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Optimization Study of an Image Classification          
Deep Neural Network    

 
Abstract 
Machine Learning is an important and growing field within Artificial Intelligence. It is 
particularly useful in situations where developing an algorithm to perform the task in a 
conventional way would be extremely difficult. Instead of being programmed specifically to 
complete a task, a program embodies a trained model that can recognize patterns present 
in given example data, and is able use that model to make predictions on future data. 
Neural networks are a prominent example of machine learning models used for this 
purpose. Neural networks are models that are based on how brains work, with massive 
numbers of connected processing elements called nodes. Training the model is a process of  
iteratively assigning different weights to node connections; in effect, the network “learns” 
to recognize patterns. 
 
This process of training a neural network to perform a task involves repeatedly testing it 
with example data and using the results to modify the parameters or weights within the 
model in such a way as to minimize error. The component that makes these changes is 
called the optimizer. As the field of machine learning has grown and matured, many 
different types of optimizers have been proposed and developed, each with their own set of 
advantages and disadvantages. The goal of this research project is to conduct a 
performance evaluation of different optimizers, quantifying the speed and accuracy with 
which they perform an image classification task. 
  
 

Introduction  
Image classification is an easy task for humans. Most humans can tell at a glance if a photo 
contains a dog or a cat, although it may be hard for them to precisely articulate how they 
made that determination. For these and other reasons, a simple recognition task is a more 
complicated problem for a computer program. Neural networks provide a means to solve 
this problem, and allowing autonomous systems to classify large amounts of  images with 
greater speed than a human could ever hope to produce. 
 
Neural networks contain many nodes that are connected together in ways that allow the 
computer to make a choice about what information it has been given, whether a simple 
binary decision, e.g. Is this a cat or a dog?, or a more complex decision, e.g. Where are the 
obstacles in this video? Each connection between nodes is activated or not based on the 
input data and the weights associated with each node. 
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Convolutional Neural Networks (CNN) are very popular in image analysis because of their 
ability to extract features by convolution. The use of filters to convolve the input into 
features reduces the number of parameters needed for the network to function, allowing 
the network to be lighter and faster. Between these convolution layers are pooling layers. 
These reduce the size of the data being fed through the neural network.  Ultimately the 
convolved information is fed through a fully connected activation layer to classify the input, 
and the output of the network is obtained. [1] 

 
Figure 1: CNN for identifying handwritten digits 

 
Figure 1 diagrams two different convolution layers that extract features and two pooling 
layers that reduce the size of the processed data. What starts out as a 28x28 pixel input 
goes through several feature maps, then is reduced to 14x14 datasets, goes through more 
feature maps and size reduction, and feeds forward through several fully connected layers 
that produce the final output (the classification). 

 

Figure 2: Neural network training process 
 
Figure 2 shows the basic process involved in training a neural network. The input to the 
neural network consists of images from a labeled dataset, which are fed forward through 
the neural network. This generates a classification, or a guess of what category the image 
belongs in.  This classification is the output of the neural network, which is then compared 
to the target, or actual classification of the image. The loss function is what performs this 
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comparison, and returns the success (or error) of the classification. The output of the loss 
function directs the adjustment of the weights within the neural network; this is where the 
optimizer function is applied. Optimizers update the model in response to the output of the 
loss function. The amount that the optimizer changes each weight in the model is mediated 
by the learning rate. The learning rate combined with the output from the loss function 
controls how much the optimizer changes each weight. There are many ways the optimizer 
can calculate this change, which has led to continual development in the available types of 
optimizers.  
 
Much research has been conducted on creating detailed algorithms for specific cases of 
image classification, but this project involves comparing the performance of different kinds 
of optimizers on existing neural networks.  
 
 

Method 
The primary goal of this project was to train a neural network model using different 
optimizers, and compare their respective accuracy and training time. As the goal was to 
rapidly get a functioning neural network up and running, a Python framework called Keras 
was used to handle the build and training of the neural networks used in this project. 
 
Neural networks have many applications outside of image classification, but that use 
remains one of the most successful and widely deployed. For purposes of this project, a 
simple dataset was used, as the goal was to compare the performance of different models, 
changing the optimizer used in each one. Initially the Stanford Dogs Dataset[2] was 
employed, but fully implementing models based on this dataset proved computationally 
expensive. For this reason, the final dataset used was the Kaggle Dogs vs. Cats dataset[3]. 
 
In addition to identifying and evaluating appropriate datasets, a large part of the semester 
was spent researching the methods involved in building and training a neural network. 
Building a model from the ground up is unnecessarily intensive for comparing the 
performance of the optimizer, and potentially might not be successful in classifying data in 
a way that would be helpful for this project. For this reason, transfer learning was used to 
take advantage of pretrained models. Pretrained models are models that were built and 
trained on large benchmark datasets. These can be used as feature extractors for problems 
that have different but similar goals[4]. The Keras framework includes several different 
models, such as VGG16, Inception, and ResNet[5]. The approach used in this project was to 
use the pretrained model as a convolutional base feature extractor, and train a new 
classifier with the results of the pretrained model as input. 
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Figure 3: Basic outline of pretrained model 

 
The VGG16 network was the pretrained model selected for this project because it is a 
simpler network without the auxiliary classifiers and skip connections of later models, 
while still being a deep CNN. 
 
