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Abstract 
 
 

Wetland Sediment Nutrient Flux in Response to Proposed Hydrologic Reconnection and Climate 
Warming 

 
 

By James T. Smit 
 
 

Wetland restoration and creation are common practices, but wetlands restored or created 

on former agricultural land may act as a source of nutrients, rather than as a sink. I studied P 

sediment-water exchange in two flooded celery fields (west and east), which are designated for 

wetland restoration, in order to assess the effects that hydrologic reconnection of the area to an 

adjacent creek would have on P dynamics. We also examined the influence of climate change, 

specifically warming temperatures, by conducting the sediment-water exchange experiments at 

ambient and plus 2°C temperature conditions. Lab-based sediment core incubations revealed that 

TP release rates were significantly larger when sediment from the west pond was flooded with 

water from the creek (~40-60 mg m-2 d-1), simulating reconnection, than when west pond 

sediment was flooded with water from the same pond (~6-20 mg m-2 d-1), simulating the current 

condition. Increasing ambient water temperatures by 2°C did not produce a consistently 

significant effect on P release rates from west pond sediment. Additionally, I did not observe a 

consistently significant effect of flooding or increased temperature on the release of N from west 

pond sediment. There was no consistently significant effect of flooding with creek water or 

increased temperature on east pond sediment N and P release, although the sediments still served 

as a net source of P, with release rates of ~2.2-4.73 mg TP m-2 d-1. The difference in response 

between the two ponds may have been due to prior dredging in the east pond, but not in the west. 

The results of this study showed that wetlands converted from agricultural areas can potentially 
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act as a significant source of P to downstream locations. Overall, the effects of warming on 

nutrient dynamics were much less pronounced than effects related to prior land use. 
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Chapter I 
 
 

  Introduction 
 
 

The quality of freshwater resources is one of the paramount issues facing the world 

today. Water quality refers not only to the biological, chemical, and physical characteristics of 

water, but also the condition of water relative to human needs. High quality renewable fresh 

water is essential for human life and societal well-being, and in addition to the fundamental 

provision of drinking water, fresh water supports large scale industry, irrigation, flood control, 

hydroelectric power, recreation, agriculture, and habitat for plant and animal life (Jackson et al., 

2001; Baron et al., 2002). Yet, large scale human activities such as agriculture, fossil fuel 

combustion, and land development (Crutzen, 2002) have negatively impacted water quality 

through eutrophication (Smith, 2003), wetlands loss (Millennium Ecosystem Assessment, 2005), 

and climate change (Schindler, 2001).  

Eutrophication, or the over enrichment of water bodies due to the input of excessive 

nutrients, negatively impacts the quality and usability of freshwater by stimulating harmful algal 

blooms, depleting hypolimnetic oxygen concentrations, and decreasing the amount of suitable 

area for wildlife habitat (Bennett et al., 2001). It is one of the leading stressors of water quality in 

the United States (US EPA, 1996), and eutrophication results in a cost of approximately 2.2 

billion dollars annually when calculating financial losses related to recreational water usage, 

waterfront real estate, spending on recovery of threatened and endangered species, and drinking 

water (Dodds et al., 2009). Wetlands are typically thought to improve water quality through 

multiple beneficial ecosystem services (Millennium Ecosystem Assessment, 2005), and lessen 

the impacts of eutrophication (Verhoeven et al., 2006) by retaining nutrients such as nitrogen (N) 
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and phosphorus (P) in 1) plant biomass, 2) accreted organic matter, and 3) insoluble mineral 

compounds (Reddy and DeLaune, 2004). Despite these benefits, approximately half of the 

historic wetlands in the US have been lost (Mitsch and Gosselink, 2007), as well as nearly two 

thirds of the historic wetlands in the states surrounding the Great Lakes (Dahl, 1990). In 

response, numerous wetland restoration projects have been initiated, with many of these projects 

occurring on former agricultural land (Zedler, 2003). Despite the intent of these projects, 

wetlands constructed on former agricultural land can negatively impact water quality, and 

contribute to eutrophication due to the presence of legacy nutrients in the soil (Pant and Reddy, 

2003; Steinman and Ogdahl, 2011). Furthermore, increasing temperatures due to climate change 

have the potential to enhance eutrophication (Townsend et al., 2012), promote blooms of 

cyanobacteria (Paerl and Huisman, 2008), threaten wetland sustainability (Millennium 

Ecosystem Assessment, 2005), and alter wetland biogeochemistry (Erwin, 2009). Changes in 

traditional weather patterns and hydrology due to climate change also are expected to negatively 

impact water quality (Mortsch and Quinn, 1996; Schindler et al., 1996) 

The impacts of eutrophication, wetlands loss and restoration, and climate change not only 

have created separate and distinct environmental issues in regards to freshwater environments, 

but also issues that interact with and contribute to one another. These problems influence the 

ecological integrity of freshwater environments, as well as the ability of freshwater to meet the 

various requirements of humanity. Overall, the combined impact of these issues is a decrease in 

water quality (Figure 1.1). Thus, in order to understand water quality and the steps that can be 

taken to protect and improve it, it is important to examine the effects and interactions of wetlands 

loss and restoration, eutrophication, and climate change. 
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Wetlands loss and restoration 

Wetlands provide many important ecosystem services that enhance water quality, such as 

contaminant removal and the retention of N, P, carbon, and sediment (Millennium Ecosystem 

Assessment, 2005; Verhoeven et al. 2006). Additionally, wetlands sustain biodiversity, mitigate 

flooding, and provide essential habitats for spawning fish and other organisms (Kusler et al., 

1994). In spite of these benefits, wetlands have been dredged, drained, and filled throughout 

history in support of agricultural production and land development to support population growth 

(Gibbs, 2000). In total, approximately 53% of the wetlands in the United States were lost 

between the years of 1780 and 1980 (Mitsch and Gosselink, 2007), with some states, such as 

California and Ohio, losing approximately 90% of their historic wetland acreage (USDA, 2012). 

Specifically considering the eight states surrounding the Great Lakes, an average of 65% of 

historic wetland area has been lost since 1780 (Dahl, 1990).  

In response to the vast amount of historic wetland loss and the associated loss of their 

beneficial ecosystem services, many wetland restoration and creation projects have been 

initiated. Since 1988, aquatic ecosystem regulations in the United States have been focused on 

achieving a goal of “no net loss” of wetland area and function (Gosselink, 2002). Governmental 

policies that were put in place to protect wetlands from development include Section 404 of the 

U.S. Clean Water Act, which protects wetland resources by requiring avoidance, minimization, 

and compensation of impacts to wetlands (National Research Council, 2001). Additionally, 

government programs such as the Wetlands Reserve Program provide financial incentives to 

encourage landowners to turn frequently flooded, marginal agricultural land into wetland 

conservation easements (USDA, 2012). These policies help to retain and restore the ecosystem 
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services provided by wetlands, as well as increase land value proximal to wetland areas (Kaza 

and BenDor, 2013).  

The practice of restoring wetlands on farmland is seen as an environmentally prudent 

endeavor; however, issues can arise when considering the specific land use history, and 

water/sediment dynamics of these areas. Where wetlands are restored on soil that was farmed, it 

is perhaps inevitable that there will be an initial period of equilibration (Aldous et al., 2005) 

when the sediments act as a source of nutrients instead of as a sink (Newman and Pietro, 2001). 

Thus, in the short term, nutrients from past agricultural practices may be transferred to the water 

after re-flooding (Lindenberg and Wood, 2009). This effect is counteractive to the one of the 

main goals of wetland restoration and can exacerbate issues that negatively impact water quality 

such as eutrophication.  

 

 

Eutrophication 

Eutrophication is another process that negatively impacts water quality, and can be 

influenced by wetlands loss and restoration. Eutrophication is defined as the process by which 

water bodies become more productive through increased input of nutrients (Welch and Jacoby, 

2004), such as N and P. This process decreases water quality by increasing algal biomass, 

shifting algal community composition to bloom forming species and potentially toxic 

cyanobacteria, depleting water column dissolved oxygen through increased microbial respiration, 

and decreasing fish production (Smith, 2003). Anthropogenic sources of N include agricultural 

runoff (Nosengo, 2003), wastewater discharge, and atmospheric deposition (Rabalais, 2002). P 

also is found in agricultural runoff and wastewater discharges; however, P can also be supplied 
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to a water body through internal loading from sediments with high P concentrations 

(Søndergaard et al., 2003). P is typically understood to be the main nutrient driving 

eutrophication in freshwater environments (Schindler et al., 2008); however, N and temperature 

are also significant predictors of trophic state (Beaulieu et al., 2013). Overall, strategies that 

reduce both N and P loading into freshwater environments are thought to be the most effective 

when attempting control eutrophication (Conley et al., 2009).  

  Wetlands are one of the most effective means to reduce eutrophication, as they have the 

potential to retain nutrients naturally, specifically the nutrients N and P. This ecosystem service 

is becoming even more valuable due to the ongoing eutrophication of freshwater resources 

worldwide (Smith, 2003), and the focus on limiting the amount of anthropogenic N and P 

entering lakes and the oceans (Conley et al., 2009). The mechanisms that regulate P retention 

within wetlands include: sedimentation of particulate P, sorption/desorption reactions, biological 

uptake, and long term P storage in peat (Dunne, 2006). The mechanisms of microbial 

denitrification, sedimentation, and plant uptake all contribute to N retention and removal in 

wetland systems, with microbial denitrification contributing the most to N loss (Saunders and 

Kalff, 2001; Picard et al., 2005; Scott et al, 2008). Consequently, wetland preservation and 

restoration is often seen as a tool that can be used to facilitate the recovery of eutrophic water 

bodies; but, careful considerations of specific land use history should be incorporated into 

restoration efforts (Zedler, 2003). 
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Climate change 

Climate change represents an additional environmental issue that is impacting water 

quality, as well as interacting with other water quality stressors. Since the advent of the industrial 

era, human activities have been adding large amounts of energy-absorbing gasses to Earth’s 

atmosphere, and increasing the proportion of solar energy that is retained within the atmosphere 

(Ramanathan, 1988). This occurrence is referred to as global climate change, and it affects not 

only temperature, but also traditional weather patterns and the frequency of extreme weather 

events such as droughts and floods (IPCC, 2007). Current global model predictions based on 

various emission scenarios predict that climate change will cause a temperature increase between 

0.3 and 4.8⁰ C by the end of the 21st century (IPCC, 2013). In aquatic ecosystems, it is suggested 

that warming temperatures will result in increased stratification, more prevalent benthic hypoxia, 

a greater tendency for internal nutrient loading (Townsend et al., 2012), and an overall increase 

in freshwater eutrophication. Climate change has been recognized as a major threat to the 

integrity of wetland ecosystems, worldwide (Hulme, 2005). 

Additional, detrimental impacts resulting from increased temperatures and extreme 

weather events include: altered base flows and hydrology; increased flooding; increased soil 

erosion and sedimentation; decreased water quantity and quality; and altered biogeochemistry 

(Erwin, 2009). Considering wetland biogeochemistry and nutrient retention, increased 

temperatures could stimulate organic P mineralization and release (Kadlec and Reddy, 2001), as 

well as decrease water column dissolved oxygen concentrations and stimulate P release from 

mineral compounds (Holdren and Armstrong, 1980). Conversely, the microbial processes that 

regulate N cycling and retention in wetlands may operate more efficiently due to the increased 
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rate of microbial reactions that would result as a consequence of increased temperatures (Kadlec 

and Reddy, 2001). 

