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ABSTRACT 

 

EVALUATING THE SUCCESS OF WETLAND MITIGATION IN WEST 

MICHIGAN: A MACROINVERTEBRATE-BASED APPROACH 

By James Neal  

 

Michigan’s wetlands, and their invaluable natural services, were declining at an 

alarming rate; therefore, the process of wetland mitigation was introduced in 1979 to 

offset this loss. From 2003-2006, a series of mitigated wetlands were installed to 

compensate for the wetlands removed during the construction of the M-6 highway south 

of Grand Rapids, MI. The objectives of my research were to determine whether these 

man-made wetlands function similarly to natural wetlands in terms of biological integrity, 

further develop methods for a macroinvertebrate-based index of biological integrity for 

inland wetlands, and provide pragmatic suggestions for wetland mitigation practices. 

Macroinvertebrate, plant, and water samples from mitigated and natural wetlands were 

collected. Macroinvertebrate samples were applied to appropriate bioassessment indices 

developed by Uzarski et al. (2009) while plant samples were applied to analyses 

developed by the Michigan Department of Natural Resources (Herman et al. 2001)  to 

indicate biological integrity. Floristic quality analyses yielded varying results, yet the 
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mitigated and reference wetlands were statistically similar in terms of invasive plant 

coverage, floristic quality index, and species richness. The macroinvertebrate index of 

biological integrity scores for the reference wetlands indicated significantly healthier 

ecosystems than their mitigated counterparts. The macroinvertebrate and plant 

bioassessments yielded different results, which is concerning since most agencies use 

floristic quality assessments as the primary means to evaluate wetlands. This divergence 

can be attributed to dissimilarities in ecosystem characteristics between mitigated and 

natural wetlands, some of which are successional processes and heterotrophic or 

autotrophic dominance. Suggestions for wetland mitigation practices include: wetland 

location chosen near large pre-existing wetlands to facilitate connectivity and interaction 

of more species, inoculation of less motile macroinvertebrate species for isolated 

wetlands to help expedite colonization, and prolonged maintenance of established 

wetlands to limit invasive species.  
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INTRODUCTION 

 Wetlands are extremely valuable ecosystems which provide numerous natural 

services to humans and the environment. Some of the services that wetlands provide to 

humans include sediment, nutrient and toxic organic material removal, wastewater 

treatment, peak flow reduction, recreational hunting and fishing, erosion control, 

aesthetics, and climate regulation (Johnson et al. 2002; Vymazal 2011). Water quality 

improvement is one of the most economically important attributes of wetlands since it 

encompasses such important processes as denitrification and wastewater treatment. In 

terms of ecological benefits, wetland ecosystems are a major source of primary 

productivity and offer provision of wildlife habitat which helps maintain biodiversity 

(Ghermandi et al. 2010). Palustrine, or isolated inland wetlands, provide crucial feeding, 

nesting, and breeding grounds for migratory birds. In Michigan alone, there are at least 

41 state-listed, threatened, and endangered species of animals dependent upon wetlands 

during some point in their life cycle; it is also estimated that 49% of Michigan’s rare 

plant species only thrive in wetlands (Kost et al. 2007). The annual per acre value for 

west Michigan’s wetlands is estimated to be between $1,391 and $4,203, not including 

water regulation services (Sterrett-Isely et al. 2007). A meta-analysis by Costanza et al. 

(1997) found that the natural services wetlands provide are estimated to be trillions of 

dollars per year globally; thus, wetlands are extremely valuable for both humans and the 

environment.  
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Wetlands have historically been one of the habitats affected most by 

anthropogenic activities (EPA 2002). Prior to settlement, wetlands occupied ~11.2 

million acres in Michigan (Dahl 1990). Currently only ~6 million acres remain, a 

reduction in Michigan’s wetland acreage of ~40%. Most of the losses sustained are due to 

drainage, logging, and conversion to agricultural land (Comer 1996); however, the largest 

current threat to wetlands is due to landscape alterations. Additionally, the ecological 

integrity of many of the remaining wetlands has been degraded (EPA 2001). Tiling, 

drainage ditches, and agricultural conversion can harmfully modify the hydrology of 

nearby wetlands by lowering the water table. Other factors such as construction of 

highways, dikes, dams, and railroads also contribute to altered flood duration and water 

depth which shifts plant and animal communities in wetlands (Burgin 2010).  Inland, 

palustrine wetlands are especially susceptible to changes in hydrology since they are not 

directly connected to larger, more stable sources of water (Cowardin et al. 1979; Uzarski, 

unpublished; Zweig and Kitchens 2009). Many of the wetlands that retain their original 

hydrology are still affected by changes in water quality from industrial, agricultural, and 

urban runoff, as well as airborne pollutants, storm water and wastewater influx. The 

addition of impervious surfaces such as parking lots, roads, and sidewalks increases the 

liklihood of those pollutants to runoff into wetlands. This runoff can cause nutrient 

loading and possibly eutrophication, which is an extremely detrimental process and can 

lead to a state of hypoxia. 
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 A less direct anthropogenic effect which plagues wetlands is the introduction of 

invasive species such as purple loosestrife (Lythrum salicaria) and narrow-leaf cattail 

(Typha angustifolia), which out-compete native species and diminish the biological 

integrity of the ecosystem. Wetlands are particularly susceptible to invasive species since 

they act as landscape sinks and have large canopy gaps. This threat can impact the 

wetlands’ economic values through losses in recreational value, water filtration 

capabilities and modifications of natural food webs (Zedler and Kercher 2010). 

Furthermore, changes in water quality and hydrology can make it easier for invasive 

species, such as the aggressive reed canary grass (Phalaris arundinacea), to invade and 

overrun native wetland species (Kercher and Zedler 2004).  

 To alleviate the degradation and loss of wetlands, the process of wetland 

mitigation was initiated. Mitigation involves the construction of new, man-made wetlands 

to offset the loss of natural wetlands. The practice was introduced to the U.S. as part of 

the Clean Water Act in 1972, and established the “no net loss of wetlands” policy, since 

wetlands are required to be mitigated for an equal or greater area than the original 

wetland (Burgin 2010; Ghermandi et al. 2010). In accordance, Michigan legislature 

passed the Geomare-Anderson Wetlands Protection Act in 1979, which was revised in 

1994 and is now Part 303, Wetlands Protection, of the Natural Resources and 

Environmental Protection Act, Public Act 451 (DEQ 1994).  The Michigan Department 

of Environmental Quality is the regulatory agency that is responsible for the 

interpretation and administration of Part 303.  
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The mitigation process typically involves four main steps: determining mitigation 

goals and objectives, a grading plan, planting plan,  and monitoring plan (Wyant 2011). 

The mitigation goals are simply the designated objective/s for that specific wetland such 

as wetland functions that include water regulation services, wildlife habitat, etc. The 

grading plan consists of classifying the site in terms of existing hydrology, biota, soil 

type, and surround landscape. Identifying the appropriate seed mixture for the location 

and creating a suitable planting arrangement are the two main factors considered in the 

planting plan. The monitoring plan evaluates whether the wetland is functioning correctly 

after construction. Often, this requires periodic restoration efforts to monitor native plant 

species and limit invasive plants through treatment and removal (Batzias et al. 2007). To 

ensure mitigation goals have been met, the Michigan Department of Environmental 

Quality has to “sign-off” on mitigation projects. This typically occurs ~5 years after 

construction of the wetland, at which monitoring ceases (Campbell et al. 2002).  

 Since wetland mitigation was implemented, ecologists have worked to evaluate 

the success of these constructed wetlands. Wetland mitigation success is measured by 

functionality, which includes sediment, nutrient and toxic organic material removal, 

provision of wildlife habitat, wastewater treatment, primary production, and peak flow 

reduction (Johnson et al. 2002; Vymazal 2011).  A wetland’s health should be viewed as 

how well it provides these services (Uzarksi et al. 2009). To measure the ecological 

functions of wetlands, floristic quality assessments have been one of the traditional 

methods agencies use since they are relatively cost effective, can be completed quickly, 
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and do not require seasoned experts to perform. These assessments may employ the use 

of diversity indices, floristic quality indices, conservatism values, percent coverage of 

natives and invasive species, and rank abundance and species area curves to evaluate the 

floristic condition and composition. Water quality testing is another approach which is 

often utilized to determine the state of the ecosystem. Water quality analyses can often 

reveal abiotic wetland characteristics that may otherwise go overlooked, such as 

increased chloride levels from highway runoff, low dissolved oxygen levels, or increased 

nitrate levels due to agricultural runoff. The downfalls of water quality tests include their 

unpredictable nature and cost associated with lab analysis (Kashian and Burton 2000). 

