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Abstract 

BACKGROUND: When emergent intravenous access is not available an intraosseous (IO) 

infusion is performed. To accurately perform an IO infusion, the healthcare provider must 

precisely palpate and identify the associated anatomical landmark for placement. A thicker layer 

of subcutaneous tissue over the insertion site can make this process difficult, leading to an 

increased risk of misplacement. PURPOSE: To relate the subcutaneous tissue depth with body 

mass index (BMI) and percent body fat in order to better understand IO placement sites in relation to 

these body composition factors. SUBJECTS:  Male and female unembalmed cadavers (n=22) 

between the ages of 54-95 years old were provided by the Willed Body Program in association with 

Michigan State University, College of Human Medicine, in Grand Rapids, MI.  METHODS AND 

MATERIALS: Subcutaneous tissue depth was measured by the insertion of a taper gauge into the 

skin over six IO infusion sites. Five bilateral skinfold measurements per cadaver were taken using a 

Lange skinfold caliper to obtain body density which was then converted into percent body fat.  

BMI was calculated from the cadavers height and weight which was supplied by the Willed 

Body Program.  RESULTS: Both BMI and percent body fat demonstrated positive correlations 

with subcutaneous tissue depth at all sites. Using the Wilcoxon Signed Rank Test, it was 

observed that embalmed cadavers had significantly larger subcutaneous tissue depth at all sites (p 

= 0.0313) except the distal radius (p = 0.0625). CONCLUSIONS: This study demonstrated that 

an increase of subcutaneous tissue depth correlates with increased BMI and percent body fat. When 

assessing where to place an IO infusion, sites with the least amount of subcutaneous tissue should be 

considered first, with consideration of injuries and contraindications. 
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Introduction 

 In an emergency setting, it is important to be able to quickly and safely deliver life-saving 

fluids and medications to the patient.  This is achieved by introducing a peripheral intravenous 

(IV) catheter into one of the patient’s peripheral veins.  The average time for a peripheral IV line 

to be placed is 4.4 ± 2.8 minutes, which is insufficient in an extreme emergency setting (Minville 

et al. 2006).  Increased time to place a peripheral IV line can occur when veins are too fragile, 

narrow, collapsed, or when the patient is an infant, combative or obese.  When vascular access is 

needed immediately, and a peripheral IV line cannot be obtained in a timely manner, healthcare 

professionals turn to other available options to gain venous access, such as subcutaneous, 

intramuscular or endotracheal routes (Orlowski 1994).  These routes provide quick access for 

medications to be given to the patient, but with increased difficulty in giving large amounts of 

fluids and certain medications to the patient in a short amount of time.  When these three 

alternate routes are inappropriate for the treatment needed, a central venous line (CVC) or an 

intraosseous (IO) infusion is used (Paxton 2012). 

 An IO infusion is a medical procedure that involves the insertion of a needle into the 

medullary cavity of bone to gain venous access.  As an alternative route for peripheral IV 

placement, most IO infusions occur in both child and adult patients with small, fragile or 

collapsed veins, vasoconstriction, burns, or obesity (Paxton 2012; Fowler et al. 2007; Hurran and 

Dunn 1995).  The overall goals when performing an IO infusion are to resuscitate the patient in 

order to restore organ perfusion and fluid volumes, along with providing life saving medications 

(Kortbeek et al. 2008; Warren et al. 1993).  Current recommendations state that IO placement 

should be performed when peripheral IV access can not be obtained after three attempts within 
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two minutes (Deakin et al. 2010; Leidel et al. 2012).  IO infusions are primarily used in a pre-

hospital setting, such as in ambulance transport or in the emergency department, when venous 

access is needed immediately (Glaeser et al. 1993; Buck et al. 2007). 

 Sites for IO placement are determined by ease of access, avoidance of injuries and 

contraindications, level of obesity, and provider judgment and experience.  The most common 

insertion sites are long bones with anatomical landmarks that are easy to identify and penetrate 

under a thin layer of skin (Ong et al. 2009).  Some of the more common sites for IO placement 

are the proximal tibia, distal tibia, and proximal humerus (Paxton 2012).  Prior to 1998, a 

medullary cavity was essential for an IO placement site, based on the theory that this was critical 

for transported materials to reach the general circulation.  Since then, the calcaneus and radial 

styloid process have been shown to properly place and deliver fluids intraosseously as effectively 

as other IO sites (McCarthy et al. 2003).   

 Although the frequency of complications from IO infusions is currently low, when they 

do occur, they can be severe.  There are two main categories of complications when performing 

IO infusions: dislodgment and misplacement.  Dislodgments are when the IO needle becomes 

prematurely removed from the bone in which it was originally inserted.  Misplacement of an IO 

needle is defined as when the needle either over-penetrates or under-penetrates the bone.  Under-

penetration occurs more frequently, likely due to using an incorrect needle length or excess 

subcutaneous tissue over the site of insertion (Johnson et al. 2005).  Although certain semi-

automatic IO devices allow for easier needle selection, under-penetration can still be a problem.  

Misplacements usually occur because of the inexperience of healthcare providers, incorrect 
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identification of anatomical landmarks, and excess subcutaneous tissue over the site of insertion 

(Macnab et al. 2000). 

 There are many ways to prevent complications from IO infusions, such as longer needle 

lengths (45 mm) for obese patients, threaded needles, and other mechanisms to secure IO 

placement (Johnson et al. 2005; Greaves et al. 1999).  Even with these safety measures already 

implemented, misplacements can still occur.  Studies have shown that excess subcutaneous tissue 

over IO insertion sites leads to two problems with IO infusions: inability to correctly identify 

anatomical landmarks and possible under-penetration, both increasing the risk of misplacements 

(Leidel et al. 2009; Stouffer et al. 2007; Olsen et al. 2002; Glaeser et al. 1993; Koschel 2005).  

For the use of IO infusions in obese patients, the healthcare provider must take into account the 

correct length of needle in order to traverse the skin, subcutaneous tissue, and bone to limit the 

risk of complications (Fowler et al. 2007; Reades et al. 2011).  With obesity as a common 

condition in those patients for whom IO infusions are necessary, there is a need to know the 

thickness of the subcutaneous tissue overlying the insertion sites to avoid misplacement of the IO 

needle (Fowler et al. 2007; Paxton 2012). 

Methods 

Population 

  The population of this study consists of cadavers donated to the Willed Body Program of 

the Michigan State University College of Human Medicine, in Grand Rapids, MI, from June 

2014 to February 2015.  The Willed Body Program supplied a donor ID number, age at death, 

height, and weight for all twenty-two individuals.  Cadavers were measured prior to embalming 

within 24 hours of death.  The nature of the population gathered represented a sample of 
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convenience due to the cadavers being donated bodies.  Measurements were recorded from 

fourteen males between the ages of sixty and ninety-five years old, and eight females between 

the ages of fifty-four and ninety-three years old. 

Body Composition  

 Measurements for skinfold thickness, percent body fat, and body mass index (BMI) were 

taken on all cadavers.  Skinfold thickness was measured bilaterally at five sites (abdomen, chest, 

suprailiac, thigh, and triceps) using a Lange skinfold caliper 

according to the methods described by Howely and Thompson 

(2012).  To measure the triceps skinfold site, the corresponding 

arm was placed at a 90° angle across the chest, so that the palm 

of the hand was resting on the umbilicus.  Then a vertical pinch 

was made at the midpoint between the acromion process of the 

scapula and the elbow on the posterior aspect of the brachium. 

The skinfold caliper was placed 10 mm below where the skin was pinched and the triceps site 

was measured.  To obtain the chest skinfold measurement, an oblique pinch was made along the 

midpoint of the anterior axillary fold between the axilla and the nipple (Figure 1).  The skinfold 

caliper was placed 10 mm medial to where the skin was pinched and this site was measured.   

 In order to measure skinfold thickness on the abdomen, a vertical pinch was made 5 cm 

directly lateral to the umbilicus.  The skinfold caliper was placed 10 mm below this site and 

measured.  To obtain the suprailiac skinfold measurement, the iliac crest was palpated and a 
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Figure 1- Right Chest 
Skinfold Measurement.



horizontal pinch was made directly above the iliac crest (Figure 2).  The skinfold caliper was 

then placed 10 mm lateral to this site and the measurement 

was obtained.  In order to measure skinfold thickness on the 

thigh, the knee was slightly bent and a rolled towel was 

placed beneath it.  A vertical pinch of the skin was made at 

the center point between the inguinal ligament and the 

patella, in the middle of the thigh.  The skinfold caliper was 

placed 10 mm below where the skin was pinched and the thigh site was measured. 