 

 

Conclusion 

Overall, the effects of wetlands loss and restoration, eutrophication, and climate change 

on water quality are numerous and synergistic (Figure 1.1). Because of this, a comprehensive 

approach is necessary to appropriately examine the many direct and indirect impacts that these 

issues have on water quality, including the many complex physical, chemical, and biological 

interactions that occur between them. Thus, the value of research that is done with the aim of 

improving or maintaining water quality through the use of wetlands is enhanced by including  

both eutrophication and climate change, so that the most accurate conclusions and 

recommendations can be made.  
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Figure 1.1. Conceptual model displaying the various drivers, stressors, processes, ecological 

outcomes, and societal outcomes which together impact our definition and determination of 

water quality.  
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My work 

My study was conducted on two flooded fields, now technically ponds, that were 

formerly used for celery farming and have been designated for wetland restoration. The ponds 

are located approximately 250 m NE of Bear Lake (Muskegon County, MI) (Chapter 2, Figure 

2.1). Bear Lake is a shallow, eutrophic, drowned river mouth lake that is fed primarily by a small 

tributary, Bear Creek. The two ponds are located adjacent to Bear Creek, and are separated by an 

earthen berm. Bear Lake connects to Muskegon Lake, Michigan through a small navigation 

channel. Muskegon Lake is a larger drowned river-mouth system that connects directly to Lake 

Michigan through another navigation channel, and has a long history of environmental 

impairments that have resulted in the lake being designated as an Area of Concern (AOC) in the 

Great Lakes. The Muskegon Lake AOC designation also includes Bear Lake. Currently, the 

Muskegon Lake AOC listing includes nine Beneficial Use Impairments (BUIs), of which one is 

for eutrophication and undesirable algae (Steinman et al., 2008). Restoration goals for the 

eutrophication BUI include limiting surface total P and chlorophyll a concentrations within the 

AOC boundaries to 30 and 10 µg L-1, respectively. Various projects have been undertaken within 

the Muskegon Lake AOC aimed at removing the AOC listing. These projects include the 

redirection of direct effluent discharge from Muskegon Lake to the Muskegon County 

Wastewater Management System, the remediation of numerous former industrial sites with 

contaminated soil and groundwater, and the remediation of Ruddiman Creek, a contaminated 

urban tributary to Muskegon Lake (Steinman et al., 2008). Yet, significant environmental issues, 

such as potentially toxic cyanobacteria blooms, poor quality shoreline habitat, and mid-summer 

hypoxic zones, still plague the lake at this current time. 
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In regards to the eutrophication and undesirable algae BUI, Muskegon Lake has largely 

reached the goal of being under 30 µg L-1 TP (Steinman et al., 2008), but Bear Lake has 

remained above this target concentration (MDEQ, 2011). This prevents the BUI from being 

removed from the Muskegon Lake AOC listing. A total maximum daily load (TMDL) 

requirement for P was placed on Bear Lake in 2008, which involves reducing the TP 

concentration from a mean of 44 µg L-1 to 30 µg L-1 (MDEQ, 2008). An indirect modeling 

approach used in the TMDL concluded that a large proportion of the P in Bear Lake was from 

internal loading via the lake sediments (MDEQ, 2008). Thus, it was thought that the best way to 

decrease P loads in Bear Lake was to limit internal loading. More recent work performed by 

Grand Valley State University in 2011 and 2012 used diel oxygen measurements in two areas of 

the lake and sediment coring experiments to determine more accurate internal loading rates 

(Steinman and Ogdahl, 2013). This study concluded that external loading was the more 

significant source of Bear Lake P, with internal loading contributing a smaller fraction (Steinman 

and Ogdahl, 2013). Thus, in order to meet the TMDL for Bear Lake, greater reductions from the 

watershed, not the lake sediments, were warranted.  Therein is the motivation for reconnecting 

and restoring the two former celery fields in the Bear Lake watershed. The rationale is that the 

two ponds, once reconnected to Bear Creek, will act as a flow through wetland and to retain 

nutrients in the wetland before they reach the lake. However, it is unknown how land use history, 

hydrologic reconnection, increasing temperatures due to climate change, as well as the 

interaction among these possible stressors, will affect the ability of this area to retain nutrients 

and the resulting water quality in Bear Lake.  

My specific objectives for the study of these wetlands were to determine 1) if the sediments 

in question will serve as a source or sink of nutrients once the area is hydrologically reconnected 
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to Bear Creek, and 2) how climate warming will impact nutrient dynamics between the sediment 

and water column. To achieve these objectives, sediment core samples were taken from the two 

ponds and exposed to varying water column treatments and temperature regimes. Additionally, 

separate experiments were performed in July and October 2013 to investigate the impact of 

seasonality. It was my also my goal that my research would  influence the restoration design of 

study area by highlighting potential issued, and providing information in regards to what the 

effects of reconnection and climate change may have on this specific restoration area. 
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Chapter II 
 
 

Wetland Sediment Nutrient Flux in Response to Proposed Hydrologic Reconnection and Climate 
Warming 

 
 

Introduction 
 
 

Wetland habitats provide many important ecosystem services, including flood control, 

fish and wildlife habitat, biodiversity preservation, and the retention of N and P (Millennium 

Ecosystem Assessment, 2005).  Yet, large areas of natural wetlands in the United States have 

been degraded or filled due to land development in support of agricultural production and 

population growth (Gibbs, 2000), with several states having lost more than 90% of their historic 

wetland acreage (USDA, 2012). Currently, climate change-driven alterations in temperature are 

seen as major threats to wetlands (Ferrati et al., 2005). Increasing temperatures have the 

possibility to alter traditional wetland biogeochemistry (Erwin, 2009) by decreasing oxygen 

solubility (Kadlec and Reddy, 2001), increasing organic N and P mineralization, accelerating N 

transformation rates, and accelerating adsorption and precipitation rates of P (Reddy and 

DeLaune, 2004). Additionally, increased benthic microbial metabolism stimulated by elevated 

temperatures has the potential to decrease sediment oxygen concentrations, resulting in reduced 

sediment redox potential and P release (Holdren and Armstrong, 1980; Redshaw et al., 1990). 

In response to the amount of historic wetland loss and the associated loss of beneficial 

ecosystem services, many wetland restoration and creation projects have been initiated. Local 

and national programs now promote restoration activities, and many wetland restoration projects 

occur on former agricultural land (Zedler, 2003; USDA, 2012).  However, wetlands restored on 

former agricultural land have the potential to act as a source of nutrients to the overlying water 
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column (Pant and Reddy, 2003; Duff et al., 2009; Ardón et al., 2010; Kinsman-Costello et al., 

2014), instead of as a sink. This has implications for wetland restoration in that many potential 

restoration areas could act as a source of nutrients, and negatively impact water quality. 

I studied a former deltaic wetland in west Michigan that was converted to farmland in the 

early 1900s, and taken out of production in the late1990s/early 2000s. The area formerly was 

used for celery farming, but now is flooded and split into two separate ponds that are 

hydrologically isolated from one another by a road, as well as from an adjacent creek by an 

earthen berm (Figure 2.1). The area is now designated for wetland restoration. The proposed 

restoration design involves removal of the berm that separates the ponds and the creek, allowing 

each pond to reconnect individually to the creek and potentially act as a flow through wetland. 

Increased nutrient retention in this area would benefit the downstream receiving water body, 

Bear Lake, which is impacted by high concentrations of P.  Indeed, the state of Michigan has 

placed Bear Lake on its 303(d) list of impaired water bodies, and proposed a TMDL that would 

require a reduction in water column TP concentration from a current mean of 0.044 mg L-1 to 

0.03 mg L-1 (MDEQ, 2008a). However, previous studies have shown that reflooding of drained 

agricultural areas can stimulate nutrient release (Pant and Reddy, 2003; Duff et al., 2009; Ardón 

et al., 2010; Kinsman-Costello et al., 2014), but relatively less is known about nutrient release 

from flooded areas in response to hydrologic reconnection.  

The study’s objectives were to determine 1) if the sediments in question will serve as a 

source or sink of nutrients once the area is hydrologically reconnected to the adjacent creek, and 

2) how climate warming may affect nutrient exchange between the sediment and water column. I 

hypothesized that reconnection would increase the flux of N and P from the sediment to the 

water column, at least in the short term, given the concentration gradient that would be generated 
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between the relatively low-nutrient creek water and the relatively high nutrient pond sediment. I 

also hypothesized that elevated temperatures would increase the flux of P to the water column 

and decrease the flux of reactive N, because higher temperatures would stimulate benthic 

microbial metabolism, resulting in decreased sediment oxygen concentrations, and thereby create 

reducing conditions in the sediment favorable for P release and denitrification.  

 

 

Materials and methods 
 

Study area 
 
 The Bear Lake Wetland Restoration Area is located in western Michigan (Muskegon 

County), approximately 250 m NE of Bear Lake, which is a drowned river mouth lake whose 

main tributary is Bear Creek (Figure 2.1). The area consists of two shallowly flooded fields, 

hereafter referred to as ponds, which were formerly used for celery farming. The two ponds are 

designated east and west based on their position relative to Witham Drive, which runs north-

south and separates the two ponds from one another. The surface areas of the east and west 

ponds are 12 and 22 acres, respectively. Bear Creek flows adjacent to the two ponds on their 

north side, and the three hydrologic areas have been separated by an earthen berm since the 

wetlands were converted to agriculture in the early 1900s. Although the earthen berm and 

Witham Drive separate surface water flow between the areas, there is still potential for 

subsurface flow, which has not been investigated to date. The east and west ponds were kept in 

celery production until 1995 and 2002, respectively (G. Mund, personal communication, 2012). 

Shortly after farming activities in the area ceased, water pumps used to keep the ponds from 
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flooding were shut off (G. Mund, personal communication, 2012). Since that time, both ponds 

have remained inundated to varying extents.  

 Portions of the east unit were dredged to mine muck and peat between the years of 1995 

and 2002 to a depth of 3 to 15 feet, and clay/sand fill was added in certain areas to facilitate 

dredging operations (G. Mund, personal communication, 2012). The west unit was never 

dredged, and the sediments impacted by agriculture were present at the time of this study.  
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Figure 2.1. Bear Lake Wetland Restoration Area sampling locations in Muskegon, MI. Filled 

circles indicate the sampling locations within each pond. Bear Creek flow is from east to west. 

Inset: location of the Bear Lake Wetland Restoration Area within the Laurentian Great Lakes 

Region. 
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Experimental design 

Sediment cores taken from the east and west ponds were flooded with either Bear Creek 

water to represent hydrologic reconnection, or with water from the pond in which they were 

collected to simulate the current condition. To simulate the effects of climate warming, cores 

were incubated at either the average ambient water temperature at the time of sediment core 

collection (ambient condition) or at 2°C higher than the measured ambient temperature, using 

two separate growth chambers (details below). In the Great Lakes region, annual air 

temperatures are predicted to increase by 1.4 ±0.6°C in the near future and from 3 ±1°C to 5 

±1.2°C by the end of the century depending on different emissions scenarios (Hayhoe et al., 

2010). I assume that this projected increase will be similar to average water temperatures in 

small, shallow water bodies, such as my study area, that do not have a large and deep reservoir of 

cool water. Hence, my increased temperature regime represents a realistic scenario of water 

warming in the near future, and a conservative estimate of predicted warming by the end of the 

century.  

In total, I used two levels of water source (Bear Creek and ambient pond) and two levels 

of temperature (ambient and plus 2°C), resulting in four treatment combinations for each pond. 

Each treatment combination was replicated six times, with the four cores from each sampling 

location being treated as one block.  

 

 

Field sampling and procedure 
 

Two separate experiments were performed in July and October of 2013 to determine if 

nutrient exchange differed between the two seasons. Slightly different incubation periods, 
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sampling days, and temperature regimes were used in the two experiments (Table 2.1). Four 

sediment cores and one additional sample for sediment analysis were collected at each of six 

sampling sites in both the east and west ponds (Figure 2.1), resulting in a total of 48 sediment 

cores and 12 sediment samples collected per experiment. Sampling sites within the two ponds 

were selected through a modified random selection process where each pond was gridded and 

divided into six equal sections, and one location was selected randomly from each section. Areas 

within 10m of the edge of the ponds were excluded to avoid possible edge effects.  

 

 

Table 2.1. Experimental parameters for experiments conducted in July and October. 

Date Ambient 
Temperature (°C) 

+2 Temperature 
(°C) 

Incubation 
Length (Days) Sampling Dates 

July 23 25 25 Initial, 1, 5, 10, 15, 
20, 25 

October 17 19 24 Initial, 3, 6, 12, 18, 
24 

 

 

Sediment cores were obtained using a modified piston coring apparatus (Fisher et al. 

1992; Steinman et al., 2004). The modified piston corer was constructed of a 0.6-m long, ~7-cm 

inner diameter, 7.6-cm outer diameter polycarbonate tube that was marked in 1-cm increments. 

A polyvinyl chloride assembly coupled with a 3.81-cm in-line sump pump check valve was used 

to drive cores into the sediment, and provide suction within the tube when the core was retrieved. 

