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ABSTRACT 

 

Genetic population substructure is often overlooked because of discontinuities between 

management and actual population structure as in the case of yellow perch, an ecologically and 

economically important indigenous fish species in the Laurentian Great Lakes. A knowledge 

gaps pertaining to the natural history of yellow perch relates to the biological connectivity 

between nearshore Lake Michigan and drowned river mouth (DRM) lakes, where it remains 

unclear whether resident yellow perch from Lake Michigan use DRM lakes for spawning or 

whether DRM lakes contribute to nearshore yellow perch populations in Lake Michigan. I used 

DNA fingerprinting (genotyping) to explore biological connectivity between DRM lakes and 

nearshore Lake Michigan during autumn by: (1) comparing the genetic structure of yellow perch 

collected from littoral habitats among DRM lakes, and (2) comparing genetic structure of yellow 

perch from DRM lakes with nearshore Lake Michigan. I hypothesized that (a) yellow perch from 

Lake Michigan move into DRM lakes during autumn but do not spawn, (b) yellow perch from 

DRM lakes differ genetically from nearshore Lake Michigan and do not form a panmictic 

population, and (c) DRM lakes will exhibit genetic isolation by distance. Overall, yellow perch 

exhibited low genetic diversity. The southern DRM lakes (i.e., Muskegon, White, and Pentwater 

lakes) were genetically similar to each other. Lake Charlevoix was genetically different from all 

other sites, but most similar to nearshore northern Lake Michigan. Nearshore northern Lake 

Michigan was intermediate to Lake Charlevoix and southern Lake Michigan. Analysis of a 

subset of yellow perch from Muskegon Lake revealed that fish captured in deep-water habitat 

differed genetically from individuals from littoral habitat and were most genetically similar to 

nearshore southern Lake Michigan. Understanding yellow perch spawning stocks is important 

for managing and maintaining a yellow perch fishery in eastern Lake Michigan.  
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INTRODUCTION 

Stock delineation is an important tool for successful fisheries management (Begg et al. 

1999), especially for economically important fish species. Genetic population substructure is 

often overlooked because of discontinuities between management and actual population structure 

(Kocovsky et al. 2013). Yellow perch (Perca flavescens) in the Laurentian Great Lakes is one 

such species. The yellow perch is an indigenous species in Lake Michigan that plays an 

important ecological and economical role throughout the region (Clapp and Dettmers 2004). In 

the late 1990s, yellow perch experienced dramatic declines that lead to the closing of the 

commercial fishery and caused great concern about maintaining a yellow perch population to 

sustain the recreational fishery (Clapp and Dettmers 2004). Thus, understanding yellow perch 

stock structure is an important piece of the successful management of this species. 

Researchers have discovered that yellow perch in the eastern Great Lakes show complex 

patterns of genetic population stock structure (Sepulveda-Villet and Stepien 2011; Kocovsky et 

al. 2013; Sullivan and Stepien 2014). Great Lakes yellow perch originated from the 

Mississippian and Atlantic glacial refugium (Sepulveda-Villet and Stepien 2012) and exhibit low 

to moderate genetic diversity, which is common for freshwater fish in these post-glacial 

environments. However, overexploitation also has contributed to lower genetic diversity in 

yellow perch (Bernatchez and Wilson 1998; Sepulveda-Villet and Stepien 2012; Parket et al. 

2009; Sepulveda-Villet and Stepien 2011; Sullivan and Stepien 2014). Low to moderate genetic 

variation also was noted in other percids such as the European perch (Perca fluviatilis) and ruffe 

(Gymnocephalus cernua) (Sullivan and Stepien 2014; Stepien et al. 1998, 2005). Compared to 

Lake Michigan, yellow perch in Lake Erie and the Huron-Erie corridor had higher levels of 

genetic variation, which also is consistent with walleye (Sander vitreus) populations located in 
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the same region (Sullivan and Stepien 2014). Overexploitation as well as habitat loss has led to 

population declines throughout much of the Great Lakes. Thus, it is important for managers to 

identify stock structure to design and implement proper management strategies for the recovery 

of this species, especially in Lake Michigan. 