Water tests are not the best indicators of ecological integrity since they’re an abiotic 

measurement and don’t directly represent the biota of a wetland.  

 Since plant communities in mitigated wetlands are controlled through the 

aforementioned planting scheme and monitoring efforts, they can be a misleading 

measure of the wetland’s true ecological condition (Marchetti et al. 2011). In comparison, 

macroinvertebrates may be better biological indicators because they show a large 

spectrum of tolerance to impairments, react predictably to human influences, are a crucial 

part of the food web, and their limited dispersal restricts them to water for most of their 

life (Merritt et al. 2008). They are more sensitive indicators of a wetland’s condition than 

plant communities due to their motility; shifts in macroinvertebrate communities often 

occur very quickly in response to disturbance. They can also be easily placed into 

ecological guilds such as functional feeding groups (FFGs), which can be formed into 
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ratios to function as surrogates for ecosystem characteristics such as substrate stability 

(Cummins 1974). Aquatic insects are not only vital for evaluating lotic systems but are 

also important to improve the biodiversity and functionality of lentic systems (EPA 

2002). Macroinvertebrates play pivotal roles in nutrient cycling and food web support in 

wetlands (Balcombe 2005). 

 Indices of biological integrity (IBIs) are a wide-spread and well known ecosystem 

evaluation method which uses plants and animals to indicate the ecosystem’s health or 

condition. The concept of IBIs is based on the use of multiple biotic metrics which are 

thought to delineate healthy from degraded systems. Biological data is applied to this 

template to produce a score for each metric. The scores are then summed to produce an 

overall numeric value for the ecosystem; high values indicate a healthy system while 

lower values indicate a degraded system (Uzarski et al. 2009). IBIs were first developed 

using fish community properties as proxies of lotic system health (Karr 1981), and have 

since grown to include the use of birds, reptiles, and macroinvertebrates to indicate the 

health of lakes, streams, and wetlands. Macroinvertebrate indices of biological integrity 

(IBIs) have been successfully used in evaluating lotic systems for decades (Kerans and 

Karr 1994); however, their use as biological indicators in lentic systems is relatively 

unproven (Burton et al. 1999). Many states are in the process of developing standardized 

macroinvertebrate-based IBIs for wetlands. States such as Minnesota, Wisconsin, and 

Montana are at the forefront of this evaluation method and have fully developed 

macroinvertebrate IBIs for wetlands (Genet and Bourdaghs 2006).  Over the past decade, 
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Michigan has been in the process of developing and improving accurate 

macroinvertebrate-based IBIs for coastal wetlands (Burton et al. 1999; Kashian & Burton 

2000; Bhagat et al. 2007), and has more recently began creating similar IBIs for inland 

wetlands (Uzarski et al. 2009).  

These IBIs take time to develop because there are many types of wetlands 

(riverine, lacustrine, palustrine, marsh, swamp, etc.) that each support dissimilar 

assemblages of macroinvertebrates, are prone to different forms and degrees of 

impairment, and usually require an IBI developed specifically for that wetland type in 

that specific ecoregion. Once the metrics for an IBI are tested and the IBI is developed, it 

generally undergoes many modifications before being accepted as a proven 

bioassessment method (Karr 2006). Another problem that arises during development is 

that ecologists have varying definitions and categories of wetlands, which makes 

collaboration difficult. Wetlands also have highly variable plant communities which can 

have an effect on macroinvertebrate communities (Zimmer et al. 2000; Balcombe et al. 

2005). However, with enough trials and fine-tuning these IBIs can prove to be great 

indicators of a system’s biological and ecological condition. 

Although much research has been conducted on wetland functionality and 

evaluation, relatively few studies have focused on the comparison of mitigated and 

natural wetlands. A study by Marchetti et al. (2010) compared the macroinvertebrate 

communities in restored and natural inland wetlands. Their data suggested 

characteristically different communities among and between these wetland sites, which 
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was indicative of a haphazard or nonpredicatable community assembly process through 

time. However, their data was quantitative and thus ignored the full potential of 

macroinvertebrates as bioindicators; ecological importance of specific taxa such as FFGs, 

tolerance values, and consideration of indicator species can reveal trends in community 

structure, ecological quality, and ecosystem functionality that may otherwise be ignored 

using standard quantitative approaches (Kashian and Burton 2000). 

 Studies by Campbell et al. (2002) and Brooks et al. (2005) used a similar suite of 

metrics to evaluate mitigated and natural wetlands and found that created wetlands had a 

greater proportion of dominant plants that were invasive, and natural wetland had greater 

species richness. Brooks et al. (2005) concluded that wetland mitigation techniques result 

in a more homogeneous, degraded set of wetlands, while Campbell et al. (2002) found 

that created wetlands were more similar to degraded natural wetlands which were 

structurally and functionally similar to moderate to severely degraded natural wetlands. A 

meta-analysis by Ghermandi et al. (2010) compared the values of created and natural 

wetlands and concluded that created wetlands don’t provide the same level of values as 

natural wetlands. However, human-made wetlands delivered high values associated with 

flood control, storm buffering, and water quality improvement. Marchetti et al. (2010) 

and Brooks et al. (2005) acknowledged that there has been a general deficiency of 

research in this area, as well as a lack of professional consensus in wetland evaluation 

methods, thus justifying more research on this topic.  



9 
 

This study investigated the biological integrity of mitigated wetlands as compared 

to natural, reference wetlands in western Michigan. Five sites, which were mitigated for 

the construction of highway M-6, were compared to three natural wetlands with similar 

features. Macroinvertebrate measurements were applied to a rapid bioassessment method 

established by Uzarski et al. (2009), specifically designed for inland depressional 

wetlands in Michigan. This is a relatively new method that requires more studies to 

evaluate its effectiveness as a tool for natural resource managers to use to evaluate 

wetland quality. The objectives of this study were to 1) determine if wetlands mitigated 

for the construction of a highway function similarly to natural wetlands by using 

macroinvertebrate assemblages, water quality, and floristic analyses as indicators of 

biological integrity, 2) further develop methods to assess the efficacy of using a 

macroinvertebrate IBI for inland, depressional marshes and 3) provide pragmatic 

suggestions concerning wetland mitigation practices.  
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METHODS 

Study Sites 

  The criteria used to choose three natural and five mitigated wetlands were based 

on the U.S. Fish and Wildlife Service wetland classification system (Cowardin et al. 

1979). This classification system delineates five wetland systems: marine, estuarine, 

riverine, lacustrine, and palustrine. All sites were classified as inland, palustrine marshes 

because they were dominated by non-woody, persistent emergent plants and were > 1 

mile from a Great Lake (Uzarski et al. 2009). The three reference wetlands (R1-R3) were 

chosen as examples of natural wetlands present prior to development of the M-6 highway 

(Table 2). Five mitigated sites (M1-M5) were created by the Michigan Department of 

Transportation to offset the wetlands destroyed or altered during the construction of 

Highway M-6 in 2004, as required per part 303 of the Natural Resources and 

Environmental Protection Act (Figure 1). The mitigation sites varied in age from six to 

twelve years since construction and varied in size ~5 to ~20 ha. Two of the mitigated 

wetlands were within ~30 and ~15 m from the highway (M3 and M5, respectively), while 

the other three mitigated wetlands shared a border with agricultural land. Two of the 

natural remnant wetlands were located in Bysterveld Park, Allegan County. The R1 

wetland dominated by reed canarygrass (Phalaris arundinacea) and was ~30 m from a 

major road. The R2 wetland was within ~100 m of agricultural lands to the east and west. 

The last wetland, R3, was the most unaffected by anthropogenic activities since it was > 
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400 m from the nearest road and agriculture. This large wetland was located in Hofma 

Park, Ottawa County, and was surrounded by upland forest ~60 m to the east and west.  

Macroinvertebrate Sampling and Processing 

  Macroinvertebrate sampling took place May 22
nd

 through June 12
th

, 2012. Three 

replicates were collected from each major flooded plant zones present: emergent, 

submergent, and floating leaved (Uzarski et al. 2009). Each plant zone was not present at 

every site. Samples were collected throughout the entire water column with standard 0.5 

mm D-frame dip nets, for 40 person-minutes of effort per replicate. Replicates within 

each plant zone were then pooled. Specimens were preserved in 80% ETOH in the field 

and sieved through a 212 µm screen in the lab. Specimens were then sub-sampled using a 

fixed-count method of 100 specimens per plant zone. Sub-sample and total sample (all 

specimens collected from a site) macroinvertebrate data were applied to the IBI designed 

by Uzarski et al. (2009) with the intent of assessing the efficacy of the sub-sampling 

method (Table 1).  

