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Abstract 
  

Background: The Functional Movement Screen (FMS) is a tool used by fitness and health 

professionals to assess the quality of movement patterns in active populations. The literature 

has established descriptive values for FMS scores in various populations. However there has not 

yet been a study establishing the descriptive values of FMS score based on the somatotype 

categories. Establishing these descriptive values may provide a better understanding of how an 

individual's somatotype affects their ability to move.  Purpose: The purpose of this study was to 

establish   FMS scores for the four simplified somatotype categories (normal, endomorph, 

mesomorph, and ectomorph).  Methods: Participants were healthy college students between 

the ages of 18-25 years old (male = 29, female = 52, age = 20.48 yrs ± 1.44; height = 170.46 cm ± 

10.26; weight = 67.22 kg ± 16.06). Ten basic anthropometric measures were taken on each of 

the participants to determine somatotype category according to the Heath-Carter Somatotype 

Method. Following the initial measurements each of the participants completed the FMS 

evaluation, which consisted of 7 functional movement patterns. Movement patterns were 

scored (by a certified FMS evaluator) using the 3-point scale. Results: Of the 81 participants, 

somatotypes were identified as follows: 33 mesomorphs, 16 endomorphs, 8 ectomorphs, 24 as 

central, and 2 were dropped from study for falsifying information. There was no significant 

difference between mean overall FMS scores for each category (endomorph 17.63±1.09, 

mesomorph 17.64±1.11, ectomorph 17.63 ± 1.06, central 17.58 ± 1.25). Conclusion: In the case 

of healthy young adults there appears to be very little variance in overall FMS scores between 

the four simplified somatotype categories. 
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Manuscript 

Abstract 

  

Background: The Functional Movement Screen (FMS) is a tool used by fitness and health 

professionals to assess the quality of movement patterns in active populations. The literature 

has established descriptive values for FMS scores in various populations. However there has not 

yet been a study establishing the descriptive values of FMS score based on the somatotype 

categories. Establishing these descriptive values may provide a better understanding of how an 

individual's somatotype affects their ability to move.  Purpose: The purpose of this study was to 

establish   FMS scores for the four simplified somatotype categories (normal, endomorph, 

mesomorph, and ectomorph).  Methods: Participants were healthy college students between 

the ages of 18-25 years old (male = 29, female = 52, age = 20.48 yrs ± 1.44; height = 170.46 cm ± 

10.26; weight = 67.22 kg ± 16.06). Ten basic anthropometric measures were taken on each of 

the participants to determine somatotype category according to the Heath-Carter Somatotype 

Method. Following the initial measurements each of the participants completed the FMS 

evaluation, which consisted of 7 functional movement patterns. Movement patterns were 

scored (by a certified FMS evaluator) using the 3-point scale. Results: Of the 81 participants, 

somatotypes were identified as follows: 33 mesomorphs, 16 endomorphs, 8 ectomorphs, 24 as 

central, and 2 were dropped from study for falsifying information. There was no significant 

difference between mean overall FMS scores for each category (endomorph 17.63±1.09, 

mesomorph 17.64±1.11, ectomorph 17.63 ± 1.06, central 17.58 ± 1.25). Conclusion: In the case 

of healthy young adults there appears to be very little variance in overall FMS scores between 

the four simplified somatotype categories. 
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Introduction 

 

Somatotyping is a technique that provides a numerical summary of an individual’s 

physique and is used to classify individuals by body type. 1The three main components 

measured in somatotyping include endomorphy, mesomorphy, and ectomorphy. Endomorphy 

is a measure of relative fatness, mesomorphy is a measure of relative musculo-skeletal 

robustness, and ectomorphy is a measure of proportionality between body weight and height.  

2 Measures for each of these components are determined through the use of several 

anthropometric measures including skinfolds, girth measurements, height, weight, and limb 

length. An individual's somatotype is expressed as a three number rating of the three main 

components; endomorphy, mesomorphy, and ectomorphy respectively. 1
 The number 

expressed for each of these main components represents the magnitude of each component. A 

rating between 2 to 2 1/2 is consider low, a rating of 3 to 5 is considered moderate, a rating of 5 

1/2 to 7 is considered high, and a rating above 7 1/2 is considered very high. 
2 After obtaining a 

three number rating for an individual, the individual is further classified into a somatotype 

category. There are four simplified somatotype categories named based on the dominant 

component in the three number rating. The four categories are central (no dominance), 

endomorph, mesomorph, and ectomorph (See Figure 1). 1 

Somatotype ratings and somatotype categories are used in various settings in which 

evaluation of physique is beneficial. Somatotyping is widely used in sports performance for 

comparing athletes at various levels of competition, and is ideal for any setting in which 

changes in physique in over the course of growth, aging, and training are recorded. Additionally 

relationships between somatotype category and rate of injury, measures of performance, and 
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sports position have all been examined. 3–12 However very little research however, has been 

done on the relationship between somatotype category and movement abilities. More 

specifically there appears to be a deficit in knowledge about the relationship between 

somatotype category and fundamental movement abilities. 

Movement is simply the act of carrying out motion. When discussing movement in 

regards to the human body, movement refers to a physical change in location or position.  

Movement is accomplished by the body through movement patterns. Movement patterns are 

intentional groupings of mobile and stable elements of the body working in coordination to 

produce efficient and effective movement sequences. 6 In other words, during movement some 

parts of the body remain stable to aid in posture while other parts are mobile, allowing for a 

change in position.  It is through movement sequences that an individual is able to change 

position as well as able to move through the environment. 13 Fundamental movement patterns 

then, are movement sequences that allow an individual to carry out fundamental movements 

such as walking, running, jumping, pushing, and pulling.  Fundamental movement is observed 

as having three purposes: stability, locomotion, and manipulation. 14 Each of these purposes 

plays a significant role in allowing an individual to survive, navigate, and excel in a given 

environment. In order to understand the significance of functional movement, the process of 

motor development must first be understood.  

Motor development refers to the development of movement abilities over the course of 

a lifetime. While there are numerous theories associated with motor development, most 

experts would agree that the development of movement abilities and observable movement 
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behavior happens in phases. 14 Motor development is thought to have four phases that occur in 

the following order: reflexive movement, rudimentary movement (first form of voluntary 

movement), fundamental movement, and specialized movement. 15 Motor development begins 

with reflexive or involuntary movement in early infancy and progresses to specialized 

movement in adulthood. Fundamental movement then occurs in the progression of movement 

development in between rudimentary movement in infancy and specialized movement in 

adolescence and adulthood.  Fundamental movement builds on rudimentary movement and is 

the foundation of specialized movement. Therefore appropriate and efficient fundamental 

movement patterns are crucial in the development of specialized movement. 

One theory in motor development suggests that movement develops out of an 

interaction between constraints of an individual, the environment the individual is in, and the 

task to be performed by the individual. 16 (See Figure 2). This theory proposes that there are 

three major constraints that interact during the performance of movement. These constraints 

include: individual constraints, task constraints, and environmental constraints. 15
 

Environmental constraints are external and can be either physical or cultural. Task constraints 

are also external and are specific to the goal of the movement task. Individual constraints are 

internal and are either structural or functional. Functional constraints are related to an 

individual’s behavior patterns while structural constraints derive from an individual’s physical 

body structure. It has been established that body composition serves as a structural constraint. 

15 It is likely then that somatotype would also serve as a structural constraint affecting the 

movement patterns of an individual. For this reason it is important to evaluate the movement 

patterns of each somatotype category. Fundamental movement patterns would be of particular 
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interest in that functional movement patterns are the foundation of more advanced specialized 

movement patterns and that evaluation of fundamental movement patterns would provide a 

better understanding of the relationship between somatotype category and movement 

patterns.  

The Functional Movement Screen (FMS™) is a pre-participation and pre-performance 

evaluation used by fitness and health professionals to examine movement quality in active 

populations. 13 The FMS was developed to fill a void in pre-participation and pre-performance 

evaluations. Before beginning physical activity it is often recommended that an individual to 

first gain medical clearance by completing a physical with a physician.  Upon gaining medical 

clearance often an individual will go through several different performance tests examining 

strength, flexibility, power, agility, body composition and cardiorespiratory fitness. These 

performance tests are used to establish a baseline in performance ability. The void noticed by 

the creators of FMS falls between gaining medical clearance and before completion of 

performance evaluations. There is a need to examine movement quality before progressing to 

performance evaluation because any dysfunction in movement patterns may need to be 

brought to attention and corrected before building on these movement patterns. By examining 

the quality of movement patterns and whether an individual is able to carry out a movement 

pattern without compensation, it may be possible to decrease the risk of injury due to 

dysfunctional movement patterns. Individuals performing beyond their movement abilities and 

are thought to be at greater risk for injury.17,18 
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The FMS consists of evaluations of seven fundamental movement patterns and is 

designed to test both mobility and stability. 17,18 In the original scoring system set out by 

Cook17,18, movement patterns are scored on a rudimentary scale with scores ranging from zero 

to three. A score of zero would imply that an individual experienced pain at some point during 

the movement being assessed. A score of one would indicate that an individual did not 

experience pain but was unable to complete the movement. A score of two indicates that an 

individual was able to carry out the movement but not without some form of compensation in 

the movement pattern. A score of three would indicate that the individual was able to carry out 

the movement correctly with no compensation. Using this scoring system, a higher score 

implies more functional movement and a lower score implies dysfunction in movement.  

A great deal of research has gone into investigating correlations between factors such as 

risk of injury and performance abilities, to both FMS scores and somatotyping. Studies are 

unclear on the association between FMS score and performance, but suggest that lower FMS 

scores tend to be associated with greater risk of injury. 19–21 Studies investigating somatotyping 

and performance suggest that different somatotypes display varying levels of performance for 

different tasks. 3–6,8–10  Ectomorphs appear to achieve higher aerobic capacities in relation to 

their body mass than either endomorphs or mesomorphs, while endomorphs and mesomorphs 

tend to achieve higher levels of strength. 4,5 Studies investigating correlation between 

somatotype and risk of injury have all been sport specific and therefore have shown varying 

results. 7–10
  Although research has been done investigating FMS scores and somatotyping 

regarding risk of injury or performance, no correlation between these two measures has been 

investigated. Using FMS to evaluate functional movement patterns of the simplified 
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somatotype categories would provide a better understanding of the relationship between 

somatotype classification and fundamental movement abilities. 

 The purpose of this study is to establish normative reference values for functional 

movement screening scores for the four simplified somatotype categories (central, endomorph, 

mesomorph, and ectomorph). In addition, the predictive ability of the somatotype categories to 

account for any variance in functional movement screening scores will be analyzed . The 

hypothesis of this study is that the somatotype categories will be shown to be good predictors 

for variance in composite functional movement scores. 

Methods 

 

Experimental Design 

 This descriptive study had the purpose of establishing normative reference values for 

functional movement screening scores for the four simplified somatotype categories. Prior to 

participation by human subjects, the study was approved by the Institution Review Board at 

Grand Valley State University.  Before participating, every subject was informed of all 

procedures and was provided an informed consent form. Participants were also assigned an 

identification number to ensure identity protection and were asked to complete a short 

questionnaire. All data collection for a participant took place in one 30-45 minute session at the 

Human Performance Lab at Grand Valley State University. Researchers first took 

anthropometric measurements on participants to determine each participant's somatotype 

rating and then functional movement abilities were assessed in real-time using the FMS. In 

order to ensure there was no bias in the scoring of the FMS, the researcher responsible for the 
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FMS scoring was blinded to somatotype ratings and classification. The blinded researcher 

conducted the FMS evaluation using a standardized set of instructions for all participants and 

scored the movement patterns according to the grading criteria established by Cook13.  