Many uncertainties remain regarding yellow perch genetic stock structure in Lake 

Michigan as well as the contribution of drowned river mouths to overall stock structure. A 

previous investigation in the stock structure for yellow perch in Lake Michigan suggested a 

separation between spawning groups of Green Bay and southern Lake Michigan (Miller 2003).  

Also, attempts to assign yellow perch from northern and southern Lake Michigan to their correct 

spawning stocks were barely more than 50% successful (Miller 2003). Adult yellow perch 

captured in a mark-recapture study in southern Lake Michigan may travel distances greater than 

100 km, and these adult yellow perch did not exhibit spawning site fidelity but used a larger 

surrounding area (Glover et al. 2008). Other mark-recapture studies showed that yellow perch 

outside of the Great Lakes basin have travelled over 170 km (Miller 2003). Other research 

showed that larval yellow perch can be transported long distances in the southern basin of Lake 

Michigan through mass water currents, thus forming a genetically homogenous population in the 

southern basin of Lake Michigan (Höök et al. 2006).  Clearly, there are still gaps in the 

knowledge of this species’ life history, particularly regarding the genetic relationship with 

connected subpopulations. More specifically, knowledge is lacking regarding the genetic 

connectivity between nearshore Lake Michigan and drowned river mouth (DRM) lakes and how 

DRM lakes are used by yellow perch.  

DRM lakes are an important link between Lake Michigan and its tributaries on its eastern 

shoreline. DRM lakes are influenced by both Lake Michigan water levels and riverine inputs 
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(Keough et al. 1999; Wilcox et al. 2002; Larson et al. 2013). These systems provide essential 

habitat, such as spawning sites and nursery habitat, for many fish species, including yellow perch 

(Chubb and Liston 1986; Jude and Pappas 1992; Darnaude et al. 2004; Janetski et al. 2013). 

Currently, DRM lakes are managed differently from Lake Michigan and are managed as inland 

lakes (Michigan Fishing Guide 2014); thus, deemphasizing the connection between DRM lakes 

and nearshore Lake Michigan with respect to yellow perch population structure.  

The direct connectivity between Lake Michigan yellow perch populations and those in 

DRM lakes is not fully understood. Currently, there is conflicting evidence regarding the degree 

of connectivity between the two types of systems (nearshore Lake Michigan and DMR lakes). 

Perrone et al. (1983) found that yellow perch larvae captured in Lake Michigan before mid-June 

likely were hatched in a DRM lake and migrated to Lake Michigan, suggesting connectivity 

between the two habitats. This evidence is consistent with observations that resident yellow 

perch from Lake Michigan may migrate into DRM lakes during autumn, possibly for spawning 

(Schneider et al. 2007). However, a study on yellow perch population genetics found that yellow 

perch from five DRM lakes were genetically distinct from Lake Michigan (Parker et al. 2009), 

but did not make inference regarding the genetic structure among DRM lakes. Furthermore, there 

is evidence of an asynchrony in the recruitment strength of juvenile yellow perch between DRM 

lakes and Lake Michigan, which was not consistent with the hypothesis of strong connectivity 

between yellow perch populations in the two habitat types (Janetski et al. 2013). However, these 

studies (i.e., Parker et al. 2009, Janetski et al. 2013) focused on sampling shallow littoral habitats 

in DRM lakes, which could have overlooked migrant yellow perch that used deeper-water 

habitats in DRM lakes. The purpose of this study was to explore the genetic relationship of 

yellow perch between DRM lakes and nearshore Lake Michigan by: (1) comparing the genetic 
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structure of yellow perch collected from littoral habitats among DRM lakes during autumn, and 

(2) comparing genetic structure of yellow perch from DRM lakes with nearshore Lake Michigan. 

I hypothesized that yellow perch from (a) Lake Michigan move into DRM lakes during autumn 

but do not spawn (based upon Schneider et al. [2007] and Parker et al. [2009]); (b) DRM lakes 

differ genetically from nearshore Lake Michigan and do not form a panmictic population, and (c) 

DRM lakes exhibit genetic isolation by distance, as a similar pattern was shown for the round 

goby (Neogobius melanostomus) across a similar spatial scale in Lake Michigan (LaRue et al. 

