 Rillig,	
2004;	Skurski	et	al.,	2013).	Once	adequate	fuel	loads	accumulated,	
we	incorporated	burning	as	another	experimental	factor	to	help	re-
duce	non-	native	species,	while	favoring	the	establishment	and	dom-
inance	of	native	species	(e.g.,	Brudvig,	Mabry,	Miller,	&	Walker,	2007;	
Bowles	&	Jones,	2013).	We	specifically	evaluated	burning	to	control	
C. stoebe,	 as	 few	 studies	 have	 examined	 its	 effectiveness	 in	 con-
trolling	 this	 species	during	 the	 restoration	of	native	plant	commu-
nities	containing	both	grasses	and	forbs	(e.g.,	Emery	&	Gross,	2005;	
Martin	et	al.,	 2014).	We	 thus	employed	an	experimental	 approach	
incorporating	multiple	practices	to	control	C. stoebe	and	thus	restore	
native	 plant	 communities	 and	 their	 natural	 ecological	 processes	
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(Krueger-	Mangold,	 Sheley,	 &	 Svejcar,	 2006;	 Sheley,	 Mangold,	 &	
Anderson,	2006;	Miller,	2016).	Finally,	we	observed	plant	commu-
nity	development	and	persistence	of	native	species	across	a	period	
of	eight	years,	incorporating	a	long-	term	evaluation	of	treatment	ef-
fects	lacking	in	many	ecological	restoration	studies	(e.g.,	Reid	et	al.,	
2009;	Kettenring	&	Adams,	2011;	Rinella	et	al.,	2012).	We	consid-
ered	a	 successfully	 restored	plant	 community	 to	be	dominated	by	
native	 species	 and	 to	 exhibit	 other	 attributes	 of	 restored	 ecosys-
tems,	including	a	species	assemblage	characteristic	of	natural	plant	
communities,	 a	 diversity	 of	 plant	 functional	 groups,	 and	 evidence	
of	being	self-	sustaining	(SERI-	SPWG,	2004).	We	hypothesized	that	
a	single	application	of	either	herbicide	would	control	C. stoebe and 
encourage	 establishment	 and	 persistence	 of	 native	 species	 more	
effectively	than	a	single	mowing;	that	hand	pulling,	by	reducing	C. 
stoebe	seed	fall	and	competition,	would	favor	the	establishment	and	
persistence	of	native	species;	and	that	mid-	spring	burning	would	re-
duce	 the	 cover	 of	C. stoebe	 and	 increase	 that	 of	 native	 forbs	 and	
warm-	season	grasses	(MacDonald	et	al.,	2013;	Martin	et	al.,	2014).	
Finally,	we	hypothesized	that	the	restored	plant	communities	would	
differ	in	composition	from	those	in	adjacent	untreated	areas	of	the	
study	site	by	the	end	of	the	eight-	year	study	period.

2  | METHODS

2.1 | Experimental design

We	established	the	study	in	2008	within	the	Bass	River	Recreation	
Area,	Ottawa	County,	MI,	USA	(43˚00′49″	N,	86˚01′47″	W;	Appendix	
S1),	as	previously	described	by	MacDonald	et	al.	(2013)	and	Martin	
et	al.	(2014).	We	used	a	fully	crossed	factorial	arrangement	of	treat-
ments	 in	a	randomized	complete	block	design,	 including	three	 lev-
els	of	initial	site	preparation,	two	levels	of	hand	pulling	of	C. stoebe 
(with	or	without),	 and	 two	 levels	of	burning	 (burned	or	unburned)	
to	produce	twelve	treatment	combinations	 (for	details,	 see	Martin	
et	al.,	2014).	The	study	was	replicated	in	four	complete	blocks,	for	
a	total	of	48	5-	m	×	5-	m	plots,	and	all	treatment	combinations	were	
randomly	assigned	to	plots	at	the	beginning	of	the	experiment.	All	
four	blocks	were	mowed	in	July,	2008	to	facilitate	plot	layout,	her-
bicide	 treatment	 application,	 and	 subsequent	 seeding.	 The	 three	
site	preparation	treatments	consisted	of	the	single	mowing	only,	or	
mowing	 plus	 the	 application	 of	 either	 clopyralid	 (Transline®;	 Dow	
Agrosciences,	Indianapolis,	IN)	or	glyphosate	(Roundup	Concentrate	
Plus®;	Monsanto,	Marysville,	OH).	The	herbicides	were	 applied	 to	
randomly	 selected	 plots	 in	 mid-	August	 (clopyralid,	 0.6	kg	 ae/ha,	
n	=	16	 plots)	 or	 early	 September	 (glyphosate,	 9.9	kg	 ae/ha,	 n	=	16	
plots),	2008.	All	48	plots	were	seeded	(22	kg/ha)	in	May,	2009,	with	
a	seed	mix	containing	five	warm-	season	grasses	and	18	forbs	repre-
sentative	of	native	species	found	in	Michigan	dry-	mesic	prairies,	dry	
sand	prairies,	and	oak	barrens	(Martin	et	al.,	2014;	Appendix	S2).	We	
included	 5-	m	 buffers	 around	 each	 experimental	 block	with	 2.5-	m	
buffers	 between	 plots,	 and	mowed	 these	 buffers	 once	 each	 year	
in	 late	June	or	early	July	to	minimize	C. stoebe	seed	fall	from	adja-
cent	untreated	areas.	While	there	was	no	true	“control”	treatment	

combination	in	the	sense	of	including	plots	with	no	treatments	what-
soever,	in	the	context	of	the	factorial	experiment	the	plots	that	were	
only	 mowed	 once	 without	 receiving	 herbicide	 application,	 hand	
pulling,	or	burning	provide	a	minimally	managed	and	practical	com-
parison	to	the	other	11	more	intensively	managed	treatment	combi-
nations	(Martin	et	al.,	2014).

We hand pulled C. stoebe	 from	 24	 randomly	 selected	 plots	 in	
early	July	each	year	from	2009	to	2016,	as	detailed	by	MacDonald	
et	al.	(2013).	From	2009	to	2011,	we	removed	only	adults,	but	from	
2012	on	we	also	removed	seedlings	and	juveniles	since	few	adults	
remained. A C. stoebe	plant	was	considered	a	seedling	if	it	had	one	to	
four	primary	leaves,	a	juvenile	if	it	was	still	in	the	rosette	stage,	or	an	
adult	if	it	had	bolted.	All	adult	C. stoebe	plants	were	removed	before	
seed dispersal each year.

In	2012,	2014,	2015,	and	2016,	24	randomly	selected	plots	were	
burned	in	early	to	mid-	spring.	The	2	Apr	2012	burn	took	place	during	
sub-	optimal	weather	 conditions,	 and	 burn	 intensity	was	 fairly	 low	
(MacDonald	 et	al.,	 2013;	Martin	 et	al.,	 2014).	 In	 subsequent	 years,	
we	visually	estimated	the	percent	of	each	plot	burned	following	the	
burn,	and	 the	percent	bare	soil	 in	 July.	We	conducted	 the	11	May	
2014,	 7	May	 2015,	 and	 20	May	 2016	 burns	 under	 more	 optimal	
weather	 conditions,	 and	 burning	 effects	 were	 more	 pronounced.	
The	mean	percent	of	plot	area	burned	increased	from	75%	in	2014	
to	over	87%	in	2015	and	2016,	while	the	mean	bare	soil	exposure	on	
burned	plots	in	July	increased	from	14.5%	in	2014	to	28.4%	in	2016.	
On	non-	burned	plots,	mean	bare	soil	exposure	was	consistently	<1%.

2.2 | Plant community measurements

Nomenclature	follows	that	 in	the	USDA	PLANTS	Database	 (USDA	
NRCS	 2018).	 From	 2011	 to	 2016,	 we	 visually	 estimated	 percent	
cover	of	all	species	on	each	experimental	plot	in	July	of	each	year.	
We	divided	each	5-	m	×	5-	m	plot	 into	quarters,	and	made	separate	
visual	 cover	 estimates	 of	 all	 species	 in	 each	quarter.	 To	 standard-
ize	 these	 visual	 estimates,	 we	 referred	 to	 published	 cover	 charts	
(Anderson,	1986)	and	used	0.1-		and	0.25-	m2	frames	as	standard	area	
references.	As	a	measure	of	relative	dominance,	we	calculated	the	
relative	percent	cover	of	each	species	on	each	plot	by	dividing	the	
summed	total	cover	of	each	species	by	the	summed	total	cover	of	
the	plot	(Barbour,	Burk,	&	Pitts,	1980).	In	2016,	we	also	made	cover	
estimates	 on	12	 randomly	 located	25-	m2	 plots	 in	 untreated	 areas	
adjacent	 to	 the	 experimental	 plots	 that	 never	 had	 been	 mowed,	
seeded,	or	otherwise	treated	(Appendix	S1).	These	untreated	plots	
were	established	in	2009	just	beyond	the	mowed	buffers	by	using	
random	distances	along	the	borders	of	the	mowed	buffers	to	locate	
the	plots,	with	an	equal	number	of	plots	closely	associated	with	each	
experimental	block	(MacDonald	et	al.,	2013).	Initial	plant	communi-
ties	 in	 these	untreated	areas	 comprised	 the	 same	non-	native	 spe-
cies	present	 in	the	areas	used	for	the	experimental	plots,	and	also	
were	dominated	by	C. stoebe	(MacDonald	&	Bottema,	2014).	Mature	
C. stoebe	 densities	measured	 in	 untreated	 areas	 of	 the	 study	 site	
in	2013	 (46.3	±	7.7	plants/m2;	MacDonald	&	Bottema,	2014)	were	
very	similar	to	adult	C. stoebe	densities	present	on	minimally	treated	
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experimental	 plots	 at	 the	 initiation	 of	 the	 current	 study	 in	 2009	
(45.6	±	4.7	plants/m2;	MacDonald	et	al.,	2013).

