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  Abstract 

 

CLIMATE CHANGE AND METAPOPULATION IMPLICATIONS FOR 

SPECIES RE/INTRODUCTIONS: A SPATIAL ANALYSIS OF SUITABLE HABITAT 

FOR THE AMERICAN MARTEN (MARTES AMERICANA) IN NORTHERN 

MICHIGAN 

 

By Joshua Green 

 

 The American marten (Martes americana), which was extirpated from Michigan 

by 1939 due to logging and trapping, has cultural significance as a clan animal to Great 

Lakes Native American Tribes and ecological significance as a forest health indicator. 

Sleeping Bear Dunes National Lakeshore (SBD) is considering reintroduction, but 

several factors must first be considered in assessing the habitat suitability. The goals of 

this study were to 1) enhance an existing habitat suitability model by including additional 

relevant variables, 2) conduct a spatial analysis of the habitat within the study area using 

a metapopulation perspective and 3) incorporate climate change predictions to determine 

future habitat availability for marten. Coarse woody debris measurements (CWD) were 

collected in areas of known marten occurrence, along with Michigan Forest Inventory 

and Analysis data in order to validate an existing Penrose habitat suitability model. The 

Corridor Designer toolset was utilized in ArcMap to identify patches of most suitable 

habitat throughout the study area.  Future habitat suitability was derived from a Forest 

Service model, which predicted distribution of tree species in the Eastern United States 

by 2100 at high and low CO2 emissions scenarios. I found that additional variables did 

not enhance the original Penrose Distance model. Corridor Designer indicated large 
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patches of suitable habitat currently present in Manistee National Forest (MNF) with 

smaller patches between SLBE and MNF. Climate change predictions indicate that most 

conifer species in Michigan’s Northern Lower Peninsula will exhibit a loss of suitable 

habitat, except the eastern redcedar (Juniperus virginiana), which could increase in 

importance value (IV) by 450% at most, based on the HI scenario. Oak species such as 

black oak (Quercus velutina) and white oak (Quercus alba) could exhibit large increases 

in IV of 168% and 93%. The combination of these changes could lead to an overall 

increase in mixed forest stands of 38%. Therefore, habitat is expected to change, but not 

extensively enough to hinder marten habitat use. I recommend that SBD reintroduce 

marten in cooperation with the Michigan Department of Natural Resources and local 

Native American tribes into the Pere Marquette State Forest adjacent to their boundary. 
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CHAPTER 1 

 

INTRODUCTION 

 

Wildlife biologists recognized the importance of reintroductions as a tool for 

species conservation in the early 1900s, but they did not typically assess habitat 

suitability or monitor post-release success of the reintroduced individuals (Seddon et al. 

2006). Reintroduction papers between the early 1900’s and 1988 primarily discussed 

post-reintroduction events and answered research questions using available data instead 

of collecting data to answer predetermined research questions (Armstrong and Seddon 

2007). In response to this lack of planning and monitoring, the Reintroduction Specialist 

Group was formed in 1988, as part of the World Conservation Union. Since then, pre-

planning and monitoring of projects has increased substantially (Seddon et al. 2006 and 

Armstrong and Seddon 2007). Armstrong and Seddon (2007) recommend that planning 

for a species reintroduction should include a set of research questions, which they 

categorize into population, metapopulation, and ecosystem level questions. In this study, 

I examined a priori research questions regarding the potential availability of suitable 

habitat for the reintroduction of the American marten (Martes americana) in Michigan’s 

Northern Lower Peninsula by conducting a spatial analysis of the habitat in the study area 

using a metapopulation and climate change perspective. 
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Study species and habitat requirements 

The American marten is a small carnivorous mammal of the Mustelid family. In 

the Western United States, American marten are habitat specialists and have been found 

to prefer mature conifer forests with ground cover containing 25-50% coarse woody 

debris (CWD) (Allen 1982; Gieck 1986). A historical analysis of the American marten 

(Williams et al. 2007) includes studies indicating that marten may also occur in mixed 

hardwood forests in Eastern North America. Although marten utilize a variety of habitats, 

it is common that CWD and snags are important habitat characteristics that marten may 

select for (Bull and Heater 2000; Buchanan 2008). Mature forests take centuries to 

develop, making it difficult for these forest types to recover from habitat fragmentation 

resulting from development and logging. Logging can also take away many of the forest 

habitat characteristics important to marten. In the late 1800s and early 1900s, land 

settlement and heavy logging, as well as trapping throughout Michigan’s Lower 

Peninsula led to fragmentation of the American marten habitat and ultimately their 

extirpation from the Lower Peninsula (Swanson et al. 2006). The last sighting of an 

American marten in the Lower Peninsula of Michigan was in 1911 near Lewiston in 

Montmorency County and they were eventually extirpated from the Upper Peninsula by 

1939 (Williams et al. 2007). 

Based on their habitat requirements in the American west, marten are regarded as 

an indicator species for old growth forests. In Michigan’s Lower Peninsula, where old 

growth forests are largely absent, marten would likely select for high snag and CWD 
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densities. These characteristics are preferred by many other species and could therefore 

indicate high biodiversity, which is a measure of forest health. Marten are primarily 

carnivores in the winter and prey on small mammals, such as voles (Clethrionomys and 

Microtus), squirrels (Sciurus/Tamiusciurus), and rabbits (Silvilagus) (Harris and Chester 

1997; Gieck 1986; Buskirk and Zielinski 1997), therefore, they can influence the 

population dynamics of these species in similar ways that other carnivores affect their 

prey populations (e.g. wolves and deer). Some marten prey species such as the red 

squirrel (Sciurus vulgaris), are considered a pest species in Michigan (Rubin 2012). 

Additionally, lyme disease is becoming an increaseing concern in the eastern United 

States, including Michigan (CDC 2007), thus population control of small mammal 

species that ticks depend on as hosts (Keirans 1996) would be beneficial in controlling 

tick populations and reducing the risks of lyme disease transmission to humans. Marten 

also have cultural significance for Great Lakes Native American tribes, such as the 

Ojibway Tribes, and are positively protrayed in their mythology (Basil 1982). This 

cultural significance means that there is a source of funding from interest groups 

associated with these Native American tribes that could assist with reintroduction 

projects. 