2011).  
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METHODS 

Study Sites 

 Sample sites included four DRM lakes connected to eastern Lake Michigan, USA 

(Figure 1): Lake Charlevoix (7000 ha, Charlevoix Co.), Pentwater Lake (176 ha, Oceana Co.), 

White Lake (1049 ha, Muskegon Co.), and Muskegon Lake (1697 ha, Muskegon Co). Muskegon 

Lake and Lake Charlevoix are the deepest of the DRM lakes with a maximum depth of 24 and 37 

m, respectively. There is evidence of hypolimnetic hypoxia in Muskegon Lake at depths greater 

than 5 m during summer months (Figure 2; Altenritter et al. 2013). This trend was investigated to 

determine temporal deep-water habitat use by yellow perch.  White Lake has a maximum depth 

of 18 m, and Pentwater Lake is the shallowest with a maximum depth of 9 m. We also sampled 

two nearshore sites in Lake Michigan adjacent to Charlevoix (hereafter northern Lake Michigan) 

and Grand Haven (hereafter southern Lake Michigan). These Lake Michigan locations have been 

routinely monitored by the Michigan Department of Natural Resources (MDNR) since 1996 

(Fitzgerald et al. 2004; Makauskas and Clapp 2012).  

Sample Collection 

Yellow perch from Pentwater, White, and Muskegon lakes were sampled in littoral 

habitats (depth < 2 m) via boat electrofishing during September-November 2012. Lake 

Charlevoix was only sampled via gill nets in depths ranging from 9 to 20 m by the MDNR 

during August-September 2012. To complement boat electrofishing in littoral habitats, gill 

netting of yellow perch also was conducted in deep-water habitats of Muskegon Lake during 

September-November 2012 in conjunction with gill netting for another project (see Altenritter et 

al. 2013), to test the hypothesis that yellow perch from Lake Michigan use deep-water habitats in 

Muskegon Lake during autumn. The catch data from gill netting in Muskegon Lake was used to 
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delineate use of deep-water habitats by yellow perch in Muskegon Lake. Yellow perch from both 

Lake Michigan sites (northern and southern Lake Michigan) were collected by the MDNR via 

trawling and gill netting during the spring (April-May) of 2013. Anal fin clips were collected 

from 20 yellow perch from each DRM lake and Lake Michigan site and stored in 95% ethanol 

for genetic analysis.  

Genetic Analysis 

DNA was extracted from yellow perch anal fin tissue samples using a Qiagen DNeasy kit 

following manufacturer’s instructions (Qiagen, Valencia, CA). Population genetic structure was 

evaluated by examining variation in 12 microsatellite loci developed for yellow perch and 

walleye (Sander vitreus), including Svi4, Svi6, Svi17, Svi18, Svi33, Svi2, Svi3, Svi7 (Borer et al. 

1999; Eldridge et al. 2002; Miller 2003; Parker et al. 2009; Sepulveda-Villet and Stepien 2012), 

YP6, YP16, YP13, and YP17 (Li et al. 2007; Parker et al. 2009; Sepulveda-Villet and Stepien 

2012). Microsatellite loci were amplified using polymerase chain reaction (PCR) in an 

Eppendorf Mastercycler. The PCRs for primers Svi2, Svi7, Svi18, Svi4, YP6, YP16, YP17 

contained 11.3 µL of ultra-pure water, 5 µL 5X reaction buffer, 2 µL MgCl, 2.5 µL dNTP, 0.5 

µL tagged primer, 0.5 tag, 1 µL primer, 0.5 µL taq polymerase, and 2 µL DNA template. The 