 From obtained skinfold measurements body density was calculated using the Jackson and 

Pollock 3-site equations for males and females, respectively (Table 1). Using the calculated body 

density for each cadaver, percent body fat was determined using the Brožek equation (Table 2). 

 Body height and weight was supplied by the funeral home or hospital through the Willed 

Body Program.  BMI was calculated using the formula (Table 3) provided by the Centers for 
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Figure 2- Right Suprailiac 
Skinfold Measurement.

Male Body Density = 1.10938 - (0.0008267 x sum of chest, abdomen, and thigh skinfolds in 
mm) + (0.0000016 x square of the sum of chest, abdomen, and thigh 
skinfolds in mm) - (0.0002574 x age)

Female Body Density = 1.0994921 - (0.0009929 x sum of triceps, thigh, and suprailiac 
skinfolds in mm) + (0.0000023 x square of the sum of triceps, thigh, 
and suprailiac skinfolds in mm) - (0.0001392 x age)

Table 1- Jackson and Pollock Equations. Used for body density calculations using the 3-site 
method (Jackson and Pollock 1978; Jackson et al. 1980).

Percent Fat = [(457/Body Density) - 414.2] 

Table 2- Brožek Equation. Used for calculating percent 
body fat from body density (Brožek et al. 1963).

BMI = [weight (lb) / [height (in)]2] x 703 

Table 3- Equation for BMI Calculation. (CDC 2015).



Disease Control and Prevention (CDC 2015).  The calculated BMI was interpreted and each 

cadaver was categorized via the standard weight categories (Table 4).  

Subcutaneous Depth 

 Subcutaneous depth was measured bilaterally at five sites (proximal humerus, distal 

radius, proximal tibia, distal tibia, and calcaneus) and in the midline of the chest (sternum) using 

a Shinwa measuring taper gauge.  The taper gauge was inserted into the cadaver following 

needle insertion procedures for the previously stated sites of IO infusions, which are established 

elsewhere (Paxton 2012; Tarrow et al. 1952; McCarthy et al. 2003; Clem and Teirney 2004).  In 

one male, the subcutaneous depth on the left proximal tibia was not measured due to an IO 

cannula being  placed antemortem. 

 To measure the subcutaneous tissue depth of the sternum, 

the manubrium was palpated to locate the sternal notch.  As 

illustrated (Figure 3), the taper gauge was inserted at a 90° angle 

to the bone surface, 15 mm below the sternal notch in the midline 

of the manubrium (Tarrow et al. 1952).  The subcutaneous tissue 

depth at the proximal humerus was measured by placing the 
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Weight Category BMI

Underweight < 18.5

Normal 18.5 - 24.9

Overweight 25.0 - 29.9

Obese ≥ 30

Table 4- Standard Weight Categories. Used 
to categorize BMI (CDC 2015).

Figure 3- Subcutaneous 
Tissue Depth of Sternum.



brachium directly along the trunk and placing the antibrachium at a 90° angle so the palm of the 

hand was resting on the umbilicus.  The greater tubercle of the proximal humerus was palpated 

and the taper gauge was inserted at a 90° angle to the bone surface, directly on the greater 

tubercle of the humerus (Paxton 2012).  The antibrachium was then placed along the trunk and 

the shoulder was slightly externally rotated to allow for the lateral radius to face anteriorly.  The 

distal radius was palpated to locate the radial styloid process.  Insertion of the taper gauge 

occurred at a 45° angle, 3 cm proximal to the radial styloid process (McCarthy et al. 2002). 

 A rolled towel was placed under the knee to obtain a slightly flexed position in order to 

measure the subcutaneous tissue depth of the proximal tibia.  The tibial tuberosity was palpated 

and the taper gauge was inserted at a 90° angle to the bone surface, 2 cm distally and slightly 

medial to the tibial tuberosity (Dev et al. 2014).  The rolled towel was removed and the hip was 

then externally rotated to allow for the medial malleolus to be positioned anteriorly.  The distal 

tibia was palpated to locate the flat area of bone 2 cm 

proximal to the medial malleolus (Figure 4).  Insertion of the 

taper gauge occurred at this site, at a 10°-15° angle in relation 

to the long axis of the tibia (Paxton 2012).  The posterior 

ankle was placed on a block to raise the lower limb for a 

better view of the calcaneal insertion site.  A line from the 

calcaneal tuberosity to the medial proximal prominence of 

metatarsal one was imagined.  The medial process of the 

calcaneal tuberosity was palpated, which should be located 

on the imagined line 2 cm distally from the calcaneal 
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A

B

Figure 4- Subcutaneous Tissue 
Depth Measurement at Distal 

Tibia (A), and close up (B).



tuberosity.  The taper gauge was inserted at a 45° lateral angle at this site (Clem and Tierney 

2004). 

Results 

 The twenty-two cadavers were all older adult cadavers, with fourteen males between the 

ages of sixty and ninety-five years old, and eight females between the ages of fifty-four and 

ninety-three years old.  The range of BMI 

recorded for males and females was 16.7 

to 28.9 and 17.2 to 29.4, respectively. 

Whereas, percent body fat for males and 

females ranged from 7.46 to 25.26 and 

8.81 to 29.02, respectively (Table 5).   

 Correlations were calculated to 

determine possible relationships between 

BMI and subcutaneous tissue depth, as well as percent body fat and subcutaneous tissue depth. 

Both BMI and percent body fat demonstrated a positive correlation with subcutaneous tissue 

depth at all sites (Table 6).  BMI demonstrated a moderate positive relationship at the sternum 

(0.64691), distal radius (0.66671), proximal tibia (0.66072), and distal tibia (0.57304); and a 
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Male Female

Number 14 8

Youngest 60 54

Oldest 95 93

Greatest BMI 28.9 29.4

Lowest BMI 16.7 17.2

Greatest % BF 25.26 29.02

Lowest % BF 7.46 8.81

Table 5- Demographic Features of Cadavers.

Sternum Proximal 
Humerus

Distal 
Radius

Proximal 
Tibia

Distal Tibia Calcaneus

BMI 0.64691 0.36533 0.66671 0.66072 0.57304 0.46301

Percent 
Body Fat

0.75415 0.64870 0.51380 0.42045 0.51664 0.53762

Table 6- Correlation Data. Correlation of BMI and subcutaneous tissue depth and percent body 
fat and subcutaneous tissue depth.



mild positive relationship at the proximal humerus (0.36533) and calcaneus (0.46301).  All 

correlations between subcutaneous tissue depth and BMI were significant (sternum p=0.0011, 

distal radius p=0.0007, proximal tibia p=0.0008, distal tibia p=0.0053 and calcaneus p=0.03) 

except the proximal humerus (p=0.0946).  Percent body fat showed a strong positive relationship 

at the sternum (0.75415), moderate positive relationships at the proximal humerus (0.64870), 

distal radius (0.51380), distal tibia (0.51664), and calcaneus (0.53762); and a mild positive 

relationship at the proximal tibia (0.42045).  All correlations between subcutaneous tissue depth 

and percent body fat were significant (sternum p<0.0001, proximal humerus p=0.0011, distal 

radius p=0.0144, distal tibia p=0.0138 and calcaneus p=0.0099) except the proximal tibia 

(p=0.0946).  

 Six cadavers where measured prior to embalming, as well as after embalming.  Using the 

Wilcoxon Signed Rank Test, it was observed that embalmed cadavers had significantly larger 

subcutaneous tissue depth at all sites (p=0.0313), except the distal radius (p=0.0625).  

Discussion 

 This study’s aim is to determine relationships between BMI and subcutaneous tissue 

depth, as well as percent body fat and subcutaneous tissue depth, in order to increase knowledge 

in the field to aid in limiting IO misplacements.  Through obtaining skinfold measurements, 

height, and weight from twenty-two cadavers, BMI and percent body fat was calculated.  BMI 

and percent body fat was then tested against subcutaneous tissue depth that was obtained through 

taper gauge depth measurements.  

 All six tested sites show a mild to moderate positive correlation between subcutaneous 

tissue depth and BMI.  The proximal humerus and the calcaneus demonstrated mild positive 
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correlations between BMI and subcutaneous tissue depth.  These sites have a small subcutaneous 

tissue layer above muscle and thick layers of connective tissue.  Furthermore, because BMI 

cannot distinguish between adipose tissue, muscle, and connective tissue, correlations between 

BMI and subcutaneous tissue depth at these two sites would not be expected to be strongly 

positive (Prentice and Jebb 2001).  The sternum, distal radius, proximal tibia, and distal tibia 

showed moderate positive correlation with BMI.  Subcutaneous tissue at these sites contain 

mostly adipose tissue and thin layers of connective tissue, therefore, allowing for a closer 

correlation between BMI and adipose tissue increase.   