As a result of these ecological benefits and the cultural significance of marten, 

muliple reintroductions of the American marten in Michigan began in the Porcupine 

Mountains State Park of the Upper Peninsula in 1955 and proceeded until 1992. These 

reintroductions were coordinated by the Michigan Department of Conservation (Williams 
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et al. 2007). Additional reintroductions occurred, through collaboration between the  

Michigan Department of Natural Resources and the U.S. Forest Service, in the Pigeon 

River Country State Forest in Michigan’s Lower Peninsula in 1985 and in Lake and 

Wexford counties within the Manistee National Forest (MNF) in 1986 (Williams et al. 

2007). The majority of introduced marten came from Ontario, Canada and they were 

reintroduced into areas of suitable habitat observed at that time. These reintroductions 

into the Lower Peninsula involved about 40 marten each and research indicates that the 

MNF population is showing signs of inbreeding (Tamara Hillman, unpublished data). 

Currently, organizations such as the Little River Band of Ottawa Indians are interested in 

reintroducing additional marten into the Lower Peninsula (Bob Sanders, Little River 

Band of Ottawa Indians, personal communication). Park officials at Sleeping Bear Dunes 

National Lakeshore (SBD) are also considering reintroducing marten into the National 

Lakeshore boundaries ( Sue Jennings, Sleeping Bear Dunes National Lakeshore, personal 

communication). 

Sleeping Bear Dunes National Lakeshore contains 28,851 ha of land and is 

located in the Northwest corner of Michigan’s Lower Peninsula. It is composed of 57% 

upland deciduous, 3% upland coniferous, 7% upland mixed, 6% lowland forests, and 

12% historic agricultural fields. A highway passes through the middle of SBD, but only 

1% of its landscape is composed of roads, parking lots, and other developed areas 

(Mechenich et al. 2009). On March 13, 2014, about 13,175 ha (45%) of SBD was 

designated as wilderness (S. 23, www. congress.gov). This designation increases the level 
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of protection of select areas within SBD by prohibiting the use of motorized equipment. 

American marten do not currently reside within SBD; however the habitat may be able to 

sustain populations if they were reintroduced. Sleeping Bear Dunes National Lakeshore 

was established to protect its natural resources and the wildlife that utilize them within its 

boundaries. This protection includes species that have historically lived in the area, but 

have been pushed out as a result of human settlement.  

For this study, plots were located in Lake County in MNF, which is in the western 

central portion of Michigan’s Lower Peninsula. Manistee National Forest is about 

218,026 ha in size and is comprised of upland coniferous, upland deciduous, upland 

mixed, and lowland forests interspersed with roads, which range from highways to forest 

two-tracks, as well as privately owned land.  

A few studies have been done on habitat selection and suitability of marten in 

MNF at both the landscape and home range core area scales (McFadden 2007 and 

Buchanan 2008). McFadden (2007) measured habitat selection involving forest 

composition and structure using GIS patch metrics and created a model based on these 

variables using the Penrose Distance statistic in Michigan’s Northern Lower Peninsula. 

Penrose Distance is an equation that was used to compare habitat between known marten 

home ranges and potential marten home ranges, which were represented by hexagons that 

were 1.6 km2 in size. These hexagons were overlaid across Michigan’s Northern Lower 

Peninsula (McFadden 2007). This equation indicates how similar potential home ranges 
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are to the actual home ranges as a measure of suitable habitat. Based on track surveys, it 

seemed that more marten were utilizing what was predicted to be the second and third 

most suitable habitat categories than expected based on availability (McFadden 2007).  

This descrepancy could indicate that factors influencing habitat suitability for marten are 

not being accounted for in McFadden’s model, which limits the ability to predict suitable 

locations for marten reintroduction. Another study further measured habitat selection at 

the mesoscale and found that marten core areas contained an average density of 60 CWD 

pieces of at least 15 cm in diameter per hectare (Buchanan 2008). 

Metapopulation and Climate Change Implications for Species Re/introductions  

When studying the species distribution and potential reintroduction, it is 

important to consider not only the habitat characteristics of an area, but also the 

metapopulation potential of the landscape that surrounds the area of interest (Armstrong 

2005). Metapopulations are a matrix of subpopulations within a given landscape that 

have the potential for migration to occur between them. The theory of metapopulation 

dynamics suggests that populations in small, isolated patches are at a greater risk of 

extinction and certain life history strategies make some populations prone to extinction 

when habitat fragmentation occurs (Lawes et al. 2000). An additional consideration for 

the factors that affect metapopulation viability includes identifying which patches of 

suitable habitat could support source populations and which patches could support sink 

populations. Source populations are subpopulations that have enough individuals to 
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sustain themselves and supplement other subpopulations through migration. Sink 

populations are subpopulations that are declining in size and may go extinct at times 

(Howe, Davis, and Mosca 1991).   

Climate change is becoming increasingly relevant to ecosystem management 

today with the advancement of technology that can be used to predict how the climate 

could change and how species might respond to the change. Drought and extreme 

temperature predicted by some climate models are associated with the mortality of 

eastern tree species such as sugar maple (Acer saccharum), paper birch (Betula 

paperifera), white ash (Fraxinus americana), American beech (Fagus grandifolia), and 

quaking aspen (Populus tremuloides). Many of these species form large components of 

Michigan’s forests and their loss could further fragment the habitat for marten 

populations. Commercially important tree species north of Michigan’s tension zone have 

experienced times of regional forest decline, which has been attributed to climatic stress 

as a causal factor (Reed and Desanker, 1992).  

Site selection for species introductions and reintroductions is typically based on 

the current availability of suitable habitat. However, climate change is likely to cause 

range shifts in habitat and species distributions and it is important for conservation and 

reintroduction projects to consider the predicted impacts of climate change on habitat. 

For example, a comparison of biodiversity surveys at key sites in California a century 

apart documented upward elevational shifts of approximately 500 m in half of the 



8 
 

mammal species with a contraction of some ranges and expansion of others  (Moritz et al. 

2008, Tingley et al. 2009). Wasserman et al. (2012) modelled climate change impacts on 

marten in the Rocky Mountains by associating warming temperatures with increases in 

elevational limits to gene flow. They found that warming that is predicted to occur by 

2040 to 2080 could lead to an upward shift of marten populations by 300-500m and result 

in the genetic isolation of populations in the Rocky Mountains (Wasserman et. al. 2012). 