PCRs for primers Svi17, Svi33, Svi6, YP13 contained 10.3 µL of ultra-pure water, 5 µL 5X 

reaction buffer, 3 µL MgCl, 2.5 µL dNTP, 0.5 µL tagged primer, 0.5 tag, 1 µL primer, 0.5 µL 

taq polymerase, and 2 µL DNA template. The PCR for primer Svi3 contained 9.3 µL of ultra-

pure water, 5 µL 5X reaction buffer, 4 µL MgCl, 2.5 µL dNTP, 0.5 µL tagged primer, 0.5 tag, 1 

µL primer, 0.5 µL taq polymerase, and 2 µL DNA template. Each primer was fluoresced with a 

dye, and each plate contained a negative control without DNA to detect potential PCR 

contamination (Miller 2003; Parker et al. 2009). A touchdown thermal cycle of 2 min at 94°C for 
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initial denaturation, followed by 40 cycles of denaturation (92°C, 30 s), primer annealing (1 min)  

temperatures of 65-55°C, 62-52°C, and 58-48°C and polymerase extension (72°C, 30 s) was 

used to amplify the microsatellite loci. A final extension at 72°C for 5 min was included to 

minimize partial strands. Amplified products were analyzed on an ABI Hitachi 3130xl Genetic 

Analyzer. 

Statistical Analysis 

Population structure was assessed using Bayesian-based clustering program 

STRUCTURE version 2.3.4, which uses multi-locus genotype data to investigate population 

structure (Pritchard et al. 2000; http://pritchardlab.stanford.edu/structure.html). Program 

STRUCTURE was used to assign membership of individuals to groups. Using this program, a 

model was used where K populations (K may be unknown) were assumed, and each population 

was characterized by a set of allele frequencies at each locus. Individuals in the sample were 

assigned based on likelihood to populations, or jointly to two or more populations if their 

genotypes indicated that they were admixed. Populations are assumed to adhere to Hardy-

Weinberg equilibrium and linkage equilibrium (Pritchard et al. 2000). I tested for the number of 

true population groups in independent runs, ranging from a K=1 (panmixia) to K=6 (each 

sampling location as an independent population group), with 10 independent runs for each K, 

100,000 replicate burn-in, and 200,000 replicates with location prior included. Optimal K 

scenarios were determined based on the evaluation of ΔK (Evanno et al. 2005).  

Genetix version 4.05 (Belkhir et al. 2004; available at www.genetix.univ-

montp2.fr/genetix/intro.htm) was used to explore population divisions and clustering with three-

dimensional factorial correspondence analysis (3D-FCA). This analysis evaluated variation 

http://pritchardlab.stanford.edu/structure.html
http://www.genetix.univ-montp2.fr/genetix/intro.htm
http://www.genetix.univ-montp2.fr/genetix/intro.htm
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within and among sites, and it clustered groups according to similarities without a priori 

assumptions about relationships.  

GENEPOP (web version) was used to assess genotypic differentiation and pairwise FST 

for all pairs of populations (Raymond and Rousset 1995; available at 

http://genepop.curtin.edu.au/index.html).  Markov chain parameters used were a dememorization 

of 1000, 100 batches, and 1000 iterations per batch. FST is estimated by a “weighted” analysis of 

variance (Cockerham 1973; Weir and Cockerham 1984) 

Isolation by distance between each DRM lake was calculated by measuring the distance 

between the west channel entrances (i.e., the part of the channel that is in Lake Michigan). The 

distance between each pair of DRM lakes was graphed against its associated pairwise FST value 

(generated from GENEPOP).  

Yellow perch catch data from gill netting in Muskegon Lake during 2012 and 2013 were 

analyzed to determine when fish used deep-water habitats. Sampling took place from September 

to December. Sampling was carried out in deep-water habitats in western Muskegon Lake.  
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Figure 1. Sample sites include four drowned river mouth lakes (Lake Charlevoix, Pentwater 

Lake, White Lake, and Muskegon Lake) and two nearshore Lake Michigan sites (N. Lake 

Michigan and S. Lake Michigan). 
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Figure 2. Dissolved oxygen concentrations at 2, 5, 8, and 11 m in Muskegon Lake from June 1 to 

November 1 in 2012 (top) and 2013 (bottom). Data were generated from the Muskegon Lake 

Buoy Observatory (http://www.gvsu.edu/wri/buoy/data-index.htm).  
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RESULTS 

Eleven of twelve loci were polymorphic. Locus Svi18 was monomorphic and was 

therefore excluded from further analyses. A total of 140 yellow perch were genetically analyzed 

in this study, with an overall average total length of 19.4 cm (Table 1). 