The modified corer was positioned vertically at the sediment water interface, and core tubes were 

carefully driven into the sediment to minimize disruption of the sediment surface, to a depth of at 

least 15 cm. After this, the bottom of the core tube was sealed with a rubber stopper and duct 
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tape, and the top with a plastic cap. The resulting sediment core consisted of at least 15 cm depth 

of sediment and an overlying water column of 45 cm. Upright sediment cores were transported to 

the lab within 6 hours after collection for each experiment. An additional 5-cm deep sediment 

core sample was collected at each site using the modified coring apparatus (Steinman et al., 

2009). After collection, the 5 cm deep sample was extruded from the core tube, and stored in a 

plastic bag for additional analysis.  

Water column readings of temperature, dissolved oxygen concentration (DO), pH, 

specific conductivity (SpCond), and chlorophyll a (chl a) concentration, were taken using a YSI 

6600 sonde (YSI Incorporated, Yellow Springs, OH) positioned just below the water surface at 

each of the six sampling sites within each pond. Additionally, water to be used for subsequent 

laboratory experiments was collected separately from central areas in the east and west ponds, 

and one location in Bear Creek, and stored in acid washed 10-L carboys. All water samples, 

sediment cores, and sediment samples were placed on ice shortly after collection, and stored this 

way until transported to the lab, usually within 6 hr. 

 

 

Laboratory procedure 

In the laboratory, sediment cores were adjusted to a consistent sediment depth of 15 cm 

by removing sediment from the bottom of the core, and the overlying water column was 

carefully removed to within 5 cm of the sediment surface by using a siphon apparatus. 

Concurrently, carboys of water from the west pond, east pond, and Bear Creek to be used for 

core tube re-flooding were filtered (1-µm filter; Graver Technologies, Glasgow, DE) using a 

peristaltic pump (Pall Corporation, Timonium, MD). Readings of temperature, DO, SpCond, chl 
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a concentration, and pH were taken on the filtered water using a YSI 6600 sonde before being 

added to the core tubes. Also, separate 1-L samples of 1-µm filtered water from the east pond, 

west pond, and Bear Creek were taken and analyzed for conductivity and hardness according to 

standard laboratory methods (APHA, 1998), as well as for total phosphorus (TP), soluble 

reactive phosphorus (SRP), nitrate (NO3-N), ammonia (NH3-N), sulfate (SO4), and chloride (Cl) 

concentration (details below). Sediment core tubes were then flooded to a water column depth of 

25 cm with corresponding 1-µm filtered east pond, west pond, or Bear Creek water depending on 

the specific water source treatment. After flooding, remaining water from the east pond, west 

pond, and Bear Creek was filtered through a 0.2-µm filter (Graver Technologies, Glasgow, DE) 

using the peristaltic pump, stored in acid-washed carboys in a refrigerator, and used to refill core 

tubes after each sampling during the experiment.  

Sediment cores were then placed in one of two darkened environmental growth chambers 

(Revco Scientific, Asheville, NC; Powers Scientific Inc, Pipersville, PA) depending on the 

specific temperature treatment required for each sediment core. Temperature accuracy within the 

environmental chambers was validated by using an additional incubation thermometer in each 

incubator. Air was gently bubbled into the cores using aquarium pumps to maintain water 

column oxygen concentrations at 75–100% equilibrium with atmospheric oxygen throughout the 

incubation period. This followed my expectation that the overlying water column in these 

shallow wetland areas would remain relatively well mixed and oxygenated (Reddy and DeLaune, 

2004). During the incubation period, water samples were taken at the midpoint in the water 

column through a sampling port inserted in the plastic cap on the top of the core tube. For each 

core tube, three separate water column subsamples were taken per sampling day. These included 

a 60-ml unfiltered sample for TP analysis, a 20-ml 0.45-µm filtered sample for SRP, NO3-N, Cl, 
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and SO4 analysis, and an additional 20-ml unfiltered sample for NH3-N analysis. Filters (0.45-

µm ThermoFisher Nylon Syringe Filter, ThermoFisher Scientific, Waltham, MA) were acid 

washed prior to use. In total, 100 ml of water were removed from the water column of the core 

tubes per sampling. NH3-N, NO3-N, SRP, SO4, and Cl samples were immediately frozen after 

collection, and TP samples were stored at 4°C. To maintain a constant water column depth, core 

tubes were refilled after sampling with 100 ml of 0.2-µm filtered water that was collected at the 

time of coring from the two ponds and creek. Additionally, a YSI Pro-DO sonde was used to 

record dissolved oxygen concentration at the midpoint of the water column and near the 

water/sediment interface on each sampling day.  

TP, SRP, and NH3-N concentrations were analyzed on a Bran+Luebbe Autoanalyzer 

(SEAL Analytical, Mequon, Wisconsin; APHA, 1998). NO3-N, SO4, and Cl concentrations were 

analyzed by ion chromatography on a Dionex ICS-2100 (APHA, 1998). The additional sediment 

samples collected from each sampling location in both ponds were analyzed for percent 

moisture, percent organic matter, total N, metals (Ca, Fe, Mg, Al) and ash free dry mass 

(AFDM). Metals analysis was performed according to EPA method 6010B using inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) (U.S. EPA, 1994). Sediment NO3-N 

as N, NO2-N as N, and total Kjeldahl nitrogen were analyzed using EPA methods 300.0 Rev. 2.1 

and 351.2 Rev. 2.0 (U.S. EPA, 1993). Total sediment N was then calculated as a sum of these 

analyses. AFDM analysis was performed by combusting a pre-weighed subsample of sediment at 

550⁰C for 1 h. Percent organic matter content was measured as loss due to combustion. Sediment 

TP was analyzed as described previously, using a subsample of ashed material. Sediment Fe:P 

ratios were determined by weight using dry weight TP and Fe concentrations. 
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Analysis 

Maximum apparent nutrient release rate calculations were based on the methodology 

used in Steinman et al. (2004). In brief, the maximum rate of increase of water column TP, SRP, 

NO3-N, and NH3-N was determined using the following equation: 

( ) AVCCN tflux /*0−=   

where, Nflux is the rate of TP, SRP, NO3-N, or NH3-N release in mg m-2d-1; Ct  is the concentration 

of TP, SRP, NO3-N or NH3-N at time t; C0 is the TP, SRP, or NH3-N concentration of the initial 

refill water (Pant and Reddy, 2003); V is the volume of the overlying water column; and A is the 

planar surface area of the sediment.  In the case of NO3-N, C0 was the concentration of NO3-N 

on the sampling day where I began to see a trend of increasing concentration. Flux calculations 

were based on the linear portions of the water column nutrient concentration curves measured 

through time in order to capture the maximum apparent release rate, however, C0 and Ct could 

not be consecutive dates in order to avoid potential short term bias. Additionally, a calculation 

was performed to determine the maximum nutrient concentration increase in the water column of 

each sediment core, regardless of the day on which it was reached during the incubation period. 

To calculate this value, I subtracted the initial (C0) concentration of each nutrient from the 

maximum concentration (Cmax) of each nutrient measured in the water column of each sediment 

core during the incubation period. 

Two-way repeated measures analysis of variance (ANOVA), with two levels of water 

source treatment (Bear Creek vs. west or east pond water) and two levels of temperature 

(ambient vs. plus 2°C) as factors, and time as the repeated measure, was used to test for 

differences in nutrient concentrations in the water column of sediment cores over the incubation 

period. Maximum apparent nutrient release rates and maximum nutrient concentration increases 

40 
 



were tested using blocked two-way ANOVAs with water source treatment and temperature 

treatment as the main effects, and sampling site as the blocking factor. In all ANOVAs, the two 

ponds were treated and analyzed separately. When necessary, data were transformed (ln, square 

root, reciprocal, power) to meet the assumptions of ANOVA. Normality was tested using the 

Shapiro-Wilk goodness of fit test, and equality of variance was tested using Bartlett’s test. When 

data did not meet the assumptions of ANOVA and transformation was ineffective, core water 

column data were analyzed using ANOVA and the results noted as exploratory.  

Sediment and water column characteristics were compared between the east and west 

ponds using t-tests. Sediment and water column characteristics expressed as percentages were 

arcsine-square root-transformed prior to analysis. Additionally, sediment and water column data 

that were not normally distributed or had unequal variance were transformed (ln, square root, 

reciprocal, power) prior to analysis. Data that still failed to meet normality and equal variance 

assumptions after transformation were analyzed using a Mann-Whitney Rank Sum test. All 

statistical analyses were conducted using R software (R Core Team, 2013). 

 

 

Results 

Water column and sediment analysis 

Water column conditions varied between the two ponds at the time of sampling, despite 

their close spatial proximity (Table 2.2). The water column in the two ponds had significantly 

different mean values of DO and SpCond in both July and October. SpCond was significantly 

higher in the west pond, while DO was significantly higher in the east pond (Table 2.2). 
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Additionally, mean chl a was significantly higher in the east pond in July, while mean pH was 

significantly higher in the east pond in October but not July (Table 2.2).  

Sediment characteristics also varied between the two ponds (Table 2.3), which is 

presumably related, at least in part, to the prior dredging of the east pond. Mean sediment TP and 

OM were typically higher in west pond compared to east pond (Table 2.3). Conversely, mean 

values of Al, Fe, Ca, and Mg were typically higher in the sediments of the east than west pond 

(Table 2.3). Mean sediment total N values were not significantly different between the two 

ponds. Mean Fe:P ratios in the sediment by weight were significantly higher in the east pond 

compared to the west pond (Table 2.3). 
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Table 2.2. Summary of mean (±SE, n=6) YSI readings of temperature, dissolved oxygen (DO), 

pH, specific conductivity (SpCond), and chlorophyll a (Chl a), measured in the field in July and 

October in the west and east ponds at the time of core collection. P-values represent the results of 

comparisons between west and east ponds using a t-test (t) or Mann-Whitney Rank Sum Test (r). 

Significant differences are in bold. 

  West East   
   mean mean test p-value 

July DO (mg L-1) 3.34 ±0.61 8.78 ±0.59 t <0.001 
 

SpCond (µS cm-1) 
 

639 ±6.54 595 ±1.86 t <0.001 

Chl a (µg L-1) 
 

8.25 ±1.31 19.13 ±1.34 r 0.003 

pH 
 

8.31 ±0.24 8.80 ±0.08 t 0.135 

Temperature 23.40 ±0.30 23.31 ±0.08 r 0.864 
      

October DO (mg L-1) 
 

5.78 ±1.16 9.70 ±0.29 r 0.026 

SpCond (µS cm-1) 
 

802 ±2.73 584 ±2.95 t <0.001 

Chl a (µg L-1) 
 

12.87 ±2.47 11.27 ±0.43 r 0.575 

pH 
 

8.28 ±0.17 9.39 ±0.05 r 0.005 

Temperature 17.79 ±0.22 18.55 ±0.15 r 0.132 
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Table 2.3. Summary of mean (±SE, n=6) sediment Ca, Al, Fe, Mg, organic matter (OM), total N, 

total P measured in July and October in the west and east ponds. P-values represent the results of 

comparisons between west and east ponds using a t-test (t) or Mann-Whitney Rank Sum Test (r). 

Significant differences are in bold. 

  West East   
  mean mean test p-value 

July Total P (mg kg-1) 
 

3476 ±1088 958 ±309 t 0.045 

OM (%) 
 

33 ±7 18 ±5 t 0.138 

Al (mg kg-1) 
 

635 ±118 1463 ±129 t <0.001 

Ca (mg kg-1) 
 

2250 ±200 8517 ±2317 t <0.001 

Fe (mg kg-1) 
 

1232 ±160 2200 ±158 t 0.003 

Mg (mg kg-1) 
 

252 ±38 2108 ±691 t <0.001 

Total N (% by dry weight) 
 

0.59 ±0.21 0.43 ±0.12 t 0.537 

 Fe:P (by weight) 0.69 ± 0.22 7.66 ± 4.09 t 0.041 
      

October 
 

Total P (mg kg-1) 
 

4028 ±907 960 ±457 t 0.034 

OM (%) 
 

40 ±5 13 ±6 r 0.006 

Al (mg kg-1) 
 

2067 ±409 1300 ±346 t 0.332 

Fe (mg kg-1) 
 

2517 ±253 2417 ±500 t 0.875 

Ca (mg kg-1) 
 

5550 ±447 10867 ±4351 t 0.823 

Mg (mg kg-1) 
 

442 ±41 3355 ±1773 t <0.001 

Total N (% by dry weight) 
 

0.83 ±0.15 0.49 ±0.24 r 0.521 

 Fe:P (by weight) 0.83 ± 0.18 10.44 ± 3.91 t 0.029 
 

 

44 
 



Change in nutrient concentration during incubation  

Prior to sediment core reflooding, 1-µm filtered water from the west pond had TP and 

SRP concentrations that were more than an order of magnitude higher than TP and SRP 

concentrations in water from the east pond and Bear Creek (Table 2.4). Concentrations of NO3-N 

were highest in Bear Creek water (Table 2.4). NH3-N concentrations were below detection 

across the three sampling areas (Table 2.4). Filtered water from Bear Creek had the lowest pH 

while water from the east pond had the highest (Table 2.4).  Phosphorus concentrations were 

greater during July than October, but were still quite high regardless of season, especially in the 

west pond (Table 2.4).  Alkalinity, hardness, and SpCond values were variable in the three areas 

in experiments conducted in July and October (Table 2.4). 

