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Abstract 

 

Dye Sensitized Solar Cells (DSSC) offer advantages over semiconductor solar cells 

including lower costs and relaxed material purity requirements. However, DSSC solar energy 

conversion efficiencies are lower than many competing photovoltaic technologies. Key to DSSC 

performance is the incorporation of nanocrystalline metal oxides to provide a large surface area 

for photosensitive dye loading. Titanium dioxide (TiO2) is the predominately used metal oxide. 

The structure of the TiO2 layer determines charge transfer efficiency and the level of generated 

photocurrent. Common practice for high performance cells is to deposit a thin, compact TiO2 

coating followed by a thicker, more porous TiO2 layer. Often, different deposition methods are 

used for each layer.  

Inkjet printing of TiO2 potentially offers a high degree of control over the deposition of 

TiO2 suspensions. Previous use of inkjet printing for TiO2 depositions have focused on 

producing TiO2 films with uniform density. A multi-ink printing system offers the possibility of 

forming TiO2 films with variable density using a single deposition method.  

For this research, inkjet printing of TiO2 films with a graded density profile was explored 

as a means of improving DSSC performance. Cell performance was assessed through the 

measurement of generated currents and device Fill Factors.  

Two means to produce density variations in TiO2 layers were explored: TiO2 particle size 

and layer pore-volume. For the former, the reduction of micron-sized TiO2 particles using a 

milling approach was attempted but proved unsuccessful. To affect changes in pore-volume, 

several TiO2 suspensions were developed with varying pore-forming content that successfully 

produced variations in layer density. DSSCs with printed TiO2 films having three density layers 

showed an average improvement in the Fill Factor of 8% versus single layers and 6% versus 
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double layers. Short-circuit currents in tri-layer films increased an average of 35% over single 

layers and 13% over double layers.  

The results effectively demonstrated the potential for using inkjet printing as a sole 

deposition method to produce TiO2 films with a non-uniform density leading to improved DSSC 

performance. One possibility for further study would be to create further layer variations through 

the simultaneous printing of different suspensions.  

 

Keywords: Dye sensitized solar cells, TiO2 deposition, inkjet printing, photovoltaics 

  



6 
 

Table of Contents 

 

Abstract .......................................................................................................................................... 4 

List of Acronyms and Abbreviations .......................................................................................... 8 

1 Introduction ................................................................................................................................ 9 

1.1 DSSC Overview .................................................................................................................................. 9 

1.2 TiO2 Layers in Dye Sensitized Solar Cells ....................................................................................... 12 

1.3 Solar Cell Performance Assessments ................................................................................................ 16 

1.4 Summary ........................................................................................................................................... 17 

2 Problem Statement and Hypothesis ....................................................................................... 18 

2.1 Approach ........................................................................................................................................... 18 

2.2 Assessment ........................................................................................................................................ 19 

2.3 Research Objectives .......................................................................................................................... 19 

3 Experimental Setup and Analysis Methodology ................................................................... 21 

3.1 Printer Selection ................................................................................................................................ 21 

3.2 Spin-Coating System ........................................................................................................................ 23 

3.3 Milling Apparatus ............................................................................................................................. 23 

3.4 Titanium Dioxide Suspension Development .................................................................................... 24 

3.5 Suspension Filtering .......................................................................................................................... 31 

3.6 SEM Particle Size Methodology ....................................................................................................... 32 

3.7 AFM Surface Scanning ..................................................................................................................... 37 

4 Layer Assessment and Device Fabrication ............................................................................ 41 

4.1 TiO2 Particle Size Assessment .......................................................................................................... 41 

4.2 Surfactant Content and Surface Morphology .................................................................................... 46 

4.3 Surface Morphology Conclusion ...................................................................................................... 55 

4.4 Suspension Preparation ..................................................................................................................... 56 

4.5 DSSC Device Assembly ................................................................................................................... 59 

5 Results ....................................................................................................................................... 61 

5.1 DSSC Device Assessments ............................................................................................................... 61 

6 Discussion ................................................................................................................................. 66 

6.1 Suspension Preparation ..................................................................................................................... 66 



7 
 

6.2 Layer Density Variations .................................................................................................................. 67 

6.3 DSSC Device Performance ............................................................................................................... 68 

6.4 Printing System Assessment ............................................................................................................. 69 

7 Conclusion ................................................................................................................................ 71 

Appendix A: Photovoltaic Technologies ................................................................................... 73 

A.0 Introduction ...................................................................................................................................... 73 

A.1 Solar Cell Technologies ................................................................................................................... 74 

Appendix B: DSSC Operating Principles and Research Trends ........................................... 77 

B.1 DSSC Device Operating Principles .................................................................................................. 77 

B.2 DSSC Material Research Trends ...................................................................................................... 81 

B.3 Key Challenges for DSSCs .............................................................................................................. 87 

Appendix C: TiO2 Deposition Techniques ................................................................................ 90 

C.1 Common Deposition Techniques ..................................................................................................... 90 

C.2 Inkjet Printing ................................................................................................................................... 92 

Appendix D: TiO2 Suspension Stability .................................................................................... 96 

D.1 Aggregation ...................................................................................................................................... 96 

D.2 Deposition Method-Specific Suspension Formulations ................................................................... 98 

D.3 Nanoparticle Electro-Chemistry....................................................................................................... 99 

D.4 Stabilizing Additives ...................................................................................................................... 102 

Appendix E: Equipment List ................................................................................................... 104 

References .................................................................................................................................. 105 

  



8 
 

List of Acronyms and Abbreviations 

 

Atomic force microscope  AFM 

Dye sensitized solar cell DSSC 

Energy relay dye ERD 

Fluorine tin oxide FTO 

Highest occupied molecular orbital HOMO 

Hole-transport material HTM 

Indium tin oxide ITO 

Iodide I 

Lowest unoccupied molecular orbital LUMO 

Platinum Pt 

Polyethylene glycol PEG 

Quantum dot sensitized solar cells QDSSC 

Ruthenium Ru 

Scanning electron microscope SEM 

Silicon dioxide SiO2 

Titanium dioxide TiO2 

Transparent Conducting Oxide TCO 

  



9 
 

1 Introduction 

  

 A major attraction of Dye sensitized solar cells (DSSC), a type of electrochemical solar 

cell, is the relative simplicity of their fabrication. Unlike multi-junction semiconductor solar cells 

that require complicated and expensive fabrication processes or crystalline silicon cells that 

require high material purities, DSSCs can be produced using simpler procedures and relatively 

lax purity standards. Modern DSSCs have benefited from significant material advances over the 

original electrochemical solar cells. In particular, the incorporation of nano-structured 

semiconductors into DSSC designs revolutionized the performance and prospects of 

electrochemical cells. Appendix A provides an overview of other photovoltaic technologies. 

1.1 DSSC Overview  

Electrochemical cells have a relatively simple structure. One side of the cell is the photo-

electrode made up of a Transparent conduction oxide (TCO) substrate coated with a 

semiconductor layer; the other side is the counter electrode which consists of a catalyzing 

material deposited on a second TCO substrate. The two halves are bonded together face-to-face 

and an electrolyte is injected into the space between them. When the semiconductor layer is 

coated with a photo-sensitive dye, the cell is a DSSC.  

1.1.1 DSSC Components 

There are well established materials that comprise a “standard” DSSC: Titanium dioxide 

(TiO2) semiconducting nanoparticles, Ruthenium-based (Ru) dyes, Iodide-based (I
-
/I3

-
) 

electrolytes, a Platinum (Pt) catalyst, and Transparent Conducting Oxides (TCOs) as a substrate. 

Fluorine doped tin oxide (FTO) is a commonly selected TCO. Indium tin oxide (ITO) has also 

seen wide usage.  
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Figure 1 shows the major elements and their arrangement in a standard DSSC. 

 
Figure 1: Common materials in a DSSC and their structural configuration in a 

standard DSSC [1].  

 Investigations into material variations have often involved attempts to reduce material 

costs or to simplify processing procedures rather than to necessarily improve overall device 

performance. Optimization of material and processing costs represents an important step in 

enhancing the commercial viability of DSSCs. A sampling of different research avenues being 

pursued in the area of material selection, overall cost, and device performance is offered in 

Appendix B.  

1.1.2 DSSC Operating Principles 

As the macroscopic electric field in electrochemical cells is screened by the ions in the 

electrolyte, the charge transport through the cell occurs in a fundamentally different way than in 

traditional single junction solar cells [2]. The electrolyte present between the photoactive 

semiconductor electrode and the catalyzing counter electrode facilitates a change from an 

electronic transport mode to an ionic one.  

Electron/hole pairs are produced when photons of sufficient energy oxidize a dye 

molecule and charge separation occurs when the photoelectron is injected into the 

semiconductor; the electrons are collected at the back surface of the semiconductor and the holes 

accumulate at the semiconductor/electrolyte interface [3]. The voltage produced by the cell 
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results from the difference between the semiconductor’s Fermi level and the electrolyte redox 

potential [1]. 

1.1.3 Development of DSSCs  

Originally, electro-chemical PV cells used traditional semiconductors such as silicon but 

suffered from photocorrosion of the semiconductors when illuminated while immersed in the 

liquid electrolytes. Semiconductors such as Titanium dioxide (TiO2) were selected as a 

chemically-stable replacement but possessed significantly lower spectral responses. TiO2 absorbs 

light in the UV region but is transparent to visible light [4].  

One means of solving this issue was to introduce sensitizing dyes into the 

electrochemical cells. The incorporation of photo-sensitive dyes on the surface of the 

semiconductor allowed for tuning of the spectral response of the cell. Electron/hole pairs were 

then generated within the dye as dye molecules became oxidized by incident light; electrons 

moved into the semiconductor and holes moved to the dye/electrolyte interface. Re-oxidation of 

dye molecules occurred by the ionic charge transport action of the electrolyte.  

The major innovation to the electrochemical cell was the use of nano-structured metal 

oxide semiconductors at the photo-electrode by Gratzel and his colleagues. The nano-structuring 

of the semiconductor produced a dramatic increase in the surface area available for dye 

attachment.  

The most widely used metal oxide, and the one used by Gratzel, is TiO2. Electrochemical 

cells with dye-sensitized, nanostructured semiconductor photo-electrodes are sometimes referred 

to as Gratzel cells. State of the art DSSCs have reached efficiencies of 15% [5].  Compared to 

crystalline silicon solar cells with efficiencies approaching theoretical maximums, the 

efficiencies of DSSC cells have yet to realize their full potential.   
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1.2 TiO2 Layers in Dye Sensitized Solar Cells 

State of the art DSSCs have used a layered TiO2 architecture [6]. Directly on the surface 

of a TCO substrate, a dense, a 50nm layer of TiO2 is deposited to protect the FTO from the 

electrolyte solution. The main light absorption layer is applied to the top of the base layer and is 

typically 10 microns thick. The target particle size for this layer is 20nm. Poly ethylene glycol 

(PEG), a pore-forming agent, is often added to increase the porosity to ensure a large surface 

area for dye loading. For the DSSC with the highest reported performance, the initial, compact 

layer was deposited by spray coating and the second layer by spin-coating [5]. 

Reducing the process of forming TiO2 films to a single deposition step are desirable to 

simplify the DSSC fabrication. Single layer TiO2 depositions can show a substantial decrease in 

cell energy conversion efficiency to less than 3% compared to the 15% obtained by state of the 

art cells [5, 7]. For the best performance, the TiO2 film formation process benefits need to 

provide the film with properties that provide the necessary surface area while maintaining good 

conductivity.  

1.2.1 TiO2 Particle Size and Layer Pore Volume 

 Two properties of the TiO2 layer are vitally important to the performance of a standard 

DSSC: the TiO2 particle size and the porosity of the surface. Ideally, the TiO2 particle size is as 

consistently small as possible throughout a deposited layer. A highly porous surface allows for 

an increased surface area for dye attachment and electrolyte penetration. The layer must also 

have good electrical contact with the underlying substrate to minimize series resistance.  

Efficient transport of photoelectrons through a nano-crystalline semiconductor is heavily 

reliant on the conductive connectivity of individual particles as well as with the conductive path 

through the layer and to the substrate. A dense TiO2 film would enhance both of these 
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characteristics but would reduce the surface area of the layer decreasing the amount of dye that 

could be loaded. A reduction in particle connectivity with a more porous layer would result in 

the layer having reduced charge transport capacity through the film. A poorly conductive 

interface between the semiconductor and the substrate would result in a higher series resistance 

and lower photocurrents.  

These properties are largely dependent on two factors: the preparation process used to 

generate a TiO2 nanoparticle suspension and the deposition technique.  

 X-ray diffraction (XRD) is a standard method for determining crystallite sizes present in 

a nano-structured thin film. An alternative method is the use of Atomic force microscopy (AFM) 

which generates a topographical map of sample surfaces and can be used to measure individual 

particle sizes.  Surface roughness is also determined from AFM surface scans with the particular 

parameter of interest being the RMS variation of the surface height.  

 Commercial TiO2 powders are available in particle sizes ranging from the nano- to 

micro-scale. The powders cannot directly adhere to a substrate without first being combined in a 

mixture with at least one aqueous solvent, often with other additives. The solvents and additives 

need to promote the dispersion of the particles by acting to prevent aggregation, agglomeration, 

and sedimentation.  

 For suspensions produced from powders, milling and/or sonication are usually required to 

break apart any aggregates that form when the powder is mixed with liquids.  

 Figure 2 shows an example of a particle size distribution as a percentage of total volume 

for various milling times of a suspension containing 15 vol% of TiO2 particles suspended in 

water [8]. The nature of the milling equipment and the milling speed largely determine the 
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effectiveness of attrition milling. Actual results can vary significantly with variations in the 

equipment.  

 

Figure 2: Volume percentage of particle size with respect to milling time [8].  

The pore volume of a TiO2 film is determined by the solvents and pore-forming agents in 

the suspension; the agents create physical separation between particles and are later driven out 

through thermal processing. TiO2 films with a large pore volume can further increase the surface 

area of the photo-anode. 

In the present study, use of Poly ethylene glycol (PEG) and ethanol as dispersion 

stabilizing additives was explored. The means by which these two additives promote stability are 

different and the combination of the two can serve to complement each other.  

PEGs increase the pore-volume of TiO2 layers to a degree determined by the molecular 

weight of the PEG. When added to a TiO2 suspension the PEG molecules act as a surfactant, 

coating TiO2 particles and providing physical spacing between them. As PEG molecules 

decompose completely at low temperatures, they have become a popular choice as a surfactant 

and pore-forming agent [9, 15]. See Appendix D for a further discussion of TiO2 suspension 

stability and of the properties of PEG and ethanol.  
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1.2.2 Deposition Methods for TiO2  

Many methods have been used for the deposition of TiO2 suspensions. Appendix C 

provides details on the most commonly used methods: dip-coating, screen-printing, spin coating, 

and doctor-blade. A relatively new approach to TiO2 depositions is the use of inkjet printing. 

Inkjet printing allows for the possibility of precisely tailoring the layer thickness and patterning. 

The literature pertaining to inkjet depositions of TiO2 has focused on depositions of TiO2 

suspensions for the formation of TiO2 layers with a uniform density [8-22]. No consistent TiO2 

suspension formulations have been reported for inkjet printing with the exception of Deionized 

(DI) water as a primary solvent. Beyond that commonality, many different additives, co-solvents, 

and particle loading levels have been used.  

 The primary features required for a commercial inkjet printer suitable for printing TiO2 

suspensions are the presence of a piezoelectric printhead, the availability of an ink storage 

cartridge able to be loaded with a custom solution, and the ability to print directly onto a 

substrate. Appendix C, section C.2 provides more information on the differences in inkjet 

printing systems. Several different manufacturers produce printers which feature a piezoelectric 

printhead, notably Epson, all of whose printers feature with permanent piezoelectric printheads.  

 A number of options are available for loading custom inks and other solutions including 

refillable ink tanks and continuous ink supply (CIS) systems that have a high capacity external 

reservoir that connects to installed ink cartridges via feed lines. Most printers employ a paper 

feed system that is not readily adaptable for printing onto thick, rigid substrates. Exceptions are 

those printers with direct CD printing capability or have optional feed trays for printing on items 

such as plastic ID cards.  
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1.3 Solar Cell Performance Assessments 

 The performance of any solar cell is judged by the cell’s current and voltage relationship 

as represented by the cell’s I-V curve. One way to generate an I-V curve for a solar cell is to 

connect a variable resistive load to the cell. By varying the resistance of the load from 0 to an 

open-circuit level, the voltage across the cell increases to a maximum level, the open-circuit 

voltage (Voc), and in turn the current through the cell, starting at a maximum level, the short-

circuit current (Isc), falls to zero.  

For a given resistance value, the voltage and current measurements supply the 

coordinates for the I-V curve with current on the y-axis and voltage on the x-axis. At some point 

on the curve, the product of the current and voltage reaches a maximum value. This is the 

maximum power (Pmax) point of the cell. Ideally this point would correspond to the product of Isc 

and Voc. The basic features of an I-V curve are shown in Figure 3. 

I

V

ISC

VOC

IMP

VMP

PMax

 
Figure 3: A representative I-V curve for a solar cell. 

 The Fill Factor of a solar cell is a measure often used to relate these values 

according to the relationship in Equation 1-1: 

 
   

      
      

 
(1-1). 
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The Fill Factor of a solar cell is a useful comparison between the maximum power 

obtained from the cell and the power available if there were no internal power losses in the cell. 