Based	 on	 the	 relative	 cover	 data,	 we	 determined	 the	 na-
tive	 and	 non-	native	 species	 richness	 on	 each	 plot,	 following	 the	
USDA	PLANTS	Database	(USDA	NRCS	2018)	for	species	native	to	
Michigan.	 Using	 our	 relative	 cover	 data,	 we	 calculated	 Shannon's	
Diversity	 Index	 (H’),	and	expressed	this	as	eH’	 to	simplify	 interpre-
tation	since	eH’	represents	the	functional	number	of	species	in	the	
community	 (Peet,	 1974;	 Morris	 et	al.,	 2014).	 Shannon's	 Diversity	
Index	is	sensitive	to	the	presence	of	both	rare	and	abundant	species,	
combines	richness	and	evenness	components,	and	can	discriminate	
between	plots	better	than	simpler	diversity	measures	(Morris	et	al.,	
2014).	We	calculated	the	mean	Coefficient	of	Conservatism	( ̄C)	for	
each	plot	using	Coefficients	of	Conservatism	for	native	herbaceous	
species	determined	for	Michigan	(Michigan	Flora	Online	2017),	and	
calculated	the	native	Floristic	Quality	Index	(FQI)	by	multiplying	̄C by 
the	square	root	of	the	number	of	native	species	on	the	plot	(Spyreas,	
Meiners,	Matthews,	&	Molano-	Flores,	2012).	 ̄C	and	FQI	distinguish	
among	plant	 communities	 containing	 ubiquitous	 native	 plants	 and	
those	 containing	more	 conservative	 native	 species,	 with	 ̄C repre-
senting	the	average	tolerance	to	disturbance	and	degree	of	fidelity	
to	habitat	integrity	of	the	native	species	present,	and	FQI	incorpo-
rating	the	additional	effect	of	native	species	richness	on	community	
quality	(Taft,	Wilhelm,	Ladd,	&	Masters,	1997).	FQI	and	 ̄C have been 
shown	 to	 be	 effective	 at	 distinguishing	 qualitative	 differences	 in	
floristic	integrity	among	plant	communities,	and	can	be	more	effec-
tive	in	this	respect	than	traditional	diversity	measures	(Taft,	Hauser,	
&	 Robertson,	 2006).	 Since	 few	 species	were	 present	 on	 all	 plots,	
we	summed	relative	cover	by	six	 life-	form	groups,	 including	native	
graminoids	 (grasses	 and	 sedges),	 native	 forbs,	 non-	native	 grasses,	
non-	native	forbs	(exclusive	of	C. stoebe),	C. stoebe,	and	woody	spe-
cies	to	allow	more	robust	statistical	analyses.

To	 assess	 the	 long-	term	 effectiveness	 of	C. stoebe	 control	 ef-
forts,	in	2015	and	2016	we	estimated	densities	of	four	C. stoebe	life	
stages	 (seed	bank,	 seedling,	 juvenile,	 and	adult)	 on	 the	48	experi-
mental	and	12	untreated	plots.	To	estimate	seed-	bank	densities,	we	
collected	five	cores	from	the	upper	5	cm	of	soil	on	each	plot	using	a	
4.5-	cm	diameter	metal	corer	on	3	Apr	2015	and	1	Apr	2016.	The	five	
soil	cores	were	combined	into	one	sample	for	each	plot,	spread	on	
top	of	sterile	potting	soil	in	15-	cm	diameter	plastic	pots	in	a	green-
house,	and	watered	regularly.	We	counted	and	removed	germinated	
C. stoebe	 seedlings	 several	 times	a	week	 from	April	 through	 June.	
Whenever	 germination	 rates	 slowed	 to	 zero,	 approximately	 once	
every	two	weeks,	we	stirred	the	soil	to	bring	additional	viable	seeds	
toward	the	surface	to	germinate.

In	mid-	July	of	2015	and	2016,	we	quantified	seedling,	 juvenile,	
and	 adult	 C. stoebe	 densities	 on	 the	 experimental	 and	 untreated	
plots.	On	the	24	hand-	pulled	plots,	densities	were	determined	each	
year	by	total	counts	of	the	plants	removed	from	each	plot.	On	the	
24	non-	hand-	pulled	plots	and	12	untreated	plots,	densities	were	es-
timated	 at	 a	minimum	of	 five	 random	 locations	 per	 plot.	 In	 2015,	
seedling	and	juvenile	densities	were	counted	inside	a	0.5-	m	×	0.5-	m	
quadrat	at	each	random	location	and	adult	densities	were	counted	

in	1-	m	×	1-	m	quadrats.	 In	2016,	seedling	and	 juvenile	counts	were	
made	within	a	1-	m	×	1-	m	quadrat	at	each	random	location,	and	adult	
densities	were	counted	on	entire	25-	m2	plots,	except	for	a	few	of	the	
untreated	plots	with	high	adult	densities	(>20	plants/m2	on	average).	
On	these	plots,	adult	density	estimates	were	made	on	at	least	five	
1-	m	×	1-	m	quadrats	per	plot.

2.3 | Statistical methods

Data	 for	 most	 variables	 did	 not	 consistently	 meet	 parametric	 as-
sumptions,	 so	 we	 used	 nonparametric	 permutational	 analyses	 of	
variance	 (PERMANOVA+	 for	 PRIMER,	 PRIMER-	e,	 Plymouth,	 UK;	
Anderson,	 2001;	 Anderson,	 Gorley,	 &	 Clarke,	 2008;	 Anderson	 &	
Walsh,	2013)	to	analyze	species	diversity,	 floristic	quality,	and	 life-	
form	group	cover.	For	analyses	of	data	from	the	experimental	plots,	
we	 included	the	four	years,	 three	site-	preparation	treatments,	 two	
hand-	pulling	levels,	and	the	two	burning	levels	as	fixed-	effect	factors	
in	permutational	 factorial	 repeated-	measures	analyses	of	variance.	
Block	effects	were	included	in	these	analyses	as	a	random	factor.

We	also	used	PERMANOVA	to	compare	plant	communities	be-
tween	experimental	plots	and	untreated	plots.	Since	the	experimen-
tal	plant	communities	differed	 in	various	ways	related	to	the	hand	
pulling	by	burning	interaction,	but	without	any	significant	three-	way	
interactions	including	site	preparation,	we	grouped	the	experimental	
data	into	the	four	hand	pulling	by	burning	treatment	combinations	
(n	=	12	 each),	which	 allowed	balanced	 comparisons	with	 the	 plant	
communities	on	the	12	untreated	plots	using	one-	way	permutational	
analyses	of	variance.	For	all	one-	way	analyses,	the	plant	community	
category	 (n	=	5,	 four	experimental	and	one	untreated)	was	consid-
ered	 a	 fixed	 effect	 and	 blocks	were	 included	 as	 a	 random	 factor.	
We	performed	univariate	analyses	 for	 species	 richness,	Shannon's	
Diversity	 Index,	 ̄C,	FQI,	and	the	densities	of	 the	four	C. stoebe	 life	
stages.	To	provide	an	overall	comparison	of	plant	community	com-
position	 between	 experimentally	 restored	 and	 untreated	 plant	
communities,	 we	 also	 used	 PERMANOVA	 to	 conduct	 a	 one-	way	
permutational	multivariate	analysis	of	variance	incorporating	the	six	
life-	form	groups	as	multiple	response	variables.	To	evaluate	the	mag-
nitude	of	differences	in	the	relative	cover	of	individual	plant	groups	
between	the	four	treatment	combinations	and	the	untreated	areas	
in	 2016,	 we	 calculated	 effect	 sizes	 (d =	mean	 difference/pooled	
standard	deviation)	for	these	comparisons	following	Nakagawa	and	
Cuthill	 (2007).	To	 further	characterize	differences	 in	plant	 species	
composition	among	the	four	experimental	treatment	combinations	
and	 the	 untreated	 areas	 in	 2016,	we	 used	 a	 canonical	 analysis	 of	
principle	 coordinates	 (CAP;	 Anderson	 &	 Willis,	 2003;	 Anderson	
et	al.,	 2008)	 incorporating	 normalized	 relative	 percent	 cover	 data	
(Euclidean	distances)	for	27	common	species	from	the	60	restored	
and	untreated	plots	(Appendix	S2).	All	27	species	were	recorded	as	
present	from	2011	to	2016	on	restored	plots,	occurred	on	at	least	
25%	of	these	plots	in	2016,	and	constituted	>95%	relative	cover	for	
all	treatment	combinations	(Appendix	S2).