Subjects 

 A convenience sample of students was taken from Grand Valley State University. Eighty 

one participants were assessed for somatotype rating and FMS composite score (Male = 29, 

Female = 52, age = 20.48yrs ± 1.44, height = 170.46cm ± 10.26 , and weight = 67.22kg ± 16.06). 

This study included male and female participants of all activity levels. Inclusion criteria for 

participation in this study required participants to be healthy adults between the ages of 18 and 

25 years of age. Participants were excluded from this study if obvious constraints to movement 

were exhibited or if any constraints to movement were self-reported. Participants were also 

excluded if they were not injury free at the time of testing or if they had undergone lower 

extremity surgery in the past six months. Two participants were dropped from this study for 

falsifying information with regard to injuries.  

Somatotyping 

 The Heath-Carter method was used for somatotyping as described in Heath and Carter’s 

instruction manual. 
1 Basic anthropometric measurements such as height, weight, skinfold 

measurements, breadth measurements, and girth measurements were taken. Height 

measurements were taken using a standard stadiometer . Mass measurements were taken 

using a standard sliding scale. Participants were asked to remove their shoes and shirt before 

stepping on the scale. Skinfold measurements were taken at triceps, subscapular, supraspinale, 
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and calf skinfold sites as described by Heath and Carter, using Harpenden Skinfold Calipers 

(West Sussex, United Kingdom). The biepicondylar breadth measurement of the right humerus 

and the biepicondylar breadth measurement of the right femur were taken using a Lafayette 

Small Anthropometer (Orlando, Florida). Lastly girth measurements were taken at the upper 

right arm, and the right calf using a Guilk tape measure (Knoxville, Tennessee ).  Based on the 

data collected, subjects were assigned to a somatotype category.  Additionally, pictures of each 

subject were taken for classification purposes. Pictures were taken with minimal clothing as 

examining physique was the primary purpose of taking the pictures. For a man this involved 

being photographed in a pair of athletic shorts and no shirt. For a woman this involved being 

photographed in a sports bra and a pair of athletic shorts.  To protect the identities of subjects, 

the eyes, the mouth, and any other identifying features were covered with a black box in their 

digital photo. 

FMS 

 Functional movement screening was completed as described by Cook 17,18. FMS involves 

the assessment of seven movements including deep squat, hurdle step, in-line lunge, single leg 

raise, shoulder mobility, trunk stability push-up, and rotary stability. FMS also includes three 

clearance tests including shoulder clearance, spinal extension clearance, and spinal flexion 

clearance. Participants completed these in movements in the order and with the standardized 

instructions provided by Cook 17,18. In addition, the official FMS kit was used for testing 

(Cranston, Rhode Island).  Movements were scored on a three-point grading scale as set by 

Cook 17,18.  Subjects were given up to three trials for each movement pattern assessed and 
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scores were given based on FMS grading criteria for each individual movement pattern. 17,18 For 

consistency purposes only one rater carried out the FMS testing. This rater was certified in FMS 

and had six months of experience using the tool.  

Statistical Analysis 

  Data was analyzed using SAS 9.4 (Cary, North Carolina). Normative data was reported 

for each of the simplified somatotype categories.   The relationship between functional 

movement score and somatotype category was analyzed using multiple linear regression. The 

independent variables (central category, endomorph category, mesomorph category, and 

ectomorph category) were assessed to determine if these variables were predictors of 

functional movement score. The level of significance that was used is p < 0.05. To ensure a 

power level of 0.80 with a medium effect size and three predictors, sample size was calculated 

using Cohen’s power analytic approach. 15 It was determined that the sample size needed to 

consist of at least 77 participants. 15 Additionally, the relationship between FMS composite 

score and the individual somatotype component ratings, BMI, sex, and physical activity level 

were assessed. Correlations between composite FMS score and each of the somatotype ratings 

were calculated using Pearson Correlation Coefficients and the magnitudes of the correlations 

of the somatotype groups were compared using the approach described by Zou.22 

Results 

 
 In total, eighty-three subjects participated in this study. The data of two subjects was 

not included in this study as these two subjects were dropped from the study for falsifying 

information. Of the remaining eighty-one subjects, the number of participants in each 
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somatotype category is reported in Table 1.  The minimal composite score recorded was a 15 

and the maximum composite score recorded was a 20.  Descriptive information for the overall 

sample is reported in Table 2. The mean composite score for the somatotype categories were 

found to be: 17.63 ± 1.09 for endomorphs, 17.64 ± 1.11 for mesomorphs, 17.63 ± 1.06 for 

ectomorphs, and 17.58 ± 1.25 for participants in the central category.  Looking at Table 2 it is 

apparent that there is no difference in mean or variance of composite FMS score between the 

simplified somatotype categories. Due to unequal group size and extremely little variance in 

mean composite score between somatotype categories, it was determined that it was not 

appropriate to use multiple linear regression to determine whether the simplified somatotype 

categories were good predictors of variance in composite FMS score. The independent 

variables of central category, endomorph category, mesomorph category, and ectomorph 

category, physical activity, sex and BMI were found to be non-predictive variables of composite 

FMS Score. Like the somatotype categories, the mean composite FMS scores did not vary 

between sexes or by level of physical activity. (Table 3 and Table 4) 

  In addition to comparing mean composite FMS scores between the somatotype 

categories, relationships between all of the endomorphy rating, mesomorphy rating, and  

ectomorphy rating and composite FMS score were also analyzed. The Pearson Correlation 

Coefficients for endomorphy rating, mesomorphy rating, and ectomorphy rating were r= -0.15 

(p= 0.16),  -0.10 (p=0.37), and 0.008 (p=0.94) respectively.  Looking at Figure 4-6, it is apparent 

that there is no relationship between the individual somatotype components and composite 

FMS score. The comparisons made between the magnitude of the correlations for the 

somatotype group were as follows: endomorph to mesomorph (Z = -0.30, p =0.76), endomorph 
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to ectomorph (z = 0.15, p = 0.87), and mesomorph to ectomorph (z= 0.22, p = 0.82). Based on 

these findings, the magnitude of correlations of the somatotype groups do not differ.  

Discussion 

 The FMS is commonly used as part of a battery of tests during pre-participation screens 

in athletic populations. It is thought to be able to detect dysfunctional movement patterns, 

assess injury risk, and potentially assess athletic performance 23,24. Somatotype category has 

been found to be related to athletic performance 4,5. The purpose of this study was to establish 

normative values of FMS composite score for the Heath Carter simplified somatotype 

categories and determine whether the somatotype categories were predictive of variance in 

the composite FMS score. The hypothesis of this study was that the simplified somatotype 

categories would be predictive of variance in composite FMS score. This hypothesis was based 

on the evidence that BMI and composite FMS score have been shown to be related 25,26 as well 

as somatotype and athletic performance having been shown to be related. 4,5 Normative values 

were established for each of the somatotype categories. However, extremely little variance was 

observed in mean FMS composite score between the somatotype categories. Therefore, the 

somatotype categories do not appear to be predictive of FMS composite score.  

 The normative values established for FMS composite score in this study were higher 

than those established in previous studies. In this study the composite FMS score established 

for college students between the ages of 18 and 25 years old, was 17.62 ± 1.12. In a similar 

study comparing general college students to collegiate athletes, the mean composite score 

reported for both general college students and to collegiate athletes was much lower, 14.1 ± 
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0.2 and 14.2 ± 0.2 respectively 27.  It appears that the normative values established in this study 

were more similar to those established in physically active individuals between the ages of 18 

and 40 years of age with a composite score of 15.7 ± 0.2 28, and those established in military 

service members with a composite score of 16.2 ± 2.2 29. To the best of the author's knowledge, 

the normative values established for composite score in this study are the highest to ever be 

reported. One possible explanation for this finding may be that the rater responsible for scoring 

the FMS sessions in this study is a relatively novice rater. While the rater obtained a Level 1 

Certification in FMS, the rater also only had six months of experience using the tool. It is 

possible that this relative lack of experience played a role in the higher scores that were 

reported. However, it has been previously established that novice raters with little to no 

experience with the FMS are reliable raters when compared to expert raters having significantly 

more experience 30,31. Another factor that may have influenced the higher composite score 

reported in this study is that all scoring of the FMS was done in real-time versus being assessed 

from a video recording that could be replayed. While there is some evidence to suggest that 

grading the FMS from a pre-recorded video session is reliable when compared to real-time 

scoring 32, it is likely that there is an observable difference in scoring between real-time scoring 

and scoring a videotaped session. The choice to perform real-time scoring in this study was an 

intentional choice in order to more closely replicate how the FMS is used in the field. The FMS 

was designed to be a simple and effective tool for experts in athletics and human movement to 

assess functional movement in athletic populations with minimal equipment.  

 The hypothesis of this study was based on the premise that composite FMS score may 

predict athletic performance. As somatotype category has been shown to influence athletic 
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performance, it is logical to suspect that if FMS score is predictive of athletic performance then 

it is likely that there is a relationship between these two assessments. The literature is still 

unclear on whether FMS is a good predictor of athletic performance. In one study performed 

on professional football players, individualized training interventions were shown to improve 

composite FMS score and reduce risk of injury 33. However, the study failed to investigate 

whether other measures of performance also improved with movement specific interventions. 

Similarly, a study performed on mixed martial arts athletes showed movement specific 

interventions improved composite FMS score in as little as four weeks 34. Again, the study failed 

to investigate the effect of this intervention on other measures of performance. Overall, studies 

comparing composite FMS score to specific performance measures have been in agreement 

that there is a minimal relationship between composite FMS score and athletic performance 

19,20,35,36. This in part, may account for the lack of variance seen in composite FMS score 

between the simplified somatotype categories in this study. 

 The only previous study that connected composite FMS score to a measure of 

longitudinal performance was that of Chapman et al. In this study, elite track athletes scoring 

higher on composite FMS score had greater longitudinal positive performance changes than 

those scoring lower on the FMS. 37 This may suggest that while composite FMS score does not 

appear to be related to specific measures of performance, such as sprint times or vertical jump, 

that individuals scoring higher do appear to perform better overall. More research is necessary 

to determine the relationship between composite FMS score and overall sport specific 

performance and other variables that may be influencing both of these measures. Composite 

FMS scores have been established as a predictor of injury risk 38. While there appears to be 
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some debate over the true cutoff point at which specificity and sensitivity of injury detection 

are maximized, there does appear to be a moderate amount of evidence suggesting that lower 

FMS score increases risk of injury 39–41. It is possible that rate of injury is the influencing factor in 

the connection between composite FMS score and longitudinal sport specific performance. The 

reasoning behind this is that athletes that spend less time injured have the advantage of more 

time for training and more opportunities to compete. However in this present study, on 

average, participants had higher composite scores and none of the participants scored below a 

14, which is commonly used as the cutoff point for risk of injury.  