TP concentration in the water column of west pond cores was significantly influenced by 

water source in July, as the increase in concentration was much greater when cores were 

reflooded with Bear Creek water compared to west pond water (Figure 2.2; Table 2.5). In July, 

TP concentrations increased from initial concentrations of ~0.1 to ~1.6-2.3 mg L-1 after flooding 

with Bear Creek water, compared to TP increases from ~1.9 to ~2.4-2.6 mg L-1 after flooding 

with west pond water (Figure 2.2). Similarly, in October, TP concentrations increased from ~0.1 

to ~1-1.4 mg L-1 after flooding with Bear Creek water, compared to TP increases from ~0.8 to 

~1-1.4 after flooding with west pond water (Figure 2.2). Temperature had no significant effect 

on water column TP concentrations in either experiment (Table 2.5).  In general, TP 

concentrations were greater in July than in October (Figure 2.2). Water column SRP in west 

pond sediment cores followed a similar pattern, at lower absolute concentrations, to that of TP 

for all treatments, with cores treated with Bear Creek water exhibiting a significantly greater 

increase in SRP concentration than west pond water in July, but not October (Figure 2.2, Table 
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2.5). Water column NH3-N concentrations were similar in all treatments and in both seasons, 

with a rapid increase after inundation, a peak between days 10-15, followed by a decline (Figure 

2.2); neither water source nor temperature treatment had a significant effect on NH3-N 

concentration (Table 2.5). Concurrently, across all treatments and in both seasons, NO3-N 

concentrations remained near initial concentrations until between days 10-15, after which they 

increased in concentration until the final sampling day (Figure 2.2).  Water column NO3-N 

concentrations were significantly influenced by water source treatment in July (Table 2.5) in that 

concentrations were typically higher during the beginning of the incubation period in cores 

reflooded with Bear Creek water than west pond water (Figure 2.2). In contrast to the P patterns, 

absolute NO3-N concentrations were generally higher in October than in July (Figure 2.2).  

TP concentrations in the water column of east pond cores over the incubation time were 

not significantly influenced by water source (Figure 2.3, Table 2.5) and in general, 

concentrations of TP were similar in all treatments and in both seasons (Figure 2.3). Temperature 

also had no significant effect on water column TP concentrations over the incubation time (Table 

2.5). Water column SRP concentrations in east pond sediment cores followed a similar pattern, at 

lower absolute concentrations, to that of TP (Figure 2.3), and were not significantly influenced 

by water source or temperature (Table 2.5). Overall, P concentrations were approximately an 

order of magnitude lower in the east pond than west pond incubations, regardless of water source 

or temperature treatment (Figure 2.2, 2.3). Water column NH3-N and NO3-N concentration 

patterns of east pond sediment cores were similar to those of the west pond (Figure 2.2, 2.3). In 

general, water column NH3-N concentration patterns were consistent across all treatments and in 

both seasons, with a rapid rise in concentration following inundation, a peak between days 10-

15, followed by a decline to levels near initial concentrations (Figure 2.3). There was no 
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significant effect of temperature on NH3-N water column concentrations over the incubation 

time; however, water source did significantly influence water column NH3-N concentration in 

October (Table 2.5). Again, across all treatments and in both seasons, NO3-N concentrations 

remained near initial concentrations until between day 10 and 15, when they increased in 

concentration until the final sampling day (Figure 2.3). Water column NO3-N concentrations 

were significantly influenced by water source treatment in July (Table 2.5), with concentrations 

typically higher in cores reflooded with Bear Creek water than with east pond water (Figure 2.3). 
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Table 2.4. Water quality constituents measured in the initial re-flood water in the lab before 

being added to the sediment cores. Variables were measured once per location per date.  

  West East Bear Creek 
July TP (mg L-1) 

 
1.86 0.04 0.01 

SRP (mg L-1) 
 

1.05 0.01 0.01 

NO3-N (mg L-1) 
 

<0.01 0.01 0.06 

NH3-N (mg L-1) 
 

<0.2 <0.2 <0.2 

pH 
 

7.87 8.74 7.67 

 Alkalinity (mg L-1) 
 

88 106 100 

 Hardness (mg L-1) 
 

144 144 124 

 SpCond (µS cm-1) 643 595 384 
     

October TP (mg L-1) 
 

0.85 0.03 0.01 

SRP (mg L-1) 
 

0.63 0.01 <0.01 

NO3-N (mg L-1) 
 

0.02 <0.01 0.48 

NH3-N (mg L-1) 
 

<0.2 <0.2 <0.2 

pH 
 

8.63 9.25 7.82 

 Alkalinity (mg L-1) 
 

166 80 114 

 Hardness (mg L-1) 
 

200 132 144 

 SpCond (µS cm-1) 777 337 432 
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Figure 2.2. Mean (± 1SE, n=6) TP, SRP, NH3-N, and NO3-N concentrations measured in the 

surface water of the west pond sediment cores for the four treatment combinations (temperature: 

water source) over the incubation period. Amb/West, ambient temperature west pond water; 

+2/west, +2°C temperature west pond water; Amb/BC, ambient temperature Bear Creek water; 

+2/BC, +2°C temperature Bear Creek water. 
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Figure 2.3. Mean (± 1 SE, n=6) TP, SRP, NH3-N, and NO3-N concentrations measured in the 

surface water of the east pond sediment cores for the four treatment combinations (temperature: 

water source) over the incubation period. Amb/East, ambient temperature east pond water; 

+2/East, +2°C temperature east pond water; Amb/BC, ambient temperature Bear Creek water; 

+2/BC, +2°C temperature Bear Creek water. 
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Table 2.5. Two-way repeated measures ANOVA (a), results on concentration of TP, SRP, NH3-N, and NO3-N measured over time in 

the surface water in experimental sediment cores in July and October experiments. Asterisk (*) indicates the results of exploratory 

ANOVA analyses. Significant effects are in bold. 

    TP SRP NH3-N NO3-N 
Sediment 
Source Date Factor DF F p-value F p-value F p-value F p-value 

West Pond July Temperature 1 2.41 0.136 0.20 0.659 0.57 0.459 1.46* 0.242* 
Water Source 1 17.33 <0.01 30.92 <0.001 0.00 0.949 36.74* <0.001* 
Temperature x 
Water Source 1 0.80 0.382 0.39 0.541 0.01 0.921 0.19* 0.673* 

October Temperature 1 0.00* 0.946* 0.00* 0.843* 0.30* 0.593* 0.05* 0.816* 
Water Source 1 2.20* 0.154* 1.70* 0.207* 1.84* 0.190* 1.18* 0.290* 
Temperature x 
Water Source 1 1.87* 0.186* 0.40* 0.556* 1.91* 0.181* 3.42* 0.079* 

            
East Pond July Temperature 1 0.04 0.838 0.11 0.748 0.08 0.785 2.97* 0.101* 

Water Source 1 0.98 0.333 0.00 0.961 0.79 0.383 26.50* <0.001* 
Temperature x 
Water Source 1 0.00 0.963 0.28 0.600 0.07 0.799 0.20* 0.661* 

October Temperature 1 0.00* 0.948* 0.09* 0.765* 0.11 0.746 0.12* 0.728* 
Water Source 1 1.51* 0.233* 0.23* 0.637* 5.28 0.032 0.78* 0.386* 
Temperature x 
Water Source 1 0.620* 0.440* 1.05* 0.319* 0.17 0.685 0.00* 0.950* 
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Maximum apparent nutrient release rate 

 Mean maximum apparent TP release rates from the sediment to the water column of west 

pond cores ranged from ~15 to ~50 mg m-2 d-1 in July and ~6 to ~60 mg m-2 d-1 in October 

(Figure 2.4, Table 2.6) and were significantly influenced by water source in both seasons (Table 

2.7). Mean maximum apparent SRP release rate trends were similar to those of TP, with release 

rates exceeding TP release in some instances (Figure 2.4). SRP release rates were significantly 

influenced by water source treatment only in October (Table 2.7). Overall, the largest TP and 

SRP release rates were observed in sediment cores where west pond sediment was flooded with 

Bear Creek water, regardless of temperature (Figure 2.4, Table 2.6). NH3-N release rates were 

generally larger in October, but relatively constant in all treatment combinations, and not 

significantly influenced by water source treatment or temperature (Table 2.6, 2.7). In general, 

NO3-N release rates were constant in all treatment combinations, with a slight increase in release 

rates in October (Table 2.6). NO3-N release rates were not significantly influenced by water 

source or temperature (Table 2.7). 

Mean maximum apparent TP release rates from the sediment to the water column of east 

pond sediment cores ranged from ~2 to ~3 mg m-2d-1 in July, and ~2 to ~4 mg m-2d-1 in October 

(Figure 2.4, Table 2.6), and were not significantly influenced by water source or temperature 

(Table 2.7). Mean maximum apparent SRP release rates trends were similar to those of TP 

(Figure 2.4), and were not significantly influenced by water source or temperature; however, the 

interaction between temperature and water source did have a significant impact on SRP release 

in October (Table 2.7). Overall, east pond sediment TP and SRP release rates were 

approximately an order of magnitude smaller than release rates measured in the west pond 

(Figure 2.4, Table 2.6). NH3-N release rates were relatively constant across all treatment 
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combinations, but were slightly higher in July than in October (Table 2.6). NO3-N release rates 

were relatively constant across all treatment combinations and in both seasons (Table 2.6). 

Neither NH3-N nor NO3-N release rates were significantly influenced by temperature or water 

source (Table 2.7).  
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Figure 2.4. Mean (±1 SE, n=6) maximum apparent TP (total phosphorus) (A) and SRP (soluble 

reactive phosphorus) (B) release rates from west and east field sediment to the water column, and  

maximum TP (C) and SRP (D) increases in west and east field sediment core water columns. 

Results represent the four treatment (temperature: water source) combinations simulating 

hydrologic reconnection and climate warming from both the July and October experiment in the 

west and east field. A= ambient temperature; +2= +2°C temperature; NR= no reconnection water 

treatment, R= reconnection water treatment. Reconnection indicates Bear Creek water source 

treatment for the west and east field; no reconnection indicates west field water source treatment 

for west field sediment, and east field water source treatment for east field sediment.
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Table 2.6. Comparison of the mean (±1 SE, n=6) maximum apparent release rates of TP, SRP, NH3-N, and NO3-N in July and October 

for west and east pond sediment cores under the various treatment combinations (temperature: water source). 

