
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Technical Library School of Computing and Information Systems

2020

WiFi Traffic Forwarding Client and Server WiFi Traffic Forwarding Client and Server

William tenHaaf
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib

ScholarWorks Citation ScholarWorks Citation
tenHaaf, William, "WiFi Traffic Forwarding Client and Server" (2020). Technical Library. 352.
https://scholarworks.gvsu.edu/cistechlib/352

This Project is brought to you for free and open access by the School of Computing and Information Systems at
ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/cistechlib
https://scholarworks.gvsu.edu/cis
https://scholarworks.gvsu.edu/cistechlib?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/cistechlib/352?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

1

WiFi Traffic Forwarding Client and Server

By

William ten Haaf

April, 2020

2

WiFi Traffic Forwarding Client and Server

By

William ten Haaf

A project submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Information Systems

at

Grand Valley State University

April, 2020

Dr. Greg Wolffe Date

3

Table of Contents

Abstract .. 4

Introduction ... 5

Background and Related Work ... 5

Project Details ... 6

Results, Evaluation, Reflection .. 8

Conclusions and Future Work…………………………………………………………10

Bibliography .. 11

Appendix...………………………………………………………………………………12

4

Abstract

WiFi traffic is ubiquitous. Between video game consoles, portable computers, smart

phones, and even some desktop computers, the vast majority of consumer electronics

have WiFi capabilities. Occasionally, these devices require direct, ad-hoc WiFi

connections in such a way that communication over the Internet, or even a single hop, is

impossible. In such cases the only options for increasing communication range are to use

WiFi repeaters or to upgrade device antennas. Depending on the device, this can be

difficult or impossible to do. These limitations create a need for the ability to expand a

WiFi network in a data-agnostic way that supports a longer range than repeaters or

antenna upgrades allow.

To meet this need, we developed a set of programs that capture WiFi traffic and relay it

to a remote location. The programs are designed to allow devices in remote locations to

communicate with each other without the use of proxies, VPNs, or any technologies that

require special device configurations. Because raw WiFi frames are captured and

retransmitted, devices which require direct WiFi connections have their traffic rerouted to

a remote location without any configuration requirements on the local device and the

entire process is completely transparent to the devices that utilize it. To prove the

viability of the system, we tested communication via several different applications. We

also offer some other potential applications and suggestions for future work.

5

Introduction

This project implements a method of transferring raw WiFi traffic from one location to

another. This program suite is intended to allow devices to access a remote WiFi network

or WiFi devices transparently and without any specific device configuration

requirements. Certain devices, such as video game consoles and industrial hardware, have

limited capabilities regarding wireless configuration, which can render them unable to

communicate wirelessly across IP networks for certain tasks. This project aims to provide

a solution to that problem and to other issues.

Background and Related Work

Currently there are no existing solutions to solve the previously mentioned problems.

Related solutions require proxy or VPN capability on client devices, which does not help

to solve the specified issues. This project works transparently and does not require any

special device configuration besides standard WiFi communication to function. Wireless

repeaters provide some similar functionality, but most consumer repeaters do not appear

to work with ad-hoc wireless traffic and repeaters in general are not suitable for Very

Long Distance communication.

6

Project Details

Specification

The proposed solution transfers WiFi traffic from one location to another, and vice versa,

allowing distributed WiFi devices to communicate with each other as if they were in the

same room. Due to its implementation protocol, it also allows functionality such as traffic

generation and traffic analysis.

Implementation

The project uses libpcap to capture WiFi traffic from the wireless NIC and TCP sockets

for client/server communication. Knowledge of TCP networking was essential, as was a

familiarity with tools such as Wireshark. The capture functionality required additional

research in support of development.

For client-server communication, WiFi traffic is simply a payload that the client

generates and processes, prepended by the size of the payload. The array that contains the

payload size information must have the same endianness as the server, therefore, clients

must be implemented to account for that. The payload can be arbitrary data, but the

clients must all be able to parse or ignore it if mixed-purpose clients are utilizing one

server. For this project, the clients only processed compressed WiFi traffic.

Figure 1: A graphical representation of the client data flow

7

The client is responsible for capturing the traffic, sending the traffic to the server, and

broadcasting the traffic. The data flow process for the client is shown in Figure 1. The

client uses a thread for capturing traffic and uses the libpcap function pcap_next_ex()

to read wireless frames from the monitor interface. Once the frame is read, it is

compressed using the Zstandard compression algorithm and sent to the server over TCP.

When the server sends a client a frame, the client decompresses it with the Zstandard

compression algorithm. After decompression, the frame is sent to the wireless interface

with libpcap’s pcap_inject() function and broadcast over the local wireless channel.

Because traffic is not modified by the clients or server, the traffic that is seen by a local

device is the same traffic that was sent by a remote device, which allows local and remote

devices to communicate as if they were within wireless range of each other.