 Recently there has been debate over what the FMS composite score represents. It is 

thought to represent overall quality of functional movement. However, recent studies suggest 

that the composite score of the FMS is not the uni-dimensional construct it was thought to be 

and that more attention should be paid to individual movement patterns rather than composite 

scores 42,43. The present study was conducted under the assumption that the FMS composite 

score is a uni-dimensional construct. When individual movement patterns were assessed more 

closely only one weak correlation was found between endomorphy rating and deep squat score 

(r= -0.32). There were no other correlations found between any of the movement patterns and 

somatotype ratings. From this observation it is likely there is minimal relationship between 

somatotype rating and movement pattern score. It is possible that no correlation was observed 

because the original three point grading scale is not sensitive enough to differentiate between 

the number and patterns of compensation. Modified grading scales have been created for the 

FMS screen in an attempt to rectify this issue 44,45. However, little is known about the validity of 

these new grading scales. As new grading scales are established and validated, more 
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investigation of the possible relationship between movement patterns and somatotype should 

take place.  

 In the current study no correlation was found between BMI and composite FMS score. 

This is in contrast to previous studies, where BMI was found to be negatively correlated with 

composite FMS score 25,26. In one of these studies, it was determined that BMI and amount of 

physical activity accounted for 60.2% of the variance in FMS composite score 25. It should be 

noted that these studies were performed on children and the relationship found between BMI 

and composite score may not reflect reality for adult populations. One study investigating the 

relationship between BMI and composite FMS score in children found that there was no 

correlation between BMI and composite FMS score. The authors speculated that this was partly 

because few of the participants were classified as overweight 46. Similarly in this present study, 

14% participants were classified as overweight and 3% of participants were obese. Additionally, 

as many of these participants were mesomorphs, it is likely that the observed higher BMI 

ratings are due to increased muscle density rather than increased fat mass.  

 Limitations of this study must be acknowledged. The first limitation being an 

unanticipated participation bias. The researchers anticipated that near equal group sizes would 

be obtained for the simplified somatotype categories from a convenience sample. However, it 

was observed by the researchers that participants belonging to the mesomorph and central 

category classifications were far more likely to participate than participants belonging to the 

endomorph and ectomorph classifications. This may have been due to the nature of 

measurements taken. Participants with higher fat mass may have been uncomfortable with the 
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body composition measurements taken and therefore may have chosen not to participate. 

Another limitation is the homogeneity of the participants. It is likely that the somatotype 

categories were only minimally different in regards to body composition as, on average, 

participants scored low to moderate in all the somatotype rating components. It is 

acknowledged that it is possible yet unlikely, that with a more diverse population, the results of 

this study may have been different.  

 In conclusion, the results of this research show that there is virtually no difference in 

composite FMS score between the Heath-Carter simplified somatotype categories. Due to this 

observed lack of variance in composite FMS score, it is likely that the simplified somatotype 

categories do not account for the variance in FMS score. Additionally, no relationships were 

observed between composite FMS score and BMI, sex, or physical activity level. Any further 

research on this subject should examine the relationship between somatotype ratings and 

individual movement patterns. A weak negative relationship was observed between the deep 

squat movement and endomorphy rating. It seems likely that increased fat mass may impact 

certain functional movement patterns. The researchers would be interested to know if this 

finding could be replicated in a more diverse population.  
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Table 2. Number of Participants in each Somatotype Category 

Endomorph 16 

Mesomorph 33 

Ectomorph 8 

Central  24 

 

 

Table 3. Mean Composite FMS Score between the Sexes 

Sex Mean Composite Score 95% Confidence Interval 

Male 17.65 ± 1.14 17.34-17.97 

Female 17.55 ± 1.12 17.13 - 17.98 

 

Table 4. Mean Composite FMS Score by Physical Activity Level 

Hours of Physical Activity per 
Week 

Mean Composite Score 95% Confidence Interval 

0 to 4 17.39 ± 0.98 16.90-17.88 

5 to 8 17.70 ± 1.02 17.34 - 18.06 

9 to 12 17.58 ± 1.46 16.87 - 18.29 

>12 17.82 ± 1.08 17.09 - 18.54 

 

 

 

 

Table 1. Descriptive Data of Sample Population 

Age (yrs) 20.48±1.44 

Height (cm) 170.46 ± 10.26 

Weight (kg) 67.22 ± 16.06 

Endomorph Rating 3.86 ± 1.65 

Mesomorph Rating 4.59 ± 1.54 

Ectomorph Rating 2.34 ± 1.28 
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Figure 1. Somatotype Categories. This image shows a physical representation of each 
somatotype category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Newell’s Model of Movement Constraints.  Image adapted from Motor Control, 
Learning, and Development. 29 Looking at this figure it is clear that individual constraints such as 
physique play an important role in the development of movement.  
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Figure 3. Mean composite FMS score by somatotype category. Looking at this graph it is clear 
that there is very little variance between the somatotype categories. The mean composite 
scores as well as the standard deviation are essentially identical.  

 

Figure 4. Correlation between endomorphy rating and composite FMS score. (r=-0.15, 

p=0.16). Looking at this scatter plot graph it is clear there was no association between 

composite FMS score and endomorph rating found in the sample.  
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Figure 5. Correlation between mesomorphy rating and composite FMS score. (r=-0.10, p=0.37) 

Looking at this scatter plot graph it is clear there was no association between composite FMS 

score and mesomorph rating found in the sample. 

 

 

Figure 6. Correlation between ectomorphy rating and composite FMS score. (r=0.01, p=0.94) Looking 

at this scatter plot graph it is clear there was no association between composite FMS score and 

ectomorph rating found in the sample. 
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Extended Review of Literature  
 

 The Functional Movement Screen™ (FMS) tool was originally created to serve as an 

assessment of  the quality of functional movement in athletic and active populations. 13 The 

purpose of this tool was to establish an evaluation standard that would assess movement 

patterns prior to participation in athletic and exercise activities. This screening instrument is 

designed to identify weaknesses or compensations during movement that are thought to be 

dysfunctional. Once identified, these weaknesses and compensations can, in theory, be 

addressed and possibly corrected. This may improve the efficiency of an individual's movement 

and reduce risk of injury. The creators of the FMS believe that this tool will be specifically useful 

in making return to sport decisions, in injury prevention, and in performance predictability 23, 

but should be used only as part of a comprehensive assessment 23. Therefore, the creators are 

not advocating for the FMS to be used as a standalone evaluation. This is an important 

consideration to keep in mind when reviewing the current literature on the FMS. Since the 

creation of the FMS, there has been a considerable amount of research evaluating the reliability 

and validity of the tool.   

Reliability of The Functional Movement Screen 

 In the past decade, there has been a considerable amount of research investigating the 

reliability of the FMS. The majority of this research has focused on the inter-rater and intra-

rater reliability when scoring the FMS 30–32,47–51. Overall, the FMS appears to have moderate to 

excellent inter-rater and intra-rater reliability. However, there is less agreement regarding the 

amount of formal training and clinical experience that is necessary for a rater to be consider 

reliable. Additionally, some studies have investigated the reliability of raters using real-time or 
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live action scoring versus scoring from a pre-recorded video of subjects performing the FMS. 

31,32,47–49 As real-time assessment and videotaped assessments differ in the number of times a 

rater is able to observe each movement, these approaches should be evaluated independently 

of each other in regards to reliability.  

  In an assessment of intra-rater reliability, Gribble et al. compared raters with different 

levels of clinical experience and experience with FMS, to determine intra-rater reliability of 

videotaped assessment 47. The researchers recruited three individuals to be videotaped while 

performing the FMS test. Thirty-eight raters then watched the videos of the three individuals 

performing the FMS in a randomized order and assigned a score. One week later the raters 

watched the videos for a second time and assigned a score. The raters were divided into three 

groups based on clinical experience and experience with FMS: athletic trainers with at least 6 

months of experience working with FMS, athletic trainers with no experience working with 

FMS, and athletic training students with no experience working with FMS. The interclass 

correlation coefficients (ICC) between sessions were ICC = 0.946, ICC = 0.758, and ICC = 0.372 

respectively. The authors concluded that overall  intra-rater reliability appeared to be strong 

and that it appeared to be stronger in individuals with clinical experience and experience using 

the FMS 47.  This study suggests that experience with FMS testing is important to the reliability 

of the instrument. 

  A similar study done by Shultz et al. found that inter-rater reliability was poor between 

raters with different levels of experience 32.  In this study, six raters of different experience 

levels evaluated 39 National Collegiate Athletic Association Division IA varsity athletes (21 

female, 18 male) performing the FMS test by assessing the video tape recordings. One rater 
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was responsible for evaluating all the athletes in live time as well as from video tape. The 

remaining five raters only evaluated the athlete's performance from videotape. The inter-rater 

reliability between the six raters was found to be poor ( Kα = 0.38). For the one rater evaluating 

the live time performances and video tapes of the performance the test-retest reliability was 

determined to be good (ICC= 0.6) and the reliability between live and video sessions was 

determined to be excellent (ICC = 0.92). The authors concluded that the FMS is reliable tool 

when used with one rater. The authors suggested that due to the poor inter-rater reliability 

that the FMS may not be an appropriate test for detecting dysfunctional movement patterns 

that place an athlete at greater risk for injury 32.  This study brings into question whether  the 

amount of experience really affects inter-rater reliability, as the inter-rater reliability was 

reported to be the lowest between the two most experienced raters. In order to understand 

the implications of these findings more must be known about the reliability of novice raters and 

the criteria for being a novice rater. 

 A research study done by Minick et al looked at the reliability of the FMS comparing 

expert and novice raters using videotaped assessment 48. There were two expert raters and two 

novice raters. The expert raters each had been instrumental to the development of the FMS 

and had more than ten years of experience. The novice raters completed a standardized 

introductory course and had less than one year of experience.  The raters assessed videos of 

thirty-nine healthy college students completing the FMS. Instead of looking at reliability by 

overall score values, this study examined reliability of each individual test component.  It was 

determined that novice raters showed excellent reliability on 6 out of the 17 components (κ= 

0.8-1.0), substantial reliability on 8 of the 17 components (κ= 0.65-0.77), and moderate 
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reliability on 3 out of the 17 components (κ= 0.53-0.54). It was determined that expert raters 

showed excellent reliability on 4 out of the 17 components (κ= 0.84-0.95), substantial reliability 

on 9 of the 17 components (κ= 0.60-0.78), and moderate reliability on 4 out of the 17 

components (κ= 0.40-0.59). In comparing novice and expert raters it was determined that the 

inter-rater reliability was excellent for 14 of the 17 components, and substantial for 3 of the 17 

components. From this the authors concluded that with proper training the FMS is a reliable 

measure. This study is unique in that the expert raters were involved in the collaborative effort 

of creating the FMS. For this reason the expert raters in this study have more experience than 

the expert raters in similar studies.  