All specimens were identified to the taxonomic level appropriate for the IBI, 

which was Family for most taxa (Uzarski et al. 2009). Specimens were placed into FFGs 

and given tolerance values based on bioassessment protocols by Barbour et al. (1999). 

Twelve metrics were calculated and applied to the IBI (Table 1) developed for inland, 

depressional marshes (Uzarski et al. 2009). The IBI metrics were proposed metrics based 

on results of similar studies examining coastal wetlands (Burton et al. 1999), which were 
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then tested on inland marshes. The 12 IBI metrics were summed and applied to a scoring 

system to indicate the quality of the marsh. Plant zone specific IBI scores were calculated 

for each site to explore the possibility of certain plant zones being better indicators of 

ecological integrity. IBI scores in mitigated and reference wetlands were tested using a 

nonparametric Mann-Whitney Rank Sum Test. Similarly, the sub-sample and total 

specimen IBI scores were tested to determine the efficacy of the sub-sampling method. 

Inverse Simpson’s index was calculated as a supplementary indicator of biological 

integrity (Magurran 1988). This index was chosen because it’s widely applied to 

biological data sets and is relatively easier to interpret than other indices (Hill 1973). 

Using the inverse Simpson’s diversity index, each wetland was given a value between 

zero and one; higher values indicated more diverse communities and lower values 

indicated less diverse communities. Diversity data were checked for equal variance and 

normality then t-tests were used to check for possible differences between mitigated and 

reference wetlands.  

Functional feeding group ratios were calculated and used as surrogates of 

ecosystem characteristics (Cummins 1974). The ratio of predators / all other FFGs 

indicated whether the systems had a proper predator to prey balance. Scrapers + 

collector-filterers / shredders + collector-gatherers ratio was used as a proxy of habitat 

stability, which indicates exposed large woody debris, cobbles, boulders, and bedrock. 

The ratio of scrapers / all collectors + shredders was applied as an indicator of 

photosynthesis / respiration ratio, which was then used to estimate if the wetland was 
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primarily autotrophic or heterotrophic. These FFG ratios were originally developed for 

river systems but have since proved useful in wetlands as well (Kashian & Burton 2000; 

Rader et al. 2001).  

Bray-Curtis similarity scores were calculated for each wetland assemblage and 

were used with non-metric multidimensional scaling (NMDS) to assess wetland 

community variation, using R statistics software (version 2.14.1) (Bray and Curtis 1957). 

NMDS uses number of taxa and abundance of each taxon to examine assemblage 

similarity in two-dimensional space; the proximity of the points, which represent wetland 

sites, in the plot indicates the similarity of their communities (Marchetti et al. 2011). Two 

NMDS plots were used in this study: the first involved only communities in mitigated 

and reference wetlands, while the second investigated the similarity of communities 

found in different plant zones within each wetland. A post-hoc analysis of similarities 

(ANOSIM) test was performed to investigate possible differences between 

macroinvertebrate communities in mitigated and natural wetlands, as well as a similarity 

of percentages (SIMPER)  test to point out the relative contribution of each taxon to the 

similarities among sites (Clarke 1993). Taxa occurring at less than 1% of all samples 

were not included in the NMDS and subsequent analyses due to the statistical effects of 

rarity on these procedures.   
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Floristic Quality Assessment 

 Floristic quality assessments of emergent vegetation at all sites were conducted in 

August 2012, at a time when most of these plants were flowering which facilitates 

identification. A fixed transect method was used with five sampling points. Three 

sampling quadrats (1x1 meter) were determined from each of the five sampling points at 

a randomly selected distance (1-10 meters) and compass direction (0-360
o
), resulting in a 

standardized 15 quadrats per wetland. One transect was used if it could encompass all the 

present plant zones, if not, two transects were used per wetland in order to better 

represent the plant community. Plant zones included wet meadow, emergent, floating, 

and floating leaved zones. Given the variation in wetland sizes, distance between 

sampling points was established relative to the size of the total wetland acreage; larger 

wetlands had larger transects and subsequent increment sampling points (15-20 m) than 

smaller wetlands (10-15 m).  Plants within each quadrat were identified to species and 

percent coverage estimated. Submergent plants were not identified in this study.  

 Floristic quality analyses were conducted based on standard practices used to 

assess wetlands by the Michigan Department of Environmental Quality. These methods 

were published by the Michigan Department of Natural Resources (Herman et al. 2001) 

and include native species and total species richness, invasive coverage, floristic quality 

index (FQI), and mean coefficients of conservatism. Mean coefficients of conservatism 

and FQI are closely related bioassessment methods that use plant community 
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characteristics to determine habitat quality (Swink and Wilhelm 1994). Coefficients of 

conservatism are values (0-10) based on the probability that a plant is present in a 

relatively unaltered habitat, similar to pre-settlement conditions. Lower coefficient of 

conservatism values indicate plants that can be found in most wetlands while higher 

values are assigned to plants that are restricted to higher quality wetlands. FQI was 

calculated by multiplying the mean coefficient of conservatism by the square root of the 

total number of species (Taft et al. 1997; Herman et al. 2001). Additionally, Simpson’s 

diversity index was calculated for each wetland. All floristic measurements were tested 

for equal variance and normality and t-tests were used to explore differences between 

mitigated and reference wetlands. If normality or equal variance were not met, a Mann-

Whitney Rank Sum test was used.  

Water Quality Measurements 

 Water samples were collected on June 18
th

, 2012 and June 20
th

, 2013. Samples 

could not be collected for the R1 site due to dry weather conditions and extremely low 

water levels in June 2012. Collections were conducted via two methods: composite grab 

samples and sonde measurements. Composite grab samples were collected, filtered 

through 0.45 µm syringe filter, put on ice, and then transported to Grand Valley State 

University’s Annis Water Resources Institute laboratory for analysis of soluble reactive 

phosphorus (SRP), sulfate, chloride, and nitrate concentrations. Due to financial 

constraints, composite grab samples were only collected once per year, near the middle of 
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the wetland, at mid-depth.  Additionally, at each site, three measurements were taken at 

mid-depth using a YSI multiprobe meter (probe model: 600QS; meter model: 650 MDS) 

to measure specific conductance, dissolved oxygen, and pH. Water quality in mitigated 

and reference sites were compared using standard t-tests if normality and equal variance 

met, if not, a nonparametric Mann-Whitney Rank Sum Test was used in both 2012 and 

2013. To determine differences in results between years, a paired t-test was performed on 

each metric. If normality or equal variance were not met, a signed rank test was used 

instead.  
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RESULTS 

Macroinvertebrate Assemblages 

 The most abundant taxa found in the reference wetlands were 56% Isopoda, 13% 

Amphipoda, and 9% Gastropoda (Figure 2). Comparably, the mitigated wetlands had 

fewer crustaceans and more aquatic insects. Despite Gastropoda being the most plentiful 

taxon within the mitigated sites, constituting 31% of the total catch, the next three most 

abundant taxa were 16% Hemiptera, 16% Coleoptera, and 13% Odonata. There were 56 

Trichoptera found in the reference wetlands while none were found in the mitigated 

wetlands. Trichopteran taxa were collected in all three of the reference wetlands and 

encompassed the Limniphilidae, Phryganeidae, and Molannidae families. Isopods 

comprised over half of the specimens collected in the reference wetlands, however, they 

comprised < 1% of the specimens in the mitigated wetlands.  

The sub-sampled macroinvertebrate IBI scores were significantly greater for the 

natural wetlands than the mitigated wetlands (P < 0.001; Table 3). Likewise, the IBI 

scores for all specimens were significantly greater for the natural wetlands than the 

mitigated wetlands (P < 0.001; Figure. 3). The IBI scores from the sub-sampling method 

were not significantly different from the IBI scores for all specimens. The results of the 

1
st
 NMDS (stress = 0.06) and ANOSIM test showed that the macroinvertebrate 

communities in the mitigated sites were significantly different from the natural sites (R = 

0.87; P = 0.021; Figure. 4). The SIMPER test revealed the taxa that influenced this result 
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the most were Isopoda and Amphipoda, which accounted for over 60% of the cumulative 

contribution. The results of the 2
nd

 NMDS (stress = 0.17) and ANOSIM test indicated 

that the macroinvertebrate communities found in three plant zones were not statistically 

different from each other (R = -0.14; P = 0.873; Figure. 5). The Inverse Simpson’s 

diversity indices for the mitigated wetlands were statistically greater than the natural 

wetlands (Table 3).  

