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Abstract 

 

The classic iterative Newton-Euler method for inverse dynamics applied to 

calculating net joint torques in biomechanics analysis has a number of drawbacks. Many 

sources of error including imprecision in video motion capture data measurements can 

lead to significant errors in calculated net joint torques. Adding ground reaction force 

data overconstrains the solution. This study examined the effectiveness of various inverse 

dynamics analysis methods on a full body analysis of the standing long jump motion. 

These methods included variations in which equations for segments from the link-

segment model were removed to relieve over constraint. Also considered were analysis 

methods applying least squares optimization, which included all the measured data 

weighted in a least squares sense to fit to an overconstrained system.  

Motion capture data of 48 total standing long jump trials were collected and 

analyzed. Conventional iterative solutions with and without including measured ground 

reaction forces, and least squares optimized inverse dynamics solutions were derived and 

applied to the kinematic data in a 2-dimensional, seven-segment, linked segment model 

of the full body. Net joint torques were calculated at six joints for a 1.5 s period 

immediately prior to take-off of each standing long jump, and joint power and total work 

performed at each joint was calculated over the entirety of each jump. The optimized 

least squares solution was shown to be very similar to the conventional iterative solution 

using ground reaction forces and removing the equations of motion at the trunk segment. 

Net mean torques at the elbow and shoulder were highly variable. 
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1 Introduction 

The standing long jump is an athletic event that has been used as a measure of 

athletic performance through much of history, including in the ancient and modern 

Olympic Games up to 1912. It is one of the simpler examples of jumping as a fundamental 

human movement. Since jumping requires strength, power, and coordination of the entire 

body, it has been frequently studied to analyze and improve athletic mechanics and 

performance (Ashby & Heegaard, 2002; Payton & Bartlett, 2007). Jumping involves more 

extensive coordination of the upper and lower body movements, as compared to walking, 

which increases the complexity of analysis of jumping motions.  Analysis of the 

biomechanics of the standing long jump is complex due to the extended motions, as well as 

the number of body segments contributing to the jumping motion and the number of 

muscles acting to various degrees on those segments (Hay, 1993).  

A commonly used biomechanics analysis tool is inverse dynamics, a method which 

uses kinematic and kinetic data from a motion-capture system to calculate net torques at 

anatomical joints. These net torques can be used to infer (though not directly calculate) the 

muscle forces acting during the motion being studied. The conventional calculation of joint 

torques is completed by modeling the body as a series of rigid segments connected by 

joints and iteratively solving the Newton-Euler equations of motion for each segment in 

the model (Winter, 2009). While this solution is mathematically straightforward, noise in 

the measurement of segments’ position, mass, centroid, and inertial moment lead to 

substantial errors. These errors propagate to the calculated linear and angular velocity and 

acceleration of each segment, compounding over and over as the solution to one segment is 
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used to solve for the next. Over the length of the model, which can include seven or more 

segments for the whole body, these errors can become larger than physiologically possible 

(Blajer, Dziewiecki, & Mazur, 2007; Hatze, 2002). Reaction forces at the ground can be 

measured by force plates and included in the equations of motion. However, introduction 

of reaction forces results in an overdetermined set of equations, so the equations for one 

segment must be arbitrarily ignored, or residual forces and torques applied, to calculate an 

explicit solution (Winter, 2009).  

Previous work using the conventional approach removed the equations of motion 

for the trunk or forearm segment on the linked-segment model to eliminate the 

indeterminacy of the equations (Filush, 2012).  However, removing the equations of 

motion for other segments from the model may yield more accurate net joint torques and is 

one consideration of this study. Alternative inverse dynamics approaches making use of all 

equations and all available data from ground reaction forces and motion capture have been 

applied to movement studies including gait analysis. These methods rely on static or 

dynamic optimization techniques (Andersen, Damsgaard, MacWilliams, & Rasmussen, 

2010; Cahouët, Luc, & David, 2002; Chao & Rim, 1973), or least squares regression fits 

(Kuo, 1998; Van Den Bogert, Antonie J & Su, 2008). Application of these inverse 

dynamics techniques to biomechanics analysis of jumping activities is not evident in the 

scientific literature. Jumping motions have been analyzed with inverse dynamics, but only 

using the conventional approach to determine the contribution from upper body segments 

(Bisseling & Hof, 2006; Feltner, Fraschetti, & Crisp, 1999; Feltner, Bishop, & Perez, 

2004; Filush, 2012; Pain & Challis, 2006; Vanezis & Lees, 2005). 
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The objective of the current study is to investigate various strategies for resolving 

the overdetermined system of equations in the inverse dynamics solution including: 

1) Eliminating the three equations of motion for different segments to yield 

determinate conventional solutions, 

2) Combining the different conventional solutions to spread the propagated error 

around the model, and 

3) Simultaneously solving all of the equations using a least squares optimization 

solution method. 
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2 Background 

A number of studies have examined various performance aspects of jumping 

biomechanics (Ashby & Heegaard, 2002; Ashby & Delp, 2006; Hatze, 1981; Hay, 1993; 

Wu, Wu, Lin, & Wang, 2003). Application of inverse dynamics methods to biomechanics 

is also well documented in the scientific literature (Andersen et al., 2010; Cahouët et al., 

2002; Chao & Rim, 1973; Kuo, 1998; Van Den Bogert, Antonie J & Su, 2008). 

Application to jumping biomechanics is a smaller subset (Bisseling & Hof, 2006; Bobbert, 

Huijing, & van Ingen Schenau, 1987; Feltner et al., 1999; Feltner et al., 2004; Filush, 

2012; Pain & Challis, 2006). The shortcomings of the conventional approach to 

musculoskeletal inverse dynamics are well described in literature (Winter, 2009), including 

compounding errors in iterative solutions and over determinate solution sets (Hatze, 2002). 