 Another study comparing experienced and novice raters, was a research study 

performed by Gulgin and Hoogenboom 49. In this study, three novice raters and one expert 

rater scored videos of twenty college-aged students performing the FMS. The three novice 

raters were third year physical therapy students and were each recently certified in FMS. The 

expert rater had formal training before FMS certification existed and had 3 years of experience 

using it regularly. The raters assessed the movements by watching video recordings, but were 

required to watch it at normal speed to replicate real-time scoring.  The percent agreement was 

found to be excellent (100%) for six of the twelve movements, moderate (66%) for three of the 

twelve movements, and poor for three of the twelve movements. Using a one-way ANOVA it 

was determined that there were no significant differences in mean overall score between raters 

(p=0.14). Also it was determined that there was good to excellent rater reliability in regards to 

mean overall score (ICC= 0.88). From these results it would appear that raters with little 

experience but formal training and certification are reliable raters.  
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 In contrast, a research study performed by Jade Elias 31 suggests that no formal training 

is necessary for a rater to be reliable in scoring the FMS. In this study, twenty Level 2(4-8 years 

of clinical experience) and Level 3 (8-12 years of clinical experience) physiotherapists served as 

raters, scoring five elite athletes on six of the seven functional movement components. Athletes 

were assessed from video-tape from three different views. The raters were sent the videos of 

each athlete along with grading criteria and were allowed to watch the videotaped sessions as 

many times as necessary to determine a score. The overall mean score for each athlete was 

determined for Level 2 and for Level 3 physiotherapists. These scores were compared between 

the two groups of physiotherapist and it was determined there was no significant difference in 

overall score between the two groups (p=0.52). It was also determined that the overall score 

had excellent reliability between raters (ICC= 0.906).  This would suggest that clinical 

experience does not affect a clinician's reliability in scoring. One limitation to this study is that it 

lacked a comparison of the untrained raters to expert raters.    

 Overall it appears that  inter-rater and intra-rater reliability for videotaped assessment 

of the FMS appears to be good. There is some disagreement about the requirements for a 

reliable rater. However, the majority of the evidence for reliability of scoring the FMS using 

videotaped assessment appears to suggest that formal training is beneficial for a rater and that 

proper training increases rater reliability. 31,32,47–49 One study supports the notion that reliability 

was similar between videotaped assessment and  real-time assessment. This is an important 

implication, and for this reason further investigation between  videotaped assessment and real-

time assessment should take place.  
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 In contrast to the previous studies, a study done by Smith et al. 50 examining inter-rater 

reliability and intra-rater reliability during real time testing appears to suggest that experience 

with FMS testing is not important for good intra-rater reliability. In this study, four raters, with 

different degrees of clinical experience and experience with FMS testing, examined  twenty 

subjects (22-44 years old) performing the FMS test. Two of the raters had no previous 

experience with the FMS.  The four raters simultaneously examined each of the participants 

using real-time administration. The inter-rater reliability of the four raters was determined to 

be strong in both sessions (session 1 ICC = 0.89; session 2 ICC = 0.87). The intra-rater reliability 

of each of the four raters was also determined to be strong with interclass correlation 

coefficients of 0.90, 0.81, 0.91, and 0.88 respectively. Interestingly the rater with the lowest 

intra-rater reliability was the rater with the most experience as well as FMS certification. The 

authors speculated that this may be because the rater with the FMS certification may have 

been more sensitive to subtle changes in movement between sessions. It is also likely that this 

rater was better able to identify errors in movement when compared to the other raters that 

had no previous experience with the FMS.  Nonetheless it was concluded that overall the intra-

rater and inter-rater reliability for the FMS test was good when scored by raters of various 

levels of experience with the FMS.   

 One study performed by Teyhen et al. looked at the reliability of real-time FMS scoring 

using only novice raters 51. The eight raters were first year physical therapy students that had 

received twenty hours of training with the FMS. The participants of this study were 64 active 

duty service members who completed two FMS tests. Four of the raters were randomly 

selected to assess a group of the participants for both FMS tests. The other four were paired 
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with one of the first four raters to assess a group of participants on the second day. It was 

determined that both the inter-rater reliability and intra-rater reliability was moderate to good 

(ICC=0.76 and ICC=0.74 respectively). The authors concluded that the FMS had adequate 

reliability in the assessment of active service members by novice raters. This study would 

suggest that the reliability of the FMS is moderate to good even when conducted with less 

experienced raters.  It should be noted that novice raters in this study received more education 

and training on the FMS than novice raters in similar studies. This suggests that twenty hours of 

training is sufficient for reliable real-time grading of the FMS.   

 Onate et al performed a study examining the intra-rater and inter-rater reliability of 

real-time scoring of both overall FMS score and individual components 30. This study involved 

an expert rater for both the intra-rater and inter-rater reliability portions, and a novice rater for 

the inter-rater reliability portion.  The expert rater had four years of experience as a Certified 

Athletic Trainer and a Certified Strength and Conditioning Specialist (CSCS), and was FMS 

certified. The novice rater had three years of experienced as a CSCS, but no prior experience or 

training with the FMS. The subjects in this study consisted of 19 physically active adults 

recruited from a local university. The intra-rater or intersession reliability was determined to be 

excellent for overall score (ICC = 0.92) and poor to good for individual components ( κ = 0.16 - 

0.84). The inter-rater reliability was determined to be excellent for overall score (ICC = 0.98) 

and fair to excellent for individual components (κ = 0.33 - 1.00). The researchers concluded that 

overall FMS score and six out of the seven movement patterns appeared to be reliable between 

sessions and between raters. This study is interesting in that it proposed that as a novice rater, 

reading over the FMS instruction manual once was sufficient to be a reliable rater. In contrast, 
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Teyhen et al. suggested more training is necessary. It is significant that the novice rater in this 

study, was not a clinician but a Certified Strength and Conditioning Specialist. This study seems 

to suggest that raters certified in strength and conditioning along with clinicians are reliable 

raters in scoring the FMS. This is important in considering the reliability of use of the FMS by 

coaches, trainers, and strength and conditioning experts that work with athletic and active 

populations. No studies have been performed on raters lacking experience in working with 

athletic populations. However it is likely that a background in athletics and movement analysis 

is necessary for a rater to be reliable.  

 The literature appears to support the notion that the FMS tool is a reliable screening 

tool between raters when real-time scoring is used. However, it is still unclear what qualifies an 

individual as a reliable rater, or how much training is necessary for that individual to be reliable 

in rating. Several studies using videotaped assessment suggest that with proper training a rater 

is deemed reliable 50,51, while other studies using real-time scoring suggested novice raters with 

little to no training were reliable raters 30. There appears to be a difference in the requirements 

of a reliable rater between these two scoring methods. For this reason more research should be 

done to compare  the reliability of real-time scoring  to the reliability of scoring from video 

recordings. This is important as the FMS tool is intended to be used as a real-time tool. 

However, if real-time scoring is not considered reliable when compared to scoring from video 

recordings, this may suggest that dysfunctions in movement or compensations are being 

missed in real-time scoring. This would be concerning as the foremost aim of the FMS is to 

identify and address these compensations.  
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Reliability of New Grading Criteria  

 The original 21-point grading scale for FMS is a three point grading scale in which 

participants can score a three, two, one, or zero on each movement pattern (7 total) for a 

possible sum of 21 points. Participants scoring a three exhibit no compensations in their 

movement. Participants scoring a two exhibit one or more compensations or dysfunctions in 

movement, but are able to complete the movement pattern. Participants scoring a one exhibit 

one or more compensations or dysfunctions in movement and are not able to complete the 

movement pattern. A score of zero is reserved for those exhibiting pain during the movement 

pattern 17.  Researchers have argued that this grading scale is not sensitive enough to 

distinguish between a participant with several compensations during a movement pattern and 

a participant with fewer compensations during a movement pattern. For this reason Hickey et 

al. established a new 100 point grading scale focused on precision 44. One study performed by 

Butler et al. looked at the reliability of raters using Hickey's 100-point grading scale rather than 

the original 21-point grading scale 45. This new grading scale was created to address concerns 

about the precision of the 21-point grading scale and ideally improve the predictive value of the 

FMS tool. To examine the reliability of this new grading scale, two experienced raters watched 

the video recordings of 39 middle school aged children performing the FMS and rated each 

performer using the 100-point scale. Raters were able to review the videotape as many times as 

necessary and were blinded to one another's scoring. The result was that each individual 

movement component and overall score were determined to have excellent reliability (ICC= 

0.91-1.0). There were several limitations, to this study including choice of subject population, 

lack of real-time scoring, and lack of comparison to the original 21-point scale.  Overall the 
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authors concluded that the 100-point scale was reliable and encouraged its use among fellow 

researchers. However, there appears to be a deficit in further investigation of this new grading 

scale in the literature.  

Validity of the Functional Movement Screen  

 Validity of the FMS has gained a considerable amount of attention from the research 

community. The creators of the FMS suggest that the tool is able to detect dysfunctional 

movement and that it may be used in making return to sport decisions, for predicting injury, 

and performance predictability. When assessing the validity of these claims in the literature, 

there is a considerable amount of disagreement. An expert review by Kraus et al. concluded 

that there was only limited evidence to support the validity of the FMS 52. Interestingly though, 

the authors also suggested that as part of a battery of screening examinations it may be a 

"meaningful start in musculoskeletal screening" in lower level athletic populations 52. In higher 

level athletic populations, the authors advocate for more "sophisticated methods" 52. An expert 

review article written by Beardsley and Contreras suggests that while the FMS has some degree 

of predictability for injuries, that overall there is a lack of validity of the FMS 53. It should be 

acknowledged that these are expert reviews and therefore, have the potential for bias. In order 

to have a clearer understanding of the validity of the FMS tool, the primary literature must be 

consulted. The literature has concentrated on the validity of the FMS in three main areas: the 

construct validity of the FMS to detect dysfunctional movement patterns, the validity of the 

FMS to predict injury, and the validity of the FMS to assess athletic performance.   
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 Different approaches were taken to understand what the FMS is truly measuring. In one 

study, by Kazman et al., the researchers investigated the internal consistency and factor 

structure of the FMS 42. Given that the seven movement pattern scores are summed to equate 

a single overall score, this overall score has been assumed to be a uni-dimensional construct. 

This uni-dimensional construct is thought to be a measure of movement quality as a whole. The 

authors assessed this assumption by computing Cronbach's alpha and conducting an 

exploratory analysis on the FMS scores of 934 Marine officer candidates. The results of this 

study showed that the FMS is not the uni-dimensional construct it was assumed to be, and that 

there was poor internal consistency for the seven tasks in the FMS (Cronbach's alpha = 0.39). 

The authors of this study have suggested that each of the seven movement patterns may be a 

separate construct. However if each movement is a separate construct, then the meaning of 

the overall FMS score becomes unclear.  

 A similar study performed by Li et al. investigated the internal consistency and factor 

structure of the FMS using elite athletes in China 43. Likewise, this study found the internal 

consistency of the seven FMS movement patterns to be low and through factor analysis 

determined the seven movement patterns were not indicative of a single factor. This finding 

may suggest that more attention should be paid to individual movement pattern scores rather 

than overall FMS score. Interestingly, this finding is consistent with the notion that the FMS 

should not be used as a standalone evaluation but as part of a more complete screen. This was 

not a completely unexpected result, as the FMS was created to assess the quality of individual 

movement patterns, providing information on compensations and errors. However, the finding 

that the FMS tool is likely not a uni-dimensional construct, still leaves the question unanswered 
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concerning the meaning  and appropriate use of the overall FMS score. It appears that more 

research is necessary to draw conclusions on this topic.   

 A study performed by Frost et al took a very different approach to examining the validity 

of the FMS. These researchers examined the role that the participants' knowledge of the 

grading criteria played on the overall FMS score 54. Twenty-one firefighters completed the FMS 

once with no knowledge of the grading criteria and again after receiving knowledge of the 

grading criteria. The result was that overall FMS scores significantly improved with knowledge 

of the grading criteria (p <0.001). The authors interpreted this result to mean that "it would be 

inappropriate to assume that someone's movement patterns are a direct result of specific 

"dysfunction" or "impairment" that could be rectified via "corrective" exercise"54. Since this is 

the basis of the FMS, the authors' suggestion directly challenges the validity of the assessment. 

