
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Technical Library School of Computing and Information Systems

2020

Disease Navigation Application Disease Navigation Application

Naveena Varna
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib

ScholarWorks Citation ScholarWorks Citation
Varna, Naveena, "Disease Navigation Application" (2020). Technical Library. 364.
https://scholarworks.gvsu.edu/cistechlib/364

This Project is brought to you for free and open access by the School of Computing and Information Systems at
ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/cistechlib
https://scholarworks.gvsu.edu/cis
https://scholarworks.gvsu.edu/cistechlib?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/cistechlib/364?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Disease Navigation Application

Naveena Varna

A Project Submitted to

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Applied Computer Science

School of Computing and Information Systems

<December> <2020>

The signatures of the individuals below indicate that they have read and approved the project of

<Naveena Varna> in partial fulfillment of the requirements for the degree of Master of Science in

Applied Computer Science.

 ____ Yonglei Tao____________________________12/17/2020___________

<name of project advisor>, Project Advisor Date

__

<name of GPD>, Graduate Program Director Date

__

 <name of unit head>, Unit head Date

Abstract

Telemedicine is in the current line of requirements of modern society. Automated symptom-based disease

detection and appointment booking is a well-known research topic in the field of informatics and system design.

That helps in elevating awareness and early detection of disease at the ease of home through appointment booking.

The purpose of the application is the capability to articulate disease symptoms, gathering all relevant information

of the patient and a recommendation system that eventually evaluates all symptoms and maps effectively to a

specialty department. Using the natural language processing-based approach, the user can input text of symptoms

to be mapped with Google Search API and then finally parse them and generate recommendations based on the

user input. Then it enables the user to choose a doctor and book an appointment based on the availability of that

doctor.

The application is developed by using HTML, CSS, and JavaScript to build the front end and using microservice

API exposed as REST built with the Django Python framework to build the back end. Using an SQLite database

for the back end of the application helps to store the data locally and makes the application functional. In addition,

appointment booking, and disease recommendation are two inevitable features from an end-user perspective.

Introduction

Telemedicine is in the current line of the requirement of modern society. That helps in elevating awareness and

early detection of disease at the ease of home. In this project, I have designed an application named – Novi Med.

This is a web application built with the Python Django framework. It can articulate disease symptoms, gathering

all relevant information of the patient and a recommendation system that eventually evaluates all symptoms and

maps effectively to a specialty department. And then it enables the user to choose a doctor and book an

appointment based on availability. If a slot is available, the booking will be confirmed, and the appointment

number will be displayed over the screen of the app. In this application appointment booking, and disease

recommendation are two inevitable features of this app from an end-user perspective. In the following sections,

we will be discussing them in more detail.

The website will allow the user (patient) to be able to get the probable disease that the user may be facing. This is

done by the disease detector that uses a database of diseases and symptoms and then presents the under with

probable diseases. The patient can then book appointments with different doctors specialized in a department.

The website has three user types of users: Doctors, Admin, and User (Patient). A Doctor will be available for a

patient to get an appointment for a disease that has been detected by the detector. The administrator will manage

or control the website. The user can get detection for the symptoms and get an appointment with a doctor. The

Disease Navigation comprises a disease database that helps users to know what are the probability that user is

suffering from a disease and get an appointment to a specialized doctor in the disease. The doctor can view the

appointments made and see the patients.

Project Management

Organization Requirements

Login/Sign Up screen

Login screen contains two fields Email(username) and password. Here users must put their credentials in textboxes

given and then hit the button of Login. Once clicked it will trigger a back-end API to validate user login. If the

user has provided valid input, then login will be successful, and it will redirect to the homepage. In case of failure

it will display an alert message of - incorrect credential.

Sign Up Page

In case of new user, they will be redirected to register.html page as and when sign up link is clicked. Sign up page

contains a web form with Name, Email and Password field using which a user will login and use this application

going forward.

Home Page:

Home page of this application is based on a default dashboard view where a squeezable left panel contains other

feature link like - disease diagnosis, History, Comments etc.

Disease Diagnosis Page

Disease diagnosis page consists a series of questionnaires through which a user will input all its relevant details

which will be processed by App to diagnose the disease. The above screen is the first step. Where a user has to

select his/her sex in an interactive way.

Next step is about selecting age, user will slide the slider to select his/her age and then next button will be clicked.

Next step users must answer some basic questionnaires which will help to generate more accurate

recommendations.

In this step users will type their symptoms in the shown textbox and the recommendation system will display

recommended symptoms which the user will select. That way symptoms will be added to the applications. Also,

they can be deleted by clicking on the close icon on symptoms.

Once all symptoms are entered the user will click on the Next button that will trigger the diagnosis of symptoms

by the back end of the application as shown in the screen below.

On completion of diagnosis a screen will be displayed with recommendation and appointment booking option as

below.

Now the user will select the department, then select doctor and choose a date of appointment and finally click the

book appointment button. Details are filled. Appointment will be confirmed only when doctor is available on

selected date otherwise not. Above screen showing appointment confirmed status also displaying the appointment

number here. In case of a doctor unavailable. It should display the same alert.