Historically, marten distribution extended only as far south as southern Michigan 

(Williams et al. 2007, Figure 1), which suggests that cooler temperatures of the Northern 

United States may influence their distribution. Wasserman et al. (2012) associated a 

strong relationship between gene flow and elevation with snow pack or species 

composition. Both of these variables could be heavily impacted by warming temperatures 

in Michigan and in the absence of an elevational gradient, suitable habitat could be 

pushed northward, which may influence the habitat available for martens at Sleeping 

Bear Dunes. In order to determine the feasibility of introducing a species back into an 

area, it is instructive to consider the habitat changes that are likely to occur in that area 

due to climate change. Due to the effort and resources required for a successful 

reintroduction (Fischer and Lindenmayer 2000), metapopulation and climate change 

considerations are useful and relevant. 
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The objectives of this study were to:  

1) Enhance a habitat suitability model created by McFadden (2007) and apply the 

enhanced model to Manistee National Forest and Sleeping Bear Dunes National 

Lakeshore and surrounding areas,  

2) Measure size of suitable habitat patches within and between Sleeping Bear 

Dunes National Lakeshore and Manistee National forest, as well as distance 

between patches, and 

3) Predict climate change effects on suitable habitat and forest structure at 

Sleeping Bear Dunes and the surrounding area in order to determine the feasibility 

of reintroducing the American marten.  

The hypotheses tested in this study were as follows: 

1) Adding a critical habitat variable (i.e. CWD and stand age) would significantly 

improve the predictive ability of the habitat suitability model. I expected that 

there would be more coarse woody debris in the hexagons that are predicted to be 

moderately suitable than the hexagons predicted to be most suitable, which would 

help explain validation errors. I also expected that incorporating coarse woody 

debris and stand age as variables in the habitat suitability model could improve 

the model validation 



10 
 

2) I also predicted that looking at the contiguity of the top three Penrose Classes 

will reveal patches of suitable habitat located between and within SBD and MNF 

due to habitat fragmentation and SBD will provide habitat likely to support a sink 

population of marten due to the small size of the National Lakeshore. 

3) Projected changes in tree species and habitat distribution due to climate change 

would not alter the availability of suitable habitat for marten at SBD. Climate 

change is likely to alter the species composition of potential marten habitats. I 

expected a reduction in the number of available tree species, such as sugar maple 

and American beech, with the potential for other tree species from farther south, 

such as oak (Quercus spp.) and silver maple (Acer saccharinum) to become the 

dominant species, which could maintain suitable habitat for the American marten 

at Sleeping Bear Dunes.  
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Figure 1. American marten distribution in North America. Historical distribution 

is indicated by dotted line. Current distribution is indicated by the shaded areas (Image 

from Williams et al. 2007, USDA Forest Service, Northern Research Station). 
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CHAPTER II 

 

HABITAT SUITABILITY MODEL AND POTENTIAL IMPLICATIONS FOR 

METAPOPULATIONS 

 

Introduction 

American martens have been reintroduced only twice in Michigan’s Lower 

Peninsula, with the MNF reintroduction approximately 64.4 kilometers (km) from SBD. 

No studies have been done to estimate the population size of marten near SBD. The only 

evidence of marten in the area is one confirmed road kill in Benzie county (Steve Griffith 

MDNRE personal communication) less than 16.1 km east of SBD. Before reintroducing 

marten into SBD, it is important to consider the potential for metapopulation structure 

between SBD and MNF. Although the reintroductions in MNF and Pigeon River Country 

State Forest were about 129 km apart, genetic evidence suggests that there is a low level 

of migration occuring between the two subpopulations (Nelson 2006). 

 When considering factors that affect metapopulation viability in a fragmented 

habitat, it is important to keep in mind that a matrix of subpopulations will generally have 

a greater risk of extinction than a single population with contiguous habitat (Reed 2004). 

This is not to say that metapopulations cannot persist in a fragmented habitat. Other 

factors can contribute to metapopulation persistance and allow for such metapopulations 

to have a lower extinction risk. Such factors include the spatial autocorrelation of 

subpopulations and dispersal between subpopulations (Reed 2004). Spatial 

autocorrelation is the correlation in fluctuations of subpopulation size with environmental 
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conditions. The farther apart the subpopulations are, the less correlated they are (Reed 

2004). If subpopulations are highly spatially correlated then the extinction risk of smaller 

populations would be higher than that of a single, large population. Alternatively, if the 

subpopulations are uncorrelated, then subpopulations that remain would be able to 

supplement those subpopulations that are in decline and reduce the extinction risk of the 

metapopulation below that of a single, large population (Reed 2004). Thus, it is important 

to assess the status of habitat patches in the study area and their connectivity in order to 

determine how to best manage this population of martens. Habitat suitability modeling 

and spatial analysis can provide useful insight on the potential of the landscape in 

Northern Michigan to support a metapopulation of marten and the locations of potential 

source or sink populations.  

The objectives of our study were to enhance and corroborate the habitat suitability 

model created by McFadden (2007) and apply the enhanced model to MNF, SBD, and 

the surrounding area to examine the potential for SBD to sustain reintroduced populations 

of the American marten. I predicted that adding critical habitat variables (i.e. CWD and 

stand age) would improve the predictive ability of the habitat suitability model. I 

expected to find more CWD in hexagons predicted to be moderately suitable than in 

hexagons predicted to be most suitable, which would explain validation errors and 

incorporating this variables in the habitat suitability model would better validate the 

model. I also predicted that looking at the contiguity of the top three Penrose Classes will 

reveal patches of suitable habitat located between and within SBD and MNF due to 
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habitat fragmentation and SBD will likely provide habitat to support a sink population of 

marten due to the small size of the National Lakeshore.  

Methods 

Compilation of Spatial Database 

I compiled a spatial database, which included GIS layers of American marten 

occurrence and land cover types in Michigan and in SBD. GIS points of 334 marten radio 

telemetry locations were obtained from ongoing research by Bob Sander, Masters Student 

at Grand Valley State University. Additional layers of home ranges and Penrose Classes 

were obtained from McFadden (2007). A 2001 IFMAP grid layer for vegetation and land 

cover type of Michigan’s Lower Peninsula with 30m resolution and the MNF boundary 

layer was accessed from the Michigan Geographic Data Library 

(http://www.mcgi.state.mi.us). I reclassified 34 original land cover types into 7 different 

classifications of upland deciduous, upland coniferous, upland mixed forest, lowland 

forest, agriculture/openland, urban, and wetland/water, which are consistent with the 

classifications used by McFadden (2007). The Sleeping Bear Dunes’ boundary layer was 

obtained from Sleeping Bear Dunes’ Natural Resources Division.  
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Habitat Suitability Model 

McFadden (2007) measured habitat selection involving forest composition and 

structure using GIS patch metrics and created a model based on these variables with the 

Penrose Distance statistic. She accomplished this by overlaying 1.6 km2 hexagons on 

Michigan’s Northern Lower Peninsula. Hexagon size was determined based on the 

average marten core area home range. Marten core area habitat metrics were compared 

with habitat metrics from the hexagons to assign a Penrose Distance class to each 

hexagon.  

