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Abstract 
Fake News and Hoaxes started since the internet era. The fake news trend 
started mainly to deceive readers, increase readership and is often used as 
a means of psychological warfare. Advances in technology and the spread 
of news through different types of media, without actually verifying the 
facts, have increased the spread of fake news today. The main purpose of 
this project is to come up with a classifier which can differentiate fake news 
from the real news.  

Introduction 

The effects of fake news have increased exponentially in the recent past            
and something must be done to prevent this from continuing in the future.             
The dangerous effects of fake news, as previously defined, are made clear            
by events such as in which a man attacked a pizzeria due to a widespread               
fake news article. This story along with analysis provide evidence that           
humans are not very good at detecting fake news, possibly not better than             
chance . As such, the question remains whether machines can do a better             
job. A machine can solve the fake news problem using supervised learning            
that extracts features of the language and content only within the source in             
question, without utilizing any fact checker or knowledge base. 

 
Real vs Fake news Classifier is based on naïve bayes algorithm. It was 

coded in python using Jupyter notebook IDE. Guardian newspaper provides 
an API( application program interface) which enables to populate the model 
with up-to date news. The training data was collected using the API, and 
has three features – Title, text and label. In the next step, preprocessing of 
the dataset  like removing stop words, punctuation marks, missing fields 
was done. Naïve Bayers was used to classify the real news from the fake 
news. Multinomial NB feature of naïve which is suitable for classification 
with discrete features (e.g., word counts for text classification) was used, 
and the classifier was able to differentiate the news with an accuracy of 
over 85%. The classifier was tested by feeding news manually, and it was 
able to classify if the news was REAL or FAKE. 

 
 



Background and Related Work 
In machine learning, naive Bayes classifiers are the part of simple machine 
learning. There are a number of algorithms that focus on common 
principle. so it is not the only algorithm for training such classifiers.  To 
check if the news is fake or real naive Bayers can be used. 
The following formula for naive Bayes classification uses the probability of 
the previous event and compares it with the existing event. Each and every 
probability of the event is calculated and at last the overall probability of 
the news as compared to the dataset is calculated.  
Therefore on calculating the overall probability, we can get the 
approximate value and can detect whether the news is real or fake. 
 
P (A|B) = P (B|A) · P (A) / P (B), (1) 
Finding the probability of event, A when event B is TRUE  
P (A) = PRIOR PROBABILITY 
P (A|B) = POSTERIOR PROBABILITY FINDING PROBABILITY: 
P (A|B1) = P (A1||B1). P (A2||B1). P (A3||B1) (2) P (A|B2) =P (A1||B2). P 
(A||B2). P (A3||B2) (3) If the probability is 0 
P (Word) = Word count +1/ (total number of words+ No. of unique words)  
Therefore, by using this formula one can find the accuracy of the news.  

Program Requirements 
 
Real vs Fake news Classifier is based on the Machine learning naïve bayes             
algorithm, giving an accuracy of about 85% with the learning rate of 0.1.             
Further for test purposes, if a news is fed to the classifier,the classifier             
distinguishes the news to be a real or Fake news  
Retrieval of Training Dataset is crucial in the process. It is important to             
distinguish the features and label the dataset inorder to feed to the            
classifier. Once the Dataset is retrieved, it is preprocessed. 
 
Preprocessing data is a normal first step before training and evaluating the            
data. It is crucial that data is formatted properly, and meaningful features            
are included in order to have sufficient consistency that will result in the             
best possible results. or computer vision machine learning algorithms,         
pre-processing the data involves many steps including normalizing inputs         
and dimensionality reduction. The goal of these is to take away some of the              
unimportant distinguishing features between different texts, and to remove         



duplicate texts. There are portions of text that are not beneficial in the task              
of labeling the text as real or fake.  
 

 

Implementation 
 

TRAINING DATASET 

The lack of manually labeled fake news datasets is certainly a bottleneck            
for advancing computationally intensive, text-based models that cover a         
wide array of topics. The Dataset for my classifier was collected from            
Guardian Newspaper API interface. 