All	 analyses	 of	 variance	 were	 conducted	 using	 Euclidean	 dis-
tances	and	were	based	on	permutation	of	residuals	under	a	reduced	
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model	 using	 9,999	 permutations,	 which	 would	 allow	 the	 deter-
mination	 of	 permutational	p	 values	 to	 a	 level	 of	 0.0001	 (1/9999).	
Analyses	of	variance	used	untransformed	data,	except	for	C. stoebe 
density	data	which	were	analyzed	as	ln(X	+	1)	to	reduce	dispersion.	
We	used	pairwise	tests	within	PERMANOVA	to	identify	differences	
among	means	where	multiple	 comparisons	were	necessary.	While	
permutation	p-	values	from	pairwise	tests	in	PERMANOVA	provide	
statistically	 exact	 tests	 for	 each	 individual	 comparison	 (Anderson	
et	al.,	2008),	Type	I	error	rates	might	be	inflated	because	results	are	
from	an	ongoing	experiment,	and	the	probability	of	replicating	a	pre-
vious	result	could	be	increased.	In	addition,	the	various	diversity	in-
dices	were	calculated	using	species	presence	and	relative	cover	data,	
resulting	in	multiple	tests	using	similar	data.	Therefore,	we	applied	a	
sequential	Bonferroni	correction	(Holm,	1979)	to	the	results	of	mul-
tiple	comparisons	as	a	conservative	measure,	using	Monte	Carlo	p-	
values	for	comparisons	involving	year	effects	where	the	number	of	
unique	permutations	was	<450	 (Anderson	et	al.,	 2008).	 Spearman	
rank	 correlation	 (rs)	 analyses	 between	 plant	 group	 relative	 cover	
variables	were	 performed	with	 SPSS	 (IBM	 Statistics	 for	Windows	
version	22.0.	Armonk,	New	York).	We	concluded	significance	for	all	
effects	 at	p < 0.05,	 as	 adjusted	 for	multiple	 comparisons	 as	 noted	
above.	Raw	data	are	included	in	Appendices	S3	and	S4.

3  | RESULTS

Numeric	 results	 presented	 in	 the	 text	 represent	mean	±	SE unless 
otherwise	 specified.	 Presentation	 of	 results	 focuses	 on	 statisti-
cally	 significant	 effects	 that	 also	 have	 practical	 implications	 for	

restoration	of	similar	sites.	All	comparative	statements	in	the	Results	
indicate	statistically	significant	differences	unless	otherwise	stated.

3.1 | Trends in characteristics of restored plant 
communities

The	restored	plant	communities	on	the	experimental	plots	followed	
a	definite	developmental	trajectory	through	the	four	years	(Table	1).	
When	averaged	across	 all	 treatment	 combinations,	 the	number	of	
non-	native	species	declined	substantially	from	2013	to	2016,	while	
the	number	of	native	 species	declined	only	 slightly.	PERMANOVA	
also	 indicated	 significant	 year	 effects	 for	 Shannon's	 Diversity	
Index,	 ̄C,	and	FQI,	but	the	sequential	Bonferroni	procedure	did	not	
distinguish	 among	means.	 The	 relative	 cover	 of	 native	 graminoids	
increased	 from	 2013	 to	 2016,	 while	 relative	 cover	 of	 non-	native	
grasses,	 non-	native	 forbs,	 and	C. stoebe	 decreased.	Relative	 cover	
of	native	forbs	also	tended	to	 increase	through	time,	although	not	
significantly	(p = 0.053).

3.2 | Treatment effects on experimental plant 
community characteristics

The	experimental	treatments	had	several	effects	on	plant	community	
characteristics	or	composition	that	did	not	significantly	interact	with	
year	(Table	1).	The	number	of	native	species	on	the	clopyralid	treatment	
averaged	 across	 all	 four	years	 was	 12.7	±	0.3	species/25	m2,	 which	
was	less	than	the	average	number	of	native	species	on	the	glyphosate	
treatment	(15.3	±	0.2	species/25	m2).	The	number	of	native	species	on	
the	mowed-	only	 treatment	 (14.7	±	0.2	species/25	m2),	 however,	 did	

F I G U R E  1 Hand-	pulling	and	burning	effects	on	native	forb	relative	percent	cover	(mean	+	SE),	Bass	River	Recreation	Area,	Ottawa	
County,	Michigan,	2013–2016.	All	means	are	averaged	across	the	levels	of	the	site	preparation	factor,	which	did	not	interact	with	the	hand-	
pulling	or	burning	treatments	(n	=	12	each	for	within-	year	means).	Mean	bars	on	the	right,	averaged	across	the	four	years	(n	=	48	each),	show	
the	significant	interaction	between	hand	pulling	and	burning;	bars	with	different	letters	differ	significantly	at	p < 0.05
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not	differ	from	either	herbicide	treatment.	 ̄C	was	slightly	reduced	on	
burned	plots,	averaging	3.54	±	0.06	across	the	four	years	as	compared	
to	3.68	±	0.03	on	non-	burned	plots.	Native	forb	cover	was	affected	by	
a	significant	interaction	between	hand	pulling	and	burning,	and	aver-
aged	across	all	four	years	was	greatest	on	the	hand-	pulled	and	burned	
treatment	combination	(Figure	1).	Shannon's	Diversity	Index	displayed	
a	similar	interaction	between	hand	pulling	and	burning,	but	significant	
effects	were	restricted	to	the	burned	treatment,	where	the	four-	year	
average	index	was	lowest	on	the	non-	hand-	pulled,	burned	combina-
tion	 (7.3	±	0.5)	and	highest	on	 the	hand-	pulled,	burned	combination	
(8.9	±	0.9).

The	experimental	treatments	also	interacted	with	year	to	affect	
the	development	of	the	restored	plant	communities	 in	both	subtle	
and	 substantial	ways	 (Table	 1).	 For	 example,	 clopyralid	 treatment,	
hand	pulling,	and	burning	all	favored	greater	non-	native	forb	cover	in	
either	2013	or	2014,	but	none	of	these	effects	persisted	as	relative	
cover	of	 these	 species	declined	 to	 low	 levels	on	all	 treatments	by	
2016	(Table	2).	In	contrast,	burning	effects	on	both	native	graminoid	
and	non-	native	grass	cover	became	more	pronounced	through	time,	
with	 burning	 producing	 increased	 native	 graminoid	 cover	 in	 2015	
and	 2016	 (Figure	 2a),	 while	 it	 produced	 decreased	 cover	 of	 non-	
native	grasses	in	2014,	2015,	and	2016	(Figure	2b).	Finally,	residual	
herbicide	application	effects	on	C. stoebe	relative	cover	were	signif-
icant	only	on	the	non-	hand-	pulled	treatment	combinations,	where	a	
single	application	of	clopyralid	 in	2008	maintained	 lower	C. stoebe 
cover	compared	to	either	mowed-	only	or	glyphosate-	treated	plots	
in	2013.	This	effect	did	not	persist	as	C. stoebe	relative	cover	sub-
sequently	declined	on	the	mowed-	only	and	glyphosate	treatments	
(Table	 3).	 In	 contrast,	 hand	 pulling	 maintained	 greatly	 reduced	C. 
stoebe	 relative	 cover	 regardless	 of	 site	 preparation	 treatment	 in	
all	 years.	 Burning	 had	 no	 significant	 effects	 on	 C. stoebe	 relative	
cover	in	any	year.	For	example,	 in	2016	C. stoebe	relative	cover	on	
the	non-	hand-	pulled	treatment	did	not	differ	between	non-	burned	
plots	 (8.6	±	2.0%)	 and	 burned	 plots	 (11.1	±	3.2%).	 In	 contrast,	 the	
relative	cover	of	C. stoebe	on	non-	hand-	pulled	plots	(n	=	24)	became	

progressively	more	negatively	correlated	with	that	of	native	gram-
inoids	through	time	(rs	=	−0.36,	p = 0.09	in	2013;	rs	=	−0.39,	p = 0.06	
in	2014;	rs	=	−0.44,	p = 0.03	in	2015;	rs	=	−0.47,	p = 0.02	in	2016),	an	
effect	that	included	both	burned	and	non-	burned	treatments.

Annual	 hand	 pulling	 maintained	 greatly	 reduced	 densities	 of	
seedling,	juvenile,	and	adult	C. stoebe	as	compared	to	the	non-	hand-	
pulled	treatments	in	both	2015	and	2016	(Table	4).	When	combined	
with	burning,	hand	pulling	also	produced	reduced	seed-	bank	densi-
ties	in	2015	compared	to	densities	on	non-	pulled,	non-	burned	plots,	
but	this	effect	was	not	significant	in	2016.	Burning	reduced	adult	C. 
stoebe	densities	on	non-	hand-	pulled	plots	in	2015,	but	burning	did	
not	affect	seedling	or	juvenile	densities	in	either	year	(Table	4).

