
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Honors Projects Undergraduate Research and Creative Practice

4-2020

Optimization Study of an Image Classification Deep Neural Optimization Study of an Image Classification Deep Neural

Network Network

Rose Ault
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/honorsprojects

 Part of the Computer and Systems Architecture Commons

ScholarWorks Citation ScholarWorks Citation
Ault, Rose, "Optimization Study of an Image Classification Deep Neural Network" (2020). Honors Projects.
780.
https://scholarworks.gvsu.edu/honorsprojects/780

This Open Access is brought to you for free and open access by the Undergraduate Research and Creative Practice
at ScholarWorks@GVSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/honorsprojects
https://scholarworks.gvsu.edu/urcp
https://scholarworks.gvsu.edu/honorsprojects?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/honorsprojects/780?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

1

Optimization Study of an Image Classification
Deep Neural Network

Abstract
Machine Learning is an important and growing field within Artificial Intelligence. It is
particularly useful in situations where developing an algorithm to perform the task in a
conventional way would be extremely difficult. Instead of being programmed specifically to
complete a task, a program embodies a trained model that can recognize patterns present
in given example data, and is able use that model to make predictions on future data.
Neural networks are a prominent example of machine learning models used for this
purpose. Neural networks are models that are based on how brains work, with massive
numbers of connected processing elements called nodes. Training the model is a process of
iteratively assigning different weights to node connections; in effect, the network “learns”
to recognize patterns.

This process of training a neural network to perform a task involves repeatedly testing it
with example data and using the results to modify the parameters or weights within the
model in such a way as to minimize error. The component that makes these changes is
called the optimizer. As the field of machine learning has grown and matured, many
different types of optimizers have been proposed and developed, each with their own set of
advantages and disadvantages. The goal of this research project is to conduct a
performance evaluation of different optimizers, quantifying the speed and accuracy with
which they perform an image classification task.

Introduction
Image classification is an easy task for humans. Most humans can tell at a glance if a photo
contains a dog or a cat, although it may be hard for them to precisely articulate how they
made that determination. For these and other reasons, a simple recognition task is a more
complicated problem for a computer program. Neural networks provide a means to solve
this problem, and allowing autonomous systems to classify large amounts of images with
greater speed than a human could ever hope to produce.

Neural networks contain many nodes that are connected together in ways that allow the
computer to make a choice about what information it has been given, whether a simple
binary decision, e.g. Is this a cat or a dog?, or a more complex decision, e.g. Where are the
obstacles in this video? Each connection between nodes is activated or not based on the
input data and the weights associated with each node.

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

2

Convolutional Neural Networks (CNN) are very popular in image analysis because of their
ability to extract features by convolution. The use of filters to convolve the input into
features reduces the number of parameters needed for the network to function, allowing
the network to be lighter and faster. Between these convolution layers are pooling layers.
These reduce the size of the data being fed through the neural network. Ultimately the
convolved information is fed through a fully connected activation layer to classify the input,
and the output of the network is obtained. [1]

Figure 1: CNN for identifying handwritten digits

Figure 1 diagrams two different convolution layers that extract features and two pooling
layers that reduce the size of the processed data. What starts out as a 28x28 pixel input
goes through several feature maps, then is reduced to 14x14 datasets, goes through more
feature maps and size reduction, and feeds forward through several fully connected layers
that produce the final output (the classification).

Figure 2: Neural network training process

Figure 2 shows the basic process involved in training a neural network. The input to the
neural network consists of images from a labeled dataset, which are fed forward through
the neural network. This generates a classification, or a guess of what category the image
belongs in. This classification is the output of the neural network, which is then compared
to the target, or actual classification of the image. The loss function is what performs this

Neural Network with
connections (weights)

between neurons

Compare

Target

Input

Adjust Weights

Output

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

3

comparison, and returns the success (or error) of the classification. The output of the loss
function directs the adjustment of the weights within the neural network; this is where the
optimizer function is applied. Optimizers update the model in response to the output of the
loss function. The amount that the optimizer changes each weight in the model is mediated
by the learning rate. The learning rate combined with the output from the loss function
controls how much the optimizer changes each weight. There are many ways the optimizer
can calculate this change, which has led to continual development in the available types of
optimizers.