Sediment Source Date Treatment Combination TP SRP NH3-N  NO3-N 
     ───────────── mg m-2 L-1 ────────────── 

West Pond July Ambient: West Pond Water 15.66 ±5.77 36.32 ±7.80 42.34 ±10.09 20.47 ±10.57 
+2°C: West Pond Water 19.62 ±5.87 29.38 ±6.45 45.99 ±7.13 16.03 ±17.89 

Ambient: Bear Creek Water 39.07 ±7.63 37.29 ±5.97 50.60 ±9.16 34.20 ±1.13 
+2°C: Bear Creek Water 49.90 ±7.16 61.87 ±13.71 49.98 ±9.53 15.40 ±10.41 

October Ambient: West Pond Water 5.73 ±4.48 10.38 ±3.20 48.85 ±3.84 25.00 ±4.11 
+2°C: West Pond Water 14.42 ±8.03 18.71 ±8.78 58.59 ±10.14 31.65 ±6.04 

Ambient: Bear Creek Water 59.35 ±10.35 37.46 ±9.69 66.57 ±18.49 28.27 ±3.66 
+2°C: Bear Creek Water 42.01 ±10.20 34.83 ±8.14 58.94 ±13.45 26.02 ±8.64 

       
East Pond July Ambient: East Pond Water 2.41 ±0.65 1.64 ±0.39 71.49 ±18.60 36.47 ±15.52 

+2°C: East Pond Water 2.77 ±0.80 1.51 ±0.29 63.25 ±14.21 33.15 ±14.76 
Ambient: Bear Creek Water 2.86 ±0.43 1.67 ±0.28 66.19 ±18.63 28.43 ±14.28 

+2°C: Bear Creek Water 3.11 ±0.60 1.88 ±0.40 59.56 ±14.69 21.13 ±10.07 
October Ambient: East Pond Water 2.76 ±0.94 0.64 ±0.57 50.25 ±23.14 31.46 ±10.45 

+2°C: East Pond Water 2.27 ±0.38 0.14 ±0.17 47.05 ±20.51 43.66 ±14.65 
Ambient: Bear Creek Water 4.73 ±2.39 0.23 ±0.11 55.34 ±22.89 38.78 ±12.34 

+2°C: Bear Creek Water 2.53 ±0.35 0.47 ±0.25 51.10 ±21.30 36.65 ±14.90 
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Table 2.7. Blocked two way ANOVA results for TP, SRP, NH3-N, and NO3-N maximum apparent release rates depending on water 

source and temperature treatments. Significant effects are in bold. 

    TP SRP NH3-N NO3-N 

Sediment Source Date Factor DF F p-value F p-value F p-value F p-value 
West Pond July Temperature 1 0.91 0.355 0.84 0.373 0.05 0.831 0.95 0.346 

Water Source 1 12.01 <0.01 3.03 0.102 0.77 0.395 0.20 0.658 
Temperature x Water Source 1 0.19 0.664 2.69 0.122 0.09 0.763 0.03 0.866 

October Temperature 1 0.23 0.638 0.14 0.717 0.15 0.709 0.11 0.747 
Water Source 1 20.63 <0.001 7.83 <0.05 0.05 0.826 0.03 0.862 

Temperature x Water Source 1 2.08 0.170 0.50 0.489 0.01 0.959 0.44 0.516 
            
East Pond July Temperature 1 0.32 0.583 0.03 0.868 1.13 0.305 0.13 0.726 

Water Source 1 0.55 0.472 0.67 0.427 0.41 0.531 0.50 0.491 
Temperature x Water Source 1 0.01 0.925 0.45 0.513 0.01 0.910 0.01 0.915 

October Temperature 1 0.49 0.496 0.74 0.403 1.40 0.256 0.61 0.448 
Water Source 1 1.04 0.324 3.12 0.098 2.11 0.167 0.001 0.981 

Temperature x Water Source 1 0.03 0.860 5.05 0.040 0.03 0.870 1.23 0.285 
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Maximum concentration increase 

Mean maximum concentration increases of TP in west pond cores ranged from ~0.7 to 

~2.6 mg L-1 in July, and ~0.2 to ~1.9 mg L-1 in October (Figure 2.4, Table 2.8), and were 

significantly influenced by water source in both seasons, but not by temperature (Table 2.9). 

Additionally, the water column increase of TP in July was significantly influenced by the 

interaction between water source and temperature (Table 2.9). Water column increases of SRP 

were significantly influenced by water source in both seasons (Table 2.9), and were at times 

larger than the maximum increase in TP concentration (Figure 2.4, Table 2.9). Overall, the 

largest increase in TP and SRP concentrations occurred in cores flooded with Bear Creek water 

(Figure 2.4, Table 2.8). Water column NH3-N increases were similar across all treatment 

combinations (Table 2.8) and were not significantly influenced by water source or temperature 

(Table 2.9); however, concentration gains tended to be slightly higher in July than October 

(Table 2.8). NO3-N concentration increases were significantly influenced by water source in July 

and October (Table 2.8) as gains tended to be larger in cores flooded with Bear Creek water in 

July, and conversely were larger in cores flooded with west pond water in October (Table 2.9). 

Temperature did not significantly influence the increase of NO3-N (Table 2.9). 

 Mean maximum concentration increases of TP in east pond cores were smaller than 

those of the west pond (Figure 2.4, Table 2.8), and did not vary considerably across treatments or 

between seasons. Increases in SRP were similar across treatments and in both seasons. Overall, 

increases in TP and SRP in east pond cores were not significantly influenced by water source or 

temperature (Table 2.9). Water column concentration gains of NH3-N did not vary greatly across 

treatments and were slightly larger in July than in October (Table 2.8), but were not significantly 

influenced by water source or temperature (Table 2.9). NO3-N increases were similar across 
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treatments and in both seasons (Table 2.8), and were not significantly influenced by water source 

or temperature (Table 2.9). 
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Table 2.8. Comparison of the mean (±1 SE, n=6) maximum concentration increases of TP, SRP, NH3-N, and NO3-N in July and 

October for west and east pond sediment cores under the various treatment combinations. 

Sediment Source Date Treatment Combination TP SRP NH3-N  NO3-N 
   ────────────── mg L-1 ────────────── 

West Pond July Ambient: West Pond Water 0.73 ±0.16 0.88 ±0.11 2.54 ±0.51 1.03 ±0.39 
+2°C: West Pond Water 1.07 ±0.17 1.05 ±0.18 3.01 ±0.66 0.62 ±0.31 

Ambient: Bear Creek Water 1.79 ±0.36 1.35 ±0.22 2.72 ±0.58 1.55 ±0.08 
+2°C: Bear Creek Water 2.63 ±0.53 1.52 ±0.22 2.77 ±0.79 1.19 ±0.38 

October Ambient: West Pond Water 0.19 ±0.08 0.26 ±0.06 1.15 ±0.11 2.16 ±0.13 
+2°C: West Pond Water 0.59 ±0.24 0.59 ±0.21 1.80 ±0.4 2.12 ±0.17 

Ambient: Bear Creek Water 1.90 ±0.27 1.37 ±0.34 2.55 ±0.87 1.17 ±0.20 
+2°C: Bear Creek Water 1.02 ±0.23 0.86 ±0.18 1.90 ±0.73 1.77 ±0.33 

       
East Pond July Ambient: East Pond Water 0.12 ±0.02 0.07 ±0.02 2.86 ±0.68 2.21 ±0.68 

+2°C: East Pond Water 0.14 ±0.03 0.07 ±0.01 2.60 ±0.56 1.55 ±0.50 
Ambient: Bear Creek Water 0.14 ±0.01 0.08 ±0.01 2.61 ±0.67 2.38 ±0.63 

+2°C: Bear Creek Water 0.14 ±0.01 0.08 ±0.02 2.32 ±0.59 1.69 ±0.53 
October Ambient: East Pond Water 0.07 ±0.02 0.03 ±0.01 2.14 ±0.86 2.14 ±0.56 

+2°C: East Pond Water 0.08 ±0.02 0.03 ±0.01 1.99 ±0.67 2.68 ±0.82 
Ambient: Bear Creek Water 0.12 ±0.05 0.03 ±0.01 1.47 ±0.58 2.06 ±0.52 

+2°C: Bear Creek Water 0.07 ±0.01 0.05 ±0.02 1.28 ±0.45 2.13 ±0.67 
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Table 2.9. Blocked two way ANOVA results for TP, SRP, NH3-N, NO3-N and maximum concentration increases depending on water 

source and temperature treatments. Significant effects are in bold. 

    TP SRP NH3-N NO3-N 
Sediment Source Date Factor DF F p-value F p-value F p-value F p-value 
West Pond July Temperature 1 2.47 0.137 0.77 0.395 0.20 0.658 3.13 0.097 

Water Source 1 10.76 <0.01 5.68 <0.05 0.01 0.955 7.76 <0.05 
Temperature x Water Source 1 0.01 0.931 0.00 0.992 0.14 0.713 0.004 0.952 

October Temperature 1 0.98 0.337 0.01 0.979 0.01 0.956 1.89 0.189 
Water Source 1 19.56 <0.01 12.93 <0.01 0.49 0.494 10.65 <0.01 

Temperature x Water Source 1 7.03 <0.05 3.31 0.089 4.26 0.057 2.38 0.144 
            
East Pond July Temperature 1 0.46 0.508 0.05 0.819 1.56 0.231 1.67 0.216 

Water Source 1 0.43 0.524 0.63 0.439 1.44 0.249 0.08 0.777 
Temperature x Water Source 1 0.46 0.508 0.10 0.755 0.01 0.944 0.001 0.977 

October Temperature 1 0.11 0.750 0.79 0.390 0.25 0.627 1.58 0.229 
Water Source 1 1.31 0.271 1.94 0.185 3.92 0.066 1.78 0.202 

Temperature x Water Source 1 0.66 0.430 1.30 0.272 0.01 0.956 0.96 0.344 
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Discussion 

Previous studies have shown that drained agricultural soils can release nutrients upon 

reflooding (Pant and Reddy, 2003; Duff et al., 2009; Ardón et al., 2010; Kinsman-Costello et al., 

2014), but fewer studies have investigated nutrient dynamics in flooded agricultural soils in 

response to hydrologic reconnection as part of a wetland restoration. Here I show, based on 

laboratory experiments, that hydrologic reconnection of a creek and flooded agricultural area can 

result in nutrient release, and thus have negative impacts on downstream water quality. My 

results also indicate the degree to which nutrients serve as a source are influenced by land use 

history (Sharpley et al. 2013). Overall, the core water column nutrient concentrations, maximum 

apparent nutrient release rates, and maximum nutrient concentration increases from the July and 

October experiments clearly show that reconnecting the west pond to Bear Creek has the 

potential to significantly increase the flux of P from the sediment to the water column in this 

area.  

The source of this release is likely the P that accumulated in the soils during the time the 

area was used for celery production, as well as the wetland history of the area. Phosphorus 

amendments in agricultural areas can accumulate in both biotic and abiotic compartments of the 

ecosystem (Reddy et al., 2005) due to the incorporation of P in organic matter and the adsorption 

of P by soil and sediments (Sharpley et al., 2013). Soil and sediment accumulation of P has been 

observed as a result of agricultural operations, including dairy ranching (Dunne et al., 2011), 

poultry production (Slaton et al., 2004), and the production of crops (Townsend and Porder, 

2012) such as celery (Steinman and Ogdahl, 2011). Erosion, land development (Sharpley et al., 

2013), reflooding (Kinsman-Costello et al., 2014), decreased external P loading (Fisher and 

Reddy, 2001), and changes in concentration gradients (Pant and Reddy, 2003) can mobilize this 
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accumulated P and result in a flux of P from the sediment to the water column. A concentration 

gradient was established in the west pond cores once the high P sediments were exposed to the 

relatively low P concentration in Bear Creek water, resulting in P release due to diffusion. This 

was not the case when west pond sediments were exposed to west pond water, as the P 

concentration in the water column was relatively high, and the sediments and water column were 

already in an equilibrated state. Indeed, distinct water column characteristics can be seen when 

examining the water in the two areas as measured in the field, as well as when comparing the 

characteristics of the water used to refill the core tubes. As a result, we observed a much smaller 

release of P in the cores where west pond sediments were exposed to west pond water as 

compared to when west pond sediments were exposed to Bear Creek water. 

In several instances in my study, SRP maximum apparent release rates and maximum 

concentration increases in sediment cores from the west pond are reported as being larger than 

those measured for TP. Although this may appear to be an error, as SRP is indeed a component 

of TP, it is important to note that absolute SRP concentrations were always lower than TP 

concentrations, even though the maximum rates of increase and maximum concentration 

increases were sometimes greater. To explain, TP and SRP release rates in my study were 

sometimes calculated over different time periods in order to capture the maximum apparent rate. 

