
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Technical Library School of Computing and Information Systems

2018

Puzzle Level Generation with Answer Set Programming Puzzle Level Generation with Answer Set Programming

Daniel Lindeman
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib

ScholarWorks Citation ScholarWorks Citation
Lindeman, Daniel, "Puzzle Level Generation with Answer Set Programming" (2018). Technical Library. 325.
https://scholarworks.gvsu.edu/cistechlib/325

This Project is brought to you for free and open access by the School of Computing and Information Systems at
ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/cistechlib
https://scholarworks.gvsu.edu/cis
https://scholarworks.gvsu.edu/cistechlib?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/cistechlib/325?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Puzzle Level Generation with Answer Set
Programming

By

Daniel Lindeman

A project submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Information Systems

at
Grand Valley State University

December, 2018

Dr. Robert Adams Date

Table of Contents

Abstract 3

Introduction 4

Background and Related Work 5

Program Requirements 5

Implementation 6

Results, Evaluation, and Reflection 8

Conclusions and Future Work 9

Bibliography 10

Appendices 11

 Appendix A 12

 Appendix B 13

 Appendix C 14

Abstract
Swappy is a puzzle game that requires different character tokens to cooperatively navigate a maze

to reach their goals. Swappy characters are special in that whenever they are collinear with another
character, they may swap places. In practice, generating levels manually may take upwards of 20 hours and
is error prone. After exploring the space of procedural content generation, it was hypothesized that by
employing Answer Set Programming (ASP), it would be possible to generate and constrain level creation
such that procedurally generated levels are solvable, meet an aesthetic standard, and follow the rules of the
game. Using the grounder/solver tool, Clingo, level creation can be done in a matter of seconds or minutes.
The expressive power of rules and constraints allows the developer to more clearly see their game for the
abstract ruleset that it is. In this project, we explore the use of AnsProlog to generate artifacts useful for
level generation for the puzzle game Swappy - finding succinct and expressive ways to do so compared to
traditional programming languages.

Introduction
Swappy is an puzzle game I developed several years ago. Swappy is a maze game at its core, with

some special caveats regarding character traversal and cooperation. In Swappy puzzles, there are two to
four character tokens of different colors. To solve a level, all character tokens must reach their like-colored
goal at the same time. Character tokens may move to adjacent spaces, and may walk through doors that
share their color. The eponymous mechanic comes into play when character tokens are collinear on the
map. For example, if the green and blue character’s X coordinates are the same, the two tokens can switch
places with each other. The same swapping rules are true for matching Y coordinates.

Figure 1. A Swappy level with three character tokens.

In its early stages, Swappy levels were generated using buttons, graph paper, and Sharpie markers.

The process for making a single level would take several hours. The experience of manually generating
levels this way was enough to convince me to work on a procedural content generation (PCG) system for
Swappy. Often, after working on a level, playtesting would reveal shortcuts and other undesirable errors.
Because I also author the levels to be compact, it is difficult to correct errant pathways without removing
the intended solution or introducing even more errors. This project set out to discover and develop methods
for procedurally generating content for the game, in order to: increase the speed of authorship; reduce
errors; and lower frustration.

Background and Related Work
AnsProlog is an expressive logic programming language in the realm of content generation. Using

facts and rules, a developer describes their game, and only their game. AnsProlog will then do the heavy
lifting and create a program consistent with those facts and rules. Compared to coding in a traditional
language, like Python or Java, where the developer is left to explore minutiae in lieu of addressing their
core problem. For example, when I began this project with an agent-based approach (detailed later), the
approach involved code for mutating matrices, checking boundary conditions, and text parsing - none of
which have much to do with the rules of Swappy.

A subset of logic programming, Answer Set Programming (ASP), uses facts, rules, and constraints
to create stable models given input programs. AnsProlog is a dialect of Prolog used for ASP. Unlike
standard Prolog, which generates a single consistent space from the facts and rules, AnsProlog has a
construct called a choice rule. Choice rules give AnsProlog the ability to generate multiple consistent
worlds. Instead of querying for a particular fact like standard Prolog, the output of an AnsProlog program is
every single set of logically consistent facts that can be derived. These are called answer sets. AnsProlog
has been found to be a natural fit for procedurally generating game artifacts. It is a productive language to
use because a game can be thought of as objects that obey rules. Because ASP generates every possible
answer set, a single program may generate hundreds or thousands of useful artifacts - a huge boon to
productivity.