 The functional feeding group (FFG) ratios, which served as proxies of ecosystem 

characteristics, revealed that 4/5 of the mitigated wetlands had stable substrate; however, 

none of the reference wetlands shared this substrate stability (Table 4). All three of the 

natural, reference wetlands had a healthy predator / prey balance while the mitigated 

wetlands had an over-abundance of predatory taxa such as Pleidae, Coenagrionidae, and 

Hydrophilidae. Three of five of the mitigated wetlands were extremely autotrophic, while 

all of the reference wetlands were considered extremely heterotrophic. 

Floristic Quality Assessment 

 The non-native narrow-leaf cattail (Typha angustifolia) was the most dominant 

species in the mitigated wetlands, comprising an average coverage of approximately 

30%. The native, yet highly invasive reed canary grass (Phalaris arundinacea) was the 

most dominant plant in the reference wetlands with an average coverage of 

approximately 53%. The mitigated wetlands had a more diverse floral composition, 

although not statistically significant. However, the R3 reference wetland harbored 
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northern reedgrass (Calamagrostis lacustris), which is considered a threatened species in 

Michigan, in 20% of the sampled quadrats (Herman et al. 2001). 

None of the floristic quality assessment metrics comparing mitigated and 

reference wetlands were significantly different (P > 0.05; Table 5). The mean invasive 

plant coverage for the mitigated wetlands was greater than the natural wetlands, but these 

differences were also not statistically significant. Measurements of the floristic metrics 

were more variable for the reference wetlands than for the mitigated wetlands.   

Water Quality 

 Water quality data was highly variable between sites and thus lacked obvious 

trends. In 2012, dissolved oxygen was low in the R2 site (Table 6).. Chloride levels were 

notably higher in the M3 and M5 mitigated wetlands. Four of five of the mitigated 

wetlands had elevated levels of nutrients (nitrate, SRP, sulfate), while the R2 reference 

wetland had the highest sulfate level.  

In 2013, the pH in the M3 site was alarmingly alkaline at 10.3 (Table 7). Chloride 

levels were elevated in M2 and R1 sites. Nutrient measurements were high in the M1, 

M3, and M5 mitigation site. Nitrate levels in the R2 wetland were a full order of 

magnitude greater than all the other wetlands.  

 The t-tests and Mann-Whitney Rank Sum tests applied to both the 2012 and 2013 

data to compare mitigated and reference wetland water quality resulted in no significant 
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differences (P > 0.05) for each of the water quality metrics. The paired t-tests and Signed 

Rank tests used to compare water quality metrics between years also produced no 

significant differences.  
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DISCUSSION 

 The biological integrity of the mitigated and reference wetlands is substantially 

different. The macroinvertebrate IBI indicates that the reference wetlands are high to 

excellent quality while the mitigated wetlands are poor to average quality (Figure 3). The 

first NMDS illustrates that the macroinvertebrate assemblages in the natural wetlands are 

statistically different from the mitigated wetlands (Figure 3), while the supplemental FFG 

ratios also show some distinct trends. The IBI combines many bioassessment indices to 

estimate the overall biological integrity of each site, while the NMDS and ANOSIM test 

provide a more statistical approach to comparing community composition between sites. 

The use of both the macroinvertebrate IBI and the NMDS/ANOSIM allows for a more 

thorough and accurate bioassessment approach. Combined, these results indicate that the 

macroinvertebrate communities in the mitigated and natural wetlands were statistically 

different in terms of biological integrity and community composition.  These results 

coincide with similar studies examining mitigated and natural emergent wetlands 

(Campbell et al. 2002; Brooks et al. 2005; Ghermandi et al. 2010).   

Macroinvertebrates have proven themselves as effective measures of 

bioassessment in lotic systems (Cummins 1974; Plafkin et al. 1989; Kerans and Karr 

1994) and my results strongly suggest that they can be equally important tools for 

evaluating lentic systems (Burton et al. 1999; Kashian and Burton 2000). The 

macroinvertebrate FFG ratios, IBI, and 1
st
 NMDS indicate a distinct separation of 
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biological integrity between mitigated and reference wetlands, which was not detected 

using standard water quality and floristic analyses. Macroinvertebrates are mid-level 

consumers so they are affected by both top-down and bottom-up trophic interactions, 

which makes them great indicators of current trophic conditions (Merritt et al. 2008). 

Presence or absence of sensitive taxa, such as most Trichoptera, can be an indication of 

physical and/or chemical impairments. There were 56 trichopterans collected in the 

natural wetlands while none were found in the mitigated wetlands; over 90% of those 

trichopterans belonged to the family Limniphilidae, which is an intolerant, sensitive taxon 

(Merritt et al. 2008). Macroinvertebrates’ usefulness as a bioassessment tool extends to 

include estimates of autotrophic / heterotrophic dominance, substrate stability, and 

photosynthetic food availability via FFGs and FFG surrogate ratios. Using these ratios I 

identified an overabundance of predatory taxa in the mitigated wetlands (Table 4), a 

trophic imbalance also observed by Brown et al. (1997) in a study examining newly 

flooded restored wetlands.   

 The Simpson’s diversity index reveals that the macroinvertebrate communities in 

the mitigated wetlands were more diverse than the natural wetland communities (Table 

3). Many ecologists have traditionally considered species diversity as an effective 

indicator of a system’s health and biological stability (Magurran 1988); however, the 

results of the macroinvertebrate IBI indicated that the mitigated wetlands were of poor to 

average quality in terms of biological integrity. This contradiction could stem from the 

fundamental flaws associated with the use of diversity indices. Diversity indices utilize 
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two unrelated aspects: taxa composition and abundance of each taxon. Composition in a 

given area is dependent upon factors such as historical climatic shifts, seasonal variations, 

dispersal events, and proximity to other bodies of water (Hubbell 2001; Voshell 2002). 

Abundance of each taxon is dependent upon factors such as predation, competition, life 

history traits, and food availability. The combination of these two aspects into an index, 

such as Simpson’s diversity, results in a single value which can be difficult to interpret 

and less ecologically meaningful (Barrantes and Sandoval 2009). For example, the 

mitigated wetlands had macroinvertebrate communities which were more diverse; 

however, they had a fewer specimens which were deemed intolerant (metric 2, Table 1). 

These intolerant, sensitive species are better ecological indicators because they can only 

persist in relatively pristine habitats (Barbour et al. 1999). When diversity indices are 

applied to a set of data, the taxa are considered numeric and thus nothing can be inferred 

of their ecological role and importance (Barrantes and Sandoval 2009). Alternatively, 

multimetric indices are specifically designed to assimilate information from the 

ecosystem, community, population, and individual specimen level into an easy to 

interpret estimation of an ecosystem’s condition (Barbour et al. 1999). 

 The rapid bioassessment IBI used in this study utilizes a variety of practical 

metrics such as tolerance values, specific taxa richness, ecological roles (FFGs), and 

presence of indicator species to assess the biological integrity of inland marshes (Table 

1). I recommend this IBI as a rapid bioassessment tool for inland wetlands with the 

exception of metric 1, “% of total catch that were intolerant” and metric 2, “% of total 
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catch that were tolerant” (Table 1). These two metrics tested poorly in this study. It seems 

counter-intuitive that a higher percentage of tolerant taxa would be deserving of a higher 

IBI score, since most tolerant taxa can thrive in degraded systems. Macroinvertebrate 

tolerance values have potential to be helpful indicators of a system’s condition with 

proper application (Barbour et al. 1999); thus, I recommend that the values for each 

disturbance level be revised to better reflect disturbance upon further testing.  

The sub-sampling methods used in this study yielded IBI scores which are 

statistically similar to the IBI scores of the complete samples, which verifies the efficacy 

of this sub-sampling method, or a similar method with a fixed count minimum of 100 

specimens per plant zone. If only one plant zone is present, a fixed count method of 200 

specimens is suggested to achieve an accurate representation of the macroinvertebrate 

assemblage (King and Richardson 2002). Previous studies have stressed the importance 

of evaluating wetland macroinvertebrate communities in a stratified manner based on 

plant zones such as emergent, submergent, and open water areas (Balcombe et al. 2005; 

Streever et al. 1995). These studies, which evaluated macroinvertebrate abundance and 

diversity, also indicated that pooling of plant zone specific data could mask potential 

differences between created and natural wetlands that lie solely within these plant zones. 

To test that approach, the methods employed in this study used both plant zone specific 

data and pooled data, so a comparison could be made. Based on the locations of the 

points in the second NMDS plot (Figure 4), it can be concluded that the 

macroinvertebrate communities in this study are not heavily influenced by plant zone; 
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instead, they are more influenced by site. Additionally, the plant zone specific IBI results 

were not significantly different from the pooled plant zone IBI results (Table 3). Taken 

together, these results indicate that plant zone specific data may not be as important as 

originally thought. Furthermore, plant zones within wetlands can often be difficult to 

delineate because of the high amount of overlap between zones (Zimmer et al. 2000; 

Balcombe et al. 2005), which can reduce the confidence of plant zone specific data. 