The equation for the Penrose statistic is 

 

Where P is the habitat suitability, i represents the marten core areas, j represents 

the hexagon areas, k is each observation, p is the number of variables,  is the variable 

value, and V is the variance (Manly 1986). This equation was a modification of the 

Mahalanobis Distance Statistic (Manly 1986) by Nielson and Woolf (2002). As the 

Penrose Distance value approaches 0, the hexagon is more similar to marten core area 

home ranges and thus most suitable (McFadden 2007).  
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Habitat variables were chosen by McFadden based on which variables marten 

appeared to select for or avoid using home range data. These variables were percent 

cover of upland deciduous forest, upland coniferous forest, upland mixed forest, 

wetland/water habitat, and urban, as well as the number of habitat patches and the area 

weighted mean patch fractal dimension. A habitat patch is defined as a contiguous area of 

a single habitat type. The area weighted mean patch fractal dimension measures how 

complex the shape of each patch is relative to its size (Elkie et al. 1999). She then 

classified these values into quartiles, in which the 0 to 25th quartile was most suitable 

(hereby classified as 1), 25th to 50th quartile was second most suitable (2), followed by the 

50th to 75th (3), 75th to 100th (4), and then above the 100th quartile (5). This model was 

corroborated with track surveys which revealed significantly higher than expected 

densities of marten tracks occurring in Penrose Classes 2 and 3 based on their vailability 

(Figure 2). 
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Figure 2: Results from track surveys to validate the American marten Penrose Distance 

habitat suitability model. More tracks than expected were found in the 2nd and 3rd Penrose 

classes based on their availability (Table obtained from McFadden 2007). 

 

 

Spatial analyses of marten Penrose Classes were performed using ArcMap 10.0 

(ESRI, Redlands, California) and the patch analyst extension (Patch Analyst Version 5.1, 

www.cnfer.on.ca/SEP/patchanalyst/, accessed 18 Dec 2012) to determine potential 

reasons for the validation errors in McFadden’s model. Using these Penrose hexagon 

layers, habitat suitability was assessed between the two sites and within SBD. 

Sleeping Bear Dunes’ property is narrow and more sensitive to fragmentation 

caused by roads. Therefore, habitat suitability of the surrounding area was included in 
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order to determine the implications for supporting a sustainable metapopulation in the 

region. Additionally, suitable Penrose hexagons were used to assess the carrying capacity 

for marten in SBD to determine if it can sustain a viable population. This was done by 

calculating the area of contiguous hexagons of the top three Penrose classes and 

comparing it with the average home range for marten in Michigan.  

Pilot study for CWD field analysis 

Coarse woody debris (CWD) is an important component of marten habitat, which 

may not have been accounted for in McFadden’s model. The goal of the field analysis 

was to determine if hexagons in the most suitable Penrose Class contain more CWD than 

nearby hexagons of subsequent Penrose Classes. To determine this, I measured CWD 

density within Penrose Hexagons to compare the densities between classes. I selected the 

number of CWD measurement plots in each hexagon based on a pilot study performed 

within three hexagons. During my pilot study, one 8m radius plot was placed in the 

geometric center (Method A), two 4m radius plots were set up in the North and South 

hemispheres of the hexagon (Method B), and six 4m radius plots were set up in each 

corner of the hexagon (Method C, Figure 3). I compared estimates of CWD density 

between the plots to determine how many plots are necessary for a good approximation to 

be used for comparison purposes. Data were collected following methods by Buchanan 

(2008) and included CWD length, width classification, and physical condition rank. Pilot 

studies measured all CWD found within a plot, but further plot measurements were made 
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on CWD greater than 7.6cm (3in.) in diameter based on the amount of time required to 

measure all CWD. The size limit was determined from the minimum diameter that 

provides use for a marten for foraging or shelter during the winter (Allen 1982). It seems 

intuitive that the largest number of plots (Method C) would yield the most accurate 

density estimate. 
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Figure 3. A Penrose Distance hexagon indicating the plot locations used in the pilot study 

for CWD field analysis. Plots were set up for three trial methods such that a) one 8m radius 

plot was placed in the geometric center b) two 4m radius plots were set up in the North and 

South hemispheres of the hexagon, c) and six 4m radius plots were set up in each corner 

of the hexagon. 
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Field Analysis for estimating CWD density 

I used the Penrose Distance hexagons for habitat suitability calculated by 

McFadden (2007) to compare coarse woody debris occurrence for four hexagons in each 

distance class with a predetermined number of plots per hexagon based on the pilot study 

described above. I conducted further analysis to determine if the original model indirectly 

accounts for the amount of CWD. I ran a Kruskal-Wallis test on the volume (m3/ha) of 

CWD larger than 10 cm, density (logs/ha) of CWD larger than 10 cm, and density 

(logs/ha) of CWD larger than 15cm in diam. between Penrose classes. There was more 

CWD in the most suitable Penrose Classes and this observation was consistent between 

all CWD size classes and quantity measurements, so 15 cm diameter logs were used in 

further statistical comparisons, because they are found to be most important to marten 

habitat (Buchanan 2008). I ran a Kruskal-Wallis test with post-hoc Wilcoxon tests on 

Michigan Forest Inventory and Analysis (MIFIA) data between number of CWD larger 

than 15 cm in diam. and habitat type to observe a general relationship between these 

factors in Michigan. I classified habitats as upland deciduous, upland coniferous, upland 

mixed, and lowland forest. The dataset is part of the National Forest Inventory and 

Analysis Program in which multiple points were established throughout Michigan 

collecting a number of forest characteristic data including CWD content, habitat type, and 

stand age at each point. This provided a pool of data from which I could assess the 

relationship between habitat types, CWD, and stand age in Michigan. Statistical analyses 

were performed using R statistical software (R version 2.15.1, www.r-project.org/, 
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accessed 30 Aug 2012). Patch Analyst for ArcMap was used to further analyze the 

connectivity of patches of each Penrose Class. 