A shortcoming of AnsProlog is that it does not lend itself to test-driven development. To get a
similar experience, the authors of A Pragmatic Programmer’s Guide to Answer Set Programming (Cliff &
DeVos, 2009) suggest building a visual feedback loop for artifacts generated by ASP. To that end, instead
of writing test mocks and a test suite, it is often easier to write a rendering engine. Fortunately, the Swappy
client I created accepts ASCII art representations of levels as input and, as a result, developing the renderer
was easy.

Despite shortcomings, AnsProlog is a productive language for PCG. Procedural Content
Generation in Games (Shaker et al., 2016), a book that aims to survey the entire space of PCG, contains a
chapter detailing its use. There are several authors who appear to be prolific using ASP (Cayli et al.,
2007,;Smith et al., 2013). The POEM Lab at NCSU, lead by Dr. Chris Martens has been productive with
AnsProlog for procedurally generating content (Martens, 2018). Dr. Martens’ tutorial on AnsProlog was the
first tutorial I used to familiarize myself with the language (Martens, 2017). At the Strangeloop 2018
conference in St. Louis Missouri, I met Dr. Martens and was able to consult with her about my project.
After demoing Swappy, she immediately felt AnsProlog would be useful, and pointed me in the direction of
some popular AnsProlog works (Smith & Mateas, 2011; Smith et al. 2013). The virtues of ASP for PCG
are being explored heavily in academia, and in my research, I was unable to find a commercial game using
the technique.

A useful pattern for PCG with ASP is a pattern from Procedural Content Generation in Games
(Shaker et al., 2016) I have come to call “core-sim-style”. In this pattern, three programs are developed: a
core; a simulation; and a style program. Both core and sim follow the define-generate-test pattern found in
Clingo Users Guide (Gebser et al., 2014). The core is used to generate the game pieces and explain their
relationships. The sim program acts as a simulation of gameplay. This artifact is not used as part of the
level that can be rendered. The existence of a consistent simulation ensures that gameplay rules are
followed, and that following the rules can produce a solvable artifact. Lastly, the style program is
concerned with generated artifacts meeting some criteria of aesthetic standard.

Program Requirements

Intermediate and challenging Swappy levels that are manually authored can take anywhere from 8
to 20 hours to create. Even the most trivial levels take minimally around a half hour. Any program that can
best this rate would be an improvement to the current process. To aim a little bit higher, we should consider
that manually created levels take anywhere from a minute to fifteen minutes to solve for most playtesters.
In an ideal world, the level generator could keep a steady feed of increasingly complex levels for any play
session. With this in mind, the aimed-for generation time constraints should be on the order of one to
fifteen minutes.

Utilizing the “core-sim-style” approach found in Procedural Content Generation in Games
(Shaker et al., 2016), I was able to develop a level generator for Swappy in AnsProlog. The AnsProlog is
run by a small Python command line application that allows the user to alter the parameters of the output
level. The alterable parameters are the width of the level, and the number of character tokens to be used for
the generated level. What is rendered to the user is an ASCII representation of a Swappy level. This level
can be placed in a Swappy client to see and play the generated level.

Figure 2. ASCII representation and rendered level side by side.

Implementation

I developed the generator in a combination of Python and AnsProlog. The generator consists of
four parts; a command line application, and three AnsProlog programs. I built the command line
application in Python using Google’s Python Fire (Bieber & Patel, 2018). Python Fire is familiar to me and
I find it useful for rapidly developing command line applications. The command line application shells out
to run the three AnsProlog files using the grounder/solver tool Clingo. Even though the program is
generating potentially hundreds of thousands of answer sets, only one is randomly chosen. The facts
produced in the chosen answer set are given back to the Python utility to be parsed and rendered as ASCII
art in a terminal. The output then becomes input to a Swappy game client.

A useful analogy for thinking about “core-sim-style” is to imagine a board game. Core is
responsible for making the tangible things in the box. Simulation can be thought of as the instruction
manual for the game. Its use is not required during gameplay, but the rules and relationships among the
game pieces in the box is explained in it. Following the instructions will ensure that players have correctly
played the game and explain when a player has won. Lastly, the style component can be thought of as the
painting on the pieces, the illustrations on the tiles, and all of the work that goes into making the game feel
and look fun.

Following along with the source repository, let’s examine the code (Appendix A). (To follow
along with the code, view generator/core.pl.) Lines one through three allow user input for constants, with

some sane defaults. Line seven uses the number of players in a cardinality constraint rule (see Appendix C).
The rule states that an answer set must contain a set of colors with “number_of_players” elements in it. We
then use the selected colors to make the rest of our game objects. Lines four to 11 are facts instantiating the
entities found in Swappy. For example, if blue and green were chosen these rules would create answer sets
that contain blue and green doors, players, and goals. Lines 14-17 are cardinality constraints for generating
sprites. A sprite is an abstraction for what will eventually be given back to Python for rendering. A sprite
fact contains a tile with X and Y coordinates, a sprite name, and a color. Each of these lines can be read as,
“for every tile, maybe place this sprite here.” This is done for doors, walls, players, and goals.