Many taxa thrive in these different microhabitats and for that reason it is recommended 

that all plant zones be incorporated, but pooled, while sampling macroinvertebrates in 

wetlands. This approach should contribute to the speed of this rapid bioassessment 

method without hindering its efficacy.   

A plausible explanation for the differences between macroinvertebrate 

communities in mitigated and reference wetlands could stem from ecosystem 

characteristics which can often go undetected using standard approaches. The 

macroinvertebrate FFG ratios employed in this study act as proxies of such ecosystem 

attributes and revealed some substantial trends between mitigated and reference wetlands. 

For example, the reference wetlands are all extremely heterotrophic while 3/5 of the 

mitigated wetlands are extremely autotrophic (Table 4). This can be explained by the 

influence that succession has on substrate and algae. Four out of five of the mitigated 

wetlands had stable substrate while all of the reference wetlands had unstable substrate 

(Table 4). Stable substrate encompasses the large woody debris, cobbles, boulders, and 

bedrock that most algae require as a natural growth medium. Algae are a major 
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contributor of autotrophy in aquatic systems (Minshall 1978). Anderson et al. (2005) 

found that as created wetlands age, there is a general shift in organic matter from algae to 

macrophytes. Notably, there were more algae visually observed in the mitigated wetlands 

than in the reference wetlands. As successional processes progress, algae may lose its 

light availability due to an increase in emergent plants, as well as be buried from 

cumulative sedimentation; a process which reduces the area of standing water in wetlands 

(Uzarski, unpublished; Zweig and Kitchens 2009). This scenario would provide for a 

more heterotrophic system. Using the same FFG ratio method while testing potential IBI 

metrics on reference and degraded wetlands, Kashian and Burton (2000) found that an 

impacted wetland was primarily autotrophic while their reference site was heterotrophic. 

Their rationale for this was an increase in nutrient levels in the impacted wetlands, a trend 

that was also found in some of the mitigated sites in this study. Regardless of whether the 

mitigated wetlands were primarily autotrophic due to natural successional processes or 

increased nutrient levels, my findings reveal that they do not possess some of the 

ecosystem characteristics of natural wetlands.  

There are some notable limitations of this study. Although rapid bioassessments 

typically involves just one sampling period, the lack of a temporal series in this study 

means there is no account for seasonal or annual variation. The level of identification of 

macroinvertebrates (mostly family level) resulted in underestimated values for the 

diversity measurements. This is a standard, pragmatic IBI approach for rapid 

bioassessment and since level of identification was constant across all sites, it should not 
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have affected comparison of diversity between the mitigated and natural wetlands in this 

study. The absence of soil sampling in this study may have limited my ability to discern 

the mechanisms driving the discrepancies between floristic and macroinvertebrate results. 

Many studies report that soil composition can heavily influence vegetation (Kentula et al. 

1992; Stauffer and Brooks 1997) as well as the macroinvertebrate communities in a 

wetland (Merritt et al. 2008; Voshell 2002). It’s worth noting that this study is limited to 

ecological and biological integrity and thus ignores other important wetland functions 

such as flood control and filtration processes. The minimal number of reference sites is 

reason for some concern in this study since it could influence results comparing mitigated 

and natural wetlands. Financial and time constraints, as well as lack of proximal natural 

wetlands were factors that limited the number of reference sites used in this study. For 

similar studies, I recommend a greater sample size.  

 The floristic quality assessments in this study were chosen based on methods 

which agencies actively use to evaluate wetland plant communities. The results revealed 

little in the way of trends between mitigated and natural wetlands. The mean floristic 

quality index (FQI) and mean coefficient of conservatism values were slightly greater for 

the mitigated sites (although not significant); yet, the R3 site had the best floristic quality 

scores overall. The assessment of more natural sites may have revealed trends similar to 

Kellog and Bridgham (2002) and Balcombe et al. (2005), in which the natural wetlands 

had a more diverse vegetative structure than the mitigated wetlands. Interestingly, the 

mitigated sites had a higher percentage of invasive plant coverage despite the vegetative 
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monitoring and invasive plant treatments which are required as per the mitigation 

performance standards; a trend that is also found in similar studies (Brooks et al. 2005; 

Campbell et al. 2002). These results could be contributed to the invasion strategies of 

exotic plants. Many invasive plants out-compete native plants during early succession of 

the community (Bryant et al. 1992; Herben et al. 2004). The mitigated sites in this study 

are still undergoing early succession and therefore may still have greater dominance by 

invasive plants. One possible solution to this problem is to require vegetative monitoring 

for a longer period of time than is currently required and, if necessary, more invasive 

species control (Campbell et al. 2002). 

 Despite the FQA not revealing trends between the two types of wetlands, these 

analyses are important for estimating floristic community structure, invasive species 

estimates, and identifying rare or endangered species (Herman et al. 2001). The mean 

coefficient of conservatism and FQI analyses offer a flexible bioassessment method 

based on species’ indicator values, or “C” value (Swink and Wilhelm 1994). FQI can be 

used for comparison of sites of different sizes and complexity, while mean coefficient of 

conservatism can be employed to assess the quality of similar study sites (Taft et al. 

1997). These analyses can easily be applied to the floristic monitoring data which is 

standard for mitigation practices. The only noticeable downfall of the floristic methods 

described by the Michigan Department of Natural Resources (Herman et al. 2001), which 

are commonly used by monitoring agencies, is the delineation of “native” or “adventive 

species”. For example, reed canary grass (Phalaris arundinacea) can have devastating 
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effects on wetland communities (Kercher and Zedler 2004); yet, this species is 

considered native in most of North America, including Michigan (Hansen et al. 1995; 

Herman et al. 2001). For the sake of invasive species monitoring and treatment, it may be 

more practical to classify species as “invasive” or “not-invasive” as pertaining to a 

certain habitat.  

 Water quality results appeared highly site specific and lacked overall trends 

between both wetland type and sampling years. There were instances of elevated SRP 

and nitrate levels in both mitigated and reference wetlands, which can be a precursor of 

detrimental eutrophication processes. Water quality can be an abiotic measure of 

biological integrity in wetlands since it greatly influences the conditions in which 

organisms live; however, the results are prone to inconsistencies due to natural 

atmospheric fluctuations, photosynthetic / cellular activity, water depth changes, and 

collection time (Uzarski et al. 2009). Extremely low water depth, experienced at some of 

my study sites, can result in a higher than average concentration of compounds such as 

nitrates, SRP, and phosphate. The short-term sampling approaches used in this study limit 

the interpretation of my results, which show no obvious trends between mitigated and 

reference wetlands. Long-term evaluation of water quality can account for episodic 

pollution and seasonal changes but is often not feasible due to financial and time 

constraints (Kashian and Burton 2000). For rapid bioassessment of wetland biological 

integrity, I recommend macroinvertebrate bioassessment in lieu of water quality analyses 
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since they respond to both periodic and long-term abiotic changes (Karr 1993; Kashian 

and Burton 2000).  

Of all factors considered while creating a wetland, location is of the utmost 

importance (Campbell et al. 2002). Location will dictate influential factors such as pre-

existing hydrology, soil properties, and established flora and fauna. Additionally, wetland 

location relative to land usage such as urbanization, forests, and agriculture will affect 

wetland functionality. In accordance with the metapopulation / metacommunity theory 

(Wilson 1992), site location relative to other wetlands may be the most important factor 

influencing biological integrity. This is especially true with inland, palustrine marshes 

which, by definition, are more isolated than lacustrine and riverine wetlands. The 

metapopulation theory, as pertaining to wetlands, involves a set of wetland communities 

interacting together based on habitat size, species dispersal capabilities, wetland 

proximity and connectivity. I recommend that mitigated wetlands be located near large, 

pre-existing wetlands and preferably a high level of connectivity between these wetlands, 

properties which were not observed in the wetlands chosen for this study. Connectivity 

depends on the life history traits of the taxa being considered; for example, wetland 

connectivity for many amphibians would be high if isolated wetlands were connected via 

forests, since many amphibians require forested habitats for part of their life cycle (Batzer 

and Sharitz 2006). Many macroinvertebrate taxa live their entire life in water; for these 

macroinvertebrates, connectivity would be influenced by the presence of permanent and 

seasonal bodies of water such as flood plains and vernal pools (Voshell 2002). A study 
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investigating the biological integrity of a series of wetlands that represent a gradient of 

proximity and connectivity to other wetlands may help reveal the extent of the influence 

of these factors.  