 Mild, moderate, and strong positive correlations were observed between percent body fat 

and subcutaneous tissue depth at all tested sites.  Subcutaneous tissue depth at the proximal tibia 

showed a mild positive correlation with percent body fat.  Anatomy of the proximal tibia 

involves a very thin layer of subcutaneous tissue throughout most weight categories.  Due to 

common weight distributions involving mostly the abdomen and femoral/gluteal regions, the 

overlying subcutaneous tissue layer at the proximal tibia is not particularly thick in non-obese 

individuals (Feldman et al. 1969).  Unlike the proximal tibia, a strong positive correlation was 

observed between subcutaneous tissue depth at the sternum and percent body fat.  The thin layer 

of subcutaneous tissue that covers the sternum contains mostly adipose tissue and thin layers of 

connective tissue.  Therefore, the increase in adipose tissue in this area will increase the 

subcutaneous tissue depth while the percent body fat increases as well.  The distal radius and 

distal tibia are similar to the sternum because the subcutaneous tissue overlying these sites 

contain mostly adipose tissue and thin connective tissue layers.  When percent body fat 
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increases, so does the adipose tissue, leading to a positive correlation between percent body fat 

and subcutaneous tissue depth.  

 Embalmed cadavers were shown to have significantly thicker subcutaneous tissue at all 

sites, except the distal radius, in comparison to unembalmed cadavers.  The insignificant 

difference found between the distal radius of embalmed cadavers and the distal radius of 

unembalmed cadavers is from the relatively constant thickness of subcutaneous tissue over the 

site independent of excess fluids.  Through the embalming process that is required for cadaver 

use, in anatomy labs, the subcutaneous tissue layers are filled with embalming fluid to an extent 

that is different from living individuals.  This demonstrated that subcutaneous tissue studies 

should utilize unembalmed cadavers only, to maintain a close relationship to conditions in living 

individuals.   

 Although subcutaneous tissue depth has been widely addressed in forensic studies, 

craniofacial mapping, and insulin usage, there is a dearth of research pertaining to other aspects 

of post-cranial subcutaneous tissue depths.  This study extends the knowledge of IO infusion 

placement in relation to BMI, percent body fat, and subcutaneous tissue depth.  Future studies 

should include the use of unembalmed cadavers only, a larger number of cadavers, and more 

sophisticated anthropometric measuring techniques. 
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Introduction 

 In an emergency setting, it is important to be able to quickly and safely deliver life-saving 

fluids and medications to the patient.  This is usually achieved by introducing a peripheral 

intravenous (IV) catheter into one of the patient’s peripheral veins.  The average time for a 

peripheral IV line to be placed is 4.4 ± 2.8 minutes, which is insufficient in an extreme  

emergency setting (Minville et al. 2006).  Increased time to place a peripheral IV line can occur 

when veins are too fragile, narrow, collapsed, or when the patient is an infant, combative or 

obese.  When vascular access is needed immediately, and a peripheral IV line cannot be obtained 

in a timely manner, healthcare professionals turn to other options to gain venous access.  Current 

alternatives to peripheral IV cannulation include subcutaneous, intramuscular or endotracheal 

routes (Orlowski 1994).  These routes provide quick access for medications to be given to the 

patient, but present difficulty in giving large amounts of fluids and certain medications to the 

patient in a short amount of time.  When these three routes are inappropriate for the treatment 

needed, a central venous catheter (CVC) or an intraosseous (IO) infusion is used (Paxton 2012).  

 CVC and IO infusions are more invasive than other routes for peripheral IV cannulation.  

The advantage of using these routes is that they allow for large amounts of fluids and 

medications to reach the general circulation, at rates similar to peripheral IVs (Fowler et al. 

2007).  The use of a CVC is more common in a hospital setting such as the emergency 

department than in pre-hospital settings due to its complex nature.  Along with the complexity of 

performing a CVC, there are many complications associated with CVC placement that are not 

associated with IO infusions (Knuth et al. [date unknown]).  Therefore, in many emergencies, 

healthcare professionals will choose to perform IO infusions rather than CVC. 
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 An IO infusion is a medical procedure that involves the insertion of a needle into the 

medullary cavity of a bone to gain venous access.  As an alternative to peripheral IV placement, 

IO infusions are performed on both child and adult patients which present with small, fragile or 

collapsed veins, vasoconstriction, burns or obesity (Paxton 2012; Fowler et al. 2007; Hurran and 

Dunn 1995).  IO infusions are used to resuscitate the patient by restoring organ perfusion and 

fluid volumes, along with providing a route for life saving medications (Kortbeek et al. 2008; 

Warren et al. 1993).  Current recommendations state that IO placement should be performed 

when peripheral IV access can not be obtained after three attempts within two minutes (Deakin et 

al. 2010; Leidel et al. 2012).  IO infusions are primarily used in a pre-hospital setting, such as at 

an emergency scene or in ambulance transport, or in the hospital’s emergency department when 

venous access in needed immediately (Glaeser et al. 1993; Buck et al. 2007). 

History 

 In the early 20th century, venous access to the circulatory system was a significant clinical 

focus (Drinker et al. 1922; Paxton 2012).  Drinker et al. (1922) first demonstrated that venous 

access can be obtained through tibial intraosseous cannulation directly into the medullary cavity 

of a mammalian bone for therapeutic purposes.  By accessing the venous system of the 

medullary cavity, fluids were introduced to the general circulatory system.  In 1933, Josefson 

(1934) demonstrated the use of IO cannulation in humans.  He performed multiple sternal IO 

cannulations to provide treatment for pernicious anemia and other illnesses.  This study 

influenced others to pursue research in IO placement and its function (Paxton 2012). 

 Within two decades of the initial IO demonstration, Tocantins and O’Neil (1940) 

conducted a study with human subjects for sternal and proximal tibial IO placement and 
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demonstrated that flow rates were similar to that of intravenous cannulation (Tocantins 1940).  

Following early research by Tocantins (1940) and others (Benda et al. 1940; Doud and Tysell 

1942), IO cannulation research and practice increased.  During this time, the most common route 

to obtain venous access was to introduce a metal trocar into the peripheral vein of the patient.  

Because peripheral IV placement was quite difficult and more dangerous than it is today, IO 

placement became popular within clinical environments (Paxton 2012).  

 In the early days of IO research, the sternum was a common IO site in both clinical and 

research settings.  This site was common because of the major working theory that a functional 

IO must involve the use of red bone marrow due to its hematopoietic abilities (Tocantins and 

O’Neil 1945).  This was countered by research demonstrating that tibial IO placement would be 

safer and allow for more adequate flow and placement in infants and children (Behr 1944).  

Sternal IO usage was introduced and recommended prior to peripheral IV attempts in the military 

in 1944, and continued as a route of choice throughout the remainder of World War II (Bailey 

1944). 

 IO cannulation in adults decreased through the late 1940s, but not for children; and due to 

the development of plastic disposable catheters, the use of IO infusions decreased further in the 

1950s (Rivera et al. 2005).  Plastic disposable catheters for peripheral IV, subcutaneous, and 

endotracheal placement made these routes safer and easier to perform, leading to peripheral IV 

routes becoming the most common (Rivera et al. 2005).  Throughout the 1980s, IO research 

increased with multiple case studies advocating the importance of IO options for resuscitation in 

children (Orlowski 1984; Berg 1984).  Ultimately, the American Heart Associate, in 1985, 
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recommended the use of IO infusions as an alternative to peripheral IV cannulation in children 

(JAMA 1986). 

 In the 1990s, IO infusions began a resurgence in the pre-hospital and medical settings for 

adults (Paxton 2012).  Rather than using manual needles to penetrate the thick cortical layer of 

bones in adults, semi-automatic devices were developed.  These devices made it easier to reach 

the bone marrow through the thick cortical layer of bone found at the IO insertion sites in adults.  

These devices not only helped increase IO cannulation usage in adults, but also enhanced IO 

cannulation in children (Paxton 2012). 

 In 2000, the American Heart Association recommended that IO infusions be considered 

for the first attempt at venous access in children experiencing cardiac arrest (AHA 2000).  In the 

mid-2000s, Pediatric Advanced Life Support, Advanced Cardiac Life Support, and the American 

Heart Association, approved the use of IO cannulation when peripheral IV access couldn’t be 

obtained in the appropriate timeframe, and for patients in cardiac arrest, IO cannulations should 

be performed immediately (AHA 2006; Kleinman et al. 2010).  