3.3 | Comparisons of experimentally restored and 
untreated plant communities

By	2016,	the	experimentally	restored	plant	communities	differed	sig-
nificantly	from	adjacent	untreated	areas	in	most	measures.	Densities	
of	 seedling,	 juvenile,	and	adult	C. stoebe	 in	 the	 restored	plant	com-
munities	 were	 substantially	 less	 than	 those	 in	 the	 untreated	 plant	
community	 in	both	2015	and	2016,	especially	on	hand-	pulled	plots	
(Table	4).	Centaurea stoebe	seed	bank	densities	were	reduced	below	
those	on	untreated	plots	in	the	hand-	pulled	treatment	combinations	
in	2015,	and	also	tended	to	be	lower	in	both	burned	treatment	com-
binations	than	in	untreated	areas	in	2016	(Table	4),	but	this	effect	was	
not	significant	in	2016.	Restored	plant	communities	had	greater	na-
tive	species	richness,	as	well	as	higher	values	of	Shannon's	Diversity	
Index,	 ̄C,	and	FQI	than	the	untreated	plant	community	(Table	5).	The	
untreated	plant	community	also	tended	to	contain	higher	numbers	of	
non-	native	species	than	all	of	the	experimental	treatment	combina-
tions,	but	the	sequential	Bonferroni	procedure	did	not	differentiate	
among	means	(Table	5).	Based	on	the	multivariate	analysis	incorporat-
ing	the	six	life-	form	groups	as	multiple	response	variables,	the	compo-
sition	of	all	of	the	experimentally	restored	plant	communities	differed	
significantly	 from	 that	 of	 the	 adjacent	 untreated	 plant	 community	

TA B L E  2 Site	preparation,	hand-	pulling,	and	burning	effects	on	relative	percent	cover	of	non-	native	forbs	(mean	±	SE),	Bass	River	
Recreation	Area,	Ottawa	County,	Michigan,	2013–2016

Experimental factor Treatment

Percent cover in year

2013 2014 2015 2016

Site	preparation Mowed	only 10.4	±	2.0 12.3ab	±	2.1 6.2	±	1.6 0.9	±	0.1

Clopyralid 17.7	±	3.5 18.0a	±	3.3 5.6	±	1.5 2.2	±	0.8

Glyphosate 10.7	±	2.1 8.3b	±	1.9 4.5	±	0.7 2.6	±	0.8

Hand	pulling Not	pulled 9.8	h	±	1.6 12.2	±	2.3 6.5	±	1.3 1.6	±	0.5

Pulled 16.1	g	±	2.6 13.6	±	2.0 4.4	±	0.7 2.3	±	0.6

Burning Not	burned 8.1y	±	1.3 9.7	±	1.4 7.2x	±	1.3 1.6	±	0.4

Burned 17.8x	±	2.5 16.0	±	2.6 3.7y	±	0.6 2.3	±	0.6

Effects	of	each	experimental	factor	interacted	significantly	with	year	(p	<	0.01,	Table	1).	Means	with	different	letters	differ	significantly	at	p < 0.05. 
Letters	a,	b	compare	site	preparation	means	within	a	single	year.	Letters	g,	h	compare	hand-	pulling	means	within	a	single	year.	Letters	x,	y	compare	
burning	means	within	a	single	year.	Means	for	each	experimental	factor	are	averaged	across	the	levels	of	the	other	two	non-	interacting	experimental	
factors;	n	=	16	each	for	site	preparation	means	and	24	each	for	hand	pulling	and	burning	means.
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(Figure	3).	Differences	in	relative	cover	of	individual	plant	groups	be-
tween	 restored	 and	 untreated	 plant	 communities	 were	 substantial	
(d > 0.8,	Nakagawa	&	Cuthill,	 2007)	 for	 native	 graminoids	 (d = 3.5–
4.7),	non-	native	grasses	 (d = 1.3–3.6)	and	C. stoebe	 (d = 1.1–2.3),	but	
were	less	pronounced	for	native	forbs	(d = 0.4–1.2),	non-	native	forbs	
(d = 0.4–0.8),	and	woody	species	 (d = 0.6–0.8).	Canonical	analysis	of	
principal	coordinates	(Figure	4)	clearly	revealed	the	separation	of	the	
restored	plant	communities	 from	that	 in	 the	surrounding	untreated	
areas	along	canonical	axis	1,	and	the	more	subtle	separation	between	
burned	 and	 unburned	 restored	 plant	 communities	 along	 canonical	
axis	2.	Cross-	validation	produced	from	50%	to	75%	correct	classifi-
cation	 for	 restored	plant	 communities	 and	100%	correct	 classifica-
tion	 for	 untreated	 plant	 communities.	 Only	 one	 experimental	 plot,	
with	34%	relative	cover	of	C. stoebe,	was	misclassified	as	untreated.	

The	vector	overlay	of	representative	species	portrays	the	strong	as-
sociation	of	native	graminoid	and	forb	species	with	the	restored	plant	
communties,	and	the	similarly	strong	association	of	non-	native	spe-
cies,	including	C. stoebe,	with	the	untreated	plant	community.	The	dif-
ferential	effects	of	burning	on	native	forb	species	(e.g.,	Asclepias spp. 
vs Monarda	spp.)	and	native	and	non-	native	grasses	(e.g.,	Sporobolus 
cryptandrus,	Sand	dropseed	vs.	Poa compressa,	Canada	bluegrass)	also	
were	apparent.

4  | DISCUSSION

Others	have	 reported	 the	 effects	 of	 single	management	practices	
such	as	herbicide	treatments	(e.g.,	Rice,	Toney,	Bedunah,	&	Carlson,	

F I G U R E  2 Burning	effects	on	(a)	
native	graminoid	and	(b)	non-	native	
grass	relative	percent	cover	(mean	+	SE),	
Bass	River	Recreation	Area,	Ottawa	
County,	Michigan,	2013–2016.	Means	
are	averaged	across	the	levels	of	the	site	
preparation	and	hand	pulling	factors,	
which	did	not	interact	with	the	burning	
treatment;	n	=	24	for	each	mean.	
*	Adjacent	non-	burned/burned	pairs	of	
means	differ	significantly	(p < 0.05)	within	
a	single	year
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1997),	burning	(e.g.,	Heslinga	&	Grese,	2010),	or	seeding	(e.g.,	Rinella	
et	al.,	 2012)	 on	plant	 community	 composition	over	multiple	 years,	
but	few	studies	have	reported	the	effects	of	multiple	management	
practices	for	more	than	a	few	years	(Reid	et	al.,	2009;	Kettenring	&	
Adams,	2011;	Pearson	et	al.,	2016).	Our	study	followed	the	develop-
ment	of	native-	dominated	plant	 communities	established	using	an	
initial	seeding	and	factorial	combinations	of	site	preparation	treat-
ments,	 hand	pulling	 of	C. stoebe,	 and	burning	over	 a	 period	 span-
ning	eight	years.	Our	results	thus	provide	practical	insights	into	the	
long-	term	impacts	of	these	practices	on	native	plant	community	res-
toration	on	similar	degraded,	C. stoebe-	infested	sites	in	midwestern	

North	America	(e.g.,	Emery	&	Gross,	2005;	Emery	&	Rudgers,	2012;	
Mahaney,	 Gross,	 Blackwood,	 &	 Smemo,	 2015),	 as	well	 as	 in	 east-
ern	and	central	North	American	mixed-	grass	 and	 tallgrass	prairies	
(e.g.,	Brudvig	et	al.,	2007;	Foster	et	al.,	2007;	Bowles	&	Jones,	2013),	
and	on	grasslands	and	 rangelands	 in	western	North	America	 (e.g.,	
Sheley	 et	al.,	 1998,	 2006;	 Krueger-	Mangold	 et	al.,	 2006;	 Rinella	
et	al.,	 2012).	While	most	 applicable	 to	 restoration	 of	 fire-	adapted	
plant	communities	in	North	America,	our	results	may	relate	to	res-
toration	of	temperate	grasslands	in	other	parts	of	the	world,	which	
also	 are	 becoming	 increasingly	 rare	 as	 a	 result	 of	 fragmentation,	
abandonment,	 intensification	 of	 agricultural	 use,	 and	 invasion	 by	

Treatment 
combination

Percent cover in year

2013 2014 2015 2016

Mowed,	not	
pulled

41.4a	±	7.4 25.9a	±	5.4 13.3a	±	3.7 11.4a	±	3.3

Clopyralid,	not	
pulled

12.7b	±	3.1 8.3a	±	1.5 6.7a	±	1.7 8.6a	±	2.7

Glyphosate,	not	
pulled

34.0a	±	6.3 21.2a	±	5.2 14.0a	±	4.0 9.6a	±	4.0

Mowed,	pulled 0.04c	±	0.01 0.02b	±	0.02 0.01b	±	0.01 0.01b	±	0.01

Clopyralid,	
pulled

0.05c	±	0.02 0.05b	±	0.03 0.01b	±	<0.01 0.0b	±	0.0

Glyphosate,	
pulled

0.01c	±	<0.01 0.01b	±	0.01 0.01b	±	0.01 0.0b	±	0.0

Effects	of	site	preparation	and	hand	pulling	interacted	with	year	(p = 0.0001,	Table	1).	Means	within	
a	single	year	with	different	letters	differ	significantly	at	p < 0.05.	Treatment	combination	means	are	
averaged	across	the	levels	of	the	burning	factor,	which	was	not	significant	and	did	not	interact	with	
site	preparation	or	hand	pulling;	n	=	8	for	each	mean.