One major limitation of this study was that there was no control group. Having a control group 

that had not received information about specific grading criteria but did completed the FMS for 

a second time with little or no change in score, would have allowed the authors of this study to 

make a stronger argument against the validity of the FMS.  However, this study does suggest 

that there is a learning component to movement patterns that should be considered. One 

conclusion that can be drawn from this study is that a participant's knowledge of the grading 

criteria appears to affect their overall score.  This is crucial for clinicians to keep in mind when 

administering the FMS screen.  

 Interestingly, in a previous study by Frost et al., the researchers examined participants' 

frontal plane knee and spine motion in comparison to overall FMS score 55. The researchers 
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examined a group of high scoring participants, individuals scoring a 14 or above, and a group of 

low scoring participants, scoring a 13 or below. It was determined that on average participants 

in the high scoring group had less spine and frontal plane motion during the movement 

patterns when compared to their matched lower scoring counterparts, . This would appear to 

suggest a higher quality of movement was observed in the higher scoring group of participants. 

Assuming this finding is legitimate, then this would imply that the FMS may be a valid 

assessment.  However, the authors concluded that due to substantial variability of motion in 

both groups "that current FMS scoring criteria may be insensitive to potentially risky movement 

behavior"55, questioning the validity of the assessment's ability to predict injury.  

 In a different approach, one study by Sprague et al. examined the relationship between 

asymmetries in glenohumeral joint range of motion (ROM) and asymmetries in score on the 

shoulder mobility component of the FMS, in overhead athletes 56. The researchers 

hypothesized that the FMS would not be sensitive enough to detect an asymmetry in 

glenohumeral joint ROM. This results of this study proved the hypothesis to be correct. 

However it is important to consider that completing the shoulder mobility test of the FMS 

requires more than just adequate glenohumeral joint ROM, but also adequate scapulothoracic 

rhythm and ROM, and adequate flexibility as well. The shoulder mobility component of the FMS 

is meant to detect dysfunction in gross shoulder mobility and likely is not specific enough to 

detect all clinically significant asymmetries in ROM in overhead athletes. The authors of this 

study concluded that while the FMS is capable of providing information about a participant's 

gross shoulder mobility it does not appear to be related to passive rotational ROM of the 

glenohumeral joint. This appears to neither confirm nor refute the validity of the FMS, but 
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underlines the importance of using the FMS as part of a battery of examinations prior to 

physical activity participation.  

 The most objective study examining the validity of the FMS in detecting dysfunction in 

movement was a study performed by Whiteside et al. that compared manual scoring of the 

FMS by a certified expert with scoring based on an inertia-based motion (IMU) capture system 

57. The aim of the study was to compare manual scoring of the seven FMS components to the 

IMU system with preset kinematic thresholds that were determined based on the grading 

criteria. The study found poor to fair reliability between six of the seven test components. The 

only test component that was determined to have moderate to good reliability was the hurdle 

step. Assuming the IMU system is objective and accurate and the grading criteria of the FMS 

allow the IMU system to detect dysfunctional movement, then the results of this study appear 

to challenge the validity of manual real-time scoring of the FMS.  

 Overall there does not appear to be enough evidence to validate the FMS as a measure 

of dysfunctional movement. While it seems that the FMS meets face validity in that it appears 

to be widely accepted by movement experts, the present research appears to suggest that the 

FMS is not the one-dimensional construct it has been assumed to be. For this reason, future 

research should continue to examine the construct validity of the individual functional 

movement patterns rather than the composite score and the screen as a whole.  

 Aside from construct validity, researchers have also tried to validate the various claims 

of the creators of the FMS, such as the screen's ability to predict injury. This is crucial in that the 

ability of the FMS to be able to predict injury suggests that the screen is in fact identifying 
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dysfunctional movement patterns that place individuals at risk for injury. The first group of 

researchers to examine the relationship between FMS score and risk of injury was Kiesel et al.38. 

It is important to note that Kiesel was part of the collaborative effort of creating the FMS. The 

researchers performed a preliminary study with professional football players, having the 

athletes participate in the FMS as a part of pre-participation screening and then comparing 

scores to injuries that occurred during the season. Using a receiver-operator characteristic 

(ROC) curve for overall FMS score and injury status, it was determined that individuals scoring a 

14 or below were at greatest risk for injury. This was the point that was determined to 

maximize the specificity and sensitivity of the FMS to predict injury. In response to the research 

study performed by Kiesel, Chorba et al. performed a follow-up study examining the ability of 

the FMS to predict injury in female athletes 58. The researchers used a cutoff point of 14 based 

on the findings of Kiesel et al.. Chorba et al too, determined that individuals scoring below a 14 

on the FMS were at greater risk for injury (OR= 3.85, sensitivity = 0.579, specificity = 0.737).  

 Lisman et al. also examined the relationship between overall FMS score and risk of 

injury. This study involved 874 men enrolled in Marine Corps officer candidate training. 21   

Participants completed physical fitness tests, the FMS, and a questionnaire for self-reported 

physical fitness and prior injury history. Injury data was then collected throughout training. It 

was determined that three mile run time and overall FMS score below 14 were both risk factors 

for injury. In addition, combining slower run time and low FMS score increased the predictive 

value for injury. This appears to suggest that the FMS may be useful in injury prediction. This is 

significant in that if injuries are  able to be predicted, then it is possible that with corrective 

exercise these injuries might be avoided. A very similar research study using Marine Officer 
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candidates performed by O'Connor et al. found that there was no point on a ROC curve that 

maximized specificity and sensitivity. 59 This is in contradiction to Kiesel et al. that found that a 

score of 14 maximized the sensitivity and specificity of the FMS in injury prediction. This study 

was in agreement with Lisman et al., in that an overall FMS score below 14 displayed an 

increased odds ratio for injury and that participants scoring low on physical fitness were at 

greater risk for injury. However unlike Lisman et al. combining FMS scores and physical fitness 

scores did not improve injury prediction. A unique result from this study was that individuals 

scoring above an 18 on the FMS also were at greater risk for injury. This is important in that it 

seems to contradict the entire premise of the FMS in that dysfunctional movement can be 

identified and corrected to reduce risk of injury. If this premise were accurate then high scoring 

participants should be at lower risk of injury.  

  Another study that identified a FMS score of 14 as the point where sensitivity and 

specificity for injury were maximized, was one performed by Butler et. al 40. This study assessed 

the ability of the FMS and physical fitness tests to predict injuries in fire-fighter trainees. The 

only individual test components that were identified as being predictive of injury were the sit 

and reach test (OR= 1.24), FMS deep squat (OR=1.21), and FMS push-up (OR= 1.30). The ROC 

curve created in this study found that sensitivity (0.83) and specificity (0.62) were maximized at 

an overall FMS score of 14. However, a similar study performed on active fire-fighters by Peate 

et al. found that individuals with previous injury were more likely to achieve an overall score 

below 16 on the FMS. The odds of scoring below a 16 on the FMS were 1.68 times more likely 

for individuals with a history of injury.  It appears there are discrepancies in determining a 

cutoff point in composite FMS score that detects risk of injury.  
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 In contrast to previous studies, where a score of 14 was found to be the cutoff point, or 

no cut off point was found, Letafaker et al. identified a FMS score of 17 as the cutoff point 39. 

This study involved male and female competitive and recreational athletes for Iran. Using a ROC 

curve the researchers found that the sensitivity (0.645) and specificity (0.780) were greatest at 

an overall FMS score of 17. The odds ratio at this point was determined to be 4.7. As the overall 

mean score for this population was found to be 16.7 ± 1.8, this finding is concerning. A research 

study performed by Wiese et al. also identified a FMS score of 17 to be the cut off point for risk 

of injury 60. In this study performed on Division I College Football players, it was determined 

through ROC analysis that sensitivity (0.4) and specificity (0.4) were maximized at a score of 17.  

However contrary to Letafaker, with a lower odds ratio of 1.425, the researchers concluded 

that there was little evidence that the FMS was useful in prediction of injury.   

 Presently, there appears to be moderate evidence to support the use of FMS in 

prediction of injuries. The disagreement in the actual cutoff point used to determine the risk of 

injury may be explained by different participant populations. However, based on the current 

literature the cutoff point for athletic populations is most likely between a score of 14 and 17 

21,38–40.  More research should be conducted to determine the sensitivity and specificity of the 

FMS to detect risk of injury in different athletic populations. Additionally researchers should 

evaluate whether specific movement patterns are more likely to predict injuries in different 

populations.  

 Researchers have also attempted to validate the claim that the FMS is capable of 

predicting athletic performance ability. One of the first research studies examining the whether 
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an intervention program could change FMS score was performed by Kiesel et al 33. The 

researchers developed individualized interventions for each participant, all of which were 

professional football players, based on initial performance of the FMS. Participants then 

completed the individualized training program and were re-evaluated at the conclusion of the 

training program using the FMS. Using chi-squared, it was determined that more participants 

were scoring higher than the injury threshold after the intervention as compared to before the 

intervention. The authors the study concluded that an individualized training program can 

improve FMS scores. This would appear to suggest that if the FMS is truly identifying 

dysfunctional movement, that an individualized training program may be helpful in correcting 

movement patterns. However, one major limitation of this study is the lack of a control group. 

Therefore it cannot be concluded that the difference in score after invention was due to the 

individualized training program intervention.  

 Bodden et al. performed a research study on semi-professional mixed martial arts 

athletes to determine if an eight-week training intervention would improve FMS score 34. In 

contrast to Kiesel, Bodden et al. used a control group. The researchers created a corrective 

exercise program for the intervention group, while the control group was asked to refrain from 

changing training strategies for the duration of the study. It was found that there were 

significantly different scores between the intervention group and the control group at four 

weeks and at eight weeks of intervention. The intervention group was also found to have fewer 

participants score below 14 on the FMS, and overall less asymmetrical movement patterns 

were found. The researchers concluded that the corrective exercises appeared to improve FMS 

score in mixed martial arts athletes in as little as four weeks. One weakness of this study is that 
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the FMS is the only measure of performance that was used to evaluate the outcome of the 

intervention program. This study suggests that corrective exercises may improve overall FMS 

score and decreases asymmetrical movement patterns, but fails to provide evidence that 

overall athletic performance has changed.  

 Frost et al. also performed a study that attempted to answer whether the FMS is a valid 

measure for change in performance 19. This study included sixty firefighters that were evenly 

divided into three groups: 2 intervention groups, and a control group. The intervention groups 

consisted of different training programs, one focusing on exercises for injury prevention and 

another focusing purely on physical fitness. The control group did not participate in a training 

program. FMS scores were recorded before and after the intervention programs. The 

researcher evaluated a recorded video of each participant using the original 3 point scale, the 

research standard 100 point scale, and a modified 100 point scale. From this it was determined 

that there was no significant difference in the overall FMS scores in any of the groups post-

intervention for any of the grading scales. From this it would appear that the FMS is incapable 

of detecting changes in movement patterns , or that the interventions were unsuccessful at 

improving movement patterns.   

 Some research studies focused on comparing performance on the FMS to different 

established measures of athletic performance. A preliminary study performed by Lockie et al. 

investigated the relationship between FMS and athletic performance in nine female athletes 61. 