Guardian allows users to download news from an API interface daily. New             
York Times also provides an API for daily download of news. 

PREPROCESSING 

The CSV file was preprocessed , by first removing all the missing values. I              
also cleaned my file removing any Punctuation marks,and stopwords.         
Stemming and lemmatization processes could also be performed on the          
fields for extra cleanup. It takes a longer time to download, hence a copy of               
a file which was downloaded from the API was saved to use as the training               
dataset. 

TECHNOLOGY  

The whole project was coded in python using Jupyter Notebook IDE.  

CLASSIFIER DETAILS  
Naive Bayes, which is a popular algorithm in Machine Learning was used to 
find the accuracy of the news using multinomial NB. 
It is a kind of algorithm used in text classification. The use of a token is 
correlated with the news that may be fake or not fake in naive Bayes 
classifier and then the accuracy of the news is calculated by using Bayes 
theorem.  

 
 



Results, Evaluation, and Reflection 
 

The classifier works fine with smaller datasets, but if the Dataset size 
is increased  and when FAKE/REAL any one of them outweighs the other ( 
for example if FAKE = 100 articles, and REAL = 30 Articles ), there has been a 
significant reduction in accuracy.  

Also, a google Collaberator would have been a good option for Data 
storage. Since I had to use my laptop to process a huge volume of data, I 
had to create a subset of the larger dataset. The Collaberator will be able to 
faster handle large volumes of data 

Conclusions and Future Work 
The Efficiency can be improved using about five classifier models like 

Bernoulli’s Bayers, Passive aggressive classifier, SGD classifier, Support 
Vector Machines, logistic Regression, Logistic Regression CV, which can 
perform better classification and can give a better accuracy. Using these 
classifiers, if the outputs are (REAL,REAL,FAKE,FAKE,REAL), then the output 
would be REAL as it is the majority. Apart from the classifier, we can also 
build a fact detector and a stance detector. Combination of all these tools 
would be the best  way to classify the news accurately 
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Appendices 
 
API INTERFACE  
 
 
#!/usr/bin/env python 
# coding: utf-8 
 
# In[1]: 
 
 
get_ipython().system('pip install html2text') 
get_ipython().system('pip install python-twitter') 
get_ipython().system('pip install xlsxwriter') 
get_ipython().system('pip install openpyxl') 
get_ipython().system('pip install beautifulsoup4') 
get_ipython().system('pip install schedule') 
 
 
# In[2]: 
 
 
import json 
import requests 
import html2text,pandas as pd 
import csv,xlsxwriter 
from bs4 import BeautifulSoup 
from openpyxl import load_workbook 
import re 
import schedule 
import time 
import xlwt 
 
 
def guardian(): 
 
  
    API_KEY = "9a0083e8-554d-4306-be70-46d527d8903c"  
  
    API_ENDPOINT = 'http://content.guardianapis.com/search' 
  
  
    my_params = { 
        'from-date': "", 
        'to-date': "", 
        'order-by':"oldest", 
        'show-fields': "all", 
        'page-size':10 , 
        'api-key': API_KEY, 



        'lang':"en", 
    } 
  
    my_params['from-date'] = "2020-01-26" 
    my_params['to-date'] = "2020-01-27" 
  
    body_list=[]  
    topic=[]  
    startrow=None  
    current_page = 1 
    total_pages = 1 
  
    while current_page <= total_pages: 
                print("...page", current_page) 
                my_params['page'] = current_page 
                resp = requests.get(API_ENDPOINT, my_params) 
                print(resp.url) 
                print("\n") 
                data = resp.json() 
                current_page += 1 
                total_pages=data['response']['pages'] 
 
                results=len(data["response"]["results"]) 
  
                for i in range(0,results): 
                    d=data["response"]["results"][i]["fields"]["bodyText"] 
                    body_list.append(d) 
                    topic.append("REAL") 
  
                list_of_tuples = list(zip(body_list, topic))  
  
                df = pd.DataFrame(list_of_tuples,index=None, columns=['text','label']) 
                df.dropna(inplace=True) 
  
  
                df.to_excel("guardian.xlsx",index=False,header=False) 
 