Anatomy of Bones 

 There are three main portions of adult long bones, the epiphyses, metaphyses, and 

diaphysis.  The epiphysis is a secondary center (or centers) of ossification located on both the 

proximal and distal ends of the long bones and at sites of major processes for muscular 

attachment.  On the surface of the articulating region of the epiphysis lies articular cartilage that 

allows for smooth movement within the joint.  The diaphysis is a long slim shaft of compact 

bone which contains a medullary cavity in the central inner space.  The flared region between the 
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diaphysis and the epiphysis, on both the proximal and distal portions is the metaphysis, the 

region formerly occupied by the growth plate (Standring 2008). 

 Both compact and cancellous bone matrices are produced in layers and are classified as 

lamellar bone.  The first layer of bone is a connective tissue layer called the periosteum, which is 

located above multiple layers of calcified bone, and covers all external surfaces of bone where 

there is no articular cartilage.  The periosteum protects the underlying bony tissue, anchors blood 

vessels and nerves, and participates in the attachment of tendons and ligaments to the bone.  

Deep to the periosteum lie circumferential lamellae — densely packed compact bone — that 

encompass the entire bone.  Located below the circumferential lamellae are osteons, which are 

cylindrical structures that make up the majority of compact bone (Standring 2008).  

 Each osteon consists of concentric lamellae — compact bone layers that surround the 

central canal.  Osteons run parallel to the long axis of the bone and have a central canal known as 

the Haversian canal.  Connecting the Haversian canals perpendicularly are Volkmann’s canals.  

Blood vessels and nerves run through both the Haversian canals and Volkmann’s canals allowing 

communication across the bone.  On the endosteal surface of compact bone is a layer of 

cancellous bone, organized into spicules composed of parallel lamellae (Standring 2008).  An 

inner layer of connective tissue, the endosteum, lines the internal surfaces of bone, such as the 

medullary cavity and trabeculae. 

 The medullary cavity of long bones contains blood vessels, as well as bone marrow.  

Bone marrow is found within the medullary cavity and spaces between the trabeculae of 

cancellous bone.  There are two types of bone marrow: red marrow and yellow marrow.  Red 

bone marrow is a type of hematopoietic tissue and is found between the trabeculae within the 
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epiphysis of long bones in children.  At birth the fetal skeleton contains only red bone marrow, 

whereas in adulthood, only flat bones of the skull, ribs, sternum, and vertebrae still contain red 

bone marrow.  Red bone marrow decreases throughout aging because it begins to transform into 

yellow bone marrow during early adolescence.  Yellow bone marrow is composed primarily of 

adipose tissue and is found within the diaphysis of long bones in adults (Hall 2012). 

Vasculature of Bone 

 Blood flow in bones follows two pathways.  The first is centrifugal, within the compact 

bone of the diaphysis, and the second is centripetal, on the outer surface of the bone.  There are 

one or two nutrient arteries that enter the nutrient foramen and follow into the nutrient canal, 

which lies in the middle-third of the diaphysis.  Once the nutrient artery passes through the 

nutrient canal, it branches into ascending and descending medullary arteries in the medulla.  As 

these arteries further divide into smaller vessels they approach the proximal and distal epiphyses 

(Laroche 2002).  The branches of these vessels anastomose with the branches of the metaphyseal 

and epiphyseal arteries.  Metaphyseal arteries arise from surrounding systemic vessels, whereas 

epiphyseal arteries are said to come from periarticular vascular arcades (Standring 2008).  At the 

epiphyses, many small veins exit the bone through vascular foramina.  

 Within the medulla, the ascending and descending branches divide into centripetal 

branches that stay within the medullary cavity and cortical branches that travel within the cortical 

bone.  The centripetal branches divide into arterioles, then capillaries, and further into medullary 

sinusoids shaped in hexagonal networks (Standring 2008).  These sinusoids drain into a central 

venous sinus located within the center of the medullary cavity.  Within the medullary cavity the 

central venous sinus branches into veins that follow the path of the ascending, descending, and 
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nutrient arteries (Figure 5).  These veins exit the bone with the nutrient artery (nutrient vein) or 

unaccompanied as emissary veins.  

 Cortical branches lead to fenestrated cortical capillaries that traverse the Haversian and 

Volkmann’s canals.  Volkman canals connect to the medullary cavity for drainage (Laroche 

2002).  Upon reaching the outer surface of the bone, the cortical capillaries anastomose with 

periosteal plexuses.  Periosteal vessels anastomose with neighboring muscular vessels, allowing 

a portion of venous drainage to occur by muscular vessels (Standring 2008).  

 The epiphyseal arteries (nutrient arteries) enter the epiphysis and divide into many small 

branches that anastomose within the spaces between trabeculae.  These vessels eventually drain 

into epiphyseal sinusoids, that further drain into veins which leave the bone (Laroche 2002).  
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 Vasculature of flat bones differs from that of long bones by primarily being supplied by 

periosteal vessels (Laroche 2002).  These vessels can still drain into a central vein that runs in the 

trabecular spaces within the center of the bone.  The main difference between vasculature of 

mature and immature bones is that the epiphyses of immature bones have a separate blood 

supply for the metaphysis and diaphysis, because blood vessels are unable to cross the 

cartilaginous growth plate (Standring 2008). 

Intraosseous Devices and Techniques 

  Recent advances in medical equipment and techniques have allowed IO infusions to 

become more common among adults.  New devices have made it easier to penetrate through the 

thick cortical layer of bone, in order to reach the medullary cavity (Weiser et al. 2012).  Prior to 

the approval of semi-automatic IO delivery devices, IO needles where introduced into the bone 

manually with the Jamshidi™ IO needle or the Cook™ IO needle (Figure 6).  The technique for 

the manual introduction is as follows: once the infusion site is identified and palpated, it should 

be cleansed by wiping it down with an iodine solution prior to 

IO insertion.  If time allows, an injection of lidocaine, a local 

anesthetic, can be injected into the skin and subcutaneous 

tissue overlying the site of insertion.  While holding the 

manual IO needle with the base in the palm of the hand, start 

to insert the IO needle into the skin.  Upon reaching the bone, 

the index finger and thumb are positioned close to the skin and a twisting motion is used with 

constant pressure to bore through the bone cortex.  Once the medullary cavity is reached, there 

will be a loss of tension, notifying the provider that the needle has reached the cavity.  Manual 
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insertion, such as this, occurred at all known sites for IO infusion prior to the development of 

semi-automatic devices (Dev et al. 2014).  

 In the 1990s, semi-automatic devices made inserting IO catheters into adults faster, more 

effective and safer.  An IO insertion with an automatic or battery powered device can generally 

be accomplished within one minute and is more accurate than the manual technique (Day 2011).  

There are several systems that are approved by the Food and Drug Administration, with some of 

the more popular ones being the EZ-IO®, BIG® (Big Injection Gun), and sternal FAST1® (First 

Access for Shock and Trauma 1).  See Appendix A for more details on semi-automatic devices. 

Landmark Identification 

 Correct landmark identification is particularly important when providing any medical 

care, especially IO infusions.  Several studies demonstrate that the failure to correctly place IO 

cannulas is caused by either incorrect needle choice or errors in landmark identification (Reades 

et al. 2011; Paxton et al. 2009; Koschel 2005).  Inability to correctly identify anatomical 

landmarks in children and adults can also be due to inexperienced providers, rare anatomical 

abnormalities, and excess tissue over the infusion site.  Leidel et al. (2009) demonstrated that the 

main reason for inaccurate IO placement at the proximal humerus was from inability to 

accurately identify the greater tubercle of the humerus due to excess tissue over the insertion site.  

Excess tissue can include large muscle mass, an increased adipose layer, or increased body mass 

index (BMI), making it difficult to accurately palpate bony anatomical structures.  Kam and 

Taylor (2010) demonstrated that an increased BMI strongly correlates with difficulty in 

accurately performing cannulations in emergency settings.  Some dispute exists among past 

studies on what site is best to use when there is excess tissue over the insertion site.  For 
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example, Paxton et al. (2009) demonstrated that the proximal humerus is an ideal site for obese 

patients, because of this sites’s large anatomical landmark, wheres, Reades et al. (2011a) 

demonstrated only a 50% success rate using the proximal humerus, due to inability to correctly 

identify anatomical landmarks. 