The study compared FMS scores to several different performance tests. The researchers 

concluded that there were likely limitations in using the FMS to evaluate performance. A 
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secondary study performed by Lockie et al. investigated the relationship between FMS score 

and performance looking specifically at the lower body screens and tests of multidirectional 

speed and jumping ability 62. Some moderate correlations were found between individual FMS 

components and performance measures, but overall the researchers concluded the relationship 

between FMS and athletic performance in this population was minimal.   

 Similarly, Okada et al performed a research study using recreational athletes to 

determine if there was a relationship between core stability, functional movement, and 

performance 63. Researchers found there were a few significant correlations between the core 

stability test scores and scores on performance measures. No significant correlations were 

found between core stability and FMS score. This is a surprising result as two of the FMS 

movement patterns that were tested are measures of core stability. Using multiple linear 

regression it was determined that 86% of the variability in performance scores could be 

accounted for by flexion and lateral flexion core stability endurance tests and the shoulder 

mobility component of the FMS which is an unlikely predictor of performance.  This would 

appear to suggest that the FMS as a whole is not a good predictor of variability in performance.  

 Parchmann and McBride examined the relationship between FMS score and athletic 

performance in collegiate Division I golf players 20. The researchers compared both composite 

FMS score and individual movement pattern scores to measures of performance such as sprint, 

jump, and agility tests. There were no significant correlations found. The researchers also 

compared a one repetition maximum strength test to these same measures of performance 

and found several significant correlations. This is expected as strength is general thought to be 
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a measure of athletic performance. It is surprising that none of the FMS movement pattern 

scores were related to any of the measures of performance, as the FMS is thought to be 

predictive of athletic performance. This research study is in agreement with the previous 

studies in suggesting that the FMS may not be useful in measuring athletic performance.  

 In a research study performed by Clifton et al., the relationship between functional 

movement and static balance was measured before and after exercise 35. The researchers 

hypothesized that there would be a relationship between static balance measures and FMS 

score.  Additionally, the researchers hypothesized since exercise related fatigue has been 

shown to impact static balance ability, it is likely it will also affect FMS score. While individual 

components of the FMS including the hurdle step, inline lunge, and active straight leg raise 

showed moderate correlation with the static balance measures before exercise, the overall FMS 

score and other components did not. Additionally while static balance measures decreased with 

exercise, the overall FMS score and component scores remained the same. This is a surprising 

result as the FMS is thought to identify dysfunctions in stability as well as mobility. It is possible 

that since the FMS movement patterns require more dynamic stability in contrast to static 

stability, that this may explain the unchanged score after exercise. It is also possible that the 

order the testing was done, in which the FMS testing was after the static balance measures, 

allowed the participants to begin recovering from fatigue.  

 Similar to the research study performed by Clifton et al., is a research study performed 

by Hartigan et al 36. This research study looked more specifically at the relationship between 

the Inline lunge movement pattern of the FMS, and balance, sprint time, and jumping abilities. 
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It was determined that the FMS did not have a significant correlation with any of these 

measures (r= -0.293-0.101). This is partially in contradiction to previous studies showing a 

significant correlation between the inline lunge and balance. This study is different however in 

that balance was measured during the movement pattern as opposed to separately. This study 

would appear to support the notion that the FMS may not be sensitive enough to detect 

deficiencies in balance, and is likely not useful to measure athletic performance.   

 Rather than using performance tests, Chapman et al. performed a research study on 

elite track athletes to determine if there were differences in longitudinal performance based on 

FMS score 37. The researchers divided the athletes into a high scoring group, individuals scoring 

a 15 or above, and a low scoring group, individuals scoring below a 15. The researchers found 

that athletes in the high scoring group had greater positive performance changes than athletes 

in the lower scoring group. An interesting and unexpected result, was that this was true for the 

group of athletes as a whole and the subgroup of male athletes, but there was no difference in 

longitudinal performance change by FMS for female athletes. This brings to question the role 

sex plays in the ability of the FMS to predict athletic performance. 

 To determine what role sex and previous injury played on FMS score and Y- Balance Test 

score, Chimera et al. performed a research study on Division I male and female athletes 64. In 

this study, participants self-reported injury history through a questionnaire and performed the 

FMS and Y-Balance test. Interestingly overall FMS score was the same between the sexes, 

however scoring on individual movement patterns was different, with females scoring lower on 

the two core related movement patterns. Also found was that previous hip, elbow, hand, and 



58 
 

shoulder injuries were all shown to have an adverse effect on overall FMS score. It is very 

interesting that no relationship between previous lower body injury and overall FMS score was 

found. 

 There appears to be moderate evidence to support the notion that the FMS may not be 

suitable as a predictor or measure of athletic performance. While a few studies showed that 

FMS score increased with specific exercise intervention, these studies failed to show that 

athletic performance increased with the same specific exercise intervention. The majority of 

studies revealed that there appeared to be no relationship between athletic performance 

measures and performance on the FMS, or a very minimal relationship. From these results it is 

likely the FMS alone is not a good predictor of athletic performance, and should be used with 

caution and as part of a battery of performance tests, when evaluating an athlete's 

performance abilities.  

 Another current area of interest for many researchers is the normative values of the 

FMS when used on different populations. Upon being accepted as a reliable tool for general 

athletic populations, there has been a great deal of interest in looking at the use of the FMS 

with specific populations. Some populations that have been studied are military, Division I 

collegiate athletes, elite athletes, runners, and the general population. Researchers have also 

been interested in identifying factors that may explain variance in FMS score. Suggested factors 

potentially explaining the variance in score are age, gender, and body mass index (BMI).  

 Schneider et al. examined two hundred and nine physically active individuals between 

the ages of 18 and 40 to determine normative values for FMS composite score in healthy young 
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individuals 28. The researchers found that the mean composite score for participants as a whole 

was 15.7± 1.9. The researchers also calculated the mean composite score for male and female 

participants separately, finding the mean composite for males to be 15.6 ± 2.0 and females to 

be 15.8 ± 1.8. From this it appears there is no difference in composite scores between the sexes 

in this population. A very similar research study was performed by Perry and Koehle in which 

normative values of FMS composite score were determined for middle aged adults 65. The 

participants were six hundred and twenty-two individuals between the ages of 21 and 82. The 

researchers did not report a mean composite score for the group as a whole, but reported 

mean composite scores for different age groups. Participants between the ages of 20-39 scored 

the highest with a mean composite score of 15.17 ± 2.44, while participants between the age of 

60-64  scored the lowest with a mean composite score of 12.89 ± 3.23. Using multiple linear 

regression the researchers also determined that age, BMI, and physical activity level were all 

significant predictors of FMS composite score. Additionally, negative correlations were found 

between the factors of BMI and age with FMS composite score.  

 FMS was originally developed to be used in athletic populations. While the previous two 

studies developed normative values for general populations, technically the FMS was not 

created for this purpose. A research study performed by Engquist et al compared mean 

composite scores between Division I collegiate athletes to general college students that were 

the same age and attended the same university 27. The researchers found there was no 

difference in mean composite score between the two groups. The mean composite score for 

student athletes was 14.2 ± 0.2, while the mean composite score for general students was 14.1 

± 0.2. Also, the only individual movement pattern student athletes scored significantly higher 
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on was the deep squat. The results of this study seem to suggest that movement patterns are 

fairly similar between the general population and athletic populations.  

 Normative values for mean FMS composite score have been established for many 

specific athletic populations. One of these populations was active military service members, in 

which normative values were determined by a research study performed by Tehyen et al 29. It 

was determined that the mean composite score for active military service members was 16.2 ± 

2.2. Another active population that FMS normative values have been established for is distance 

runners. A study by Agresta et al. established normative values for FMS composite score for 

novice distance runners and expert distance runners, but excluded professional distance 

runners 66. The mean FMS composite score for all distance runners in this study was 13.13 ± 1.8. 

This is a concerning result for this population, as the mean composite score is lower than the 

composite score that is thought to be predictive of injury. Interestingly, there was no difference 

in mean FMS composite score between novice and distance runners, runners with or without a 

history or injury, or male or female runners. The only significant differences found for male and 

female runners were mean scores on the deep squat, trunk stability push-up, and active 

straight leg raise movement patterns. Men scored higher on the deep squat and the trunk 

stability push-up while women scored higher on the active straight leg raise.  

 Another research study that determined normative values for an athletic population 

based on skill level was that of Fox et al 67. In this study, normative values were established for  

male elite and sub-elite hurling and soccer players . The overall mean composite score for 

hurlers was found to be 15.51 ± 1.52 and the overall mean composite score for soccer players 
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was found to be 15.67 ±1.35. There were no significant differences found between skill levels. 

Given the results of Enquist et al. that there is no difference in score between athletic and 

general populations, this is not a surprising result. What is a surprising result is that there was 

no significant relationship found between age or BMI and composite FMS score in this 

population. As this is in contradiction to Perry et al, more research should be performed to 

evaluate the role BMI and age have on composite FMS score.  

Using the Functional Movement Screen in Adolescent Populations 

 The FMS was not originally created to be used in adolescent populations, however there 

has been a significant amount of interest in whether the FMS is an appropriate tool to be used 

in adolescent populations. The issue is that when it comes to motor control and movement 

patterns, adolescents should not be thought of as smaller versions of adults. Adolescents are 

still developing mature movement patterns into adulthood. For this reason it is unknown 

whether the FMS is an appropriate tool to measure dysfunctional movement in adolescents. 

Researcher have attempted to determine this by establishing normative values, examining 

injury prediction, and examining factors that influence score.  

 A recent study by Parenteau et al. examined the reliability of the FMS in adolescent elite 

hockey players between the age of 13-16 years old 68. Data collection was completed in three 

different sessions in order to assess inter-rater reliability and intra-rater reliability of certified 

raters. In the first session two raters simultaneously assessed all twenty-eight participants in 

real-time. Videotape recordings were taken during this session to be used in sessions two and 

three. In sessions two and three, two raters assessed videotape footage with six weeks 
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between viewing sessions. The inter-rater reliability for total FMS score was determined to be 

excellent (ICC = 0.96). The intra-rater reliability for total FMS was also determined to be 

excellent (ICC = 0.96). Evaluation of the individual test components showed at least good 

agreement between raters for five of the seven test components. The authors of this study 

concluded that the FMS is a reliable test in this athletic population. This appears to be 

consistent with previous results. Additionally this study suggests reliable use with additional 

populations beyond the original scope intended by the creators of the FMS. 

 One of the first groups of researchers to establish normative values in an adolescent 

population was Abraham, Sannasi, and Nair 69. These researchers screened over one thousand 

students between the ages of 10 and 17 years old.  The researchers found that the mean 

composite score for this population was 14.59 ± 2.48. An unanticipated result from this study 

was that female adolescents score significantly lower on composite score, the inline lunge, the 

trunk stability, and the rotary stability components as compared to male adolescents. A 

researcher study performed by Anderson, Neumann, and Huxel Bliven on adolescents between 

the ages of 13 and 18 years old, also found mean composite score, mean inline lunge score, and 

mean trunk stability score to be significantly lower for female adolescents in comparison to 

male adolescents 70. These studies appear to suggest that there may be a difference in FMS 

score between the sexes in adolescent populations.  