Real cells always lose some measure of power to the effects of shunt and series resistance. The 

value of the Fill Factor can thus give an indication of the performance of the cell compared to the 

ideal case. 

The shape of the I-V can also provide an indication of which type of resistance is in 

evidence with the device: with increasing series resistance the value of VMP decreases; with 

increasing shunt resistance the value of IMP decreases. I-V curves are generally summarized by 

the reporting of the Fill Factor, Isc, and Voc. 

1.4 Summary 

 Even though standard dye sensitized solar cells have a reasonably simple structure, their 

ability to convert solar energy into electrical currents is governed by a number of complex 

interface reactions. The reaction with the lowest overall efficiency effectively determines the 

overall device efficiency. To achieve general acceptance as a viable alternative to silicon solar 

cells, DSSCs must achieve higher performance  

The semiconductor layer in a DSSC is typically comprised of a nano-structured metal 

oxide, most often TiO2. Properties of a TiO2 layer, including the particle sizes and porosity, are 

among the most significant determiners of device performance. These properties affect the 

amount of photosensitive dye that can be loaded onto the layer and also the conductivity of the 

layer. Of the many methods to deposit TiO2 films, inkjet printing offers to potential to gain better 

control over the deposition process and of the resulting characteristics of deposited TiO2 films.  
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2 Problem Statement and Hypothesis 

 

 The general goal of this research project was to explore possible means of improving 

DSSC performance. In pursuit of this goal, two principal objectives were formulated: 1) improve 

the TiO2 deposition process through the use of inkjet printing and 2) improve DSSC performance 

by enhancing characteristics of deposited TiO2 films. Inkjet printing of TiO2 offers several 

avenues for potential improvement over alternative methods including more efficient material 

usage, increased control over material placement, and versatility in TiO2 film composition. The 

properties of a DSSC’s TiO2 film in a DSSC are of vital consequence to the overall device 

performance; improving the structural design of the film can directly improve the cell 

performance. 

A primary research focus was on the deposition of a novel TiO2 film structure using 

inkjet printing. The form of the structure was based on the hypothesis that a TiO2 film with a 

graded density profile would improve DSSC cell performance. 

2.1 Approach 

It is well established that a thin, highly dense layer of TiO2 nanoparticles deposited prior 

to adding a thicker and more porous layer can directly enhance DSSC performance [1, 6-7, 10]. 

What has not been explored is the effect of introducing additional layers to more finely grade the 

entire TiO2 film with a density profile that progresses from high to low. A high density on the 

substrate surface improves electron transfer. While a graded density profile in the interior of the 

film would be expected to improve the film conductivity. And finally, a low density on the upper 

surface would allow for a large surface area at the primary electrolyte interface. Inkjet printing as 

a method of depositing TiO2 suspensions is well suited for such a scheme, particularly if the 

system has a multi-ink supply system.  



19 
 

Two ways of creating variations in TiO2 film density are adjusting particle size and 

varying the pore-forming agents present in the TiO2 suspension prepared for deposition.  Thus, to 

achieve the variations in film density for this project, TiO2 suspension formulations were 

required which could produce layers with varied densities.  

2.2 Assessment 

 Improvements in DSSC performance resulting from the graded density TiO2 film would 

be expected in two distinct ways. First, it would allow for a reduction in the series resistance 

between the layer and the TCO substrate.  The series resistance reduction would be measureable 

as a change in the DSSC Fill Factor. Secondly, the density grading would create an increase in 

the current generation versus a film with a moderate, uniform density. This would cause an 

increase in the short-circuit current.  

 For the assessment of the graded density’s effect on device performance, the Fill Factor 

and short-circuit current were the main parameters of interest for this study and were compared 

to devices with a uniform density and with two density regions. The assessment of inkjet printing 

effectiveness as a deposition method was based on a comparison of DSSC performance with 

printed TiO2 films versus spin-coated films.  

2.3 Research Objectives 

 The starting objective for the research was to develop a means of producing TiO2 films 

with varied densities. The approach chosen was to develop multiple TiO2 suspensions with a 

range of particle sizes and pore-forming additives of varying molecular weight. The former 

would directly affect the density and the later would alter density by changing the pore volume.  

 A secondary objective was to use inkjet printing as a means to deposit multiple 

suspensions in sequence to create the graded density in the deposited TiO2 films. This objective 
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was motivated by a lack of reports concerning inkjet printed TiO2 layers with anything other than 

a uniform composition of particle sizes and with a consistent density. Table 1 lists the specific 

tasks undertaken to achieve the research objectives. 

Table 1: Specific tasks and activities required to pursue the research objectives 

Research Tasks 

1 Select and modify an inkjet printer for TiO2 suspension deposition 

2 Develop method to produce particle size variations 

3 Develop preparation methods to produce suspensions for printing and spin coating 

4 Verify that suspension composition affects layer density 

5 Produce inkjet printed and spin-coated samples and determine surface properties  

6 Assemble and test DSSCs with inkjet printed and spin-coated TiO2 photoelectrodes.  
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3 Experimental Setup and Analysis Methodology 

 

An inkjet printer was selected with the required characteristics of substrate compatibility, 

suspension loading, and accessibility of system components for maintenance and cleaning. Once 

obtained, the printer required several modifications in order to print non-standard inks. An 

important next step was to develop procedures to ensure that particle sizes were within printable 

ranges. 

Based on a review of the relevant literature [8-31], several suspension formulations and 

preparation procedures were developed with fluid properties appropriate for the specific 

deposition methods of spin-coating and inkjet printing. The development of suitable suspensions 

for inkjet printing involved assessing the suspensions for long and short term stability against 

particle aggregation. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) 

analysis methods were developed to assess characteristics of the final film layers.  

3.1 Printer Selection 

 There were several options for a suitable inkjet printer. The preference in the printer 

selection was for a commercial inkjet printer to be used due to the significantly lower costs 

versus a high-grade research printer or a custom built machine.  

After a review of the available commercial printers, the Epson Artisan 730 multi-function 

inkjet printer was selected for initial testing. The Artisan 730 features a 6-ink piezoelectric 

printhead with 180 nozzles per color; each nozzle having a diameter of approximately 20 µm. 

Ink tanks are identified by color: black, yellow, light and standard cyan, and light and standard 

magenta. Refillable ink tanks for pigment based inks were obtained to replace the OEM supplied 

pre-filled ink tanks. These ink tanks possessed a reset chip which resets to a full reading when 

removed and reinserted. CD/DVD printing is an included feature of the Artisan 730, allowing for 
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the loading of a CD-sized substrate holder for direct printing. A holding tray for CD printing 

extends out for loading and retracts for printing. Attempts to print onto glass substrates without a 

substrate holder proved impossible as the glass would slide out of position during loading.  

A substrate holder was created from 2mm thick plastic shaped and sized identically to a 

standard CD. One inch square cutouts in the holder accommodated 1x1in substrates held in place 

by tape. The substrate holder could accommodate eight substrates but the maximum size of each 

was limited to 1.5 in square substrates due to the size of the loading tray. With the substrate 

holder securing the glass slides, no jamming occurred during loading or printing.  

Included CD/DVD printing software allowed for precise positioning of printed areas; 

using the software, solid colored squares were aligned to the cutouts of the substrate holder. For 

preliminary characterizations, the printed areas were 1cm by 1cm centered on the positions of the 

substrates. The color selection used for the squares determined which combination of ink tanks 

were used in the printing. Black and yellow proved the easiest to isolate completely but suitable 

colors were established for isolation of the individual blue and magenta tanks. 

3.1.1 Ink Path 

Unlike some other models of printer, the Artisan 730 has stationary ink tanks that do not 

travel with the printhead. Ink is supplied from the tanks to the print head through six feed lines, 

one for each color, that are approximately 20 cm in length. This imposes a minimal requirement 

on the volume of a suspension to be printed of approximately 3ml in total: 1 ml for filling the 

feed line and 2 ml for satisfying the minimal ink level requirement. The ink tanks are positioned 

directly above inlets that supply the feed lines to the printhead module. Reservoirs inside the 

printhead module and behind the nozzles hold a quantity of ink in readiness to refill the printhead 

after a droplet is jetted.  
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3.1.2 Printer Modifications 

 The Artisan 730 includes a flatbed scanner for copying and document scanning, which 

was detached from the main unit to facilitate access to the ink tank area and to the print head. 

This required disabling sensors that prevents operation of the printer with an open lid. Removing 

the scanner and disabling the lid sensor constituted the sole physical modification of the printer. 

During ink path cleaning, the printhead was removed for soaking in a cleaning solution; feed 

lines and ink tank inlet were isolated for a forced fluid purge using deionized water and ethanol.  

3.2 Spin-Coating System 

 The spin-coater used was a SRC laboratory spin coater, capable of spin speeds up to 3000 

RPM. A spin cycle with the SRC coater is fully programmable to include multiple ramping 

sequences to control the thickness and drying time of spun layers. Substrates are held in place 

during spinning by a vacuum system. For sample preparations, TiO2 suspensions were dropped 

onto substrates with a stainless steel spreader and immediately spun. The programmed spin cycle 

began with a 3 second spin period at 100 RPM followed by a 3 second ramp to 3000 RPM. The 

cycle was held at 3000 RPM for a period of 20 seconds. The entire spin cycle provided sufficient 

time for the deposited suspensions to have fully dried.  

3.3 Milling Apparatus 

 To improve the breakup of TiO2 particles and aggregates, a milling apparatus was 

constructed. The apparatus as assembled consists of three primary elements: the milling jar, a 

rotating carriage to support the jar, and a variable speed bench grinder to drive the rotation of the 

jar. An alumina jar with a 100 mL capacity was selected as the grinding jar. Fifteen 10mm 

diameter ceramic balls and forty 5mm balls were supplied with the jar. Once loaded with a 
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suspension, the jar was placed into the carriage and clamped in place with 3 screws. A simple 

coupling provided the connection point with the grinder for rotation. 

 The bench grinder, a 3” multipurpose grinder manufactured by Central Machinery, has a 

listed spin speed up to 10,000RPM when unloaded. A tachometer was used to verify the spin 

speed when driving the rotation of a loaded grinding jar. An adjustable braking method using 

applied friction was used to maintain the rotational speed between 100-250 RPM.  

Figure 4 shows the assembled apparatus as it was used for the preparation of suspension 

samples.  

 
Figure 4: Suspension milling apparatus. The milling jar is shown in place within the 

carriage.  

3.4 Titanium Dioxide Suspension Development 

 A number of suspension formulations were prepared with variations in the concentrations 

of TiO2 particles, ethanol and poly ethylene glycol. Upon preparation completion, suspensions 

were placed into a sample beaker.  After two weeks at room temperature the suspension 

dispersion stability was assessed. The characteristics of interest were the level of the 

sedimentation collected at the bottom the beaker and the height of the main volume of dispersed 

particles. For stability testing of low-viscosity suspensions, the preparation included a milling 

Stabilizing Weight 

Bench Grinder 

Grinding Jar 

Coupling 
Carriage 
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period of either 60 or 120 minutes as a means of mechanically breaking down large particles and 

aggregates.  

Two supplies of TiO2 particles were available for inclusion into suspensions: VP 

Aeroperl and Aeroxide both from Evonik Industries (Degussa). The Aeroperl are specified by the 

manufacturer as having particles with an average size of 20µm and the Aeroxide particles have a 

typical size of 21nm.  

Suspensions were prepared with some combination of deionized water obtained through a 

deionizing system, poly ethylene glycol as received from Sigma Aldrich in 20,000 g/mol 

(BioUltra 20000) and 600 g/mol (BioUltra 600) molecular weights, and Anhydrous alcohol 

reagent (Photrex Reagent from J. T. Baker). The alcohol reagent was a formulation of formula 

3A denatured alcohol (100:5 mixture of 200-proof ethanol to methanol) with 5% isopropyl 

alcohol.  

Adjustments of suspension pH were achieved with 0.01 M Acetic Acid or diluted 29% 

Ammonium Hydroxide (J. T. Baker). Either Aeroperl or Aeroxide TiO2 nanoparticles were used 

in all suspensions.  

3.4.1 PEG Variations  

 The effect of PEG concentration on the suspension dispersion stability of both types of 

TiO2 particles was explored. For comparison, an initial suspension was prepared without a PEG 

component, DI water adjusted to an initial pH of 3.5 with Acetic acid and 2% of total suspension 

weight was the 20µm average sized TiO2 particles. The suspension was thoroughly mixed and 

subjected to milling for a period of 60 minutes at 250 rpm. Once preparation was complete, the 

suspension was sealed in a storage beaker. 
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Within 30 minutes of suspension preparation a line layer of sediment was observed 

forming on the bottom of the storage container. The sediment was highly viscous but could be 

readily dispersed by a minimal amount of stirring. Two weeks following the suspension 

preparation, the sediment layer had thickened sustainably while the upper region, the bulk of the 

suspension volume, became significantly clearer as shown in Figure 5.  

 

Figure 5: Two week old suspension with no PEG component. A relatively thick sediment 

layer formed on the bottom of the storage beaker indicating poor stability. The height of 

the sediment observed in the sample was measured to be 15% of the total height of the 

suspension.  

Using the same initial suspension formulation, PEG600 and PEG20000 was added in 

varied proportion to the amount of TiO2. For each suspension variation the sediment height, 

when measureable, was recorded two weeks after suspension preparation.  

Some sedimentation occurred for all suspensions, possibly due to variations in room 

temperature over the two week storage period or due to a small level of surface level evaporation 

of the solvent. Most of the prepared suspensions exhibited a gradual decline of the particle 

concentration near the surface when placed and sealed into a storage beaker.  

The suspension variations, deposited onto substrates, were assessed for uniformity and 

substrate adhesion. This was accomplished by dropping a small sample of a suspension onto an 

ITO slide and then sintering at 450°C for 30 minutes.  

The results are tabulated in Table 2.  
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Table 2: Suspension dispersion stability based on varied PEG concentration. The stability 

of the suspension was assessed in terms of the sediment height relative to the total 

suspension height.  Also noted was the substrate adhesion quality for each PEG 

concentration.  

Poly Ethylene Glycol Suspension Loading Assessment 

PEG600 

% of TiO2 wt. PEG wt. (grams) Sediment Height Substrate Adhesion 

10 0.06 8% Good 

20 0.11 5% Good 

50 0.27 5% Good 

100 0.55 2% Fair 

150 0.82 <1% Moderate 

PEG20000 

% of TiO2 wt. PEG wt. (grams) Sediment Height Substrate Adhesion 

10 0.06 3% Good 

20 0.11 2% Good 

50 0.25 <1% Fair 

100 0.51 <1% Poor 

 For PEG concentrations greater than 50% by weight of the TiO2 loading, the deposited 

layers showed a propensity to dislodge from the substrate surface. This effect was more 

pronounced with the PEG20000. In terms of overall dispersion stability, the PEG20000 was 

more effective in maintaining a high degree of dispersion.  

At lower concentrations of PEG the coffee ring effect was notable in deposited drops. 

Figure 6 shows examples of the coffee rings observed for different concentrations of PEG20000.  

 

Figure 6: Coffee ring effect observed in deposited drops for different concentrations by 

weight of PEG20000 relative to TiO2: A) 10%, B) 20%, and C) 50% 
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For the lower concentrations of 10 and 20%, the outer edges of the ring were pronounced. 

Once the concentration reached 50%, the drop was more uniform in distribution but often 

exhibited weak adhesion to the substrate near the edges. Based on the observations, a 

concentration between 45 and 50% of PEG relative to the weight of the TiO2 was used for all 

suspensions prepared for deposition by printing and spin coating.  

 A suspension prepared with Aeroxide nanoparticles at 2% vol, DI water adjusted to pH 

3.75, and 50% of PEG600 relative to the weight of the TiO2. Within two hours following 

preparation, a thin sediment layer developed to a thickness less than 1% of the suspension height. 

After two weeks, the layer did not substantially thicken and the main suspension volume showed 

good dispersion, with a slight thinning near the top, as shown in Figure 7. 

 

Figure 7: Two week old nanoparticle TiO2 suspension, pH adjusted DI water, and PEG600 

equal to at 50% the weight of the TiO2. Dispersion in the main volume of the suspension 

was maintained.  

3.4.2 Ethanol Concentration Variations 

 To study the effect of ethanol concentration on the suspension stability, a suspension was 

prepared with a solution of pH adjusted DI water as the main solvent, the 21nm average sized 

TiO2 particles 2% of total suspension weight, and 20% Ethanol added in the form of the Photrex 

reagent. Using the 21nm TiO2 particles, only a thin layer of sedimentation was observed and, as 

shown in Figure 8, the dispersion of the particles was observed to be superior in comparison with 

the suspension with no Ethanol (Figure 5).  
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Figure 8: Two week old suspension with 20% Ethanol by vol., 2% TiO2 by wt., and pH 

adjusted DI water as the primary solvent. Sediment layer on the bottom of the beaker was 

observed to be less than 1% of total volume.  

 Increasing the ethanol concentration beyond 20% did not significantly improve the 

dispersion stability. At a concentration of 80% ethanol by volume, the stability of the suspension 

decreased and a thicker layer of sediment formed on the bottom of the storage beaker as shown 

in Figure 9.  

 
Figure 9: Two week old sample with an 80% ethanol content. The bottom sediment layer is 

thicker than the 20% content, indicating an acceleration of sedimentation. The upper 

region shows a nearly uniform distribution.  