Intraosseous Infusion Sites 

 Sites for IO placement are determined by ease of access, avoidance of injuries and 

contraindications, level of obesity, and provider judgment and experience.  The most common 

insertion sites are long bones with anatomical landmarks that are easy to identify and penetrate 

under a thin layer of skin at the IO site (Ong et al. 2009).  Ultimately, the IO placement site is up 

to the judgment of the provider and their comfort level.  Some of the more common sites for IO 

infusion are the proximal tibia, distal tibia, and proximal humerus (Paxton 2012). 

 Proximal Tibia 

 The proximal tibia is the most common site for intraosseous infusions in both adults and 

children because it is far away from the site of resuscitation and airway management.  In addition 

the anatomical landmark (the tibial tuberosity) is usually easy to identify due to it being 

remarkably large, flat, and superficial (Rosenberg and Cheung 2013; Peutrell 2006).  When 

compared to the proximal humerus, the proximal tibia has more successful placements and better 

flow rates (Reades et al. 2011; Reades et al. 2011a).  To properly place an IO infusion on the 

proximal tibia, the tibial tuberosity must first be located.  Then palpate 2 cm distally and slightly 

medial to find a broad flat area of cortical bone.  Needle insertion should occur at a 90º angle to 

the skin over this anatomical landmark.  
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 Distal Tibia 

 The distal tibia has similar techniques for accurate IO placement as the proximal tibia.  

When the proximal tibia cannot be used, the distal tibia is a good alternative due to the thin layer 

of subcutaneous tissue over the insertion site.  The IO placement site for the distal tibia is the 

medial malleolus.  After palpating the medial malleolus move two finger-widths superiorly.  This 

is the correct site for insertion of the needle at an angle of 20-30º in relation to the long axis of 

the tibia (Day 2011).  

 Proximal Humerus 

 The proximal humerus is a common site for IO placement.  Paxton et al. (2009) stated 

that a proximal humerus IO infusion is ideal for obese patients due to the large anatomical 

landmark this site provides.  Other studies have demonstrated that the proximal humerus is a less 

desirable site than the proximal tibia because it is closer to the site of resuscitation, and it has a 

smaller, and deeper anatomical landmark to palpate (Reades et al. 2011;  Reades et al. 2011a).  

There are a few different ways to correctly identify the anatomical landmark for IO insertion into 

the proximal humerus.  To start an IO infusion at the proximal humerus, the patient should be in 

the supine position with the arm at his/her side and elbow bent at a 90º angle with the palm of the 

hand on the umbillicus.  This position increases the prominence of the greater tubercle. Once the 

greater tubercle is palpated, move one finger-width laterally and insert the IO needle at a 90º 

angle to the skin.  An alternative means of correct anatomical placement starts with the patient in 

the same position with the healthcare providers’ hands placed on the shoulder.  The ulnar side of 

the first hand is placed vertically, just anterior to the axilla and the second hand is placed on the 
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midline of the lateral humerus.  The thumbs then meet in the middle to establish the correct site 

for IO placement (The Science…2013). 

 Manubrium 

 Sternal placement on children has been eschewed since the 1940s, due to the thin bony 

cortex which increases the risk for complications (Tocantins et al. 1941).  Furthermore, because 

other sites have been found for IO placement, the manubrium has fallen out of clinical use for 

adults as well.  The fact that the sternal location is above and close to the great vessels and vital 

organs, along with being located near the site of cardiopulmonary resuscitation (CPR) and 

airway maintenance increases the likelihood of complications.  All other common sites for IO 

placement are located on the extremities and have the benefit of being away from the site of 

CPR.  This leads to a lower risk of fatal complications and a higher frequency of use. 

 Clavicle 

 Iwama et al. (1994), have demonstrated that the clavicle can be used as an appropriate 

alternative to standard IO placement sites.  The clavicle is not commonly used clinically for IO 

placement since placement of an IO cannula here can interfere with CPR delivery.  

 Ilium 

 Some earlier studies mention IO infusions in the ilium (Iwama et al. 1994; Tarrow et al. 

1952).  This site has not been used recently in clinical settings due to the risk of penetration into 

the pelvic cavity and success rates of other sites. 

 Distal Femur 

 The distal femur has been used and is still currently used for IO cannulation in children, 

though this site is not used in adults (Paxton 2012).  The correct site for IO placement on the 
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anterior distal femur is 2-3 cm proximal to the epicondyles in the midline of the femur (Fiser 

1990).  Because this site is used only in children, the needle should be angled at 10-30º away 

from the epiphyseal growth plate to avoid damage (Fiser 1990). 

 Calcaneus 

 Prior to 1998, most sites for IO placement were associated with a medullary cavity.  It 

was thought that a cavity was needed for fluids and medication to reach the general circulation.  

Since then, the calcaneus has been shown as an efficient site to deliver fluids intraosseously just 

as effectively as the other IO sites in spite of not having a medullary cavity (Clem and Tierney 

2004).  The calcaneus is an advantageous site for IO placement because it is located far away 

from the site of resuscitation and it has easy to identify anatomical landmarks.  The site for IO 

placement on the calcaneus is 2 cm from the calcaneal tuberosity toward the medial prominence 

(Clem and Tierney 2004; McCarthy et al. 2002).  The IO needle is then inserted at a 45º angle 

towards the lateral malleolus. 

 Distal Radius 

 The distal aspect of the radius is an appropriate site for IO placement (McCarthy et al. 

2002).  Waisman and Waisman (1997) demonstrated a 100% success rate when using the distal 

radius as an IO placement site.  Although this data is promising, healthcare personnel are still not 

regularly using this site for IO infusions.  To find the correct site of IO infusion, laterally rotate 

the arm so that the radius is facing anteriorly when the patient is in the supine position.  In this 

position the base of the radial styloid process of the distal radius is easy to locate for IO 

insertion. 
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Complications 

 Prior to the implementation of semi-automatic devices, complications from IO infusions 

were more severe and occurred more frequently.  Current incidence of complications from IO 

infusions are low, but when they do occur they can be severe.  There are two main sources of 

complications when performing IO infusions: misplacement and dislodgment.  Misplacement of 

an IO needle is when the needle either over-penetrates or under-penetrates the bone.  Under-

penetration occurs more frequently, possibly due to using an incorrect needle length or having 

excess subcutaneous tissue over the site of insertion (Johnson et al. 2005).  Although certain 

semi-automatic IO devices allow for easier needle selection, under-penetration can still be a 

problem.  Misplacements can also occur due to the inexperience of healthcare providers, 

incorrect identification of anatomical landmarks, and excess subcutaneous tissue over the site of 

insertion (Macnab et al. 2000).  Because obese patients constitute a portion of the population 

receiving IO infusions, there is a need to be aware of this problem and know the thickness of the 

subcutaneous tissue overlying the insertion sites (Fowler et al. 2007).  This will help to avoid a 

misplacement of the IO needle.  

 Dislodgments occur when the IO needle is prematurely removed from the bone in which 

it was inserted.  This can occur during transportation of the patient, especially if the IO needle is 

not secured properly.  Specific complications from dislodgement are more prevalent (roughly 

10% of pediatric cases) when using the manual technique of IO placement (Peutrell 2006).  

Hallas et al. (2013) demonstrated that displacement after insertion occurs 8.5% of the time when 

using semi-automatic devices.  These devices are made to properly insert and secure IO needles.  

When using the semi-automatic device for sternal IO placement, the safety dome and strain-relief 
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patch must be dislodged first in order to further dislodge the needle.  These extra safety 

precautions make it extremely difficult to change position of the placed IO catheter, once it is 

accurately secured (Johnson et al. 2005).  Misplacement and dislodgment of IO needles can 

cause many complications, such as extravasation leading to possible compartment syndrome, 

subcutaneous abscess, cellulitis, skin infection, osteomyelitis, and necrosis of both muscle and 

bone (Greaves et al. 1999; Khan et al. 2011). 

 The most frequent complication of an IO infusion is extravasation, occurring in 3.7% of 

cases (Hallas et al. 2013; Paxton 2012).  Extravasation is the leakage of intraosseous fluids into 

the surrounding tissues.  Leakage can occur from either misplacement or dislodgment of the IO 

catheter.  If extravasation goes unnoticed, it can lead to compartment syndrome (Greaves et al. 

1999).   

 Compartment syndrome has been reported to occur in 0.6% of cases using semi-

automatic devices (Hallas et al. 2013).  To help lower the risk of compartment syndrome, IO 

placement should only be attempted at one site per bone, and the IO catheter should be 

continuously monitored to confirm extravasation is not occurring.  An extreme case was depicted 

in a child by Khan et al. (2011), where both muscle and bone necrosis occurred, along with 

compartment syndrome.  This severe case is the only one reported in recent literature.  