Several alternative methods of solving the inverse dynamics problem have been postulated 

(Blajer et al., 2007; H. R. Busby & Trujillo, 1987; H. Busby & Trujillo, 1997; Kuo, 1998; 

Van Den Bogert, Antonie J & Su, 2008) attempting to reduce errors and eliminate over-

determinacies in the solution systems. These methods rely on least-squares fit solutions or 

similar cost optimization functions to improve the reliability of the analysis by using the 

over-determinacy caused by combining force plate and motion capture measurement. 

2.1 Jumping Biomechanics Analysis 

Calculated joint torque are used in biomechanics analysis to calculate the rate of  

power transfer through a joint, and also to infer which muscle groups are providing that 

power. In gait analysis, joint torque data are frequently used to diagnose musculoskeletal 

pathologies. In analyzing jumping, these data are used to evaluate the mechanisms relating 



12 

 

to improving jump distance. Inverse dynamics analysis can reveal fundamental motor 

control strategies that can be useful in optimizing sports performance or helping 

rehabilitate individuals with movement disabilities or deficits. 

2.2 Conventional Inverse Dynamics Methods 

The classic method of applying inverse dynamics to a 2-dimensional (or 3-

dimensional) musculoskeletal system is relatively straightforward. A link-segment model 

of the body segments is constructed as shown in Figure 1 below. The head and trunk are 

modeled as a single continuous segment, as is the pelvic region including the spine below 

the L5/S1 vertebral joint. The forearm, wrist, and hand on each side of the body are all 

modeled as a single lower arm segment. 

 

Figure 1: 2-dimensional projection of model segments and their relation to marker locations. 
 

For the seven-segment model described in Figure 1, it is convenient to number the 

joints as follows: 
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1  –  Ankle 

2  –  Knee 

3  –  Hip 

4  –  Lower back 

5  –  Shoulder 

6  –  Elbow 

 

It is also appropriate to number the segments as follows: 

1  –  Foot 

2  –  Shank 

3  –  Thigh 

4  –  Pelvis 

5  –  Torso and head 

6  –  Upper arm 

7  –  Forearm and hands 
 

The Newton-Euler equations of motion are applied progressively beginning at one 

end segment. This method is dependent on direction, starting at one end of the body and 

solving segment by segment using the results from the previous segment. Typically, the 

solution starts at the segment contacting the ground, and progresses up the model. A 

solution can also start at the hand(s) and solve each segment down, all the way to the 

ground if desired. This “top-down” solution assumes the reaction force and torque at the 

hand are zero. Air resistance is neglected for all the segments for all solution methods. 

A generalized segment free-body diagram for segments 2 to 7 can be drawn with 

the segment angle in the first quadrant, as shown in Figure 2. 
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Figure 2: 2 dimensional free body diagram of a generalized segment. 

 For every segment, equations 2.1 to 2.3 are true: 

∑           
∑           

∑          
 

 

 

Applying these equations to the free-body diagram in Figure 2 for     to   results 

in the following: 

 

          (   )       

          (   )           

                 (   ) (     )         (   ) (     )                  
             
 

The quantities in Equations 2.4 through 2.6 are: 

(2.3) 

(2.1) 

(2.2) 

(2.5) 

(2.6) 

(2.4) 
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 (   )   (   )  
Intersegmental force at the inferior joint in x and y directions, 

respectively 

         
Intersegmental force at the superior joint in x and y directions, 

respectively (equal to zero for segment 7) 

     

   

Net joint torque at inferior joint 

Net joint torque at superior joint (equal to zero for segment 7) 

   Segment length 

     Distance from superior joint to segment mass center 

   Segment angle relative to   (horizontal) axis 

   Segmental mass 

  Gravitational constant 

   Segment angular acceleration 

        Segment mass center acceleration in x and y directions, respectively 

   Segment mass moment of inertia with respect to its mass center 

 

The distal end of the foot segment is modeled as a moving contact with the ground.  

The foot segment does not have an applied moment at the ground, but does have a 

measurement of the center of pressure (COP) that locates where the reaction forces at the 

ground act on the foot. As the foot is treated differently than the rest of the modeled 

segments, an additional free-body diagram is shown in Figure 3.  

Figure 3: Free body diagram of foot segment at takeoff. 
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As with Equations 2.4 to 2.6 above, equations of motion 2.7 to 2.9 apply to the foot 

segment: 

                  

                      

                     (     )     (     )     (     )  
 

The terms in Equations 2.7 to 2.9 are: 

        Intersegmental force at the ankle joint center in x and y directions, respectively. 

        Ground reaction force in x and y directions, respectively 

   Net joint torque at ankle  

        Distance from origin to ankle joint center in the x and y directions, respectively 

     Distance from origin to the COP in the x  

        Distance from origin to foot mass center in the x and y directions, respectively 

   Foot segment mass 

  Gravitational constant 

   Foot angular acceleration 

        Foot mass center acceleration in x and y directions, respectively 

   Foot mass moment of inertia with respect to its mass center 

 

For this 2-dimensional link model with seven segments there are 21 equations of 

motion (Equations 2.1 to 2.3). Each of the six intersegmental joints introduces three 

unknowns (the x and y direction intersegmental forces and the net joint torque) resulting in 

18 unknowns for the system. The loading conditions are assumed to be zero at the hands. 

The interaction between the feet and ground introduces three more unknowns (  and   

direction ground reaction forces and the location of the center of pressure in the   

direction). This results in a completely defined system with 21 equations and 21 

unknowns. However, if the ground reaction forces are measured by force platforms at the 

feet and applied to the model, the system becomes overdefined with three more equations 

than unknowns.   

(2.9) 

 (2.7) 

(2.8) 
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Several separate (and independent) iterative inverse dynamics solutions to the link-

segment model can be calculated by applying the known loading conditions at one or both 

ends of the model: 

1) Using the measured ground reaction forces to include the force on the end 

of the foot, the “bottom-up” (bottom-up) explicit solution can be calculated. This solution 

is solved iteratively from the foot to the forearm, either disregarding the equations of 

motion for the forearm segment or calculating a residual force and torque at the hand, 

which is a known error (since no external forces and torques are applied at the hand). 