Spatial Analysis to Explore Implications for a Metapopulation  

Habitat suitability between sites was used to explore spatial factors that could 

support a viable metapopulation of marten between and within Sleeping Bear Dunes and 

Manistee National Forest. I considered the size of suitable habitat patches and the 

distance that they are apart in order to determine if the habitat patches might be able to 

support marten and facilitate dispersal. This was accomplished using the Corridor 

Designer tool (Majka et al. 2007) for ArcMap. This tool utilizes a habitat suitability 

model to create patch maps based on a specified habitat suitability threshold and area of 

contiguity necessary for breeding habitat and minimum population sizes specified by the 

user. For consistency, the habitat suitability model for the tool was created using the 

quartiles assessed by McFadden (2007), so that the most suitable habitats were assigned a 

value of 100, the second most suitable were assigned a value of 75, the third most 

suitable were assigned a value of 50, the fourth most suitable were assigned a value of 25, 

and the fifth most suitable habitats were assigned a value of 0. The habitat suitability 

threshold was set at 50, corresponding to the first, second, and third quartiles, which 

contained the most marten tracks in the validation study conducted by McFadden (2007). 

Values below the threshold were considered unsuitable habitat. Minimum patch size for 

breeding was set at 770 hectares (ha), which was the average home range of a female 
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marten in Michigan, as reported by McFadden (2007). Majka et al. (2007) recommended 

that this value be set using the home range of the study species. Female home range was 

used because females raise their kits alone (Clark et al. 1987), thus an average home 

range size is what is required to raise their kits. The minimum patch size for a population 

was determined as approximately five breeding patches as recommended by Majka et al. 

(2007) and was set at 3850 ha. 

In order to further validate the model created by McFadden (2007), I ran a chi-

square test on 334 marten denning sites obtained using radio telemetry by Bob Sanders 

(Little River Band of Ottawa Indians, unpublished data). I generated 334 random points 

within the MNF boundary using the GIS tool “Create Random Points.” In accordance 

with the Corridor Designer model, I determined marten and random points to be in 

suitable habitat or unsuitable habitat based on whether the points were completely within 

“Population Patches” or “Breeding Patches” (suitable habitat), or not (unsuitable habitat). 

This model validation took into account contiguous areas of the three most suitable 

Penrose hexagons. 
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Results 

Pilot Study for CWD Field Analysis 

The pilot study indicated that method B was the best method for quantifying 

CWD density. This was based on the observation that method B showed a large increase 

in CWD density estimates compared with method A, while there was a relatively small 

difference in density estimate between method B and method C (Table 1). An ANOVA 

revealed that there was no significant difference in density (logs/ha) estimates between 

methods (F=1.7053, p=0.3052, df= 2). Although method C appeared to measure a higher 

density of CWD in almost all plots, the amount of survey effort required for this method 

did not yield an equivalent increase in density estimate compared to method B. The 

selected method is not expected to yield an accurate density estimate, rather an index for 

comparison between hexagons.  
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Table 1. Average coarse woody debris (CWD) density (logs/ha) estimates with standard 

errors by Hexagon ID and method with CWD of all sizes. Data were collected in 

Manistee National Forest near Baldwin, MI. No significant difference was found between 

methods using an ANOVA (F=1.7053, p=0.3052, df= 2). Method B was chosen for more 

consistent density estimates with minimum survey effort. Note that the high standard 

errors is likely due to small sample size. 

Density (logs/ha) of coarse woody debris in Penrose hexagon plots in 

Manistee National Forest 

Hexagon ID 

Method A 

(logs/ha) ±SE 

Method B 

(logs/ha) ±SE 

Method C 

(logs/ha) ±SE 

Plot 16746 199±0.00 298±298.42 829±309.98 

Plot 42171 895±0.00 1790±0.00 2288±647.20 

Plot 16972 1194±0.00 2984±281.35 2650±676.93 

p-value 0.3052 

 

 

Field Analysis for estimating CWD Density 

I found no significant differences between Penrose classes for average volume of 

logs larger than 10 cm, average density of logs larger than 10 cm, or average density of 

logs larger than 15 cm diam. (χ2=0.376, p=0.829; χ2=2.289, p=0.318; χ2=3.922, p=0.141; 

df=2). The average volume of logs larger than 10 cm in diam. appeared highest in 

Penrose Class 1 and relatively equal in Penrose Class 2 and 3 (Table 2). The average 

density of logs greater than 10 cm and 15 cm in diam. yielded similar observations as 
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volume, in which class 1 also contained the most while class 2 had slightly more than 

class 3 (Table 2). Although these observations support the Penrose model, the data have 

low statistical power due to a small sample size. When analyzing the MIFIA dataset, I 

found a significant difference in the number of logs greater than 15 cm. in diam. between 

habitats (χ2= 9.720, p=0.021, df= 3), with upland deciduous containing more logs than 

upland coniferous forests (W= 1637.5, p=0.043). Additionally, a generalized linear model 

was performed with number of logs as a response variable and habitat type and stand age 

as predictor variables with no significance at an alpha level of 0.05.  
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Table 2. Average volume per ha of coarse woody debris (CWD) greater than 10cm in 

diam. with standard error, as well as average density (logs/ha) of CWD greater than 10 

cm and 15 cm in diam. by Penrose Class (four hexagons per class) using estimates from 

method B. No significant differences were found between Penrose classes (n=3). Penrose 

Class 1 has the highest average volume per ha and the highest density of CWD across 

both class sizes. Note that the high standard errors are likely due to small sample size. 

Data were collected in Manistee National Forest near Baldwin, MI. 

Volume (m3/ha) and Density (logs/ha) of coarse woody debris between Penrose classes in 

Manistee National Forest 

Penrose Class 

Average Volume 

>10cm (m3/ha) ±SE 

Average Density         

(>10 cm logs/ha) ±SE 

Average Density          

(>15 cm logs/ha) ±SE 

1 66.85±0.18 422.76±238.09 149.21±95.24 

2 26.07±0.05 273.55±117.52 49.74±28.72 

3 37.66±0.13 223.81±130.80 24.87±24.86 

p-value 0.829 0.809 0.544 

 

 

 

Patch analyst metrics on the Penrose Classes indicated that there are more 

hexagons of Penrose Classes 2, 3, and 4 than class 1 (Figure 4). In addition, the mean 

nearest neighbor statistic was measured for each Penrose Class to determine the average 

distance between patches of the same Penrose Class measured from edge to edge 
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(Rempel 2012). This statistic found that patches of Penrose Class 1 were over twice as far 

apart from each other than patches of Penrose Classes 2 and 3 (Figure 4).  