TA B L E  3 Site	preparation	and	
hand-	pulling	effects	on	Centaurea stoebe 
relative	percent	cover	(mean	±	SE),	Bass	
River	Recreation	Area,	Ottawa	County,	
Michigan,	2013–2016

TA B L E  4  	Hand-	pulling	and	burning	effects	on	densities	(mean	±	SE)	of	four	Centaurea stoebe	life	stages	at	the	Bass	River	Recreation	
Area,	Ottawa	County,	Michigan,	2015–2016

Life stage Year

Experimental treatment combination

Untreated F4,52; p†
Not pulled 
Not burned

Not pulled 
Burned

Pulled 
Not burned

Pulled 
Burned

Seed	bank	(no./
m2)

2015 231ab	±	71 137abc	±	62‡ 73.4bc	±	28.8 31.4c	±	22.6 472a	±	112 5.3;	0.0016

2016 52.4	±	36.2 10.5	±	10.5 115	±	104 10.5	±	10.5 178	±	91 1.1;	0.3747

Seedlings	(no./
m2)

2015 18.0b	±	4.5 22.3b	±	9.9 0.02c	±	0.01 0.01c	±	<0.01 118.8a	±	24.0 61.2;	0.0001

2016 4.9b	±	1.7 1.4b	±	0.7 0.00c	±	0.00 0.00c	±	0.00 35.1a	±	10.6 43.7;	0.0001

Juveniles	(no./m2) 2015 12.7b	±	5.5 6.6b	±	2.1 0.04c	±	0.02 0.06c	±	0.02 30.0a	±	4.7 34.6;	0.0001

2016 7.5b	±	2.5 8.1b	±	2.6 <0.01c	±	<0.01 0.01c	±	0.01 42.6a	±	14.5 44.1;	0.0001

Adults	(no./m2) 2015 4.8b	±	1.5 1.4c	±	0.4 <0.01d	±	<0.01 0.01d	±	<0.01 12.9a	±	2.6 53.6;	0.0001

2016 3.9b	±	1.0 2.2b	±	1.3 0.00c	±	0.00 0.00c	±	0.00 16.4a	±	4.0 32.2;	0.0001

Means	within	a	single	life	stage	and	year	followed	by	different	letters	differ	significantly	at	p < 0.05.	Experimental	treatment	combination	means	are	
averaged	across	the	levels	of	the	site	preparation	factor,	which	did	not	interact	with	hand	pulling	or	burning.
†	Pseudo-	F	and	permutational	p-	value	from	one-	way	analysis	of	variance	comparing	untreated	and	experimental	plant	communities.	‡ To more accu-
rately	represent	the	relatively	low	seed-	bank	densities	on	most	plots	(n = 11)	in	the	non-	hand-	pulled	and	burned	treatment	combination	in	2015,	the	
mean	excludes	data	from	one	plot	with	a	seed-	bank	density	of	>33,000	germinants/m2; n	=	12	each	for	all	other	means.	Lettering	showing	mean	sep-
aration	is	based	on	analyses	of	the	complete	dataset	including	the	ln-	transformed	outlier,	and	accurately	represents	the	relationships	between	the	
means	of	the	ln-	transformed	data.
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exotic	species	(e.g.,	Europe:	Bakker	&	Berendse,	1999;	Bartha	et	al.,	
2014;	Klaus	et	al.,	2017;	Australia:	Cole,	Koen,	Prober,	&	Lunt,	2018;	
Johnson,	Catford,	Driscoll,	&	Gibbons,	2018;	Mahmood	et	al.,	2018).

4.1 | Site preparation effects

When	 averaged	 across	 the	 second	 four	years	 of	 the	 study,	 native	
species	richness	was	lower	on	the	clopyralid	treatment	than	on	the	
glyphosate	treatment.	Native	forbs	that	exhibited	reduced	frequency	
and	relative	cover	on	clopyralid-	treated	plots	included	Ratibida pin-
nata	(Pinnate	prairie	coneflower)	and	Symphyotrichum pilosum	(Hairy	
white	oldfield	aster;	Appendix	S2).	Like	C. stoebe,	these	species	are	
members	of	the	Asteraceae	family,	which	has	a	known	sensitivity	to	
clopyralid	(Tyser,	Asebrook,	Potter,	&	Kurth,	1998).	While	Rice	et	al.	

(1997)	concluded	that	the	effects	of	clopyralid	on	plant	community	
diversity	were	negligible,	they	also	noted	decreased	frequency	of	na-
tive	forbs	from	the	Asteraceae	and	Fabaceae	families	on	clopyralid-	
treated	plots.	Similarly,	Tyser	et	al.	(1998)	observed	that	native	forb	
cover	 declined	 on	 clopyralid-	treated	 plots,	 while	 non-	native	 grass	
cover	 tended	 to	 increase.	 In	 our	 study,	 while	 clopyralid	 provided	
extended	C. stoebe	 control,	 it	 also	 was	 associated	 with	 increased	
non-	native	grass	cover	 in	2011	and	2012	(Martin	et	al.,	2014),	and	
greater	non-	native	forb	cover	in	2014,	although	these	secondary	in-
vasion	effects	(Pearson	et	al.,	2016;	Reid	et	al.,	2009)	did	not	persist	
into	2016.	Clopyralid	 is	considered	to	have	low	toxicity	to	humans	
and	other	organisms,	so	 the	potential	 impacts	on	non-	target	plant	
species	appear	to	be	the	greatest	acute	risk	associated	with	its	use	
(Durkin	&	Follansbee,	2004).

TA B L E  5  	Comparison	of	diversity	and	floristic	quality	(mean	±	SE)	between	restored	plant	communities	and	adjacent	untreated	plant	
communities	at	the	Bass	River	Recreation	Area,	Ottawa	County,	Michigan	in	2016

Variable

Experimental treatment combination

Untreated F4,52; p†
Not pulled 
Not burned

Not pulled 
Burned

Pulled 
Not burned

Pulled 
Burned

Non-	native	species	(no.	per	
25-	m2	plot)

8.5	±	0.6 6.9	±	0.7 7.0	±	0.6 7.0	±	0.7 10.1	±	1.0 5.0; 0.0017

Native	species	(no.	per	25-	m2 
plot)

13.6a	±	0.7 12.8a	±	1.0 13.3a	±	0.9 14.5a	±	0.8 5.6b	±	0.6 21.6;	0.0001

Shannon’s	Diversity	Index	(eH’) 7.4a	±	0.4 6.0a	±	0.3 6.6a	±	0.2 7.0a	±	0.4 4.4b	±	0.3 12.8; 0.0001

Mean	Coefficient	of	
Conservatism	( ̄C)

3.8a	±	0.1 3.6a	±	0.1 3.8a	±	0.1 3.7a	±	0.1 2.6b	±	0.2 17.6;	0.0001

Floristic	Quality	Index	(FQI) 13.8a	±	0.5 12.7a	±	0.2 13.7a	±	0.6 13.8a	±	0.3 5.8b	±	0.5 64.2;	0.0001

Experimental	treatment	combination	means	are	averaged	across	levels	of	the	site	preparation	factor,	which	did	not	interact	with	the	hand-	pulling	or	
burning	treatments;	n	=	12	for	each	mean.	†	Pseudo-	F	and	permutational	p-	value	from	one-	way	analysis	of	variance	comparing	untreated	and	experi-
mental	plant	communities.	Means	within	a	single	row	followed	by	different	letters	differ	significantly	at	p < 0.05.

F I G U R E  3 Plant	community	
composition	on	experimentally	restored	
and	adjacent	untreated	areas	in	the	Bass	
River	Recreation	Area,	Ottawa	County,	
Michigan,	2016.	Experimental	treatment	
combination	means	are	averaged	across	
the	three	levels	of	the	site	preparation	
factor,	which	did	not	interact	with	the	
hand-	pulling	or	burning	treatments	
(n	=	12	each	for	all	five	categories).	All	
experimental	treatment	combinations	
were	seeded	with	a	mixture	of	five	
native	grasses	and	18	native	forbs.	Plant	
communities	in	untreated	areas	differed	
from	all	experimentally	restored	plant	
communities	based	on	permutational	
multivariate	analysis	of	variance	
incorporating	the	six	plant	groups	as	
multiple	response	variables	(F4,52 = 29.1; 
p = 0.0001)



     |  11
Applied Vegetation Science

MacDONaLD et aL.

In	contrast	to	the	reduced	native	species	richness	on	clopyralid-	
treated	plots,	we	found	that	the	glyphosate	treatment	was	associ-
ated	with	greater	richness	of	native	species.	While	relative	cover	
of	 both	C. stoebe	 (MacDonald	 et	al.,	 2013)	 and	 non-	native	 forbs	
(Martin	 et	al.,	 2014)	 initially	 increased	 on	 the	 glyphosate	 treat-
ment,	 these	 effects	 disappeared	 through	 time,	 while	 most	 na-
tive	 species	established	on	 this	 treatment	persisted.	Gross	et	al.	
(2005)	also	found	that	native	midwestern	forb	and	grass	species	
successfully	recruited	into	glyphosate-	treated	plots,	although	the	
effect	was	short-	lived	for	many	species.	Many	of	the	native	spe-
cies	 seeded	 in	 our	 study,	 including	Asclepias tuberosa	 (Butterfly	
milkweed),	Monarda punctata	(Spotted	beebalm),	Ratibida pinnata,	
Rudbeckia hirta	 (Blackeyed	Susan),	Andropogon gerardii	 (Big	blue-
stem),	 and	 Schizachyrium scoparium	 (Little	 bluestem)	 were	 well-	
established	 on	 the	 glyphosate	 treatment	 by	 2011	 (Martin	 et	al.,	
2014),	and	all	persisted	on	glyphosate-	treated	plots	through	2016	
(Appendix	 S2).	 While	 glyphosate	 is	 widely	 used,	 it	 has	 the	 po-
tential	 for	 chronic	 toxicity	 to	 animals	 and	humans	 (Van	Bruggen	
et	al.,	 2018)	 and	 its	 use	may	 be	 restricted	 or	 regulated	 in	 some	
jurisdictions.