 Adding both Ethanol and PEG resulted in suspensions with the lowest sedimentation 

levels and the highest degree of maintained dispersion following a two week period. Figure 10 

shows a two-week old suspension prepared with DI water pH adjusted to 3.56 with acetic acid, 

10% by vol. Ethanol, 2% by vol. 20µm TiO2 particles, and PEG20000 at 50% of TiO2 weight. 

The PEG was added after a two hour milling period.  
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Figure 10: TiO2 suspension two weeks after preparation that began with 20µm TiO2 

particles and incorporated both ethanol and PEG20000. Preparation included 2 hours of 

milling. 

The presence of ethanol in the suspension solution was observed to influence the surface 

level morphology. Without ethanol as a co-solvent, the minimum particle sizes detectable at the 

surface of a printed layer were approximately 50 nm with a root mean square surface height of 

18.8 nm. Addition of ethanol reduced minimum particle sizes to 30 nm and increased the surface 

roughness to 27.1 nm.  

Figure 11 shows an example of an AFM scan line for a TiO2 film prepared from a 

suspension without ethanol. An example of an AFM scan line for a TiO2 film using a suspension 

that incorporated ethanol as a co-solvent is shown in Figure 12.  

 
Figure 11: AFM scan line of a TiO2 film formed from a suspension without an ethanol co-

solvent.  
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Figure 12: Including ethanol in the suspension formula helped to reduce the particle size 

and also increased the porosity of the surface layer. 

 The effect of the ethanol was seen to promote separation amongst adjacent particles and 

to also increase the overall surface roughness. In Figure 11 above, the particles are generally 

clumped together to a higher degree than the surface shown in Figure 12 and as a result, the 

effective particle size in the suspension prepared with ethanol is in the range of 25-50nm 

whereas the suspension without ethanol is greater than 50nm. 

3.5 Suspension Filtering 

Mill times of 60 minutes were used with nanoparticle suspensions prior to the addition of 

PEG. When forming suspensions using TiO2 nanoparticles, aggregates did not develop as 

extensively or as quickly as did with the micron particle suspensions. After adding the PEG and 

mixing thoroughly, another 30 minutes of milling was used to ensure that any particle 

aggregations resulting from PEG addition would be broken up. SEM and AFM surface scans 

were able to establish that the layers were largely free of surface aggregates.  

 Two filtering techniques were used to eliminate large particles and aggregates from 

suspensions. The first involved allowing the suspension to settle for 24-48 hours such that 

sediment would form and larger particles would fall further down into the volume. An upper 

portion of the settled suspension would then be removed and used to deposit a new layer. This 

type of passive filtering was very effective in reducing the number of micron-sized aggregates 
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visible on the surface of deposited layers but failed to completely eliminate them. This suggests 

that while the larger particles and aggregates do tend to drift down in suspension, they are still 

dispersed to a degree throughout the volume of the suspension.  

 Filter papers and syringe filters were explored as a means of removing large aggregates 

from the suspensions. The paper filters were used to retain large particles and aggregates from 

the entire prepared volume of suspension. Two grades of Whatman filter papers were used for 

this purpose: grade 93 and grade 5. Grade 93 retains particles 10µm in size and larger; grade 5 

retains particles 2.5µm in size and larger. The paper filters were used in sequence to help speed 

up the filtration time.  

Syringe filters allowed for a much finer sifting of the suspension prior to insertion into 

ink tanks by providing particle filtration to sizes below 0.45 and 0.2µm. The syringe filtering 

resulted in suspensions that were free of large particles and aggregates.  

3.6 SEM Particle Size Methodology 

For each TiO2 film sample deposited onto ITO-coated glass, a minimum of three SEM 

images were obtained at varied locations of the film. The images were analyzed to detect the 

individual particles and determine their sizes based on the image scale. The analysis was 

performed using a custom image processing routine developed for the ImageJ software 

program
1
.  

The high magnification of the SEM images collected and the fact that TiO2 is a 

semiconductor accounted for a relatively low contrast between particle edges with adjacent 

particles and with the underlying material. The limited contrast inherently limited the overall 

                                                           
1
 ImageJ is a Java-based image processing program originally developed for the National Institutes of Health. The 

program allows for the development of custom image processing macros and plugins. It is freely available for 

download at http://rsbweb.nih.gov/ij/. 
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precision obtainable from the SEM images and allowed for relatively simple image processing 

routine. The objective of the analysis was essentially confined to establishing trends in the 

particle sizes with respect to milling time. 

Analysis of each image began with preprocessing in order to enable more effective 

aggregate and agglomerate detection. The preprocessing included several steps beginning with 

the establishment of the pixel scale with reference to the superimposed scale bar which was 

imprinted onto the image automatically by the SEM software. The images were then converted 

from gray scale to binary through a thresholding process, yielding a black and white image. 

Following the thresholding, the particles appear as white clusters.  

Inverting the image converts all of the particles to black on a white background. The next 

step was to eliminate any particles below a minimum size to help prevent noise in the image 

from registering as an actual particle. Small particle elimination was done by removing any 

distinct areas in the image of black shapes with a total area of 4 pixels or less. The particle 

detection algorithm was then applied with the results showing only the detected perimeters of 

each particle mass.  

The perimeter result was used to identify if individual particles—which appear distinct in 

the original SEM image—were being incorrectly grouped together and counted as a single larger 

particle mass. Often the grouping occurred when there was a high contrast difference between 

the interior and the edge of a particle.  

When necessary, areas in the SEM images containing such incorrectly lumped particle 

masses were manually drawn out of the image. For a typical image the manual removal of 

problematic areas was necessary to avoid skewing the size distribution towards unrealistically 

high values.   
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For the final particle detection, the minimum area threshold was set of an area of 

0.02µm
2
, corresponding to a circular particle with a diameter of 160nm. A circularity parameter 

in ImageJ’s particle detection plugin was utilized that compared the area to the perimeter length 

of each detected particle according to the relationship of equation 3-1: 

 
              

    

          
 

(3-1) 

This use of this parameter helped to distinguish individual particles, roughly circular in shape, 

from aggregates which typically were polygonal in structure. (The size distribution of individual 

particles was the target of the analysis and not the size of aggregates.) 

 A value of 0 for circularity indicates an infinitely elongated polygon and a value of 1 is a 

perfect circle. The allowable circularity for a detected particle was set to the range of 0.02 to 1.00 

for this analysis as it proved sufficient to eliminate most aggregates from the particle count. The 

particles detected by the imaging method were thus distinguished between the aggregates of 

smaller particles and the larger particles that had been reduced in size from the original micron-

sized powder.  

A final image was produced showing the areas identified as particles. The pixels enclosed 

by each area were summed and converted into dimension units based on the scaling factor 

established at the outset.  

Particle areas were tabulated by ImageJ in terms of square microns and the average area, 

the standard deviation, minimum and maximum were calculated or identified. From the tabulated 

results, a particle size distribution—based on a calculated diameter under the assumption of full 

circularity and normalized with the total number of detected particles—was plotted using 

Microsoft Excel. This was used to track the effect of milling time on the observed particle size 

distribution.  
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The analysis did allow for a means of determining if the milling apparatus would be able 

to produce suspensions with varied particle sizes and if the maximum detected sizes could be 

shifted to levels within the printable range of the inkjet printhead. The results of the analysis are 

given in the next section.  

 Figure 13 shows the images produced as this process was executed for a SEM image.  

The sample had been deposited from a suspension milled for 20 minutes following initial 

mixture. Image A is the original scanned image, B the binary version, C the inverted image of 

the binary, D show the effects of outlier elimination, E is the detected particle outline, and F is 

the final image showing the areas detected as particles. For this image, the average particle size 

was 2.37µm
2
 with a maximum detected particle diameter of 11.8µm. 
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A B 

C D 

E F 

Figure 13: Image analysis process for particle size determination. After setting the image scale, the 

original image (A) is converted from grayscale to binary (B), the binary image is then inverted (C), and 

smallest sized outliers are removed (D). The outline view (E) of the particle detection analysis is used to 

ensure multiple particles are not incorrectly combined. If necessary, some areas of the image are 

manually cleared to ensure a more accurate analysis. The final image shows only the detected and 

counted particles.  
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3.7 AFM Surface Scanning 

 The difference in the surface morphology of the various TiO2 preparation methods was 

quantified through the determination of the surface roughness and the measurement of the pore 

volume enclosed between the upper portion of a scanned surface and the lowest surface points. 

These surface parameters were determined through the analysis of AFM surface scans.  

3.7.1 AFM System 

The AFM system used was the Agilent Technologies 5400AFM with the PicoView and 

PicoImage Basic software packages. PicoView is the system control program were the scanning 

mode, probe position, scan speed, resolution, and other parameters are set. PicoImage provides a 

number of tools to enhance collected images.  

All AFM scans were obtained using the AC scanning mode. In this mode the AFM 

controller uses a drive signal in the form of a sinusoidal voltage to oscillate a silicon cantilever. 

The frequency of the signal is first tuned to be as near to the resonance frequency of the 

cantilever as possible, typically around 295 kHz. When brought near the sample surface, the 

oscillating drive signal causes the probe to lightly tap the surface. The force of the tap can be 

adjusted by varying the amplitude of the drive signal. Due to the nature of the probe movement 

when driven by an AC signal, the AC scanning mode is often referred to as Tapping Mode.  

3.7.2 AFM Scan Analysis Methodology 

The intent for the AFM analysis was to gauge the surface characteristics of continuous 

sections of the TiO2 and to exclude features associated with non-uniform surface coating or 

printing and features that developed during sintering such as cracks or large pits that formed 

from the outgassing of solvents. These types of features were often not directly visible without 

magnification.  
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One of the image operators used for TiO2 layer scans was a line by line leveling operator 

which used a least squares method to remove the general slope of a surface that is not perfectly 

horizontal during scanning. After the leveling, a Gaussian filter was applied to smooth the 

surface based on a surface waviness analysis to identify any oscillations in the line scans. A 

threshold of 0.8µm was used as the limit for detected wavelengths.  

3.7.2.1 Pore Volume 

 Each TiO2 sample was scanned over an area of 5µm
2
 or 10µm

2
. From the scanned image 

an area was selected that was as uniform as possible, free of any outlying peaks or pores. In some 

instances, the dominant portion of the scanned surface area would be a large pore, such as shown 

in Figure 14, a TiO2 layer deposited from a suspension without PEG. In this case, inclusion of 

the center region of the scan would significantly affect the measurement of the volume above the 

surface.   

 

Figure 14: Surface of a TiO2 layer with a large pore in the central region of the scan.  

 The presence of a large pore or peak in a scanned area inflates the pore volume enclosed 

between the top and bottom levels of the surface topography. Figure 15 shows one of the scan 

lines that cuts through the pore in the center of the area. The lowest point of the pore is over 100 

nanometers below the surface level, shown as a solid line.  
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Figure 15: Profile line cutting through pore in the center of the scanned area the previous 

figure. 

 Closer to the perimeter of the area the surface appears to have a higher degree of 

variability in the topography as shown in Figure 16. 

 

Figure 16: Profile line nearer to the perimeter of the same TiO2 surface area as Figures 16 

and 17. A higher degree of surface variation existed in this region of the scan.  

 For the purposes of TiO2 surface characterizations, the areas with large pores or 

prominent extensions above the surface plane were excluded from the area selected for analysis.  

3.7.2.2 Surface Roughness 

 As surface layers were built up with subsequent depositions via printing or spin-coating, 

the surface profile range would gradually increase. For comparisons of TiO2 layers of unequal 

thicknesses and formed by different deposition methods, the pore volume between the maximum 

and minimum levels of a scanned surface area proved to be an inconsistent parameter for TiO2 

layers with the identical top level suspension types. In particular, the pore volume measurement 

did not reliably correspond to the variations in suspension surfactant.  
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 To obtain a consistent measurement for surface comparisons, surface roughness 

measurements were used. The specific parameter used for the surface measurement was the Root 

mean square (RMS) surface height.  

Scans were first leveled using the least squares method. Then a Gaussian filtered profile 

was obtained which superimposed a new profile over the original by following the low frequency 

waves along the surface, effectively flattening the profile of the surface. The PicoImage software 

refers to this as a waviness operator. An example of the type of profile line this type of analysis 

produces is shown in Figure 17. Based on the waviness profile, the surface roughness was 

determined. The advantage of using the Gaussian filtering is that is minimizes the contribution of 

large scale surface features not related to the actual pore volume of the nano-structured surface.  

 

Figure 17: Waviness profile, curved line shown in red, produced by application of a 

Gaussian Filter on a leveled surface scan profile, shown in blue.  

 Roughness measurements obtained using the waviness profiles as the surface reference 

lines were consistent in relation to the surfactant content of the top level of the TiO2 layer, 

regardless of the size of the scanned area and thickness of the layer. 
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4 Layer Assessment and Device Fabrication 

4.1 TiO2 Particle Size Assessment 

  As one of the proposed approaches to achieving varied density in deposited TiO2 layers 

was to utilize different particle sizes, a particle size assessment was required to determine the 

effectiveness in the grinding of micron size TiO2 particles. Size assessment relied on SEM 

imaging of deposited layers and image analysis to assess the particle size distribution. The SEM 

used was a Hitachi S-3400N. 

 Suspensions were prepared using varied mill times and with varied chemical 

formulations. Following preparations, deposited samples would be imaged with the SEM. Gross 

examinations of the SEM images indicated from the outset that the milling method, regardless of 

the milling duration, was ineffective in completely eliminating particle sizes outside the printable 

range.  

4.1.1 Deposition Mode Requirements 

 Depositions by spin-coating did not have restrictions on the maximum particle size in the 

suspension. A uniform particle size distribution would, however, help prevent deformities in the 

spun layer. An appropriate suspension viscosity was a critical requirement for spin-coating; for 

suspensions with high viscosities the coverage was usually incomplete, low viscosities produced 

excessively thin layers. Spin speeds and spin times required careful adjustment to achieve 

uniform layers.  

 Printhead nozzle size in the Epson Artisan 730 is approximately 20 microns [23]. To 

avoid blockages from developing, the maximum particle size can be no larger than 1/50
th

 of the 

nozzle diameter [18]. The size limitation is discussed in further detail in Appendix C, section 

C.2.2. This effectively places a 400nm limit on the particle sizes for a printable suspension.  
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The average particle sizes in stock Epson ink ranges from a low of 58 nanometers for 

yellow pigments to 157.5 nm for magenta pigments [24]. As Epson print drivers are designed 

with specific pigment sizes in mind, an optimized suspension formulation would need to match 

the average particle size of the ink tank being used. This was not attempted for this project. In 

order to achieve jetting reliability, an upper limit of 250 nanometers for average particle size was 

set and achieved through the use of filtering. 

4.1.2 Micron Particle Size Reduction 

 The suspensions had to achieve TiO2 particle dispersion stability and ensure that 

dispersed particles or aggregates were of an acceptable size. Two methods were explored for the 

reduction of the micron-sized TiO2 particles to sizes suitable for inkjet printing: manual grinding 

and ball milling. Each method was assessed for the production of suitable particle sizes.  

Manually grinding Aeroperl particles using a mortar and pedestal was used in initial 

attempts to reduce the micron-sized TiO2 particles to the range of 50-200nm. Particles and 

particle aggregates exceeding the maximum printable sizes were observed in the SEM images of 

samples prepared using manual grinding. Figure 18 shows an SEM image of a TiO2 layer 

deposited from a manually ground suspension with a lower viscosity.  

 
Figure 18: SEM image of a sintered TiO2 suspension prepared by manual grinding.  
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The largest measured particle diameter in the sample shown was 27.7 microns. Based on 

the particle sizes observed with SEM imaging, it was concluded that manual grinding of 

moderate viscosity suspensions failed to significantly reduce a large portion of the micron sized 

TiO2 particles to nano-particles.  

Manually ground suspensions also exhibited a high rate of sedimentation, often 

developing a translucent or clear upper volume after an extended storage period. Figure 19 is an 

image of a four week old suspension prepared by manually grinding micron sized particles in pH 

adjusted DI water. Shortly after preparation was completed, this suspension exhibited a high rate 

of sedimentation.  

 

Figure 19: Four week old suspension prepared by manually grinding TiO2 micron sized 

particles. The upper volume of the suspension was observed to be nearly transparent.  

Two assessment trials to establish a relationship between the milling time of micron-sized 

particles and the resulting particle sizes. The first trial used a suspension containing PEG600 and 

the second a suspension containing PEG20000. Both suspension formulations fixed the 

concentration of ethanol to 10%. A consistent 2:1 ratio of TiO2 and PEG was also used for both 

suspensions, with TiO2 particles at 2% of the total weight. The primary solvent of the 

suspensions was 0.01M Acetic acid.  
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Table 3 shows the results for suspensions with PEG600. The average particle size was 

determined from the entire set of detected particles for a given mill time. The equivalent average 

diameter is calculated on the assumption of a circular particle. Maximum particle diameter 

results were based on the largest particle size for a given mill time. The largest observed distinct 

particle diameter was also recorded for each mill time. 

Table 3: Results of the SEM image analysis for detected particle sizes on the surfaces of 

layers deposited from TiO2 suspensions containing PEG600.  

Particle Size with PEG600 Surfactant 

Mill Time (min) Average Particle 

Size (µm
2
) 

Standard 

Deviation 

Equivalent Average 

Diameter (µm) 

Maximum 

Particle Diameter 

(µm) 

20 2.32 7.37 1.72 10.7 

40 3.23 8.80 2.03 10.6 

60 1.51 4.03 1.39 9.3 

80 2.15 3.77 1.65 10.9 

120 1.07 3.42 1.17 7.76 

 

 A general narrowing of the particle size distribution appears to have occurred based on 

the standard deviation decreasing with increased mill time. A two hour mill time was not 

sufficient to eliminate large particles completely, although their frequency decreased. Mill times 

longer than 120 minutes were not attempted given the limitations of the milling apparatus which 

tended to become unstable during continuous operations exceeding two hours.  