 

 

 

Figure 4. Total number of patches and mean nearest neighbor (m) of hexagons in each 

Penrose class in the Manistee National Forest. A patch is defined as a contiguous area of 

the same Penrose Class. Mean nearest neighbor is a measure of the average distance 

between two patches of the same Penrose Class from edge to edge. The higher the value, 

the farther apart the patches are from each other.   
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Metapopulation Assessment 

The Corridor Designer tool created a layer depicting three different patches based 

on our specifications: population patches, breeding patches, and less than breeding 

patches. This layer indicated two large patches in MNF located in the northern section 

and the central section that are 46676 and 43956 ha, respectively. The northern patch is 

capable of supporting approximately 41 male home ranges (1123 ha) and 60 female home 

ranges (770 ha), which could overlap male home ranges as observed in Wyoming (Clark 

et al. 1987). The central patch could support approximately 39 male home ranges and 57 

female home ranges. These large patches overlay known marten locations based on home 

ranges and track surveys. There are also a few smaller patches of suitable habitat 

throughout the MNF (Figure 5). For the chi-square test within MNF, I found that there 

were more marten locations in suitable population and breeding patches than expected 

based on a random distribution (Χ2-192.42, p<2.2e^-16). Sleeping Bear Dunes contains 

suitable habitat in a single large patch that is 1833 ha in size, which is adjacent to a larger 

patch just outside of the SBD boundary that is 14879 ha in size. The area just within SBD 

is large enough to sustain one male home range and two female home ranges. The area of 

suitable habitat adjacent to SBD could support approximately an additional 13 male home 

ranges and 19 female home ranges. Although, this area is more vulnerable to 

encroachment, its connection to SBD and overlap with Pere Marquette State Forest could 

reduce the risk with coordinated management by the MDNR. Additionally, there are two 

patches of suitable habitat between SBD and MNF (Figure 6). The patch just south of 



30 
 

SBD is 14727 ha in size, which can sustain approximately 13 male home ranges and 19 

female home ranges. The patch just north of MNF is 22133 ha in size, which equates to 

19 male home ranges and 28 female home ranges. These are conservative estimates of 

population threshold, which assumes strong intrasexual territoriality. These multiple 

smaller suitable habitat patches located between MNF and SBD also overlap with State 

Forest land.  
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Figure 5. Map of Manistee National Forest comparing Penrose Distance habitat 

suitability patches with marten tracks and home ranges obtained from McFadden (2007). 

Map was created using the Corridor Designer tool (Majka 2007).  
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Figure 6. Map of suitable habitat patches for the American marten between Manistee 

National Forest (MNF) and Sleeping Bear Dunes National Lakeshore (SBD) with a layer 

of state forest land overlapping (transparent blue). Map was created using the Corridor 

Designer tool (Majka 2007). 
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Discussion 

The current model made robust predictions about suitable marten habitat as 

confirmed by the CWD field estimates, MIFIA data, and the chi-squared test. Patch 

metrics of Penrose Classes revealed that there are fewer patches of the most suitable 

Penrose Class and that these patches are more isolated. Therefore, the validation error 

from the track surveys could be an artifact of the contiguity of the Penrose Classes across 

the landscape. Penrose Classes 2 and 3 were where the most tracks were found and they 

are more prevalent and closer together across the landscape.  

Though it is difficult to know the exact threshold for habitat suitability, the 

Corridor Designer model used a conservative estimate by setting the value to incorporate 

the top three Penrose Classes and excluding the fourth class, which marten may 

occasionally use, indicated by the track surveys conducted by McFadden (2007). Not 

enough information related to carrying capacity and potential birth and death rates of the 

suitable habitats is currently available to determine which patches would be large enough 

to sustain a source population and which patches would be sink populations. However, 

relative patch sizes suggest that the two largest patches of suitable habitat located in the 

northern and central portions of MNF are large enough to be assumed as able to support 

source populations. The size of the patches of suitable habitat within SBD and the matrix 

connecting MNF to SBD indicates that they are likely suitable for sink populations. The 

distance between these patches ranges from approximately 8 to 13 km, which could 
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encourage the dispersal of marten between them. A study by Howe et al. (1991) found 

that sink populations can be important to metapopulation sustainability by increasing the 

overall population size of the metapopulation and decreasing the extinction risk. 

Additionally, sink populations can increase the genetic diversity of metapopulations. This 

effect can be even greater if environmentally-caused population fluctuations are 

uncorrelated between the sink and source populations (Howe, Davis, and Mosca 1991). 

These benefits must be taken into account when considering the importance of 

establishing populations within suitable habitats that might support sink populations. 

 Marten dispersal distances may vary depending on many habitat factors. Johnson 

et al. (2009) found that females and males in regenerating forests dispersed an average of 

6 km with a maximum of 209 km during their 4-year study. They also found that males in 

uncut forests dispersed an average of 18 km with a maximum distance of 214 km. 

Additionally, a study of 3 marten populations in Michigan’s Upper Peninsula found 

distances of effective gene flow between 30 and 90 km (Williams and Scribner 2010). 

These results are consistent with the distances between suitable habitat patches observed 

in this study. The road-killed marten in Benzie county about 48 km away from the 

original reintroduction site in Manistee National Forest indicates that dispersal between 

these suitable habitat patches is already occurring. 
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CHAPTER III 

 

CLIMATE CHANGE IMPLICATIONS 

 

Introduction 

Climate change is becoming increasingly relevant to ecosystem management 

because of potential impacts on species and ecosystem distribution, and survival based on 

their ability to adapt or disperse to a more suitable habitat. According to Peterson et al. 

(2010), many studies have documented an average advance of spring green up by 0.38 

days/year and an average delay of fall brown down by 0.45 days/year, which increases 

the length of the growing season. Studies have also observed earlier spring migrations in 

North American birds with no change in return migrations. Additionally, studies of 

European birds indicate that bird populations which show no phenological change are 

declining (Peterson et al. 2010). This indicates that some species may have a limited 

response to climate change due to factors that limit their dispersal ability, such as low 

population growth rates or habitat fragmentation (Carroll et al. 2009).  