 
 
    return(print("good")) 
 
guardian  
 
# In[ ]: 
 
 
res=schedule.every().day.at("12:00").do(guardian) 
 
while True: 
    schedule.run_pending() 
    time.sleep(1) 
 
 
 



CLASSIFIER  
 
#!/usr/bin/env python 
# coding: utf-8 
 
# In[12]: 
 
 
#Importing the libraries which are required. 
import pandas as pd 
import numpy 
import nltk 
from nltk.corpus import stopwords 
import string 
import matplotlib.pyplot as plt 
get_ipython().run_line_magic('matplotlib', 'inline') 
 
 
# In[13]: 
 
 
nltk.download('stopwords') 
nltk.download('wordnet') 
 
# I AM USING MY OWN CSV FILE, because the API takes much time to download the latest news, 
hence saved some for my sample 
# In[14]: 
 
 
df = pd.read_excel('guardian.xlsx') # If you have your input file as .xlsx (excel sheet) format 
#df = pd.read_csv('fakerealnews.csv') # If you have your input file as .csv format 
df = pd.DataFrame(df) 
df.head() 
 
 
# In[15]: 
 
 
df.info() 
 
 
# In[16]: 
 
 
df.shape 
 
 
# In[17]: 
 
 
df.groupby("label").describe() 
 
# IF YOU DON'T SEE ANY VERTICAL BAR IN THE BELOW GRAPH, THEN YOU DON'T HAVE 
ANY MISSING VALUES IN ANY OF THE FIELDS 



# In[18]: 
 
 
import seaborn as sns 
sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='YlGnBu') 
 
# HERE WE DROP ALL THE DUPLICATES ROWS IF EXISTS IN THE DATAFRAME 
# In[19]: 
 
 
df.drop_duplicates(inplace = True) 
df.shape 
 
# THE BELOW SET OF FUNCTIONS CLEANS THE CODE . I.E FROM PUNCTUATION REMOVAL 
, STOPWORDS REMOVAL , STEMMING PROCESS , LEMMATIZATION PROCESS 
# In[20]: 
 
 
all_punctuations = string.punctuation + '‘’,:”][],'  
 
def punc_remover(raw_text): 
    no_punct = "".join([i for i in raw_text if i not in all_punctuations]) 
    return no_punct 
 
 
# In[21]: 
 
 
def stopword_remover(no_punc_text): 
    words = no_punc_text.split() 
    no_stp_words = " ".join([i for i in words if i not in stopwords.words('english')]) 
    return no_stp_words 
 
 
# In[22]: 
 
 
lemmer = nltk.stem.WordNetLemmatizer() 
def lem(words): 
    return " ".join([lemmer.lemmatize(word,'v') for word in words.split()]) 
 
 
# In[23]: 
 
 
def text_cleaner(raw): 
    cleaned_text = stopword_remover(punc_remover(raw)) 
    return lem(cleaned_text) 
 
 
# In[24]: 
 
 
df['SECTION_CLEANED'] = df['text'].apply(text_cleaner) 



#df.to_excel("output.xlsx")  # TO SAVE THE FINAL CLEANED COPY IF I NEED  
 
 
# In[25]: 
 
 
df = pd.DataFrame(df) 
 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = 
train_test_split(df['SECTION_CLEANED'],df['label'],test_size=0.20,random_state=53,shuffle=True) 
 
 
# In[26]: 
 
 
from sklearn.feature_extraction.text import CountVectorizer 
count_vectorizer = CountVectorizer(stop_words = "english") 
count_train = count_vectorizer.fit_transform(X_train.values) 
count_test = count_vectorizer.transform(X_test.values) 
 
 
# In[27]: 
 
 
print(count_train) 
print('\n') 
print("feature_names",count_vectorizer.get_feature_names()[:10]) 
 