 Less severe complications, such as subcutaneous abscess and cellulitis, occur in 0.7% of 

cases (Luck et al. 2010).  Osteomyelitis and skin infections occur in 0.4% and 0.3%. respectively 

(Hallas et al. 2013).  Both osteomyelitis and skin infections are thought to be introduced into the 

body due to failure to correctly clean the injection site prior to insertion.  Osteomyelitis seems to 
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increase in likelihood when the IO catheter remains in the bone for an extended time (Dubick 

2000; Greaves et al. 1999). 

 Sternal IO placement has it its own range of complications.  Severe complications include 

mediastinal abscess, intrapleural infusion, penetration of the great vessels, and death (Greaves et 

al. 1999).  Prior to the semi-automatic device, FAST1®, several of these severe complications 

from sternal puncture led to death (Bakir 1963).  

Contraindications  

 Though few, there are some contraindications to IO placement.  IO infusions should not 

be placed in bones containing a fracture or through burns or skin infections which overlay the 

insertion site (Orlowski 1994).  Sites used previously for IO placement should also not be used in 

an effort to lower the risk of extravasation.  Patients who have bone or blood diseases, such as 

osteoporosis, osteogenesis imperfecta, osteopetrosis, septicemia, or acute leukemia, should not 

have IO infusions (Greaves et al. 1999).  
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Appendix A: Intraosseous Device Details  

 The first semi-automatic device on the market was the FAST1® (Fast Access for Shock 

and Trauma) in 1997, followed by the BIG® (Big Injection Gun) and EZ-IO® in 1998 and 2004 

respectively (Paxton 2012).  The EZ-IO® is approved for usage in three sites — the proximal and 

distal tibia and the proximal humerus.  This device is battery powered and has three distinct 

needle lengths, whose use is based on approximate weight.  The 15 mm needle is used on 

individuals between 3-33 kg — usually children.  There are 

two needles intended for use on adults.  The first is a 25 mm 

needle for individuals greater than 40 kg.  The second is a 45 

mm needle for individuals greater than 40 kg with excess 

tissue over the site of insertion, and for insertion on the 

proximal humerus.  Healthcare providers need to be able to 

identify the thickness of subcutaneous tissue to correctly choose which needle to use.  Once the 

ideal insertion site is located, the specific needle choice is attached and the device is placed at a 

90º angle to the site.  The needle is inserted into the skin until the bone is reached and then 

inspected to make sure the 5 mm mark (from the base of the needle) is visible.  This mark is used 

to determine if the correct needle was chosen for the corresponding depth of subcutaneous tissue.  

If the 5 mm mark is not visible, the needle is removed and a larger needle is inserted. Once the 

correct needle is inserted into the skin, gentle pressure on the power driver is given to insert the 

needle into the cortex of the bone (EZ-IO [Date Unknown]).  Upon reaching the medullary 

cavity, the provider will feel a release in pressure, indicating that it is time to stop insertion of the 

device.  The power driver and stylet are removed from the insertion site, with the needle being 
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left in place.  The catheter is then attached to an intravenous line extension set and secured to the 

patient via the EZ-Stabilizer™ (The Science…2013). 

 The BIG® (Big Injection Gun) is only approved for use on the proximal tibia and 

proximal humerus.  This system provides two different devices with associated needles, one for 

children and one for adults.  Once the correct site for insertion is 

located, the BIG® is placed at a 90º angle to the insertion site. 

One hand is used to stabilize the BIG® device throughout the 

entire insertion process.  The other hand must release the red 

safely latch at the top of the device and firmly grasp the sides 

(referred to as shoulders) of the BIG®.  With the shoulders of the BIG® grasped, the palm of that 

same hand is placed on the top of the device to apply firm pressure to deliver the stylet trocar and 

needle.  After delivery of the stylet trocar and needle, the stylet trocar is removed, and the needle 

is secured by the safety latch and tape (Adult… 2008). 

 Though rarely performed, sternal IO insertions are 

performed using the FAST1® (First Access for Shock and 

Trauma 1) system, which is only approved for usage at the 

manubrium.  The FAST1® includes the delivery device, target 

patch, and dome.  The sternal target patch is applied to the 

cleansed manubrium, identifying the correct location to 

place the stabilizer points which are located on the FAST1® 

delivery device.  When the delivery device is positioned at a 90º angle to the manubrium, manual 

pressure is applied, which inserts the stabilizer points into the skin and delivers the IO catheter 
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Figure 8- BIG® Device.  
(Waismed Ltd. 2009).

Figure 9- FAST1® Device. 
(05137PA.jpeg [date unknown]).



into the manubrium (Frascone et al. 2007).  This device only has one depth setting for IO 

catheter placement, which eliminates the risk of over-penetration.  Upon removal of the delivery 

device, the catheter is attached to tubing on the target patch.  The dome is then attached to cover 

the target patch so the IO catheter is adequately secured.  

 Once the IO catheter is placed it should be tested for functionality.  Proper placement of 

the IO needle, fluid flushing, and sometimes, bone marrow aspiration is performed.  If proper 

placement cannot be verified, the device is removed and another site is used for the placement of 

the IO catheter.  Upon confirmation of correct catheter placement, the IO catheter is ready to start 

introducing fluids and medications to the patient.  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Appendix B: Body Composition Details 

 Skinfold measurements, BMI, and percent body fat are used to delineate obese and non-

obese individuals (Sardinha et al. 1999; Wellens et al. 1996).  Skinfold measurements are 

commonly used in both clinical and research settings as a way to quantify the subcutaneous 

adipose layer and the level of total body fat (Deurenberg et al. 2009; Heymsfield et al. 2000).  

This technique is noninvasive, easy to perform, and inexpensive. While taking skinfold 

measurements, factors such as age, sex, and site, need to be taken into consideration (Heymsfield 

et al. 2005).  Understanding these factors are important to the overall outcome of measurements.  

Thus, many studies have provided a basic understanding for expected skinfold measurements 

depending on age, sex, race, and level of obesity (Gallagher et al. 2000).  To help lessen the bias 

of a single site measurement on the overall outcome of skinfold measurements, it is best to 

perform measurements at multiple sites per patient.  

 Through skinfold measurements, researchers are able to calculate body density and 

percent body fat to gain a better perspective of adiposity within an individual.  For adults older 

than sixty years, the ability to calculate body density from obtained skinfold measurement is 

achieved by using the following Jackson and Pollock 3-site equations for males and females, 

respectively (Jackson and Pollock 1978; Jackson et al. 1980):  

 Male Body Density = 1.10938 - (0.0008267 x sum of chest, abdomen, and thigh   

 skinfolds in mm) + (0,0000016 x square of the sum of chest, abdomen, and thigh   

 skinfolds in mm) - (0.0002574 x age) 
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 Female Body Density = 1.0994921 - (0.0009929 x sum of triceps, thigh, and   

 suprailiac skinfolds in mm) + (0.0000023 x square of the sum of triceps, thigh, and  

 suprailiac skinfolds in mm) - (0.0001392 x age) 

 Once body density is calculated, it is used to determine percent body fat.  Many studies 

use the Brožek equation to convert body density to percent body fat. The Brožek equation is 

(Brožek et al. 1963): 

  Percent Body Fat = [(457/body density) - 414.2] 

 This equation has been shown to overestimate the percent body fat in older individuals 

when compared to DEXA — dual energy x-ray absorptiometry (Guerra et al. 2009).  This over-

representation needs to be considered when using skinfold measurements and the Brožek 

equation to obtain percent body fat, particularly when DEXA is not available. 

 In older individuals, the measurement of body fat is considered an important assessment 

of the individual’s overall health.  This can be measured by calculating BMI and percent body 

fat.  BMI is used to categorize individuals as underweight, normal weight, overweight, or obese, 

whereas, percent body fat is used to determine the amount of overall weight which is due to fat.  

There are some concerns when using BMI to obtain percent body fat in older individuals due to 

changes in the skin, adipose patterning, and loss of skeletal muscle and bone (Heymsfield et al. 