In this study the macroinvertebrate communities found in the mitigated wetlands 

were significantly different than those found in the natural wetlands. The question is 

whether these results are truly due to differences in biological integrity. An argument 

could be made that the presence or absence of specific taxa could be due to the limited 

dispersal of some invertebrates. Macroinvertebrates, although widespread, have a varied 

range of motility; thus, if a taxon hasn’t been exposed to a newly created wetland, either 

due to limited dispersal ability or wetland isolation, then it shouldn’t be present there. 

Results of a similar study examining macroinvertebrates in restored and natural wetlands 

indicated a haphazard or nonpredicatable community assembly process of 

macroinvertebrates in wetlands (Marchetti et al. 2010). Community assembly may be an 

unpredictable process; however, installing man-made wetlands near other large wetlands 

with high levels of connectivity will help facilitate the colonization of all viable 

macroinvertebrates, including those with low dispersal capabilities. To help jumpstart this 

community assembly process, inoculation of less motile and nonaerial taxa can be 

implemented during the mitigation process (Brown et al. 1997). This will nullify any 

differences between mitigated and natural wetland which may exist due to 

macroinvertebrate dispersal and community assembly processes and should work to 

strengthen the long-term biological integrity of these wetlands.  
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 The reference sites chosen in this study were not selected based on observable 

quality and/or biological diversity, rather as a representation of what natural wetlands 

may have looked like prior to the development of highway M6. Brooks et al. (2005) 

found that sets of natural wetlands exhibit greater heterogeneity as compared to created 

wetlands and I believe the reference sites chosen for this study accurately reflect this 

pattern.  The wetland mitigation sites used in this study were of notably higher quality 

than many observed mitigated wetlands that were not chosen as study sites. The use of 

supplemental snags, multiple tiers, water level control, and diverse seeding helps 

facilitate microhabitat and species diversity. Yet, based on my findings, these mitigated 

wetlands clearly are not functioning similarly to natural wetlands in terms of biological 

integrity. Despite the enormous significance of wetlands and all the considerations that 

go into mitigation planning, Burgin (2009) describes mitigation outcomes as modestly 

successful at best, based on a suite of metrics which ecologists use to evaluate mitigation 

success. Likewise, the EPA (2001) stated that many created wetlands fail to replace the 

diverse plant and animal communities that are removed during the destruction of the 

original wetland. The suggestions provided in this study should facilitate more successful 

mitigation projects if implemented into standard mitigation practices. I also recommend 

new approaches to wetland evaluation techniques; current techniques are not measuring 

the mitigation goals, rather specific aspects of the wetland’s condition. The mitigation 

goals, which are wetland functions, are measured by the services it provides such as 

wastewater treatment and provision of wildlife habitat, while most mitigated wetland are 
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mainly measured by percent coverage of invasive plant species.  The macroinvertebrate 

methods employed in this study further measure trophic structure and can be used as 

surrogates of wetland functionality.   
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Table 1: An invertebrate index of biological integrity developed by Uzarski et al. (2009), 

which was designed specifically for inland, depressional marshes. Invertebrate scores 

were summed for 12 metrics and placed into categories:  48 - 60 = excellent quality 

marsh, 36 - 48 = average or higher quality marsh, 24 - 35 = below average quality marsh, 

degraded, 12 - 23 = Poor quality marsh, heavily degraded. 

Metric Degraded 

Moderately 

Impacted Reference 

 

Score = 1 Score = 3 Score = 5 

1. % of total catch that were tolerant taxa 0 - 1 % 2 - 5 % > 5 % 

2. % of total catch that were intolerant taxa 0 - 0.10 % 0.11 - 0.75 % > 0.75% 

3. Number of "species" of beetles (Coleoptera 

taxa richness) > 3 ----- 0 - 3 

4.  % of total catch that were shredders 0 - 2.5 % ----- > 2.5 % 

5. % of total catch that were predators > 25 % 12.1 - 25 % 0 - 12 % 

6. % of total catch that were Crustacea + 

Mollusca > 20 % 10.1 - 20% 0 - 10 % 

7. Caddisflies (Trichoptera) absent ----- present 

8. % of total catch that were water boatmen 

(Corixidae)  > 1 % ----- 0 - 1 % 

9. % of total catch that were mosquito larvae 

(Culicidae)  > 1.5 % ----- 0 - 1.5 % 

10. % of total catch were predaceous diving 

beetles (Dytiscidae) > 2.5 % ----- 0 - 2.5 % 

11. % of total catch that were crawling water 

beetles (Haliplidae)  > 3.0 % 1.1 - 3.0 % 0 - 1.0 % 

12. % of total catch that were damselflies in the 

family Lestidae  > 5 % 3.1 - 5 % 0 - 3 % 
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Table 2: Characteristics of eight wetlands in western Michigan. “R” sites indicate natural, reference wetlands while “M” sites indicate 

mitigated wetlands. Average depth was calculated using averages of 2012 and 2013 sampling periods. 

Site  
Years Since 

Construction 
Avgerage Depth (m) Hydrology GPS Coordinates 

M1 6 0.21 Surface flow  42°47'42.89"N,  85°59'9.71"W 

M2 9 0.74 Groundwater  42°48'8.52"N,    85°41'39.86"W 

M3 8 0.63 Groundwater  42°51'18.52"N,  85°44'43.47"W 

M4 9 0.72 Surface flow  42°49'20.88"N,  85°35'51.39"W 

M5 11 0.43 Groundwater  42°51'9.67"N,    85°35'28.60"W 

R1 - 0.17 Surface flow  42°43'24.47"N,  85°40'44.37"W 

R2 - 0.06 Surface flow  42°43'11.48"N,  85°40'37.11"W 

R3 - 0.45 Surface flow  43° 1'19.13"N,   86°11'18.22"W 
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Table 3: The index of biological integrity (IBI) scores for eight wetlands in western Michigan. “R” sites and values indicate natural 

reference wetlands while “M” sites and values indicate mitigated wetlands. Twelve IBI metrics were summed to comprise each IBI 

score. Sub sample and total IBI scores were included so a comparison could be made to test the efficacy of the fixed, 100-count per 

plant zone sub sampling method. IBI scores in the 3 mitigated and 5 reference wetlands were tested using a Mann-Whitney Rank Sum 

test. Both the sub-sampling and total sampling methods revealed that the reference wetland IBI scores were significantly greater than 

the mitigated wetland IBI scores. Floating and submergent plant zones were not statistically tested due to lack of replicates. A t-test 

indicated that the Inverse Simpson’s diversity indices for the mitigated wetlands were statistically greater than the natural wetlands. 

Site 
Sub sample IBI 

score 
Total IBI score 

Plant Zone Specific IBI Scores 
Inverse Simpson's D 

Floating  Emergent Submergent 

M1 36 30 36 28 - 0.78 

M2 32 30 32 36 - 0.84 

M3 34 34 38 38 - 0.73 

M4 36 36 - 36 40 0.90 

M5 32 32 - 36 36 0.80 

R1 46 50 46 48 - 0.48 

R2 50 48 - 48 - 0.54 

R3 46 46 - 46 48 0.74 

Mitigated Mean 
34.0 ± 2.0 32.4 ± 2.6 35.3 34.8 38 0.81 ± 0.06 

Std Deviation 

Reference Mean 
47.3 ±  2.3 48.0 ± 2.0 46 47.3 48 0.59 ± 0.14 

Std Deviation 

* denotes a significant value (P < 0.05) 
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Table 4: Functional feeding group ratios for eight wetlands located in western Michigan, 

which serve as proxies of ecosystem characteristics. “R” sites and values indicate natural, 

reference wetlands while “M” sites and values indicate mitigated wetlands. Shading is 

used to illustrate trends within data.  

Site 
Habitat 

Stability 

Predator / Prey 

Balance 

Photosynthesis / 

Respiration 

M1 1.71 0.25 1.47 

M2 0.62 0.76 0.56 

M3 2.34 0.21 1.41 

M4 0.14 0.79 0.14 

M5 2.16 0.56 1.85 

R1 0.14 0.13 0.12 

R2 0.04 0.03 0.03 

R3 0.20 0.11 0.16 

Evaluation 
Habitat 

Stability  

Predator / Prey 

Balance 

Autotrophic vs. 

Heterotrophic system 

Criteria 

Levels 

Stable 

Substrate 

Plentiful > 0.6 

Normal balance  

<0.15 
Autotrophic > 0.75 
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Table 5: The results of floristic quality assessments for eight wetlands in western Michigan. “R” sites and values indicate natural, 

reference wetlands while “M” sites and values indicate mitigated wetlands. 