Surprisingly,	in	the	second	four	years	of	the	study,	the	mowed-	
only	site	preparation	treatment	did	not	differ	 from	the	glyphosate	
treatment	 in	 native	 species	 richness,	 demonstrating	 that	 inter-
seeding	native	species	on	C. stoebe-	infested	sites	can	be	successful	
without	chemical	site	preparation,	although	additional	management	
practices	favored	native	species	dominance.	Emery	and	Gross	(2006)	
also	 found	 that	 seeded	 native	 species	 successfully	 established	 on	
untreated	C. stoebe-	dominated	plots,	 although	another	attempt	 to	
establish	native	grasses	and	forbs	by	seeding	directly	into	C. stoebe-	
infested	 sites	 in	 Michigan	 was	 less	 successful	 (Carson,	 Bahlai,	 &	
Landis,	2014).	In	our	study,	a	single	mowing	had	minimal	impacts	on	

C. stoebe	densities	(MacDonald	et	al.,	2013)	or	initial	plant	commu-
nity	development	 (Martin	et	al.,	2014).	 In	contrast,	annual	mowing	
during	 the	 flowering	 stage	has	been	 shown	 to	 reduce	 the	density	
of	C. stoebe	(Rinella	et	al.,	2001),	and	we	observed	that	several	na-
tive	grasses	and	forbs	originally	seeded	on	the	experimental	plots,	
including	Schizachyrium scoparium,	Andropogon gerardii,	Sorghastrum 
nutans	 (Indiangrass),	 Monarda fistulosa (Wild bergamot),	 Monarda 
punctata,	Rudbeckia hirta,	Coreopsis lanceolata	 (Lanceleaf	 tickseed),	
and Asclepias tuberosa,	 became	 well	 established	 in	 the	 annually	
mowed	buffers	around	our	experimental	plots	without	supplemen-
tal	seeding	or	any	other	management.	Repeated	cutting,	twice	a	year	
each	year	for	10	years,	also	was	effective	in	controlling	Pteridium aq-
uilinum	(brackenfern)	infestations	and	increasing	species	richness	on	
acid	grassland	sites	 in	Great	Britain	 (Stewart	et	al.,	2008).	Any	site	
preparation	method	selected	to	facilitate	restoration	of	an	invasive	
species-	dominated	 site	will	 have	 both	 advantages	 and	 drawbacks.	
In	general,	herbicide	applications	provide	the	most	effective	reduc-
tions	 in	 invasive	plant	cover,	density,	and	biomass	across	a	variety	
of	plant	communities	(Kettenring	&	Adams,	2011),	but	may	do	so	at	
the	 risk	of	non-	target	effects	 (Skurski	et	al.,	2013)	and/or	 second-
ary	invasion	by	other	non-	native	species	(Pearson	et	al.,	2016;	Reid	
et	al.,	2009).	Mechanical	methods	such	as	mowing	avoid	the	use	of	
herbicides,	but	may	provide	less	successful	initial	control	of	targeted	
invasives	without	conferring	greater	positive	effects	on	native	plant	
communities	 than	herbicides	 (Kettenring	&	Adams,	2011;	Pearson	
et	al.,	2016).	Ultimate	selection	of	an	initial	site	preparation	method	
may	depend	not	only	on	 its	anticipated	effect	on	a	target	 invasive	
species,	but	also	on	its	facilitation	of	subsequent	practices	intended	
to	maintain	control	of	invasives	while	favoring	the	development	of	
native-	dominated	plant	communities	(Krueger-	Mangold	et	al.,	2006;	
Miller,	2016).

F I G U R E  4 Canonical	analysis	of	
principal	coordinates	(CAP)	characterizing	
differences	between	restored	and	
untreated	plant	communities	at	the	
Bass	River	Recreation	Area,	Ottawa	
County,	Michigan,	2016.	CAP	included	
normalized	relative	percent	cover	data	
(Euclidean	distances)	for	27	common	
plant	species	from	60	5-	m	×	5-	m	plots,	
12	from	each	treatment	combination	
(TC;	11	=	not	pulled,	not	burned;	12	=	not	
pulled,	burned;	21	=	pulled,	not	burned;	
22	=	pulled	and	burned,	31	=	untreated).	
Vector	overlay	shows	the	degree	and	
direction	of	correlation	with	the	canonical	
axes	for	representative	species	variables
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4.2 | Hand pulling and burning effects

Annual	hand	pulling	reduced	C. stoebe	relative	cover	to	almost	zero	
by	2016,	and	maintained	similarly	reduced	densities	of	seedling,	ju-
venile,	 and	adult	C. stoebe	 as	 compared	 to	either	non-	hand-	pulled	
treatments	 or	 adjacent	 untreated	 areas.	 While	 Lutgen	 and	 Rillig	
(2004)	 and	 Skurski	 et	al.	 (2013)	 reported	mixed	 results	 using	 this	
method,	complete	removal	of	the	taproot	of	hand-	pulled	C. stoebe 
plants	along	with	a	persistent	effort	over	multiple	years	 is	needed	
for	 effective	 control	 (MacDonald	 et	al.,	 2013).	 In	 contrast,	 hand	
pulling	of	other	 invasive	species	may	not	be	effective,	especially	 if	
a	species	has	a	clonal	habit.	For	example,	repeated	hand	pulling	of	
Asclepias syriaca	(Common	milkweed)	over	two	growing	seasons	did	
not	eliminate	it	from	a	grassland	site	in	Hungary	(Szitár,	Kröel-	Dulay,	
&	Török,	2018).

While	using	hand	pulling	alone	to	control	extensive,	dense	pop-
ulations	of	C. stoebe	can	be	prohibitive	in	terms	of	time	and	effort,	
hand	pulling	can	be	an	effective	practice	for	treating	small	infesta-
tions	or	as	a	 follow-	up	 treatment	after	other	means	have	 reduced	
C. stoebe	 population	 densities	 to	 manageable	 levels	 (MacDonald	
et	al.,	2013).	For	example,	in	our	study,	a	single	clopyralid	treatment	
greatly	 reduced	 the	 number	 of	 adult	C. stoebe	 that	 needed	 to	 be	
hand	pulled	during	the	initial	years	of	the	study	(MacDonald	et	al.,	
2013).	Where	herbicide	use	is	restricted,	delaying	hand	pulling	until	
adult	C. stoebe	densities	are	reduced	to	lower	levels	by	burning	and/
or	 competition	 from	 the	 restored	 native	 vegetation	 also	 may	 be	
effective.	 For	 example,	 by	 2015	 adult	C. stoebe	 densities	 on	 non-	
hand-	pulled	 burned	 plots,	 where	 native	 graminoid	 relative	 cover	
was	high	(63.3	±	4.9%),	had	declined	to	1.4	±	0.4	plants/m2. This C. 
stoebe	density	was	below	the	maximum	3.3	±	0.9	plants/m2 removed 
from	hand-	pulled,	clopyralid-	treated	plots	in	2010	and	substantially	
below	 the	 44.2	±	6.6	plants/m2	 removed	 from	 the	 hand-	pulled,	
mowed-	only	plots	in	2009	(MacDonald	et	al.,	2013).

Skurski	 et	al.	 (2013)	 observed	 that	 a	 single	 hand	 pulling	 of	C. 
stoebe	had	no	other	effects	on	any	plant	community	characteristic,	
while	we	 found	 that	 annual	 hand	 pulling	 of	C. stoebe,	when	 com-
bined	with	burning,	increased	the	relative	cover	of	native	forbs	as	a	
group.	Hand	pulling	combined	with	burning	also	produced	a	higher	
mean	value	of	Shannon's	Diversity	Index	(expressed	as	eH’)	than	on	
burned	plots	 that	were	not	hand	pulled,	 suggesting	 that	 the	com-
bination	 of	 treatments	 increased	 the	 effective	 number	 of	 species	
within	the	plant	community	compared	to	the	less	 intensively	man-
aged	plant	community	(Peet,	1974).	The	values	of	eH’ we observed 
(7.3–8.9),	however,	were	typical	of	plant	communities	still	recovering	
from	past	 disturbance	when	 compared	 to	 the	 range	 of	 <6	 to	 >20	
found	 in	 temperate	grasslands	 in	Germany	by	Morris	et	al.	 (2014).	
Others	have	 found	 that	hand	pulling	directly	 reduced	competition	
from	C. stoebe	(e.g.,	Maron	&	Marler,	2008),	while	burning	reduced	
competition	from	non-	native	grasses	and	favored	the	establishment	
and	 persistence	 of	 native	 forbs	 (Maret	&	Wilson,	 2000;	 Suding	&	
Gross,	 2006;	 Bowles	 &	 Jones,	 2013).	 Native	 forbs	 that	 displayed	
strong	positive	responses	to	hand	pulling	and	burning	in	our	study	
(Figure	4,	Appendix	S2)	included	Asclepias syriaca,	Asclepias tuberosa,	

Coreopsis lanceolata,	Rudbeckia hirta,	and	Verbena stricta	(Hoary	ver-
bena),	all	mid-		to	late-	season	nectar	sources	that	would	provide	this	
resource	in	the	absence	of	C. stoebe	(Carson	et	al.,	2014).