2005).  These changes can cause misinterpretation of data when obtaining BMI for calculating 

percent body fat.  Gallagher et al. (2000) described an overall idea of the relationship between 

BMI ranges and percent body fat in Caucasian adults in ages ranging from 40-59 and 60-79.  He 
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showed that within the same BMI range there is an increase in percent body fat with an increase 

in age.  There is still a lack of research on elderly individuals and the relationship between BMI 

and percent body fat. 
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Appendix C: Data Retrieval Tables 

A) Example of Unembalmed Data Retrieval Table

Donor ID: 4315 Age- 60 Sex- M

Height- 6’0” Weight- 140

BMI- 19.0

Level Obesity- Normal

Skinfold Unembalmed

Chest 8 8

Abdomen 5 3

Supriliac 5 5

Thigh 5 5

Triceps 4 4

Sites R L

Sternum 5

Proximal 
Humerus

10 10

Distal Radius 5 4

Proximal 
Tibia

5 5

Distal Tibia 3 4

Calcaneus 15 14

Notes
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B) Example of Unembalmed and Embalmed Data Retrieval Table 

Donor ID: 4305 Age- 90 Sex- F

Height- 5’2" Weight- 125

BMI- 22.9

Level Obesity- Normal

Skinfold Unembalmed

Chest 3 3

Abdomen 2 3

Supriliac 2 3

Thigh 10 13

Triceps 4 4

Embalmed

Sites R L R L

Sternum 6 7

Proximal 
Humerus

11 11 17 18

Distal Radius 7 6 10 10

Proximal 
Tibia

7 8 12 15

Distal Tibia 3 10 12 22

Calcaneus 13 15 15 28

Notes L leg swollen
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Appendix D: Statistical Analyses  

The SAS System 

The CORR Procedure 

BMI 

1 With Variables: BMI

6      Variables: U_Sternum U_RPH     U_RDR     U_RPT     U_RDT     U_RC

Simple Statistics BMI

Variable N Mean Std Dev Sum Minimum Maximum Label 

BMI 22 23.2 3.75271 510.4 16.7 29.4 BMI 

U_Sternum 22 7.95455 3.33063 175 3 15 U Sternum 

U_RPH 22 12.04545 3.94579 265 5 22 U RPH 

U_RDR 22 7.5 2.8073 165 3 16 U RDR 

U_RPT 22 7.09091 3.72775 156 3 21 U RPT 

U_RDT 22 6.18182 2.66613 136 2 12 U RDT 

U_RC 22 20.22727 5.9115 445 12 32 U RC 

Pearson Correlation Coefficients, N = 22 Prob > |r| under H0: Rho=0

U_Sternum U_RPH U_RDR U_RPT U_RDT U_RC

BMI 0.64691 0.36533 0.66671 0.66072 0.57304 0.46301

BMI 0.0011 0.0946 0.0007 0.0008 0.0053 0.03
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The SAS System 

The CORR Procedure 

Percent Body Fat 

1 With Variables: __Body_Fat

6      Variables: U_Sternum  U_RPH      U_RDR      U_RPT      U_RDT      U_RC

Simple Statistics Percent Body Fat

Variable N Mean Std Dev Sum Minimum Maximum Label

__Body_Fat 22 16.08182 5.94911 353.8 7.46 29.02 % Body Fat

U_Sternum 22 7.95455 3.33063 175 3 15 U Sternum

U_RPH 22 12.04545 3.94579 265 5 22 U RPH

U_RDR 22 7.5 2.8073 165 3 16 U RDR

U_RPT 22 7.09091 3.72775 156 3 21 U RPT

U_RDT 22 6.18182 2.66613 136 2 12 U RDT

U_RC 22 20.22727 5.9115 445 12 32 U RC

Pearson Correlation Coefficients, N = 22, Prob > |r| under H0: Rho=0

U_Sternum U_RPH U_RDR U_RPT U_RDT U_RC

__Body_Fat 0.75415 0.6487 0.5138 0.42045 0.51664 0.53762

% Body Fat <.0001 0.0011 0.0144 0.0514 0.0138 0.0099
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_Sternum

Moments Sternum

N 6 Sum Weights 6

Mean 15.5 Sum Observations 93

Std Deviation 15.2019736 Variance 231.1

Skewness 1.04648896 Kurtosis 0.27570622

Uncorrected SS 2597 Corrected SS 1155.5

Coeff Variation 98.0772487 Std Error Mean 6.20617972

Basic Statistical Measures Sternum

Location Variability

Mean 15.5 Std Deviation 15.20197

Median 11 Variance 231.1

Mode . Range 40

Interquartile Range 21

Tests for Location: Mu0=0 Sternum

Test Statistic p Value

Student's t t 2.497511 Pr > |t| 0.0547

Sign M 3 Pr >= |M| 0.0313

Signed Rank S 10.5 Pr >= |S| 0.0313
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Quantiles (Definition 5) 
Sternum

Level Quantile

100% Max 41

99% 41

95% 41

90% 41

75% Q3 25

50% 
Median

11

25% Q1 4

10% 1

5% 1

1% 1

0% Min 1

Extreme Observations 
Sternum

Lowest Highest

Value Obs Value Obs

1 1 4 2

4 2 7 4

7 4 15 5

15 5 25 6

25 6 41 3
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_rph

Moments R. Proximal Humerus

N 6 Sum Weights 6

Mean 13.5 Sum Observations 81

Std Deviation 14.1527383 Variance 200.3

Skewness 2.30492982 Kurtosis 5.44179487

Uncorrected SS 2095 Corrected SS 1001.5

Coeff Variation 104.835098 Std Error Mean 5.7778312

Basic Statistical Measures R. Proximal Humerus

Location Variability

Mean 13.5 Std Deviation 14.15274

Median 8.5 Variance 200.3

Mode . Range 37

Interquartile Range 5

Tests for Location: Mu0=0 R. Proximal Humerus

Test Statistic p Value

Student's t t 2.336517 Pr > |t| 0.0667

Sign M 3 Pr >= |M| 0.0313

Signed Rank S 10.5 Pr >= |S| 0.0313
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Quantiles (Definition 5) 
R. Proximal Humerus

Level Quantile

100% Max 42

99% 42

95% 42

90% 42

75% Q3 11

50% Median 8.5

25% Q1 6

10% 5

5% 5

1% 5

0% Min 5

Extreme Observations          
R. Proximal Humerus

Lowest Highest

Value Obs Value Obs

5 2 6 1

6 1 7 5

7 5 10 4

10 4 11 3

11 3 42 6
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_rdr 

Moments R. Distal Radius

N 6 Sum Weights 6

Mean 2.83333333 Sum Observations 17

Std Deviation 2.31660671 Variance 5.36666667

Skewness 0.30028929 Kurtosis -1.4177694

Uncorrected SS 75 Corrected SS 26.8333333

Coeff Variation 81.7625899 Std Error Mean 0.94575073

Basic Stastical Measures R. Distal Radius

Location Variability

Mean 2.833333 Std Deviation 2.31661

Median 2.5 Variance 5.36667

Mode . Range 6

Interquartile Range 4

Tests for Location: Mu0=0 R. Distal Radius

Test Statistic p Value

Student's t t 2.995856 Pr > |t| 0.0302

Sign M 2.5 Pr >= |M| 0.0625

Signed Rank S 7.5 Pr >= |S| 0.0625
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Quantiles (Definition 5) 
R. Distal Radius

Level Quantile

100% Max 6

99% 6

95% 6

90% 6

75% Q3 5

50% Median 2.5

25% Q1 1

10% 0

5% 0

1% 0

0% Min 0

Extremem Observations 
R. Distal Radius

Lowest Highest

Value Obs Value Obs

0 2 1 5

1 5 2 3

2 3 3 1

3 1 5 6

5 6 6 4
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_rpt 

Moments R. Promixal Tibia

N 6 Sum Weights 6

Mean 8.83333333 Sum Observations 53

Std Deviation 3.97072621 Variance 15.7666667

Skewness 0.32798171 Kurtosis -0.0226613

Uncorrected SS 547 Corrected SS 78.8333333

Coeff Variation 44.9516175 Std Error Mean 1.62104219

Basic Statistical Measures R. Promixal Tibia

Location Variability

Mean 8.83333 Std Deviation 3.97073

Median 9.5 Variance 15.76667

Mode 10 Range 11

Interquartile Range 5

Tests for Location: Mu0=0 R. Promixal Tibia

Test Statistic p Value

Student's t t 5.449169 Pr > |t| 0.0028

Sign M 3 Pr >= |M| 0.0313

Signed Rank S 10.5 Pr >= |S| 0.0313
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Quantiles (Definition 5) 
R. Promixal Tibia