 In contrast to the previous studies, a research study performed by Duncan, Stanley, and 

Wright found that in children between the ages of 7 and 10 years old, that there was no 

difference in mean composite FMS score between the sexes 26. However, these researchers 



63 
 

found a moderate negative correlation between body mass index (BMI) and composite FMS 

score (r= -0.57). A previous study by Duncan and Stanley found an even stronger negative 

correlation between body mass index (BMI) and composite FMS score (r= -0.806) in 10 to 11 

year old children 25. In this same study the researchers found a weak but statistically significant 

positive correlation between physical activity and composite FMS score (r= 0.301). It was 

determined that BMI and physical activity  accounted for 60.2% of the variance in composite 

score.   

 In contrast to these previous studies, a research study performed by Mitchell, Johnson, 

and Adamson found that BMI was not correlated with composite FMS score in children 

between the ages of 8 and 11 years old 46. The authors suggested that this may be due to the 

fact that only 9% of the participants were considered to be overweight, while in previous 

studies, as many as 33% of participants were consider overweight or obese (ref). The only 

correlation found in this study was a weak correlation between core stability, measured by 

planking and side planking performance, and composite FMS score. If in fact there is a 

relationship between core stability and composite FMS score, this would suggest that the FMS 

may be a valid measure of core stability. In order to determine the validity of the FMS when 

used in this population, more needs to be known about the relationship between performance 

measures and FMS scores.  

 In an attempt to examine the validity of using the FMS in adolescent populations, 

Wright et. al examined how a four week functional intervention program influenced composite 

FMS score and other performance measures in physically active adolescents between the ages 
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of 11 and 15 years old 71. The participants were placed either in a control group participating in 

typical multi-sport activity or in an intervention group participating in functional movement 

exercises. It was determined that change in composite FMS score and sit and reach score in the 

intervention group were most likely trivial. Interestingly, the researchers found that the 

intervention was likely beneficial for planking performance, but likely harmful for side planking 

performance. This seems to be contradictory as both measures are thought to be markers of 

core stability. Based on the findings of this study it does not appear that the use of functional 

movement training is warranted in this population. However, before the effects of a functional 

movement intervention can be determined in this population, the validity of the FMS to predict 

performance in this population must first be addressed.   

 In a research study performed by Bardenett et al., the ability of the FMS to predict injury 

in an active adolescent population was examined 72. Adolescents between the ages of 13 and 

18 years old were screened with the FMS as part of a pre-participation examination, and then 

injuries for the participants were tracked throughout the athletic season. It was determined 

that there was no difference in mean composite score between the injured and uninjured 

adolescent athletes. Using a ROC curve, researchers also determined that there was not a 

cutoff point where sensitivity and specificity were maximized. Based on the results of this study 

it does not appear that the FMS is an appropriate tool for predicting risk of injury in adolescent 

athletes.  
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Other screens 

 With the great amount of interest in identifying impaired movement patterns, the FMS 

is not the only test that has been established to do so. Recently several new screens have been 

established in an effort to identify movement impairments. These screens include a nine-test 

screening battery, a sixteen item physical performance measure (16-PPM) screening battery, 

and The Foundation Matrix (TFM). These movement impairment screens just have begun to 

receive attention from researchers. The current research available for these three screens 

mostly focuses on inter-rater and intra-rater reliability. 

 The nine-test screening battery was first described by Frohm et al., and is sometimes 

referred to as the Frohm-9 73. This screening battery involves six of the seven FMS movement 

patterns, a one-legged squat test from the United States Tennis Association's (USTA) High 

Performance Profile (HPP), and a straight leg raise test and seated rotation test. The 

researchers made several small modifications to the FMS movement patterns, having more 

strict grading criteria, different standardized instructions for starting positions, and only 

performing portions of some of the movement patterns. In a research study using male elite 

soccer players and physiotherapists as raters, it was determined that this nine-test screening 

battery had good inter-rater reliability (ICC= 0.80) and intra-rater reliability (ICC= 0.75). 

Additionally, the inter-rater reliability was found to be good for each of the nine tests except 

the one-legged squat and the diagonal lift test. This study would appear to suggest that the 

nine test screening battery may be a reliable test when performed by experienced raters. 

Currently there is no information on the validity of the nine test screen battery or the ability of 

the screen to predict injury or enhance performance.  
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 The 16-PPM screening battery was first described by Tarara, Hegedus, and Taylor 74. This 

movement impairment screen is similar to the Frohm-9 in that it includes some of the 

movement patterns from the FMS. This screen includes modified versions of the deep squat, 

shoulder mobility test, and active straight leg raise. Different from the Frohm-9, this screen is 

broken down into quantitatively-scored tests focusing on more objective measures, and 

qualitatively-scored tests focusing on more subjective measures. This screen included a broad 

range of performance and movement strategy tests. The researchers found that inter-rater and 

intra-rater reliability for the majority of the sixteen tests was good, with better reliability for the 

performance components rather than the movement pattern components. This study suggests, 

that similar to other movement impairment screens, the 16-PPM may be a reliable screen in 

athletic populations. With the addition of performance measures in this screen, this tool may 

be more useful in pre-participation screening of athletic populations in comparison to previous 

screens only assessing movement impairments. However before this screen is accepted as a 

pre-participation screen more research is needed on the validity of the 16-PPM screening 

battery and the ability of the screen to predict injury risk and athletic performance. 

 The final movement impairment screen, the TFM, was created by Comerford and  

Mottram. This movement impairment screen is also thought to identify inefficient control of 

movement and dysfunctional movement patterns referred to in this screen as uncontrolled 

movement. Comerford and Mottram define uncontrolled movement as: "a lack of ability to 

cognitively coordinate and control motion efficiently to benchmark standards at a particular 

body segment"75. Similarly to dysfunctional movement patterns, uncontrolled movement is 

thought to increase the risk of injury. In a research study performed by Mischiati et al. the inter-
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rater reliability and intra-rater reliability was evaluated for the TFM 76. Nine of the ten 

movement control tests were used to evaluate the reliability of the TFM. These movement 

control tests included five low threshold tests of alignment and coordination and four high 

threshold tests of strength and speed control.  Researchers found that the inter-rater and intra-

rater reliability for composite scores was excellent. This study would appear to suggest that the 

TFM is a reliable test when used by experienced raters in athletic populations. While the TFM 

appears to be a promising movement impairment screen, future research is still needed to 

assess the validity of the TFM.   

Somatotyping 

 Somatotyping is a method for classifying human physique. It is considered to be a 

numerical representation of an individual's body type in a three number rating scale. 

Somatotyping identifies three main components to physique: endomorphy, mesomorphy, and 

ectomorphy. Each number in the rating scale represents one of these main components. The 

endomorphy rating is a measure of body fatness vs. leanness. An individual scoring high on the 

endomorphy rating would be considered to have a large amount of body fat, while an individual 

scoring lower would be considered more lean. The mesomorphy rating is a measure of 

muscularity. An individual scoring high on the mesomorphy rating would be considered to have 

a large amount of muscle mass, while an individual scoring lower would be considered to have 

less muscle mass. The ectomorphy rating is a measure of height in relation to weight. An 

individual scoring high on the ectomorphy rating would be considered to have significantly 

more height than weight, while an individual scoring lower would be considered to have less 

height and more weight.  
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 Somatotyping was first described by W. H. Sheldon in 1940. 2 Later this method was 

adapted and modified by Heath and Carter. 1 It is the Heath-Carter method that is considered to 

be the gold standard of somatotyping today. While limitations to the Heath Carter method have 

been established, such as its inability to account for the expanse of the body sizes of today's 

population 77 and the questionable validity of one of the three components 78, it is still a very 

widely used field test. In the past five decades there has been a great deal of interest in 

identifying normative values of somatotype rating for a vast variety of  different populations, 

and in comparing somatotype rating to measures of sports performance. Interestingly, today 

there is still a great deal of interest in determining normative values of somatotype rating in 

different athletic populations, and in comparing somatotype rating to measures of sports 

performance. In addition, new ways to measure an individual's physique have been compared 

to the Heath Carter method for validation purposes.  

Somatotype Ratings in Athletic Populations and Athletic Performance 

 In 1970 J.E.L. Carter published a review article detailing the normative values of a wide 

variety of athletes 79. In this review, several patterns between physique, skill level, and choice 

of sport were identified. One interesting finding was that elite athletes did not appear to differ 

in physique from regular athletes of the same sport. Another interesting find was that 

somatotype varied considerably between different sports. From this review it appears that 

certain body types are more likely to be involved in certain sports. Since this review article, 

there have been many research studies investigating somatotype ratings in athletes of different 

sports and different player positions. In a recent study involving volleyball players, on average, 

centers and hitters were characterized as belonging to the central category, setters and hitters 
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where characterized as mesomorphs. 80  In another study on elite sprinters, females were 

classified as belonging to the central or ectomorph categories and males were classified as 

belonging to the mesomorph or ectomorph categories 81.  One study performed on 

intermediate and high level surfers somatotype category was able differentiate between level 

of performance 82. In general, studies investigating somatotyping and performance suggest that 

different somatotypes display varying levels of performance for different tasks. Overall it 

appears that physique does seem to play a role in sport selection and success at different player 

positions. To understand the role somatotype plays in an individual's ability to be successful in a 

given sport or position, more must be known about the relationship between performance 

measures and somatotype.  

 In a research study performed on male college students,  Bale, Colley, and Mayhew 

investigated relationships between somatotype categories and measures of physical 

performance. 5 While the researchers found weak to moderate correlations for the somatotype 

ratings and measures of performance such as grip strength, trunk extension, vertical jump, 

estimated VO2max, and maximum power output, the researchers did notice trends between 

the somatotype categories. Endo-mesomorphic and mesomorphic participants performed 

better in measures of strength and power, while ectomorphic participants performed better in 

measures of aerobic performance such as VO2max. In a very similar study performed by P. Bale, 

E. Colley, and J. Mayhew on female college students, the researchers  again investigated 

relationships between somatotype categories to measures of physical performance 4. Similar to 

the previous study, only weak and moderate correlations were found with performance 

measures. Interestingly the same trends that were noticed in the male population were found 



70 
 

to be true of the female population as well. From this trend it appears that there is a 

relationship between somatotype and athletic performance. 

Other Measures of Body Composition  

 Somatotyping is just one method used to describe human physique. There are several 

measures of body composition that also attempt to describe physique. The measures include 

hydrostatic weighing, skinfolds, bioelectrical impedance, dual energy x-ray absorption, and air 

displacement plethysmography. Skinfolds and bioelectrical impedance are commonly used 

measurements to assess percent body fat because these tests require minimal equipment. 

However both of these tests are indirect measures and are only able to estimate percent body 

fat. Another body composition test that indirectly measures percent body fat is hydrostatic 

weighing, in which an individual is placed on a hanging scale in a tank of water to determine 

underwater weight. The underwater weight of an individual can then be used to calculate fat 

mass and fat-free mass. Prior to the new technologies of dual energy x-ray absorption and air 

displacement plethysmography, hydrostatic weighing was considered to be the gold standard in 

assessment of body composition.  