 These results indicate that the particle size reduction the milling system can achieve, with 

the milling duration and spin speeds used, is inadequate to produce printable particle sizes. 

Further, the majority of the particle reduction achieved occurs relatively quickly. The average 

particle size of an un-milled suspension is approximately 25 microns in diameter, after only 20 

minutes this was reduced to 2 microns. Table 4 shows the results for suspensions containing 

PEG20000. 
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Table 4: The analysis results for the SEM images of surfaces deposited from TIO3 

containing PEG20000.  

Particle Size with PEG20000 Surfactant 

Mill Time (min) Average Particle 

Size (µm
2
) 

Standard 

Deviation 

Equivalent Average 

Diameter (µm) 

Maximum 

Particle Diameter 

(µm) 

30 1.819 4.90 1.52 7.9 

60 1.178 3.71 1.22 7.6 

90 0.84 3.28 1.03 7.8 

120 1.53 5.14 1.40 8.7 

 An increase in the standard deviation, average particle size, and largest particle diameter 

after 120 minutes of milling suggests that the suspensions had become unstable and had begun to 

allow a faster rate of aggregation.   

 The particle size distributions with PEG20000 samples also show a failure of the milling 

to produce average particle sizes below 1 micron further suggesting a limitation in the process. 

Several aspects of the process could be responsible for the milling being unable to further reduce 

the particle sizes. Characteristics of the grinding jar or the ceramic grinding balls, such as the 

cylindrical shape of the jar or the small weight of the balls, may be unsuitable for achieving 

further size reduction. Another possibility is that the rotation speed needs to be increased to 

provide more energy to the grinding process.  

4.1.3 TiO2 Nanoparticle Size Assessment 

AFM imaging allowed for individual nanoparticles to be measured and an average 

particle size of 26nm was established.  Figure 20 is an example of an AFM surface scan of an 

inkjet printed sample. The individual particles were distinct and could be directly measured.  
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Figure 20: AFM surface scan of inkjet printed TiO2 film. The average particle size in the 

sample was determined to be 26.2 nm.  

 Actual particle sizes ranged from 18 to 50 nanometers. SEM images showed minimal 

evidence of aggregation, often fewer than 3 or none at all in a 100 micron-sized area. The size 

and number of observed nano-particle aggregates decreased with increased mill time. To ensure 

that the majority of aggregates were eliminated from nanoparticle suspensions, filtering methods 

were used. 

4.2 Surfactant Content and Surface Morphology 

 The secondary means of producing density variations in the deposited TiO2 films was to 

vary the surfactant content. As a means to assess the variations in layer morphology based on the 

surfactant content of deposited samples, SEM and an AFM scans of deposited samples were 

used.  

SEM images were useful in visually examining the surface for micron-scale surface 

features including the presence of surface cracking, holes, particle clusters, and pore depth. AFM 

surface scans allowed for an examination of the surface at the submicron scale which allowed for 
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a surface roughness determination of deposited TiO2 layers. Topologies from AFM scans were 

also analyzed to compare the relative difference in surface areas through measurement of the 

volume enclosed in the space bounded by the surface profile and a plane set by the maximum 

height of a scanned area.  

The surface level assessment of deposited layers intended to provide verification that 

distinct surface conditions existed for samples with differing top layer suspension depositions. 

Additionally, a degree of consistency between the surface level characteristics of samples with 

identical top layer suspension depositions was desired.  

4.2.1 SEM Imaging  

 A Hitachi S-3400N SEM was used to obtain surface images of prepared inkjet printed 

and spin-coated TiO2 layers. The samples were deposited onto the conductive side of Indium tin 

oxide (ITO) coated glass slides. The slides were adhered to an aluminum stage mount with 

conductive carbon tape. Electron beam energies were set to 15kV; the same magnification scale 

and image contrast level was generally conformed to for each images.  

 Figure 21 shows SEM images of TiO2 layers deposited by inkjet printing. The variation 

in the suspension compositions used for the deposition of each film was the surfactant/pore-

forming agent contribution. In image A of figure 21, the suspension did not include a surfactant, 

image B included PEG600, and image C included PEG20000. Each of the suspension began with 

the same initial formulation of 2% by wt. of TiO2 powder, 28mL of 0.01M acetic acid, and 2mL 

of denatured alcohol (95% ethanol). The initial mixture was milled for 2 hours and then 

separated into 3 equal volumes. To one, PEG600 was added in an amount equal to 50% of the 

TiO2 weight and to another, PEG20000 was added in the same 1:2 ratio with the TiO2 powder.    
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 From the SEM images, the porosity of the surface level of the TiO2 layer is seen to 

increase with respect to the layer with no PEG added as a surfactant. In image B, the depth and 

size of the pores have increased, in image C, the number of and sizes of the pores has noticeably 

increased over the over two samples. Image A and B are of uniform TiO2 layers formed by 

successive, overlapping inkjet printing passes.  

Layers consisting of uniform printings of the suspension with PEG20000 as a surfactant 

were found to suffer from poor substrate adhesion when the deposited layer surpassed 2 microns 

in total thickness. The layer shown in image C used an initial base deposition of the suspension 

with no PEG and then covered that with a printing of the suspension containing PEG20000.  

 After each printing pass, the deposited suspension was allowed to dehydrate—indicating 

that the aqueous solvent had evaporated—before continuing with another printing pass; normally 

the dying time was within a few seconds of the jetting. The slide was then sintered on a hot plate 

at 90°C for 10 minutes and then 450°C for 30 minutes.  

 For the uniform spin-coating of a layer onto a slide, the viscosity of the suspensions was 

required to be significantly higher than those prepared for inkjet printing. To achieve a higher 

10µm 10µm 10µm A B C 

Figure 21: SEM images of inkjet printed surfaces, each with approximate thickness of 5 

microns. Image A is of a layer deposited from a suspension formulation of 2% by weight  

of TIO2 powder and with no PEG; image B of a suspension with an addition of 1% by wt. 

of PEG600; image C includes 1% by wt. of PEG20000 in the top portion of the layer. 
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10µm 10µm A B C 10µm 

Figure 22: SEM images of TiO2 layers deposited by spin-coating, approximately 5 microns 

thick. Image A does not include a surfactant; image B includes PEG600 in 1:2 ratio with 

TiO2; image C includes PEG 20000 in the same ratio. 

 

viscosity, the TiO2 and PEG concentrations were increased. The increased levels of PEG were 

observed to have the more significant impact on the suspension viscosities.  

 Samples of spin-coated TiO2 layers were prepared using a similar approach to that used 

for inkjet printing. Thicker layers were built up by successive coating of an ITO coated glass 

slide. The area of the photo-anode was defined using tape to limit the coating area to a 1cm
2
 

square. After the target thickness was reached, the tape was removed and the slide was sintered 

using the same temperature and time parameters used for the inkjet printed slides. As before, 

each deposited layer was allowed to dehydrate prior to applying the next layer.  

Figure 22 shows the surfaces of the three spin-coated TiO2 samples. Image A in the 

figure is of a layer with no PEG, image B with PEG600, and image C with PEG20000.  

 One visual difference between the layers formed by spin-coating and those formed by 

printing was an apparent increase in density at the surface level. Generally, the spin-coated layers 

possessed an increased amount of material at the surface with a smoother overall appearance 

than the printed counterparts.  
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4.2.3 Inkjet Printed Surfaces 

 The target thickness for the inkjet printed TiO2 layers was 5 microns, a thickness which 

required between 5 and 10 printing passes to achieve with the level of TiO2 concentrations used 

in the printing suspensions. Reference samples were produced for a uniform composition of the 

surfactant free suspension and the suspension containing PEG600.  

The printing of PEG20000 suspensions was not able to produce a 4-5 micron thick layer 

without losing adhesion with the substrate. Depositing an initial layer of a surfactant free 

suspension was normally sufficient to prevent the upper layers from dislodging. Cracking of the 

surface layer was still an issue with PEG20000 TiO2 layers but the cracks that did develop were 

not visible at the macroscopic scale.  

 Figure 23 shows a surface scan of a uniform TiO2 layer with no surfactant. The RMS 

height for this scan area was 28.0nm. The maximum height of the surface was 193nm.  

 

Figure 23: AFM surface scan of a TiO2 layer with no surfactant content. The RMS height 

was 28.0nm and the vertical range of the surface profile extended to 193 nm.  

 For the determination of the pore volume, the region selected used as an upper boundary 

the plane above which was approximately 5% of the total surface material surface area. The 

lower boundary was set to the plane which lay above 1% of the material surface area. Figure 24 

shows the result of this selection process which returned a value of 0.0445µm∙µm
2
/µm

2
 for the 

pore volume per square micron. The choice of limiting boundary conditions was somewhat 
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arbitrary; both limits intended to eliminate any outlying peaks and depths. Increasing the lower 

limit to the minimum 5% of the surface area had a negligible effect on the value determined for 

the pore volume as most of the volume contribution came from the upper regions.   

 

Figure 24: Pore volume determination of the scanned area of Figure 20. Shown are the 

selected areas of the surface associated with the volume and the parameters obtained from 

the analysis. The volume of the void parameter, measured to be 0.0445 µm∙µm
2
/µm

2
, 

corresponds to the enclosed volume between the upper and lower limits.  

 This analysis was repeated for each of the TiO2 samples scanned. Figures 25 and 26 are 

surface scans of TiO2 layers with surfactant contents of 1% by weight of PEG600 and PEG20000 

respectively.  

 

Figure 25: AFM surface scan of a TiO2 layer with a 1% by weight PEG600 surfactant 

content. 
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 The surface roughness of the surface, the RMS height, shown in Figure 22 was 40.0nm 

and the maximum height was 257nm. The pore volume was 0.0627µm∙µm
2
/µm

2
. 

 

Figure 26: AFM surface scan of a TiO2 layer with a 1% by weight PEG20000 surfactant 

content. 

 For this sample, the RMS height was 52.7nm, the maximum surface height was 391nm, 

and the pore volume was 0.0777µm∙µm
2
/µm

2
. 

 The same analysis was repeated for layers of approximately 8 and 1.5 micron thickness. 

Table 5 summarizes the results of the AFM surface analysis.  

Table 5: AFM TiO2 surface analysis results for different layer thickness and surfactant 

content for inkjet prepared samples. The samples with no surfactant and with PEG600 

were both prepared as successive uniform depositions. The PEG20000 samples required a 

base layer of the no-surfactant suspension in order to maintain adhesion to the substrate. 

Surfactant Layer 

Thickness (µm) 

Height 

Range (nm) 

RMS Height 

(nm) 

Pore Volume 

(µm∙µm
2
/µm

2
) 

None 

8.1 271 31.0 0.073 

4.7 193 28.2 0.0445 

1.4 143 23.6 0.0407 

PEG600 

8.6 377 37.0 0.097 

4.5 257 40.1 0.0627 

1.5 280 38.4 0.0829 

PEG20000 

8.7 421 59.5 0.144 

4.3 391 53.7 0.0777 

1.6 327 49.5 0.144 

 The general trends observed in these measurements were for the height range to increase 

with layer thickness and the surface roughness to correlate with the surfactant content. The value 
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of the pore volume did not exhibit a strong pattern. In some cases the thinnest layer of a given 

surfactant group showed the largest volume.  

Samples prepared with top layer depositions different from underlying layers showed surface 

roughness values—as measured by the RMS height—consistent with those obtained with 

uniform deposition profiles. Based on all obtained measurements, the range of RMS height 

values for each surfactant condition is shown in Table 6. 

Table 6: Printed average RMS height and standard deviations for each top layer surfactant 

condition based on all values measured. Data set includes samples with a uniform 

deposition profile as well as varied deposition sequences.  

Surfactant 

Average RMS 

Height 

(nm) 

Standard 

Deviation 

None 27.4 2.7 

PEG600 40.4 2.3 

PEG20000 57.7 6.9 

 The increase in the spread of the height for the PEG20000 surfaces stemmed from the 

measured RMS height values increasing in direct relation to the increasing thickness of the 

overall TiO2 film. Part of the increase in surface roughness was attributed to declining droplet 

volume of the suspension jetted from the printhead. The occurrence of reduced droplet volume 

was attributed to a gradual accumulation of material at the nozzles causing reduced output, a 

point returned to in the discussion of printer performance in Section 7.  

 The basic conclusions of the surface morphology analysis are that increasing molecular 

weight in the surfactant content does produce a measurable increase in surface roughness, in turn 

associated with an increase in pore volume and decreasing layer density. Also, the higher the 

surfactant molecular weight the greater the difference in the overall spread of the surface height.   
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4.2.4 Spin-coated Surfaces 

 The overall surface condition of TiO2 layers deposited by spin-coating was observed to 

relate directly to suspension uniformity: if the suspension had a suitable viscosity and contained 

uniformly sized and dispersed particles, the resulting TiO2 films generally had a very even 

surface with no significant variations in topography. Table 7 shows the results of AFM surface 

analysis of spin-coated samples prepared with differing surfactant content. Each sample was the 

result of two consecutive spin coatings of identical suspensions.  

Table 7: AFM TiO2 surface analysis results for different layer thickness and surfactant 

content for samples prepared from two spin coatings.  

Surfactant 
Layer 

Thickness (µm) 

Height Range 

(nm) 

RMS Height 

(nm) 

PoreVolume 

(µm∙µm
2
/µm

2
) 

None 1.8 100 16.0 26.9 

PEG600 2.1 164 24.8 43.9 

PEG20000 2.3 270 42.2 68.1 

 As additional layers were spun-on to further develop sample thickness, AFM scans 

showed a tendency towards increasing surface height variations that were not evenly distributed. 

Figures 27 and 28, layers of 2.3 and 4.1 microns thick respectively, show an example of this 

occurrence.  

 
Figure 27: Surface scan of a spin-coated layer of with a top layer suspension with 

PEG20000 and with 2.3 µm average thickness. The height range in this area was 270nm. 
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Figure 28: Surface scan of a 4.1 µm thick layer, the surface height range over the area 

shown is 585nm. 

 Table 8 shows the average surface level RMS heights in relation to the suspension 

surfactant of the top layer based on all measurements of spin-coated samples.  

Table 8: Spin-coated average RMS height and standard deviations for each top layer 

surfactant condition based on all values measured. Data set includes samples with a 

uniform deposition profile as well as varied deposition sequences.  

Surfactant 

Average RMS 

Height 

(nm) 

Standard 

Deviation 

None 16.3 2.1 

PEG600 26.2 4.3 

PEG20000 42.7 3.3 

 Similar to the inkjet printed samples, the spin-coated films showed an increase in the 

RMS height of the surface profiles as surfactant was introduced to the suspension formulation. 

As the molecular weight of the surfactant increased, the roughness also increased. The spread in 

the measured roughness was less in the case of the high molecular weight suspensions compared 

to printed films. 

4.3 Surface Morphology Conclusion 

 On the basis of SEM imaging and AFM surface scans, the top level surface morphologies 

of both spin-coated and printed TiO2 layers were seen to vary in accordance with the TiO2 
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suspension formulation used in the last deposition in the buildup of the sample. Specifically, the 

surface roughness of leveled and filtered surface profiles correlated to the deposition method and 

suspension surfactant content: as surfactant was added in increasing molecular weights, the 

surface roughness increased compared to the surfactant free surfaces. Thus, altering the 

suspension surfactant content was demonstrated as a means to vary the surface roughness of 

TiO2 films. This variation in surface roughness was correlated with changes in the surface pore 

volume and the layer density. 

The pore volume was also seen to generally increase with the thickness of the layer. 

Comparisons between the surfaces of printed and spin-coated samples showed that spin-coated 

samples had a smother surface compared to printed layers.  

 For both inkjet printed and spin-coated samples, the surfactant content in the suspension 

formulation was validated by the morphology assessments to be capable of successfully 

producing TiO2 layers with varied density. On this basis, a number of TiO2 samples were 

produced with uniform and varied density profiles based on the surfactant content of the 

deposited suspensions.  

4.4 Suspension Preparation 

 Suspensions formulated for deposition by inkjet printing or spin-coating contained 

varying combinations of deionized water obtained through a deionizing system, poly ethylene 

glycol as received from Sigma Aldrich in 20,000 g/mol (BioUltra 20000) and 600 g/mol 

(BioUltra 600) molecular weights, and Anhydrous alcohol reagent (Photrex Reagent from J. T. 

Baker). The alcohol reagent was a formulation of formula 3A denatured alcohol (100:5 mixture 

of 200-proof ethanol to methanol) with 5% isopropyl alcohol. Adjustments of suspension pH 

were performed with 0.01 M Acetic Acid or diluted 29% Ammonium Hydroxide (J. T. Baker). 
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Either Aeroperl or Aeroxide TiO2 nanoparticles from Evonik Industries (Degussa) were used in 

all suspensions.  

4.4.1 Inkjet Printing 

 The suspension composition for inkjet printing used deionized water as the main solvent, 

pH adjusted with 0.01M Acetic Acid to a pH of 3.75, essentially a 0.006M Acetic acid solution. 