Drought and extreme temperature that some climate models predict are also 

associated with the mortality of eastern tree species such as sugar maple (Acer 

saccharum), paper birch (Betula paperifera), white ash (Fraxinus americana), American 

beech (Fagus grandifolia), and quaking aspen (Populus tremuloides). Many of these 

species form large components of Michigan’s forests and their loss could further 

fragment the habitat for marten populations. Commercially important tree species north 

of Michigan’s tension zone have experienced times of regional forest decline, which has 
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been attributed to climatic stress as a causal factor (Reed and Desanker, 1992). This 

tension zone is characterized by a change in soil types and a transition from southern to 

more boreal forest types (Myers et al. 2009). 

 In order to determine if it is worth the time and money to introduce a species 

back into an area, it is instructive to consider the habitat changes that are likely to occur 

in that area due to climate change. For example, climate change is predicted to cause 

species ranges to shift northward (Peterson et al. 2010). If a species were reintroduced 

into the southern-most part of its current range and experiences such range shifts, then the 

species would either move northward or become extirpated again. Therefore, the 

reintroduction attempt would be unsuccessful. Such adaptations are complex and a 

species response to changing environmental conditions can vary greatly depending on the 

latitude of their habitat (Guralnick 2006). Recent technological advances in spatial and 

predictive modeling are helping us predict how the climate will change and how species 

and ecosystems might respond to that change. It also allows us to consider options that 

take into account these predictions when thinking about species conservation. For 

example, Wasserman et al. (2012) used a landscape resistance model combined with 

climate change prediction models to determine the effect climate change might have on 

the Rocky Mountain marten populations. The researchers associated predicted increases 

in temperature with an increase in the minimum elevation that the marten could occupy. 

This model determined that the marten populations in the Rocky Mountains would 

become more isolated with predicted temperature increases due to the increase in 
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landscape resistance to dispersal (Wasserman et al. 2012). Another example is the use of 

bioclimatic modeling by Carroll et al. (2009) to predict the suitability of the future 

climate in Britain for two butterfly species. Through this modeling technique, the authors 

were able to determine areas of Britain that could have the most suitable habitat for the 

two butterfly species in the future. These areas of suitable habitat comprised a small 

proportion of the total land area in Britain, which provides specific areas of focus for 

species reintroduction and conservation (Carroll et al. 2009). Martinez-Mayer et al. 

(2004) used niche modeling to predict the geographical distribution of 23 living mammal 

species and 8 extinct mammal species to determine if changes in climate have reduced 

niche availability. The authors collected climate data from the Pleistocene and the current 

climate to use in their prediction model. They found that species climatic niches are 

stable over time, which suggests niche modeling to be a good candidate for climate 

change research (Martinez-Mayer 2004).  

I used a model created by the United States Forest Service to determine the 

predicted changes in forest stands in 100 years under multiple model scenarios.  These 

predictions were applied to the habitat suitability model for marten in northern Michigan. 

The purpose of this study was to predict climate change effects on habitat and forest 

structure at Sleeping Bear Dunes and the surrounding area in order to determine the 

feasibility of reintroducing the American marten. 
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Methods 

A habitat suitability modeled created by McFadden (2007) was used to assess the 

current habitat suitability and the potential of the study area to support a metapopulation 

(see chapter II). Once current habitat suitability was assessed, I obtained shapefiles of 

climate change models for 24 tree species from the U.S. Forest Service. The U.S. Forest 

Service modeled predicted changes in 134 tree species distributions in 100 years with 

multiple climate scenarios. They used 38 environmental variables to determine species 

distribution and predicted their Importance values (IV)  by 2100 based on three general 

circulation models (GCM) under two emission scenarios, with current high levels of 

emissions  (HI) and a significant reduction in emissions (LO). The HI scenario 

represented a tripling of pre-industrial CO2 levels in the atmosphere and the LO 

emissions represented a doubling of CO2. Prasad et al. (2007) associated the predictor 

variables with the IV of each tree species, evaluated the stability of the model, and then 

predicted current and future IV’s based on the climate model scenarios (Prasad et al. 

2007). Importance values were predicted for each tree species in a 20km by 20km grid 

cell. They presented IVs from each GCM and an average IV of the 3 GCMs (Prasad et al. 

2007). I used the average values for predicted changes. The IFMAP layer and Forest 

Service species-stand associations were compared to find common categories from which 

I analyzed change (Table 3). Total IVs for tree species in each stand association were 

calculated for the current model, HI model, and LO model in each 20km by 20km cell. 

Relative percent change in habitat type was then calculated by subtracting the future IV 
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from the current IV and dividing it by the current IV for each emissions scenario. I then 

averaged the percent change across the cells in the Northern Lower Peninsula. 

 

 

Table 3. Forest stand classifications assigned based on 2001 IFMAP classifications and 

U.S. Forest Service classifications in their climate change model.  

Forest Stand Classifications 

Stand Classification Tree Species 

pines jack pine, red pine, white pine 

upland conifers eastern hemlock, balsam fir, northern 

white cedar 

upland mixed eastern redcedar, eastern white pine, 

northern red oak, post oak, black oak, 

eastern hemlock, southern red oak 

oak types white oak, northern red oak, post oak, 

black oak, red maple, american elm, 

southern red oak 

northern hardwood red maple, american elm, sugar maple, 

yellow birch, black cherry, american 

basswood, american beech, white ash 

aspen-birch Bigtooth aspen, paper birch, pin cherry, 

quaking aspen 
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Results 

 In the LO scenario, the largest predicted forest stand loss was in aspen/birch at 

60% with mixed upland conifers also predicting a large decrease of 57%. Northern 

hardwoods indicated the lowest predicted loss in this scenario at 1%. While these forest 

stands indicated a potential loss of habitat area, oak types and upland mixed forests 

predicted an increase in IV’s of 14% and 26%, respectively, in this scenario. The HI 

scenario predicted the largest stand loss of aspen/birch at 69% and second largest loss of 

pines at 61%. The lowest predicted loss in this scenario was for northern hardwood, 

which indicated a loss of 21%. Oak types indicate a potential increase of 15% while 

upland mixed indicated a potential increase of 38% in the HI scenario (Figure 7). 