Figure 2: A graphical representation of the server data flow

The server is responsible for receiving traffic from the clients and sending received traffic

to every other client, as detailed in Figure 2. The server creates a TCP receive thread and

a TCP send thread for each client that connects. Additionally, the server keeps packet

send queues for each client. The server receives traffic from a client and adds it to each

connected client’s send queue and signals a mutex for the respective client send thread.

Upon being signaled, the send thread will read packets from the queue and send them to

the client until the queue is empty, after which it will wait for new data to be added to the

queue. Because no processing is done on the received data, the server can be repurposed

to work with any clients that follow the traffic pattern.

8

Results, Evaluation, Reflection

Under various testing scenarios, all standard WiFi traffic was compatible with this

system. As specified, the system’s functionality was transparent to the devices using it

and no device configuration was required. Performance on typical client/server

infrastructure meets specifications, and the system has source-configurable compression

settings that allow further optimization of bandwidth or CPU usage. Because this

prototype prioritized performance, data encryption was not employed; systems should use

SSH or some other encapsulation technique if secure communication is desired.

Figure 3: Latency comparison with and without the forwarding system

9

Due to the addition of the client/server infrastructure, latency between devices using the

system will be increased by at least the latency between the clients and the server. On

high performance networks and hardware, this can be several milliseconds, which,

depending on the application, may be acceptable. Figure 3 displays latency data observed

using standard consumer hardware on a busy network. Data collection hardware and

methods are described in the Appendix. For the collected data, average latency was

around 15 milliseconds and the minimum latency difference was around 3 milliseconds.

The system shows outliers that were generated when heavy traffic usage occurred on one

of the networks. Higher capacity or less busy networks would be expected to exhibit a

more predictable latency increase.

There are some interesting potential applications that were not tested in the course of this

research. For example, powering displays by transferring Miracast/WiFi Direct traffic

over the Internet could be utilized when running Ethernet is prohibitively expensive.

Depending on the hardware used, it may not be possible to capture the large frames that

WiFi Direct traffic can produce, though it should be possible to overcome those issues by

using modern wireless adapters.

The system is configured with a “star” network topology, so the amount of traffic scales

linearly with the number of connected clients. For large numbers of clients and high

bandwidth applications, the server can become a bottleneck.

Currently, client programs do not employ error recovery and return to the shell when

disconnected from the server. Reliability is achieved by calling the client in a Bash loop,

but it would be slightly more efficient to have that functionality built into the client.

There would not be a noticeable difference in functionality or performance unless there

was a very unstable connection between the client and server.

10

Conclusion and Future Work

The system successfully implements a functionality that allows remote WiFi devices to

communicate with each other as if they were completely local. Future work includes

testing for edge cases like large WiFi packets from Miracast and similar technologies. To

allow for more portable code, endian-agnostic payload size code should replace the

current integer conversion code. Investigations into whether or not a mesh topology or

TCP multicast can resolve performance bottlenecks with large numbers of clients is also

another area of research. Client/server communication encryption is a desirable feature,

allowing for plain text WiFi data to be transferred over the Internet or other insecure

medium.

11

Bibliography

Libraries

Zstandard: https://github.com/facebook/zstd. This library was used to compress the data that the clients

send to each other.

libpcap: https://www.tcpdump.org/. This library was used to read data from and inject data into the wireless

interface.

Tools

Wireshark: https://www.wireshark.org/. This tool was used to build WiFi access point test beacons and to

debug WiFi traffic injection and WiFi traffic capture.

Aircrack-ng: https://www.aircrack-ng.org/. This tool was used to put the wireless interface into monitor

mode and to debug WiFi traffic injection.

References and APIs

Zstandard: https://facebook.github.io/zstd/zstd_manual.html.

libpcap: https://www.tcpdump.org/manpages/pcap.3pcap.html.

Project Source Code

WiFi Traffic Forwarding Client and Server:

 https://github.com/william-G2hOux9g8q/WiFiTrafficForwardingClientandServer.

This is the public source code repository for the programs in the project.

https://github.com/facebook/zstd
https://www.tcpdump.org/
https://www.wireshark.org/
https://www.aircrack-ng.org/
https://facebook.github.io/zstd/zstd_manual.html
https://www.tcpdump.org/manpages/pcap.3pcap.html
https://github.com/william-G2hOux9g8q/WiFiTrafficForwardingClientandServer

12

Appendix

The data in Figure 3 was obtained by creating an ad-hoc connection between two laptops through the

system described in this report. The hardware used to run the server was a Hyper-V virtual machine. Two

ARM Cortex-A53 single board computers were used for the system clients, and two Dell Latitude E6430

laptops were used for the test WiFi devices. The test was performed over an Internet link with the remote

client on an AT&T 1.5 Mbps DSL connection and the server on an 80 Mbps Comcast cable connection.

The data for the direct connection was obtained by creating a direct ad-hoc connection between the Dell

laptops. For generating the data points, simple ICMP pings were used and the response time was recorded.

	WiFi Traffic Forwarding Client and Server
	ScholarWorks Citation

	tmp.1590169798.pdf.jF3kq