Anhydrous Alcohol reagent, between 1-5% by vol. was added as a stabilizing co-solvent. The 

TiO2 particle loading was kept to 2% of the total volume as measured dry. PEG was added in a 

45% proportion to the TiO2 powder by weight.  

 The suspension processing procedure began with measuring 0.18 grams of TiO2 powder 

into a mortar and adding 1mL of the Acetic acid solution. The mixture was hand ground for five 

minutes before transferring into a milling jar. A premixed solution of the diluted Acetic acid and 

alcohol reagent (4:1) was added in 5mL increments to the initial mixture, up to a total suspension 

volume of 40mL. After each addition, the suspension was milled at 250 rpm for five minutes. 

After adding the full quantity of the aqueous solution, the suspension was milled for an 

additional 60 minutes.  

 Two filtering steps were used to eliminate large aggregates from the suspension. Both 

involved passing the suspension through Whatman filter papers. The first filter paper used was a 

Whatman Grade 93 filter which retained particles over 10µm, the second filter was a Whatman 

Grade 5 filter which retained particles over 2.5µm. When the filtering papers were used, the level 

of initial and long-term sedimentation was substantially reduced.  

After filtering, a measured quantity of PEG was added to the suspension and mixed in 

with a stirring rod if the suspension called for addition of a PEG. The suspension was then 
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returned to the milling jar and milled for an additional 30 minutes. The inkjet suspension 

preparation procedures are summarized in Table 9.  

Table 9: The materials and processing procedures used for the preparation of a TiO2 

suspension for inkjet printing.  

Step Material Added Processing Procedure 

1 0.18g TiO2 Powder Measured into a mortar  

2 
1 ml 0.0006M Acetic 

Acid 

Grind for 5 minutes then transfer into milling jar 

3 
5 ml 0.0006M Acetic 

acid/Ethanol solution 

Add in 5 ml increments up to a total suspension volume of 

40ml, milling for 5 minutes after each addition 

4 -- 
Two stage filtering process to remove particles 2.5 microns 

and above in size 

5 
1ml of 0.08g 

PEG600/PEG20000  

After addition of the PEG, the suspension was thoroughly 

stirred until fully dissolved 

6 -- Final milling period of 30 minutes  

4.4.2 Spin-On Deposition 

 The significant difference between the inkjet suspension and those formulated for the 

spin-coating process stemmed from the spin-coating requiring higher viscosities in order to 

obtain complete area coverage. Increases in viscosities were achieved by increasing the 

proportion of TiO2 particles relative to the total weight of the entire suspension but still holding 

the particle weight to an amount lower than the total contribution of the aqueous components. 

The result was a TiO2 suspension with a significantly higher viscosity than that used for inkjet 

printing. As the suspensions formulated for spin-on applications dried, the presence of 

aggregation and particle clumping would increase, necessitating usage of the suspension shortly 

after preparation, typically within two days.  

After some experimentation, a suspension consisting of 2 grams of TiO2 powder for each 

10 mL of solution was selected. The same solution formulation of DI water pH adjusted with 

acetic acid used for inkjet printing was employed as the main solvent for spin coating 

suspensions and was added drop-wise to the powder in a mortar and pedestal. With each 
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additional drop, the suspension was hand-ground for one minute. Once the full amount of the 

solution was added, the suspension was transferred into the milling jar and milled for two hours. 

PEG was added and mixed into the suspension as a final step.  

4.5 DSSC Device Assembly 

 The total area of the deposited layers was kept constant at 1cm
2
 for each sample. For the 

printed samples this area was defined within the software. For spin-on samples, the coverage 

area was defined by the use of Scotch tape which was removed after spinning and prior to 

sintering. The substrate for all depositions was indium tin oxide (ITO) coated glass slides. Each 

substrate slide was cut from a larger 2x2 inch slide using a diamond scribe to score break lines.  

 The deposited samples were then sintered on a hot plate, starting at 50°C with a gradual 

increase to 450°C. The slides remained on the hot plate at the maximum target temperature for 

30 minutes. Sintered samples were then immersed into a prepared dye solution containing 

0.018mg of Di-tetrabutylammonium cis-bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-

dicarboxylato) ruthenium(II) dye—commonly known as N719—dissolved in 50mL of a 1:1 

mixture of anhydrous tert-Butyl alcohol (C4H10O) and anhydrous Acetonitrile (CH3CN). Once 

mixed and prior to use, the dye solution was placed on a magnetic stirrer for 3 hours to ensure 

through dissolution of the dye. All chemicals were obtained from Sigma Aldrich and used as 

received. 

The TiO2 were kept in the dye solution for a period of 20 hours and then removed and 

rinsed with DI water followed by IPA. The slides were dried under a light flow of nitrogen gas. 

Counter electrodes were formed but accumulating carbon soot on an ITO slide by passing the 

slide multiple times over a candle flame. The iodide electrolyte solution was made by dissolving 
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0.127g of iodide in 10 ml of ethylene glycol and then adding 0.83g of potassium iodide. This 

solution was stirred until all particles had completely dissolved into the solution.  

 The cells were assembled by sandwiching the dye-adsorbed TiO2 films with the carbon 

coated counter electrodes with a slight offset of approximately 5mm. Small binder clips were 

used to hold the two slides tightly together. The offset area allowed for placement of copper tape 

at the edges of the ITO slides to allow for external connections. The electrolyte was dropped in 

between the two slides and allowed to completely flow into the interior spaces. 
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5 Results 

 

 Photo-anodes were produced from varied TiO2 suspensions deposited by inkjet printing 

and spin coating onto a TCO substrate. An ITO coated substrate was used for both electrodes. On 

the counter-electrode a layer of carbon, deposited by passing the slide through a candle flame, 

acted as the catalyst for the regeneration of the electrolyte. An iodide/tri-iodide solution was used 

for the electrolyte. Assembled cells were held together with binders and copper tape adhered to 

uncovered areas of the TCO substrate helped facilitate electrical connection to external circuits 

for DSSC performance testing.  

5.1 DSSC Device Assessments 

Among the variations were different thicknesses of TiO2 films produced from 

consecutive printing passes or, alternatively, by additional spin-on applications of the same 

suspensions. These resulted in TiO2 films with a uniform composition and a uniform density 

profile. Several density profile variations were also made. Some of these variations did not result 

in viable films or resulted in films with poor surface characteristics such as extensive cracking or 

material loss from the surface. All suspensions used contained TiO2 nanoparticles with a nominal 

size of 20 nm and an average size of 26 nm.  

 The density profile variations included depositions with three distinct suspension 

formulations contributing to the final film. The three suspensions included a surfactant-less 

suspension, a suspension with PEG600, and finalized with a suspension with PEG20000. 

Additional variations had two regions: an initial layer from a surfactant-free suspension, then 

capped with either a PEG600 suspension or a PEG20000 suspension.  

 Immediately after assembly, the assembled DSSCs were tested under 1.5AM 

illumination, which delivered 100mW/cm
2
 to the surface of the photo-anode, inside an isolation 
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chamber. For each DSSC the short circuit current (Isc), open circuit voltage (Voc), and I-V curve 

were obtained while illuminated. From the I-V curve the maximum power point Pmax was 

identified along with the associated current IMP and voltage VMP. The device Fill Factors were 

calculated according to Equation 1-1. Table 10 shows device measurements for DSSCs with 

uniform TiO2 layers deposited via inkjet printing of varied suspensions.  

Table 10: DSSC results with inkjet printed, uniform composition TiO2 layers of different 

thicknesses. Note: a 4 micron thick deposition of a PEG20000 containing suspension could 

not be produced that maintained full area adhesion after sintering.  

 
1.46µm ± 0.14 4.35µm ± 0.21 

Surfactant 
Isc 

(mA) 

Voc 

(V) 

Fill 

Factor 

Isc 

(mA) 

Voc 

(V) 

Fill 

Factor 

None 0.342 0.30 0.47 0.680 0.36 0.49 

PEG600 0.387 0.37 0.52 0.731 0.39 0.54 

PEG20000 0.443 0.36 0.48 -- -- -- 

The layer thicknesses of the TiO2 films were built up over the course of a number of 

inkjet printing passes. Measurements of the film thickness were obtained using an AFM analysis 

of the height differential between various surface points and the substrate. The device Fill 

Factors and the short-circuit current showed an improved with the incorporation of PEG as a 

pore-forming agent.  

For the non-uniform layers, a surfactant free suspension was deposited as the initial layer 

in the TiO2 film. This was then covered by suspensions containing PEG. Three variations were 

produced, one which three layers and two other with two layers. Table 11 shows results for 

DSSCs with non-uniform TiO2 layers.   

Table 11: DSSC device performance with printed TiO2 layers having varied deposition 

profiles. The approximate thickness of each film was 4 microns.  

 Surfactant Profile Isc (mA) Voc (V) Fill Factor 

1 2µm None/ 1µm PEG600/ 1µm PEG20000 1.14 0.48 0.56 

2 2µm None/ 2µm PEG600 0.87 0.41 0.51 

3 3µm None/ 1µm PEG20000 1.10 0.43 0.53 
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Variations 1 and 3, with a top layer formed from a PEG20000 suspension, showed a 

notable increase over the PEG600. This would be expected given the increased surface area 

afforded by the increase in surface area provided by the more porous surface. The Fill Factor of 

the tri-layer film did show an improvement over the double layers as well as an increases in 

current and open-circuit voltage.  

I-V curves of DSSCs corresponding to the density profile variations listed in Table 10 are 

shown in Figure 29. 

 

Figure 29: I-V curves for DSSCs with inkjet printed TiO2 films of varied composition. The 

curves correspond to the density variations listed in Table 10.  

 The curves for the two cells with a top level formed from a PEG20000 suspension 

deposition are similar but the 3-section cell had a slightly higher maximum power point as well 

as a higher short-circuit current and open-circuit voltage.  The shapes of the I-V curves do 

indicate the presence of significant series resistance accounting for the lower calculated Fill 

Factors. Changing the catalyst used in the assembled DSSCs from carbon to a more effective 
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catalyst such as platinum would be one avenue to improve the overall cell performance. Another 

option would a change from the ITO coated substrate to an FTO substrate.  

 The tri-layer TiO2 films showed an average improvement in the Fill Factor of 8% versus 

single layers and 6% versus double layers. This was primarily attributed to an assumed increase 

in the conductivity through the layer and a corresponding decrease in series resistance. Short-

circuit currents in tri-layer films increased an average of 35% over single layers and 13% over 

double layers. The major source of improvement in the current was associated, as was expected, 

with the TiO2 films with a top layer formed with a PEG20000 surfactant to increase the surface 

pore volume.  

Table 12 provides results from DSSCs with spin-coated TiO2 films as part of the photo-

anodes. The films had a uniform composition.  

Table 12: DSSC results with spin-coated, uniform composition TiO2 layers of different 

thicknesses.  

 
1.78µm ± 0.11  4.08µm ± 0.19 

Surfactant 
Isc 

(mA) 

Voc 

(V) 

Fill 

Factor 

Isc 

(mA) 

Voc 

(V) 

Fill 

Factor 

None 0.327 0.43 0.49 0.512 0.40 0.46 

PEG600 0.348 0.34 0.42 0.758 0.48 0.51 

PEG20000 0.437 0.14 0.21 -- -- -- 

The spin-coated suspensions produced lower currents and Fill Factors compared to the 

corresponding inkjet printed DSSCs. Some this difference can be attributed to slightly thinner 

total film thicknesses. The lower Fill Factors may be a consequence of less mixing of deposited 

suspensions in the interface region.   

The spin coating of suspensions with PEG20000 proved difficult to achieve, the resulting 

layers usually showed poor adhesion to the substrate. This possibly indicated that a reduction in 

the PEG concentration was in order. Table 13 gives results from the use of TiO2 films with 

varied density profiles. 
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Table 13: DSSC device performance with spin-coated TiO2 layers having varied deposition 

profiles. The approximated thickness of each film was 4 microns.  

 
Surfactant Profile Isc (mA) 

Voc 

(V) 

Fill 

Factor 

1 2µm None/ 1µm PEG600/ 1µm PEG20000 0.97 0.39 0.55 

2 2µm None/ 2µm PEG600 0.82 0.35 0.47 

3 3µm None/ 1µm PEG20000 0.91 0.37 0.51 

 The tri-layer spin-coated DSSCs did provide a close match to inkjet printing in terms of 

Fill Factor but produced lower currents and voltages.  

The inkjet printed samples generally outperformed the similar spin-coated samples. The 

layer thickness should also account for a portion of the performance difference. The area of the 

deposited films was kept constant for each of the depositions and the time spent immersed in the 

dye solution was equal for all samples.  

 The best performing DSSCs TiO2 films with PEG20000 suspensions deposited at the top 

and with denser layers underneath. A few other trends are seen in the measurements including an 

increase in short circuit current and fill factor with increased thickness, an increase in short 

circuit current with films have PEG20000 suspension on the top level of the surface, and an 

increase in open circuit voltage and fill factor with the use of the surfactant free suspensions 

deposited as a base layer.  
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6 Discussion 

 

 The research project explored the effect on DSSC device performance when the photo-

anode had a TiO2 film with a graded density profile—with a higher density on the bottom and a 

highly porous top surface. For the deposition of the TiO2 films with varied density, the use of 

inkjet printing was explored as an alternative to the traditional method of spin-coating. In this 

section, the major results are discussed and potential avenues of future refinement identified.  

6.1 Suspension Preparation 

 The preparation of a printable suspension was a basic requirement prior to using an inkjet 

printer as a means of deposition. In particular, the suspension had to be free of particle masses 

beyond the limit imposed by the size of the printhead nozzles. Further, the suspension had to be 

stable against the formation of large masses after insertion into the printing system. The presence 

of large particle masses led directly to increased rates of sedimentation for stored suspension and 

caused blockages in the printing system.  

As TiO2 is not a soluble material, the suspension formulations that were developed 

ultimately required the use of a milling apparatus and filtering in order to eliminate large 

particles and aggregates. To achieve reliable dispersion of the particles, a pH adjusted suspension 

solution with ethanol as a co-solvent was used. The addition of PEG as a surfactant was observed 

to help increase the particle dispersion. 

 An acidic suspension pH is often not desirable, depending on the deposition method. 

Epson printer ink generally has a basic pH and the printing system is designed accordingly. A 

major benefit to using a basic pH is the reduction of corrosion that occurs in the printing system. 

TiO2 particles themselves produce an acidic pH when mixed into a neutral fluid, a fact which 

must be accounted if an attempt is made to balance the pH of the suspension to a neutral or basic 
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level. As particle dispersion is most readily promoted by charge screening by ions, a neutral 

suspension pH requires the use of non-ionic stabilizers. It is possible that PEG, in suitable 

concentrations, could adequately provide a uniform dispersion and was assumed to partially have 

done so for the suspensions developed in this work. A further study would be required to 

determine the PEG concentration levels needed to achieve dispersion stability for a neutral 

solution and what types of pH adjustments would be needed to neutralize the acidifying effect of 

the TiO2 particles.  

6.2 Layer Density Variations 

 A twofold approach to producing density variations in deposited layers was attempted: to 

use surfactants of different molecular weights to vary the pore volume and to vary the sizes of 

the TiO2 particles through the attrition grinding of initially micron-sized particles.  

 Using different surfactants or no surfactant at all was observed to directly affect the 

morphology of deposited surfaces. The most reliable measure of the effect was the surface 

roughness; with increased surfactant weight, the roughness increased. SEM images showed 

qualitatively that the surfactant content increased the pore content of deposited films and 

consequently decreased the overall density at the surface level. Developing additional 

suspensions with PEGs of molecular weights between 600 and 20000 g/mol would allow for 

additional grading of the TiO2 film simply on the basis of varying pore volume.  

 The approach of reducing micron-sized particles to obtain a distribution of smaller 

particles within the printable range through the use of attrition milling, proved to be ineffective. 

The intent was to vary the film density through successive depositions of suspensions having 

decreasing average particle sizes. The end results of the grinding were nanoparticles with 

diameters of less than 50nm or else the particles were not reduced to printable sizes. Filtering did 
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offer some benefit towards reaching a printable suspension. But the filtering removed a 

significant amount of the particles and the approach was deemed an inefficient use of material.  

 Other possibilities could be explored with the goal of varying density through particle 

size variations such as synthesizing particles with the desired size. Another possibility is using 

more advanced filtration techniques to more effectively separate particles within a given size 

range.  

6.3 DSSC Device Performance 

 Several trends in device performance measurements were observed for the different TiO2 

film variations. These included a higher short-circuit current for devices when a suspension 

containing PEG20000 was deposited on the top level of the TiO2 film. Devices having a 

substrate level deposition of the surfactant free suspension, acting as a dense base layer, saw an 

improvement in the open circuit voltage. Thickening the layers with additional printing passes or 

spin-coatings also improved the open circuit voltage and the fill factor.   

 DSSCs with printed TiO2 layers consistently outperformed similar cells with spun-on 

TiO2 layers but a direct comparison was not possible. While the same materials were used for 

both deposition methods, the film thicknesses were not equal and TiO2/surfactant concentrations 

were higher for the spin-on formulations. For the films formed with a varied density profile, the 

three-fold film preformed the best of all of the variations tested. This was the case for both the 

printed and spun layers.  

 Additional testing could serve to establish an optimal ratio of the film’s composition. The 

results suggested that a relatively thick high density base covered by thin coatings of 

progressively lower density could give the best performance. Device fill factors and overall 

device performance appeared limited by the choice and quality of the catalyst applied to the 
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counter-electrode; with a more effective catalyst, such as platinum, the device performance could 

possibly be more readily distinguishable across different sample variations. This would allow for 

a more effective determination of the optimal TiO2 composition and density profile.  