 

 

Table 1. Minimum, maximum, and mean total lengths of yellow perch used in genetic analyses at 

each site. Population identifications are; Musk = Muskegon Lake, Pent= Pentwater Lake, White= 

White Lake, S. MI= Southern Lake Michigan, N. MI= Northern Lake Michigan, Char= Lake 

Charlevoix. 

Sampling 

site 

Min Length 

(cm) 

Max Length 

(cm) 

Mean Length 

(cm) 

N 

Musk (littoral) 13.0 19.8 16.4 20 

Musk (deep) 20.3 27.4 22.5 20 

Pent 13.0 20.0 15.3 20 

White 14.0 22.0 16.5 20 

S. MI 15.9 22.1 18.5 20 

N. MI 14.5 35.7 21.3 20 

Char 16.5 34.0 25.1 20 

Average 14.5 26.9 19.4  
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STRUCTURE Analysis 

Bayesian-based clustering along with delta K evaluations revealed population structure of 

three subpopulations (K=3), consisting of (1) Lake Charlevoix, (2) southern Lake Michigan, and 

(3) the three southern DRM lakes: Muskegon Lake, Pentwater Lake and White Lake (Figure 3).  

Northern Lake Michigan was intermediate to Lake Charlevoix and southern Lake Michigan 

(Figure 3). STRUCTURE clustering also showed that a subset of yellow perch captured in 

Muskegon Lake were genetically similar to southern Lake Michigan (Figure 3; highlighted with 

a black box). Thus, based on these results, Muskegon Lake was split into two groups: fish 

sampled from littoral habitats that were primarily resident (i.e., Muskegon Lake) fish and fish 

sampled from deep-water habitats in Muskegon Lake that were primarily migrants (i.e., from 

Lake Michigan).  

Three-dimensional Factorial Correspondence Analysis 

Three-dimensional factorial correspondence analysis was consistent with STRUCTURE 

results.  Lake Charlevoix was distinct from all other sites. The southern DRM lakes were similar 

to each other but different from the Lake Michigan sites. Northern Lake Michigan was similar to 

both southern Lake Michigan and Lake Charlevoix. The deep-water habitat in Muskegon Lake 

was similar to southern Lake Michigan (Figure 4). Since Lake Charlevoix was substantially 

different from all other sites, these fish were removed and the analysis was repeated to examine 

patterns among the remaining sites. The result was that southern DRM lakes remained similar to 

each other and southern Lake Michigan and the deep-water habitat in Muskegon Lake also 

remained similar to each other (Figure 5). However, by removing Lake Charlevoix, northern 

Lake Michigan separated more clearly from southern Lake Michigan compared with the previous 

analysis of all sites. Finally, a separate analysis of only the southern DRM lakes was performed 



24 

 

to evaluate subtle patterns in genetic variation that may have been obscured in the previous 

analysis. This analysis suggested some definite distinction among the southern DRM lakes 

(Figure 6), but this separation was much finer than differences with Lake Michigan and Lake 

Charlevoix.
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Figure 3. Estimated population structure of yellow perch from Bayesian structure analysis for K= 3 groups. Individuals are represented 

by thin vertical lines, which are partitioned into K colored segments representing the individuals’ estimated membership fraction. The 

thin black lines separate sampling sites, and the black box outlines yellow perch from the deep-water habitat in Muskegon Lake. 