2) Starting at the hand/forearm segment and assuming the forces and moments 

at the hand are zero results in a “top-down” (top-down) solution, solved iteratively from 

the forearm to the foot. This solution either disregards the equations of motion for the foot 

segment or calculates a residual ground reaction force result (which may not be the same 

as a measurement of the actual force at the ground). 

3) Discarding the equations of motion for any one segment allows the “top-

down” solution to the superior end of that segment, and the “bottom-up” to the inferior 

end. This is equivalent to obtaining both the bottom-up and top-down solutions and 

discarding results for all joints beyond the chosen segment, as discussed in Sections 5 and 

6 below. 

2.3 Conventional Inverse Dynamics Issues 

The major drawback of inverse dynamics analysis using motion-capture data is the 

compilation of errors from all the measurements and calculations required to derive joint 

torque estimates. These errors arise from a variety of sources, including experimental and 

systemic errors, and are worth an exhaustive description. 
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First, the measurement of marker position data in real-time has associated errors 

from noise and calibration inaccuracies. When joint centers are approximated by marker 

locations a difference invariably exists between the modeled center of rotation and the 

anatomical joint center. The repeatability of marker placement on the body contributes to 

this issue. Even if the markers were able to be placed with perfect accuracy and exact 

repeatability and precisely tracked, the soft tissues of the limbs allow the marker to move 

relative to the bone. This causes artifacting when the segment and marker accelerate at 

different rates due to the compliance of the tissues connecting the two (Pain & Challis, 

2006; Peters, Galna, Sangeux, Morris, & Baker, 2010). Error in the marker position data 

also compounds when numerically differentiating the discrete data points to obtain 

segment velocities and again when calculating accelerations.  

Segment specific parameters including mass, mass moment of inertia, mass center 

location, and segment lengths cannot feasibly be measured directly. These values are 

estimated based on the height and weight of the participant, using tables of typical values 

(Plagenhoef, Evans, & Abdelnour, 1983; Winter, 2009). This estimation necessarily 

introduces some error in values which are used in further calculations. Finally, the link-

segment model also assumes pure rotational joints, and in the 2-dimensional model all 

rotation is assumed to be in the sagittal plane. However, anatomical joints experience both 

rotation and translation about and along multiple axes during movement. The 2-

dimensional projection of this rotation in the link-segment model introduces additional 

error to the calculated values due to the simpler model. 

All of these errors compound when moving along the chain of segments, getting 

progressively worse at each step. Because each segment solution depends on the reaction 
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forces from the previous segment, any errors in the calculated values for one segment will 

propagate to the adjacent segments. Thus, the accuracy of forces and torques calculated on 

the first segment has a profound effect on the reliability of the calculated values further up 

the model. Since the forces and torques are calculated directly from the second derivative 

of position data from a video motion capture system, any noise in the position 

measurement increases non-linearly in the calculation of velocity, and again for 

acceleration (Hatze, 2002).  

In the particular case of the segment in contact with the ground (typically the foot 

segment), the distal reaction force can be directly measured by a force sensor. The 

precision and resolution of the data recorded by the force plate are typically superior to 

those calculated from mass property estimation and derived accelerations. To more 

accurately measure the forces on the initial segment, force plate data can be used to 

provide known values for the reaction forces and moment for the segment end nearest the 

ground, which in this model are the distal ends of the foot segments. This results in one 

segment having well-defined input forces and moments, but eliminates three unknowns 

from the inverse dynamics solution and the solution becomes overconstrained (Hatze, 

2002). This can be resolved by simply ignoring the set of equations for one segment, 

normally the set furthest removed from the initial segment (Winter, 2009). In cases where 

the reaction forces or applied loading of interest occurs on the segment furthest away from 

the initial segment, this resolution is not particularly satisfactory, since these loads do not 

show up at any point in the inverse dynamics calculation. In this case a set of equations for 

another segment can be removed (Filush, 2012). 
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The exact effect choosing to remove segments other than the one furthest from the 

ground has on the final calculated joint torque values is unclear. Winter (2009) implies that 

leaving out the top segment equations provides the most reliable results relative to forward 

simulations.  However a direct comparison between analyses showing that effect is not 

present in the literature. Examining this question is one of the primary objectives of this 

study.   

2.4 Inverse Dynamics: Optimization Methods 

Kuo (1998) proposed an alternative method for inverse dynamics which solves all 

of the equations simultaneously in a least squares sense to find the joint torques that best 

satisfy the equations. In this study, the overconstrained inverse dynamics equations were 

represented by: 

       

where   is the non-square matrix containing the coefficients of the joint torques in the 

equations of motion,   is the vector of joint torques, and   is the vector of known forces 

and torques. 

Kuo evaluated the methodology for this alternative method on an overconstrained 

2-dimensional system using the known results from a forward dynamic simulation.  Prior 

to performing the inverse dynamics analysis, the   matrix was multiplied by a diagonal 

matrix   which effectively represented artificially added measurement “noise” to simulate 

experimental results:  

         

(2.11) 

 

(2.10) 
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The least squares solution for the joint torques   was calculated using the pseudo-inverse 

as follows: 

  (        )                   

Kuo demonstrated a 30% reduction in error in calculated joint torques compared to 

a conventional analysis, with both solutions being compared to a forward simulation. The 

forward simulation in this study was both the source of the data for analysis, and the 

known answer to which the processed data could be compared.  

Van den Bogert et al. (2008) proposed an alternative method also using a least 

squares solution, which expanded on Kuo’s work to a 3-dimensional system and analysis 

of partial ground reaction data (i.e. a partially instrumented treadmill). They compared the 

error between the conventional and alternative methods on measured data, and compared 

noise to estimated noise derived from a Monte Carlo simulation.  