Site 
Native species 

richness 

Total species 

richness 

Invasive plant 

cover (%) 

Mean coefficient of 

conservatism  

Floristic quality 

index 

M1 11 15 29.0 4.27 14.17 

M2 16 21 11.2 2.69 10.75 

M3 30 33 22.4 3.33 18.26 

M4 22 26 8.6 3.27 15.35 

M5 11 14 31.9 3.36 11.16 

R1 4 5 0.9 1.75 3.50 

R2 9 10 4.1 2.89 8.67 

R3 24 26 39.9 4.71 23.07 

Mitigated Mean 

Std Deviation 

18.0 ± 8.0 

 

21.8 ± 7.9 

 

20.6 ± 10.4 

 

3.39 ± 0.57 

 

13.93 ± 3.10 

 

Reference Mean 

Std Deviation 

12.3 ± 10.4 

 

13.7 ± 10.9 

 

14.9 ± 21.7 

 

3.11 ± 1.49 

 

11.74 ± 10.13 
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Table 6: Water quality data for seven wetlands in western Michigan which were sampled in May 2012. “R” sites and values indicate 

natural reference wetlands while “M” sites and values indicate mitigated wetlands. Using standard t tests and Mann-Whitney Rank 

Sum tests, no significant differences were detected between mitigated and reference wetland water quality (P > 0.05). Note: no water 

quality data could be collected from R1 due to low water levels.  

Site 

Specific 

Conductance 

(uS/cm) 

Dissolved 

Oxygen 

(mg/L) 

pH 
Chloride 

(mg/L) 

Sulfate 

(mg/L) 

Nitrate 

(mg/L) 

Soluble 

Reactive 

Phosphorous 

(µg/L) 

M1 774 6.35 8.0 76 0.3 0.04 59.7 

M2 430 9.94 7.9 5 13.0 4.44 4.6 

M3 754 7.59 8.2 152 5.0 0.31 11.5 

M4 212 10.97 7.8 3 0.2 0.15 6.4 

M5 860 7.49 8.4 149 7.0 0.31 8.1 

R2 635 3.87 8.0 37 32.0 0.51 5.5 

R3 386 11.13 8.3 33 12.0 0.35 4.5 

Mitigated Mean 543 8.71 8.0 59 5 1.24 20.6 

Reference Mean 511 7.50 8.1 35 22 0.43 5.0 
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Table 7: Water quality data for eight wetlands in western Michigan which were sampled in May 2013. “R” sites and values indicate 

natural reference wetlands while “M” sites and values indicate mitigated wetlands. Using standard t tests and Mann-Whitney Rank 

Sum tests, no significant differences were detected between mitigated and reference wetland water quality (P > 0.05).   

Site 

Specific 

Conductance 

(µs/cm) 

Dissolved 

Oxygen 

(mg/L) 

pH 
Chloride 

(mg/L) 

Sulfate 

(mg/L) 
Nitrate (mg/L) 

Soluble Reactive 

Phosphorus (µg/L) 

M1 658 18.84 9.6 44 12 0.19 116.9 

M2 642 4.33 7.8 97 6 0.57 7.1 

M3 767 13.13 10.3 29 33 0.99 7.5 

M4 295 2.45 7.7 44 12 0.19 11.7 

M5 530 3.98 7.6 67 3 0.07 4.7 

R1 905 3.47 7.7 142 7 0.61 4.6 

R2 378 8.60 8.1 10 16 12.34 7.7 

R3 251 5.86 7.1 30 24 0.70 9.4 

Mitigated mean 578 8.55 8.6 56 13 0.40 30 

Reference mean 511 5.98 7.6 61 16 4.55 7.2 
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Figure. 1 Location of study sites in Allegan, Kent, and Ottawa counties, MI. M1-M5 

sites were wetlands mitigated for the construction of highway M-6 (outlined here by a 

thick black line). R1-R3 sites served as natural, reference sites during this study.  
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Figure. 2 Macroinvertebrate community composition in mitigated and natural, reference 

wetlands in west Michigan, expressed in a stacked bar graph. Data from three reference 

wetlands and five mitigated wetlands were pooled in each category. Proportion of total 

catch is on the Y axis and wetland type is on the X axis. N = 2859  
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Figure. 3 The results of IBI scores for macroinvertebrate communities in five mitigated 

and three natural wetlands, expressed in a Box and Whisker plot. The IBI scores for the 

natural, reference wetlands were significantly greater than the IBI scores for the mitigated 

wetlands (P < 0.001). The thin black lines and italicized text indicate the wetland quality 

categories detailed in Uzarski et al. (2009). Invertebrate scores were summed for 12 

metrics and placed into categories:  48 - 60 = excellent quality marsh, 36 - 48 = average 

or higher quality marsh, 24 - 35 = below average quality marsh, degraded, 12 - 23 = Poor 

quality marsh, heavily degraded.  
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Figure. 4 NMDS ordination plot for eight wetland macroinvertebrate communities based 

on Bray-Curtis similarities (stress = 0.06). “R” sites indicate natural reference wetlands 

while “M” sites and values indicate mitigated wetlands. NMDS uses number of taxa and 

abundance of each taxon to examine assemblage similarity in multi-dimensional space; 

the proximity of the points, which represent wetland sites, indicates the similarity of their 

communities. Mitigated wetland communities were significantly different from the 

natural wetland communities according to the ANOSIM results (R = 0.87; P = 0.021). 

Both Bray-Curtis and ANOSIM tests were performed with 999 permutations.  
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Figure. 5 NMDS ordination plot for macroinvertebrate communities collected in three 

different plant zones based on Bray-Curtis similarities (stress = 0.17). R1-R3 sites 

indicate natural, reference wetlands while M1-M5 sites indicate mitigated wetlands. Plant 

zones are differentiated by color, while wetland sites are represented by symbols. The 

ANOSIM test revealed that macroinvertebrate communities in the three plant zones were 

not significantly different (R = -0.14; P = 0.873). Both Bray-Curtis and ANOSIM tests 

were performed with 999 permutations. 
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APPENDIX A 

Macroinvertebrate Data 

Taxon 
Site 

M1 M2 M3 M4 M5 R1 R2 R3 

Aeshnidae 1 0 0 4 7 7 0 0 

Amphipoda 0 80 0 28 0 0 0 186 

Athericidae 0 3 0 0 0 0 0 0 

Baetidae 0 0 0 12 0 0 0 0 

Bivalvia 8 5 24 0 6 8 3 10 

Caenidae 0 8 0 18 11 0 1 2 

Calopterygidae 0 6 0 0 0 0 0 1 

Ceratopogonidae 0 0 13 6 0 0 0 0 

Chironomidae 16 4 7 25 6 13 11 8 

Chrysomelidae 0 1 1 0 0 4 0 0 

Coenagrionidae 1 89 0 8 9 14 0 3 

Cordulegastridae 0 0 0 1 0 0 0 0 

Corduliidae 0 0 0 0 0 0 0 1 

Corixidae 36 28 3 17 11 0 0 12 

Culicidae 1 0 1 2 1 0 0 0 

Curculionidae 0 4 0 1 0 0 0 0 

Decapoda 0 1 0 2 11 0 0 2 

Dixidae 0 0 0 1 0 0 0 0 

Dytiscidae 9 14 9 0 24 5 6 0 

Elmidae 0 0 0 0 0 3 1 0 
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APPENDIX A 

Macroinvertebrate Data (continued) 

Taxon 
Site 

M1 M2 M3 M4 M5 R1 R2 R3 

Gastropoda 0 77 121 18 113 63 6 59 

Gerridae 0 0 0 1 1 0 0 0 

Gomphidae 0 0 0 1 0 0 0 2 

Haliplidae 12 4 9 16 19 20 2 9 

Hirudinea 18 0 2 4 0 0 0 1 

Hydrophilidae 11 1 10 17 10 12 1 4 

Isopoda 0 0 0 8 0 500 164 133 

Lampyridae 0 0 0 0 0 4 1 0 

Lepidostomatidae 0 0 0 0 0 0 2 0 

Lestidae 6 0 0 1 1 2 0 9 

Libellulidae 5 3 5 8 28 16 0 10 

Limnephilidae 0 0 0 0 0 6 45 0 

Molannidae 0 0 0 0 0 0 3 0 

Naucoridae 0 0 1 3 8 0 0 0 

Phryganeidae 0 0 0 0 0 1 0 1 

Pleidae 1 47 4 64 9 21 0 14 

Psephenidae 12 0 0 0 0 0 0 0 

Ptychopteridae 0 0 1 0 0 0 2 0 

Sciomyzidae  2 0 0 0 0 0 0 0 

Scirtidae 0 1 39 0 0 0 0 0 

Stratiomyidae 0 1 1 2 0 0 3 0 
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APPENDIX B 