Population identifications are: Musk = Muskegon Lake, Pent = Pentwater Lake, White = White Lake, S. MI = southern Lake 

Michigan, N. MI= northern Lake Michigan, and Char = Lake Charlevoix. The x-axis represents individual fish and the y-axis 

represents proportion of an individual that belongs to a population. 
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Figure 4. Three-dimensional factorial correspondence analysis of yellow perch microsatellite data. Population identifications are: 

Musk = Muskegon Lake (littoral habitats), Musk deep = deep-water habitat in Muskegon Lake, Pent = Pentwater Lake, White = White 

Lake, S. MI = southern Lake Michigan, N. MI = northern Lake Michigan, and Char = Lake Charlevoix. 
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Figure 5. Three-dimensional factorial correspondence analysis of yellow perch microsatellite data. Since Lake Charlevoix was 

substantially different from all other sites, these fish were removed and the analysis was repeated to examine patterns among the 

remaining sites. Population identifications are defined in Figure 4. 



28 

 

 

Figure 6. Three-dimensional factorial correspondence analysis of yellow perch microsatellite data. Analysis of only the southern 

drowned river mouth lakes was performed to evaluate subtle patterns in genetic variation that may have been obscured in the previous 

analysis. Population identifications are: Musk = Muskegon Lake (littoral habitats), Pent = Pentwater Lake, and White = White Lake.
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GENEPOP Genotypic Population Differentiation and Pairwise FST 

GENEPOP results showed significant genotypic differentiation (P < 0.0024) between 

Muskegon Lake littoral (i.e., fish sampled from littoral habitats), Muskegon Lake deep (i.e., fish 

sampled from deep-water habitats), southern Lake Michigan, northern Lake Michigan, and Lake 

Charlevoix (Table 2).  Muskegon Lake littoral was not significantly different from Pentwater and 

White lakes (P > 0.05), while Muskegon Lake deep was not significantly different with the two 

Lake Michigan sites but differed from yellow perch in all of the other DRM lakes. White Lake 

was significantly different from Lake Charlevoix and northern Lake Michigan, but it was not 

significantly different from southern Lake Michigan (Table 2).  The Lake Michigan sites were 

not significantly different from each other. Lake Charlevoix was significantly different from all 

other sites but was least different from northern Lake Michigan (P = 0.0363; Table 2). 

Overall, pairwise FST values were low across all sites (Table 2). Average pairwise FST 

comparison was 0.0215. Pentwater and White lakes had the lowest pairwise FST (0.0010) 

followed by southern Lake Michigan and northern Lake Michigan (0.0025). Pentwater and 

Muskegon Lake deep had the highest pairwise FST value (0.0559) followed by Lake Charlevoix 

and Muskegon Lake deep (0.0539). Pairwise comparisons between the southern DRM lakes 

showed low genetic differentiation (FST < 0.05, Table 2), which was consistent with genotypic 

differentiation analyses.  
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Table 2. Pairwise FST (above diagonal) and genotypic differentiation (p-values below diagonal) for each population pair. Highest FST 

values are bolded. Bolded genotypic differentiation values were significantly different (P < 0.0024 with Bonferroni correction). 

Population identifications are defined in Figure 4. 

 Musk Musk deep Pent White S. MI N. MI Char 

Musk  0.0454 0.0046 0.0126 0.0233 0.0183 0.0228 

Musk deep <0.0001  0.0559 0.0171 0.0067 0.0088 0.0539 

Pent 0.1872 0.0089  0.0010 0.0381 0.0265 0.0125 

White 0.2412 0.0381 0.8895  0.0073 0.0188 0.0207 

S. MI 0.0014 0.7431 0.0011 0.1753  0.0025 0.0427 

N. MI 0.0003 0.1980 0.0009 0.0023 0.3192  0.0131 

Char <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0363  
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Isolation by Distance 

Isolation by distance was observed between the DRM lakes (R
2 

= 0.6924; Figure 7). 

Muskegon Lake and Lake Charlevoix were the farthest DRMs apart and had the highest FST 

value (Table 3, Figure 7). Pentwater and White lakes had the lowest FST value and were the 

second closest DRM lakes (Table 3, Figure 7).  Note that I excluded yellow perch from the deep-

water habitat in Muskegon Lake deep from this analysis because they were more genetically 

similar to yellow perch from Lake Michigan and were considered migrants from Lake Michigan.  