Van den Bogart generalized the least squares solution method to 3-dimensional 

analysis; however 3-dimensional inverse dynamics adds considerable complexity. Whether 

3-dimensional analysis enhances the precision of inverse dynamics of jumping is not 

entirely clear in the literature, and is a potential area for further study. The scope of this 

study is limited to 2-dimensional analyses.  

A potential drawback to least squares solution methods is that they are static 

optimizations. The equations of motions are solved at each point in time independent of the 

equations at the previous or following points in time. The solutions for the joint moments 

are therefore not entirely dynamically consistent over time and thus will not precisely 

reproduce the measured motion when applied to the model and integrated forward in time.   

(2.12) 
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2.5 Comparing Inverse Dynamics Methods  

As the loading conditions are measured or assumed known at both ends of the link 

segment model of the body, for a conventional inverse dynamics solution, the error in the 

solution typically increases for joints further from the known end loading. For example, the 

error in the ankle torque should be relatively small for the bottom-up solution and 

relatively large for the top-down solution. Conversely, the error in the elbow torque should 

be relatively small for the top-down solution and relatively large for the bottom-up 

solution. The least squares solution effectively spreads the errors throughout all the joint 

solutions. Therefore, the least squares optimization is expected to generate values in 

between the iterative top-down and bottom-up solutions. If this is the case, then the least 

squares solution may be comparable to a weighted mean of the two solutions.  
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3 Experimental Design 

Standing long jump trials were conducted using a motion capture system consisting 

of eight cameras and two force plates (as described in Section 3.2) and a set of reflective 

markers (as described in Section 3.3). The reflective markers were placed on the body and 

allowed data to be collected for kinematic and kinetic analyses of both upper and lower 

body segment motion. Force plates were used to capture the ground reaction forces and 

locations of the center of pressure.  The jumping trials and marker locations were also 

documented with video and still photography. 

3.1 Participant Selection 

Six young (range: 18-28 years) adult male volunteers [Mean ±StdDev: 90.3±12.0 

kg, and 182.0±6.3 cm] were selected for experimental jumps. All participants completed a 

survey to determine a minimum of occasional physical fitness activity and any injury 

history which could increase the risks associated with jumping. Each volunteer participated 

in one session, approximately one hour in duration. The six sessions were performed over 

the course of several days. The participants were informed of the risks associated with the 

study and gave their consent to participate. The experiment protocol was reviewed and 

approved by the Human Research Review Committee at Grand Valley State University. 

3.2 Experimental Procedure 

Reflective markers were placed on every participant by the same researcher for 

consistency, and marker placement was verified by a physical therapist with 20 years of 

gait analysis experience. Participants were instructed to warm-up to increase jumping 

performance and reduce the risk of injury by jogging at a self-selected comfortable speed 
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for 5 minutes on a treadmill, and were allowed to stretch if desired. The participants were 

given the opportunity to execute practice jumps to reduce the internal variability between 

each participant’s trials by allowing each to establish a personal routine for the jump.  

For each participant, separate static standing trials were collected on two force 

plates to determine each participant’s mass, and to observe the complete marker set for 

joint center calculations. Jumping trials immediately followed the standing trials. The 

participants were instructed to perform standing long jumps for best distance, jumping 

from both force plates simultaneously with one foot on each plate during takeoff. The 

participants performed eight jumps sequentially at approximately one-minute intervals. 

3.3 Equipment and Data Collection 

Segment position data were captured using a Vicon motion capture system (Vicon 

Motion Systems Ltd., Los Angeles, CA) consisting of eight cameras that record the three 

dimensional locations of reflective markers placed on the body. Each camera recorded the 

locations of the reflective markers in its field of view at 120 Hz, using infrared LED 

strobes. As the participants moved through the motion capture field of view, the strobes 

reflected off the markers attached to the body allowing each camera to return the markers’ 

2 dimensional projections onto the camera’s field of view. The Vicon data station recorded 

the position data from the cameras, and then passed the information to the Nexus software 

where markers were isolated and labeled, and post-processed to determine the 3D positions 

of the markers. The Vicon camera system was calibrated prior to each session. 

To capture ground reaction forces and center of pressure locations the participants 

were instructed to jump off a pair of an in-ground AMTI force plates (Advanced 

Mechanical Technology Inc., Watertown, MA). The total force on both plates was summed 
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to determine the total ground reaction forces up until the point of takeoff. The average of 

the center of pressure (COP) location measured by each force plate was taken to determine 

the overall COP location in the   (jumping) direction, while the   (vertical) direction COP 

was set to zero throughout the propulsive phase of each jump. 

3.4 3 Dimensional Marker Locations and Segment Definitions 

The marker locations chosen allowed a model to be constructed, and then 

simplified in a projection of the left half of the body in the sagittal plane. The reflective 

markers were placed on the skin, and on top of clothing or shoes, in locations intended to 

allow sufficient data to be collected to perform kinematic and kinetic analyses of the upper 

and lower body segments of a three-dimensional link-segment model. The marker 

locations relevant to the 3D model and its 2D projection included: the fifth and first 

metatarsal heads (toe), the lateral and medial malleoli (ankle), the lateral and medial 

femoral condyle and fibular head (knee), the greater trochanter (hip), the acromion 

(shoulder), the lateral and medial epicondyles of the humerus (elbow), and the ulnar and 

radial styloids (wrist). Additional markers were placed specifically on the thigh, shank, 

trunk, upper arm, forearm, and hand segments, and are visible in Figure 4. 

These markers fully define reference coordinate systems for a 3-dimensional, 12-

segment model of the entire body. These data are useful for additional research outside the 

scope of this study, but were not used in the sagittal plane projection to the 2D model 

under consideration here. 
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Figure 4: Sagittal (l) and Frontal (r) plane marker locations. 