6.4 Printing System Assessment 

 The adaptation of a commercial inkjet printer for the deposition of TiO2 suspensions can 

only be successful if the suspension falls within the printable range of the printing system. The 

nozzle size of the Epson Artisan 730, at 20 microns, effectively limits the maximum size of 

particles dispersed in suspension to the submicron scale in order to avoid the rapid development 

of blockages. A larger nozzle size would accommodate larger masses present in the suspension. 

Some nozzle blockages are difficult or impossible to dislodge once in place; a permanent 

printhead in the printing system is not ideal for this reason. Having a replaceable printhead also 

provides flexibility in ensuring that residue from suspensions does not contaminate subsequent 

printings when a new or different suspension is used.  

As metal oxide nanoparticles have the tendency to aggregate in aqueous solutions, TiO2 

suspensions must have consistent dispersion stability in order to reliably print. Provided the 

suspensions contain only nanoparticles with good dispersion stability, the system can print 

effectively.  

 The particular printer used was not the most efficient for testing purposes in terms of 

preparation time or material usage: long feed lines required flushing between suspension 

variations and then had to be re-filled in order to begin printing. Short feed lines or a direct 

attachment of the ink reservoir to the printhead would be a significantly better arrangement.   
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 The 6 ink lines in the Epson 730 did provide an advantage for the printing of films with 

multiple layers of varied compositions. Specific lines can be dedicated for specific suspension 

variations, allowing for immediate depositions in sequence.  

 Suspension formulations developed for this project should be further refined to achieve a 

greater match to the specific design of the printing system. This would include an analysis of the 

viscosity, surface tension, and density of the original inks and matching the suspension 

properties to fit the measured values as closely as possible. A suspension with matched fluid 

characteristics should provide a greater consistency in printing with respect to jetted droplet size. 

An increase in consistency should aid in the deposition of more uniform layers.  
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7 Conclusion 

 

Based on the characterized surface properties of deposited TiO2 films and the 

corresponding effects on DSSC performance, a graded density profile in the TiO2 film was 

associated with a positive increase in performance over devices with a uniform film. Increasing 

the number of steps in the density profile also correlated with performance improvement. DSSCs 

with printed TiO2 films having three density layers showed an average improvement in the Fill 

Factor of 8% versus single layers and 6% versus double layers. Short-circuit currents in tri-layer 

films increased an average of 35% over single layers and 13% over double layers.  

For achieving deposited layers with varied density, the use of PEG as a surfactant in 

suspension formulations proved successful whereas the attrition grinding of large particles did 

not. PEGs of different molecular weights produced surface morphologies with discernible 

differences compared to each other and to surfaces formed from suspensions without surfactants. 

Two PEGs with molecular weights of 600g/mol and 20000g/mol were used. Developing 

additional suspensions with intermediate molecular weights would provide a means to further 

grade the density profile of deposited films.  

Suitable suspensions were formed using TiO2 nano-particle powder with a nominal 

particle size of 20nm, pH adjusted water, ethanol, and PEG. The preparation procedures 

produced suspensions which showed good stability over an extended storage period. As part of 

the suspension preparation, a milling apparatus proved necessary to reduce the presence of large 

aggregates and avoid blockages in an inkjet printing system. The inkjet printer selected was able 

to deposit suspensions when filtering steps were employed and provided the suspensions were 

used within two days of preparation. Inkjet printed layers were also associated with better 

performance than spin-coated layers.  
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The use of inkjet printing as a deposition method for the deposition of DSSC photo-

anodes shows a great deal of potential. There are several options for its use, ranging from the 

deposition of the entire film or as a means of applying a top coating to a thicker base layer 

deposited by other means.  
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Appendix A: Photovoltaic Technologies 

 

A.0 Introduction 

Consistent and reliable access to adequate energy supplies is a key necessity for the 

stability of modern technological societies. The search for cost effective, abundant, and 

environmentally sustainable energy sources that can serve as alternatives to fossil fuels has 

motivated research into a number of promising technologies. These possibilities have included 

wind, hydroelectric, tidal, nuclear, geothermal, and solar. For each of these, particular attention 

has been paid to the technology’s level of long-term sustainability, environmental impact, and 

accessibility.  

Of the alternative energy options, solar energy presents itself as the most attractive in 

terms of sustainability: light produced from the fusion of the sun’s supply of hydrogen will 

continue for billions of years; in terms of environmental impact: solar-powered energy 

conversion systems can be easily produced using non-toxic materials and processes, and a solar 

power installation’s stationary nature poses minimal risk to wildlife; in terms of accessibility: 

sunlight is available in varying degrees and lengths of time to every part of the earth’s surface. 

Solar energy is also the most plentiful. If one hour of the sunlight reaching the planet’s surface 

could be completely captured, it would be sufficient to meet global energy needs for an entire 

year [32]. Alternatively, if 0.1% of the earth were covered by solar cells with at least 10% energy 

conversion efficiency, all the global energy needs could be met [33].  

Solar-powered electrical generating systems convert solar energy directly into electricity 

through the photovoltaic (PV) effect. The photovoltaic effect is a property exhibited by certain 

materials and involves the release of atomically or molecularly bonded electrons through 

absorption of energy from incident photons. The effect occurs when incident photons have 
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energy sufficient to overcome the bandgap of the material—where the bandgap refers to the 

difference in energy of the Highest occupied molecular orbital (HOMO) and the Lowest 

unoccupied molecular orbital (LUMO). Effectively, the photons excite electrons out of valance 

bands, which are the highest occupied orbitals, and into conduction bands, the lowest unoccupied 

orbitals, creating electron-hole pairs in the material. Released electrons are known as 

photoelectrons and resulting currents as photocurrents. Solar cells are invariably made using 

semiconductor materials and so are sometimes referred to as photovoltaic cells.  

One of the major ongoing research tasks associated with solar cells is to achieve as high 

an energy conversion efficiency as possible while keeping material and processing costs as low 

as possible. A cell’s efficiency is determined by a number of factors but chief among them are 

how much of the incident spectrum can generate photoelectrons and the ease with which the 

photoelectrons can be passed out of the material and into an attached circuit.  

A.1 Solar Cell Technologies 

 Solar cell technologies have progressed through a number of generations. The first 

generation cells used the traditional Group IV semiconductors Silicon (Si) and Germanium (Ge) 

or Group III-V combinations such as Gallium arsenide (GaAs). Second generation solar cells are 

based on thin-film devices which are much easier and cheaper to manufacture.  

Amorphous Silicon (a-Si), Cadmium Telluride (CdTe), and Copper indium gallium 

selenide (CIGS) are the most common photovoltaics used in thin-film cells. Both the first and 

second generations relied exclusively on single junction devices [1]. In a single junction device, 

the conversion between solar energy to electrical takes place in the depletion region between a p-

type (electron acceptor) and n-type (electron donor) material. Any electron-hole pairs produced 

by solar excitation in the depletion region are separated by a built-in electric field.  



75 
 

Third generation cells use multi-junction devices, each junction captures a different 

portion of the electromagnetic spectrum, increasing the overall cell efficiency. Next generation 

devices incorporate nano-technology to enhance spectral response, reduce material costs, and 

relive material purity requirements. What follows is a brief summation of examples from each 

the three initial generations of solar cells. 

A.1.1 Silicon 

Silicon can take a variety of forms in solar cells including mono- and poly-crystalline, 

amorphous, and thin-film. Crystalline silicon (c-Si), in both poly and mono forms, has held a 

dominant lead in terms of commercial market share over other PV technologies for a number of 

years. In 2010, c-Si accounted for 83% of total cell production with the majority of that portion 

attributed to polycrystalline silicon cells [34]. Following a significant drop in crystalline silicon 

cell costs in 2011, the market share of c-Si is projected to increase over the next several years 

with high efficiency single crystalline silicon becoming more prevalent within that category [33].  

A number of factors have favored silicon as a solar cell material. Silicon is abundant, 

non-toxic, and highly stable when properly sealed. Commercial silicon solar panels have 

impressive long-term performance: providing up to 80% of the rated power output for 25 to 30 

years after initial installation. Conversion efficiencies of silicon solar cells depend on the 

crystalline form and ranges from near 25% (c-Si) to 10.1% for amorphous-Si [35]. In the case of 

silicon, the theoretical maximum efficiency has been shown to be 30%; the maximum possible 

efficiency for any single-junction cell has been determined to be 33% [36].  

A.1.2 Thin-Film 

 Thin-film systems using cadmium telluride (CdTe) modules have the second highest 

market share after silicon cells with 6% of the PV market [34]. Owing to lower solar energy 
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conversion efficiencies, a thin-film installation can require up to 40% larger area compared to c-

Si in order to achieve equal electrical energy outputs. However, thin-film installations can reach 

specific output energies at a lower cost (0.84 USD versus 1.1 USD for mono c-Si) due to a less 

expensive manufacturing process [23]. A major drawback to thin film cells are the toxicity of the 

materials used, especially cadmium, and also the relatively low abundance of the materials [37]. 

The manufacturing of thin-film cells can be done at a large scale on flexible substrates in an 

automated production process. This is an advantage over crystalline silicon PV technologies 

which, at the cell level, can only be produced with a much smaller surface area.  

A.1.3 Multi-Junction 

Multi-junction cells have the highest recorded solar energy conversion efficiencies of any 

PV technology. State of the art cells have verified efficiencies greater than 43%. The concept 

behind multi-junction solar cells is to provide a number of junctions with different band gap 

energies to capture a wider energy range of incident photons with as little loss as possible. In all 

multi-junction cells, the junctions are stacked with the highest band gap junction at the top and 

each successive junction having a lower band gap. High energy photons are captured first and the 

lower energy photons are progressively captured at lower junctions.  

Ideally, the junctions would cover as wide a range of band gaps as possible with a small 

difference between adjacent junctions. Theoretical models put a maximum limit of 86.8% for 

conversion efficiency in the case of an infinite number of junctions, each with a different band 

gap. Multi-junction cells with 2, 3, and 4 junctions have been calculated by Marti and Araujo 

[38] to have maximum one-sun efficiencies of 32.5, 44.3, and 53.6 respectively.  
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Appendix B: DSSC Operating Principles and Research Trends 

 

 This appendix provides additional information on the principles that govern the photo-

current generation in a DSSC. Also offered is an overview on some of the significant material 

and device research trends being investigated by DSSC research groups.  

 Even though standard dye sensitized solar cells have a reasonably simple structure, their 

ability to convert solar energy into electrical currents is governed by a number of complex 

interface reactions. The reaction with the lowest overall efficiency effectively determines the 

overall device efficiency. Efforts to improve DSSCs to a performance level competitive with that 

of other photovoltaic technologies have focused on several fundamental areas involving material 

selection and device fabrication. To achieve general acceptance as a viable alternative to silicon 

solar cells, DSSCs must achieve higher efficiencies using sustainable, nontoxic materials and 

must also exhibit long-term stability in outdoor usage.  

Investigations into new materials aim to reduce costs and improve performance. Research 

at the device level considers issues of long-term stability, device structure, and scalability among 

others.  

B.1 DSSC Device Operating Principles 

 For the photo-current induced in an illuminated DSSC to complete an electrical circuit, 

electrons must travel along a path that involves several distinct stages, each requiring specific 

reactions in order to advance the current flow.  

Photons enter into the cell through the TCO of the photo-electrode and pass through the 

TiO2 semiconductor layer; TiO2 is highly transparent for photons with wavelengths greater than 

ultra-violet. Absorption of a photon with a sufficient energy can elevate an electron in a dye 

molecule from the Highest occupied molecular orbital (HOMO) energy level to the Lowest 



78 
 

unoccupied molecular orbital (LUMO) energy level.  This electron excitation allows for the 

potential injection of the electron into the conduction band of the TiO2, which is at a lower 

energy level than the dye’s LUMO.  

As the highest energy level of electrons in iodide is higher than the dye’s HOMO, an 

electron transfer and re-oxidation of the dye is facilitated. The open circuit voltage of the DSSC 

is determined by the difference between the TiO2 Fermi level and the potential of the redox 

couple [39].  

 Figure B-1 shows the energy level transitions that occur in a standard DSSS.  

 
Figure B-1: Schematic of a DSSC showing the energy level transitions for reactions 

involved in the device operation [39].  

A number of undesirable electron paths resulting from defects, back reactions, and 

recombinations contribute to decreases in overall device efficiencies by interfering with 

individual steps in the charge transfer cycle.  Back reactions occur when electrons from the TiO2 

film are directly transferred into the electrolyte without reaching the electrode. Recombinations 

are a particular concern at the dye-semiconductor interface where newly induced photoelectrons 

are immediately reabsorbed by the dye rather than injected into the semiconductor layer.  
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B.1.1 Photosensitizer Excitation 

 Photosensitizing molecules are the distinctive feature of DSSCs and are required as the 

band gap of the semiconductor is too large for effective photocurrent generation. For most 

sensitizer molecules used in DSSCs, the center of the absorption occurs for photons near 550nm 

and extends over the visible range of light.  

After absorption, the sensitizer reaches an excited state and releases an electron. A typical 

dye molecule can stay in an excited state for several nanoseconds before dropping back to the 

ground state. Once in the ground state, the now oxidized dye molecule must reacquire an 

electron to maintain charge balance.  

B.1.2 Photoelectron Injection 

 A dye that is adsorbed onto a metal-oxide nanoparticle will inject a photoelectron into 

that particle extremely fast, on the order of femtoseconds to picoseconds depending on the 

excited state of the dye. Ideally, the injection rate should be 100 times greater than the decay rate 

of the oxidized sensitizer. Also, the energy level of the sensitizer must be 0.2 to 0.3V above the 

conduction band edge of the oxide for electron transfer [1]. This potential represents the 

minimum driving force required to push the photoelectrons into the conduction band of the 

semiconductor.  

B.1.3 Semiconductor Transfer 

 A nano-structured metal-oxide layer in a DSSC has particle sizes that cannot generate a 

macroscopic electric field. Thus, charge transport through the oxide occurs through a kinematic 

diffusion process, the exact nature of which is still debated [40]. Electron diffusion imposes a 

requirement that the thickness of the layer be less than the diffusion length of the electron. A 

possible path for the free electrons in the oxide is to be recombined with acceptors in the 
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electrolyte. For efficient charge extraction from the oxide layer, the overall electron lifetime 

needs to be greater than 20µs for a 10 micron thick oxide layer [6]. 

B.1.4 Redox Couple Reduction 

 The electrolyte in a DSSC acts as a hole conduction medium that shifts the hole 

generated by the photo-excitation of the dye to the counter-electrode. To maintain the hole 

current in the electrolyte, the holes must be filled with electrons from the counter-electrode. 

Since the hole transfer occurs through a diffusion process, the reduction of the redox couple has 

to occur at a very fast rate compared to the recombination rate of electrons at the interface 

between the oxide layer and the electrolyte. To speed the reduction process, a catalyzing agent is 

required.  

B.1.5 Sensitizer Regeneration 

 Regeneration of the sensitizer—a donation of an electron to the sensitizer from the 

electrolyte—occurs in the nanosecond range with iodide/tri-iodide electrolytes. The lifetime of 

an oxidized dye molecule is taken into account when designing DSSCs for extended useful 

lifetimes (>20 years). Cell performance decreases with age as oxidized dye molecules decay 

from not being regenerated fast enough. Ruthenium dye complexes are well suited for extended 

device operation as their lifetime in an oxidized state is typically greater than 100 seconds [41]. 

Coupled with iodide/tri-iodide electrolytes, few losses due to dye decay occur over an extended 

period of time.  

 DSSC materials are selected to maximize the efficiencies and speeds of each of the 

necessary reactions. That key reactions take place at dramatically different rates is what enables 

a DSSC to work. In particular, the lifetime of a typical dye molecule in an excited state is in the 

nanosecond range but the photo-electron injection into the semiconductor occurs on the order of 
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a femtosecond. Thus the dye can exist in an excited state significantly longer than it takes to 

unload the electron into the semiconductor. Most important of all reaction rates is that of the 

back transfer of electrons into the dye which occurs in the micro- to milli-second range. This 

slow rate of recombination enables the charge separation to take place, without which a 

photocurrent cannot be established.  

B.2 DSSC Material Research Trends 

 There are presently two streams of DSSC material research: optimization of materials and 

processes for large area device manufacture at competitive costs; exploration of new materials, 

structures and device fabrication procedures to achieve higher energy conversion efficiencies. A 

major remaining concern is the long term stability of assembled cells, particularly when using 

liquid electrolytes. Long-term stability requires attention to another critical component of a 

practical DSSC, that of an encapsulating sealant to prevent the ingress of H2O and the 

evaporation of the electrolyte.  

What follows in this section is a brief discussion of some of the major ongoing research 

topics for the major elements of DSSCs.  

B.2.1 Cell Substrate and Counter-Electrode Catalyst 

A DSSC has two electrodes: the cathode, known as the counter-electrode, where 

electrons return from the external circuit and the anode, called the photo-anode or photo-

electrode, where electrons generated through photo-excitation pass out of the cell. The substrates 

of the electrodes may or may not be the same material; the only real requirement is for the 

substrate on the photo-electrode side to have a high degree of transparency for that is the 

direction of illumination.  
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Transparent conducting oxides (TCO) in the form of a thin film conducting oxide coating 

on a clear glass substrate are commonly used for both of the electrodes in a DSSC. The TCO 

needs to provide a low resistance path for the generated photocurrent to and from the external 

circuit. The two most widely used oxides are Fluorine-doped tin dioxide (FTO) and Indium tin 

oxide (ITO). FTO is generally favored over ITO, despite having a lower conductivity, because it 

has better chemical and temperature stability. Glass as a base substrate for the conducting oxides 

is attractive due to its low cost and high optical transparency.  