This module screen will enable the admin user to add patient visit summary details or update any existing details

into the back-end database.

Comment-User can send the message to organization (Delete appointment or Any assistance user need).

Implementation

In this section we are going to discuss the design architecture of this application. We have chosen Microservice

Design Pattern as it has many cutting-edge advantages that makes App more resilient and highly scalable.

Application consists of two-layer front end and back end layer. Front end layer is built using bootstrap, html, CSS,

JavaScript & jQuery. And the back end is a pure microservice API exposed as REST built with the Django python

framework. Below diagram depicts the scenario more clearly.

End user will render the web pages through the browser. Each front-end web page is mapped with a different back

end Rest API as described in below table. Backend python script will serve the API request call of the frontend

layer, it will use SQLite database as lightweight data storage. Where it will perform all sorts of crud operations.

REST API Referencing Table

API Name Type Request(Sample) Significance

add_patient POST {"Name":"AA

BB","Email":"sample@g

mail.com","Password":"

********"}

It creates an user profile for

the patient

login_patient

POST {"Email":"sample@gmai

l.com","Password":"***

*****"}

It validates an patient user

login

get_diagnosis

POST {"Symptoms":""} It returned a diagnosis

recommendation.

add_doctor

POST {"Name":"Bilal

Jain","Phone":"1222222"

,"Speciality":"Medicine",

It creates a new doctor

profile to the system.

 KUREAPP

FrontEnd

HTML

CSS

Bootstrap

JS

jQuery

End-User
BackEnd

Django

Python

SQLITE

"License":"US34590","E

xperience":"6

YEARS","Degree":"MD

"}

save_slot

POST {"Doctor":"Davis

Das","Dept":"Cardiology

","Start":"08/22/20220","

End":"08/25/2020"}

It updates doctor specific

availability in the system.

book_apt

POST {} It creates new appointment

for a patient

getall_doctor POST Returns list of all doctor

details in JSON formatted.

getall_dept

POST Returns list of all department

details in JSON formatted.

get_doctorByDept

POST Returns list of all doctors of

a specific department in

JSON formatted.

Use Case Diagram

Class Diagram:

Results, Evaluation, and Reflection

In this section we are going to discuss all observations regarding results and evaluation metrics.

We have achieved an optimized performance in terms of computation time and accuracy. We will be discussing

all aspects of it one by one.

User Registration Average Response

User registration request count Processing Time

1 0.552 ms

10 0.78 ms

13 1.2 ms

User Login Average Response

User login request count Processing Time

1 0.042 ms

10 0.28 ms

15 1.9 ms

Disease Diagnosis Average Response

Disease Diagnosis request count Processing Time Accuracy

1 2 ms 96%

10 14 ms 89%

15 111ms 87.625%

Book Appointment Average Response

Appointment Booking Request Processing Time

1 167 ms

10 299 ms

15 2.5 sec

Doctor Details Average Response

Request count Processing Time

1 0.042 ms

10 0.28 ms

15 1.9 ms

Conclusion and Future Work

As per the current scope we have almost covered the use cases and program requirements provided in this

implementation. But to make this Novi Med – Decease Navigation App as a full functional package there are

many other features which need to be added. Some of them are Appointment tracker, Doctor Feedback, Mail and

Message based integration etc. Still this application is quite capable enough to detect disease early based on the

algorithms implemented and then recommend the patient towards a new appointment booking. Also, it has another

two admin panels which will enable admin users to add doctors and maintain their availability roster. As it is built

in Microservice architecture hence all components are independent and self-driven. So, having a high code

reusability factor and it is very easy to integrate with other third-party applications. In terms of scalability and

production readiness there is scope to add a docker file and containerize the application and then run that container

in Kubernetes cluster.

Bibliography

https://doi.org/10.1016/j.ins.2018.01.001

A. S. Hussein, W. M. Omar, X. Li and M. Ati, "Efficient Chronic Disease Diagnosis prediction and recommendation

system," 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, 2012, pp. 209-214, doi:

10.1109/IECBES.2012.6498117.

Binal A. Thakkar, Mosin I. Hasan, Mansi A. Desai, “Healthcare decision support system for swine flu prediction using

naïve bayes classifier”, “IEEE”, 101-105, 2010.

Sellappan P., Rafia A., “Intelligent heart disease prediction system using data mining techniques”, IEEE/ACS, 2008.

https://www.djangoproject.com/

https://www.w3schools.com/w3css/

https://www.w3schools.com/html/default.asp

https://www.w3schools.com/bootstrap/bootstrap_ver.asp

https://app.creately.com/manage/recent

www.wikipedia.org

https://doi.org/10.1016/j.ins.2018.01.001
https://www.djangoproject.com/
https://www.w3schools.com/w3css/
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/bootstrap/bootstrap_ver.asp
https://app.creately.com/manage/recent
https://www.wikipedia.org/
https://www.wikipedia.org/
http://www.wikipedia.org/

	Disease Navigation Application
	ScholarWorks Citation

	tmp.1615225605.pdf.XPBe_