At this point, the facts are expanded and we could potentially render. However, the results may
contain absolute nonsense. We may have answer sets where every goal, player, door, and wall are on the
exact same tile. To ensure sane output, we need to constrain what is generated using constraint rules. In
AnsProlog, a rule without a head can be read as “Discard answer sets if the following happens.” With that
in mind lines 20-43 are responsible for defining qualities of answer sets that can be discarded. Comments
above each constraint illuminate their specific purpose. Some examples include, “No duplicate players,”
“Players do not start on goals,” and “Don’t put players or goals on top of doors.”

Next, we examine the code in generator/sim.pl. This code is responsible for creating facts and
relationships about valid ways of playing the game. In the code, the idea of a character being able to reach a
tile is captured in a touch fact. A touch fact contains a color and a tile. If the green player touches the tile at
coordinate (4, 5), the fact touch((4, 5), green) will be generated. We begin by having a touch generated at
the location of a player sprite on line two. This initial touch will be important once we establish adjacency
rules.

In Swappy, characters can walk to adjacent spaces. We define what adjacency is in lines five to
eight by using some simple grid math. To define player movement via walking, we will use this adjacency
definition on line twelve. The rule can be read as, “If there is a touch on tile T1, then for every adjacent tile
T2, there is also a touch for tile T2.” Using this definition and providing an initial touch per player, will
give us a flood fill of adjacency from where the player starts.

Next, we recall that Swappy tokens are able to swap places when they are collinear. The rules in
lines 15-27 allow for this. The conditions for swapping to another tile are; another character token has
touched it, and either the X coordinates or Y coordinates are equal. The first rule takes care of horizontally
collinear tokens, the second allows for vertical collinearity. Now that we have generated facts about what
tiles players can touch, we should constrain our program to follow the rules of Swappy. To prevent players
walking through walls and wrong-colored doors, we constrain movement on lines 30 and 35. The
constraints discard levels where players traverse (touch) a wall or a wrong-colored door. With movement
rules generated and constrained, we can now define the win conditions of Swappy. On lines 42 and 45, we
say that a level can be considered complete if a player touches their goal. We also enforce that this must be
done for every character token.

Finally, we want to generate levels such that each character token starts in a region with a goal in
it. This exists because of a discovery during development where I found that levels without this feature are
unsolvable. We define sight similar to walking, but do not constrain on doors. For a visual understanding,
note that the blue character in Figure 1 can “see” the red goal in the room adjacent to him, even though he
could not walk to it. The green and red characters in Figure 1 can also “see” the blue and green goals
located in the upper right corner.

We wrap up our examination by looking at generator/style.pl to see what aesthetic properties we
define. On line four we generate walls in clusters of three by enforcing a cardinality constraint on adjacent
walls. In practice, this made generated levels have walls that clump up less. On line seven we have a similar
constraint around the tiles adjacent to a door. This rule was intended to make sure that doors were more
likely to be placed in hallways. Finally, we reject answer sets that have doors adjacent to each other. This

rule has been broken in manually created levels, but for the generator, its inclusion has assured levels look
more spaced out, and generally leads to more movement required of character tokens to reach their goal.

Before settling on ASP, I took two approaches to PCG. The first approach was an agent-based
approach where I started with a grid filled with walls. I would then place agents within the grid and slowly
have them “carve out” playspace. The agents keep track of what they had “seen” and “done”. I slowly built
up rulesets and exceptions for the agents to follow. For example, “do not walk on a tile another player has,”
or “prefer walking in straight lines.” This implementation felt like evolutionary steps towards what it might
take to develop a solver for Swappy, but felt very removed from the game’s rules. The agent-based solution
also generated snaking paths, and the solutions were incredibly obvious. To remedy this, I would need
another pass to stylize or obfuscate the level solution. I abandoned this approach because mode switching
between high-level design goals, and minutiae of agent behavior felt more difficult than manual generation.

The second attempt tried a sort of back-tracking. I would start by generating a goal, and then
continue to produce paths away from it. Each goal would be given a list of moves to pull from involving
door placement and swapping. It was during this iteration that I began thinking about the underlying level
structures and generating directed acyclic graphs out of levels. The insight of finding a directed acyclic
graph within Swappy may be used in future work. This attempt was markedly more productive than the
agent-based approach. However, like the previous attempt, the approach was marred with coding minutiae,
and was eventually abandoned in favor of AnsProlog at the recommendation of Dr. Chris Martens.