 

 

Table 3. Isolation by distance values for all pairs of DRM lakes. Population identifications are: 

Musk = Muskegon Lake (littoral habitats), Pent = Pentwater Lake, White = White Lake, and 

Char = Lake Charlevoix. 

Population Distance (km) FST 

Musk-White 19.31 0.0126 

Pent-White 56.33 0.0010 

Musk-Pent 75.64 0.0046 

Pent-Char 162.54 0.0125 

White-Char 273.59 0.0207 

Musk-Char 294.51 0.0228 
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Figure 7. Isolation by distance graph for all pairs of DRM lakes.  Population identifications are: 

Musk = Muskegon Lake (littoral habitats), Pent = Pentwater Lake, White = White Lake, and 

Char = Lake Charlevoix. 

 

 

 

 

 

 

 

 

 

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0 50 100 150 200 250 300 350 

F S
T

 

Distance (Km) 

DRM Isolation by Distance  

Musk&Pent 

Musk&White 

Musk&Char 

Pent&White 

Pent&Char 

White&Char 



33 

 

2012-2013 Supplementary Catch Data 

 Yellow perch catch data from gill netting in 2012 and 2013 revealed that yellow perch 

were not caught in deep-water habitats until late October/early November (Figure 8). This result 

is consistent with Muskegon Lake turnover (Figure 2). In 2012, gill netting began in September 

and the first yellow perch were caught on October 16, while the last yellow perch were caught on 

November 27. The highest number of yellow perch captured was 44 on November 8. In 2013, 

gill netting began in late September and the first yellow perch were caught on October 10, while 

the last yellow perch were caught on December 16. The highest number of yellow perch captured 

was 43 on November 8. Yellow perch total length ranged from 17 to 35 cm.  
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Figure 8. Yellow perch catch from gill netting in Muskegon Lake during 2012 (top) and 2013 

(bottom). 
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DISCUSSION 

The goal of this study was to explore the genetic relationship of yellow perch between 

DRM lakes and nearshore Lake Michigan by: (1) comparing the genetic structure of yellow 

perch collected from littoral habitats among DRM lakes, and (2) comparing genetic structure of 

yellow perch from DRM lakes with nearshore Lake Michigan. My results showed that yellow 

perch with a genetic fingerprint similar to Lake Michigan yellow perch were captured in a deep-

water area of Muskegon Lake during autumn, which has not been previously documented 

(Figure 2). This evidence suggests migration of Lake Michigan yellow perch into Muskegon 

Lake during autumn. Because these systems have been shown to provide important habitat, such 

as spawning sites and nursery habitat for yellow perch (Chubb and Liston 1986; Jude and Pappas 

1992; Darnaude et al. 2004; Janetski et al. 2013), potential explanations for this behavior are 

Muskegon Lake is being used for winter habitat or a staging area before spawning in Lake 

Michigan during the spring. This is an important finding because it can fundamentally change 

how Muskegon Lake and possibly other DRM lakes are managed for yellow perch, specifically 

related to harvest regulations. It is important to consider harvest of these migrant Lake Michigan 

yellow perch from the DRM lakes in the total harvest estimates for Lake Michigan.   

 This interesting result raises the question whether this migration happens in other DRM 

lakes because I only sampled deep-water habitats in Muskegon Lake among the southern DRM 

lakes. Gill netting data from Muskegon Lake suggested that yellow perch were not caught in 

deeper areas until late October and early November, well after the lake turned over, and resident 

yellow perch in littoral habitats had an opportunity to move into the deeper areas (Figures 2 and 

8).   
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My study provides concrete evidence that the genetic structure of yellow perch in DRM 

lakes is distinct from nearshore Lake Michigan. This finding builds on previous research that 

focused on yellow perch sampled in Lake Michigan proper in an attempt to better understand 

their population ecology (Miller 2003; Clapp and Dettmers 2004; Glover et al. 2008). However, 

these studies did not explore the role of nearshore habitats in Lake Michigan such as wetlands 

and DRM lakes. My results also build on questions that resulted from Parker et al. (2009) 

because they lacked large sample sizes from DRM lakes and grouped yellow perch from multiple 

DRM lakes in their analysis.  In addition, it has been shown that there is an asynchrony between 

high recruitment years in nearshore Lake Michigan and Muskegon Lake (Janetski et al. 2013). 