For segment length calculation purposes, the calcaneus, greater trochanter, and 

acromion markers were taken to approximate the proximal end of the foot, the hip joint 

center, and the shoulder joint center, respectively. The L5/S1 vertebral joint center was 

taken as the center of rotation at the lower back, and its location was calculated based on 

the posterior and anterior superior iliac spines (PSIS and ASIS) marker position using the 

formula described by Lariviere et al. (2001), and the pelvic inertial properties described by 

McConville et al. (1980) and Plagenhoef et al. (1983). Segment mass, center of mass, and 

inertial properties were used as defined by Winter (2009). The segment parameters used 

for each participant are listed in Appendix A. 

Segment lengths were calculated from data collected during static (non-jumping) 

anatomic position standing trial, once per participant on each force plate. Segment lengths 

were defined by distances between joint centers at the toe, ankle, back, elbow, and wrist, as 

follows: 
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Foot: Center of 5
th

 and 1
st
 metatarsal markers to calcaneus marker 

Shank: Center of malleoli markers to center of femoral condyle markers 

Thigh: Center of femoral condyle markers to the greater trochanter 

Pelvis: Greater trochanter to L5/S1 joint center. 

Trunk: L5/S1 joint center to acromion marker 

Upper Arm: Acromion marker to center of humeral epicondyle markers 

Lower Arm: Center of epicondyle markers to center of styloid markers 

 

To ensure that markers used to calculate joint centers and segment lengths were 

visible to the camera system, segment lengths were calculated from static trials in the 

anatomical position with the foot, shank, thigh, pelvis and trunk projected into the sagittal 

plane. The upper and lower arms segment lengths were projected into the frontal plane 

since they deviate significantly out of the sagittal plane when measured in the anatomical 

position. All segment lengths were assumed to be constant throughout the whole duration 

of a participant’s jumps, and were not dynamically calculated during the jump. 

3.5 Simplification to a Sagittal Plane Model 

Bilateral symmetry was assumed for marker locations, and the left half of the body 

was used for the 2D simplification. The marker locations selected allow for projection onto 

the sagittal plane such that the endpoints of 2D model segments correspond to marker 

locations, as shown in Figure 1. As some medial markers were hidden from view during 

the jumps, the lateral markers at the ankle, knee, elbow, and wrist (as shown in Figure 4) 

were used to calculate segment angles. Segment angles for a segment with endpoints at 

positions (         ) (     ) were calculated by Equation 3.1:  

       (
       

       
) (3.1) 

 



28 

 

4 Data Analysis 

Nexus 1.8.4 (Vicon Motion Systems Ltd., Los Angeles, CA) software was used to 

capture and compile the raw kinematic and force results of the jumping trials for analysis.  

The data were analyzed using Wolfram Mathematica 9.0 (Wolfram Research, Inc., 

Champaign, IL) and MatLab R2013a (Mathworks, Natick, MA) software. The analysis 

consisted of data filtering, application of conventional inverse dynamics and least squares 

solutions, and comparing the solution output. 

The raw data captured by the Vicon system was processed in Nexus to apply the 

model. Ghost marker artifacts were removed and small gaps in the marker data were filled 

with spline interpolations. The raw data were filtered to remove high frequency noise and 

isolate the data relevant to segment motion. Physiological factors limit relevant anatomical 

motion signal to approximately 3-5 Hz at the trunk and 5-10 Hz at the extremities, with 

frequencies above 10 Hz almost entirely noise while jumping (Wells & Winter, 1980).  A 

bidirectional low pass Butterworth filter with a cutoff frequency of 10 Hz was used to filter 

both the motion capture data and the ground reaction force data in Math Works MatLab 

R2013. 

The ground reaction force data was subsampled at a 1:10 ratio to correspond to the 

120 Hz framerate of the motion capture data, and the time where the reaction forces went 

to zero defined as takeoff. Data were clipped at takeoff and 1.5 s (181 frames) before 

takeoff for analysis. The 1.5 s period was sufficient to capture the standing and propulsion 

phases of the jump up to takeoff for all 48 trials, except for one trial where the system 

failed to capture the first 24 frames (0.18 s) of the 1.5 s period. 
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4.1 Conventional Inverse Dynamics 

The equations of motion were derived in full for all seven segments (21 equations, 

see Appendix B for the full list of equations). Conventional inverse dynamics using 

iterative solving of the Newton-Euler equations of motion for each segment were 

performed completely from the hand to the ground (top-down) and the foot to the hand 

(bottom-up). Solutions ignoring particular segments were not individually calculated as 

such solutions are identical to comparing the top-down and bottom-up solutions across 

particular segments.  

Kinematic analysis was performed in Wolfram Mathematica using forward 

differences to twice numerically differentiate segmental center of mass positions and 

angles. The resulting segmental angular and center of mass accelerations were applied to 

the equations of motion using mass and inertial properties as described in section 3.4 

above, to calculate net joint torques at every time frame over the 1.5 s before takeoff.  

The net torque at each joint was calculated using both top-down (     ) and 

bottom-up (     )  solutions and also combined into the proposed weighted mean (     )  

conventional solution. This is the mean of the top-down and bottom-up solutions, weighted 

linearly by the number of segments separating each solution from the nearest known 

applied force (at either the hands or the feet). For joint i from 1 (ankle) to 6 (elbow), the 

weighted mean net joint torque is: 

      
   

 
      

   

 
      

 

 (4.1) 
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4.2 Alternative Inverse Dynamics 

A least squares fit inverse dynamics analysis was performed on the jumping trial 

data. The joint torques and intersegmental reaction force vector acting on each segment 

calculated through this analysis were compared to the conventional analyses. While a 

comparison to the “real answer” cannot be made since net joint torques cannot be 

physically measured, the solution is readily compared to other solutions.  

Equations 2.4 through 2.9 can be specified for all joints and combined in matrix 

equation form to obtain a least squares optimized solution. This is done by defining the 

matrices  ,  , and    where   is the vector of intersegmental force and joint torque 

quanties defined for every joint using Equations 2.4 through 2.9: 

  

[
 
 
 
 
 
 
   
   
  
 
   
   
  ]
 
 
 
 
 
 

  

Next,   is the vector of constant mass and inertial properties, and measured 

accelerations for every segment, and   is the matrix of all coefficients for the equations 

including every segment and joint. See Appendix C for a full description of   and  .  