Results, Evaluation, and Reflection
I created a level generator that can make simple Swappy levels. In some instances the generated

levels stump me. The levels may be simpler than ones manually generated, but I consider this a huge
personal victory. For the first time, I was able to experience a Swappy level from the perspective of a
player. The insight into how fun playing Swappy is to players is encouraging. That said, I was unable to
generate a level that needed more than a minute or two to solve. The manually generated levels may take
players upwards of fifteen to twenty minutes. Looking ahead, it is clear that more rules and constraints
around difficulty must be developed.

While developing the generator, I learned quite a bit about my own game. For example, the
generator has a rule requiring character tokens to share a region with a goal. This idea came about during
playtesting. I was playing the first successfully generated level that had rules concerning swapping, and at
first glance the level appears solvable. After trying for several minutes, however, I realized the green player
was locked in a region without a goal in it. This led me to critically look at all manually generated Swappy
levels. I discovered that if a player is in a region without a goal in it, then the level is unsolvable. Without
the generator, this discovery may not have been made.

The generator also has no issue generating patterns that I would not have otherwise seen. For
example, a constraint about doors having two neighboring walls revealed that I could have doors in corners.
This was always possible, but because the generator does not have instructions to make the two walls
adjacent to a door collinear, it has no qualms about making corner doors. These doors allow for some
interesting puzzles and, in all my time developing Swappy, I had never thought to do this. To me, the
unexpected-but-useful artifacts are the most valuable, and I anticipate there is more to learn.

The generator may still produce unsolvable results. This is due to bugs around the win condition
of the game. The ruleset developed states that as long as every player can reach their goal, at all, the level is
solvable. This is not true in all cases. Consider levels where each player could visit their goal individually,
which satisfies the constraint as written. However, the rules of Swappy require that all players reach their
goals simultaneously, something the coded rules do not enforce. In order to address this bug, I researched
solvability and found promising directions in A Case Study of Expressively Constrainable Level Design
Automation Tools for a Puzzle Game (Smith et al., 2012). Smith et al. (2012) developed a directed acyclic

graph for the game Refraction to encode and enforce its solvability. Therefore, I generated a directed
acyclic graph for Swappy levels. Such a graph can be constructed for all manually generated levels, and
enforcing the existence of such a structure would result in levels that are always solvable. However, I was
not able to successfully encode such requirements.

Conclusions and Future Work
Given my unfamiliarity with the problem space of PCG, AnsProlog, and ASP, a satisfactory seed

for a level generation system for Swappy has been developed. However, the solution is not without faults.
The current implementation is slow, likely due to my unfamiliarity with the AnsProlog language.

In some cases the generator can run much longer than the aimed-for maximum of fifteen minutes. Runs of
the program also exist that may take hours, but I typically terminate these runs after the fifteen minute
mark. It has been shown that scalability need not be a problem for PCG with AnsProlog (Smith & Bryson,
2014). For the current implementation, as the input parameters increase, so does the generation time
(Appendix B). Exploring more efficient ways to model and run the generator may be fruitful.

Because some generated levels are unsolvable, the solution is not necessarily less error prone than
I am at manually generating levels. Instead, it is differently error prone. I detailed some thoughts above
about how I might solve this using a directed acyclic graph. In future work, I would encode a directed
acyclic graph of gameplay. At this time, I don’t think complete correctness is infeasible, but it remains to
be developed.

At the outset of the program, I had no understanding of common patterns and practices in PCG
outside of playing video games that employ it. I am now minimally conversant in AnsProlog and know
quite a bit more about ASP and PCG. Also, getting practical experience with declarative programming
languages may prove beneficial as the popularity of declarative infrastructure systems, like Kubernetes,
continues to increase.

The generator has some vestigial code related to the number of moves each character token may
make. A move is considered; walking, walking through a door, and swapping with another character.
Combined with the directed acyclic graph implementation above, it may be true that this is a useful
heuristic for adding complexity to a level. Future implementations should include constraints pertaining to
number of moves taken.

The generator only produces a single level, and does not tie directly to a Swappy client. At
present, I am manually copying output levels into another game client, developed earlier. The solution
should be integrated with a Swappy client to make a seamless generation experience. Perhaps a future
implementation would track the most-recently generated level constraints and gradually generate more
challenging levels.