Much research has been conducted on creating detailed algorithms for specific cases of
image classification, but this project involves comparing the performance of different kinds
of optimizers on existing neural networks.

Method
The primary goal of this project was to train a neural network model using different
optimizers, and compare their respective accuracy and training time. As the goal was to
rapidly get a functioning neural network up and running, a Python framework called Keras
was used to handle the build and training of the neural networks used in this project.

Neural networks have many applications outside of image classification, but that use
remains one of the most successful and widely deployed. For purposes of this project, a
simple dataset was used, as the goal was to compare the performance of different models,
changing the optimizer used in each one. Initially the Stanford Dogs Dataset[2] was
employed, but fully implementing models based on this dataset proved computationally
expensive. For this reason, the final dataset used was the Kaggle Dogs vs. Cats dataset[3].

In addition to identifying and evaluating appropriate datasets, a large part of the semester
was spent researching the methods involved in building and training a neural network.
Building a model from the ground up is unnecessarily intensive for comparing the
performance of the optimizer, and potentially might not be successful in classifying data in
a way that would be helpful for this project. For this reason, transfer learning was used to
take advantage of pretrained models. Pretrained models are models that were built and
trained on large benchmark datasets. These can be used as feature extractors for problems
that have different but similar goals[4]. The Keras framework includes several different
models, such as VGG16, Inception, and ResNet[5]. The approach used in this project was to
use the pretrained model as a convolutional base feature extractor, and train a new
classifier with the results of the pretrained model as input.

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

4

Figure 3: Basic outline of pretrained model

The VGG16 network was the pretrained model selected for this project because it is a
simpler network without the auxiliary classifiers and skip connections of later models,
while still being a deep CNN.

There are several different optimizers available within the Keras framework, four of which
were selected to be compared in this project.

• Adagrad stands for Adaptive Gradient Algorithm. It is adaptive because each weight
has a different learning rate, which is updated separately from the others. The rate
of the updates are based on how often that parameter is used. This causes
uncommon parameters to have a greater update rate than common parameters,
which is beneficial when the dataset is sparse. However, because the calculation of
learning rates is based on the historical squared gradients sum, the rates are
continually decaying. This causes the algorithm to stop updating weights by any
meaningful amount as training progresses.

• RMSprop was developed to address Adagrad’s weaknesses. It attempts to fix the
continual decay problem by calculating weight updates based on the running
average of the squared gradients, not the sum of all squared gradients. This keeps
the weight update responsive to the more recent past of the model.

• Adadelta is another optimizer that is very similar to Adagrad. Its goal is also to
address the problem of continual decay. Adadelta only considers gradients that
happened within some fixed window size. This allows it to keep learning even when
many updates have been performed on the weights within the neural network. [6]

• Adam, the most recently developed of the optimizers considered, stands for
Adaptive Moment Estimation. Adam, like Adagrad, creates an individual learning
rate for each parameter. It uses both the decaying average of past gradients and the
decaying average of past squared gradients to update parameters. [7, 8]

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

5

Results
To determine the performance of each optimizer, the model was iterated through 100
training epochs for each optimizer. The total time to train and the final classification
accuracy of the model on the test data were primary evaluation metrics, along with average
training accuracy, and validation accuracy. Also considered were the training and
validation loss.

Adagrad
The model using the Adagrad optimizer took 306.93 seconds to train. The final
classification accuracy of the model on the test set was 0.9222. This was similar to the
average validation accuracy of 0.9375. The average validation loss was 0.245. The graphs
below showcase the loss and accuracy for both training and validation data over 100
epochs.

Figures 4 and 5 : Adagrad optimizer training and validation accuracy, and loss

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

6

RMSprop
The model using the RMSprop optimizer took 321.84 seconds to train. The RMSprop model
had a final test accuracy of 0.9111. Its average validation accuracy was 0.9388. RMSprop
had an average validation loss of .5591.