Equations 2.1 through 2.3 then simplify to:  

[
 
 
 
]  

[
 
 
 
 
 
 
 
∑          
∑          

∑        
 

∑          
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∑        ]
 
 
 
 
 
 
 

        

 (4.2) 

 

 (4.3) 
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The coefficients matrix   and the constants matrix   are calculated using the 

known values for segment angle, mass, inertia, and length (a sample implementation of the 

calculation is shown in Appendix B). Equation 4.3 has no exact solution since   is longer 

than  , but the least squares solution can be found by the static optimization shown in 

equation 4.4.  

         [       
 ]  (    )        

Both conventional and least squared solutions were applied for every video capture 

frame to calculate joint torques 120 times per second over the entire 1.5 s period before 

takeoff. 

4.3 Net Joint Power and Work 

The joint power    at each joint   was calculated as:  

     (       ) 

In equation 4.5,      is the angular velocity of the superior segment, while    is 

that of the inferior segment and    is the net torque at joint  . 

The net joint work   at each joint   was integrated as joint power over time:  

   ∫     
 

      

 

Power and work were calculated using the net joint torques from each of the four 

solution methods, at every joint. 

 (4.4) 

 

 (4.6) 

 

 (4.5) 
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4.4 Comparing Methods 

Statistical models were created in SAS JMP 10.0 (SAS Institute, Cary, NC, USA) 

to compare the joint work and torques calculated by each various inverse dynamics 

method.  A one-way single variable ANOVA blocking on the six participants was used to 

calculate the mean joint torque at each frame, with 95% confidence intervals (See Table 

5.2). Since 24 frames of data for one jump were not captured for one jump, N = 47 for 

those frames, with correspondingly wider confidence intervals than the rest of the jump 

sequence. For the last 157 frames, N = 48. 
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5 Results 

The least squares (least squares) solution is compared to the bottom-up and top-

down solutions in Figure 5 below. In Figure 6, the least squares solution is compared to the 

weighted mean of the two conventional solutions. In all plots, torque extending (or 

plantarflexing) a joint is represented as positive by convention. A one-way ANOVA 

statistical model was applied to the joint torques at each time frame to assess the 

differences the mean values and 95% confidence intervals as shown in Figure 5 and Figure 

6, with the least squares solution compared to each conventional solution. 

Net torque at each of the six joints was small and relatively constant during the 

initial phase of the jump, from about 1.5 s to 1 s before takeoff. 
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Each joint experienced a peak extension torque during the propulsion phase of the 

jump, approximately 0.3 to 0.1 s before takeoff. The torque at each joint reversed to the 

Figure 5: Joint torques for two conventional solutions and least squares solution. 
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flexion direction during the 0.1 s immediately before takeoff, as the extending angular 

velocities were slowing to prevent joint hyperextension. 

The three methods in Figure 5 are in the most agreement in calculating the hip and 

lower back torques, with overlapping confidence intervals through the jump at those joints. 

The least squares solution almost entirely coincides with the bottom-up solution at the 

ankle and with the top-down solution at the elbow.  

The two joints furthest from the known force applied to the system (shoulder and 

elbow for bottom-up solution, knee and ankle for top-down solution) show substantial 

disagreement from the least squares solution in calculated mean torque over most of the 

jump. The 95% confidence intervals in all four cases do not entirely overlap for joints 

where solution is more than four segments from its respective starting point, suggesting 

that propagation of error across four or more segments is considerable. 

The bottom-up and weighted mean methods are not substantially different from the 

least squares when calculating knee and ankle torque, and the top-down solution is 

reasonably similar for the first portion of the jump despite the number of segments 

separating it from the known force at the hand. The confidence intervals for all solutions 

also overlap for the initial phase of the jump. However, as the magnitude of the ankle and 

knee  torques increase nearing takeoff, the difference between the top-down and bottom-up 

solutions increases considerably. For the propulsive phase, the top-down solution crosses 

out of the confidence intervals of the bottom-up and least squares solutions at the knee and 

ankle, indicating that there the difference increases as the velocity of the segments 

increases and the relative magnitude of the torques decreases. 



36 

 

 

 

Figure 6: Mean joint torques for weighted means of conventional solutions vs least squares 

solutions. 



37 

 

The confidence interval of the weighted mean solution overlaps that of the least 

squares in the plots in Figure 6, for the four lower joints indicating that the weighted mean 

solution is not very different than the least squares analysis in the lower body. There is a 

difference between the weighted mean and least squares methods at the shoulder and 

elbow joints at the end of the propulsive phase of the jump. As in Figure 5, the torque at 

the elbow and shoulder is small relative to the variability and noise, especially as the 

segment velocity increases towards the end of the jump. 

Joint power over time shown in Figure 7 is shown to correlate with joint torque as 

shown in Figure 5. The top-down solution matches the least-squares within the 95% 

confidence interval at the elbow, shoulder, back and hip. At the knee and ankle, the top-

down solution deviates substantially from the least-squares solution during the propulsion 

phase. The reverse is evident with the bottom-up solution; at the elbow and shoulder it 

differs from the least squares solution while at the ankle, knee, hip, and back, the two 

solutions overlap. 

The two joints above the trunk segment show good agreement between the top-

down and least squares methods, and disagreement between the bottom-up and least 

squares methods in calculated joint power. Conversely, the four joints below the trunk 

show good agreement between the bottom-up and least squares method and disagreement 

between the top-down and least squares method calculated joint power.  
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Joint powers calculated by the least squares and weighted mean solutions coincide 

nearly exactly as shown in Figure 8. While the mean values at the elbow joint are similar, 

Figure 7: Mean joint power vs. time for two conventional solutions and least squares 

solution. 
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the 95% confidence intervals are much wider during the propulsive phase, where the 

segment center of mass velocity and angular velocity reach their maximums.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Mean joint power over time for weighted means of conventional solutions, and for 

least squares solutions. 
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Overall, the calculated net joint powers do not appear to be particularly different between 

the weighted mean and least squares solutions. 