There are several different optimizers available within the Keras framework, four of which 
were selected to be compared in this project. 

• Adagrad stands for Adaptive Gradient Algorithm. It is adaptive because each weight 
has a different learning rate, which is updated separately from the others. The rate 
of the updates are based on how often that parameter is used. This causes 
uncommon parameters to have a greater update rate than common parameters, 
which is beneficial when the dataset is sparse. However, because the calculation of 
learning rates is based on the historical squared gradients sum, the rates are 
continually decaying. This causes the algorithm to stop updating weights by any 
meaningful amount as training progresses. 

• RMSprop was developed to address Adagrad’s weaknesses. It attempts to fix the 
continual decay problem by calculating weight updates based on the running 
average of the squared gradients, not the sum of all squared gradients. This keeps 
the weight update responsive to the more recent past of the model. 

• Adadelta is another optimizer that is very similar to Adagrad. Its goal is also to 
address the problem of continual decay. Adadelta only considers gradients that 
happened within some fixed window size. This allows it to keep learning even when 
many updates have been performed on the weights within the neural network. [6] 

• Adam, the most recently developed of the optimizers considered, stands for 
Adaptive Moment Estimation. Adam, like Adagrad, creates an individual learning 
rate for each parameter. It uses both the decaying average of past gradients and the 
decaying average of past squared gradients to update parameters.  [7, 8] 
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Results 
To determine the performance of each optimizer, the model was iterated through 100 
training epochs for each optimizer. The total time to train and the final classification 
accuracy of the model on the test data were primary evaluation metrics, along with average 
training accuracy, and validation accuracy. Also considered were the training and 
validation loss. 
 
 
Adagrad 
The model using the Adagrad optimizer took 306.93 seconds to train. The final 
classification accuracy of the model on the test set was 0.9222. This was similar to the 
average validation accuracy of 0.9375. The average validation loss was 0.245. The graphs 
below showcase the loss and accuracy for both training and validation data over 100 
epochs. 
 

 
Figures 4 and 5 : Adagrad optimizer training and validation accuracy, and loss 
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RMSprop 
The model using the RMSprop optimizer took 321.84 seconds to train. The RMSprop model 
had a final test accuracy of 0.9111. Its average validation accuracy was 0.9388. RMSprop 
had an average validation loss of .5591.  
 

 
Figures 6 and 7 : RMSprop optimizer training and validation accuracy, and loss 

 
 
Adadelta 
The model using the Adadelta optimizer took 348.085 seconds to train. Its final test 
accuracy was at 0.9244. The average validation accuracy was very similar, at 0.9289. The 
average validation loss was .4547. 
 

 
Figures 8 and 9 : Adadelta optimizer training and validation accuracy, and loss 
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Adam 
The model with the Adam optimizer took 347.814 seconds to complete 100 epochs. For 
this model, the final test accuracy was 0.9288. This is similar to the average validation 
accuracy, which was 0.9212. These were both lower than the average training accuracy, 
0.9811. The Adam optimizer produced an average training loss of 0.3038. 
 

 
Figures 10 and 11 : Adam optimizer training and validation accuracy, and loss 

 
 
Time to train 
Each of the models were timed during training. Adagrad was the fastest to finish 100 
epochs with 306.93 seconds, followed by RMSprop, then Adadelta. Adam had a very similar 
training time to Adadelta, both finishing in around 348 seconds. 
 

 
Figure 12: Training time for 100 epochs 
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Conclusion  
 
The goal of this project was to investigate and quantify the effect of using different 
optimizers during the training process, as related to the outcome and speed of a deep 
neural network used in an image classification task. The optimizers tested provided the 
models with different strengths and advantages. In terms of accuracy, the four different 
models had very similar test accuracy. Because they performed so similarly in accuracy, it 
is useful to consider loss when comparing the models. Loss is the calculation of the error 
produced by the model during each epoch. The RMSprop and Adadelta models had the 
greatest average validation loss. This is shown in Figures 7 and 9, where the final validation 
loss was around the range of 0.8. When the model exceeded 40 epochs, there was no major 
gain in accuracy, but the loss continued to grow. The RMSprop model even experienced a 
slight decrease in accuracy. Large amounts of loss during the validation step can be 
indicative of a model that has been overfit (it has trained too specifically on the presented 
training data). The models using the Adagrad and Adam optimizers did not have these 
issues with loss.   
 
The Adagrad model had the lowest training time, while the Adadelta and Adam models 
essentially tied for highest training time among the four. This was only by 25-40 seconds, 
so in light of the overfitting issues seen in the RMSprop and Adadelta models, the Adagrad 
and Adam models showed better overall performance.  The Adagrad model still 
experiences continual decay, potentially causing problems on larger datasets where the 
learning rate will continue to decrease and make further training of the model impossible. 
 
Therefore, our conclusion is that of the four models compared, the Adam optimizer 
demonstrated the best overall performance. Currently, Adam is one of the more popular 
optimizers for use in neural networks, and these results showcase that its popularity is well 
earned. As is typically the case, Adam benefitted greatly from improvements made to 
existing optimizers, thereby making it well suited for use in neural nets designed for image 
classification. 
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