This contributed to SRP release rates exceeding TP release rates in some cases. Additionally, 

sediment SRP release rates as well as concentration increases can exceed TP release naturally, as 

was observed in multiple sediment cores in my study. In brief, this can occur when core water 

column SRP increases, but the concentrations of additional components of TP, such as sorbed 

and complexed inorganic or organic P decrease over the incubation time. This can then cause the 

maximum release rates and maximum concentration increases of TP to be lower in relation to 
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that of SRP. Although sorbed and complexed P fractions were not directly measured in my 

study, calculations in which water column SRP concentrations were subtracted from TP 

concentrations in the same core tube over the incubation time revealed multiple instances in 

which components of TP that were not directly measured decreased from initial concentrations 

over the incubation period. Because SRP release rates and concentration increases were typically 

similar if not larger when compared to TP release rates and concentration increases, this 

highlights the fact that the majority of the P being released from west pond sediments in certain 

cases is SRP. SRP is an extremely reactive and bioavailable form of P when compared to sorbed 

and complexed organic and inorganic P in aquatic ecosystems (Welch and Jacoby, 2004). This 

indicates even more pointedly the negative impacts that hydrologic reconnection of the two 

ponds to Bear Creek, without proper consideration of the ponds as P sources, could potentially 

have on downstream water quality. 

In contrast to the west pond, my work indicates that reconnecting the east pond to Bear 

Creek will not significantly increase P release rate; however, P will still be released from the 

sediment to the water column. The lack of a water source effect in the east pond may be related 

to prior dredging, which removed much of the enriched sediment, exposing sediments that may 

have high P adsorption capacities. Dredging has been used to decrease internal nutrient loading 

in lakes, and has been shown to significantly reduce water column P concentrations in lakes 

when coupled with a reduction in external loading (Does et al., 1992; Kleeberg and Kohl, 1999). 

The relatively high concentrations of Ca and Fe in the east pond sediments may also have limited 

the amount of P release in this area. In wetlands, P solubility is largely regulated by the presence 

of Fe and Ca (Reddy et al., 1999), and Fe:P ratios greater than 15:1 have been shown to 

significantly predict and limit the release of soluble P from oxic sediments in shallow lakes 
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(Jensen et al., 1992). Yet, this ratio has proven to be a coarse indicator of potential P dynamics as 

measurements of total Fe and P include forms that may be unavailable for adsorption (Rydin et 

al., 2000), and the specific form of P in the sediment will also strongly influence its mobility 

under anoxic conditions (Pilgrim et al., 2007), as well as its solubility and bioavailability 

(Psenner et al. 1988). Despite these caveats, Fe:P ratios in the sediments of my study area were 

on average lower than the coarse threshold of 15:1; however, Fe:P ratios were significantly 

higher in the east pond than the west, potentially contributing to the smaller degree of P release I 

observed in the east pond. In alkaline environments, forms of Ca such as calcite or calcium 

hydroxide can bind P and form insoluble compounds such as apatite and hydroxyapatite (Cooke 

et al., 1993; Reddy et al., 1999). My study sites were somewhat alkaline, ranging in pH from 7.8 

to 9.2, indicating the potential for this retention mechanism to occur. However, P binding to Ca 

may be a short-term phenomenon, as large percentages of this bound P can be released if water 

column pH decreases to less than ~8 (Diaz et al., 1994). In my study area, the removal of 

sediment P and organic matter by dredging, as well as the presence of high concentrations of Ca 

and Fe in the east pond sediments, could account for decreased concentrations of P in east pond 

water as well as low P release from the east pond sediment.  

Given that the sediments of both ponds will release P, albeit to different degrees, there 

are water quality implications for downstream water bodies. It is likely that a substantial amount 

of P released from sediments within the two ponds would reach Bear Lake due to the short 

distance between the ponds and the lake. In response to excess algal growth and elevated P 

concentrations, Bear Lake was placed on the Section 303(d) list of impaired and threatened 

waters as part of the Federal Clean Water Act in 2008 (MDEQ, 2008b). As required, the state of 

Michigan then developed a Total Maximum Daily Load (TMDL) for the lake, stipulating a 50%, 
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or 848 lb/yr, reduction in the external load of P, in order to reduce the seasonal (April-

September) TP average from 0.044 to 0.03 mg L-1 P in the water column (MDEQ, 2008a). 

However, my work indicates that reconnection of the two ponds to Bear Creek will likely result 

in more P reaching Bear Lake, unless the restoration design takes into consideration the ponds as 

potential sources of P. 

Hydrologic reconnection also has implications beyond those related to nutrient exchange. 

When two previously separated biological communities mix, species can coexist or be added or 

subtracted (Livingston et al., 2013), which can then influence biogeochemical processes in the 

area where mixing occurs. With respect to species addition, the migration of fish species from 

Bear Creek and Bear Lake into the ponds could potentially increase nutrient release. Studies 

have shown that P excretion from fish can constitute a large fraction of the P load in lakes 

(Persson, 1997), in addition to the direct release of N and P by benthic feeding fish, such as carp 

(Breukelaar et al., 1994). Conversely, reconnection of the ponds to Bear Creek would likely 

stimulate deposition of suspended sediments in the two ponds, which would increase nutrient 

retention; sedimentation of nutrients bound to particles is common in wetlands (Reddy and 

DeLaune, 2004), and wetlands of sufficient size can significantly reduce the amount of total 

suspended solids in the water column during flood events (Koskiaho, 2003). Reestablishment of 

wetland vegetation in the ponds could also aid in retention of N and P due to their ability to take 

up and store N and P in their biomass (Reddy and DeLaune, 2004). However, the majority of 

nutrients stored in the aboveground biomass will be released after a short time due to the 

relatively short cycles of growth and senescence in wetland plants (Richardson, 1985).  

Previous work has found that elevated temperatures can increase the release of P from 

sediments (Holdren and Armstrong, 1980; Steinman et al. 2009), and limit the amount of P 
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adsorption by sediment particles (Redshaw et al., 1990); however, this result was not observed in 

my study. The studies cited above attribute increased P release and decreased P adsorption to 

reducing conditions created by the stimulation of benthic microbial respiration at higher 

temperatures. The depletion of sediment oxygen can then result in facultative microorganisms 

reducing ferric iron, a major mineral associated with P binding, by using it as an electron 

acceptor during metabolism (Reddy et al., 1999). The reduction of Fe results in the release of 

previously bound P. Because the water column of my sediment cores was maintained in an oxic 

condition, this may have negated the impacts of increasing microbial activity on sediment 

oxygen concentrations, and masked the potential effect that increasing temperatures would have 

on the anoxic/oxic boundary in the sediment. Additionally, the relatively small temperature 

difference between my two treatments coupled with the large amount of inter-site variability in 

sediment chemistry and physical properties throughout my study area may have limited my 

availability to detect a significant impact due to temperature. 

In contrast to the increased release of P due to the simulated reconnection of Bear Creek 

to the west pond, I observed no consistently significant impact of water source on N dynamics in 

either pond. Yet, previous work has found that restoring wetland hydrology to a former 

agricultural unit resulted in that area acting as a significant source of NH4-N and dissolved 

organic N (Ardón et al., 2010). Although I did not observe a strong response of N concentrations 

due to water source treatment, I was still able to observe consistent patterns of N dynamics in my 

core tubes. These dynamics represent microbial reactions that occur as part of the aquatic N 

cycle; however, they may not be indicative of what will happen in the two ponds in situ. I 

contend that the inverse relationship in NH3-N and NO3-N dynamics in my study could be 

explained by the interacting processes of ammonification in the anoxic sediment and nitrification 
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in the oxic water column. First, water column NH3-N/NH4-N concentrations increased over the 

incubation time due to the mineralization of organic N in the sediment. Because of this, NH3-

N/NH4-N concentrations reached sufficient levels that facilitated the proliferation of nitrifying 

microbes which use NH3-N/NH4-N as a substrate. Subsequently, we observed a decrease in NH3-

N/NH4-N concentrations and an increase in NO3-N concentration due to this reaction. This is a 

textbook example of two reactions that occur in the N cycle; however, the increase of NH3-

N/NH4-N concentrations that was observed in my sediment cores may not be an accurate 

representation of what would happen in the two ponds as much of NH3-N/NH4-N produced due 

to mineralization would be taken up by algal cells in the water column, and not allowed to 

concentrate. Because my cores were a closed system, were incubated in the dark, and the 

majority of algal cells were filtered out of the water column, this may have prevented normal 

algal NH3-N/NH4-N uptake and allowed NH3-N/NH4-N concentrations to rise in the water 

column. Although this response may not be an accurate representation of what would happen in 

situ in the two fields, it can still serve as a demonstration of the microbial transformations that 

occur in the aquatic N cycle. However, direct measurements of N cycling processes are needed 

to confirm the mechanisms at work.  

The contrasting fates of N and P in agricultural systems also could help explain why I 

observed no significant impact of water source on N dynamics. Unlike P, which has the tendency 

to accumulate in the soils and sediments of agricultural systems due to its binding to soil 

minerals (Hill and Robinson, 2012; Sharpley et al., 2013), reactive N is relatively more mobile, 

and can be lost from an ecosystem through volatilization to gaseous forms of N or transport of 

soluble reactive N in groundwater (Robertson and Vitousek, 2009). Consequently, there may be 
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a relatively smaller buildup of legacy N compared to P in agricultural systems, and because of 

this a smaller risk of release in response to changes in hydrology.  

In addition to the lack of an effect from water source treatment, temperature also had no 

significant impact on N release in either pond. This may be partly due to the fact that temperature 

affects many different, and sometimes opposing, transformations in the aquatic N cycle such as 

mineralization, nitrification, and denitrification (Kadlec and Reddy, 2001). Thus, temperature 

may have stimulated multiple opposing microbial N transformations, resulting in a zero net 

difference of source/sink dynamics. Again, I observed large amounts of inter-site variability 

within each pond; this variability in sediment characteristics likely affected N dynamics, and 

possibly hindered my ability to find statistically significant effects on nutrient flux among my 

four treatment combinations. 

Seasonality is generally recognized as a major influence on ecosystem functioning in 

wetlands (Kadlec and Reddy, 2001); yet, in general I did not see a large disparity in nutrient 

dynamics between my two seasonal experiments, besides the decrease in the magnitude of P 

concentrations in October compared to July. This may be because the temperature differences 

were relatively modest (23 vs. 17°C); a larger temperature difference may very well have 

produced different results. It has been shown that seasonal changes in temperature have a part in 

controlling soil moisture and biogeochemical processes regulating organic matter decomposition, 

enzyme activity, dissolved organic matter production, and the emission of various gasses (Reddy 

and DeLaune, 2004). Additionally, because my experiments were performed in the laboratory, 

many other seasonal changes that effect wetlands were not able to be incorporated. Seasonal 

hydrologic changes have been shown to strongly impact sediment redox state (Reddy and 

DeLaune, 2004), plant growth, and nutrient loading (Kadlec and Reddy, 2001). Additionally, the 
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seasonal growth and senescence patterns of wetland plants can also influence nutrient dynamics 

and result in greater nutrient retention in the growing season, with subsequent nutrient release 

when the plants senesce and decompose (Kröger et al., 2007).  

 

 

Conclusions 

 Intact sediment cores from two flooded fields that were formerly used for celery farming 

were used to estimate the dynamics of N and P in response to hydrologic reconnection and 

climate warming. My results showed that sediments from the two ponds have the potential to 

contribute P to the water column once the two areas are reconnected to Bear Creek due to the 

presence of legacy P; however, reconnection significantly increased P release only in the west 

pond. The flux of N from both ponds was not consistently and significantly influenced by 

reconnection. In addition, increased incubation temperatures did produce a consistently 

significant effect on the flux of N or P from either pond in this study. Overall, the effects of 

warming on nutrient dynamics were much less pronounced than effects related to previous land 

use. 

Because the reconnected wetlands would discharge to a water body that is already 

impaired due to high P concentrations, any restoration design must take into consideration water 

quality as well as habitat improvement. Preventative measures such as chemical amendments or 

dredging may potentially remove or bind a large amount of the P that is present, and make the 

area more suitable for P retention. This study reinforces the need to study sediment nutrient 

content and release prior to any wetland restoration, especially when the proposed restoration 

area is on agricultural land. 
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Chapter III 
 
 

Conclusions and Synthesis 
 
 

High quality sustainable freshwater resources are essential to all life on earth. In addition 

to the fundamental provision of drinking water, freshwater resources also provide services such 

as the facilitation of large scale industrial production, irrigation, flood control, hydroelectric 

power production, recreation, the production of various foods, and essential habitat for large 

amounts of plant and animal life (Jackson et al., 2001; Baron et al., 2002). In spite of these 

benefits, large scale human activities such as agriculture, fossil fuel combustion, and land 

development (Crutzen, 2002) have negatively impacted water quality through eutrophication 

(Smith, 2003), wetlands loss (Millennium Ecosystem Assessment, 2005), and climate change 

(Schindler, 2001). As a result, water quality is declining on a global scale (Millennium 

Ecosystem Assessment, 2005; Welch and Jacoby, 2004). 