 The conifer species with the largest relative percent increase in IV was eastern red 

cedar (Juniperus virginiana) with a 286% increase under the LO scenario and a 450% 

increase in the HI scenario. The deciduous species with the highest relative percent 

increase of IV in the LO scenario were black oak (Quercus velutina), American elm 

(Ulmus americana), and white oak (Quercus alba) with a 130%, 117%, and 89% 

increase, respectively. The same tree species indicated a similar trend in predicted percent 

increase with a 168%, 160%, and 93% increase in the HI scenario, respectively 

(Figure 8). 
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Figure 7. Average predicted percent change in importance value (IV) of forest stands 

relative to current IV based on the U.S. Forest Service’s climate change model of the 

average of three General Circulation Models (GCMs) at two emissions scenarios. These 

scenarios are predicting a doubling of pre-industrial CO2 concentrations (LO) and a 

tripling of pre-industrial CO2 levels (HI) by 2100. Percent change is calculated per 20 km 

by 20 km grid cell and averaged over the grid cells across Michigan’s Northern Lower 

Peninsula. Forest stands were classified according to the 2001 IFMAP classification and 

the U.S. Forest Service’s stand classification. 
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Figure 8. Average predicted percent change in importance value (IV) per tree species 

relative to current IV for a) 7 coniferous tree species and b) 17 deciduous species based 

on the Forest Service Climate Change model of the average of three General Circulation 
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Models (GCMs) at two emissions scenarios. These scenarios are predicting a doubling of 

pre-industrial CO2 concentrations (LO) and a tripling of pre-industrial CO2 levels (HI) by 

2100. Percent change is calculated per 20 km by 20 km grid cell and averaged over the 

grid cells across Michigan’s Northern Lower Peninsula.   

 

 

 Conifer species that have the largest predicted decrease in IV under the LO 

scenario were northern white cedar (Thuja occidentalis), jack pine (Pinus banksiana), 

balsam fir (Abies balsamea), red pine (Pinus resinosa), and eastern hemlock (Tsuga 

canadensis) with a decrease of around 50% for each species. Under the HI emissions 

scenarios, the same tree species indicated a slightly larger decrease in IV with the 

addition of eastern white pine declining in IV by 60%. Deciduous species that indicated 

the largest predicted decrease in IV were paper birch (Betula papyrifera), quaking aspen 

(Populus tremuloides), yellow birch (Betula alleghaniensis), and bigtooth aspen (Populus 

grandidentata) with a decrease of 65%, 63%, 51%, and 49%, respectively under the LO 

emissions scenario. The same tree species showed a larger decrease in IV under the HI 

emissions scenario with a decrease of 73%, 69%, 58%, and 67%, respectively (Figure 8).  
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Discussion 

 Based on the Forest Service climate change model, habitat suitability for many 

species of trees, including coniferous and deciduous, will decline by 2100 at both the low 

and high emissions scenarios. Some species have a predicted increase in habitat 

suitability, which contributes to the observed increase in mixed forests. Tree species that 

show such an increase are oak-type species such as post oak, black oak, white oak, and 

American elm, as well as eastern redcedar. These species are all predicted to increase in 

both scenarios, but the post oak is expected to increase more in the HI scenario than in 

the LO scenario. All conifers, except eastern redcedar, are predicted to decrease in IV 

along with aspen and birch species in both scenarios.  

This model only predicts habitat suitability and not necessarily dispersal of a 

species and post oak would need to disperse from Southern Indiana in order to occupy the 

study area. In addition, the prevalence of American elm would depend on the dispersal 

ability of the individuals remaining from the Dutch elm disease outbreaks in the 1900s. 

Schlarbaum et al. (1998) estimated that 1 in 100000 American elms could be resistant to 

the disease. These resistant trees are being studied and cloned in order to produce trees 

resistant to the disease (Townsend 2005). If these studies are successful, then 

management objectives could focus on introducing these resistant strains throughout 

Michigan in order to promote the dispersal of American elm into these predicted 

increasingly suitable habitats. The Forest Service model also does not take into account 
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disease outbreaks and recoveries, which will be a factor, as it is predicted that climate 

change will increase disease prevalence. Ash trees are another concern related to disease 

outbreaks with the infestation of the emerald ash borer in Michigan (Iverson et al. 2007). 

White ash (Fraxinus americana) is predicted to have a relatively small increase in IV in 

both scenarios, thus a larger loss of white ash than predicted would not heavily influence 

the predicted changes. 

 American marten in the Eastern United States have shown a large amount of 

plasticity in habitat use. Soutiere (1979) found that marten utilized more hardwood 

forests in stands that were being harvested and tended to utilize softwood forests in stands 

that were not harvested. This plasticity will likely contribute to the marten’s ability to 

adapt to slight changes in forest composition. Predicted changes in conifer species appear 

to be drastic, but changes in deciduous species will be more subtle because similar 

species will have the ability to occupy new habitats and replace species that would be 

affected most by climate change. Additionally, changes will likely occur over an 

extended time period, which will make adaptability more feasible.  

Management Implications 

Based on the predictions derived from the U.S. Forest Service’s climate change 

model, habitat in Michigan’s Northern Lower Peninsula should remain suitable for the 

American marten. Adaptation by the marten is feasible given its plasticity and the 

predicted increase in mixed forests, which would still provide a small amount of conifer 
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species in their habitat. It is recommended that Sleeping Bear Dunes National Lakeshore 

introduce American marten in coordination with the MDNR and local Native American 

Tribes. Given the patchiness of suitable habitat within SBD, I recommend that marten are 

introduced into Pere Marquette State Forest, adjacent to SBD’s boundaries and allow for 

the marten to naturally disperse into SBD. Additionally, the introduction would add 

genetic differentiation to the population in Manistee National Forest. If such 

reintroductions occur, then it will be important for other organizations to implement 

additional reintroductions within MNF or adjacent suitable habitats. The sink population 

features of the area between MNF and SBD could be beneficial for genetic 

supplementation of MNF populations, increase the metapopulation size, and decrease the 

extinction risk of the metapopulation. 

By answering a priori research questions related to metapopulation viability, and 

current and future habitat suitability, we can increase the chances that a second round of 

marten reintroductions in Michigan’s Northern Lower Peninsula will be successful. In 

order to determine the fate of these reintroduction attempts, it is imperative to monitor 

post release success through radio tracking and additional trapping and radio collaring of 

future marten kits. By monitoring dispersal, reproduction, and genetic variability, 

managers will be able to determine if enough marten were introduced or if an additional 

reintroduction would be necessary. 
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