In	our	study,	burning	increased	the	relative	cover	of	native	gram-
inoids	and	decreased	that	of	non-	native	grasses,	while	burning	com-
bined	with	hand	pulling	increased	the	relative	cover	of	native	forbs.	
Brudvig	 et	al.	 (2007)	 and	 Bowles	 and	 Jones	 (2013)	 also	 observed	
that	burning	produced	a	shift	from	cool-	season	grasses	and	exotic	
forbs	 to	 communities	 dominated	 by	 native	 species.	 In	 contrast,	
Heslinga	and	Grese	(2010)	found	that	burning	a	prairie	remnant	 in	
the	absence	of	seeding	did	not	increase	native	species	richness	be-
cause	of	a	 limited	native	seed	bank	and	minimal	colonization	from	
nearby	remnants.	We	did	observe	a	subtle	negative	effect	of	burning	
on	floristic	quality	as	 ̄C	was	slightly	lower	on	the	burned	treatment,	
probably	as	a	result	of	several	native	forbs	occurring	less	frequently	
on	burned	plots,	including	Monarda fistulosa,	Monarda punctata,	and	
Ratibida pinnata	(Figure	4;	Appendix	S2).

In	contrast	to	findings	of	an	earlier	study	on	this	site	(MacDonald	
et	al.,	 2007),	 mid-	spring	 burning	 had	 no	 significant	 effects	 on	 C. 
stoebe	 cover.	 In	 our	 earlier	 study,	 plots	were	 dominated	 by	 dense	
stands	of	native	grasses,	and	annual	burning	significantly	reduced	C. 
stoebe	density,	biomass,	and	dominance.	In	the	current	study,	burn-
ing	did	reduce	adult	C. stoebe	densities	on	non-	hand-	pulled	plots	in	
2015,	suggesting	that	mid-	spring	burning	may	reduce	adult	density	
and	seedfall	by	inhibiting	bolting	of	juveniles,	even	though	C. stoebe 
cover	was	not	directly	affected.	The	results	of	our	study	were	similar	
to	those	of	Emery	and	Gross	(2005),	who	found	only	subtle	effects	
of	early	spring	burning	on	C. stoebe	populations	in	remnant	prairies	
in	southern	Michigan.	Restored	or	remnant	plant	communities	con-
taining	 both	 native	 grasses	 and	 forbs	may	 burn	with	 less	 uniform	
intensity	 than	 those	dominated	by	native	grasses,	 resulting	 in	 less	
effective	control	of	C. stoebe.

Consistent	 with	 reduced	 adult	 density	 and	 lower	 seedfall	 on	
burned	 plots	 in	 2015,	 however,	 the	 C. stoebe	 seed	 bank	 density	
observed	 on	 the	 burned	 plots	 in	 2016	 (10.5	±	7.2	germinants/m2)	
was	below	that	reported	for	annually	burned	native	grass	plots	by	
MacDonald	 et	al.	 (2007;	 52	±	17	germinants/m2),	 and	 also	 below	
the	 six-	year	 average	 seed	 bank	 density	 in	 untreated	 areas	 of	 the	
study	 site	 (400	±	54	germinants/m2,	 MacDonald	 et	al.,	 2013	 and	
this	study).	Persistence	of	the	seed	bank	on	non-	burned	hand-	pulled	
plots	(Table	4),	with	little	change	since	2012	(68	±	26	germinants/m2;  
MacDonald	 et	al.,	 2013),	 suggests	 that	 the	 sparse	 seed	 bank	 on	
burned	 plots	 in	 2016	 also	 may	 reflect	 a	 direct	 burning	 effect	 on	
C. stoebe	 seed	 viability,	 as	 observed	 by	 MacDonald,	 Bosscher,	
Mieczkowski,	 Sauter,	 and	Tinsley	 (2001)	 and	Vermeire	 and	Rinella	
(2009).

Burning	 also	 can	 have	 indirect	 effects	 that	may	 help	 suppress	
C. stoebe,	 at	 least	 in	midwestern	North	America.	Burning	 strongly	
favored	 native	 graminoids	 in	 our	 study,	 and	when	 combined	with	
hand	pulling	also	favored	native	forbs.	Once	established,	native	spe-
cies	strongly	compete	with	C. stoebe	(Maron	&	Marler,	2007;	Rinella	
et	al.,	 2007;	 MacDonald	 &	 Bottema,	 2014).	 Native	 warm-	season	
grasses	in	particular	are	more	competitive	at	low	nutrient	availability	
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than	C. stoebe,	 and	can	 reduce	nitrogen	availability,	decreasing	 in-
vasion	by	 non-	native	 species	 (Mahaney	 et	al.,	 2015).	 In	 our	 study,	
the	increasing	negative	correlation	between	the	relative	cover	of	C. 
stoebe	on	non-	hand-	pulled	plots	and	that	of	native	graminoids,	along	
with	 the	 inverse	association	between	C. stoebe	 and	 seeded	native	
grass	species	portrayed	in	Figure	4,	also	were	consistent	with	com-
petitive	suppression	of	C. stoebe	as	the	cover	of	native	graminoids	
increased	through	time.

We	applied	hand	pulling	and	burning	as	follow-	up	treatments	to	
the	initial	site	preparation	treatments	because	we	anticipated	that	
both	would	 further	 reduce	C. stoebe,	while	potentially	 interacting	
with	the	site	preparation	treatments	to	differentially	affect	native	
plant	 community	 development.	 Hand	 pulling	 physically	 removes	
an	 invasive	plant,	which	effectively	controls	 the	targeted	species,	
but	 also	 opens	 up	 unoccupied	 areas	 that	 could	 allow	 the	 subse-
quent	 establishment	 of	 either	 native	 or	 non-	native	 species	 (e.g.,	
Abella,	Suazo,	Norman,	&	Newton,	2013;	Hasselquist,	Hasselquist,	
&	Rogers,	2013;	Heckman,	McColley,	Slater,	&	Carr,	2017).	In	con-
trast,	 burning	 involves	 the	 destruction	 of	 biomass	 of	most	 if	 not	
all	 species	 inhabiting	a	site,	has	well-	documented	positive	effects	
on	native	plant	communities	in	North	America	(e.g.,	Brudvig	et	al.,	
2007;	Bowles	&	Jones,	2013),	and	also	may	favor	the	persistence	
of	certain	native	species	(e.g.,	Howe,	2011;	Young,	Porensky,	Wolf,	
Fick,	 &	 Young,	 2015).	 Hand	 pulling	 allows	 the	 targeted	 control	
of	an	 invasive	species	without	 the	use	of	herbicides,	but	 is	 labor-	
intensive	 and	 difficult	 to	 apply	 at	 large	 scales	 (Hasselquist	 et	al.,	
2013;	Heckman	et	al.,	2017).	In	contrast,	burning	can	be	effectively	
applied	at	a	 large	scale,	but	may	be	much	 less	selective	 in	 its	 im-
pact	on	a	targeted	invasive	species	and	must	be	carefully	timed	to	
achieve	the	desired	results	(e.g.,	Emery	&	Gross,	2005;	Howe,	2011;	
Bowles	&	Jones,	2013).

Prescribed	 burning	 also	 may	 facilitate	 active	 management	 of	
semi-	natural	 grasslands	 in	 Europe,	 but	 its	 use	 is	 uncommon	 and	
tightly	regulated	in	many	areas	(Valkó,	Török,	Deák,	&	Tóthmérész,	
2014).	In	North	America,	fire	is	used	to	manage	prairies	dominated	
by	C4	grasses,	while	 in	Europe	many	grasslands	are	dominated	by	
C3	grasses	that	may	not	respond	as	positively	to	frequent	fires,	and	
its	use	 for	 invasive	species	control	has	not	been	extensively	stud-
ied	 (Ruprecht,	 Enyedi,	 Szabó,	 &	 Fenesi,	 2016;	 Valkó	 et	al.,	 2014).	
Responses	 to	 fire	 also	differed	between	South	African	 and	North	
American	 grassland	 communities,	 with	 frequent	 burning	 in	 North	
America	 favoring	 a	 less	 diverse	 community	 dominated	 by	 native	
C4	 grass	 species,	 while	 frequent	 burning	 in	 South	 Africa	 favored	
the	development	of	a	more	diverse	community	including	a	range	of	
shorter	grass	species	(Kirkman	et	al.,	2014).	In	Australia,	the	use	of	
prescribed	fire	may	help	maintain	competitive	populations	of	native	
grasses	 and	 forbs	 while	 helping	 to	 control	 exotic	 species	 in	 tem-
perate	grasslands	 (Cole	et	al.,	2018;	Johnson	et	al.,	2018).	 Invasive	
species	can	differentially	affect	 fire	 frequency	and	 intensity,	how-
ever;	 the	 presence	 of	 C. stoebe	 decreases	 fire	 intensity	 in	 North	
American	 plant	 communities,	while	 the	 invasive	 African	 perennial	
grass	Andropogon gayanus	 (Bluestem)	 increases	 fire	 frequency	and	
intensity	in	Australian	grasslands	(Brooks	et	al.,	2004).