The game client used was written in Python 2, in the game framework PyGame. Future clients that
integrate the solution should likely be developed in more common game frameworks like Unity or The
Unreal Engine. Finally, the command line application could be transformed into a level generation web
server that exposes an endpoint to consume desired parameters for generation. This would allow generator
and client development to be completely separate concerns.

This solution has taken level generation for Swappy from graph paper and buttons to AnsProlog
and ASP. I am impressed by the expressive power of AnsProlog. For instance, the rules that encode
swapping are succinct, mathematical, and elegant. To see my game in this form was delightful. I also feel
like I have another author to bounce ideas off of and take inspiration from - an invaluable asset. I believe
that I have added valuable tools to my toolbelt in the form of ASP and AnsProlog. I have pushed myself
into a previously unknown territory and did not come out empty handed.

Bibliography
● Bieber, D., Patel, S., Python Fire, (2018), GitHub repository,

https://github.com/google/python-fire
● Noor Shaker, Julian Togelius, and Mark J. Nelson (2016). Procedural Content Generation in

Games: A Textbook and an Overview of Current Research. Springer. ISBN 978-3-319-42714-0.
● Smith, A. M., & Mateas, M. (2011). Answer set programming for procedural content generation:

A design space approach. IEEE Transactions on Computational Intelligence and AI in Games,
3(3), 187-200.

● Smith, A. M., Butler, E., & Popovic, Z. (2013, May). Quantifying over play: Constraining
undesirable solutions in puzzle design. In FDG (pp. 221-228).

● Smith, A. M., Andersen, E., Mateas, M., & Popović, Z. (2012, May). A case study of expressively
constrainable level design automation tools for a puzzle game. In Proceedings of the International
Conference on the Foundations of Digital Games (pp. 156-163). ACM.

● Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo= ASP+ control:
Preliminary report. arXiv preprint arXiv:1405.3694.

● Gebser, M., Kaminski, R., König, A., & Schaub, T. (2011, May). Advances in gringo series 3. In
International Conference on Logic Programming and Nonmonotonic Reasoning (pp. 345-351).
Springer, Berlin, Heidelberg.

● Caylı, M., Karatop, A. G., Kavlak, A. E., Kaynar, H., Türe, F., & Erdem, E. (2007). Solving
challenging grid puzzles with answer set programming.

● Brain, M., Cliffe, O., & De Vos, M. (2009). A pragmatic programmer’s guide to answer set
programming. 49-63. Paper presented at Software Engineering for Answer Set Programming
(SEA09), Potsdam, Germany.

● Smith, A. J., & Bryson, J. J. (2014). A logical approach to building dungeons: Answer set
programming for hierarchical procedural content generation in roguelike games. In Proceedings of
the 50th Anniversary Convention of the AISB.

● Martens, C., POEM home website, (2018) https://sites.google.com/ncsu.edu/poem/home
● Martens, C.(2017), Notes on Answer Set Programming,

http://www.cs.cmu.edu/~cmartens/asp-notes.pdf

https://github.com/google/python-fire
https://sites.google.com/ncsu.edu/poem/home
http://www.cs.cmu.edu/~cmartens/asp-notes.pdf

Appendices

Appendix A
Swappy Level Generator Source Code https://github.com/DanLindeman/swappy-gen

https://github.com/DanLindeman/swappy-gen

Appendix B

Number of players Level Width Time to Generate ASCII Output

2 5 0.030s +G##

##g
 g##
.R##

3 6 12.061s *
b### G

#-Y###
#bBb.#

3 7 39.820s r###
 *## #
Gr## ##
 ##Br#r
##+b##

R.

3 8 260.069s ########
#b b r #
#Rb#####
#.##

#r#b##
#B# ##
*+G

Appendix C

Example Rule Type and Explanation

wall(none, wall). A Fact. A wall is a tuple of none (no color), and
the sprite name ‘wall’.

door(C, door) :- color(C). A Rule. If there is a color for color C, then there is
a door of color C.

{ touch(T2, C) : adj(T1,T2) } :- touch(T1, C). A Choice Rule. If there is a Touch on tile T1, then
for every adjacent tile T2, there is also a Touch for
tile T2.

0 { sprite(T, S, C) : goal(C, S) } 1 :- tile(T). A Cardinality Constraint. If there is a tile T, for
every goal of color C and sprite S, generate 0 to 1
sprites on tile T, of sprite name goal, for color C.

:- sprite(T1, goal, C1), sprite(T2, goal, C2),
C1==C2, T1!=T2.

A Constraint. Discard any answer set that has two
goal sprites that share a color.

	Puzzle Level Generation with Answer Set Programming
	ScholarWorks Citation

	tmp.1545230060.pdf.Y7iz4