 More recent studies such as one performed by Dewit et al. determined that air 

displacement plethysmography was as accurate as hydrostatic weighing 83. While the study was 

not able to determine which technique was more accurate, it suggested that air displacement 

plethysmography is a "promising technique" for body composition analysis in adults and 

children. One disadvantage of both hydrostatic weighing and air displacement 

plethysmography is that both of these measures require expensive equipment (i.e. Bodpod) 
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that is not transportable. In a research review conducted by Toombs et al., the authors suggest 

that according to the literature, dual energy x-ray absorption is a precise and useful tool for 

measuring body composition 84. Unlike other measures, this tool is able to estimate bone mass, 

as well as fat free mass and fat mass. However, similar to hydrostatic weighing and air 

displacement plethysmography, it also requires expensive non-transportable equipment. In a 

study performed by Olds et al., researchers used three-dimensional whole-body scans to detect 

body shapes, and found body shapes incredibly similar to traditional somatotyping 77. The 

researchers suggest that while 3-D body scanning offers another good approach to describing 

and classifying human physique, this new techniques is unlikely to replace traditional 

somatotyping methods due to the ease of carrying out traditional methods.  It is likely for this 

reason exactly that somatotyping is still commonly used; somatotyping requires substantially 

less equipment than the previously mentioned methods and it can be performed anywhere.  

 Overall the literature seems to support the use of somatotyping as a valid way to assess 

physique. In comparison to most other methods of assessing body composition it requires less 

equipment and is more easily performed in field settings. Somatotyping is most useful in 

tracking changes in physique, and is commonly compared to athletic performance and player 

position.  
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Appendix A - Informed Consent 
 

Research Informed Consent Form 

Grand Valley State University 

Functional Movement Screening Score by Somatotype Category 

Purpose – What is this study for? 

The purpose of this research study is to establish normative reference values for functional movement 

screening score based on body type category. By establishing reference norms for movement abilities by 

body type we will be able to know more about the relationship between the way we move and body 

composition. Additionally we will be able to compare functional movement screening scores between 

body type groups. 

Reason for Invitation – Why was I invited to participate? 

You have been invited to participate in this study in order to help establish reference values for 
functional movement screening score based on body type.  

Participant Selection – Can I Participate? 

To participate in this study you must be between the ages of 18-25 years and be a student enrolled at 

Grand Valley State University. Since this study is looking at movement abilities we must exclude 

individuals with known limitations to movement. In order to participate you cannot have any obvious 

movement limitations, self-reported or observed. Also to participate you must be free from injury at the 

time of the study. Additionally you may not participate if you have had any major leg injuries in the past 

six months or have had surgery on either leg in the past six months. Please note that your participation 

in this study will require attendance of one session 30-45 minutes in length.  

Somatotyping – What Body Measurements are being taken? 

Height & Weight - The first two measurements will be height measured on a stadiometer and 

weight measured on a scale.  

Skinfolds - The next group of measurements will be skinfold measurements. Skinfold 

measurements are taken with a pair of skinfold calipers. The researcher will identify the skinfold 

being measured and will gently but firmly pinch just above the skinfold site using calipers to 

measure the thickness of the fold. There may be some slight discomfort from the pinching, but 

discomfort will be minimal and temporary (no more than a few seconds). There will be four sites 

tested: the middle of your tricep, just below your shoulder blade, just above the top of your hip 

bone, and the inside of your calf.  
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Breadth Measurements - The next set of measurements taken will be breadth measurements. 

Breadth measurements will involve researchers measuring the breadth (or wideness) of the 

widest part of you humerus (arm bone) and femur (leg bone).   

Girth Measurements - The last two measurements taken will be girth measurements. These 

measurement will involve measuring the circumference of the widest part of your upper arm 

and your calf. 

Photography – Additionally, somatotyping will involve the researcher taking a picture of you in 

order to complete your body type profile. If you are a man this will involve you being 

photographed in a pair of athletic shorts and no shirt. If you are a woman this will involve you 

being photographed in a sports bra and a pair of athletic shorts. No one but the researchers will 

have access to these photos. Pictures of you may be used in scientific journals or in public 

presentations by concealing your identity with black boxes. 

Functional Movement Screening – What will I have to do? 

In order to complete the functional movement screen you will need to perform seven basic movement 

patterns. Four of these movement patterns you will perform on both sides of your body. The seven basic 

movement patterns are: deep squat, hurdle step, in-line lunge, single leg raise, shoulder mobility, trunk 

stability push-up, and rotary stability. You will be given more specific instructions for each movement 

pattern during the functional movement screen. If you not able to complete a movement pattern you 

will in no way be penalized. If you experience pain during a movement pattern please inform the 

researcher immediately. Experiencing pain during these movement patterns is not an expected outcome 

and therefore needs to be reported to researchers. 

Please note that somatotyping and functional movement screening will take place in the Human 
Performance Lab in the Field House at Grand Valley State University. 

Risks – What Possible Harms may come from Participating? 

We do not believe there is any risk to you from participating in this research. You should be aware that 

body composition measurements can be slightly intrusive. Researchers will act in a highly professional 

manner when taking your measurements and be assured that body composition data will be secure at 

all times. You will be given an identification number and your personal information (such as your name) 

will not be associated with your body composition measurements. 

Potential Benefits for Society – How Does my Participation benefit others? 

Establishing normative reference values for functional movement screening score for each body type 

category will help provide us with a better understanding of the relationship between movement 

abilities and body type. After establishing normative reference values we will then be able to compare 

these values between body types. This will help us have a better understanding of how a person’s body 

type affects their ability to move. It may also provide information that would be helpful in trying to 

decrease risk of injury due to dysfunctional movement patterns. 
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Participation in this study is voluntary.  If you decide to participate, it is important for you to understand 
that you may withdraw your consent at any time.  This will not affect your future relationships with the 
Grand Valley State University, Movement Science Department, or any individual involved with the 
research. 

As a participant in this research study you have the right to ask questions at any time concerning the 
procedures, as well as the right to have those questions answered.  You may contact the principal 
investigators, Dr. Heather Gulgin as follows: gulginh@gvsu.edu (phone # 616-331-8871) or Amanda 
Robertson as follows: robertam@mail.gvsu.edu (248-978-5650).  If you have questions about your rights 
as a participant in this study you may contact the Grand Valley State University Human Subjects Review 
Committee via phone # 616-331-3197 or email hrrc@gvsu.edu.  

In the unlikely event of a physical injury resulting from your participation, the investigators will assist 
you in obtaining medical care (phone 911 in case of an emergency). However, payment for the medical 
care is your responsibility.  Grand Valley State University will not provide financial compensation for the 
medical care. 

Your signature indicates that this research has been explained to you, that your questions have been 
answered, and that you agree to participate in this study. 

 

Please PRINT name ________________________________________________ 

 

 

Signature of participant _________________________________   Date ______________ 

 

 

 

 

 

 

 

 

 

 

This research protocol has been approved by the Human Research Review Committee at 

Grand Valley State University. File No. 14-082-H Expiration: January 29, 2015. 

mailto:gulginh@gvsu.edu
mailto:robertam@mail.gvsu.edu
mailto:hrrc@gvsu.edu
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Appendix B- Participant Recruitment Flyer 

 

PARTICIPANTS NEEDED FOR RESEARCH 

Functional Movement Screen Score by Body Type 

Who may volunteer? 

Grand Valley State University students between the ages of 18 – 25 yrs.  If you currently have any 

injuries or have had injuries in the last six months that prevent you from physical activity or 

activities of daily living you may not participate.  

 

What will you do? 

You will be asked to attend one session, approximately 30 - 45 minutes in length, to have body 

composition measurements such as skinfolds measurements, circumferences measurements, and 

breadth measurements taken. Additionally during that session you will be asked to perform various 

functional movements involving mobility and stability.   To allow for measurement, and ease of 

movement, we ask that you arrive in athletic shorts, a short sleeve shirt, and tennis shoes. 

 

What will we do? 

We will take your body composition measurements, as well as a body type profile photograph.  

Body composition measurements will involve the use of a skinfold caliper device that will require a 

small pinch of your skin.  We will also assess functional movements by having you perform a set of 

7 different movements 

 

Benefits? 

You will not benefit financially from volunteering in this study, but will help the investigators 

advance the scientific knowledge regarding movement and body types. 

 

Who do I contact if I am interested? 

If you meet the criteria above and are interested in volunteering in this study, then please contact 

the primary investigators: 

Amanda Robertson   OR  Heather Gulgin  

robertam@gvsu.edu    gulgin@gvsu.edu  

      616-331-8871    
 
 

 

This research protocol has been approved by the Human Research Review Committee at 

Grand Valley State University. File No. 14-082-H Expiration: January 29, 2015. 

mailto:robertam@gvsu.edu
mailto:gulgin@gvsu.edu
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Appendix C- Physical Activity Questionnaire 
 

Identification Number:_____________ 

 

Please answer the following questions to the best of your ability. 

Please indicate your age: _____________ 

Please indicate your sex:     

 ____ Male 

 ____ Female  

 

Please indicate your ethnicity:  

 _____Asian  

 _____American Indian or Alaskan Native 

 _____Black or African American 

 _____White or Caucasian  

 _____Hispanic or Latino 

 _____ I would prefer not to answer 

 

On average how many hours a week are you physically active?  

 _____ 0-4 hours per a week 

 _____ 5 to 8 hours per a week 

 _____ 9 to 12 hours per a week 

 _____ > 12 hours per a week 

 

What kind of physical activity do you partake in? Please explain. 

 ____________________________________________________________________ 

 ____________________________________________________________________ 

 ____________________________________________________________________ 

 

Is there anything currently preventing you from participating in physical activity? 

___ Yes 

 ___ No  

 If you answered yes, please explain: 

 __________________________________________________________________ 

 __________________________________________________________________ 

 __________________________________________________________________ 
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Is there anything that is currently preventing you from participating in activities of daily living? For 

instance walking, sitting, standing, attending work, or attending class. 

___ Yes 

 ___ No  

 If you answered yes, please explain: 

 __________________________________________________________________ 

 __________________________________________________________________ 

 __________________________________________________________________  

Do you currently have or have you had any injuries in the past 6 months? 

 ___ Yes 

 ___ No  

 If you answered yes, please explain: 

 __________________________________________________________________ 

 __________________________________________________________________ 

 __________________________________________________________________ 

 

Have you had any surgeries in the past 6 months? 

 ___ Yes 

 ___ No  

 If you answered yes, please explain: 

 __________________________________________________________________ 

 __________________________________________________________________ 

 __________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 
This research protocol has been approved by the Human Research Review Committee at 

Grand Valley State University. File No. 14-082-H Expiration: January 29, 2015. 
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Appendix D - HRRC Approval 
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Appendix E - Functional Movement Screen Score Sheet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

Appendix F - Somatotype Equation Sheet  

SOMATOTYPE EQUATION SHEET 

Participant Identification Number: _____________________ 

Endomorphy 

 Tricep  (mm) _________      Subscapular (mm) ___________      Suprailiac (mm)___________ 

 Raw Skinfold Sum =  

 Height correction value = 170.18 / height in cm 

 Height Adjusted Skinfold Sum =  

Mesomorphy 

 Upper Arm Girth (cm) =  

 Biceps (cm) = Upper Arm Girth (cm) – Tricep Skinfold (mm)  convert to cm before subtracting 

  =   

Calf Girth (cm) =  

 Calf Skinfold (mm) =  

 Calf (cm) = Calf Girth (cm) – Calf Skinfold (mm)  convert to cm before subtracting 

  =  

Ectomorphy 

Weight (lb.) =  

HWR = Height (in)/ √              Use for rating form 

 = 

 

HWR = Height (cm) / √              Use for equations 

 =  
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Appendix G - Somatotype Chart of Sample Population 
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