This evidence also supports our result of having distinct populations between Lake Michigan and 

DRM lakes.    

DRM yellow perch populations were genetically isolated by distance with a clear 

gradient from southern to northern populations; however, this result was driven by high genetic 

diversity/difference of yellow perch from Lake Charlevoix relative to the other DRM lakes 

(Table 2; Figure 4). This relationship also was amplified by an overall low genetic diversity (e.g., 

low FST values) among yellow perch populations in southern DRM lakes, a finding that is 

consistent with past research on Lake Michigan (Miller 2003; Parker et al. 2009). Low overall 

genetic diversity within my study populations of yellow perch likely explained the unexpected 

STRUCTURE result that the southern DRM lakes were not genetically different to one another. 

Further investigation with three-dimensional factorial correspondence analysis (Figure 6) 

revealed subtle genetic differences among the southern DRM lakes. Genetic similarity among 

DRM lakes may also suggest that not enough time has passed post-colonization of DRM lakes to 

allow these DRM lake populations to become genetically isolated/distinct from each other or 
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their source population. Genetic analysis of more DRM lakes should be considered to fully 

answer questions about isolation of DRM lakes by distance, especially along the north-south 

gradient of eastern Lake Michigan. 

Based on my study, there was no detectable genetic difference between yellow perch 

populations in northern and southern Lake Michigan, which coincides with findings from Miller 

(2003) that showed difficulty in correctly assigning Lake Michigan yellow perch to their correct 

northern or southern stocks. Furthermore, movement of yellow perch between southern and 

northern Lake Michigan is not uncommon. For example, Glover et al. (2008) discovered that 

adult yellow perch along the south and southeastern side of Lake Michigan travelled over 100 

km. 

Future studies should assess population genetic structure of yellow perch in more DRM 

lakes, sample both deep-water and littoral habitats, and sample across seasons. Also, the addition 

of more loci or the use of next generation sequencing could capture more genetic variation 

between Lake Michigan and DRM lakes. It also would be beneficial to better characterize the 

population genetic structure of yellow perch in nearshore Lake Michigan by adding sites 

between Grand Haven and Charlevoix. One limitation of my study was that conclusions were 

limited to fish sampled during autumn and temporal patterns in stock structure could not be 

addressed with my genetic data. For example, do Lake Michigan fish use deep-water areas of 

Muskegon Lake for over-wintering refugia when those deep-water areas are no longer hypoxic; 

or are yellow perch with genetic fingerprints similar to Lake Michigan still present in deep-water 

habitats of Muskegon Lake throughout the spring and early summer seasons before the lake 

becomes stratified and hypoxic conditions in the hypolimnion become more prevalent? Seasonal 
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sampling would help address knowledge gaps relating to the temporal variation of biological 

connectivity between DRMs and nearshore Lake Michigan. 
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CONCLUSION 

This study provides evidence that Lake Michigan yellow perch use Muskegon Lake 

during autumn, which has not been shown by previous research. I found that yellow perch with a 

genetic fingerprint similar to Lake Michigan in Muskegon Lake during autumn after the lake 

turned over (i.e., no longer thermally stratified) in deep-water habitat.  It is thus important for 

Lake Michigan yellow perch management strategies to consider Muskegon Lake and possibly 

other DRM lakes, which could be providing important habitats for Lake Michigan yellow perch 

during part of the year and account for the extra harvest of Lake Michigan yellow perch that is 

not currently taken into account. Future research should determine whether Lake Michigan 

yellow perch are migrating into other DRM lakes or whether the phenomenon I documented is 

unique to Muskegon Lake. Fishery managers should take into account yellow perch genetic 

stocks and their use of DRM lakes when determining harvest seasons and bag limits for Lake 

Michigan.  
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