Figures 6 and 7 : RMSprop optimizer training and validation accuracy, and loss

Adadelta
The model using the Adadelta optimizer took 348.085 seconds to train. Its final test
accuracy was at 0.9244. The average validation accuracy was very similar, at 0.9289. The
average validation loss was .4547.

Figures 8 and 9 : Adadelta optimizer training and validation accuracy, and loss

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

7

Adam
The model with the Adam optimizer took 347.814 seconds to complete 100 epochs. For
this model, the final test accuracy was 0.9288. This is similar to the average validation
accuracy, which was 0.9212. These were both lower than the average training accuracy,
0.9811. The Adam optimizer produced an average training loss of 0.3038.

Figures 10 and 11 : Adam optimizer training and validation accuracy, and loss

Time to train
Each of the models were timed during training. Adagrad was the fastest to finish 100
epochs with 306.93 seconds, followed by RMSprop, then Adadelta. Adam had a very similar
training time to Adadelta, both finishing in around 348 seconds.

Figure 12: Training time for 100 epochs

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

8

Conclusion

The goal of this project was to investigate and quantify the effect of using different
optimizers during the training process, as related to the outcome and speed of a deep
neural network used in an image classification task. The optimizers tested provided the
models with different strengths and advantages. In terms of accuracy, the four different
models had very similar test accuracy. Because they performed so similarly in accuracy, it
is useful to consider loss when comparing the models. Loss is the calculation of the error
produced by the model during each epoch. The RMSprop and Adadelta models had the
greatest average validation loss. This is shown in Figures 7 and 9, where the final validation
loss was around the range of 0.8. When the model exceeded 40 epochs, there was no major
gain in accuracy, but the loss continued to grow. The RMSprop model even experienced a
slight decrease in accuracy. Large amounts of loss during the validation step can be
indicative of a model that has been overfit (it has trained too specifically on the presented
training data). The models using the Adagrad and Adam optimizers did not have these
issues with loss.

The Adagrad model had the lowest training time, while the Adadelta and Adam models
essentially tied for highest training time among the four. This was only by 25-40 seconds,
so in light of the overfitting issues seen in the RMSprop and Adadelta models, the Adagrad
and Adam models showed better overall performance. The Adagrad model still
experiences continual decay, potentially causing problems on larger datasets where the
learning rate will continue to decrease and make further training of the model impossible.

Therefore, our conclusion is that of the four models compared, the Adam optimizer
demonstrated the best overall performance. Currently, Adam is one of the more popular
optimizers for use in neural networks, and these results showcase that its popularity is well
earned. As is typically the case, Adam benefitted greatly from improvements made to
existing optimizers, thereby making it well suited for use in neural nets designed for image
classification.

Advisor: Rose Ault

Greg Wolffe HNR 499

 Final Report

9

Bibliography

[1] Saha, S. (2018, December 17). A Comprehensive Guide to Convolutional Neural
Networks - the ELI5 way. Retrieved from
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53

[2] http://vision.stanford.edu/aditya86/ImageNetDogs/

[3] https://www.kaggle.com/c/dogs-vs-cats/data

[4] Marcelino, P. (2018, October 23). Transfer learning from pre-trained models. Retrieved
from https://towardsdatascience.com/transfer-learning-from- pre-trained-models-
f2393f124751

[5] Usage of Optimizers. (n.d.). Retrieved from https://keras.io/optimizers/

[6] Ruder, S. (2020, March 20). An overview of gradient descent optimization algorithms.
Retrieved from https://ruder.io/optimizing-gradient-descent/index.html#fn14

[7] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[8] Smolyakov, V. (2018, January 10). Neural Network Optimization Algorithms. Retrieved
from https://towardsdatascience.com/neural-network-optimization-algorithms-
1a44c282f61d

Figure 1
https://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns

Figure 3
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-
f2393f124751

	Optimization Study of an Image Classification Deep Neural Network
	ScholarWorks Citation

	tmp.1588275860.pdf.jqV4c