FTO and ITO coated substrates do suffer from low carrier mobility and work has been 

done on finding a high mobility alternative. One candidate is titanium doped indium oxide 

(ITiO), which possesses higher carrier mobility and also has a higher optical transmission. 

Comparison tests between FTO and ITO have shown a 4-fold increase in mobility, a reduction in 

layer resistivity and sheet resistance, and a 60% higher transmission of light in the wavelength 

range 700-1400nm [42].  

Another area of research is in the use of flexible substrates which are appealing by 

providing the option for installation on irregular surfaces and also for a greater ease in the 

transport of solar modules and panels. A number of different substrates have been investigated 

such as ITO-coated polymers, titanium, and stainless steel [37].  

The purpose of the catalyst is to speed the reduction of the redox electrolyte by 

completing the charge transfer from the TCO to the electrolyte. For the iodide/tri-iodide redox 

couple this entails the reduction of the tri-iodide to return it to an iodide form. The catalyst 

selected for activation of the counter-electrode must meet several basic requirements in order for 

the DSSC to function properly. The critical requirements are that the catalysts have a low charge 
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transfer resistance, possess a high chemical stability when exposed to the electrolyte, and 

generate a high level of catalytic activity at the electrolyte/electrode interface.  

Platinum is the most common catalyst used because it fulfills these requirements very 

well. Platinum is, however, quite expensive and when used with a FTO coated glass substrate, 

the counter electrode can account for up to 60% of the total cell cost [43].  

Carbon in various forms and conducting polymers have been employed as a lower cost, 

chemically stable catalysts and, while able to work, the electro-catalytic activity is lower than 

platinum and results in lower overall cell efficiencies [39]. Carbon black and stainless steel have 

been used for a catalyst, ultimately yielding a DSSC with 8.86% conversion efficiency [44]. One 

very simple way to deposit a carbon catalytic layer on an ITO or FTO glass substrate is to pass 

the glass through a candle flame repeatedly until a dark, uniform layer of soot develops.  

B.2.2 Semiconductor Layer 

Material choices, processing methodologies, and the specific nature of the nano-

structuring of the wide bandgap semiconductor are among the important factors that determine 

the overall performance of a DSSC. A key requirement of the semiconductor is that it possesses 

a high resistance to photocorrosion, a property shared by a number of metal oxides such as 

Titanium dioxide (TiO2) and Zinc peroxide (ZnO2), but not by traditional semiconductors such as 

silicon.  

To date, a wide variety of metal oxides have been investigated but TiO2 DSSCs have 

yielded the highest recorded efficiencies.  Preparation of the TiO2 nano-particles themselves 

involves the hydrolysis of a titanium precursor, thermal growth, and crystallization. By varying 

the exact technique used, the nature of the nano-structures that form can be adjusted. This allows 

for the creation of nano-wires, rods, tubes, bowls, sheets, and spherical particles of various sizes.  
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Modern implementations of DSSC rely on the dramatic increase in the surface area of the 

semiconductor layer provided by the use of the nanostructured metal oxides, which allows for an 

increased number of dye molecule attachment points. The large surface area due to the small 

particle size has the drawback of decreasing the electron transport through the semiconductor 

layer.  

To control the final morphology of a TiO2 layer and to help prevent nanoparticle 

aggregation, surfactants that act as chemical dispersants are used. A common dispersing agent is 

Polyethylene glycol (PEG) which is available in a wide range of molecular weights. PEG has 

been observed to help prevent aggregations of nanoparticles and to produce pores in the 50 to 

200nm range [45]. Another frequently used chemical in DSSCs is acetic acid which acts as a 

solvent for TiO2 in solution [46]. A sintering at 450°C for 15 minutes of a deposited TiO2 layer is 

the usual procedure for forming the nanostructured layer; the high temperature drives out the 

solvents producing a highly porous layer which is then soaked in a sensitizer solution.  

B.2.3 Photo-sensitive Dye 

Photosensitizers in DSSCs are dye molecules that absorb photons of wavelengths that 

correspond to the bandgap of the dye. This causes the dye to become oxidized and allows an 

electron to be injected into the conduction band of the TiO2 layer.  

For a dye to be a viable choice for use in a DSSC, it must possess several basic 

characteristics. These include a strong absorption of light in the visible region of the spectra, 

strong adsorption onto the surface of the semiconductor layer, and fast injection of 

photoelectrons into the semiconductor [47]. In addition, the dye must have a high degree of 

chemical stability when exposed to the solvents in the electrolyte solution. Thousands of dye 
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formulations have been tested to date, ranging from simple and inexpensive to finely crafted 

molecules that are very costly.  

Ruthenium (Ru) based compounds were among the first dye molecules studied and 

DSSCs incorporating them still produce among the most efficient cells. One of the well-known 

Ru-complexes developed by Gratzel and coworkers still in wide use is N-719, a dye molecule 

with good performance in two key areas: light absorption and charge transfer. The N-719 dye 

absorbs photons with a wavelength between 400nm to 900nm [40]. Other ruthenium based dyes, 

such as the N-749 or black dye, have since been chemically engineered with an extended spectral 

response into the near-IR region [1]. Ruthenium is not an abundant metal; the dyes that use Ru-

complexes are expensive and DSSC designs that incorporate them do not represent 

environmentally sustainable solutions.  

Naturally occurring dyes have been studied as an alternative to chemically engineered 

dyes but exhibit lower light collection capability and produce DSSCs with low efficiencies, 

typically less than 1% [48]. Natural dyes do offer several advantages: a variety of inexpensive 

and plentiful sources are available; dye solutions are simple to prepare with common materials 

and minimal equipment and natural dyes are adsorbed onto the semiconductor layer rapidly.  

B.2.4 Electrolytes and Hole Transfer Materials 

The most successful liquid electrolyte is the iodide-triiodide (I
-
/I3

-
) redox couple due to 

long electron lifetimes, fast electron transfer into dye molecules, and fast regeneration at the 

counter-electrode. Iodide electrolytes have been verified to have long term chemical stability 

[49]. The choice and characteristics of the solvent for the redox couple has a significant impact 

on the overall device performance. A commonly used solvent is acetonitrile, a medium-polarity 

organic nitrile, which displays good dye regeneration while also reducing back electron transfer 
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by passivating the semiconductor surface, effectively isolating the metal-oxide from ion contact 

[41].  

The ions in the I
-
/I3

-
 redox couple are highly polar molecules and finding a suitable long 

term sealant for DSSCs has been an ongoing challenge. Several commercial hot-melt polymer 

sealants, notably Surlyn and Bynel, have been used [50]; these sealants exhibit instability under 

varying temperatures and are not especially suitable for large scale manufacturing of DSSCs. 

Leakage of the electrolyte resulting from a sealant failure is a major cause for reduced DSSC 

lifetimes. One option to reduce electrolyte leakage and evaporation is to increase the viscosity of 

the electrolyte through a polymerization process or the addition of SiO2 particles. The result is 

referred to as a quasi-solid electrolyte which exhibit good stability but lower efficiencies [51].  

Replacing the liquid electrolytes with a solid-state Hole-transport material (HTM) is 

widely considered a necessity for large scale and long-term use of DSSCs. One example of a 

solid state HTM is a solution containing spirofluorine and additives. This solution is applied to 

the surface of a TiO2 layer, allowed to permeate for 60 seconds, and then spin at 2000 rpm for 30 

seconds which forms a solidified heterojunction [52]. Back contacts can be added through the 

thermal evaporation of a suitable contact metal.  

B.2.5 Next-Generation DSSCs 

 As with other photovoltaic technologies, one of the major research goals is to extend the 

absorbable spectrum as far as possible. There are several ways to achieve this goal with DSSCs 

including tandem cells which have a stacked arrangement of a number of different 

photosensitizers. This approach suffers from the incomplete transparency of the cell components 

which reduce the number of photons reaching lower levels of sensitizers.  
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A second option is to incorporate combinations of co-sensitizers into the cell to extend 

the spectral range. This could include adding additional dyes with lower bandgaps to extend the 

minimum photon energy that can be absorbed. Alternatively, the use of dyes could be eliminated 

entirely and replaced with quantum dots, which offer the possibility of fine-tuning the spectral 

range by varying the size and material composition of the dots [53]. This class of solar cell is 

usually differentiated from DSSCs and known as Quantum dot sensitized solar cells (QDSC). 

Solid state QDSCs have exhibited energy conversion efficiencies between 5% and 6% [54]. 

B.2.6 State of the Art DSSC 

 The DSSC with the highest recorded solar energy conversion efficiency was reported in 

2013 at 15% with a fill factor of 0.73 [5]. This cell used a HTM in place of a liquid electrolyte 

and a perovskite sensitizer. In other respects, the state of the art cell is similar to the standard cell 

in that FTO slides were used as a substrate and TiO2 nanoparticles were used as the 

semiconductor base for the photo-sensitizer. In place of platinum, gold was used as a catalyzing 

agent. For the TiO2 layer, the researchers first deposited by spray pyrolysis a thin and compact 

layer of TiO2 particles. This was then covered by a thicker TiO2 layer that was deposited by spin-

coating.  

B.3 Key Challenges for DSSCs 

 Several key barriers remain to a wide spread use of DSSCs as a prevailing photovoltaic 

technology. These include issues of low efficiency compared to traditional semiconductor cells, 

problems with scaling the devices to the module level, and long-term stability issues.  
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B.3.1 Efficiency 

 The highest DSSC efficiencies that have been achieved are still much lower than those of 

the crystalline silicon solar cells. Improvements in cell efficiency can be achieved in a number of 

ways but all involve either increasing the short circuit current or the open circuit potential. 

Photo-currents can be increased by extending the absorption range of the sensitizing agent as far 

as possible while minimizing recombination reactions. Open circuit voltages can be increased by 

reducing the energy loss in the sensitizer regeneration by the electrolyte. 

B.3.2 Scalability 

 Transitioning DSSCs to the module and panel level has proven difficult to achieve 

without experiencing significant losses in device performance. A major performance issue with 

large scale dye sensitized modules centers on the accumulation of energy losses due to series 

resistance of individual layers. The primary source for the series resistance is the substrate which 

requires the use of conductive fingers with series connected cells. In the design of the conductive 

pathways, a balance must be struck between resistance loss and active area loss [55].  

 The up-scaling of DSSCs necessarily involves the connection of individual cells into 

modules to produce adequate output voltages. There are several structural schemes for the 

interconnection of cells into modules including serial, parallel, and monolithic arrangements 

[56]. Another major problem with up-scaling standard DSSCs with liquid electrolytes involves 

the need to ensure long-term sealing and protection of the liquid. Elimination of the liquid 

electrolytes in favor of quasi-solid and solid-state HTMs will greatly simplify module 

manufacturing processes and necessitate less stringent sealing requirements.  
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B.3.3 Stability 

 Of particular concern for the long-term stability of a cell are the effects of prolonged 

exposure to sunlight, temperature variations and extremes, and structural integrity when installed 

outdoors.   

The stability of many individual materials is well established under laboratory conditions. 

For example, ruthenium-based dyes have been shown to have strong molecular stability and are 

anticipated to have a usable life of 20 years or more [50]. Liquid electrolytes, including 

iodide/tri-iodide complexes, have shown a marked vulnerability to UV light and require filtering 

to protect against degradation [57]. Solvent free electrolytes have been shown to reduce 

deterioration by 80% compared to electrolytes with solvents [58]. The TiO2 layer in standard 

cells has been observed to accumulate electrons under continuous illumination and this effect is 

theorized to be responsible for an increase in the rate of back electron transfer in aged cells [59]. 

The prolonged integrity of cell sealants is the primary determinant of cell lifetime. The 

commonly used seals are thermoplastics or foils and allow diffusion of electrolyte solvents at 

elevated temperature [50]. 
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Appendix C: TiO2 Deposition Techniques 

 

 Metal oxide semiconductors have garnered extensive study in recent years and their use 

has found application in a wide range of fields, devices, and consumer products [33]. One of the 

more commonly encountered metal oxides is Titanium dioxide (TiO2), a wide bandgap 

semiconductor. The low cost, non-toxicity, and biocompatibility of TiO2 have prompted common 

usage as a key component in pigment based inks and paint as well as sun screens and toothpaste 

[60]. 

 Some applications, such as in DSSCs, require the formation of a thin layer of TiO2 on a 

suitable substrate. The methods that have been utilized to produce the requisite layers fall into 

three main groups: physical vapor deposition including evaporation, sputtering, electron-beam 

epitaxy, etc.; chemical vapor deposition; and wet-chemical processing including spin-coating, 

dip-coating, screen-printing, and inkjet printing among others [11-14, 60].  

C.1 Common Deposition Techniques  

 The various processes used for TiO2 film depositions intend to form uniform and 

reproducible layers. The actual method used is often dictated by the available processing 

equipment. TiO2 films can be easily processed with simple manual methods that do not usually 

achieve ideal results. Another traditional method for forming thin-films is that of dip-coating, a 

simple process that requires immersion of a substrate in a sol and with-drawing it at a constant 

speed. Spin-coating machines, a common piece of lab equipment found, are often employed for 

obtaining TiO2 films of varying thicknesses. There still is a preference for automated depositions 

to achieve a higher degree of reproducibility and this has prompted the wide use of screen 

printing for TiO2 films. Other options are available, but these four constitute the prevalent 

methods currently used.  
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C.1.1 Doctor-Blade 

 One of the most common TiO2 deposition methods is a fully manual technique called 

doctor-blade [34]. A viscous TiO2 is required and can be prepared using commercial nano-

particles: equal parts by weight of TiO2 powder and a DI water/acetic acid solution. The mixture 

is then ground in a mortar until a smooth and consistent paste is formed. A drop of surfactant is 

then added and slowly stirred into the paste. Tape applied to the substrate marks off the 

boundaries of the TiO2 film and also provides a physical spacing between the substrate surface 

and the top of the film for the next step.  After a quantity of the TiO2 paste is placed on the 

substrate, a glass rod is used to ‘blade’ across the paste until a smooth and flat surface is 

obtained. Once the desired layer is produced, the tape is removed and the sample is sintered to 

drive out solvents.  

 Among the limitations of the doctor-blade method is the difficulty of obtaining 

reproducible results. The method also produces relatively thick TiO2 layers in the range of 10 to 

30 microns; thicker TiO2 films have a greater chance for developing cracks or peeling off the 

substrate during sintering.  

C.1.2 Dip-Coating 

 Morozova et al. prepared TiO2 films using both dip-coating and inkjet printing using 

template sol-gels [60]. The dip-coating process involved the use of a laboratory dip-coater that 

immersed a substrate for 30 seconds and then withdrew it as a rate of 6 cm/min. The RMS 

surface roughness was measured to range between 0 and 5 nm, for the inkjet samples, 3 to 6 nm 

was measured.  
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 In general, the formation of photo-anodes using the dip-coating method has been found to 

result in varying sensitivities as formed layers were quite different from each other. Additional 

calibration steps were found to be required, leading to additional expense and time [14]. 

C.1.3 Spin-Coating 

 Applying a quantity of TiO2 to a substrate and spinning at a high rate causes centrifugal 

force to form a thin-film. The spin rate, time, and solution viscosity determines the thickness of 

the resulting film. Spin-coating also suffers from difficulty in generating reproducible layers 

which limits the viability of spin-coating as an option in the large-scale manufacture of DSSCs. 

C.1.4 Screen Printing 

 In traditional screen printing, ink is transferred through a mesh according to a pattern 

defined by an ink-blocking stencil. Ink is applied to the screen with a squeegee and spread over 

the surface at a smooth and even rate. For the screen printing of TiO2 the process is similar, with 

a TiO2 solution in place of ink. Several factors have to be considered for the printing of a suitable 

layer including solution composition, mesh size, applied pressure, and speed [15]. The viscosity 

of the TiO2 solution must be less than those required for doctor-blade and spin-coating 

technique. A rheological agent such as ethylcellulose is normally used to adjust the viscosity to a 

suitable level. Aggregation of nano-particles is also a concern and additives are required to 

maintain dispersion of the TiO2 in the solution. 

C.2 Inkjet Printing 

 A relatively novel approach for the deposition of TiO2 films through the use of inkjet 

printing has begun to attract attention owing to its high level of control over the process and the 

possibility of direct patterning of layers [8, 9]. Specialty laboratory printers designed for printing 
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of solutions with a wide variety of fluid properties are available and have been used for TiO2 

depositions. This category of printer is, however, a significant investment, often costing tens of 

thousands of dollars. Commercial inkjet printers offer a potential low-cost solution provided they 

meet certain requirements and the solutions are within the printable range of the equipment. 

 Several major design variations exist for inkjet printers, variations that have been 

developed in response to the many diverse applications that printers have been tailored to over 

the past several decades [16]. There are two primary printer categorizations, continuous and 

Drop on demand (DOD), that are often used to differentiate commercial and industrial printing 

from consumer printing. The distinction is based mainly on whether ink is being jetted from the 

printer in a continuous stream or as individual droplets. The actual ink jetting is an action 

performed by the printhead of the unit and can be achieved through one of two methods: thermal 

or piezoelectric.  