In response to this global decline, many environmental restoration projects have been 

initiated that aim to improve water quality. Naturally occurring wetland ecosystems typically 

improve water quality; thus, because large areas of wetlands have been degraded and destroyed 

throughout history, wetland restoration and creation is viewed as a viable way to facilitate water 

quality improvement (Zedler, 2000).Yet, the effectiveness of wetland restoration can be limited 

by prior land use of the restoration area—hence, rehydration of previously drained agricultural 

areas as part of restoration may have negative impacts on water quality (Pant and Reddy, 2003; 

Duff et al., 2009; Ardón et al., 2010; Kinsman-Costello et al., 2014). Additionally, changes in 

hydrology and temperature due to climate change are seen as major threats to natural and 
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restored wetlands (Ferrati et al., 2005), and have the possibility to alter wetland biogeochemistry 

and associated ecosystem services (Erwin, 2009). 

 

 

Changes in hydrology 

Previous studies have demonstrated that drained agricultural areas can release nutrients in 

response to flooding, but relatively less is known in regards to how flooded agricultural areas 

will respond to changes in hydrology. My study indicated that hydrologic reconnection of a 

stream and floodplain within a flooded agricultural area can potentially stimulate nutrient 

release, and thus have negative impacts on downstream water quality. In the west pond of my 

study area, I clearly observed that hydrologic reconnection to Bear Creek will significantly 

increase the flux of P from the sediment to the water column in that area. West pond sediment 

cores flooded with Bear Creek water released TP at rates and concentrations that were 

significantly greater than when west pond cores were flooded with west pond water. Indeed, west 

pond TP release rates approached ~60 mg m-2 d-1 when flooded with Bear Creek water. Overall, 

west pond TP release rates ranged from ~6 to ~60 mg m-2 d-1 when considering both water source 

treatments, indicating a consistent potential for P release. Although hydrologic reconnection did 

not stimulate increased P flux in the east pond, I also observed a release of P from the sediment 

to the water column in this area regardless of water source treatment (~2 to ~5mg TP m-2 d-1). In 

comparison to other systems, Carter and Dzialowski (2012) measured TP release using intact 

sediment cores incubated under anoxic conditions from 17 reservoirs of varying trophic status 

conditions and found that mean TP release rates ranged from ~2 to ~36 mg m-2 d-1. Additionally, 

Nürnberg and Lazerte (2004) report mean sediment TP release rates under anaerobic conditions 
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ranging from ~0 to ~30 mg m-2 d-1 when analyzing 91 small lakes ranging from oligotrophic to 

hyper-eutrophic. The release rates I measured when sediments from the two ponds were flooded 

with Bear Creek water and incubated under aerobic conditions further illustrate the large 

potential of my study area overall, and the west pond especially, to be a large and significant P 

source.  

To more clearly examine and illustrate how reconnection could impact water quality and 

the load of P supplied to Bear Lake, I used my data to calculate different scenarios of potential 

TP loading that would occur if the two ponds are reconnected to Bear Creek. In order to do this, I 

first calculated average sediment TP release rates for both ponds using data from my sediment 

coring experiment in Chapter II. This calculation was based on an estimate of average TP release 

rate over the entire incubation time.  This calculation is in contrast to the maximum release rates 

that were calculated in Chapter II, which are unlikely to persist over long time periods in nature, 

and hence would have likely overestimated true potential loading. In brief, average TP release 

rates were calculated using the change from initial to final water column TP concentration for 

sediment cores that were flooded with Bear Creek water in July and October experiments. 

Because there was no significant effect of temperature on P release, release rates from cores 

incubated at ambient and +2°C temperature treatments were combined to determine the mean 

average release rate (n=4). From this, I then calculated maximum, mean, and minimum, average 

TP release rates. Maximum, mean, and minimum average release rates (mg TP m-2d-1) were then 

converted into loadings (lbs TP d-1), in order to be consistent with the format of the Bear Lake 

TMDL. These daily loadings were then extrapolated to calculate the amount of loading that 

would be expected to occur using three different scenarios of loading days per year. The three 

scenarios were 270 days, 182 days, and 91 days, representing liberal, moderate, and conservative 
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periods of release. I did not include 365 days, as it is highly unlikely release is occurring during 

winter months due to the cold temperatures (cf. Steinman et al. 2009). Additionally, I 

incorporated three scenarios in which I varied the percentage of the TP load leaving the pond 

sediments that would actually reach Bear Lake. The three scenarios of load percentage reaching 

Bear Lake were 100%, 50%, and 10%. Again, because of the short distance between the ponds 

and Bear Lake, it is likely that a higher rather than lower percentage of TP released by the ponds 

would enter the lake basin. Finally, from the calculations of average release rates, average daily 

loadings, period of loading, and percentage TP reaching Bear Lake, I estimated the amount of TP 

that would be expected to enter Bear Lake upon reconnection of the two ponds to Bear Creek on 

an annual basis. Although the designations used in this analysis are somewhat arbitrary, it 

nonetheless helps to visualize a wide range of potential P loading from the ponds to Bear Lake, 

and allows for estimates of uncertainty. 

The results of the above calculations show that reconnecting the two ponds to Bear Creek 

without accounting for the potential for P release could add large and wide ranging amounts of 

TP to Bear Lake (Table 3.1, Table 3.2). Overall, the calculations indicate that the west pond has 

the potential to contribute 10-959 lbs TP yr-1 (Table 3.1) to Bear Lake, and the east pond can 

potentially contribute 0.4-15 lbs TP yr-1 (Table 3.2). Again, this difference in loading between 

the two ponds likely relates to the previous dredging of the east pond and its effects on sediment 

TP and mineral content. Considering that just the Bear Creek TP load was estimated to be 1,529 

lbs TP yr-1 (MDEQ, 2008), the addition of TP from the pond after reconnection could increase 

the Bear Creek TP load by over 60% at the highest load scenario (i.e. to ~2,500 lbs TP yr-1). In 

order to reach the TMDL stipulated goal of 0.03 mg L-1  TP in the Bear Lake water column, it 

was estimated that the entire load of P of the lake would need to be reduced from 3,387 to 1,458 
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lbs TP yr-1 (MDEQ, 2008). Hence, reconnecting the ponds to the creek without any nutrient 

reduction mitigation measures would likely exacerbate the eutrophication and harmful algal 

bloom conditions in Bear Lake, and seriously limit the community’s ability to meet the TMDL 

target for TP. Overall, it is clear that reconnecting the two ponds to Bear Creek without proper 

restoration would produce effects counteractive to the TMDL and to water quality goals for Bear 

Lake. 
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Table 3.1. Summary of results illustrating the additional TP load that would be added to Bear Lake once Bear Creek is reconnected to 

the west pond when considering a range of: average release rates; average daily loads; period of loading; and percent of the load 

reaching Bear Lake. 

West Pond 

 Maximum Mean Minimum 

Avg. release rate 
(mg TP m-2d-1) 18.09 10.87 5.75 

Avg. daily load 
(lbs TP d-1) 3.55 2.13 1.13 

Period of yearly 
loading (days) 270 182 91 270 182 91 270 182 91 

Percent load 
reaching Bear 

Lake (%) 
100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 

Load (lbs TP yr-1) 959 479 96 646 323 65 323 162 32 576 288 58 388 194 39 194 97 19 305 152 30 205 103 21 103 51 10 
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Table 3.2. Summary of results illustrating the additional TP load that would be added to Bear Lake once Bear Creek is reconnected to 

the east pond when considering a range of: average release rates; average daily loads; period of loading; and percent of the load 

reaching Bear Lake. 

East Pond 

 Maximum Mean Minimum 

Avg. release rate 
(mg TP m-2d-1) 0.53 0.48 0.38 

Avg. daily load 
(lbs TP d-1) 0.057 0.051 0.041 

Period of yearly 
loading (days) 270 182 91 270 182 91 270 182 91 

Percent load 
reaching Bear 

Lake (%) 
100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 100 50 10 

Load (lbs TP yr-1) 15 7.6 1.5 10 5.1 1 5.1 2.6 0.5 14 6.9 1.4 9.3 4.6 0.9 4.6 2.3 0.5 11 5.5 1.1 7.4 3.7 0.7 3.7 1.9 0.4 
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It is well known that historic human activity and the legacy of previous land use 

influences ecosystem structure and function (Foster et al., 2003). Often, the specific land use 

history of an area can delay or prevent environmental recovery, as well as result in a disparity 

between expected environmental improvements and reality (Carpenter, 2005; Meals et al., 2010; 

Jarvie et al., 2013). Previous work has indicated that historic agricultural land use has had a 

significant impact on terrestrial and aquatic ecosystems worldwide (Foster et al., 2003). One 

significant impact of agricultural land use is legacy nutrient buildup in soil (Slaton et al., 2004; 

Dunne et al., 2011; Townsend and Porder, 2012; Mattingly and Orrock, 2013; Sharpley et al., 

2013), as is the case in my study area where sediment TP concentrations averaged ~3750 mg kg-1 

in the west pond, and ~960 mg kg-1 in the east pond. As evidenced by this study and others (Pant 

and Reddy, 2003; Steinman and Ogdahl, 2011), this buildup of nutrients can impact source/sink 

nutrient dynamics in restored wetland areas. In addition to the effects of legacy nutrients on 

wetland restoration, agricultural nutrient enrichment can also have other broad ecological 

impacts and influence terrestrial and aquatic invasive plant colonization (Chambers et al., 2008; 

Kuhman et al., 2011), community composition (Leibold, 1999; Molofsky et al., 2013), and 

ecosystem biodiversity (Isbell et al., 2013; Brönmark and Hansson, 2002). Thus, it is important 

that all associated components of a restoration effort consider the specific deficiencies and 

challenges represented within a proposed restoration area before beginning the project (Hobbs, 

2007). 

In my study, N release was generally unaffected by the different water source treatments, 

which may be related to the contrasting fates of excess N and P in agricultural systems. Unlike P, 

which has the tendency to accumulate in the soils and sediments of agricultural systems when 

excess concentrations are applied due to its binding to soil minerals (Hill and Robinson, 2012; 
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Sharpley et al., 2013), reactive N is highly mobile in the biosphere, and excess N not taken up by 

crops can be lost from an ecosystem through processes such as volatilization to gaseous forms of 

N, and transport of soluble reactive N in groundwater (Robertson and Vitousek, 2009). 

Confounding effects of my experimental design also may have hindered my attempts to draw 

conclusions in regards to the effects of reconnection and temperature on N dynamics within my 

study site. As noted above and in Chapter II, the N cycle is mediated by many different 

biological processes that occur under specific environmental conditions. Because my study was 

conducted in the lab under controlled environmental conditions, the N dynamics I observed may 

not be a realistic example of what may occur in my study area. The sediment cores used in my 

study were a closed system and incubated in the absence of light; because of this, it is possible 

that the inverse relationship in NH3-N and NO3-N dynamics that was observed could be 

explained by the interacting processes of ammonification in the sediment and nitrification in the 

oxic water column as conditions within the core tube changed over the incubation period (Taylor 

and Townsend, 2010). Thus, I propose that the initial increase in NH3-N from ammonification 

was followed by both a decrease in NH3-N and an increase in NO3-N, as the conditions became 

more favorable to nitrifying microbes in the water column. Although these are both 

transformations that occur in the aquatic N cycle, it is unclear if these N dynamics are an artifact 

of the experimental set-up, or representative of in situ conditions.  More work is needed to 

examine the impact of temperature and hydrology on nitrogen dynamics, as other studies have 

observed a significant effect of hydrologic reconnection and temperature on wetland N dynamics 

(Ardón et al., 2010; Kadlec and Reddy, 2001) 

Many studies have been performed with the intent of identifying the nutrients that exert 

the most control over primary productivity in freshwater ecosystems. This research is beneficial 
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for enhancing our biological knowledge of freshwater environments, and also informs us as to 

what nutrients should be controlled when trying to limit eutrophication. Because costs are higher 

to control both N and P, rather than just one of the two nutrients individually, the results of this 

type of work have the potential to have a broad economic impact on water quality improvement 

related projects (Schindler, 2012). The P limitation paradigm holds that P is the main nutrient 

controlling freshwater primary productivity (Schindler, 1974; Schindler et al., 2008). In recent 

history, this paradigm has strongly influenced the understanding, management, and legislation in 

regards to freshwater eutrophication, resulting in actions centered on the control of P. However, 

as research on nutrient limitation has continued, more recent work has begun to challenge the P 

paradigm, with the recognition that both N limitation (Lewis and Wurstbaugh, 2008; North et al., 

2007) and co-limitation by N and P (Elser et al., 2007) are more common and widespread than 

previously thought. Indeed, simultaneous enrichment by N and P can lead to dramatically higher 

levels of production than when N or P are supplied individually (Elser et al., 2007). Although 

critics of N limitation point out issues of study scale, community succession, and gradual 

changes in biogeochemical cycles (Schindler, 2012), it is becoming apparent that management of 

both N and P is the most effective method to attempt to limit eutrophication and improve water 

quality in many water bodies (Conley et al., 2009). Thus, wetland restoration in the context of 

improved nutrient retention and water quality should consider both N and P. 