Level Quantile

100% Max 15

99% 15

95% 15

90% 15

75% Q3 10

50% Median 9.5

25% Q1 5

10% 4

5% 4

1% 4

0% Min 4

Extreme Observations        
R. Promixal Tibia

Lowest Highest

Value Obs Value Obs

4 3 5 1

5 1 9 2

9 2 10 4

10 5 10 5

10 4 15 6
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_rdt 

Moments R. Distal Tibia

N 6 Sum Weights 6

Mean 5.66666667 Sum Observations 34

Std Deviation 4.80277697 Variance 23.0666667

Skewness 0.63246165 Kurtosis -1.1790404

Uncorrected SS 308 Corrected SS 115.333333

Coeff Variation 84.7548878 Std Error Mean 1.96072549

Basic Statistical Measures R. Distal Tibia

Location Variability

Mean 5.666667 Std Deviation 4.80278

Median 4.5 Variance 23.06667

Mode 2 Range 12

Interquartile Range 7

Tests for Location: Mu0=0 R. Distal Tibia

Test Statistic p Value

Student's t t 2.890087 Pr > |t| 0.0342

Sign M 3 Pr >= |M| 0.0313

Signed Rank S 10.5 Pr >= |S| 0.0313
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Quantiles (Definition 5) 
R. Distal Tibia

Level Quantile

100% Max 13

99% 13

95% 13

90% 13

75% Q3 9

50% Median 4.5

25% Q1 2

10% 1

5% 1

1% 1

0% Min 1

Extreme Observations    
R. Distal Tibia

Lowest Highest

Value Obs Value Obs

1 4 2 2

2 6 2 6

2 2 7 5

7 5 9 1

9 1 13 3
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The SAS System 

The UNIVARIATE Procedure 

Variable: diff_rc 

Moments R. Calcaneus

N 6 Sum Weights 6

Mean 4.5 Sum Observations 27

Std Deviation 3.27108545 Variance 10.7

Skewness 1.23426405 Kurtosis 0.12315486

Uncorrected SS 175 Corrected SS 53.5

Coeff Variation 72.6907877 Std Error Mean 1.33541504

Basic Statistical Measures R. Calcaneus

Location Variability

Mean 4.5 Std Deviation 3.27109

Median 3 Variance 10.7

Mode 2 Range 8

Interquartile Range 5

Note: The mode displayed is the smallest of 
2 modes with a count of 2.

Tests for Location: Mu0=0 R. Calcaneus

Test Statistic p Value

Student's t t 3.369739 Pr > |t| 0.0199

Sign M 3 Pr >= |M| 0.0313

Signed Rank S 10.5 Pr >= |S| 0.0313

!59



Quantiles (Definition 5) 
R. Calcaneus

Level Quantile

100% Max 10

99% 10

95% 10

90% 10

75% Q3 7

50% Median 3

25% Q1 2

10% 2

5% 2

1% 2

0% Min 2

Extreme Observations       
R. Calcaneus

Lowest Highest

Value Obs Value Obs

2 3 2 3

2 1 3 2

3 4 3 4

3 2 7 5

7 5 10 6
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Appendix E: Data Tables 

!61

Skinfold 4304 4305 4306 4307 4308

UCR 8 3 4 10 20

UAR 6 2 2 6 16

USR 6 2 7 8 7

UThR 18 10 5 19 18

UTR 7 4 7 11 20

UCL 5 3 4 11 15

UAL 5 3 1 6 20

USL 6 3 5 9 8

UThL 23 13 6 20 16

UTL 5 4 9 13 18

Sites 4304 4305 4306 4307 4308

U Sternum 4 6 7 8 10

U RPH 11 11 12 8 11

U RDR 5 7 7 8 10

U RPT 4 7 4 21 7

U RDT 5 3 6 6 7

U RC 13 13 15 15 19

U LPH 11 11 15 9 10

U LDR 8 6 8 11 9

U LPT 8 8 8 17 5

U LDT 5 *10 8 7 7

U LC 14 15 14 18 17

Age 93 90 91 67 81

Sex F F F F M

Height 5’0” 5’2” 4’9” 4’9” 5’0”

Weight 105 125 101 136 136

BMI 20.5 22.9 21.9 29.4 26.6

Body Density 1.0579569 1.0716665 1.0687901 1.0557567 1.0485544

%Body Fat 17.76 12.24 13.39 18.66 21.64
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Skinfold 4309 4310 4311 4312 4313

UCR 11 30 20 20 12

UAR 15 24 12 12 15

USR 11 20 17 15 8

UThR 16 29 18 20 16

UTR 6 25 25 13 6

UCL 11 24 19 19 12

UAL 16 23 10 11 14

USL 12 20 19 14 7

UThL 17 31 19 21 11

UTL 7 24 19 14 7

Sites 4309 4310 4311 4312 4313

U Sternum 12 15 8 8 8

U RPH 11 15 13 18 17

U RDR 9 10 16 5 10

U RPT 10 7 10 8 10

U RDT 7 8 9 6 10

U RC 20 26 32 25 22

U LPH 10 18 14 16 17

U LDR 8 10 15 5 8

U LPT 10 8 9 8 10

U LDT 7 7 7 5 7

U LC 19 25 30 23 22

Age 84 54 86 91 95

Sex M F M F M

Height 6’0” 5’5” 5’8” 5’4” 5’7”

Weight 190 170 190 157 150

BMI 25.8 28.3 28.9 26.9 23.5

Body Density 1.0558594 1.0310955 1.0499086 1.0444649 1.0523373

% Body Fat 18.62 29.02 21.08 23.34 20.08
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Skinfold 4314 4315 4316 4317 4318

UCR 4 8 15 9 20

UAR 2 5 12 5 15

USR 3 5 8 8 8

UThR 2 5 11 7 10

UTR 3 4 5 9 20

UCL 4 8 12 7 18

UAL 2 3 10 7 15

USL 3 5 9 8 10

UThL 2 5 7 6 12

UTL 4 4 6 7 20

Sites 4314 4315 4316 4317 4318

U Sternum 3 5 12 5 10

U RPH 8 10 14 10 22

U RDR 3 5 5 4 8

U RPT 3 5 5 6 8

U RDT 2 3 5 3 7

U RC 16 15 17 21 27

U LPH 6 10 12 12 15

U LDR 4 4 6 7 7

U LPT 3 5 4 7 9

U LDT 2 4 2 4 7

U LC 13 14 17 20 25

Age 74 60 92 85 85

Sex M M M M F

Height 5’8” 6’0” 5’9” 5’5” 5’3”

Weight 110 140 143 125 134

BMI 16.7 19.0 21.1 20.8 23.7

Body Density 1.0838212 1.0795738 1.056595 1.0708459 1.0532511

% Body Fat 7.46 9.12 18.32 12.57 19.69
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Skinfold 4319 4320 4325 4326 4328

UCR 5 *27 6 3 2

UAR 11 *29 11 5 5

USR 10 17 9 3 2

UThR 9 10 7 5 5

UTR 4 18 5 4 4

UCL 4 *34 4 3 2

UAL 9 *33 11 4 5

USL 10 15 6 3 2

UThL 9 10 7 5 5

UTL 4 11 5 *15 5

Sites 4319 4320 4325 4326 4328

U Sternum 7 15 3 7 6

U RPH 7 17 12 12 5

U RDR 6 10 7 9 6

U RPT 6 8 7 5 4

U RDT 9 9 12 5 2

U RC 12 31 17 17 20

U LPH 7 16 10 12 6

U LDR 4 9 7 7 6

U LPT 7 9 ~ HAS IO ~ 7 5

U LDT 5 9 10 3 3

U LC 20 30 17 18 19

Age 63 85 78 69 61

Sex M M M M F

Height 5’11” 6’3” 5’9” 5’7” 5’4”

Weight 174 223 140 129 100

BMI 24.3 27.9 20.7 20.2 17.2

Body Density 1.0734963 1.0399084 1.0703836 1.0811427 1.0803573

% Body Fat 11.51 25.26 12.75 8.50 8.81
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Skinfold 4329 4330

UCR 7 7

UAR 11 7

USR 7 8

UThR 6 8

UTR 7 8

UCL 9 8

UAL 13 10

USL 10 6

UThL 10 9

UTL 9 4

Sites 4329 4330

U Sternum 8 8

U RPH 12 9

U RDR 7 8

U RPT 7 4

U RDT 5 7

U RC 25 27

U LPH 10 11

U LDR 7 6

U LPT 7 5

U LDT 5 7

U LC 26 29

Age 73 74

Sex M M

Height 5’8” 5’8”

Weight 130 160

BMI 19.8 24.3

Body Density 10716706 1.0729194

% Body Fat 12.24 11.74
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