 Both of these printhead types can be found in fixed or disposable variations. Generally, 

thermal printheads are designed to be regularly replaced whereas piezoelectric printheads, being 

significantly more expensive, are designed to last for the life of a printer. In some specialized 

material printers designed for laboratory research use, the printheads are of the piezoelectric type 

and made for a single-use.  

 In consumer-level printers, the most prevalent type of printhead is of the thermal variety. 

A thermal printhead is composed of an array of ink chambers formed by a photolithographic 

process and connected via supply lines to an ink supply. Each chamber has a resistive heating 

element that can rapidly vaporize an ink droplet. The vaporization of the ink droplet creates a 

bubble and the pressure difference across the bubble causes it to be ejected from the chamber and 
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onto paper. As it is being ejected, an additional supply of ink is drawn into the chamber in 

preparation for the next heating/jetting cycle.  

 Inks are colored with either dyes or pigments and must contain a volatile component in 

order for the bubble to form with heating. Controlling the heating elements in the ink chambers 

with a specific sequence of current flow prompts the jetting of the ink and allows for the 

formation of the desired print patterns on the target media.  

 A piezoelectric printhead, in contrast to thermal, does not use a heating element; ink is 

forced from chambers mechanically by charging a piezoelectric material. When charged, the 

piezoelectric element flexes, propelling the ink out through a nozzle. The lack of heat in the 

process eliminates the need for inks to have a volatile component, which allows for a wider 

range of materials to be printed.  The material printing of titanium dioxide requires the use of 

piezoelectric printheads to prevent an aggregation of particles prior to deposition. Piezoelectric 

printheads are the primary type used in industrial and manufacturing applications. At the 

consumer level, Epson printers are made with fixed piezoelectric printheads that are designed to 

last for the life of the printer.  

C.2.2 Suspension Requirements for Inkjet Printing 

 Three properties of a suspension determine whether it is printable: viscosity, surface 

tension, and maximum particle size. The viscosity—the measure of the fluid resistance to flow—

of the suspension must be low enough for the printer to have sufficient driving force to move the 

solution through the feed system and for the spraying power of the piezoelectric printhead to be 

sufficient to jet a droplet. Too low a viscosity and the printer cannot control the jetting. The 

range of printable viscosities for an Epson printer has been determined as 1 cP to 20 cP, where 

cP is the centipoise unit [14]. Water at 20°C has a viscosity of 1cP. For the solution to not drip 
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out the printhead prior to jetting, the surface tension of the suspension must be high enough for it 

to be held in the nozzle. Surface tension cannot be too high else it will prevent printed droplets 

from spreading in the surface of the substrate. The range for this parameter has been found to be 

28 mN/m
2
 to 350 mN/m

2
 [14]. 

 The maximum particle size has to be limited to a value below the nozzle size in order to 

ensure that clogs do not develop. The size limit is determined by the ratio of the nozzle diameter 

to the volume distribution value of the suspension dv90, the particle size that is greater than 90% 

of the particles present in the suspension. This ratio has been reported as 50:1 [8]. Solutions to 

the Naveir-Stokes equation can express these parameters as a single number known as the 

inverse Ohnesorge number, Z: 

 
  

(   ) 

 
 

(C-1). 

In equation C-1, α is the nozzle diameter, ρ is the suspension density, γ is the surface tension, and 

η is the viscosity. The range of Z for printable inks has been determined experimentally as 

4<Z<14 [8]. 
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Appendix D: TiO2 Suspension Stability 

D.1 Aggregation 

As Titanium dioxide (TiO2) is not a soluble substance in any medium and because of the 

small masses, nanoparticles of TiO2 have a natural tendency towards combining into clusters of 

one or more particles. Depending on the nature and strength of the particle bonding, these 

particles groupings are known either as aggregates or agglomerates
2
. Aggregates are strongly 

bonded particle clusters which are difficult to break apart without a directly applied force. 

Agglomerates, in contrast, are only loosely bonded particle groupings and can readily dissociate 

when certain properties of the solution are altered.  TiO2 particles readily form both aggregates 

and agglomerates when in aqueous solutions with a low or neutral ionic content. 

Aggregates and agglomerates effectively function as individual particles of larger sizes 

leading to a decrease the overall surface area and fewer photo-sensitizer adsorption sites. Typical 

techniques used to reduce the presence of aggregates involve subjecting suspensions to attrition 

grinding, either through manual grinding effort in a mortar or by mechanically assisted means 

such as ball or planetary milling. Ultrasonic probes are also routinely used for the same purpose; 

the high frequency vibrations produced by the probe transfers mechanical energy for the 

disruption of the molecular forces holding the aggregates together.  

In the context of DSSCs, an ideal TiO2 mixture, in paste or suspension form, would 

contain no particle aggregations. Agglomerates can be normally be dissociated by adjustment of 

the suspension’s ion concentration by the introduction to the suspension of highly acidic or 

highly basic chemicals.  

                                                           
2
 There is some inconsistency on this point in the literature: at times the terms are used interchangeably for any type 

of massed particle groupings, irrespective of whether they are weakly or tightly bonded.  
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 The stability against aggregation of metal-oxide nanoparticles when dispersed in an 

aqueous media has become a topic of considerable interest over the past several years. Much of 

the interest has focused on developing stable suspension formulations to keep individual 

nanoparticles apart prior to delivery onto a target surface. When aggregation occurs, the 

favorably high surface area to volume ratio of the nanoparticles is diminished and specific 

delivery methods—such as dip-coating, screen-printing, or printing—may become inefficient or 

compromised resulting in non-uniform layers   

Another motivation for an understanding of the suspension stabilities of nanoparticles 

relates to the particles’ behavior when directly exposed to living cells. As one of the most 

commonly encountered nano-materials, TiO2 has received significant scrutiny for potential 

adverse health effects. TiO2 is one example of a metal-oxide material that has seen application in 

a large variety of commercial products covering a wide variety of uses. In bulk form, TiO2 is 

considered to have a positive bio-compatibly.  

When TiO2 is reduced to or is generated in nano-particulate form, a new set of concerns 

arise, especially when the particles have the potential to be released into the environment. The 

concerns stem primarily from negative reactions to TiO2 nanoparticles observed under laboratory 

conditions with exposed rats [26]. There is associated with these observations the belief that 

nanoparticles are able to penetrate living cells with ease and once inside, can proceed to disrupt 

cellular function, especially as individual particles aggregate into larger masses. Specific 

research questions being asked in this context relate to the range of naturally occurring 

conditions in which aggregation occurs as well as identifying measures that can serve to prevent 

that aggregation.  
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Investigations in this area have helped establish the range of conditions in which 

aggregation occurs and those in which it does not. One of the critical factors relating to the 

chance for aggregation is the pH of any aqueous environments into which the particles are 

released. A second factor is the presence and type of coating on the surface of the particles. 

Uncoated particles will, when in proximity with each other, aggregate with ease in an aqueous 

media with a neutral pH.  

For a liquid to be pH neutral it must have an equal concentration of the two ions that form 

when water dissociates: hydrogen (H+), a positively charged ion, and hydroxide (-OH), a 

negative ion. The pH scale is logarithmic, runs from 1 to 14, and refers to the concentration of 

hydrogen ions.  Pure water has an equal concentration of hydrogen and hydroxide ions and is 

defined as having a pH of 7. Below 7 on the pH scale, the solution will have a preponderance of 

hydrogen ions and is said to be acidic. Above 7 and the hydroxide ions dominate and the solution 

is referred to as basic.  

D.2 Deposition Method-Specific Suspension Formulations 

A number of methods are available for the deposition of nanoparticles. The principal 

objective of each is to produce a layer with a well-defined and consistent structure. A stable, 

uniform suspension ensures that an evenly deposited layer will have a consistent nano-

structuring throughout once liquid components are driven off. The exact method for stabilizing 

the dispersion of the particles is determined by the requirements of the specific application. In 

electrophoretic deposition, for example, dispersing agents that bind directly to the nanoparticles 

are to be avoided as they interfere with attractive forces between surface charges and the 

opposite charges placed on a target surface [26].  
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 As nanoparticles are insoluble, one option for achieving a stable suspension is to require 

that the aqueous media in which the particles are dispersed possess properties that counteract 

attractive intermolecular forces. This is primarily accomplished by modifying the pH in the 

surrounding bulk fluid [27]. A second approach to promote stability is to coat the particles with 

neutral or electrostatically repulsive materials [25]. The coating approach may be pursued in 

applications where the suspension must have a neutral pH or if the suspension requires a pH that 

falls within a range that does not promote dispersion stability. Such is the case for many inkjet 

printers which use a mildly basic ink pH to help prevent corrosion in the printing system but that 

requires extra precautions to prevent agglomeration of ink pigments.  

D.3 Nanoparticle Electro-Chemistry 

In a standard model of nanoparticle interactions, the Gouy-Chapman-Stern (GCS) model, 

a nanoparticle’s surface charge will produce an electric field that attracts oppositely charged ions 

in the surrounding fluid medium [28]. The actual strength of the surface charge depends on the 

pH of the surrounding fluid and can equal zero if the pH is equal to the Isoelectric point (IEP) of 

the particles. The position of the IEP on the pH scale roughly determines the main pH regions of 

stability against aggregation.  

When the field strength surrounding the particle has a large enough magnitude, a tightly 

packed layer of counter-ions, called the Stern layer, will form on the surface of the particle. If the 

surface charge on the particle is not fully screened by the Stern layer, additional ions are drawn 

in by Coulombic attraction. The secondary layer forms a diffuse arrangement of ions that extends 

from the particle surface to a distance equal to the Debye length. At the Debye length, the 

surface charge is sufficiently screened by ions to prevent additional ions from being securely 

held in place around the particle.  
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The electrostatic force generated by the surface charges present on the nanoparticle 

wall—the particle wall being the boundary between the solid material of the particle and the 

surrounding space—falls off exponentially. The Debye length for nanoparticles is often quite 

short in actual length but large in relation to the size of the nanoparticle. Taken together, the 

Stern and secondary ion layers are referred to as the Interfacial double layer or Electronic double 

layer (EDL). The interface between the double layer and the surrounding medium is called the 

Slipping plane [26]. The Slipping plane is the spatial limit of the nanoparticle to maintain a hold 

on ionic charges; inside the EDL the counter-ions are held with enough electrostatic force to 

ensure that they move in consert with the nanoparticle.  

Figure C-1 provides a graphical representation of the GCS model with key elements 

identified.  

 

Figure C-1: A charged nanoparticle in suspension attracts oppositely charged ions to the 

surface, forming an interfacial double layer of ionic charges. The double layer extends out 

to the Debye length where surface charges are screened to a high enough degree to prevent 

a secure electrostatic hold on additional ions. 
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The potential of the Slipping plane interface is known as the zeta (ζ) potential. The ζ-

potential, also referred to as the electrokinetic potential, is defined as the potential difference 

existing between the slipping plane of a particle’s EDL and an arbitrarily defined neutral point 

within the surrounding bulk fluid [28]. According to the model, the inclination towards 

aggregation exhibited by dispersed nano-particles varies according to the ζ-potentials of the 

particles. A ζ-potential close to zero corresponds to a particle that does not carry enough 

repulsive force to prevent van der Waals forces and hydrogen bonding from leading to particle 

aggregation. Generally, a ζ-potential with a positive or negative magnitude greater than 40mV is 

sufficient to achieve moderate levels of suspension stability.  

 For TiO2 nanoparticles, the value of the ζ-potential as a function of suspension pH has 

been well studied. The stable range of TiO2 occurs for pH values which result in ζ-potentials of 

±30mV. The precise boundaries of the stability range vary based on a number of factors 

including nanoparticle concentration, temperature, and the age of the suspension. The size and 

morphology of the nanoparticles will also influence the stability. Guiot and Spalla [26], based on 

a study of four different TiO2 nanoparticles, identified a general range of dispersion instability 

for pH values between 5 and 9. Each of the TiO2 particles studied by Guiot and Spalla were 

believed to have been coated with various substances to promote dispersion stability. Generally, 

ζ-potentials for TiO2 have been found to be higher in magnitude for basic suspensions than for 

acidic ones. Lebrette et al. measured ζ-potentials greater in magnitude than -40mV for pH values 

greater than 7.5 and less than 2.5 [29]. TiO2 powders with IEPs shifted to lower, acidic pH 

values have also been studied and show a corresponding shift down of the region of pH 

instability [25, 30].   
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D.4 Stabilizing Additives 

 A number of additives have been used in efforts to promote TiO2 dispersion and control 

aggregation. Among the most common are alcohol based and include Poly ethylene glycol 

(PEG), glycerol, ethanol, and terpineol. The commonality in the chemical makeup of every 

alcohol is the presence of hydroxyl groups (-OH) bonded to carbon atoms. Two important 

characteristics of alcohol based additives, and why they are often preferred as stabilizing agents, 

is their chemical neutrality (pure alcohols have a pH of 7) and complete solubility in water. In 

applications where the suspension formulation requires a neutral, weakly acidic or weakly basic 

pH which would normally be in the unstable pH region, alcohols have been used to limit 

aggregation and promote dispersion. This also effectively simplifies the suspension processing in 

that pH adjustments to a particle’s region of pH stability by addition of strong acids or bases may 

be unnecessary.  

D.4.1 Poly Ethylene Glycol 

Poly ethylene glycol (PEG) has seen broad usage in a variety of applications from food 

products to medicines. PEG is available in a number of molecular weights, from 200g/mol up to 

20,000g/mol. Low molecular weight PEG has a highly viscous, waxy appearance and high 

molecular weights appear as solid crystalline flakes. All PEGs are readily soluble in a number of 

liquids including water, ethanol, and acetonitrile. The chemical structure of PEG molecules is 

HO(CH2CH2O)nH where the central portion is an ethylene unit repeated n times; the number of 

repeats determines the overall molecular weight of a particular PEG [31]. The usual practice is to 

refer to PEGs by molecular weight as opposed to the number of ethylene units in the chemical 

structure. Thus a PEG with 200g/mol weight is known as PEG200.  
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The process of coating a large molecule with PEG is known as PEGylation and prevents 

agglomeration by providing a non-ionic exterior shell that interferes with ionic bonding. Coating 

TiO2 nanoparticles has also been demonstrated to significantly reduce the cytotoxicity associated 

with exposure of TiO2 particles to living tissues [27].  

The stability effect of PEGs of varied molecular weights when added to TiO2 suspensions 

has been well studied. Kim and McKean observed that increasing the molecular weight of the 

PEG additive led to improvements in the stability of the suspensions against aggregation. Adding 

PEG20000 to TiO2 suspensions was able to significantly reduce sedimentation when present in a 

1:2 by weight ratio with TiO2 powder [21]. To avoid an excess of free polymer in suspension, 

Kim and McKean suggested that a 1:2 ratio is too high based on a UV absorption spectrum 

obtained for prepared samples showing the presence of the polymers. 

D.4.2 Ethanol 

 Alcohol-based chemicals, especially ethanol and terpineol, have a long history of usage 

as a primary solvent in DSSCs. For inkjet depositions of TiO2 suspensions, water is often 

preferred for the main solvent to ethanol as it extends the drying time and helps prevent material 

buildup at the nozzles associated with rapid solvent evaporation. Still, a small addition of ethanol 

can help promote dispersion stability.  

Lebrette et al. studied the effects of ethanol on the properties of TiO2 suspensions [29]. A 

theoretical analysis suggests that the increase in ζ-potential is a consequence of a shift in the 

slipping plane further away from the particle surface. The surface charge of the particles and the 

ionic loading was not affected, however, suggesting that the ethanol was interfering with the 

hydrogen bond structure in the water, causing the shift in the slipping plane.  
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Appendix E: Equipment List 

 

 To complete the tasks required by the proposed objectives, additional materials, supplies, 

and equipment were procured, primarily for the milling apparatus. The entire material and 

equipment list, along with a description of each item’s function in the project and approximate 

cost, is given in Table E-1. Chemicals and other items not listed in Table E-1 and that were used 

for solution preparations are detailed in the sections related to their use.  

Table E-1: Material and equipment required for the research tasks, the quantity required, 

and the cost of the items procured specifically for the conducted research. 

 Description Quantity Needed Cost (USD) 

Inkjet Printer 

Piezoelectric printhead-equipped 

printer with direct printing to 

substrate of custom suspensions 

1 100 

Ink Cartridges 
Empty ink tanks; 1 required for each 

ink color of the printer 
6 20 total 

Syringes, needles, filters 
Used to inject suspension into ink 

tanks 
10 65 Total 

Spin-Coater 
High-speed spin-coater for the spin-

on application of suspensions 
1 NA 

Conductive Glass Slides 

Transparent conducting oxides; 2x2 

inch slides were available and were 

cut to 4 1x1 inch slides 

~80 
Obtained from 

stock supply 

TiO2 nanoparticles 

The material to be held dispersion in 

suspension for printing and spinning 

onto substrate 

200 grams 
Obtained from 

stock supply 

PEG 

Two molecular weights required, 

600 and 20000 selected; used as 

dispersant, surfactant, and pore-

forming agent 

50 grams each 80 total 

Denatured Alcohol Solvent 500 ml 
Obtained from 

stock supply 

Milling Jar 

Alumina milling jar with ceramic 

balls for attrition grinding of 

aggregates in suspension 

1 160 

Milling Carriage 
Custom-made assembly to support 

milling jar while being rotated 
1 20 

Bench Grinder 
Small, variable-speed grinder to 

drive the rotation of the milling jar 
1 30 
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