A one-way ANOVA was performed to determine the significance of variation in 

the mean joint work calculated by each method, and p-values for the mean difference 

ANOVA tests are given in Table 5.1. Differences that are significant (p > 0.05) are bolded. 

 

Table 5.1: Statistical significance of differences in mean joint work calculated by 

various inverse dynamics methods 

 

Solution method pair: 

least squares vs. 

bottom-up 

least squares vs. 

top-down 

least squares vs. 

weighted mean 

top-down vs. 

bottom-up 

J
o
in

t:
 

Ankle 0.9089 <0.0001 0.0076 <0.0001 

Knee 0.1093 0.3436 0.1393 0.9739 

Hip 0.1105 0.0177 0.0430 0.3810 

Back 0.5551 0.0808 0.2006 0.3212 

Shoulder 0.4922 0.0007 0.0013 0.4675 

Elbow 0.2086 0.6996 0.6996 0.2504 

 

Net joint work was compared by method at each joint, and plotted in Figure 9 

below. The mean net joint work calculated for each method was positive at every joint, 

consistent with the expectation that an efficient jump will create positive work at most or 

all joints.  
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The net joint work values calculated by each method are very similar, with the 

singular exception of the top-down calculated work at the ankle. All the remaining 

calculated values fall within or very near the 95% confidence interval for all other methods 

at the same joint. Statistical analysis to test the differences between the mean values 

showed little difference between methods.   

Based on the calculated total joint work, the top-down solution is significantly 

different from all others at the ankle (p<0.0001). The bottom-up solution is not 

significantly different from the least squares method at any joint. 

Figure 9: Mean net joint work for all solutions, with 95% confidence bounds. 
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6 Discussion 

Several of the results highlighted in Section 5 are consistent with the expected 

results of the analysis. Both Kuo (1998) and Van Den Bogert et. al (2008) showed that a 

least squares optimization produces similar calculated joint torques to a conventional 

solution, with some reduction in measured error, and the general similarities between the 

least squares, BD, and top-down solutions in Figure 5 are consistent with their work. 

Compared with the least squares solution, the large deviations of the bottom-up solution at 

the shoulder and elbow, as well as the large deviations of the top-down solution at the knee 

and ankle are consistent with the propagation of error through several segments of the 

model as discussed in Section 2.3. These dissimilarities in the solutions are visualized in 

Figure 5 and Figure 6, and in the case of the upper extremities are significant over the 

entire 1.5 s recorded duration of the jump. At the lower extremities the differences in the 

solution are only evident immediately prior to takeoff. 

Examining the effects of discarding equations for various model segments does not 

require explicit separate analyses with one segment discarded in each solution. Instead, 

segments can be effectively discarded by comparing solutions up to the ends of the given 

segment. The agreement between methods changes the most when comparing the back and 

shoulder joints. These joints are at opposite ends of the trunk segment, suggesting that the 

trunk segment is the least consistent with the assumptions involved in a link-segment 

model. The trunk is not rigid or homogenous, but varies in density, length, and shape 

across time and between individuals. These results suggest avoiding calculation of inverse 

dynamics across the trunk segment from a known force input. For example, finding the net 

shoulder torque using a bottom up method with measured ground reaction forces is likely 
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much less accurate than assuming zero reaction force at the hand and using a top down 

method. Ignoring the equations of motion for the trunk segment yields joint torques of the 

full-body model that are most similar to a least-squares analysis, and calculates total work 

values which are not significantly different from a least squares optimization at any joint. 

As the bottom-up method calculates substantially different torques at the shoulder 

than both the least squares and top-down solutions, discarding the upper arm equations 

does not appear to be a viable option – this will lead to substantial error at the shoulder. 

Discarding the pelvic segment equations, conversely, is appropriate, particularly in the 

five-segment model which is common in full-body 2D studies (Ashby & Heegaard, 2002; 

Filush, 2012; Hay, 1993; Wu et al., 2003). In this case, the trunk equations are also ignored 

and the shoulder and elbow torques are calculated from the top down.  

Based on the calculated joint torques, all methods are somewhat different when 

calculating elbow torque, despite the elbow’s proximity to the known force and torque at 

the hands (which are assumed to be zero). All methods differ visibly over time for some 

phases of the jumping motion, although the top-down and least squares substantially 

overlap in 95% confidence intervals, and are very similar to each other as opposed to the 

large variations in the bottom-up solution. The differences between all methods at the 

elbow are consistent with previous findings (Kuo, 1998) that segments with higher 

velocities have greater noise in derived accelerations, which propagates to variability in 

calculated torque. The results are also consistent with the observation that the 2D link-

segment model assumptions of pure sagittal plane motion and bilateral symmetry are less 

valid for the upper extremities, causing relatively more error at the shoulder and elbow. 
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Based on calculated total joint work, the top-down solution is significantly different 

from all others at the ankle (p<0.0001), agreeing with the calculated joint torques results 

that the error propagation over more than four segments is relevant. At all joints except the 

ankle, the least squares, top-down, and bottom-up work values are not significantly 

different, suggesting that the total joint work calculation is not as sensitive as joint torque 

calculations to measurement noise. This is perhaps surprising considering that calculating 

the joint work requires the joint torque as an input, although it may simply be due to the 

noise increasing the confidence intervals and reducing statistical significance. 