 
# In[28]: 
 
 
# Import TfidfVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer 
 
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7) 
tfidf_train = tfidf_vectorizer.fit_transform(X_train.values) 
tfidf_test = tfidf_vectorizer.transform(X_test) 
print(tfidf_train) 
#this command gives importance for each and every word 
print(tfidf_train[0:3]) 
 
 
# In[29]: 
 
 
from sklearn.naive_bayes import MultinomialNB 
import sklearn.metrics as metrics 
 
 
# In[30]: 
 
 



#USING NAIVE BAYES MODEL TO PREDICT ON TFIDFVECTORIZER CALCULATED VALUES 
 
from sklearn.naive_bayes import MultinomialNB 
from sklearn import metrics 
 
nb_classifier = MultinomialNB(alpha=0.1) 
 
nb_classifier.fit(tfidf_train,y_train) 
pred = nb_classifier.predict(tfidf_test) 
 
# Calculate the accuracy score: score 
score = metrics.accuracy_score(y_test,pred) 
print("Score from TFIDF Vectorizer", round(score*100,3) ,"%") 
 
# Calculate the confusion matrix: cm 
cm = metrics.confusion_matrix(y_test,pred, labels=['FAKE','REAL']) 
print(cm) 
 
 
# In[31]: 
 
 
# Get the class labels: class_labels 
class_labels = nb_classifier.classes_ 
print("class_labels" , class_labels) 
print(" ") 
 
 
# In[32]: 
 
 
# Extract the features: feature_names 
feature_names = tfidf_vectorizer.get_feature_names() 
print("feature_names" , feature_names) 
print(" ") 
 
 
# In[33]: 
 
 
# Zip the feature names together with the coefficient array and sort by weights: feat_with_weights 
feat_with_weights = sorted(zip(nb_classifier.coef_[0], feature_names)) 
 
# Print the first class label and the top 20 feat_with_weights entries 
print(class_labels[0], feat_with_weights[:20]) 
print(" ") 
 
# Print the second class label and the bottom 20 feat_with_weights entries 
print(class_labels[0], feat_with_weights[-20:]) 
 
 
# In[34]: 
 
 



tfidf_vectorizer = TfidfVectorizer(analyzer='word',stop_words="english",lowercase = True) 
tfidf_vectorizer.fit_transform(X_train.values.tolist()) 
 
print(tfidf_vectorizer.vocabulary_) 
 
#  IF YOU WANT TO CATEGORIZE LOTS OF NEWS COLUMNS, JUST GIVE THE INPUT AS A 
DATAFRAME LIKE THE ABOVE  
 
# OR  
# IF YOU HAVE ONLY ONE PIECE OF ARTICLE TO TEST REAL OR FAKE, THEN USE THE 
BELOW SET OF CODES TO CLASSIFY THEM. 
# In[35]: 
 
 
# Import TfidfVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer 
vocab = tfidf_vectorizer.vocabulary_ 
tfidf_vectorizer = TfidfVectorizer(stop_words='english',vocabulary=vocab) 
 
 
# # ENTER THE NEWS COLUMN HERE TO PREDICT 'REAL' OR 'FAKE' 
 
# In[43]: 
 
 
#String input 
x = input("ENTER THE NEWS ARTICLE HERE : ")  
x=[x,] 
 
 
# In[45]: 
 
 
from sklearn.feature_extraction.text import TfidfVectorizer 
 
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7) 
tfidf_train = tfidf_vectorizer.fit_transform(X_train) 
tfidf_test = tfidf_vectorizer.transform(x) 
codes_list = ['FAKE','REAL'] 
 
nb_classifier = MultinomialNB(alpha=0.1) 
nb_classifier.fit(tfidf_train,y_train) 
tfidf_test = tfidf_vectorizer.transform(x) 
 
pred = nb_classifier.predict(tfidf_test) 
pred 
 
 
# In[46]: 
 
 
start = "\033[1m" 
end = "\033[0;0m" 
print('THE GIVEN NEWS ARTICLE IS ' + start + str(pred) + end) 



OUTPUT  
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