 

 

Changes in climate 

In my study, increased temperatures did not produce a consistently significant influence 

on the dynamics of N and P. However, other studies have shown that rising temperatures, and 
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changes in hydrology and weather patterns due to climate change (Mitsch and Hernandez, 2013), 

are expected to alter wetland biogeochemical processes and wetland sustainability (Burkett and 

Kusler, 2000; Kadlec and Reddy, 2001). Due to the effects of temperature on microbial 

metabolism, climate warming has the capacity to alter the cycling of N and P, potentially 

affecting the source/sink dynamics of these elements in wetlands (Kadlec and Reddy, 2001). 

Previous work has also found that increases in temperature can stimulate the release of P from 

sediments (Holdren and Armstrong, 1980; Steinman et al., 2009), and limit the amount of P 

adsorption by sediment particles (Redshaw et al., 1990). The above studies attribute the 

observation of increased P release to reduced sediment oxygen concentrations resulting from 

increased benthic microbial respiration at higher temperatures. Redox-driven reactions will result 

in the release of phosphorus that is associated with ferric (Fe+3) hydroxide (Mortimer, 1941).  

Increased P release in response to elevated temperatures could also be a result of thermally 

sensitive sediment processes related to P dynamics such as diffusion coefficients or rates of iron 

oxidation, mineralization, or adsorption (Anthony and Lewis, 2012).  

In regards to N, various microbial N transformations such as organic N mineralization, 

nitrification, as well as denitrification, all proceed more rapidly at higher temperatures to a point 

(Kadlec and Reddy, 2001). Thus, the effects of warming temperatures could potentially result in 

zero net change in wetland N dynamics due to the relative acceleration of multiple opposing 

transformations within the microbial N cycle. Additional work needs to be done to determine the 

overall net effect on source/sink N and P dynamics in natural wetland environments in response 

to warming temperatures, as well as what the effects may be in restored wetland environments. 

In addition to the vulnerability of wetland biogeochemistry to elevated temperatures, 

wetlands are also by nature susceptible to changes in hydrology. Consequently, predicted 
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changes in hydrology due to climate change have the potential to impact wetlands species 

diversity, biogeochemistry, and sustainability (Millennium Ecosystem Assessment, 2005). In 

Great Lakes coastal wetlands, climate change is expected to cause a decline in water levels to 

some extent (Hayhoe et al., 2010), however, there are issues with the methodologies used to 

calculate these predictions (Lofgren et al., 2011). If water levels do indeed drop, it has been 

shown that this effect may facilitate the spread of invasive or nuisance species, which can 

potentially influence community composition, biodiversity, and ecosystem function (Lishawa et 

al., 2010). Precipitation changes due to altered weather patterns may also lead to the loss of 

wetlands in certain areas due to drying out, such as prairie pothole and vernal pool wetlands 

(Erwin, 2009). Additionally, when extended drying periods are followed by extreme 

precipitation events, this may impact wetland biogeochemistry and stimulate nutrient release due 

to redox-driven dynamics associated with sediment desiccation followed by inundation 

(Steinman et al., 2012). Therefore, the combined effects of rising temperatures and changes in 

hydrology due to climate change represent a large threat to many components of wetland 

biogeochemistry, ecology, and sustainability. 

Finally, although I did not see a large disparity in my results between the July and 

October experiments, this may be because the temperatures I used were relatively warm and the 

differences were relatively modest (23 vs. 17°C); a larger temperature difference may very well 

have produced different results.  Seasonal hydrologic changes have been shown to strongly 

impact sediment redox state (Reddy and DeLaune, 2004), plant growth, and nutrient loading 

(Kadlec and Reddy, 2001). Additionally, seasonal changes in temperature have a part in 

controlling soil moisture and biogeochemical processes regulating organic matter decomposition, 

enzyme activity, dissolved organic matter production, and the emission of various gasses (Reddy 
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and DeLaune, 2004). Finally, the seasonal growth and senescence patterns of wetland plants can 

influence nutrient dynamics and result in greater nutrient retention in the growing season, with 

subsequent nutrient release when the plants senesce and decompose (Kröger et al., 2007). Thus, 

seasonality should be considered when studying wetland areas in regards to restoration, and 

potential changes in the future. 

 

 

Potential solutions 

Management techniques to control water column nutrient concentrations and sediment 

nutrient release are plentiful and diverse, and each technique has its own associated advantages 

and disadvantages. Several common management techniques for lakes and wetlands include 

phytoremediation, chemical inactivation, artificial sediment aeration, and dredging (Cooke et al., 

2005). Phytoremediation, or the use of plants and their associated microbes to remove pollutants, 

is one of the less expensive and more publicly supported nutrient concentration management 

techniques (Pilon-Smits, 2005). In order for phytoremediation to be successful, however, plant 

biomass must be removed annually after each growing season, which leads to increased 

ecosystem disturbance and habitat loss. Additionally, it may take longer to reach restoration 

goals using phytoremediation when compared to other management techniques (Schnoor et al., 

1995). Chemical inactivation of nutrients using compounds such as aluminum sulfate (alum) is 

another commonly used management technique, but the efficacy of alum application is variable 

(Cooke et al. 2005). Alum application results in the removal of P through the 

coagulation/entrapment of phosphorus containing particulates, precipitation of insoluble AlPO4, 

and by sorption of P on the surfaces of aluminum hydroxide (floc) polymers that form a cap on 
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the sediment surface (Kennedy and Cooke, 1982). Negatively, alum application can adversely 

impact benthic invertebrates in the short term after application (Steinman and Ogdahl, 2006), and 

can produce effects toxic to aquatic organisms when applied in water bodies that have a pH of 

below ~6 or above ~8 (Kennedy and Cooke, 1982; Cooke et al., 1993). Artificial hypolimnetic 

oxidation, when sufficient sediment iron is present, has proven to significantly increase the rate 

of P sedimentation from the water column (McQueen et al., 1986), and reduce the concentration 

of ammonia in the water column during stratification (Liboriussen et al., 2009). Yet, sediment 

oxidation can increase hypolimnetic temperatures (Liboriussen et al., 2009), and potentially have 

an adverse effect on populations of cold water benthic fauna (Jyväsjärvi et al., 2013). Finally, 

dredging is one of the most effective management techniques for controlling excess nutrient 

concentrations (Cooke et al., 2005) because it removes the top layer of sediment that contains the 

majority of nutrients and organic matter, and has a long-term beneficial impact. When external 

loading of nutrients is small, dredging has been shown to significantly reduce water column P 

concentrations in lakes (Does et al., 1992; Kleeberg and Kohl, 1999). Adversely, sediment 

dredging is costly, and is extremely disruptive to benthic habitat. 

Based on the results of my study, I support the previous suggestion to dredge the enriched 

sediments in both ponds and apply alum in order to manage the excess P in the restoration area 

(Steinman and Ogdahl, 2013). This is reasonable due to the large amounts of P in the sediment of 

the west pond especially, as well as the elevated concentrations of P in the water column. 

However, water column pH will have to be monitored closely because the pH I measured was on 

average >8 in both ponds during both experiments. When alum is applied at pH levels above or 

below an approximate range of 6-8, it can lead to increased aluminum solubility and toxicity 

(Kennedy and Cooke, 1982). The addition of a buffer solution to the water prior to alum 
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treatment can manipulate pH into a range acceptable for application and reduce the possibility of 

aluminum toxicity. 

 

 

Summary 

Overall, my results showed that the two ponds involved in this study have the potential to 

contribute P to the water column once they are reconnected to Bear Creek due to the presence of 

legacy P; however, reconnection significantly increased sediment P release only in the west 

pond. This is likely because the east pond was previously dredged, while the west pond was not. 

The flux of N from both ponds was not consistently and significantly influenced by 

reconnection. This observation may be due to differences in how N and P accumulate and are 

removed from the sediment, as well as possible confounding effects of my study design. In 

addition, increased incubation temperatures did not consistently and significantly affect the flux 

of N or P from either pond in this study. Although I was not able to detect a significant impact of 

temperature on N and P dynamics in my study area, it is still important to consider how rising 

temperatures and other effects of climate change such as alteration of precipitation patterns and 

increased extreme weather events may influence wetland nutrient dynamics.  

Because the concentrations of sediment and water column P are so high in the two ponds, 

the area will not be suitable in its current state to serve as a sink of the Bear Creek P load if it is 

hydrologically reconnected. The sediments within the ponds will in fact be a net contributor of P 

to Bear Creek and downstream Bear Lake if reconnection occurs without proper remediation. 

Hence, reconnecting the ponds to the creek without any nutrient reduction mitigation measures 

would likely exacerbate the eutrophication and harmful algal bloom conditions in Bear Lake, and 
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seriously limit the community’s ability to meet the TMDL target for TP. Preventative measures 

such as chemical additions, phytoremediation, or dredging may potentially remove or bind a 

large amount of the soluble P that is present. In the case of this specific restoration, I support the 

previous suggestion to dredge the enriched sediments in both ponds and apply alum in order to 

manage the excess P in the restoration area. Additionally, before reconnection, I recommend 

verifying that water column P concentrations in the two ponds are consistently below 0.03 mg L-

1, which is the target concentration in the Bear Lake TMDL, and that the sediments will not 

release any appreciable amount of P to the water column. Preferably, the sediments would have 

the potential to retain P when reconnection occurs. The establishment of wetland vegetation in 

the two ponds prior to reconnection may also aid in sediment and nutrient retention. 

Finally, my work supports the idea that the application of scientific research to real world 

environmental problems not only provides academic insight, but also increases the rigor and 

success of associated environmental restoration efforts (Omeron, 2003). In general, it is 

understood that including and developing the scientific research basis for restoration is essential 

if current and future restoration efforts are to be successful (Hobbs, 2007). Yet, in addition to 

scientific research based aspects of environmental restoration, it is also important to consider the 

socio-economic side of restoration efforts. Indeed, it has been suggested that perhaps the greatest 

need in environmental restoration currently is for the development of a synthetic approach in 

which we can integrate the ecological and socio-economic aspects of the issues surrounding 

environmental restoration and the setting of restoration goals (Hobbs, 2007). Beyond setting 

restoration goals, additional areas for collaboration between the two interests may include, but 

are not limited to: choosing areas for restoration; determining pre, during, and post restoration 

monitoring; and choosing the technical restoration design (Figure 3.1). Although this does not 
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guarantee success, it sets the stage for a well thought out and designed project which considers 

the specific goals of the restoration, community needs/desires in the area, as well as ways to 

measure restoration success and distribute the results to interested individuals (Hobbs, 2007). In 

addition to the environmental and community benefits of successful restoration, the gained 

understanding of ecosystem processes and scientific theory resulting from the research 

associated with these projects benefits academia, and serves to enrich the growing literature 

concerning environmental restoration and its associated techniques. Thus, all groups involved in 

restoration benefit by working together. In an era where the effects of humanity on the 

environment are rapidly expanding (Crutzen, 2002), environmental restoration and the recovery 

of lost ecosystem services is increasingly necessary on a global scale. Hence, restoration efforts 

should be thoughtfully considered and designed in order to provide not only the maximum 

amount of environmental and ecological improvement, but also address associated socio-

economic needs.  
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Figure 3.1. Conceptual model diagraming the various questions that should be addressed as part 

of environmental restoration efforts, as well as whether those questions fit under the umbrella 

and responsibility of scientific research, or as part of the socio-economic concerns of the project.
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