Floristic Data 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Lycopus americanus 

American Water-

horehound 
2 Yes 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 

Polygonum sagittatum Arrow-leaf Tearthumb 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 

Echinochloa crusgalli Barnyard-grass 0 No 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Galium asprellum Bedstraw 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Brassica nigra Black Mustard 0 No 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

Salix nigra Black Willow 5 Yes 0.0 0.0 2.4 0.0 1.3 0.0 0.0 0.0 

Verbena hastata Blue Vervain 4 Yes 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Calamagrostis 

canadensis 
Blue-joint 3 Yes 0.0 1.9 0.0 47.3 0.0 0.0 0.0 28.5 

Salix pedicellaris Bog Willow 8 Yes 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

Eupatorium 

perfoliatum 
Boneset 4 Yes 0.0 0.0 2.6 0.0 0.0 0.0 0.4 0.0 

Sagittaria latifolia Broad-leaved Arrowhead 1 Yes 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 

Typha latifolia Broad-leaved Cattail 1 Yes 0.0 0.0 0.0 0.8 0.0 0.0 3.2 1.8 

Andropogon 

virginicus 
Broom Sedge 4 Yes 0.0 0.0 0.5 2.5 0.0 0.0 0.0 0.0 

Cephalanthus 

occidentalis 
Buttonbush 7 Yes 1.2 6.4 0.0 0.0 10.1 0.0 0.0 0.0 

Cyperus esculentus Chufa 1 Yes 0.0 3.6 0.9 0.0 0.0 0.0 0.0 0.0 

Plantago major Common Plantain 0 No 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Ambrosia 

artemisiifolia 
Common Ragweed 0 Yes 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
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APPENDIX B 

Floristic Data (continued) 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Populus deltoides Cottonwood 1 Yes 0.0 0.7 0.1 0.0 1.3 0.0 0.0 0.0 

Agrostis stolonifera Creeping Bentgrass 0 No 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Sagittaria cuneata Cuneate Arrowhead 6 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 

Rumex crispus Curly Dock 0 No 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Scirpus atrovirens Dark-green Bulrush 3 Yes 0.4 1.9 9.1 0.8 0.0 0.0 0.0 0.0 

Atropa belladonna Deadly Nightshade 0 No 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 

Juncus dudleyi Dudley's Rush 1 Yes 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 

Pilea pumila Dwarf Clearweed 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

Plantago lanceolata English Plaintain 0 No 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 

Boehmeria cylindrica False Nettle 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Mentha arvensis Field Mint 3 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 

Carex vulpinoidea Fox Sedge 1 Yes 0.0 0.0 0.2 10.8 0.0 0.0 0.0 0.0 

Triadenum fraseri Fraser's St. John's-wort 6 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 

Solidago gigantea Giant Goldenrod 3 Yes 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

Euthamia graminifolia 

(Solidago g.) 
Grass-leaved Goldenrod 3 Yes 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 

Aster pilosus Hairy Aster 1 Yes 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

Aster pilosus var. 

pilosus 
Hedge-nettle 5 Yes 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Typha glauca (hybrid) Hybrid Cattail 0 No 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 
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APPENDIX B 

Floristic Data (continued) 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Eleocharis intermedia Intermediate Spikerush 7 Yes 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 

Polygonum persicaria Lady's-Thumb 0 No 4.8 12.7 0.0 0.0 0.4 0.0 0.0 0.0 

Thelypteris palustris 

(T. thelypteroides) 
Marsh Fern 2 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 

Asclepias incarnata Marsh Milkweed 6 Yes 0.0 0.1 0.0 2.8 0.1 0.0 0.0 0.0 

Ludwigia palustris Marsh Seedbox 4 Yes 0.0 4.7 2.1 0.1 0.0 0.0 0.0 0.0 

Caltha palustris Marsh-marigold 6 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Polygonum 

hydropiperoides 
Mild Water-pepper 5 Yes 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Typha angustifolia Narrow-Leaf Cattail 0 No 47.5 0.1 30.3 10.1 63.2 0.0 0.0 0.0 

Bidens cernuus Nodding Beggar-ticks 3 Yes 0.5 3.1 0.0 0.0 0.0 0.0 0.0 0.0 

Campanula 

aparinoides var. 

grandiflora 

Northern Marsh 

Bellflower 
7 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 

Calamagrostis 

lacustris 
Northern Reedgrass 10 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 

Eleocharis obtusa Obtuse Spikerush 3 Yes 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 

Aster ontarionis Ontario Aster 6 Yes 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0 

Impatiens capensis Orange Touch-me-not 2 Yes 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.3 

Aster lanceolatus (A. 

simplex) 
Panicled Aster 2 Yes 0.0 0.1 1.0 0.1 0.0 0.0 0.1 0.0 

Salix petiolaris Petioled Willow 1 Yes 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 
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APPENDIX B 

Floristic Data (continued) 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Pontederia cordata Pickerel-weed 8 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 

Spartina pectinata Prairie Cordgrass 5 Yes 0.0 0.0 7.1 0.0 7.0 0.0 0.0 0.0 

Lythrum salicaria Purple Loosestrife 0 No 0.0 2.9 1.4 0.0 0.8 0.0 0.0 17.8 

Salix discolor Pussy Willow 1 Yes 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 

Fraxinus 

pennsylvanica 
Red Ash 2 Yes 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

Acer rubrum Red Maple 1 Yes 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

Eleocharis 

erythropoda 
Red-foot Spikerush 4 Yes 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 

Cornus stolonifera Red-osier Dogwood 2 Yes 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

Phalaris arundinacea Reed Canary Grass 0 Yes 23.0 0.0 13.0 0.0 1.5 98.1 61.5 0.0 

Leersia oryzoides Rice Cut-grass 3 Yes 6.7 0.4 19.6 7.3 4.4 0.0 3.4 0.0 

Carex utriculata (C. 

rostrata) 
Rostrate Sedge 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Salix exigua (S. 

interior) 
Sandbar Willow 1 Yes 0.0 0.0 0.0 1.3 1.3 0.0 0.0 0.0 

Onoclea sensibilis Sensitive Fern 2 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

Juncus effusus Soft Rush 3 Yes 0.0 58.9 0.5 4.3 0.0 0.0 0.0 0.0 

Scirpus validus 

(Schoenoplectus 

tabernaemontani) 

Soft-stem Bulrush 4 Yes 11.9 0.0 0.0 0.1 3.4 0.0 0.0 0.0 
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APPENDIX B 

Floristic Data (continued) 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Eupatorium 

maculatum 

(Eupatoriadelphus m.) 

Spotted Joe-pye-weed 4 Yes 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 

Carex stipata Stipitate Sedge 1 Yes 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 

Carex stricta Strict Sedge 4 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 

Aster puniceus (incl. A. 

firmus) 
Swamp Aster 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 3.9 0.0 

Rosa palustris Swamp Rose 5 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 

Potentilla arguta Tall Cinquefoil 8 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 

Solidago altissima Tall Goldenrod 1 Yes 0.0 0.0 0.0 4.2 0.0 0.7 0.0 0.0 

Lysimachia terrestris Terrestrial Loosestrife 6 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Bidens comosus (B. 

tripartitus) 

Three-awned Beggar-

ticks 
5 Yes 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 

Phleum pratense Timothy 0 No 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Juncus bufonius Toad Rush 2 Yes 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

Scirpus torreyi 

(Schoenoplectus t.) 
Torrey's Bulrush 10 Yes 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Juncus torreyi Torrey's Rush 4 Yes 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 

Carex tribuloides Tribulus Sedge 3 Yes 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

Vaccinium myrtilloides Velvetleaf Blueberry 4 Yes 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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APPENDIX B 

Floristic Data (continued) 

SCIENTIFIC NAME ENGLISH NAME C NATIVE? M1 M2 M3 M4 M5 R1 R2 R3 

Polygonum amphibium Water Smartweed 6 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 

Lycopus uniflorus Water-horehound 2 Yes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Polygonum hydropiper Water-Pepper 0 No 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 

Alisma plantago-

aquatica (A. 

subcordatum) 

Water-plaintain 1 Yes 1.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 

Rumex verticillatus Whorled Dock 7 Yes 0.0 0.0 0.2 3.6 0.0 0.0 0.0 0.0 

Carex alata Winged Sedge 10 Yes 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Scirpus cyperinus Wool-grass 5 Yes 0.0 0.7 3.0 0.0 0.0 0.0 0.0 4.3 

Salix eriocephala (S. 

rigida) 
Woolly-headed Willow 2 Yes 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 
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