There is a significant difference in the work values calculated with the weighted 

mean and least squares methods at the upper extremity joints of the model. The differences 

at those two joints are most likely because error propagates (and increases) non-linearly 

through the system as the analysis moves away from the known starting point, and because 

the upper and lower arms are subjected to higher velocities and accelerations throughout 

the jump. The net torque is low and the changes in position over time (and the resulting 

errors) are large. Also, the assumptions of sagittal plane motion and bilateral symmetry 

again are less accurate at the upper extremities, and are likely contributing to the increased 

variability at the shoulder and elbow. Unlike the linearly weighted mean, the least squares 

solution method corrects to the error non-linearly. A more aggressive weighting profile 

may be more appropriate if the error propagation can be shown to increase at a non-linear 

rate.  Such a model may be an area to be explored by future study. At the lower four joints, 

there is no noticeable difference between the weighted mean and least squares methods, 

and a weighted mean type of solution (particularly if further optimized) may be a simple 
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method to include the advantages of alternative inverse dynamics methods in future 

biomechanics studies.  
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7 Conclusion 

Calculating net joint torques is a useful biomechanics analysis tool, but has no exact 

analytical or experimental solution. Application of the conventional methods for inverse 

dynamics to finding joint torques has a number of sources of error (including imprecision in 

video motion capture data measurements) which lead to significant noise and error in 

calculated net joint torques. Measuring ground reaction force data allows reduction of error if 

overdeterminacies in the resulting dynamics solutions can be resolved.  

To compare inverse dynamics analysis methods, motion capture data of standing long 

jump trials were collected and ground reaction forces measured with force plates. Conventional 

iterative solutions and least squares optimized inverse dynamics solutions were derived and 

applied to the motion capture and force plate data in a 2-dimensional, seven-segment, linked 

segment model of the full body.  Net joint torques were calculated at the six joints for a 1.5 s 

period immediately prior to take-off of each standing long jump, and joint power and total 

work performed at each joint was calculated over the entirety of each jump.  

This study found that variability in calculated joint torque, power, and work values 

were shown to increase as segment equations were solved, iterating away from a measured 

reaction force. Segments with high linear and angular velocities, and segments moving or 

projecting out of the sagittal plane also showed increased variability.  

In a full body analysis of the standing long jump motion, overdeterminacies can be 

resolved by removing equations of motion for the trunk segments of the link-segment model. 

This resolution has no substantial difference from a least squares optimized solution on the net 

torque, joint power, and joint work throughout the full body model. Linearly weighting the 

effect of all the segment’s equations is also presented as a viable solution. Such conventional 
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analyses are shown to be highly consistent with analysis solutions applying least squares static 

optimization. 
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8 Appendices 

8.1 Appendix A: Segment Parameters 

Inertial parameters applied to segments:  

 Segment: Mass: Radius of Gyration: Radius: 

Foot 0.029 0.475 0.500 

Shank 0.093 0.302 0.433 

Thigh 0.200 0.323 0.433 

Pelvis 0.142 0.500 0.895* 

Trunk 0.436 0.503 0.340 

Upper Arm 0.056 0.322 0.564 

Lower Arm 0.044 0.468 0.318 

Segment radius is the distance from the upper segment endpoint to the segment COM 

Segments mass is relative to subject mass and radius is relative to segment length.  

*Pelvic radius is relative to the distance from the acromion to the greater trochanter. 
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Appendix A, cont. 

Segment properties, by Participant 

1 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.22065 0.42920 0.43351 0.14057 0.46326 0.35797 0.28002 

Mass (kg) 2.13651 6.85156 14.73453 10.46152 32.12127 4.12567 3.24160 

Inertia (kg m
2
) 0.02347 0.11511 0.28889 0.05168 1.72338 0.05481 0.05567 

CG dist. (m) 0.11033 0.18584 0.18771 0.06338 0.15751 0.20189 0.08905 

2 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.22687 0.41076 0.39093 0.13405 0.48715 0.35746 0.24884 

Mass (kg) 3.21113 10.29778 22.14576 15.72349 48.27775 6.20081 4.87207 

Inertia (kg m
2
) 0.03729 0.15846 0.35310 0.07064 2.86426 0.08215 0.06608 

CG dist. (m) 0.11344 0.17786 0.16927 0.05612 0.16563 0.20161 0.07913 

3 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.18343 0.36523 0.40764 0.12886 0.47168 0.33274 0.22870 

Mass (kg) 2.71576 8.70915 18.72935 13.29784 40.82998 5.24422 4.12046 

Inertia (kg m
2
) 0.02062 0.10596 0.32470 0.05520 2.27098 0.06020 0.04720 

CG dist. (m) 0.09172 0.15815 0.17651 0.05158 0.16037 0.18767 0.07273 

4 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.20727 0.41324 0.40760 0.14996 0.41098 0.32931 0.26509 

Mass (kg) 2.44579 7.84340 16.86753 11.97595 36.77123 4.72291 3.71086 

Inertia (kg m
2
) 0.02371 0.12216 0.29236 0.06733 1.55272 0.05310 0.05712 

CG dist. (m) 0.10364 0.17893 0.17649 0.08259 0.13973 0.18573 0.08430 

5 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.17435 0.37639 0.38568 0.15333 0.44214 0.32792 0.25335 

Mass (kg) 2.37045 7.60180 16.34796 11.60705 35.63855 4.57743 3.59655 

Inertia (kg m
2
) 0.01626 0.09822 0.25370 0.06822 1.74174 0.05104 0.05056 

CG dist. (m) 0.08717 0.16298 0.16700 0.07863 0.15033 0.18495 0.08056 

6 Foot Shank Thigh Pelvis Trunk UpArm LwrArm 

Length (m) 0.21071 0.39583 0.44975 0.11085 0.43647 0.37080 0.26120 

Mass (kg) 2.83454 9.09008 19.54856 13.87948 42.61587 5.47360 4.30068 

Inertia (kg m
2
) 0.02840 0.12990 0.41254 0.04264 2.02965 0.07803 0.06427 

CG dist. (m) 0.10536 0.17139 0.19474 0.03927 0.14840 0.20913 0.08306 



50 

 

8.2 Appendix B  

Least squares solution implementation in Wolfram Mathematica 9.0:  

Reactions at the hand (           ) are always set equal to zero and simplify out of 

Eqn21. 
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8.3 Appendix C: Coefficient and constant matrices 
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Appendix C, cont. 
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