A	variety	of	other	management	practices	 including	grazing,	bi-
ological	 controls,	 and	 seeding	 have	 potential	 applications	 in	 con-
trolling	 invasive	 species	and	 facilitating	 restoration	of	native	plant	
communities.	 For	 example,	 traditional	 practices	 including	mowing	
and	grazing	historically	maintained	semi-	natural	grasslands	through-
out	Europe	(Bakker	&	Berendse,	1999;	Ruprecht	et	al.,	2016;	Klaus	
et	al.,	2017).	Brudvig	et	al.	(2007)	suggested	that	combining	grazing	
with	targeted	removal	of	problematic	invasives,	or	combining	burn-
ing	with	seeding	or	transplanting	of	desired	native	species	warranted	
further	testing	on	prairies	in	the	Iowa	loess	hills	of	North	America.	
Biological	 controls	 also	 help	 control	 a	 variety	 of	 invasive	 species	
including	C. stoebe,	especially	when	combined	with	other	methods	
to	increase	native	species	such	as	seeding	(e.g.,	Stephens,	Krannitz,	
&	Meyers,	 2009;	Cutting	&	Hough-	Goldstein,	 2013;	Carson	et	al.,	
2014).	Propagule	supply	often	limits	the	restoration	of	native	plant	
communities,	so	seeding	after	site	preparation	or	interseeding	into	
remnant	 plant	 communities	 is	 a	 necessary	 practice	 in	 many	 res-
toration	 attempts	 in	 North	 America	 (e.g.,	 Foster	 &	 Tilman,	 2003;	
Foster	et	al.,	2007;	Mazzola	et	al.,	2011)	and	Europe	(e.g.,	Bakker	&	
Berendse,	 1999;	 Klaus	 et	al.,	 2017;	 Török	 et	al.,	 2018).	 Combining	
seeding	with	other	management	methods	 is	often	successful	 (e.g.,	
Klaus	 et	al.,	 2017;	 Johnson	et	al.,	 2018;	Mahmood	et	al.,	 2018),	 as	
we	found	by	seeding	native	species	followed	by	hand	pulling	of	C. 
stoebe	 for	eight	years	and	annual	burning	for	 three	out	of	 the	 last	
four	years	of	our	study.

4.3 | Seeding effects

By	 the	 eighth	 growing	 season	 after	 seeding	 experimental	 plots	
with	 native	 species,	 relative	 cover	 of	 native	 graminoids	 and	 forbs	
ranged	 from	59.1	±	3.8%	on	plots	 that	 only	 received	 site	 prepara-
tion	 to	 89.9	±	2.4%	 on	 plots	 that	 also	were	 both	 hand	 pulled	 and	
burned	(Figure	3).	In	comparison,	relative	cover	of	native	graminoids	
and	forbs	was	only	12.7	±	3.7%	on	untreated	plots.	Seeded	species	
comprised	18	of	41	native	species	and	an	average	87%	of	the	total	
native	 relative	 cover	 on	 restored	plots	 (Appendix	 S2).	 In	 contrast,	
only	five	of	20	native	species	and	an	average	9.7%	of	the	total	native	
relative	cover	on	untreated	plots	represented	species	included	in	the	
experimental	seed	mix.	Seeded	species	apparently	established	in	un-
treated	areas	from	seed	produced	on	nearby	experimental	plots,	as	
few	of	the	species	included	in	the	native	seed	mix	were	present	be-
fore	the	initiation	of	the	experiment	(MacDonald	et	al.,	2007;	Martin	
et	al.,	2014).

Without	the	initial	seeding,	 it	 is	unlikely	that	the	experimental	
treatments	 alone	 would	 have	 produced	 similar	 native-	dominated	
plant	communities,	since	a	lack	of	native	propagules	can	constrain	
the	 diversity	 of	 restored	 plant	 communities	 (Foster	 et	al.,	 2007;	
Johnson	 et	al.	 2018;	 Zylka	 et	al.,	 2016).	 For	 example,	 on	mowed-	
only	plots	that	were	neither	hand	pulled	nor	burned,	relative	cover	
of	native	graminoids	and	forbs	 increased	from	8.0	±	2.5%	in	2011	
to	60.1	±	5.8%	in	2016,	representing	an	effect	of	seeding	in	the	ab-
sence	of	any	additional	management	other	than	the	single	mowing	
in	 2008.	Of	 the	 23	 native	 species	 included	 in	 our	 seed	mix,	 five	
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grasses	 and	 13	 forbs	 persisted	 through	 eight	 growing	 seasons	
(Appendix	S2),	surviving	severe	drought	conditions	in	summer,	2012	
(Martin	et	al.,	2014).	We	also	observed	that	many	of	the	seeded	na-
tive	species	successfully	reproduced	on	the	experimental	plots	and	
spread	into	both	mowed	and	unmowed	areas	around	the	plots,	ev-
idence	 that	 the	 restored	native	plant	communities	would	become	
self-	sustaining,	as	demonstrated	 for	native	grass	communities	es-
tablished	in	an	adjacent	area	in	1999	(MacDonald	&	Bottema,	2014).

The	restored	plant	communities	contained	assemblages	of	native	
species	 common	 to	 dry-	mesic	 prairies	 in	 southern	Michigan	 (Kost	
et	al.,	2007),	being	dominated	by	Andropogon gerardii,	Schizachyrium 
scoparium,	 and	 Sorghastrum nutans,	 but	 also	 containing	 other	 na-
tive	forbs	and	graminoids	representing	a	variety	of	plant	functional	
groups	(Figure	4;	Appendix	S2;	USDA	NRCS	2018).	Combining	data	
for	all	48	experimental	plots	produced	a	site	 ̄C	of	3.4	and	FQI	of	21.6	
in	2016,	similar	to	values	found	in	dry-	mesic	prairie	remnants	(e.g.,	
Taft	 et	al.,	 1997)	 and	 other	 experimental	 prairie	 restorations	 (e.g.,	
Taft	et	al.,	2006;	Foster	et	al.,	2007),	but	below	values	for	intact	nat-
ural	areas	( ̄C	=	5	to	6,	FQI	=	45	to	55;	Taft	et	al.,	1997;	Spyreas	et	al.,	
2012).	After	 excluding	 the	 seeded	native	 species	 from	 the	experi-
mental	plot	data,	however,	 ̄C	fell	to	2.3,	while	FQI	fell	to	10.8,	similar	
to	 ̄C	(2.7)	and	FQI	(11.9)	calculated	for	the	combined	untreated	plot	
data	and	typical	of	values	for	other	unrestored	old-	field	sites	 (Taft	
et	al.,	1997).

5  | SUMMARY AND CONCLUSIONS

The	treatments	we	employed	facilitated	the	restoration	of	native-	
dominated	 plant	 communities	 on	 a	 degraded,	C. stoebe-	infested	
site.	 The	 eight-	year	 length	 of	 our	 study	 revealed	 the	 transient	
nature	 of	most	 site	 preparation	 effects,	 the	 continued	 effect	 of	
persistent	 hand	 pulling	 on	C. stoebe	 cover	 and	 density,	 and	 the	
increasingly	 pronounced	 effects	 of	 repeated	 burning	 on	 plant	
community	 composition.	 All	 three	 site	 preparation	 treatments,	
followed	by	 seeding	with	 a	mixture	 of	 native	 grasses	 and	 forbs,	
produced	native-	dominated	plant	communities	even	without	sub-
sequent	management.	Hand	pulling,	while	labor	intensive,	reduced	
C. stoebe	 cover	 and	 density	 to	 almost	 zero	 after	 eight	 years	 of	
treatment.	Burning	 increased	 the	 relative	 cover	of	 native	 grami-
noids,	 reduced	 that	 of	 non-	native	 grasses,	 and	 when	 combined	
with	hand	pulling,	also	produced	the	greatest	relative	cover	of	na-
tive	forbs.	Any	reinvasion	by	C. stoebe	or	expansion	of	other	sec-
ondary	invaders	in	response	to	experimental	treatments	was	short	
lived	as	competition	from	native	species	 increased.	The	restored	
plant	 communities	 resembled	 those	 found	 in	 southern	Michigan	
dry-	mesic	prairies,	contained	a	variety	of	plant	functional	groups,	
and	experimentally	 introduced	native	species	successfully	repro-
duced	on	experimental	plots	and	actively	seeded	into	mowed	and	
unmowed	 areas	 surrounding	 the	 plots.	 The	 restored	 plant	 com-
munities	 also	 responded	 positively	 to	 fire	 as	 a	 restored	 natural	
process,	persisted	through	periodic	stress	events	such	as	drought,	

and	had	greater	diversity	and	higher	floristic	quality	than	adjacent	
untreated	areas.	These	results	demonstrated	that	seeding	native	
species,	 in	 combination	 with	 integrated	 management	 strategies	
to	control	C. stoebe	and	to	favor	native	species,	produced	native-	
dominated	plant	communities	that	possessed	many	of	the	desired	
attributes	of	restored	ecosystems.	The	length	of	our	study,	allow-
ing	 the	 evaluation	 of	 treatment	 effects	 through	 time,	 highlights	
the	importance	of	continued	management	and	monitoring	to	fully	
implement	and	assess	successful	restoration	of	native	plant	com-
munities	on	similar	disturbed,	invasive	species-	infested	sites.
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